
COMP 480/580 — Probabilistic Algorithms and Data Structure Aug 29, 2023

Lecture 3: Estimation and Hashing

Lecturer: Anshumali Shrivastava Scribe By: Wesley Yang

1 Mark and Recapture Estimation

Problem: How do we estimate the number of turtles in a pond?

• Let n be the total number of turtles. We can capture k1 turtles, mark them, and release
them back into the pond. Assuming they mix evenly, we can then recapture k2 turtles,
M of which are marked, and set up the following equations:

k1
n

≃ M

k2

n̂ =
k1k2
M

Is there a more disciplined approach to show that n̂ is a good estimator?

• Set up n indicator random variables I1, I2, ..., In where Ij is 0 or 1 depending on whether
turtle j is marked. Then:

Ij =

{
1 with probability k1/n

0 with probability 1− (k1/n)

P (Ij = 1) = E[Ij ] =
k1
n

• We can write the random variable of interest, M , as a summation:

M =

k2∑
j=1

Ij

• By Linearity of Expectation:

E[M ] =

k2∑
j=1

E[Ij ] =
k1k2
n

n =
k1k2
E[M ]

• So the n̂ we derived earlier through intuition is not an unbiased estimator:

E[n̂] = E

[
1

M

]
k1k2

3: Estimation and Hashing-1



2 Families of Hash Functions

• A hash function maps objects to a discrete range from 0 to R: h(O) ∈ [0, 1, ..., R].

• A perfect hash function guarantees that if O1 ̸= O2, then h(O1) ̸= h(O2). However, unless
the number of possible objects is very small, no feasible function exists. We could store
every single object, but that would defeat the purpose of using a hash table in the first
place. We need to relax the constraint and allow for some collisions.

• An n-universal family of hash functions H has the following property for all h ∼ H:

P (h(O1) = h(O2) = ... = h(On) | O1 ̸= O2 ̸= ... ̸= On) ≤
1

R(n−1)

• Consider a 2-universal hash function. What’s the probability of rolling 2 dice and getting
the same number on both? Assuming the output of the hash function h is truly random
(pseudorandom) and uniformly distributed across the range R, then:

P (h(O1) = h(O2) | O1 ̸= O2) =
1

R

• Examples of 2- and 3-universal hash functions:

h(x) = ((ax+ b) mod P ) mod R

h(x) = ((ax2 + bx+ c) mod P ) mod R

• where P is some large prime chosen such that P > R; R is the final range (desired number
of buckets to map to); a, b, c, ... are parameters that define a specific hash function within
the given family H and are chosen randomly and uniformly from the range [1, P − 1].

• Higher-degree polynomials may be used for larger values of n and thus stronger indepen-
dence guarantees, with the trade-off being higher computational complexity.

• How is h sampled from H? Since a given hash function is defined by its parameters P ,
a, b, ..., simply generate them in advance and store them.

• Recall the Principle of Deferred Decision: There is no difference between pre-generating
a sequence of values and generating them on-demand.

3: Estimation and Hashing-2


