Locality Sensitive Hashing and its Application

, RICE

Rice University

Anshumali Shrivastava
anshumali At rice.edu
27th Jan 2016

Pairwise Comparisons Everywhere

- Near Duplicate Detections over web. (mirror pages)
- Plagiarism Detection
- Find Customers With Similar Taste.
- Movie Recommendations. (Find Similar profiles)

Activity : Exact Duplicates

Remove all repeated items in an array example $\{1,2,3,8,2,7,3,3,4,8,9\}$

Activity : Exact Duplicates

Remove all repeated items in an array example $\{1,2,3,8,2,7,3,3,4,8,9\}$

$$
O(n) \text { or } O\left(n^{2}\right)
$$

Activity : Exact Duplicates

Remove all repeated items in an array example $\{1,2,3,8,2,7,3,3,4,8,9\}$

$$
O(n) \text { or } O\left(n^{2}\right)
$$

Array of vectors instead of numbers ?

Subroutine of Interest: Similarity Search

Given a query $q \in \mathbb{R}^{D}$ and a giant collection \mathcal{C} of N vectors in \mathbb{R}^{D}, search for $p \in \mathcal{C}$ s.t.,

$$
p=\arg \max _{x \in \mathcal{C}} \operatorname{sim}(q, x)
$$

Subroutine of Interest: Similarity Search

Given a query $q \in \mathbb{R}^{D}$ and a giant collection \mathcal{C} of N vectors in \mathbb{R}^{D}, search for $p \in \mathcal{C}$ s.t.,

$$
p=\arg \max _{x \in \mathcal{C}} \operatorname{sim}(q, x)
$$

- sim is the similarity, like Cosine Similarity, Resemblance, etc.
- Worst case $O(N)$ for any query. N is huge.
- Querying is a very frequent operation.

Subroutine of Interest: Similarity Search

 Given a query $q \in \mathbb{R}^{D}$ and a giant collection \mathcal{C} of N vectors in \mathbb{R}^{D}, search for $p \in \mathcal{C}$ s.t.,$$
p=\arg \max _{x \in \mathcal{C}} \operatorname{sim}(q, x)
$$

- sim is the similarity, like Cosine Similarity, Resemblance, etc.
- Worst case $O(N)$ for any query. N is huge.
- Querying is a very frequent operation.

Our goal is to find sub-linear query time algorithm.

Subroutine of Interest: Similarity Search

 Given a query $q \in \mathbb{R}^{D}$ and a giant collection \mathcal{C} of N vectors in \mathbb{R}^{D}, search for $p \in \mathcal{C}$ s.t.,$$
p=\arg \max _{x \in \mathcal{C}} \operatorname{sim}(q, x)
$$

- sim is the similarity, like Cosine Similarity, Resemblance, etc.
- Worst case $O(N)$ for any query. N is huge.
- Querying is a very frequent operation.

Our goal is to find sub-linear query time algorithm.
(1) Approximate answer suffices.
(2) We are allowed to pre-process \mathcal{C} once. (offline costly step)

Locality Sensitive Hashing

Hashing: Function (randomized) h that maps a given data vector $x \in \mathbb{R}^{D}$ to an integer key $h: \mathbb{R}^{D} \mapsto\{0,1,2, \ldots, N\}$

Locality Sensitive Hashing

Hashing: Function (randomized) h that maps a given data vector $x \in \mathbb{R}^{D}$ to an integer key $h: \mathbb{R}^{D} \mapsto\{0,1,2, \ldots, N\}$

Locality Sensitive: Additional property

$$
\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y))
$$

where f is monotonically increasing. sim is any similarity of interest.

Locality Sensitive Hashing

Hashing: Function (randomized) h that maps a given data vector $x \in \mathbb{R}^{D}$ to an integer key $h: \mathbb{R}^{D} \mapsto\{0,1,2, \ldots, N\}$

Locality Sensitive: Additional property

$$
\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y))
$$

where f is monotonically increasing. sim is any similarity of interest.
Similar points are more likely to have the same hash value (hash collision). Question: Does this definition implies the definition given in the book ?

