COMP 480/580 — Probabilistic Algorithms and Data Structure Sep 5, 2023

Lecture 5: Analysis of Hashing, Chaining, and Probing
Lecturer: Anshumali Shrivastava Scribe By: Z. Lu zfll, C. Wells crw16, D. Zhu dsz1

1 Hash Table Collisions

1.1 Chaining Analysis
1.1.1 How Chaining Works

Hash m objects into an array of size n. If multiple objects are hashed to the same location,
store them in a linked list called a ”chain.”

Definition 1 Leta =2

n

We call « the ”load factor.” Note that « is the expected chain length of an arbitrary slot in
our hash table.

1.1.2 Best and Worst Cases

Using these values, we will now analyze searching and insertion using chaining with a 2-universal
hash function, h(z) = (ax +b mod P) mod n.

Note that searching and insertion will take at least O(1) for finding the slot we hash to for an
object. We then have to scan down the entire length of the chain in that slot either to insert
at the end or to find the thing we’re searching for.

This gives us a worst case search/insert of O(M), as that is the longest possible chain if all our
objects are hashed to the same slot. In the average case, however, we have O(1+ ), as it costs
O(1) to execute the hash function and the expected length of the chain is .

Discussion 1 In actual applications, it often doesn’t matter whether the hash function is in-
dependent. This is because the keys themselves, whether they be input urls or querys or other
user data, are generated independently by random user actions. Thus, many hash functions that
theoretically do not have as good of guarantees on independence and collisions can in practice
still give results as good as required for many applications.

This does mot apply in the case that we have malicious users - in that case we have to use
strong independent hash functions. This only applies for benign users who generate independent
keys.

1.1.3 Finding Probabilities of K-Length Chains

Let us take m = n for simplifying calculations. We want to get some more specific bounds as
to the probabilities we have chains of a certain length.

n

Theorem 1 The probability we have a chain of length k is (k)(%)k, which is less than %

5: Analysis of Hashing, Chaining, and Probing-1



Proof 1

n\,1 n!
<k> ()= kl(n — k)lnF (1)
Vk € N,n! < (n — k)In” (2)

n!

(n — k)nk <1 3)

If we let k = 31272 then k! > n2.

Inlnn?

Thus, the probability of any n slots having more than Inn keys is < %

1.2 Power of K Choices

If, for whatever reason, Inn upper bound is not tight enough for our purposes, we can use this
idea:

Discussion 2 If you run a probabilistic algorithm k times, and choose the ”best” outcome from
those, your results will be exponentially better.

1.2.1 How K Choices Work

How this would work with respect to this example is we would take k arrays and have associated
with each one a hash function with independently generated a,b. Then, when we get a new
object, we hash it with every function and insert it into the one with the smallest chain. This
comes with the downside of having to search multiple chains, but the upside is that our chains
are much smaller.

1.2.2 Analysis of K Choices

We end up having exponentially shorter chains, in fact, because for a chain to grow, it needs
to have every other chain that the object is hashed to be of equal or greater length - and as k
increases, the probability of that becomes exponentially smaller. In our specific example, if we
used k = 2, we already get that the probability of a chain being longer than Inlnn < %, which
is exponentially better than Inn.

1.3 Linear Probing
1.3.1 How Probing Works

Say we have a very simple hash function of h(x) = 2 mod 10, and we are hashing into a table
of size 10. Let us say we have already inserted 7,8, and 10. When we insert 17 into our table,
we will have h(17) = 7, and it will collide with the 7 already in the table. We then attempt to
insert 17 into the 8th = 7+ 1 slot of the array, but we also find that that is already taken. We
then continue onto the 9th = 7+ 2 slot of the array, and, having found an open spot, insert our
element.

Discussion 3 In practical applications, we prefer linear probing. This is because we load our
table into the cache, and then most of the time, all the probing will examine memory that we

5: Analysis of Hashing, Chaining, and Probing-2



have already loaded into the cache. In contrast, chaining deals with pointers and dynamically
accessing main memory, which is significantly slower from a systems perspective. Further, if
we use a sufficiently big table, we can get constant time probing.

One pitfall we have to be aware of is that if we have multiple long probing sequences that
become connected to each other, we can have disastrous results with runtimes in linear probing
- in contrast, having two long chains hashed right next to each other when using chaining is not
any worse than them being anywhere else.

