Distributed Sampling-Based Roadmap of Trees for
Large-Scale Motion Planning

Erion Plaku and Lydia E. Kavraki
Rice University
Department of Computer Science
Houston, Texas 77005, USA
{pl akue, kavraki }@s.rice. edu

-,

Fig. 1. A scene from our benchmarks. In problem “ConsR2,” teloots
Index Terms—motion planning, roadmap, distributed al- ~ must exchange places by going through ten small holes.
gorithm, PRM, SRT.

Abstract— High-dimensional problems arising from com-
plex robotic systems test the limits of current motion planrers
and require the development of efficient distributed motion
planners that take full advantage of all the available resotces.

This paper shows how to effectively distribute the
computation of the Sampling-based Roadmap of TreesSRT)
algorithm using a decentralized master-client scheme. The
distributed SRT algorithm allows us to solve very high-
dimensional problems that cannot be efficiently addressed
with existing planners. Our experiments show nearly linear
speedups with eighty processors and indicate that similar
speedups can be obtained with several hundred processors.

I. INTRODUCTION Despite the need for fast solutions for high-dimensional
oblems, little effort has been devoted to the development

Sampling-based planners have been used extensivel H‘i L . .
Ping b y of distributed motion planners, especially when contiste

recent years for multiple query or single query motion ™. ) i
planninz:]/ [12]-[15], [17?’ [2%]. I?]/ muItipIge ql?eryymotion with the work focused on sequential motion planners. The

planning, a roadmap is built during a preprocessing phas\fﬁlori:JI in [18] _glvlest a pbarallgl al?r(])rlthm fo; (ihdiz?r:ees Off
in order to quickly respond to many queries. An exampleree om manipulators based on the property that the config-

of such a planner is the Probabilistic Roadmap Methocrhr""tIon ?_pacetpbstacle for; ;Jnllon c:cftc;]bje.ctjs. |§dth(a| url;l_ontof
(PRM) [13]. Alternatively, in single query motion planning, € connguration space opstacle of the Individual Objects.

there is no preprocessing phase and the configuration sp I [S]’ [9]. a pa:jaltlﬁl }[/ersmnt(r)]f thgr\tandorg_lzed Path z!inne ¢
is typically explored using a single or a bi-directional IS proposed hat uses the paradigm, 1.€., difieren

tree. Examples of such planners include RapidIy—explorin@rocessorS compute the same algorithm and as soon as a

Random TreesRRTS) [17] and Expansive Space Trées 9Iut|op is found, the computation stops. Thg worl_< in [11]
(ESTs) [12]. discretizes and then decomposes the configuration space

. . . ... into hypercubes and cyclically assigns the exploration of
High-dimensional problems such as those arising i .
planning with flexible objects [14], [16], [19], reconfig- r1he hypercubes to the available processors. The method

urable robots [21], coordination tasks [20], manipulationis impracticable for high-dimensional problems due to the

planning [19], and computational biology search problemsd'scret'zat'on of the configuration space. The works in [2]

[3], [4] test the limits of current motion planner imple- 223 ;[QTfOf:s c;r;t(_arzlbarlrza;f):r?glsziralllel ergacl)lgtlher:l]SIomr'ntlhms
mentations. Solving interesting problems for these corple ' pectively. Ingly p gon

robotic systems requires the development of better pl.mnelavmd any interprocess communication and in the context

to reduce the time and the space used, which motivate%f PRI andRRT-are limited to memory-shared Sy stems.
In our earlier work [1], [6], the Sampling-based

our work [1], [6]. An important avenue is to effectively Road f Trod | developed
distribute computation in motion planning. This paper oadmap of Trees(SRT) planner was developed as a

describes an efficient distributed motion planner that Catpowerful motion planner that seamlessly integrates mieltip

be used to solve problems that are beyond the capabilitie%u_er_y planr_1er_s with single query planners and can be
of current sequential planners. efficiently distributed. The distribution scheme, however

places a heavy computational burden on the master proces-

Work on this paper by E. Plaku and L. E. Kavraki has been supgor
in part by NSF 0205671, NSF 0308237, EIA-0216467 and a Sloan 2The name of the planner in [1], [6] is changed from Probailis
Fellowship to L. E. Kavraki. Roadmap of TreesPRT) to Sampling-based Roadmap of Tre88T) to
1The acronynEST to describe Expansive Space Trees does not appeaemphasize the importance of sampling, which in turn, candreedn a
in the original papers, but is used in this paper for converge variety of ways.



