
COMP580 Scribe Assignment

Nikhil Chigali(nc71), Jeffrey Joan Sam(jj116)

3rd October 2023

1 Large Scale Image Search

Large-scale image search involves efficiently searching a large database of images
to find the most similar images to a given query image. The goal is to retrieve
relevant images quickly and accurately.

2 Space Partitioning Methods

2.1 Trees and Efficiency in Near-Neighbor Search

Many near-neighbor search methods utilize a tree structure to organize the
database. In this structure, the branches of the tree divide the data space
into partitions, enabling efficient search for a given query. The approach in-
volves navigating through these space partitions until a partition containing
similar points is found. This method is precise and operates effectively in low-
dimensional spaces.

2.2 Efficiency Challenges in High Dimensions

However, as we transition to higher dimensions, the efficiency of space partition-
ing methods diminishes. In such high-dimensional spaces (D ¿ 10), the query
time becomes comparable to that of an exhaustive search. The fundamental rea-
son behind this challenge lies in high-dimensional spaces, where the volume of
the space increases exponentially with the dimensionality. As a result, the par-
titions become less effective in segregating the data, making it harder to quickly
identify relevant partitions for a given query. This issue severely hampers the
efficiency and practicality of space partitioning methods in high-dimensional
scenarios. Thus, alternative approaches and techniques are needed to address
this efficiency problem in high-dimensional near-neighbor search.

3 Locality Sensitive Hashing

Locality Sensitive Hashing is the solution to the high dimension problem in
Space Partitioned methods. It provides us with an approximation that is much

1

faster and more efficient.

3.1 Motivating Problem: Search Engine Autocorrection

In the context of real-time query correction, where a user might mistype a query
like ”amaozn” instead of ”amazon”, we aim to swiftly suggest the correct query
by leveraging a database of common query strings. The challenge is achieving
this within a 20ms latency constraint, where traditional exact similarity compu-
tation is too slow, taking 400ms per computation. To address this, we employ
Locality Sensitive Hashing (LSH), a technique that hashes similar items to the
same bucket with high probability.

Using LSH, we hash the user’s query and compare it against pre-hashed
common query strings. This provides us with a set of potential corrections or
suggestions. Rather than performing exact similarity computations, which are
time-prohibitive, we estimate similarity using a cost-effective distance function
based on hash values. This approximation allows us to select the best-matching
query efficiently, meeting the real-time requirement and achieving a performance
improvement of 210,000 times compared to exact similarity computation. By
applying LSH and approximate similarity estimation, we provide users with
rapid and accurate query corrections, enhancing their search experience.

3.2 Locality Sensitive Hash Functions

Classical Hash Functions

1. if x = y → h(x) = h(y)

2. if x ̸= y → h(x) ̸= h(y)

Locality-sensitive hashing on the other hand gives Collision probability which
represents the similarity distance between elements.
Locality Sensitive Hash Functions

1. if sim(x, y) is high → Pr(h(x) = h(y)) is high

2. if sim(x, y) is low → Pr(h(x) = h(y)) is low

3.3 Jaccard Similarity Measure

Jaccard similarity is a widely used measure to quantify the similarity between
two sets. It is particularly applicable in various fields, including information
retrieval, data mining, and natural language processing, to assess the overlap or
similarity between two collections of items. The Jaccard similarity coefficient is
defined as the size of the intersection of sets divided by the size of their union.
Formula for Jaccard Similarity

For two sets A and B, the Jaccard similarity J(A,B) is calculated using the
following formula:

2

J(A,B) =
|A ∩B|
|A ∪B|

Where:

• |A ∩ B| represents the size of the intersection of sets A and B, i.e., the
number of elements common to both sets.

• |A ∪ B| represents the size of the union of sets A and B, i.e., the total
number of distinct elements in both sets.

Interpreting Jaccard Similarity
The Jaccard similarity ranges from 0 to 1.

• J(A,B) = 0 implies that the sets A and B have no common elements,
indicating complete dissimilarity.

• J(A,B) = 1 indicates that the sets A and B are identical, implying max-
imum similarity.

Let’s consider two sets of numbers, A and B: A = {2, 4, 6, 8, 10}
B = {4, 6, 8, 12, 14}
We’ll calculate the Jaccard similarity J(A,B) using the formula:

J(A,B) =
|A ∩B|
|A ∪B|

where |A ∩B| is the size of the intersection of sets A and B, and |A ∪B| is
the size of the union of sets A and B.

1. Intersection (|A ∩ B|): - The numbers common to both sets A and B
are 4, 6, and 8, so |A ∩B| = 3.

2. Union (|A ∪ B|): - The numbers in the union of sets A and B are 2, 4,
6, 8, 10, 12, and 14, so |A ∪B| = 7.

Now, let’s plug these values into the Jaccard similarity formula:

J(A,B) =
3

7
≈ 0.4286

So, the Jaccard similarity between sets A and B is approximately 0.4286.

