COMP-580: Probabilistic Algorithms and Data Structures
Rice University

Fall 2023

Prof. Anshumali Shrivastava

Stream Estimation 1: Count - Min Sketch
Naman Gupta(ng63), Shambhavi Kurup(sk223), Suhas Achanta(sal81)

1 Streaming

Data transmission comprises a multitude of techniques that are primarily bucketed by
streams. A stream is essentially a continuous flow of data where the input data elements
arrive one after another. One of the critical drawbacks of streams is that they cannot be
stored entirely because of the need to deal with vast sizes that are not easy to process,
thereby raising a question on the overall scalability of streams. Hence, making critical
calculations for streams with a limited amount of memory is a challenge that requires em-
ploying algorithms which are designed for memory-efficient streaming. These algorithms
are used for processing streams in a space-efficient fashion, making it possible to make
computations without storing the entire stream in the memory. They are particularly
used when large datasets cannot fit into the memory entirely.

11001101175
@@1@18 000100000 7
Ry Q'yl@ o) 211@@@@1@111

¥ 1 1
Eue‘ ﬁaiiié?lﬁ?g”gﬁjfez : 10 @ & @’L@g @11@1 1001097 01 17 o
Tt L Eﬂapgeeefasaég@@%@13@9@91911@ @‘l @@8 &@ 111919991 1019 % Z

gyl 3 1963131@118%@ o0
399; %f 1109110110010 1@ ‘» 11@‘3
Igmaame%ae@l@ o0 @61

“lovgong1001010%>

A stream can be further defined in a quantifiable manner as a sequence A = <aq, as, ..., a,>
of m items where each a;e[m|, and it takes log(m) bits of space to represent each item «;
in the stream. log(m) bits is generally considered as it provides an efficient representation
for a wide range of values. Furthermore, for counting elements a space of log(n) bits is
required.

Let g(A) be the quantifiable result that is intended to be computed from the stream.
Utilising an efficient streaming algorithm helps in achieving this goal which can be any
particular statistic depending on the data obtained from the stream. To understand the
count frequency, ¢; = |a;eA, a; = j| is introduced to denote the number of stream elements
with the fixed value j.

COMP 580 09/21,/2023 Scribe

2 Heavy Hitters Problem

Often during data stream processing, there is a fundamental understanding of conducting
a frequency analysis of the elements within the data stream. The elements that occur
most frequently in the stream are known as the "heavy hitters" of the stream. The key
challenge is that when the stream size is large, it is rather difficult to store it in its entirety,
thereby making traditional data structures like arrays and hash tables rather infeasible for
counting frequencies of stream elements. Hence the goal is to devise a memory-efficient
solution (streaming algorithm) that can detect these heavy hitters.

2.1 Motivating Example - Twitter’s Data Mining Methodology

On Twitter, there are many tweets comprising certain words or phrases that are commonly
repetitive. This is used to detect which particular topic is trending on the platform and
the phrases are deemed as the heavy hitters. To put the problem in layman’s terms, in a
stream of tweets we are to find the top 50 phrases on the Twitter feed. For this, we need
a concrete streaming algorithm with scalable memory and runtime.

A naive solution to this problem would be as follows:

e For every tweet, find the 4 most contiguous words and store them in a dictionary.

e The keys for the dictionary will be all the possible combinations of the four phrases
(4-grams).

e While iterating through the stream, the count value is incremented as and when a
particular combination is encountered.

The solution proposed above utilizes a more naive approach to counting heavy hitters.
For a million words, the number of possible phrases is (10%)* which is 10?*. The glaring
issue of memory allocation persists as it presents an unrealistic and impractical memory
cost. In an attempt to reduce this complexity, if we are to make a smart selection of the
4-grams and not analyse all possible combinations, it would still require 1.67'B to simply
store the count array. Therefore the solution is not scalable and a more efficient solution
needs to be devised.

2.2 More Applications of Heavy Hitters

The need to find the most frequent elements in a data stream is a rather common practice
observed in various cases. Some of the examples are as follows:

e Google Trends tracks search queries made in real-time, and to ensure that these
queries are served efficiently, the heavy hitters are tracked to make up for the traffic.

e Heavy TCP flows Identification. IP addresses or services generating the most net-
work traffic without keeping a complete record of every data packet allowing you to
monitor and manage your network effectively while conserving valuable resources.

e Identifying popular products for a store under a given set of constraints.

e Stock trends.