sor, which manages the distribution of computations amongfo‘Igorlthm 1: Sampling-based Roadmap of Trees).

the client processors. As the number of client processors .
increases, it becomes difficult for the master to balance the 'gtht . iv nugwber gf niule\?toges.

computational load among the clients and thus it reduces utput: A roadmapGr = (Vr, Er).

the efficiency of the distribution. 1:Vr —0,Er —0, Q—0, Ec —0.

This paper presents a novel distribution schemestar 2: while |Vr| <K do » _
that remains highly efficient for both memory-shared and i; \-EH li;“'g ?Te}e rooted at a collision-free random config.
message-passing systems even when the computation is; QT:QL{qT} .WhereqT is the representative of.
distributed over hundreds of processors. The bottleneck of ¢ for all T eV do
the distribution scheme in [1] is eliminated by introducing 7: S« a set ofn; closest andh; randomgy € Q to gr.
several master processors that cooperate with each-other8: Ec < EcU{(T,T’) : ar € S}.
to distribute the computation evenly among the client pro- 9 for all (1. Tz) € Ec do

L . 10: if not connectedTs, T,) and connectTy, T,) then
cessors. The distributegRT algorithm allows us to solve [ Er E
> : > : T~ BErU{(T1,T2)}.
very high-dimensional problems that cannot be efficiently
addressed with existing planners. This paper presents ex-

periments with 126 degrees of freedom (DOF) where the

computation ofSRT is distributed over eighty processors. oy difficult since it requires the construction of a search
Figure 1 shows an example. We were able to obtain nearlyy,ctyre that depends on the representatives of all the
linear speedups for the distributed computatioRY. Our  jjestones. Finally, edge computations are not independen
experiments with eighty processors indicate that similaty; aach-other. Since milestones can change after an edge
speedups can be obtained with several hundred processoggmntation as a result of adding new configurations to
Our results pave the way for the use of distribusad 10 he milestones and since computing an edge requires both
planning problems of unprecedented complexity. milestones, the edge computations cannot be efficiently

In section 1l, we briefly review the sequenti@RT igtihuted without some effort. It requires milestonedeo
algorithm introduced in [1], [6]. Section IIl describes the gany from one client to the other. Furthermore, computation
distributio_n of theSRT algorithm. In section IV we describe pruning due to connected component analysis entails con-
the experimental setup, the set of benchmarks used to t€g| fiow dependencies throughout the computation of the
the efficiency of our planner, and the results obtained. We,jges our experiments with the sequential implementation
conclude in section V with a discussion on the distributed.o,egled that the bulk of the run time occurs in milestone
SRT. and edge computations.

I. SRT PLANNER We have designed a master-client architecture for our

distributed implementation ofRT. The clients are re-
sponsible for milestone and edge computations while the

Algorithm 1. SRT constructs a roadmap aimed at Calotur_masters ensure that the load is distributed as evenly as

ing the connectivity of the free configuration space. Theog)snsébfwﬁggﬁg tr:j 2'2;;;{:5 ::Z?;g; ?;Z'trgﬁnrgg&j
nodes of the roadmap are not single configurations but P, €dg '

trees, which are referred to as milestones. As iIIustrateé?n;ﬁotnheem ?géiszgfsau;\e’ .ag(: gg?rg:‘natric?ses ;gjvmes
in line 3 of Algorithm 1, each milestone is generated P ' gv P

using a sampling-based tree planner, suchras[17] and {P1,P,..., Py} is partitioned into a set of master processors

EST [12]. Connections between milestones are computed i%AC:éMl’ Mé;' - ’é\ﬂmi arll_d atéet Og client pr%cebssofs—
line 10 of Algorithm 1 by using bi-direction&RTs OrESTS. 1,Cz,...,Ce}. Each clientG € C is owned by some

