COMP 480/580 — Probabilistic Algorithms and Data Structure Oct 5, 2023

Lecture 14
Lecturer: Anshumali Shrivastava Scribe By: {pc45, eh58, qw23} @rice.edu

1 Overview

Search engines with users input queries remains challenges for deployments. One significant bot-
tleneck is the real-time correction of user-typed queries. Imagine a scenario where a database,
denoted as D, contains approximately 50 million statistically significant query strings that have
been observed in the past. The goal is that when a user types a new query ¢, the system must
sift through the database to identify the closest string, based on a certain distance metric, to ¢
and promptly return the pertinent results. However, the sheer volume of the database means
that approximately 50 million distance computations are required for every single user query.
Even with a cheap distance function, processing such a volume would require about 400 sec-
onds—equivalent to 7 minutes on a standard CPU. If we were to use more complex algorithms
like the edit distance, this duration could extend to hours, rendering the process impractical for
real-time applications. Not mention that the acceptable latency limit is a mere 20 milliseconds.

Can we do better? Through advanced approximation methods, it is not only feasible but
entirely possible to correct user-typed queries in as little as 2 milliseconds—a staggering 210,000
times faster than conventional methods!

1.1 Jaccard Similarity

The Jaccard Similarity is a measure used to quantify the similarity between two sets, which is
particularly useful for comparing sets of items. The Jaccard Similarity between sets A and B
is calculated as [2]:

|AN B
J(A,B) =
Where:
e A and B are two sets.

e |ANB]| represents the size of the intersection of sets A and B (i.e., the number of elements
common to both sets).

e |A U B represents the size of the union of sets A and B (i.e., the number of elements
without duplicates from either set).

The value of the Jaccard Similarity ranges from 0 to 1:
e A value of 1 indicates the two sets are identical.
e A value of 0 indicates the two sets have no elements in common.

As an example, consider the sets:

A=1{1,2,3,4}

14-1

B ={3,4,5,6}

The intersection of A and B is:
ANB={3,4}

The union of A and B is:
AUB={1,2,3,4,5,6}

Thus, the Jaccard Similarity between A and B is:
AnBl 2 1

T4, B) = [AUB] 6 3

1.2 Locality Sensitive Hashing

LSH is a technique designed to identify items that are close (or similar) to one another in a
high-dimensional space[3]. Unlike classical hashing, where the aim is to avoid collisions, LSH
aims for controlled collisions to capture similarity.

Classical Hashing

In the realm of classical hashing:
e For items x and y, if © = y then it is always true that h(z) = h(y).

e Conversely, if # y then, ideally, h(x) # h(y).

Locality Sensitive Hashing (Randomized Relaxation)

LSH introduces a nuanced, probabilistic approach to hashing:

e If the similarity between items x and y (denoted as sim(x, y)) is high, then the probability
that h(x) = h(y) is also high.

e On the flip side, if sim(z, y) is low, then the probability that h(xz) = h(y) is correspondingly
low.

e Notably, if h(z) = h(y), this implies that sim(x,y) is high, but only in a probabilistic
sense.

1.3 Minwise Hashing

How is similarity search connected to Minwise Hashing and Jaccard Similarity?

Statement:

Pr (Minhash (S1) = Minhash (Sy)) = 120092 _ 5
|Sl @] 52|

Justification: Consider a hash function, U, used to determine the minhash of sets 57 and
So. Let’s denote e as the element possessing the minimum hash value when considering the
union S; U Ss. We can observe that if e belongs to S1, then its minhash value corresponds to
U(e). Similarly, if e is in So, its minhash value will be U(e). There’s also a scenario where e is
a member of the intersection S; NSz, making the minhash values of both sets equal to U(e). If
the size of the intersection is N and the union is M, among the M potential choices for e, N
can lead to a match. Thus, the collision likelihood is % =J.

14-2

2 Minwise Hashing

Minwise hashing, commonly referred to as Minhash, is a technique primarily designed for ef-
ficiently estimating the similarity between sets, such as documents. This method has been
particularly popular for estimating the Jaccard similarity between large sets[1].

1. Representation of Documents as Shingles:

Documents can be represented as a set of shingles (or substrings). For instance, the
document “Amazon” might be shingled into overlapping substrings of length three: S =
{ama, maz, azo, zon, on.}.