1.3.2 Analysis of Probing

It is not in practice useful for us to analyze hashing objects into an individual slot in our array.
We thus consider an entire region in the array for our analysis, i.e. given that we insert an
object in a region, what is the probability that, after following the probing, we are still in that
region. We also assume o < % - this is because, as noted in the discussion above, we have
disastrous results when m approaches n.

Thus, if we analyze some region, S, the expected number of elements in that region is % The
number of elements at which we start to see problems with searching and insertion is roughly
%. Thus, we want to find bounds for the probability that the number of elements in that
region is %, and we do so using Chebyshev’s inequality.

Discussion 4 We may be tempted to use some other form of uninformed probing, as in if we
hash to slot i, we then probe to i* and then i or 2i and then 4i instead of i + 1 and i + 2.
However, in practice this doesn’t have guarantees any better than linear probing, and we lose

many of the benefits of cache locality in doing so.

1.4 Cuckoo Hashing

For chaining and probing, our worst cases are always O(m). Our expected is O(1), but if we
cannot stand that, we could use Cuckoo Hashing, which sacrifices insert for worst-case O(1)
search.

1.4.1 How Cuckoo Hashing Works

We create two different arrays, with different cheap hash functions, h1, hs for each. We enforce
only one property - the only locations that an object could be are hj(x) and ha(x). When we
insert something, we insert it in the first array at hi(x), and if something, y, was there, we pop
it out and insert it to the second array at ha(y). If something were there, we then repeat, and
hash it to hi(z), until we find an empty spot. We can sometimes get a cycle, however, and in
that case we have to re-seed our functions and re-hash all the objects that are already in our
arrays.

1.4.2 Analysis of Cuckoo Hashing

If we have each of the arrays be of size roughly 1.5m, we get that the probability of cycling
per insertion is 1,0075,000' This is fine for when we’re inserting around 10,000 elements, but we
may need another fix if we want to insert a greater number. The most cost-effective way of
doing this is just by adding more arrays and hash functions - similarly to with the power of K
choices, we continue to get exponentially better returns for each array we add, with only minor
cost increases to search.

5: Analysis of Hashing, Chaining, and Probing-3



2 Bloom Filters

Bloom filters are a powerful tool for approximate membership testing with limited storage. We
will use a problem to illustrate how they can be used.

2.1 Problem

Imagine you have a hash map h : strings — [0 : 999]. Imagine we have a set of 100 malicious
URLs that we want to test against user’s querys to see if we should flag the site to them. We
cannot tolerate any false negatives (i.e. allowing a user unwarned to access a malicious site).
Further, we only have 1000 bits that we can use, so we cannot store the malicious strings in a
dictionary, as the strings themselves are around 40, 000 bits, assuming each string is on average
50 8-bit characters long.

2.2 Naive Bit-Map Solution

The naive solution to this problem is to simply use our hash map to hash all of our 100 urls
into a bitmap of 1000 bits, setting every bit that corresponds to the hash of a malicious string.
Assuming the worst case, i.e. no collisions, we will have 100 bits set. Now, when we receive a
query from the client, we simply hash their URL, and if it corresponds to a set bit, we pass it
along to the server for a more thorough check against our dictionary. If it does not, we allow
the request to pass unchecked. This will result in no false negatives, because our hash function
definitionally will hash any of our malicious URLs to a set bit. However, it will result in a
roughly 10% false positive rate, which is fairly high, especially when those server transactions
are expensive. Across N searches, the probability that we get a false positive is 1 — (1 — %)N
where R is the ratio of bits we have access to to malicious strings. If this simply isn’t good
enough, what can we do to improve it?

i

2.3 Bloom Filter Solution

Instead of having only 1 hash function, let us use the power of k choices to our advantage, and use
k hash functions. Now, for each malicious URL on setup, we set the bits hi(z), ha(z), ... hx(x).
Then, when a client comes along with a query, ¢, we do the expensive server access if and only
if all of h1(q), ha(q), ... hi(q) are set. This, as in the other cases in which we used the power of
k choices, provides us with exponentially better results.

The only thing we have to be careful of are if we use too many hash functions for the size of
our array, we could set nearly every bit, which would then lead to an increase in the number of
false positives.

This solution gives us significantly better probabilities, at only a minor cost per transaction of
running k hash functions instead of 1 - which is a minor difference, as we can reasonably use
cheap hash functions due to the nature of the requests, as noted in discussion 1.

5: Analysis of Hashing, Chaining, and Probing-4