SRT can use the roadmap to answer multiple queries or sto%"‘fjlgter'vICi € M. Consequently, each mastés € M owns

the computation of the roadmap as soon as a solution t lset Off Cht(_ami:]“f'ithg C.I_Eatch. mas(,jter t|s respon3|blt§ folr
the single query at hand is obtained. only a fraction of the clients in order to ensure a timely

response to their needs, since all the useful computation
I1l. DISTRIBUTED SRT is done by the clients. This design was chosen as we

In this section, we describe the design and implemengXPect to significantly increase the number of clients.

tation of a new distributed version GfRT. A different !N our implementation, each master owngm clients.

and simplified version of a distributegRT appears in [1]. The distributedSRT algorithm proceeds through several

Before relating the details, we discuss data and control flo/§t2ges: milestone computations, candidate edges, and edge

dependency in each stage of $®T algorithm. Milestone computatlong. T_he p_seudoche of the distribution of the

computations are independent of each-other; each miléRT planner is given in Algorithm 2.

stone can be processed in parallel. Distributing the compu- . .

tation of a single milestone is considerably more involvedA' Milestone Computations

due to the sampling scheme we use to generate milestones.The milestone computation stage is described in Al-

Random edge selection can be done entirely in parallegorithm 2 under ©MPUTE MILESTONES During this

however, the distribution of the closest edge selection istage, all the clients and mastéwts throughMy, compute

In this section, we briefly review the sequent&iT
algorithm [1], [6]. The pseudocode f@RT is given in



Algorithm 2 : DistributedSRT.

Master Client

1. {$Executed by Me M COMPUTE 1. $Executed by all ¢ec C and Mp,...,MneM
2: Q0. MiLesTones 2 1g < 0. .
3: fori=1toK do 3: while fi ni sh has not been receivedb
4:  Wait for someqr to arrive; Q — QU {qr }. 4. T« generate a milestondg, < Tc, U{T}.
5: Broadcasff i ni sh. 5. Send representativgr to masterM;.
6: Gc = (V1,Ec) < graph of candidate edges. 6: OExecuted by M... . Mp e M
7: SendGc to all other masters. 7: Send milestones to clients to balance load.
1. {Executed by all Me M COMPUTE 1: $Executed by all ¢ C
2: W =Cy, — working clients. EDGES 2: while fi ni sh has not been receiveatb
3: while unprocessed edges remainGg do 3 if sendT’,G) is receivedthen
4: for C; e W do 4: Send copy of mileston&’ to clientC;.
5: if 3e=(T',T") € EcNTg, x Tc; then 5. if rec\T’,G) is receivedthen
6: Sende to Cj. 6: if milestones received- 5 then
7: W —W-—{Cj}. 7: Mark first received mileston€ for deletion.
8: else 8: Send additions made b to owner ofT.
9: Find milestones S = {Ty,...,Ts} s.t. 9: DeleteT.

(T, T") € EcN(Tg; US) x (T US). 10: Add T’ to the list of milestones received.
10: Notify owner of each mileston§ € S to 11:  if addT’,Ci,cy,...,C/) is receivedthen

send a copy of to C;. 12: Addcy,...,c, to T,
11: if computed edges arrived fro@@), € C then 13: Update indices accordingly.
12: W —WU{Cp}, if C, €Cy,. 14: if e=(T',T”) is received then
13: Update connected comps afg. 15: ConnectT’ andT”.
14: Broadcasff i ni sh. 16: Send result to all the masters.

milestones and send their representatives to madter C; runs the tree-connection algorithm @ andT” and if

until a predefined total number &f milestones have been the connection is successful, it sends to all the masters the

computed. Each set of mileston& computed by client indices of two configurationd’ € T' andq” € T” that are

G is stored locally inC; while the set of the representatives connected by a local path. Otherwise, cli€hthas to wait

is stored inM;. The milestones computed by mastéts  until it receives copies of the milestones that it does not

throughMp, are sent to those clients which computed theown from their respective owners. During this tiGecould

smallest number of milestones in order to balance the loadomplete send operations that would help other clients to

as much as possible. During the milestone computationompute their assigned edges.