2. Hashing with Random Seeds:

To apply minwise hashing, one starts by using a hash function that can accept a random
seed to generate different hash values for the same input. An example of such a hash
function is Murmurhash3.

When you use a new random seed ¢ with a hashing algorithm, say Murmurhash3, it will
produce a distinct hash value for the same input. For our shingles in S, it might produce
values such as {153, 283, 505, 128, 292}.

3. Finding the Minhash:

The minhash value for a particular seed is simply the smallest hash value generated for
the shingles in the document. Using our previous example, the minhash value would be
128, as it’s the smallest hash value in the set {153,283, 505, 128, 292}.

4. Multiple Minhash Values:

By changing the seed for the hash function, one can obtain a new set of hash values for
the shingles, and consequently, a new minhash value. Multiple minhash values can be
generated by repeating this process with various seeds, which allows for the creation of
a minhash signature representing the document. The similarity between two documents
can then be estimated by comparing the fraction of minhash values that match between
their signatures.

In summary, Minhash provides a mechanism for capturing the essence of documents in
a compact form, making it feasible to compare large numbers of documents efficiently. The
approach leverages the randomness of hash functions and the idea of using the minimum hash
value as a representative signature.

2.1 Property of Minwise Hashing
1. General Applicability:

Minwise hashing can be applied to any set.

2. Range of Minhash:

Minhash generates values in the range [0-R], where R is sufficiently large to accommodate
the expected variations.

3. Randomness and Hash Functions:

For any set, the properties of Minwise Hashing are provable under the assumption that
the hash function, denoted as U, is random.

14-3

4. Random Sample Property:

Factl: Given the randomness of the hash function U, for any set, the element with the
minimum hash value can be treated as a random sample from the set.

5. Random Element and Hash Function:
Consider a set .S, and let’s sample a random element e using the hash function U.

Claim1: There seems to be a condition or property regarding e and the set .S that is
implied by its Minhash value, but the statement is incomplete in the provided content
(denoted as ”if and only if”).

The presented properties showcase the versatility and robustness of Minwise Hashing. Par-
ticularly, the reliance on the randomness of the hash function U is instrumental in several of
its key features.

2.2 Parity of MinHash

MinHash’s properties extend beyond its ability to estimate set similarities. One such property
is its parity. The parity of a number refers to whether it’s even (parity = 0) or odd (parity =
1). When applied to MinHash, this concept provides another layer of information compression.

2.2.1 Parity in Action

1. Document Representation:

A document can be represented as a set of shingles. For instance: S = {ama, maz, azo, zon, on.}.

2. Hashing with Random Seeds:

Using a hash function, such as Murmurhash3, with a random seed ¢, we can produce a set
of hash values for the shingles in S. For example: {153,283, 505,128,292}.

3. Computing MinHash:

The MinHash value is the smallest hash value from the set. From the previous example,
Minhash = min{153, 283, 505, 128,292} = 128.

4. Parity of MinHash:

The parity of 128 is 0 (since it’s even), which provides us with 1-bit of information about
the document.
2.2.2 Parity of MinHash for Compression

The parity of MinHash serves as an effective compression mechanism, especially for similarity
estimation.

e Given 50 parities of MinHash values, one might ask: how can we estimate the Jaccard
similarity J7

e The memory requirement for storing these parities is minimal, only requiring 50 bits or
less than 7 bytes (equivalent to 2 integers).

e For J = 0.8, the error is slightly worse than 0.05 (though the computation method wasn’t
provided).

14-4

o Interestingly, the storage requirement only depends on similarity and not the actual size
of the set. Whether a set has 100, 1,000, or 10,000 elements, the storage cost for similarity
estimation remains constant.

This highlights a unique tradeoff presented by the parity of MinHash: despite the varying
size of the datasets, the storage requirement remains fixed for similarity computations.

3 Locality Sensitive Hashing

Minwise Hashing is locality sensitive as we dicussed earlier.

3.1 Classical Hashing

In traditional hashing:
o If x =y then h(z) = h(y).

o If z # y then, with high probability, h(z) # h(y).