Signed Random Projections (SimHash)

$$
h_{r}(x)= \begin{cases}1 & \text { if } r^{T} x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

$$
r \in \mathbb{R}^{D} \sim N(0, \mathcal{I})
$$

$\operatorname{Pr}_{r}\left(h_{r}(x)=h_{r}(y)\right)=1-\frac{\theta}{\pi}, \quad$ monotonic in cosine similarity $\theta=\cos ^{-1} \mathcal{S}$
A classical result from Goemans-Williamson (95)

Signed Random Projections (SimHash)

$$
h_{r}(x)= \begin{cases}1 & \text { if } r^{T} x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

$$
r \in \mathbb{R}^{D} \sim N(0, \mathcal{I})
$$

$\operatorname{Pr}_{r}\left(h_{r}(x)=h_{r}(y)\right)=1-\frac{\theta}{\pi}, \quad$ monotonic in cosine similarity $\theta=\cos ^{-1} \mathcal{S}$
A classical result from Goemans-Williamson (95)

LSH for Estimation

We have

$$
\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y))
$$

where f is monotonically increasing.

LSH for Estimation

We have

$$
\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y))
$$

where f is monotonically increasing.

Activity: Design a strategy for estimating $\operatorname{sim}(x, y)$ given access to values of $h(x)$ and $h(y)$, with h sampled independently.

Sub-linear Near Neighbor Search: Idea

Given: $\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y))$, f is monotonic.

Sub-linear Near Neighbor Search: Idea

Given: $\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y)), \mathrm{f}$ is monotonic.

Sub-linear Near Neighbor Search: Idea

Given: $\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y)), \mathrm{f}$ is monotonic.

Sub-linear Near Neighbor Search: Idea

Given: $\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y)), \mathrm{f}$ is monotonic.

- Given query q, if $h_{1}(q)=11$ and $h_{2}(q)=01$, then probe bucket with index 1101. It is a good bucket !!

Sub-linear Near Neighbor Search: Idea

Given: $\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y)), \mathrm{f}$ is monotonic.

- Given query q, if $h_{1}(q)=11$ and $h_{2}(q)=01$, then probe bucket with index 1101. It is a good bucket !!
- (Locality Sensitive) $h_{i}(q)=h_{i}(x)$ implies high similarity.
- Doing better than random !!

The Classical LSH Algorithm

Table 1

h_{1}^{1}	\cdots	h_{K}^{1}	Buckets
$\mathbf{0 0}$	\cdots	$\mathbf{0 0}$	\cdots
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$0 \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	Empty
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	\cdots

- We use K concatenation.

The Classical LSH Algorithm

Table 1

h_{1}^{1}	\cdots	h_{K}^{1}	Buckets
$\mathbf{0 0}$	\cdots	$\mathbf{0 0}$	\cdots
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$0 \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	Empty
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	\cdots

Table L

\boldsymbol{h}_{1}^{L}	\cdots	$\boldsymbol{h}_{\boldsymbol{K}}^{L}$	Buckets
$\mathbf{0 0}$	\cdots	$\mathbf{0 0}$	$\bullet \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$\bullet \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	0
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	Empty

- We use K concatenation.
- Repeat the process L times. (L Independent Hash Tables)

The Classical LSH Algorithm

Table 1

h_{1}^{1}	\cdots	h_{K}^{1}	Buckets
$\mathbf{0 0}$	\cdots	00	\cdots
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$0 \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	Empty
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	\cdots

Table L

h_{1}^{L}	\cdots	h_{K}^{L}	Buckets
$\mathbf{0 0}$	\cdots	$\mathbf{0 0}$	$\bullet \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$\bullet \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	0
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	Empty

- We use K concatenation.
- Repeat the process L times. (L Independent Hash Tables)
- Querying : Probe one bucket from each of L tables. Report union.

The Classical LSH Algorithm

Table 1

h_{1}^{1}	\cdots	h_{K}^{1}	Buckets
$\mathbf{0 0}$	\cdots	00	\cdots
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$0 \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	Empty
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	\cdots

Table L

h_{1}^{L}	\cdots	h_{K}^{L}	Buckets
$\mathbf{0 0}$	\cdots	$\mathbf{0 0}$	$\bullet \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$\bullet \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	0
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	Empty

- We use K concatenation.
- Repeat the process L times. (L Independent Hash Tables)
- Querying : Probe one bucket from each of L tables. Report union.
(1) Two knobs K and L to control.
(2) Theory says we have a sweet spot. Provable sub-linear algorithm. (Indyk \& Motwani 98)

A Real Problem: Avoiding Quadratic

Dataset of around 250,000 Syrian death records from 7 sources.

- A very short noisy text description of who died.
- Arabic suffixes and prefixes have many ambiguities.
- Selection biases.

A Real Problem: Avoiding Quadratic

Dataset of around 250,000 Syrian death records from 7 sources.

- A very short noisy text description of who died.
- Arabic suffixes and prefixes have many ambiguities.
- Selection biases.