stage, the communication is limited and non-blocking Upon receiving a computed edge, each master adds the

resulting in an efficient distribution of the computatiomtb edge toGr and updates the graph of candidate edges. All

and little overhead. edges(T;, Tj) € G¢ such thatT; and T; lie in the same

B. Candidate Edges connected component @y are deleted fronG¢ as they

will not change the connected component structur&pf

candidate edge§c — (Vr,Ec) using the milestone rep- Init.ially, masters attempt.to send to their assigned cﬂient

resentatives. Each milestofieis connected to itk-closest candidate edges whose milestones are locally storeq, since
i ) : the computation of such edges requires no communication

neighbors, where the distance between two milestones

is defined as the distance between their representati\%Ith other clients. Once all the local candidate edges of

configurations. In addition, milestorie is connected to a a clientG; are computed, mastéf, attempts to find 3

number of random neighbors to offset any problems with5 milestones, that when added @ create many local

. . . Pandidate edges. Copies of these milestones are sent to
the metric used. The graph of candidate edges is sent ccfient C: by their respective owners. Clie@ may have
all the other mastersly, ..., My, which update their local y P ) y

copies ofGe. There is no distribution of this stage since to delete copies of other milestones that it has received in

. . . _ previous steps to make room for the new milestones. Since
it constitutes only a small amount of the total computatio . ' .

. . edge computations usually add new configurations to the
time and requires complex search data structures.

milestones involved, all the new configurations added to

C. Edge Computations the milestones marked for deletion are sent back to their
The edge computation stage is described in Algorithm 2riginal owners, which in turn merge the additions with

under ®MPUTE EDGES The connections between mile- the existing configurations. Indices of configurations are

stones are computed by the clients while the masters decidgdated accordingly.

which candidate edges should be connected. Recall that clients receive candidate edges only from
Lete= (T',T”) be the edge that mastik; sentto client their respective masters. If clie@ receives an edge=

Ci. If both milestones are currently owned by clié€tthen (T, T”) it means thatT’ and T” are owned byC; or

During this stage, mastelM; computes the graph of



that the respective owners @ and T” will send to Figure 2(a). The robots are placed in a grid-like format on
copies of these milestones. In both casEsand T” will one side of the wall and the objective of the motion planner
eventually be stored locally i@ resulting in a deadlock- is to move the robots through the openings in the wall to
free design. Before deleting a local copy of milestdne the other side and position the robots in the same grid-like
client G ensures that all the candidate edges already serfdrmat. Benchmark “Letters21” has 126 DOFs.

to it by masterMc, that involve T have been computed.  The environment of benchmark “MazeR1” consists of a

Also note that milestones grow large as the result of3D-maze object, as shown in Figure 2(f). The robot is a
edge connections and different merges that may occugingle object in the shape of a cylinder bent several times,
throughout the computation process making it inefficientas shown in Figure 2(a), which should move from the

for clients to send these milestones to other clients. In oulower left corner to the upper right corner of the maze. The
implementation, a client sends to other clients only a subsalimensions of the cells and of the robot are such that the
of the configurations of a large milestone. robot must wiggle its way through. Benchmark “MazeR1”

IV. EXPERIMENTS AND RESULTS hase 6 DOFs.

The experiments were chosen to evaluate the perfoB- Hardware and Software Setup
mance of the distributedRT compared to the sequential The implementation of the distribut&&T algorithm was
implementation. In this paper, we UBRT as the sampling- carried out inANSI C/ C++ using the | ntel ®s.0
based tree planner f@RT. The benchmarks presented in compilers and libraries. Additionally, we made use of
this paper are generally more difficult than those presentethe SW FT++ collision detection library [10], thé/Pl CH
in [1], [6] in order to show the importance of an efficient implementation ofWPl standard for communication and
distributed planner when solutions by traditional seqiaént OpenGL for visualization. The experiments were run
planners, such a®RM, EST, RRT, or even newer and on the Rice Terascale Cluster, a 1 TeraFLOP
more powerful sequential planners, suchs&g, cannot Linux cluster based ohnt el ® | tani unf®2 proces-
be obtained in a reasonable amount of time. sors. Each node has two 64-bit processors running at 900
MHz, with 1.5 MB of L2 data cache and 2 GB memory per
processor. The nodes are connected by a Gigabit Ethernet

Figure 2 illustrates the environments and the robots thafﬁetwork' For the experimentsy we used on|y one processor
we used to create the benchmarks. per node.