3.2 Locality Sensitive Hashing (Randomized Relaxation)
In contrast, LSH focuses on similarity:

e If the similarity sim(z,y) is high, the probability that h(x) = h(y) is also high.

e If the similarity sim(x,y) is low, the probability that h(x) = h(y) is correspondingly low.
This type of hashing is especially beneficial when trying to identify approximate matches or
when working with large datasets where exact matches are rare or less meaningful.

3.3 Jaccard Similarity and LSH

WEe’ll explore how to design hash functions, h, that are tailored for the Jaccard distance. The
fundamental intuition is:

o If h(z) = h(y), then the Jaccard similarity between z and y is likely to be high, though
this is probabilistic.

The Jaccard similarity is a measure of the similarity between two sets and is a popular
metric used in conjunction with LSH.

3.4 Search Engine using LSH

Search engines must handle vast amounts of data and provide results quickly. Locality Sensitive
Hashing (LSH) offers an efficient way to perform approximate similarity search, making it
valuable for search engines. Instead of comparing a query to every single document in the
database, LSH helps in narrowing down the search to a smaller subset that’s likely to contain
the relevant results.

14-5

3.4.1 Multiple Independent Hash Tables

e The LSH approach creates multiple hash tables, each with its own set of hash functions.

e Each table returns a bucket of candidate documents that are potentially similar to the
query.

e With multiple tables, there is an increased chance of finding truly similar items, even if
they are missed in one table due to the probabilistic nature of LSH.

3.4.2 LSH Algorithm for Search Engines

Algorithm 1 LSH Preprocessing
Input: Dataset D, Number of hash tables L, Number of hash functions K
Output: Hash tables 171,75,...,T,
1: Initialize L hash tables, T1,75,...,77.
2: for each data point P in D do
3 for each hash table T; from 1 to L do
4 Compute compound hash key, k, for P using K hash functions: h1,hs,..., hg
5: Insert P into 7T; using key k.
6
7
8

end for
: end for
: return 11,715, ...,T7,

Algorithm 2 LSH Query
Input: Query point ¢, Hash tables 11,75, ...,Tr, Number of hash functions K
Output: Set of candidate points C' that are likely to be similar to ¢

1: Initialize candidate set C' to empty.

2: for each hash table T; from 1 to L do
3 Compute compound hash key, k, for ¢ using K hash functions: hy, hs, ..., hx
4: Retrieve all points in T; with key k and add to candidate set C.
5
6

: end for
: return candidate set C.

e Preprocess Database D:
This algorithm is designed to preprocess a given dataset D. D using the principles of
Locality Sensitive Hashing (LSH). For each data point in the dataset, the algorithm
computes a key using a set of hash functions and then inserts this data point into multiple
hash tables. This preprocessing is essential for efficient similarity searches, as items that
are similar (under some similarity metric) are likely to be hashed into the same bucket in
one or more of these tables.

e Query with q:
After preprocessing the dataset, this algorithm performs a query to retrieve items from
the dataset that are similar to a given query point q. The algorithm computes the hash
key for the query point and searches for this key in each of the hash tables. All items
with a matching key are considered as potential candidates for being similar to the query.

14-6

3.4.3 Advantages in Search Engines

e Speed: LSH reduces the number of comparisons needed, resulting in faster search results.

e Scalability: LSH is designed to handle vast datasets, making it suitable for large-scale
search engines.

e Flexibility: Different LSH functions can be tailored for various similarity measures,
catering to diverse data types and requirements.

Locality Sensitive Hashing provides a robust framework for efficient similarity searches in
vast datasets, making it invaluable for search engines that must provide rapid and relevant
results to user queries.

References

[1] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions
via hashing. In Proceedings of the 25th Very Large Database (VLDB) Conference, 1999.

[2] Jure Leskovec, Anand Rajaraman, and Jeffrey Ullman. Mining of Massive Datasets.
Cambridge, 2020. Earlier version available at http://infolab.stanford.edu/ ull-
man/mmds/ch3.pdf, p. 76-77.

[3] T. T. Tanimoto. An elementary mathematical theory of classification and prediction. In-
ternal technical report, IBM, 1958. Report from 1957, Published on 17 Nov 1958.

14-7

