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1 Motivation

• How large can a large variable be?

• How far can a value that the random variable takes be from its mean?

Say X is the number of steps an algorithm takes. Then, E [X] is the average-case running-time
of the algorithm. In COMP 182, 382, and 582, the worst-case running-time of algorithms are
studied, but what if an algorithm, on average, takes 2n steps but on certain inputs, it takes
500n2 steps?

2 Background

A random variable is a function from the sample space of an experiment / process to the set of
real numbers. The expected value (also called the expectation or mean) of a discrete random
variable X on the sample space S is

E [X] =
∑
s∈S

P (s) ·X(s)

or equivalently,

E [X] =
∑
x

x · P (X = x)

The Linearity of Expectations is a property that states that the expectation of a sum of
random variables is equivalent to the sum of the expectation of the random variables. That is,

E [X1 +X2 + · · ·+Xn] = E [X1] + E [X2] + · · ·+ E [Xn]

For constants within the expectations,

E [aXi + b] = aE [Xi] + b

The variance of a random variable X on a sample space S is

V [X] = E
[
(X − E(X))2

]
or equivalently

V [X] = E
[
X2
]
−
(
E [X]

)2
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Bienayme’s Formula states that if Xi for i ∈ 1, 2, ..., n are pairwise independent random
variables on S, then

V

 n∑
i=1

Xi

 =

n∑
i=1

V [Xi]

Side note: If the random variables are not pairwise independent, then you must account for the
covariance. Thus,

V

 n∑
i=1

Xi

 =
∑
i

V [Xi] + 2
∑
i<j

Cov(Xi, Xj)

3 Markov’s Inequality

Let X be a random variable that takes only nonnegative values. Then, for every real number
a > 0,

P (X ≥ a) ≤ E [X]

a

Proof:

E [X] =
∑
x

x · P (X = x)

=

∑
x≥a

x · P (X = x)

+

∑
x<a

x · P (X = x)


≥

∑
x≥a

a · P (X = x)

+ (0)

= a

∑
x≥a

P (X = x)


= a

(
P (X ≥ a)

)

(1)

∴ P (X ≥ a) ≤ E [X]

a
(2)

QED.

3.1 Discussion

Markov’s Inequality answers the question of how large a value X can take. Unfortunately, for
distributions encountered in practice, Markov’s inequality gives a very loose bound. Take, for
example, a uniform distribution with a mean of 0 and a normal distribution with a mean of
0. In this scenario, the uniform distribution is more like to have a tale value than the normal
distribution is. Unfortunately, Markov’s Inequality does not take this into account.
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3.2 Example: Graph Traversal Time

Assume the expected time Algorithm A takes to traverse a graph with n nodes is 2n. What is
the probability that the algorithm takes more than 10 times that?

Solution:

P (X ≥ 10 · E [X]) ≤ E [X]

10 · E [X]
=

1

10

4 Chebyshev’s Inequality

Let X be a random variable. For every real number r > 0,

P
(
|X − E [X]| ≥ a

)
≤ V [X]

a2

The proof is as follows:

P
(
|X − E [X]| ≥ a

)
= P

((
X − E [X]

)2 ≥ a2) ≤ E
[(
X − E [X]

)2]
a2

(3)

Note that E
[(
X − E [X]

)2]
= V [X].

P
(
|X − E [X]| ≥ a

)
≤ V [X]

a2
(4)

QED.

4.1 Discussion

A quick comparison of Markov’s Inequality and Chebyshev’s Inequality is shown below, respec-
tively:

P (X ≥ kµ) ≥ 1

k

and

P (|X − µ| ≥ kσ) ≤ 1

k2

As it can be seen, Markov’s Inequality scales linearly with k, whereas Chebyshev’s Inequality
scales quadratically with k, providing a tighter bound as k increases.

4.2 Example

Assume we have a distribution whose mean is 80 and standard deviation is 10. What is a lower
bound on the percentage of values that fall exclusively between 60 and 100 in this distribution?

Solution:
We know E [X] = 80, V [X] = σ2 = 102 = 100, and a = 100−60

2 = 20. Therefore,

P
(
|X(s)− 80| ≥ 20

)
≤ 100

202
=

1

4

and the lower bound is 75%.
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5 Illustration: Estimating π Using the Monte Carlo Method

Assume that there is square board whose area is 1, and inside it is a circle whose radius is 1/2.
Now, throw darts at this board. The probability that it lands inside the circle equals the ratio
of the circle area to the square area (πr

2

4r2
= π/4). Therefore, calculate the proportion of times

that the dart landed inside the circle and multiply it by 4. (Pseudocode can be found on lecture
slides.)

Let Xi be the random variable that denotes whether the ith dart landed inside the circle (1
if it did and 0 otherwise). Then,

π̂(n) = 4

∑n
i=1Xi

n

where π̂(n) is the estimate of π after n darts thrown.