Benchmark “ConsR1” consists of ten consecutive walls o o
each with a small hole, as shown in Figure 2(b). The robof- Efficiency of DistributedRT
is an object in the shape of the letter “C,” as shown in To measure the efficiency of the distributeBT algo-
Figure 2(a), which must move through all the ten holesrithm, we ran the distributed code on various benchmarks
The dimensions and relative positioning of the holes areising 1, 4, 8, 16, 24, 32, 48, 64, and 80 client processors
such that the robot is forced to wiggle its way through.and 1, 2, and 3 master processors. Table | contains a
Benchmark “ConsR2” is a similar problem with two robots summary of the results. For each benchmark, we report
in the shape of the letters “C” and “S,” respectively, asthe computation time required by the sequential version
shown in Figure 1. Benchmarks “ConsR1” and “ConsR2"of SRT (time[1]) and the distributed efficiency 8RT with
have 6 and 12 DOFs, repsectively. 80 clients (efficiency[80 clients]) andmasters, whera =

Benchmark “BunnyR1” consists of a fence, a wall with a1,2,3. The distributed efficiency is calculatedtg&(ty-N),
cross-like hole, and another fence placed consecutivally newherets is sequential timety is distributed time, andN
each-other, as shown in Figure 2(c). The robot is an objeds the number of processors. As an example, referring
in the shape of a bunny, as shown in Figure 2(a), consistingp Table I, benchmark “ConsR2” requires approximately
of 8171 vertices and 16301 triangles. The motion planneROhrs of computation time by the sequenSalr. Ideally,
finds collision-free paths that move the robot through thevhen 81 processors are used the running time would be
openings in the walls. The openings in the fence are as largebmins. When the distributeSRT is used with 80 clients
as necessary to allow the robot to go through. Benchmarind one master the running time is only 17mins which
“BunnyR2” is similar to benchmark “BunnyR1,” but with results in an efficiency of.89. Using 82 processors reduces
two bunny-like robots instead of one. Similarly, benchmarkthe ideal running time to 18mins. When the number
“BunnyR8” consists of eight bunny-like robots placed of masters is increased to two, the computation time of
inside box that has a wall with a small cross-like hole in thethe distributedSRT is reduced to 16mins resulting in an
middle, as shown in Figure 2(d). Benchmarks “BunnyR1,"efficiency of 092. Finally, using 83 processors results in an
“BunnyR2,” and “BunnyR8” have 6, 12, and 48 DOFs, ideal time of 147mins. Increasing the number of masters to
repsectively. three keeps the same computation time of 16mins resulting

Benchmark “LettersR21” consists of a box that has an a slightly reduced efficiency of.91.
wall with a circular hole in the middle inside which a  The overall efficiency of the distributegRT algorithm
circular ring is placed, as shown in Figure 2(e). Theres reasonably high on all our benchmarks. When only
are twenty-one robots in the shape of the letters “A, B,one master is used, the efficiency of the distribusad
C, ..., U respectively, some of which are illustrated inranges from (b8 to 089 with an average of .03 and

A. Benchmarks



)

(a) Letters “A, B, C, S,” bent cylinder, and bunny. (b) “CorisRand “ConsR2."

12908

(c) “BunnyR1” and “BunnyR2.” (d) “BunnyR8.” (e) “LettersR21.” (f) “MazeR1.”
Fig. 2. Path planning benchmarks: (a) robots, (b) — (f) seene

TABLE |
EFFICIENCY OFDISTRIBUTEDSRT.