A Real Problem: Avoiding Quadratic

Dataset of around 250,000 Syrian death records from 7 sources.

- A very short noisy text description of who died.
- Arabic suffixes and prefixes have many ambiguities.
- Selection biases.

Many records correspond to the same individual.
Problem: Can we estimate how many people died ? (Record Linkage)

A Real Problem: Avoiding Quadratic

Dataset of around 250,000 Syrian death records from 7 sources.

- A very short noisy text description of who died.
- Arabic suffixes and prefixes have many ambiguities.
- Selection biases.

Many records correspond to the same individual.
Problem: Can we estimate how many people died ? (Record Linkage)
Reasonable Idea: Try predicting match/mismatch given a pair.
Concern: Just too many pairs! $\left(3.1 \times 10^{10}\right)$

Reducing Potential Pairs via Hashing

Reducing Potential Pairs via Hashing

h_{3}	h_{4}	Buckets (pointers only)
00	00	\cdots
00	01	$0 \cdots$
00	10	0
\cdots	\cdots	\cdots
11	11	Empty

Reducing Potential Pairs via Hashing

\boldsymbol{h}_{1}	$\boldsymbol{h}_{\mathbf{2}}$	Buckets (pointers only)
$\mathbf{0 0}$	$\mathbf{0 0}$	$0 \cdots$
$\mathbf{0 0}$	$\mathbf{0 1}$	0
$\mathbf{0 0}$	$\mathbf{1 0}$	Empty
\cdots	\cdots	\cdots
$\mathbf{1 1}$	$\mathbf{1 1}$	\cdots

h_{3}	h_{4}	Buckets (pointers only)
$\mathbf{0 0}$	$\mathbf{0 0}$	0
$\mathbf{0 0}$	$\mathbf{0 1}$	0
$\mathbf{0 0}$	$\mathbf{1 0}$	0
\cdots	\cdots	\cdots
11	$\mathbf{1 1}$	Empty

- Co-occurrence in bucket mean high resemblance between records.

Reducing Potential Pairs via Hashing

\boldsymbol{h}_{1}	$\boldsymbol{h}_{\mathbf{2}}$	Buckets (pointers only)
$\mathbf{0 0}$	$\mathbf{0 0}$	$0 \cdots$
$\mathbf{0 0}$	$\mathbf{0 1}$	0
$\mathbf{0 0}$	$\mathbf{1 0}$	Empty
\cdots	\cdots	\cdots
$\mathbf{1 1}$	$\mathbf{1 1}$	\cdots

h_{3}	h_{4}	Buckets (pointers only)
$\mathbf{0 0}$	$\mathbf{0 0}$	0
$\mathbf{0 0}$	$\mathbf{0 1}$	0
$\mathbf{0 0}$	$\mathbf{1 0}$	0
\cdots	\cdots	\cdots
11	$\mathbf{1 1}$	Empty

- Co-occurrence in bucket mean high resemblance between records.
- Only form pairs within each bucket.

Reducing Potential Pairs via Hashing

\boldsymbol{h}_{1}	$\boldsymbol{h}_{\mathbf{2}}$	Buckets (pointers only)
$\mathbf{0 0}$	$\mathbf{0 0}$	$0 \cdots$
$\mathbf{0 0}$	$\mathbf{0 1}$	0
$\mathbf{0 0}$	$\mathbf{1 0}$	Empty
\cdots	\cdots	\cdots
$\mathbf{1 1}$	$\mathbf{1 1}$	\cdots

h_{3}	h_{4}	Buckets (pointers only)
00	00	\cdots
$\mathbf{0 0}$	$\mathbf{0 1}$	0
$\mathbf{0 0}$	$\mathbf{1 0}$	0
\cdots	\cdots	\cdots
11	$\mathbf{1 1}$	Empty

- Co-occurrence in bucket mean high resemblance between records.
- Only form pairs within each bucket.
(1) All operations near linear.
(2) 99% recall and only evaluate 1% of the total pairs.

Brain Storm Activity : Graph Matching !

- Given a collection of n graphs find a reasonable routine to remove isomorphic (identical or duplicates) graphs
- Assume you have an subroutine isIsomorphic $\left(G_{1}, G_{2}\right)$. Try to avoid quadratic call to this subroutine.

Brain Storm Activity : Graph Matching !

- Given a collection of n graphs find a reasonable routine to remove isomorphic (identical or duplicates) graphs
- Assume you have an subroutine islsomorphic $\left(G_{1}, G_{2}\right)$. Try to avoid quadratic call to this subroutine.

Any real application ?

