
12 Sept 2023 Consistent Hashing

These notes were written by Anthony Atkinson (asa15@rice.edu), Yassin Hafid
(ymh4@rice.edu), and Atishay Jain (aej7@rice.edu) for the COMP 480 lecture by
Dr. Anshumali Shrivastava on 12 September 2023.

1 Background

Consistent hashing is an approach to assigning objects to a handler using hashing
that allows for easy insertion and deletion of objects and handlers. It ensures with
high probability that one handler will not be overburdened with the objects it must
handle relative to the load other handlers bear. Developments in this area have lead
to a robust and efficient method for web caching - the local storage of internet content
on a distributed system for rapid access - saving companies billions of dollars per
year.

1.1 History

Web traffic is disproportionate to some websites than to others. For instance, popular
websites like gmail.com and amazon.com are visited more frequently than other one-
off websites. Similarly, web traffic is skewed by more popular searches. In order to
service these frequent requests quickly, we need a system that identifies them and
uses a cache to provide the requested content efficiently for a large number of users.
Consider an instance where many users at Rice University are requesting the movie
Die Hard. We can cache Die Hard on the Rice Network, which is more local to the
requested location rather than storing it on the original server. Web caching can
reduce the number of fetch and update operations, by storing popular websites local
to the requester. Reducing latency in these operations is not just for convenience’s
sake - it can be worth billions of dollars in the case of yahoo.com and google.com.

Akamai Tech tried to solve this problem, by using a shared cache infrastructure
in order to decide which machine would handle a specific request and then provide
the response. However, handling network disruptions, such as system downtime or
machine failures is difficult with a shared cache system like they used.

1.2 Motivation

Consider an experiment wherein you need to access a website, and there are 100
servers distributed near your location. It’s inefficient to poll every server as a po-
tential site since it would take time proportional to the number of servers, causing a
severe lag in request service times if the requested content is not found immediately.

COMP 480 1 Atkinson, Hafid, and Jain

12 Sept 2023 Consistent Hashing

If we consider a hash function that maps a hash to each server, problems arise when
there is server downtime, a crash (internal) or failure (external), or the addition of
new machines. Such hash functions are relatively static, i.e., hashx = ax+ b mod R,
where R is the range of the hash values, such that reassigning elements given even this
extremely simple function could at best require an easily-computable re-assignment
of elements to its new server. Changing this function every time some event happens
is infeasible - this would require reallocating every single item cached, of which there
could be millions, also of significant storage sizes.

Consistent hashing is the solution to this problem. Instead of hashing webpages
to the machines themselves, consider hashing both machines and objects in the same
range. To initialize this system, hash with hashm the n machines into a large circular
array. To insert or search for a webpage x, compute an item’s hash with hashi(x)
and traverse right in the array until a first machine’s hash is located. If not already
cached in machine Y , fetch x and cache it in Y . Otherwise, retrieve x directly from
the cache at Y .

While this solves the issue of storing webpages for a variable number of machines,
this leads to worst-case search and insertion times proportional to the range of the
hash values (one unlucky user encounters a system set up where none of the servers
are hashed anywhere except at the end of the array). Instead of performing a linear
traversal of the circular array for the location of a hashed server, one could use a
BST to search for the server that will handle the hashed item. Instead of O(R) time
complexity, we can sharply improve this by using BSTs for O(log n) worst-case time
complexity.

2 How Consistent Hashing Works

Each machine is expected to bear a load of m
n
objects, where m is the total number

of objects to be inserted/requested/cached and n is the total number of servers.
This can be easily understood by the fact that there is an equal probability of an
object being hashed into the domain of values handled by any server - not one
server is favored in the hashing of objects to a location in the array. This assumes
homogeneous capacities for each server.

Adding a machine does not change this expectation: the number of machines
increases, so the number of objects that each must handle decreases. Expected load
is now m

n+1
.

In §3, we will show that, with high probability, no machines will bear more than
a fraction O(logn

n
) of the total load.

COMP 480 2 Atkinson, Hafid, and Jain

12 Sept 2023 Consistent Hashing

Figure 1: Consistent Hashing into a Circular Array. The si are the servers; the xi

are the items. Figure by Tim Roughgarden.

2.1 BST

In order to improve the search latency of consistent hashing, we can use Binary Search
Trees (BSTs). The following describe implementations of BSTs used in consistent
hashing:

• insert(object o) Compute the closest node values to hashi(o) in the BST.
This can be done by traversing through the tree, comparing each node to
hashi(o), and going to the right child (if hashi(o) is larger) or the left child (if
hashi(o) is smaller). A global variable can be used to keep track of the closest
node and can be returned. In the worst case, the algorithm traverses through
a branch, with O(log n) time, where n is the number of machines (size of the
tree).