The calculation of expectation and variance for Xi is shown below, using the properties of
a Bernoulli distribution with p = π

4 .

E [Xi] =
π

4
× 1 +

(
1− π

4

)
× 0 =

π

4

V [Xi] =
π

4

(
1− π

4

)

Using the Linearity of Expectation, calculate the expectation of π̂.

E [π̂] = E

 4

n

n∑
i=1

Xi

 =
4

n

n∑
i=1

E [Xi] =
4

n
· nπ

4
= π

Since the random variables Xi are pairwise independent (e.g. throwing a dart does not
affect the result of another dart), we can use Bienayme’s Formula to calculate the variance of
π̂. Note that multiplying a random variable by a constant increases the variance by the square
of that constant.

V [π̂] = V

 4

n

n∑
i=1

Xi

 =
16

n2
V

 n∑
i=1

Xi

 =
16

n2

n∑
i=1

V [Xi] =
16

n2
· nπ

4
(1− π

4
) =

π(4− π)

n

5.1 Accuracy

The question that is raised at this point is: how big should n be for us to get a good estimate?
In a probabilistic setting, the question can be reworded as: what should the value of n be
such that the estimation error of π is within δ with probability at least ε?

P
(
|π̂(n)− π| < δ

)
> ε
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or equivalently
P
(
|π̂(n)− π| ≥ δ

)
≤ 1− ε

To achieve a good estimate, δ should be very small and ε to be as close to 1 as possible. For
this example, δ = 0.001 and ε = 0.95. The problem becomes solving for n in

P
(
|π̂ − π| ≥ 0.001

)
≤ 0.05

The above equation is an application of Chebyshev’s Inequality in the form of

P
(
|π̂ − E [π̂]| ≥ a

)
≤ V [π̂]

a2

From above,

V
[
π̂(n)

]
=
π(4− π)

n

so we solve for n such that
V [π̂]

a2
=

π(4− π)

n(0.001)2
≤ 0.05

Since we are trying to estimate the value of π, we cannot leave the variable in the answer.
Therefore, we can use the following inequality to substitute away π:

π(4− π) ≤ 4

Then, the problem can be written as

π(4− π)

n(0.001)2
≤ 4

n(0.001)2
≤ 0.05

Solving for n in the above inequality gives

n ≥ 80, 000, 000

to have an accuracy of δ = 0.001 with probability ε = 0.95.

6 The Weak Law of Large Numbers

6.1 Corollary of Chebyshev’s Inequality

Let X1, X2, ..., Xn be independent random variables with

E [Xi] = µi and V (Xi) = σ2i

Then, for any a > 0,

P

∣∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

µi

∣∣∣∣∣∣ ≥ a
 ≤ ∑n

i=1 σ
2
i

a2
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The above is a corollary of the Chebyshev’s Inequality. It extends Chebyshev’s Inequality
to multiple random variables using Linearity of Expectations and Bienayme’s Formula. The
proof is shown below:

P
(
|X − E [X]| ≥ a

)
≤ V [X]

a2
(Chebyshev’s Inequality) (5)

Let X =
∑n

i=1Xi

P


∣∣∣∣∣∣∣
n∑
i=1

Xi − E

 n∑
i=1

Xi


∣∣∣∣∣∣∣ ≥ a

 ≤ V
[∑n

i=1Xi

]
a2

P

∣∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

E [Xi]

∣∣∣∣∣∣ ≥ a
 ≤ ∑n

i=1V [Xi]

a2

P

∣∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

µi

∣∣∣∣∣∣ ≥ a
 ≤ ∑n

i=1 σ
2
i

a2

(6)

QED.

6.2 The Weak Law of Large Numbers

Let X1, X2, ..., Xn be independently and identically distributed (i.i.d) random variables, where
the unknown expected value µ is the same for all variables and their variance is finite. Then,
for any ε > 0, we have

P


∣∣∣∣∣∣∣
 1

n

n∑
i=1

Xi

− µ
∣∣∣∣∣∣∣ ≥ ε

 n→∞−−−→ 0

This follows from the corollary above. The proof is as follows:

P

∣∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

µi

∣∣∣∣∣∣ ≥ a
 ≤ ∑n

i=1 σ
2
i

a2

P

∣∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

E [Xi]

∣∣∣∣∣∣ ≥ a
 ≤ ∑n

i=1V [Xi]

a2

P

∣∣∣∣∣∣
n∑
i=1

1

n
Xi −

n∑
i=1

E
[

1

n
Xi

]∣∣∣∣∣∣ ≥ a′
 ≤ ∑n

i=1V
[
1
nXi

]
a′2

P

∣∣∣∣∣∣ 1n
n∑
i=1

Xi −
1

n

n∑
i=1

E [Xi]

∣∣∣∣∣∣ ≥ a′
 ≤ 1

n2

∑n
i=1V [Xi]

a′2

(7)
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Let a′ = ε, where ε is a positive number. Also, note that E [Xi] = µ and V [Xi] = σ2 for all i.