3.4 N-gram representation to form sets

Let’s create contiguous character 3-gram representations (3-grams or trigrams)
for the string ”samsungs23,” we’ll slide a window of size 3 characters through
the string, considering each group of three consecutive characters as a 3-gram.
String: ”samsungs23”
Set for ”samsungs23”:

{”sam”, ”ams”, ”msu”, ”sun”, ”ung”, ”ngs”, ”gs2”, ”s23”}

3

3.5 Jaccard similarity on N-gram set

3.5.1 ”amazon” vs ”anazon”

• 3-Grams for ”amazon”:

– Set of 3-grams: {”ama”, ”maz”, ”azo”, ”zon”}

• 3-Grams for ”anazon”:

– Set of 3-grams: {”ana”, ”naz”, ”aza”, ”zon”}

• Intersection and Union:

– Intersection (|A ∩ B|): 2 3-grams common to both sets: ”azo” and
”zon”

– Union (|A ∪B|): Total 6 unique 3-grams in both sets

• Jaccard Similarity:

– J(”amazon”, ”anazon”) = 2
6 ≈ 0.3333

3.5.2 ”amazon” vs ”amazom”

• 3-Grams for ”amazon”:

– Set of 3-grams: {”ama”, ”maz”, ”azo”, ”zon”}

• 3-Grams for ”amazom”:

– Set of 3-grams: {”ama”, ”maz”, ”azo”, ”zom”}

• Intersection and Union:

– Intersection (|A ∩ B|): 3 3-grams common to both sets: ”ama”,
”maz”, ”azo”

– Union (|A ∪B|): Total 5 unique 3-grams in both sets

• Jaccard Similarity:

– J(”amazon”, ”amazom”) = 3
5 = 0.6

3.5.3 ”amazon” vs ”random”

• 3-Grams for ”amazon”:

– Set of 3-grams: {”ama”, ”maz”, ”azo”, ”zon”}

• 3-Grams for ”random”:

– Set of 3-grams: {”ran”, ”and”, ”ndo”, ”dom”}

• Intersection and Union:

4

– Intersection (|A ∩B|): 0 common 3-grams between both sets

– Union (|A ∪B|): Total 8 unique 3-grams in both sets

• Jaccard Similarity:

– J(”amazon”, ”random”) = 0
8 = 0.0

3.6 Random Sampling with Universal Hashing

Given the string ”Amazon” and the set of 3-grams {”Ama”, ”maz”, ”azo”, ”zon”},
we can use a random hash function U : string → [0, R] to obtain a random ele-
ment from the set. The probability of U mapping a string s to a specific value
c is 1

R .
Random Element Selection via Universal Hashing
To select a random element from the set, we hash every 3-gram token us-

ing the universal hash function U and then choose the token with either the
minimum or maximum hash value.

Example:
Consider the hash values obtained for each 3-gram:

{U(”Ama”), U(”maz”), U(”azo”), U(”zon”)} = {10, 2005, 199, 2}

In this example, we have chosen ”zon” as the random element based on the
minimum hash value.

This method demonstrates how universal hashing and random sampling can
be used to obtain a random element from a set of 3-grams associated with a
given string.

4 Minwise Hashing for Set S

In Minwise Hashing, we compute the minwise hash value of a set S by generating
random hash values U(·) for each element in the set and selecting the minimum
hash value. The MinHash value for set S is calculated as follows:

MinHash(S) = min{U(s1), U(s2), . . . , U(sL)}

Example
Consider a document S = {ama,maz, azo, zon, on.}. We generate random

hash functions Ui : String → N and obtain hash values for each element in S:

Ui(S) = {Ui(ama), Ui(maz), Ui(azo), Ui(zon), Ui(on.)} = {153, 283, 505, 128, 292}

In this example, the MinHash value is 128.

5

4.1 Properties of Minwise Hashing

1. Applicability:

• Minwise Hashing can be applied to any set, making it a versatile
technique for similarity estimation.

2. Collision Probability and Jaccard Similarity:

• The probability that the MinHash values of two sets, S1 and S2, are
equal (Pr(MinHash(S1) = MinHash(S2))) is equal to the Jaccard

similarity of the sets (|S1∩S2|
|S1∪S2|).

• Mathematically, Pr(MinHash(S1) = MinHash(S2)) = |S1∩S2|
|S1∪S2| .

4.2 Proof: MinHash is Locality Sensitive

• Objective: Prove that MinHash collision probability equals Jaccard sim-
ilarity.

• Key Observations:

1. Minimum Hash Element: Let e be the element with the smallest
hash value in S1 ∪ S2 (belonging to both sets if applicable).

2. MinHash Comparisons: MinHash(S1) or MinHash(S2) will be
U(e) (hash of the minimum element) based on the set e belongs
to.

3. Randomness of e: e is a randomly selected element from S1 ∪ S2
due to universal hashing.

• Collision Probability:

– Each of the N possible e choices has Pr(U(e)collides) = M
N , where

M is the common elements in S1 and S2.

– Hence: Pr(MinHashcollision) = M
N , which simplifies to Pr(MinHashcollision) =

|S1∩S2|
|S1∪S2| .

• Conclusion:

– The collision probability in MinHash equates to the Jaccard similar-

ity, implying : Pr(MinHashcollision) = |S1∩S2|
|S1∪S2| .

6

