Locality Sensitive Hashing and its Application

Rice University

Anshumali Shrivastava

anshumali At rice.edu

27th Jan 2016

- Near Duplicate Detections over web. (mirror pages)
- Plagiarism Detection
- Find Customers With Similar Taste.
- Movie Recommendations. (Find Similar profiles)

Activity : Exact Duplicates

Remove all repeated items in an array example $\{1,2,3,8,2,7,3,3,4,8,9\}$

Rice University (COMP 441)

Activity : Exact Duplicates

Remove all repeated items in an array example $\{1,2,3,8,2,7,3,3,4,8,9\}$

O(n) or $O(n^2)$

Rice University (COMP 441)

→ ★ Ξ:

Activity : Exact Duplicates

Remove all repeated items in an array example $\{1,2,3,8,2,7,3,3,4,8,9\}$

O(n) or $O(n^2)$

Array of vectors instead of numbers ?

Given a query $q \in \mathbb{R}^D$ and a giant collection C of N vectors in \mathbb{R}^D , search for $p \in C$ s.t.,

$$p = rg\max_{x \in \mathcal{C}} \ sim(q,x)$$

Given a query $q \in \mathbb{R}^D$ and a giant collection C of N vectors in \mathbb{R}^D , search for $p \in C$ s.t.,

$$p = rg\max_{x \in \mathcal{C}} \ \ sim(q,x)$$

- sim is the similarity, like Cosine Similarity, Resemblance, etc.
- Worst case O(N) for any query. N is huge.
- Querying is a very frequent operation.

Given a query $q \in \mathbb{R}^D$ and a giant collection C of N vectors in \mathbb{R}^D , search for $p \in C$ s.t.,

$$p = rg\max_{x \in \mathcal{C}} \ \ sim(q,x)$$

- sim is the similarity, like Cosine Similarity, Resemblance, etc.
- Worst case O(N) for any query. N is huge.
- Querying is a very frequent operation.

Our goal is to find sub-linear query time algorithm.

Given a query $q \in \mathbb{R}^D$ and a giant collection C of N vectors in \mathbb{R}^D , search for $p \in C$ s.t.,

$$p = rg\max_{x \in \mathcal{C}} \ \ sim(q,x)$$

- sim is the similarity, like Cosine Similarity, Resemblance, etc.
- Worst case O(N) for any query. N is huge.
- Querying is a very frequent operation.

Our goal is to find sub-linear query time algorithm.

- Approximate answer suffices.
- **2** We are allowed to pre-process C once. (offline costly step)

Locality Sensitive Hashing

Hashing: Function (randomized) *h* that maps a given data vector $x \in \mathbb{R}^D$ to an integer key $h : \mathbb{R}^D \mapsto \{0, 1, 2, ..., N\}$

Locality Sensitive Hashing

Hashing: Function (randomized) *h* that maps a given data vector $x \in \mathbb{R}^D$ to an integer key $h : \mathbb{R}^D \mapsto \{0, 1, 2, ..., N\}$

Locality Sensitive: Additional property

$$Pr_h[h(x) = h(y)] = f(sim(x, y)),$$

where f is monotonically increasing. *sim* is any similarity of interest.

Locality Sensitive Hashing

Hashing: Function (randomized) *h* that maps a given data vector $x \in \mathbb{R}^D$ to an integer key $h : \mathbb{R}^D \mapsto \{0, 1, 2, ..., N\}$

Locality Sensitive: Additional property

$$Pr_h[h(x) = h(y)] = f(sim(x, y)),$$

where f is monotonically increasing. *sim* is any similarity of interest.

Similar points are more likely to have the same hash value (hash collision). **Question:** Does this definition implies the definition given in the book ?

Signed Random Projections (SimHash)

Signed Random Projections (SimHash)

LSH for Estimation

We have

$$Pr_h[h(x) = h(y)] = f(sim(x, y)),$$

where f is monotonically increasing.

▶ ∢ ∃

LSH for Estimation

We have

$$Pr_h[h(x) = h(y)] = f(sim(x, y)),$$

where f is monotonically increasing.

Activity: Design a strategy for estimating sim(x, y) given access to values of h(x) and h(y), with h sampled independently.

Given: $Pr_h[h(x) = h(y)] = f(sim(x, y))$, f is monotonic.

Image: A match a ma

Given: $Pr_h[h(x) = h(y)] = f(sim(x, y))$, f is monotonic.

< ロ > < 同 > < 三 > < 三

Given: $Pr_h[h(x) = h(y)] = f(sim(x, y))$, f is monotonic.

(日) (同) (三) (三)

Given: $Pr_h[h(x) = h(y)] = f(sim(x, y))$, f is monotonic.

Given query q, if h₁(q) = 11 and h₂(q) = 01, then probe bucket with index 1101. It is a good bucket !!