P

∣∣∣∣∣∣ 1n
n∑
i=1

Xi −
1

n

n∑
i=1

µ

∣∣∣∣∣∣ ≥ ε
 ≤ 1

n2

∑n
i=1 σ

2

ε2

P

∣∣∣∣∣∣ 1n
n∑
i=1

Xi −
1

n
nµ

∣∣∣∣∣∣ ≥ ε
 ≤ 1

n2nσ
2

ε2

P

∣∣∣∣∣∣ 1n
n∑
i=1

Xi − µ

∣∣∣∣∣∣ ≥ ε
 ≤ σ2

nε2

(8)

As n → ∞, the right hand side of the inequality approaches 0. Since the left hand side is a
probability, it must be between 0 and 1 inclusive.

∴ P


∣∣∣∣∣∣∣
 1

n

n∑
i=1

Xi

− µ
∣∣∣∣∣∣∣ ≥ ε

 n→∞−−−→ 0 (9)

QED.

7 Chernoff Bounds

Let X = X1 +X2 + · · ·+Xn, where all the Xi’s are independent and Xi ∼ Bernoulli(pi), and
let µ = E [X] =

∑n
i=1 pi. Then, for δ > 0,

P
(
|X − µ| ≥ δµ

)
≤ 2e−

δ2µ
2+δ

The bound can also be separated and written as

P
(
X ≥ (1 + δ)µ

)
≤ e−

δ2µ
2+δ for δ > 0

P
(
X ≤ (1− δ)µ

)
≤ e−

δ2µ
2 for 1 > δ > 0

7.1 Lemmas

Before proving the two bounds, we must prove the following three lemmas.

7.1.1 Lemma 1

Given a random variable Y ∼ Bernoulli(p), ∀s ∈ R,

E
[
esY
]
≤ ep(es−1)
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The proof is as follows:

E [Y ] = p× 1 + (1− p)× 0

E
[
esY
]

= es×1 × p+ es×0(1− p)

= es × p+ (1− p)
= 1 + p(es − 1)

(10)

Note that 1 + y ≤ ey.
E
[
esY
]
≤ ep(es−1) (11)

QED.

7.1.2 Lemma 2

Let X1, ..., Xn be independent random variables, and X =
∑n

i=1Xi. Then, for s ∈ R,

E
[
esX
]

=

n∏
i=1

E
[
esXi

]
The proof is as follows:

E
[
esX
]

= E
[
es

∑n
i=1Xi

]
= E

[
esX1+sX2+···+sXn

]
= E

[
esX1 × esX2 × · · · × esXn

]
= E

 n∏
i=1

esXi


(12)

Note that the expectation of a product of independent random variables is equal to the product
of the expectatino of the random variables.

E
[
esX
]

=
n∏
i=1

E
[
esXi

]
(13)

QED.

7.1.3 Lemma 3

Let X1, ..., Xn be independent random variables with Bernoulli distributions, and X =
∑n

i=1Xi

and E [X] =
∑n

i=1 pi = µ. Then, for s ∈ R,

E
[
esX
]
≤ e(es−1)µ
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The proof falls from Lemma 1 and 2 and is as follows:

E
[
esX
]

=
n∏
i=1

E
[
esXi

]
≤ epi(es−1) (Lemma 1 & 2)

=
n∏
i=1

epi(e
s−1)

= ep1(e
s−1) × ep2(es−1) × · · · × epn(es−1)

= ep1(e
s−1)+p2(es−1)+···+pn(es−1)

= e(e
s−1)(p1+p2+···+pn)

= e(e
s−1)µ

(14)

QED.

7.2 Proof of Chernoff Bounds

7.2.1 Proof of Upper Bound

The proof for the upper bound of Chernoff Bounds is shown below:

P (X ≥ a) = P
(
esX ≥ esa

)
≤

E
[
esX
]

esa
(Markov’s Inequality)

=
e(e

s−1)µ

esa
(Lemma 3)

(15)

We want to choose an s that will minimize the the upper bound. Therefore, we can derive the
right hand side of the equation with respect to s and find the minimum by setting it to zero.

e(e
s−1)µ

esa
= e(e

s−1)µ−sa

d

ds
e(e

s−1)µ−sa = e(e
s−1)µ−sa (esµ− a) = 0

(16)

The only term that can be 0 is the esµ− a so set that to zero and solve for s.

esµ− a = 0

es =
a

µ

s = ln
a

µ

(17)

Let a = (1 + δ)µ.

s = ln
(1 + δ)µ

µ

= ln (1 + δ)

(18)
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This is a minimum since for values s < ln 1 + δ, the derivative is below 0, and vice versa for
greater values. So, set s = ln (1 + δ) for δ > 0.

