
Crash Course in Map Reduce and GPU Programming

Rice University

Anshumali Shrivastava

anshumali At rice.edu

15th Janauary 2016

Rice University (COMP 441) Map Reduce and GPU 15th Janauary 2016 1 / 16

The Headaches of Programming over Clusters

Scheduling Processes.

Fault Tolerance.

Load Balancing.

Synchronization.

Minimize Communication.

Data Locality.

etc.

Rice University (COMP 441) Map Reduce and GPU 15th Janauary 2016 2 / 16

Parallel Data Processing Simplified: MapReduce

MapReduce is a programming model, by Google, which essentially
abstracts away all these headaches of parallelism for a generic
aggregation task

Users specify computation in the form of Map and Reduce functions
(example coming)

Underlying system automatically parallelizes the computations.

Performance issues of parallelism are handled by the framework.

Ideally designed for aggregation task, such as counting (Aggregation
forms the core of many algorithms, specially ML and data mining
algorithms). So its useful.

Rice University (COMP 441) Map Reduce and GPU 15th Janauary 2016 3 / 16

Programming Example

Problem: Count the word frequencies over web documents.

User Implements only Two Functions:
function map(String name, String document):
// name: document name
// document: document contents
for each word w in document:

emit (w, 1)

function reduce(String word, Iterator partialCounts):
// word: a word
// partialCounts: a list of aggregated partial counts
sum = 0
for each pc in partialCounts:

sum += pc
emit (word, sum)

Rice University (COMP 441) Map Reduce and GPU 15th Janauary 2016 4 / 16

Programming Example

Problem: Count the word frequencies over web documents.
User Implements only Two Functions:
function map(String name, String document):
// name: document name
// document: document contents
for each word w in document:

emit (w, 1)

function reduce(String word, Iterator partialCounts):
// word: a word
// partialCounts: a list of aggregated partial counts
sum = 0
for each pc in partialCounts:

sum += pc
emit (word, sum)

Rice University (COMP 441) Map Reduce and GPU 15th Janauary 2016 4 / 16

Workflow1

1Image from MapReduce: Simplified Data Processing on Large Clusters” by Jeffrey
Dean and Sanjay Ghemawat, OSDI’04

Rice University (COMP 441) Map Reduce and GPU 15th Janauary 2016 5 / 16

How Does it Work?

Input Reader: Splits data and assign different splits to the map
function.

Map Function:Takes series of key/value pairs, processes each, and
generates zero or more output key/value pairs.

Partition Function: The partition function is given the key and the
number of reducers and returns the index of the assigned reducer.
Usually index = key mod |Reducers|
Comparison Function: The input for each Reduce is taken from the
machine where the Map ran and sorted.

Reduce Function: Called once for each unique key in the sorted
order. The Reducer takes key and list of associated values can
produce zero or more output.

Output Writer:

Rice University (COMP 441) Map Reduce and GPU 15th Janauary 2016 6 / 16

Key Performance Considerations

Between the map and reduce stages, the data is shuffled
(parallel-sorted / exchanged between nodes) though by a highly
optimized function. This can be longer depending on what map
produces.

Many MapReduce implementations are designed to write all
communication to distributed storage for crash recovery.
Communication cost can affect the performance

The amount of data produced by the mappers decides the
computation cost that happens between mapping and reducing. Small
partition size is preferred (Why ?) but not too small as other
overheads come in.

If data fits in memory, MapReduce is ineffective.

Rice University (COMP 441) Map Reduce and GPU 15th Janauary 2016 7 / 16

Popular Implementations on MapReduce

Pattern-Based Searching.

Distributed Sorting.

Web Links or PageRank.

SVD.

Indexing.

Machine Translation.

Machine Learning.

Rice University (COMP 441) Map Reduce and GPU 15th Janauary 2016 8 / 16

Programming with GPUs

Rice University (COMP 441) Map Reduce and GPU 15th Janauary 2016 9 / 16

GPUs

Thousands of cores! Compare this with CPUs which have only few.

Ideal, when we want to apply the same operation many times at
different locations. (example)

Originally used for graphics operations like
for all pixels (i,j): replace previous color with new color according to
rules

Rice University (COMP 441) Map Reduce and GPU 15th Janauary 2016 10 / 16

Example Program

Problem: Add two giant arrays C[] = A[] + B[]

CPU
float *C = malloc(N * sizeof(float));
for (int i = 0; i ¡ N; i++)
C[i] = A[i] + B[i];
Muli-core can give us 2-8x speed with tricks.

On GPUs
(allocate memory for A, B, C on GPU)
Create the kernel each thread will perform one (or a few) additions
Specify the following kernel operation:
For (all i’s assigned to this thread)
C[i] = A[i] + B[i]
Start 100000 (!) threads

Rice University (COMP 441) Map Reduce and GPU 15th Janauary 2016 11 / 16

Steps

Setup inputs on the host (usual malloc)

Allocate memory for inputs on the GPU

Allocate memory for outputs on the host (usual malloc)

Allocate memory for Outputs on the GPU

Copy inputs from host to GPU

Start GPU kernel

Copy output from GPU to host

Rice University (COMP 441) Map Reduce and GPU 15th Janauary 2016 12 / 16

How the Code Looks Like
int ∗ c CUDAadd(float ∗ a, float ∗ b, float ∗ c)
{ double ∗ da, ∗ db, ∗ dc
sizet bytes = n∗ sizeof(double);
cudaMalloc(& da, bytes);
cudaMalloc(& db, bytes);
cudaMalloc(& dc, bytes);
cudaMemcpy(da, a, bytes, cudaMemcpyHostToDevice);
cudaMemcpy(db, b, bytes, cudaMemcpyHostToDevice);
int blockSize, gridSize;
blockSize = 1024;
gridSize = (int)ceil((float)n/blockSize);
vecAdd<<<gridSize, blockSize>>>(da, db, dc, n);
cudaMemcpy(c, dc, bytes, cudaMemcpyDeviceToHost);
cudaFree(da);
cudaFree(db);
cudaFree(dc);
}

Rice University (COMP 441) Map Reduce and GPU 15th Janauary 2016 13 / 16

CUDA Kernel

global void vecAdd(double *a, double *b, double *c, int n)
{
// Get our global thread ID
int id = blockIdx.x*blockDim.x+threadIdx.x;
if (id < n)
c[id] = a[id] + b[id];
}

Rice University (COMP 441) Map Reduce and GPU 15th Janauary 2016 14 / 16

Some Performance Considerations

Ideal for Matrix or Tensor Multiplication.

Memory transfer between host and device is slow.

Actual processing is slower than CPU.

CUDA will not work unless you exploiting lots and lots of parallelism.

Rice University (COMP 441) Map Reduce and GPU 15th Janauary 2016 15 / 16

Next Week : Streaming and Sketching

Rice University (COMP 441) Map Reduce and GPU 15th Janauary 2016 16 / 16