イロト イヨト イヨト イヨト

Given: $Pr_h[h(x) = h(y)] = f(sim(x, y))$, f is monotonic.

- Given query q, if h₁(q) = 11 and h₂(q) = 01, then probe bucket with index 1101. It is a good bucket !!
- (Locality Sensitive) $h_i(q) = h_i(x)$ implies high similarity.
- Doing better than random !!

(日) (周) (三) (三)

Table 1

h_1^1	 h_K^1	Buckets
00	 00	•••
00	 01	•••••
00	 10	Empty
•••	 	
11	 11	

• We use *K* concatenation.

h_1^1	 h_K^1	Buckets
00	 00	•••
00	 01	••••
00	 10	Empty
•••	 	
11	 11	

Table 1

Table L

h_1^L		h_K^L	Buckets
00	•••	00	• • • • •
00		01	••…
00		10	0 🔹 😐
	•••		
11		11	Empty

- We use *K* concatenation.
- Repeat the process *L* times. (*L* Independent Hash Tables)

. . .

► < ∃ ►</p>

Table 1

Table L

h_1^L		h_K^L	Buckets
00		00	• • • • •
00		01	••…
00		10	0
	•••		
11		11	Empty

- We use *K* concatenation.
- Repeat the process *L* times. (*L* Independent Hash Tables)
- **Querying :** Probe one bucket from each of *L* tables. Report union.

. . .

► < ∃ ►</p>

h_1^1	 h_K^1	Buckets
00	 00	• • ···
00	 01	••••
00	10	Emplot
00	 10	Empty

Table 1

Table L

h_1^L	 h_K^L	Buckets
00	 00	• • • • •
00	 01	•••···
00	 10	0
11	 11	Empty

- We use *K* concatenation.
- Repeat the process *L* times. (*L* Independent Hash Tables)
- **Querying** : Probe one bucket from each of *L* tables. Report union.
- Two knobs K and L to control.
- Theory says we have a sweet spot. Provable sub-linear algorithm. (Indyk & Motwani 98)

Dataset of around 250,000 Syrian death records from 7 sources.

- A very short noisy text description of who died.
- Arabic suffixes and prefixes have many ambiguities.
- Selection biases.

Dataset of around 250,000 Syrian death records from 7 sources.

- A very short noisy text description of who died.
- Arabic suffixes and prefixes have many ambiguities.
- Selection biases.

Dataset of around 250,000 Syrian death records from 7 sources.

- A very short noisy text description of who died.
- Arabic suffixes and prefixes have many ambiguities.
- Selection biases.

Many records correspond to the same individual.

Problem: Can we estimate how many people died ? (Record Linkage)

Dataset of around 250,000 Syrian death records from 7 sources.

- A very short noisy text description of who died.
- Arabic suffixes and prefixes have many ambiguities.
- Selection biases.

Many records correspond to the same individual.

Problem: Can we estimate how many people died ? (Record Linkage)

Reasonable Idea: Try predicting match/mismatch given a pair. **Concern:** Just too many pairs ! (3.1×10^{10})

Rice University (COMP 441)

h_1	h_2	Buckets
		(pointers only)
00	00	••••
00	01	• • …
00	10	Empty
11	11	

h_3	h_4	Buckets
		(pointers only)
00	00	• • • • • •
00	01	• • …
00	10	•••
11	11	Empty

h_1	h_2	Buckets	
		(pointers only)	
00	00	••••	
00	01	•• •••	
00	10	Empty	
11	11		

h_3	h_4	Buckets
		(pointers only)
00	00	• •
00	01	• • • • • •
00	10	•••
11	11	Empty

• Co-occurrence in bucket mean high resemblance between records.

h_1	h_2	Buckets	h_3	ŀ
		(pointers only)		
00	00	••••	00	C
00	01	••••	00	C
00	10	Empty	00	1
11	11		11	1

h_3	h_4	Buckets
		(pointers only)
00	00	• •
00	01	• • …
00	10	•••
11	11	Empty

- Co-occurrence in bucket mean high resemblance between records.
- Only form pairs within each bucket.

- Co-occurrence in bucket mean high resemblance between records.
- Only form pairs within each bucket.
 - All operations near linear.
 - **2** 99% recall and only evaluate 1% of the total pairs.

一日、

Brain Storm Activity : Graph Matching !

- Given a collection of *n* graphs find a reasonable routine to remove isomorphic (identical or duplicates) graphs
- Assume you have an subroutine *islsomorphic*(G_1, G_2). Try to avoid quadratic call to this subroutine.

Brain Storm Activity : Graph Matching !

- Given a collection of *n* graphs find a reasonable routine to remove isomorphic (identical or duplicates) graphs
- Assume you have an subroutine *islsomorphic*(G_1, G_2). Try to avoid quadratic call to this subroutine.

Any real application ?