P
(
X ≥ (1 + δ)µ

)
≤ e(e

ln (1+δ)−1)µ

eln (1+δ)(1+δ)µ

=
eδµ

(1 + δ)(1+δ)µ

=

(
eδ

(1 + δ)(1+δ)

)µ (19)

By taking the natural logarithm of the expression for the upper bound, we get

µ
(
δ − (1 + δ) ln (1 + δ)

)
(20)

Knowing that ln (1 + x) ≥ x
1+x/2 ,

µ
(
δ − (1 + δ) ln (1 + δ)

)
≤ µ

(
δ − (1 + δ)

δ

1 + δ/2

)
= µδ

(
1− 1 + δ

1 + δ/2

)
= µδ

(
1 + δ/2− 1− δ

1 + δ/2

)
= µδ

(
− δ/2

1 + δ/2

)
= − δ2

2 + δ
µ

(21)

From equation 21, we can get to the expected upper bound.

P
(
X ≥ (1 + δ)µ

)
≤

(
eδ

(1 + δ)(1+δ)

)µ
≤ e−

δ2

2+δ
µ for δ > 0 (22)

QED.

7.2.2 Proof of Lower Bound

The proof for the lower bound of Chernoff Bounds is shown below:

P (X ≤ a) = P
(
e−sX ≥ e−sa

)
≤

E
[
e−sX

]
e−sa

(Markov’s Inequality)

=
e(e

−s−1)µ

e−sa
(Lemma 3)

(23)

Same reasoning for how we want to choose our value for s as the upper bound.

e(e
−s−1)µ

e−sa
= e(e

−s−1)µ+sa

d

ds
e(e

−s−1)µ+sa = e(e
−s−1)µ+sa

(
−e−sµ+ a

)
= 0

(24)
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The only term that can equal 0 is −e−sµ+ a.

−e−sµ+ a = 0

e−sµ = a

e−s =
a

µ

es =
µ

a

s = ln
µ

a

(25)

Let a = (1− δ)µ.

s = ln
µ

(1− δ)µ

= ln
1

1− δ
= − ln (1− δ)

(26)

Set s = − ln (1− δ) for 0 < δ < 1.

P
(
X ≤ (1− δ)µ

)
≤ e(e

−(− ln (1−δ))−1)µ

e−(− ln (1−δ))(1−δ)µ

=
e(e

ln (1−δ)−1)µ

eln (1−δ)(1−δ)µ

=
e−δµ

(1− δ)(1−δ)µ

=

(
e−δ

(1− δ)(1−δ)

)µ
(27)

By taking the natural logarithm of the expression for the lower bound, we get

µ
(
−δ − (1− δ) ln (1− δ)

)
(28)

Knowing that (1− δ) ln (1− δ) ≥ −δ + δ2

2 from the Taylor expansion of ln (1− x),

µ
(
−δ − (1− δ) ln (1− δ)

)
≤ µ

(
−δ + δ − δ2

2

)

= −µδ
2

2

(29)

From equation 29, we can get to the expected lower bound.

P
(
X ≤ (1− δ)µ

)
≤

(
e−δ

(1− δ)(1−δ)

)µ
≤ e−

µδ2

2 for 0 < δ < 1 (30)

QED.

7.3 Discussion

Assume an experiment where a fair coin is tossed 200 times. How likely is it to observe at least
150 heads?

In this situation, note that E [Xi] = 1
2 and V [Xi] = 1

4 . Each flip is also independent of each
other.
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7.3.1 Markov’s Inequality

P (X ≥ 150) ≤ E [X]

150
=

∑200
i=1(0.5)

150
= 0.6666 (31)

7.3.2 Chebyshev’s Inequality

P
(
|X − 100| ≥ 50

)
≤ V [X]

502
=

∑200
i=1V [X]

502
=

50

502
= 0.02 (32)

7.3.3 Chernoff Bounds

P
(
X ≥ (1 + δ)µ

)
≤ e−

δ2µ
2+δ (33)

We know (1 + δ)µ = 150 and µ = 100, so δ = 0.5.

P (X ≥ 150) ≤ e−
(0.5)2(100)

2+0.5 = 0.0000453999 (34)

7.4 Alternate Form

Let X = X1+X2+ · · ·+Xn, where all the Xi are independent random variables and a ≤ Xi ≤ b
for all i, and let µ = E [X]. Then, for δ > 0

P
(
X ≥ (1 + δ)µ

)
≤ e−

2δ2µ2

n(b−a)2

and

P
(
X ≤ (1− δ)µ

)
≤ e−

δ2µ2

n(b−a)2
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