COMP 580 09/21,/2023 Scribe

2.3 Can we do better?

It isn’t always possible to do better given a heavy hitter’s problem. No algorithm solves
this problem for all given inputs within one pass while using a sublinear amount of auxil-
iary space. This result can be proved using the pigeonhole principle. Hence the idea should
be to make appropriate assumptions and filter out the inputs to gain some improvements
out of the algorithms.

3 Majority Element Problem

Finding the majority element is one of the most common and intriguing problems in data
analysis and computer science, and it has numerous implications in various fields such
as determining the winner in voting systems or identifying popular products in market
research.

3.1 Problem Statement

The Majority Element Problem entails recognizing an element within an array that occurs
more frequently than any other element and accounts for more than half of the total items
in the array. Locating an element = in an array A of length n where the count of z in A
exceeds 3.

3.2 Solutions

e Naive Approach: The simplest approach is using two loops to track the maximum
number of different components. When this maximum count exceeds 7, the proce-
dure is terminated, and the element associated with this maximum count is returned
as the majority element.

Time Complexity: O(n?) Space Complexity: O(1)

e Binary Search Tree: Insert elements into BST one by one, and if an element is
already there, increase the node count. If the count of a node exceeds 7 at any
point, then return.

Time Complexity: O(n?) Space Complexity: O(n)

e Dictionary - Make an empty dictionary and iterate through the elements. If the
element already exists in the dictionary, increment its value; otherwise, insert the
element as the dictionary’s key with a value 1.

Time Complexity: O(n) Space Complexity: O(n)

e Counter: Iterate through the list, incrementing, decrementing, and changing the
value of the counter.
Time Complexity: O(n) Space Complexity: O(1)

COMP 580 09/21,/2023 Scribe

Algorithm 1 Majority Element Algorithm
Require: Array A of length n
Ensure: The majority element
fori=0ton—1do
if : == 0 then
current = Al
currentCount = 1

else
if current == Ali] then
currentCount = currentCount + 1
else
currentCount = currentCount — 1
end if
end if
if currentCount == 0 then

current = Ali
currentCount = 1
end if
end for
return current

We may use simple intuition to determine whether the above algorithm will work or not
because if the majority element exists in such a way that it occurs more than 3 times,
the decrement will never drop the current count for the majority element to zero.

3.3 Power Law

The solutions to the majority element problem do not apply in the general case, that is
where the existence of a majority element is not guaranteed. However, the power law states
that it is a common observation that real-world data distribution represents a tiny fraction
of things or elements that appear frequently, while the overwhelming majority appears
infrequently. By recognizing the most frequently occurring elements organizations can
optimize resource allocation, personalize recommendations, and enhance user experiences.

4 Bloom Filter with Counter

We can solve the heavy hitter’s problem by making a minor tweak to the Bloom filter’s
implementation. Rather than utilizing a bit array and flipping the bits between 0 and 1,
we will use the bucket as a counter that is when we hash a value from the array, we will
set that specific counter to 1 or increment it by 1 if a value is already present. If element
x and element y clash, we simply add their counts that is, bucket h(z) will contain x +y
counts. With the universal hash function, the probability of Pr(h(s) = ¢) = & where R
is the size of the counter array (taught in the previous class).

COMP 580 09/21/2023 Scribe

4.1

h(s)

[o [o |1 Jo J17]20 [1 Jo [o [1s1]2 [9 [11 |71 [30 |

Limitations and Analysis

With the bloom filter indicated above, four different outputs are possible.

The Good

The Irrelevant

The Unlucky l."'q

We have a perfect hash function and there are no collisions.

The hash value of a heavy hitter is the same as another item in the data that is
present in a very small amount. In this case, there will be a collision but the bloom
filter will give a good estimate of the heavy hitter.

The hash values of two extremely uncommon elements in the data are the same. In
this case, the bloom filter counter value will be less than that of a heavy hitter.

A heavy hitter’s hash value is the same as another heavy hitter’s. In this case, there
will be a collision, and the bloom filter will grossly overstate the number.