1

benchmark| time[1](s) efficiency[80 clients] |

1 master| 2 masters| 3 masters ‘

ConsR1 19635.18 0.89 0.93 0.88 |

ConsR2 73388.19 0.89 0.92 0.91 E

BunnyR1 4702.47 0.69 0.85 0.94 |

BunnyR2 14355.57 0.74 0.97 0.88 |

BunnyR8 4437.82 0.71 0.84 0.85 ‘ E

LettersR21 5275.28 0.58 0.62 0.65 | ‘ DL L
MazeR1 6572.53 0.63 0.72 0.94 1 8 16 32 48 64 80

Processes

Fig. 3. Speedup of distributesRT.

median of 071. When the number of masters is increased

to two, the efficiency ranges from.@2 to Q97 with

an average of 84 and median of @5. |ncreasing the 094, an increase Of 420%, When the number Of masters
number of masters to three does not change the efficiend§ changed from one to three.

significantly; it ranges from @5 to Q94 with an average Figure 3 compares the ideal speedup to the speedup
of 0.86 and median of 88. As illustrated in Table I, obtained for the benchmark “ConsR2” when the distributed
increasing the number of masters from one to two resultedode is run with one, two, and three masters and up
in increased efficiency of our distributed algorithm for all to 80 processors. Figure 4 presents logged data for the
the benchmarks. The largest increaseP8%, is obtained benchmark “ConsR1,” showing where clients spend their
for benchmark “BunnyR2” and the lowest increas&730, time, i.e., milestone computation, edge computation, or
is obtained for benchmark “ConsR2.” When only a singlecommunication. The plots in Figures 3 and 4 are char-
master is used, the load of the master increases propaacteristic of the behavior of the distributeXRT on the
tionally to the number of the clients. As the number of other benchmarks as well. Figure 3 indicates a nearly linear
clients becomes large, a single master is not able to hand&peedup for the distribute2RT when two or three masters
their requests. Increasing the number of masters to two @re used. As expected, the speedup is worse, but only
three allows for a better distribution of the workload, andslightly, when one master is used. Figure 4 indicates that
consequently, higher efficiency. This phenomenon is glearlvirtually all of the overhead occurs during the last stages
seen in the “MazeR1” benchmark where the efficiency ofof edge computations. At this point, only a few edges
the distributedsRT with 80 clients increased from.®3 to  have not been computed (fewer than the number of clients



100

o ]
o] (1]
g
& 40 Communication [2]
20 4
(3]
0 T T
0 25 50 75 100 125 150 175 200 225 250
Time (seconds)
(4]

Fig. 4. Time distribution ofSRT.

available) and consequently many clients starve wasting[5]
useful computation time. Nevertheless, milestone and edge
computations are nearly fully distributed and storageds al [6]
distributed evenly.

Extrapolating from the results of our experiments, we
suspect that similar speedups and computation distrifsitio [7]
can be obtained even when the number of clients is doubled
or tripled and the number of masters remains the same. Wgg;
still have not reached the point were masters become the
bottleneck, but 80 was the largest number of processors we
had available. 9]

V. DISCUSSION

High-dimensional problems arising from complex [10]
robotic systems require the development of powerful se-
guential motion planners and the development of efficient
distributed motion planners that take full advantage of allt1l
the available resources. This paper presents an efficient
algorithm for evenly distributing the computation 8RT,
allowing us to solve difficult problems with up to 126 [12]
DOF in few minutes. The distributegRT planner provides
a platform for solving problems of high complexity that [13]
cannot be solved in a reasonable amount of time even by
the most efficient sequential planners.

We believe that the efficiency of the distributed algorithm(14]
derives in part from the hierarchical nature ®£T and
the sharing of the scheduler's load among the differenf;s
masters. Prior work on the distribution 8RT [1], [6] and
the experiments with one master indicate that the maste#6]
becomes the bottleneck as the number of clients increases,
since it is unable to handle the large number of requesta?)
efficiently. Increasing the number of masters allows for
an even distribution of the workload and, consequentlyy;q,
a higher efficiency. Using two or three masters, we were
able to obtain nearly linear speedups when running on
80 processors — the largest number we had availabld'®!
We believe that our master-client architecture can easily
support several hundred processors and still yield nearliz0]
linear speedups.

ACKNOWLEDGMENT [21]

The authors would like to thank all the members of
the Physical and Biological Computing group at Rice
University for their helpful comments and discussions.

REFERENCES

M. Akinc, K. E. Bekris, B. Y. Chen, A. M. Ladd, E. Plaku, and
L. E. Kavraki, “Probabilistic roadmaps of trees for parhib®m-
putation of multiple query roadmaps,” imterantional Symposium
on Robotics Researchser. Springer Tracts in Advanced Robotics
(STAR), D. Paolo and R. Chatila, Eds. Springer Verlag, 2003.
N. M. Amato and L. Dale, “Proabilistic roadmap methodg @&m-
barrasingly parallel,” ifEEE International Conference on Robotics
and Automation1999, pp. 688—694.