• insert(server s) Perform a BST insertion with server s using its hash value
hashs(s). Nodes are inserted at leaves (end nodes) in a BST, with O(log n)
time in the worst case, n is the number of machines.

• delete(object o) Calculate the successor of hashi(o) in the BST. If there
exists no successor, return machine with the smallest hash value. Delete e from
the machine. Finding the successor is O(log n) time, where n is the number of
machines.

• delete(server s) Perform a BST deletion, by finding the successor of the
element of the server, and removing the pointer from it to the machine. Finding
the successor is O(log n) time, where n is the number of machines.

All operations with regard to this implementation are O(log n). This is better
than traversing the m buckets clockwise because in the worst case, it could take
O(m) time. In sparser arrays, m is much larger than n, and n ≤ m.

COMP 480 3 Atkinson, Hafid, and Jain

12 Sept 2023 Consistent Hashing

2.2 Consequences of Inserting Servers

Initializing a new machine in consistent hashing can be done one of two ways:

• The new machine fills an empty cache with cache misses as they come in.

• The new machine will copy elements that belong to it from the previous server.

The first method is preferable since it does keep track of items internally nor
copy data over the network. Instead, the pages that were once cached will have to
be re-cached in their new assigned server when the requests cause a cache miss.

2.3 Consequences of Deleting Servers

There is potential for a cascading problem when servers are deleted. Suppose a server
is removed or fails. The elements that it handled are now assigned to another server.
The load that this new server must bear has increased, potentially significantly. If
this server crashes, then both its load and that of the previous server are distributed
onto another server, which will also likely fail from being overloaded, this time with
an even greater load to pass on. This continues until many or potentially all servers
are overloaded and the whole system must shut down. This is especially a problem
with servers of heterogeneous capacities and will be explored in subsequent lectures.

3 Is Consistent Hashing Efficient?

To keep up with the volatile dynamics of real-world systems, i.e., frequent server
shutdowns and reboots due to either internal or external factors, we need to ensure
that consistent hashing treats each machine “fairly”. That is, we desire that our
hash function does not overburden any one machine with too many objects to store
in proportion to its capacity. As we discuss in following lectures, the vanilla con-
sistent hashing can mechanism can be modified to proportionately handle servers of
heterogeneous capacities. We assume for now that each server has the same capacity.

The probability that one of the 1/f subsets of elements Cj does not contain one
of the n servers si to handle or cache any of its elements is 1

n
if we assume each

subset contains 2 logn
n

. The complement of this statement is what we desire: with

probability P ≥ 1 − 1
n
, every array subset of size 2 logn

n
contains at least one server

to handle requests to its objects. The maximum load that a given server will bear,
with the same probability as the above statement, is double the fraction of elements
contained within a collection: 4 logn

n
. A proof of these claims follows.

COMP 480 4 Atkinson, Hafid, and Jain

12 Sept 2023 Consistent Hashing

However, we cannot claim that no machine will be underburdened. By the same
line of reasoning as the birthday paradox, there is a high probability that two ma-
chines will actually fall in the same bin.

Claim: Consistent Hashing Does Not Overburden

We claim, with high probability, that no machines own more than O
(
logn
n

)
fraction of the load/set of items

We can show this by choosing some collection of elements Cj of the
hash array that constitutes a fraction f of the full range R. There are n
servers si we insert into the hash array by using an identifier.

P (hash(si) /∈ Cj) = 1− f =⇒ P ((hash(si) /∈ Cj)∀i) = (1− f)n

There are 1/f disjoint identical collections in this hash array, thus there are
1/f possible configurations of the system such that any one of these collections
is the one not hashed into by all of the servers. We choose the fraction f of
elements held in this collection f = 2 logn

n
:

1

f
(1− f)n =

n

2 log n
·
(
1− 2 log n

n

)n

= lim
n>>1

n

2 log n
·
(
1− 2 log n

n

) n
2 logn

·2 logn

≈ n

2 log n
· e−1·2 logn

=
n

2 log n
· 1

n2

=
1

2n log n

≤ 1

n

We can make the assumption that n is very large since we explicitly desire that
for our hash function.

P ((hash(si) /∈ Cj)∀i, j) ≤
1

n
=⇒ P ((hash(si) ∈ Cj)∃i, j) ≥ 1− 1

n

COMP 480 5 Atkinson, Hafid, and Jain