Survival of Fittest (natural selection)

@ -

The expectation of a hash value in the revised bloom filter can be defined as:

Bl =E e+ Y =
h(s)=h(i)

1#£s

COMP 580 09/21/2023 Scribe

where ¢, is the count of the string s, i # s means element s which is not same as i but
for which the hash value is same as 7 and R is the length of the data.
As we wish to estimate ¢,. The expected error can be written as :

E[Error| = G

i#s

For simplicity lets replace), 45 Ci = > so the equation above becomes:

E[Error] < %

5 Count-Min Sketch

We see that using a counting bloom filter yields an unlucky situation where we have col-
lisions between two or more elements, all having large counts. The resulting hash values
become extremely large and we grossly overestimate the occurrence of each of those those
keys. To do better, we use the idea of counting bloom filters and make it stronger using
the power of k choices. This is called the Count-Min Sketch. We have d hash functions
(h1, ha, ..., hg) and maintain d corresponding hash tables of length R (A;, As, ..., Ag).
For every string s that we see in the stream, we update by incrementing d counters -
Aqlhi(s)], As[ha(s)], ..., and Aglha(s)]. To estimate the count of the string s, we return
the minimum of the d counters - min(A;[hi(s)], Aslha(s)], ... Aglha(s)]).

We know that every counter we maintain for a string s is either an overestimate (in case
of collisions) or the exact count for s (in case of no collisions). None of the d counters
maintained for s can ever be an underestimate. Using the Count-Min Sketch method, we
are in a way ensuring that we take the best overestimate of d overestimates as the count of
an element. The intuition behind this method performing better than a simple counting
bloom filter is that for a string s, unless all our d counters mess up simultaneously, we
have a good estimate of the count for s. Even though the minimum of d overestimates is
still an overestimate, it is the best overestimate in d-universes.

Let’s look back at the problem we were facing with heavy hitters while using a counting
bloom filter. When we had a collision between two elements with relatively large counts,
we were overestimating the count of both elements by a large margin. For the same prob-
lem to carry over in the Count-Min Sketch scenario i.e., for the estimate of a heavy hitter
to be distorted by a large degree, it must be distorted in all d universes. Two or more
heavy hitters colliding using one hash function is in itself not a common event. Two or
more heavy hitters colliding using d independent hash functions is exceptionally rare. So,
even if there exists one universe in which a heavy hitter s did not collide with another
heavy hitter, we have a reasonable estimate for s.

The update operation takes constant time - O(d) - since d is set at the beginning.

COMP 580 09/21,/2023 Scribe

5.1 Error Analysis

When we were using the counting bloom filter (one hash function), we found the expected

error to be E(err) = €X, where ¢ = I

Applying Markov inequality:

Eerr) eX 1

P 2e. = =
r(err > 2eX) < %> 5>

This means that the probability of our error being worse than 2¢X is bounded by 0.5%.
For heavy hitters, this error is quite low and we get a good estimate with a d value of 4
or .

5.2 Memory Analysis

We want to ensure that for a given string s, with probability 1 — §, we have the following
bound for é;:
Cs < Gy < €y + 26X

Here, ¢, denotes the true count of string s, ¢, denotes the estimate of ¢,, and ¢§ is the

probability of error for a given string s.

We know that Pr(err > 2¢X) is bounded by 0.5%. This means that 0.5% < §.

logd

5 d - log(0. l d
0.5 <0 = d-log(0.5) < logd = <logO.5

= d < —logd

The memory requirement for this model is R - d since we are using d bloom filters each of
length R. Using the above calculations for one input string, we can say that the memory

1

cost in terms of € and ¢ is O (—logg) However, our error constraints must be satisfied
€

for all N strings and not just some string s.

The probability of error for a given string s is bounded by 9§, so the probability of error

for any of N strings is bounded by (V- §). We scale our § to — and now have a memory

J

1
requirement of O (—log—) which is much better since it only increases logarithmically
€

in terms of N.

6 How to identify top-k elements?

Given the problem of identifying the top-k elements within a stream while maintaining
efficient time and space complexity, we make use of heaps to arrive at an optimal solution.

6.1 Use of heaps

e A minheap is created with a max value of k set to it. This will keep track of k items
with the highest estimated frequencies that were observed.

COMP 580 09/21,/2023 Scribe

e As the stream passes, whenever a new element is encountered, the frequency of the
element that has already been counted through Count-Min Sketch is compared with
the frequency of the top-k elements estimated in the minheap.

e If the estimate of the element (say s) is higher than what is present in minheap,
then replace the minimum element in the heap with the new element s and update
the heap.

e Time complexity of each update operation is O(log(k)).

e In the worst case, if d updates are performed for d distance of elements, then the
time complexity would then be O(d * log(k)).