N. M. Amato, K. Dill, and G. Song, “Using motion planning t
map protein folding landscapes and analyze folding kiset
known native structures,” itnternational Conference on Research
in Computational Molecular BiologyApril 2002, pp. 2-11.

M. S. Apaydin, D. L. Brutlag, C. Guestrin, D. Hsu, and J.-C
Latombe, “Stochastic roadmap simulation: An efficient esenta-
tion and algorithm for analyzing molecular motion,” limernational
Conference on Research in Computational Molecular Bigl@gyril
2002, pp. 12-21.

J. Barraquand and J.-C. Latombe, “Robot motion planniglis-
tributed representation approaciyternational Journal of Robotics
Researchvol. 10, no. 6, pp. 628-649, December 1991.

K. E. Bekris, B. Y. Chen, A. M. Ladd, E. Plaku, and L. E. Kak,
“Multiple query motion planning using single query primés,”

in IEEE/RSJ International Conference on Intelligent Robotsl a
Systems2003, pp. 656—661.

S. Carpin and E. Pagello, “On parallel RRTs for multi-ootsys-
tems,” in 8th conference of the lItalian Association for Artificial
Intelligence 2002, pp. 834-841.

D. J. Challou, D. Boley, M. L. Gini, and V. Kumar, “A parall
formulation of informed randomized search for robot motman-
ning problems,” inlEEE International Conference on Robotics and
Automation 1995, pp. 709-714.

D. J. Challou, M. L. Gini, and V. Kumar, “Parallel searclgarithms
for robot motion planning,” iNnlEEE International Conference on
Robotics and Automatiori993, pp. 46-51.

S. A. Ehmann and M. C. Lin, “Geometric algorithims: Acate
and fast proximity queries between polyhedra using convefase
decomposition,"Computer Graphics Forum - Proceedings of Euro-
graphics vol. 20, pp. 500-510, 2001.

D. Henrich, C. Wurll, and H. Worn, “Multi-directionasearch with
goal switching for robot path planning,” imternational Conference
on Industrial and Engineering Applications of Atrtificialteiligence
and Expert Systemd998, pp. 75-84.

D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randadiz
kinodynamic motion planning with moving obstaclekternational
Journal of Robotics Researchiol. 21, no. 3, pp. 233-255, 2002.
L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Ovarsn
“Probabilistic roadmaps for path planning in high-dimemsil con-
figuration spacesEEE Transactions on Robotics and Automation
vol. 12, no. 4, pp. 566-580, June 1996.

A. M. Ladd and L. E. Kavraki, “Using motion planning fomkt
untangling,”International Journal of Robotics Researaiol. 23, no.
7-8, pp. 797-808, 2004.

——, “Fast exploration for robots with dynamics,” Workshop on
Algorithmic Foundations of Robotic2004.

F. Lamiraux and L. E. Kavraki, “Planning paths for elasbbjects
under manipulation constraintslhternational Journal of Robotics
Researchvol. 20, no. 3, pp. 188-208, 2001.

S. M. LaValle and J. J. Kuffner, “Randomized kinodynanplan-
ning,” International Journal of Robotics Reseayciol. 20, no. 5,
pp. 378400, May 2001.

T. Lozano-Pérez and P. O’'Donnell, “Parallel robot imotplanning,”

in IEEE International Conference on Robotics and Automation
Sacramento, USA, 1991, pp. 1000-1007.

M. Moll and L. E. Kavraki, “Path planning for minimal ergy
curves of constant length,” ilEEE International Conference on
Robotics and Automatior2004, pp. 2826-2831.

G. Sanchez and J.-C. Latombe, “On delaying collisibeaking in
PRM planning: Application to multi-robot coordinationihterna-
tional Journal of Robotics Researchol. 21, no. 1, pp. 5-26, 2002.
M. Yim, D. G. Duff, and K. D. Roufas, “PolyBot: a modular
reconfigurable robot,IEEE International Conference on Robotics
and Automationpp. 514-520, 2000.



