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1 Data Streams

Data streams center around the idea that users generate vast amounts of data
at a rapid rate. They are essentially massive, continuously growing sets of
data, often seen in scenarios like Google search queries or trending Twitter
topics. Three key properties define data streams. Firstly, the complete dataset
is not known in advance, meaning we can’t predict the nature of incoming data.
Secondly, data enters sequentially, creating a time series. Lastly, due to its
immense size, it’s impossible to store the entire data stream. For instance,
consider tracking Google search queries for flu symptoms, which aids in efficient
flu virus tracking. Given the sheer velocity and unpredictability in the size of this
data, one might often think of it as being infinite. Traditional storage solutions
fall short as we usually only have 10-20 GB for calculations or inferences. This
poses a challenging question: ”How can we make crucial computations about
these data streams utilizing a restricted memory capacity?” Analyzing these
streams has significant real-world applications, from monitoring online query
trends and unusual user behaviors to overseeing IP packets, telephone records,
and sensor networks.

2 One-pass model

In the realm of data streams, we consider the stream Dn = {x1, x2, x3, . . . , xn}
where xi represents elements arriving over time and observed at a specific in-
stance t. As we progress in time, our observation becomesDt = x1, x2, x3, . . . , xt.
Given that we can’t predict the entire data stream, and at any point in time t,
our memory allocation is constrained and less than t, storing all of Dt becomes
infeasible. This leads to the central challenge: designing an algorithm that can
compute f(Dt) at any time t, where f is a particular function of interest. A
common approach to this issue is to selectively sample representative elements
from the stream, using these samples to approximate the necessary computa-
tions. But this method introduces another query: how can we ensure a uniform
sampling of elements from the stream? Consolidating these principles into the
”one pass model,” our objective becomes to compute (or closely estimate) f(Dt)
for any given xt and prior state from time t−1, acknowledging the storage con-
straints. This framework then aids in addressing foundational and pragmatic
concerns related to inferring insights from data streams.
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3 Sampling

If we can get a representative sample of the data stream, then we can do analysis
on it. The question then becomes how do we obtain that sample?

3.1 Sampling (example 1)

When handling data streams, say we’ve encountered a set {x1, . . . , x1000}, where
the size of the data is known in advance. However, our memory can only ac-
commodate 100 of these examples, prompting us to sample roughly 10

3.2 Sampling (example 2)

Consider a data set comprising U unique elements and 2D elements appearing as
duplicate pairs, resulting in a total of N = U+2D elements. Our objective is to
deduce the fraction of duplicated elements, which mathematically is represented
as 2D

U+2D . When attempting to estimate this ratio through a 10

4 Reservoir Sampling

When faced with a complex sampling problem from a data stream, the goal is to
select s elements by the time we reach the nth element. There are two essential
conditions to meet during this process:

1. Every element, from the first up to the nth, should have an equal chance
of being selected, which translates to a s

n probability.

2. By the end of the sampling, the total number of chosen elements should
be precisely s.

Algorithm:
We sample elements with the following protocol:

1. Observe xn

2. if n < s: keep xn

3. else: with probability s
n , select xn. Then choose (uniformly) one of the

previously sampled elements and replace it with xn.

We claim that at any time n, any element in the sequence {x1, x2, . . . , xn}
has exactly a s

n chance of being in the sample.
Proof by Induction:
After observing t elements, each element in the reservoir was sampled with

probability s
t .

For the rest of the elements in the reservoir, the probability that it still stays
in the reservoir is:
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P (x survive) = P (xt rejected)+P (xt accept)P (x not selected) =
(
1− s

t

)
+
(s
t

)(
s− 1

s

)
=

t− 1

t

Then, the probability that x survives in the sample at time t is:

P (x in S at time t) = P (x in S at time t−1)·P (x survive) =
s

t− 1
· t− 1

t
=

s

t
.

QED.

5 Weighted Reservoir sampling:

5.1 Introduction:

Weighted Reservoir sampling is a generalized version of Reservoir sampling
where each element xi in the stream {x1, x2, · · · , xj , · · · } is associated with
a positive weight wi. But we are still sampling m elements from the first n
elements at the time t = n. Here are some notations we will use:

1. Dn = {x1, x2, · · · , xn}, which is the stream at a given time.

2. S represents the set of elements we choose to preserve from the stream.

3. Sn represents the indexes of elements in S.

4. s(·), which represents the score of a particular element in the stream. (We
will use it later)

Suppose our S is empty at the beginning, we want to make sure that for each
xi in the stream with weight wi, xi has a probability of being selected:

Pr(xi) =
wi∑

j∈[n]−Sn
wj

This simply means we sum the weights of elements that are not in S and the
probability of selecting a particular xi equals the proportion of wi over the total
weights.

5.2 Pavlos S Efraimidis and Paul G Spirakis:

These guys come up with a smart way of implementing this. Here is how they
achieve it.
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Algorithm 1: WRS-A

1 S ← ∅;
2 P ← ∅;
3 for t← 1, 2, ... do
4 rt ← U [0, 1], uniform sample of [0,1];

5 Xt ← r
1
wt
t , the score of xt;

6 P ← P ∪ {(Xt, xt)};
7 S ← top m(P ), w.r.t. the first entry of P which is the scores.

We can use minheap as the data structure, which will give us constant time
to retrieve the minimal element from Dn−S. What we will do next is to prove
the algorithm that it is correct.

5.3 Proof:

The idea of the proof is that for any permutation of S = {x1, x2, ..., xm}, the
indexes do not represent the time sequence but merely for indexing. If we
follow the method in 1.1 and sample S, we want to calculate its probability
and compare it to the probability that it comes from the WRS −A. Since S is
arbitrarily notated, we can show the implementation is precise in implementing
WRS. Let’s find PrD(x1, x2, ..., xm), which refers to the theoretical method in
part 1.1.

PrD(x1, x2, ..., xm) =
Wn∑n
j=1 Wj

× Wn−1∑n−1
j=1 Wj

× · · · × W1

W1
(1)

=

n∏
i=1

Wi∑i
j=1 Wj

(2)

Now, let’s look at the probability of getting this permutation in the second
method:

Pr(Xn ≥ Xn−1 ≥ · · ·X1) =

∫ 1

0

fXn(x)pr(x > Xn−1 ≥ Xn−2 ≥ · · ·X1)dx (3)

Notice: Pr(x > X1) = s(X1)
w1 , where s(X1) is the score of X1. We can apply

this to the end of the integral and eventually we will get something equals to
the above expression, which will show this is a correct implementation.

4


	Data Streams
	One-pass model
	Sampling
	Sampling (example 1)
	Sampling (example 2)

	Reservoir Sampling
	Weighted Reservoir sampling:
	Introduction:
	Pavlos S Efraimidis and Paul G Spirakis:
	Proof:


