COMP 480/580 — Probabilistic Algorithms and Data Structure Jan 15, 2019

Lecture 3: Tail Bounds
Lecturer: Luay Nakhleh Scribe By: Will Koh

1 Motivation

e How large can a large variable be?

e How far can a value that the random variable takes be from its mean?

Say X is the number of steps an algorithm takes. Then, E [X] is the average-case running-time
of the algorithm. In COMP 182, 382, and 582, the worst-case running-time of algorithms are
studied, but what if an algorithm, on average, takes 2n steps but on certain inputs, it takes
500n? steps?

2 Background

A random variable is a function from the sample space of an experiment / process to the set of
real numbers. The expected value (also called the expectation or mean) of a discrete random

variable X on the sample space S is

E[X] =Y P(s)- X(s)

seS

or equivalently,
E[X] =) z-P(X =x)

The Linearity of Expectations is a property that states that the expectation of a sum of
random variables is equivalent to the sum of the expectation of the random variables. That is,

E[X;+Xo+ -+ X, =E[X1] + E[Xo] + - + E[X,]
For constants within the expectations,

The variance of a random variable X on a sample space S is
V[X] =E [(X - E(X))Q]
or equivalently

V[X]=E [Xﬂ — (E[X])?
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Bienayme’s Formula states that if X; for ¢ € 1,2,...,n are pairwise independent random
variables on S, then

\Y% X;X :Z;V[Xi]

Side note: If the random variables are not pairwise independent, then you must account for the
covariance. Thus,

\Y Zn:Xi = V[Xi]+2> Cov(X;, X))
=1 7

i<j

3 Markov’s Inequality

Let X be a random variable that takes only nonnegative values. Then, for every real number
a >0,
E[X]

a

P(X >a) <

Proof:
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3.1 Discussion

Markov’s Inequality answers the question of how large a value X can take. Unfortunately, for
distributions encountered in practice, Markov’s inequality gives a very loose bound. Take, for
example, a uniform distribution with a mean of 0 and a normal distribution with a mean of
0. In this scenario, the uniform distribution is more like to have a tale value than the normal
distribution is. Unfortunately, Markov’s Inequality does not take this into account.
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3.2 Example: Graph Traversal Time

Assume the expected time Algorithm A takes to traverse a graph with n nodes is 2n. What is
the probability that the algorithm takes more than 10 times that?

Solution: E[X] )
PIX>10-E[ X< — = —
(X 210-EX) < 3575 %] ~ 10

4 Chebyshev’s Inequality

Let X be a random variable. For every real number r > 0,

P(IX ~E[X]| > a) <

The proof is as follows:

P(X —E[X]| > a) = P((X ~E[X])* > a?) <

Note that E [(X ~E [X])z} = V[X].

P(IX ~E[X]| > a) <

4.1 Discussion

A quick comparison of Markov’s Inequality and Chebyshev’s Inequality is shown below, respec-
tively:

P(X > kup) >

S

and

1

P(X — ] > ko) <

As it can be seen, Markov’s Inequality scales linearly with k, whereas Chebyshev’s Inequality
scales quadratically with k, providing a tighter bound as k increases.

4.2 Example

Assume we have a distribution whose mean is 80 and standard deviation is 10. What is a lower
bound on the percentage of values that fall exclusively between 60 and 100 in this distribution?

Solution:
We know E [X] = 80, V[X] = 0% = 10? = 100, and a = 22550 = 20. Therefore,

100 1
P(|X(s) — >20) < — =-—
(IX(s) =80] > 20) < 555 = 5

and the lower bound is 75%.
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5 Illustration: Estimating 7 Using the Monte Carlo Method

Assume that there is square board whose area is 1, and inside it is a circle whose radius is 1/2.
Now, throw darts at this board. The probability that it lands inside the circle equals the ratio
of the circle area to the square area (ZTT; = 7/4). Therefore, calculate the proportion of times
that the dart landed inside the circle and multiply it by 4. (Pseudocode can be found on lecture

slides.)
Let X; be the random variable that denotes whether the i*" dart landed inside the circle (1
if it did and 0 otherwise). Then,
n
X
ﬂm:4;ELi
n

where 7(n) is the estimate of m after n darts thrown.

The calculation of expectation and variance for X; is shown below, using the properties of

a Bernoulli distribution with p = 7.

Using the Linearity of Expectation, calculate the expectation of 7.

4 & 4 4 nr
— X;| = — E|X;,]=—-— =
n; ! nz [Z] n 4 T

=1

Since the random variables X; are pairwise independent (e.g. throwing a dart does not
affect the result of another dart), we can use Bienayme’s Formula to calculate the variance of
7. Note that multiplying a random variable by a constant increases the variance by the square
of that constant.

4 & 16 = 16 nm T (4 —m)
ISy =Yy ivx| = By yx QG WL i)
n ; ! n? ; ‘ Z 4 7 4) n

5.1 Accuracy

The question that is raised at this point is: how big should n be for us to get a good estimate?
In a probabilistic setting, the question can be reworded as: what should the value of n be
such that the estimation error of 7 is within 0 with probability at least ¢?

P(|#(n) — 7| < &) >
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or equivalently
P(|#(n) — 7| >6) <1—e¢

To achieve a good estimate, § should be very small and € to be as close to 1 as possible. For
this example, § = 0.001 and e = 0.95. The problem becomes solving for n in

P(|& — m| >0.001) < 0.05

The above equation is an application of Chebyshev’s Inequality in the form of

R ) V[#]
P(|7T —E[#7]]| > a) < 32
From above,
) m(4—)
V p—
7] = T
so we solve for n such that
Vig]  7w4-m) 0.05

Since we are trying to estimate the value of 7, we cannot leave the variable in the answer.
Therefore, we can use the following inequality to substitute away m:

m(4—m) <4
Then, the problem can be written as

(4 —7)
< 0.05
n(0.001)2 ~ n(0.001)2 —

Solving for n in the above inequality gives
n > 80,000, 000

to have an accuracy of § = 0.001 with probability ¢ = 0.95.

6 The Weak Law of Large Numbers

6.1 Corollary of Chebyshev’s Inequality

Let X1, Xo, ..., X;, be independent random variables with

E[X;] = u; and V(X;) = o7

7

Then, for any a > 0,
2

JDiX—i->a<;éﬂ
(2 MZ - = 2
i=1 i=1

a
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The above is a corollary of the Chebyshev’s Inequality. It extends Chebyshev’s Inequality
to multiple random variables using Linearity of Expectations and Bienayme’s Formula. The
proof is shown below:

V[X]

a?

P(IX —E[X]| > a) <

(Chebyshev’s Inequality) (5)

Let X =37 X,

= = 2

n n n .
P ZXi—IE ZXZ- >q <V[Z;=1Xl]
=1 =1

P zn:Xi—zn:E[Xi] >a SZ?—Q/[XA (6)
=1 =1

P ZXi - g Wil >a | < ==—+
i—1 i=1

a?

QED.

6.2 The Weak Law of Large Numbers

Let X1, X, ..., X;, be independently and identically distributed (i.i.d) random variables, where
the unknown expected value p is the same for all variables and their variance is finite. Then,

for any € > 0, we have

n—o0

1 n
P —g Xi| —ul >e 0
n
=1

This follows from the corollary above. The proof is as follows:

a

PN X =Y | >a| < ==
=1 =1

- - > i1 V [Xi]
PID Xi-> E[X]|>a < SEL
=1 =1

< Z?:l v [%Xl}

(SR
i:ln ' =1 n ’L B a’2
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Let o’ = ¢, where € is a positive number. Also, note that E [X;] = p and V [X;] = o for all i.

1« 1< L3 o2
PllaXimymze| s 55—
=1 =1
1 — 1 L no?
Pl|— X, — — > < 8
”;1 i | €| < (8)
1 — o2
Pl|— X, — ul > < -
n; i =) = e

As n — oo, the right hand side of the inequality approaches 0. Since the left hand side is a
probability, it must be between 0 and 1 inclusive.

1 n
- P 75 X | —pl>e TH_O°>0 (9)
n
=1

QED.

7 Chernoff Bounds

Let X = X; 4+ X9+ -+ + X,,, where all the X;’s are independent and X; ~ Bernoulli(p;), and
let p=E[X] =", pi. Then, for § >0,

2
P(X —pl >ép) < 26~ 5%5

The bound can also be separated and written as
62u,
P(X > (1+6)p) <e 2% for§ >0
2
P(X < (1=06)u) ge_éTM for1>0>0

7.1 Lemmas

Before proving the two bounds, we must prove the following three lemmas.

7.1.1 Lemmal

Given a random variable Y ~ Bernoulli(p), Vs € R,

E [esy} < eple’=1)
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The proof is as follows:
EY]=px14+(1-p)x0
E |:€SYi| — es><1 X p+ es><0(1 _p)

(10)
=e*xp+(1-p)

=1+p(e’—1)
Note that 1 4+ y < €Y.
E [esy} < ePe D) (11)
QED.

7.1.2 Lemma 2
Let X1, ..., X, be independent random variables, and X = Y | X;. Then, for s € R,

The proof is as follows:

E [GSX} =E :esz?ﬂXi]

— E _65X1+SX2+"'+5X7L:|

=FE _eSXl x e5%2 L% eSX"] (12)

n

=E HeSXi

=1

Note that the expectation of a product of independent random variables is equal to the product
of the expectatino of the random variables.

E [esx} = HE [eSXi] (13)

7.1.3 Lemma 3

Let X1, ..., X;, be independent random variables with Bernoulli distributions, and X = """ | X;
and E[X] = >"", pi = u. Then, for s € R,

E [esx} < ele =D
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The proof falls from Lemma 1 and 2 and is as follows:

n

E [esx} = HE [esxl} < P~ (Lemma 1 & 2)

=1
n
e H 6}71'(83—1)
=1

_ (€ =1) 5 palei=1) 5 s opales=1) (14)
— ep1(e"=1)+pa(e’=1)+-+pn(e’—1)
— (€ =1)(p1+p2+--+pn)
— ele*=Du
QED.
7.2 Proof of Chernoff Bounds
7.2.1 Proof of Upper Bound
The proof for the upper bound of Chernoff Bounds is shown below:
E |:65X:|
P(X >a)= P<e‘9X > esa> < ———= (Markov’s Inequality) (15)
esa
6(6371):“'

= ———— (Lemma 3)
e

We want to choose an s that will minimize the the upper bound. Therefore, we can derive the
right hand side of the equation with respect to s and find the minimum by setting it to zero.

e—1)u
6( ) :e(es—l)u—sa

esa

] (16)
%e(es—l)u—sa _ e(es—l)u—sa (esu o (I) -0

The only term that can be 0 is the e’ — a so set that to zero and solve for s.
e‘n—a=0

T (17)

Let a = (1+0)p.

z (18)
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This is a minimum since for values s < In1+ J, the derivative is below 0, and vice versa for

greater values. So, set s =1In (14 §) for 6 > 0.

e(eln (1+5)_1)u
P(X>(1+0d)p) < ey (e TeEw

O
(14 6)A+0)u

6(s :
N ((1 +5)<1+6>>

By taking the natural logarithm of the expression for the upper bound, we get

1 (60— (146)In(1+9))

Knowing that In (1 4+ z) > 1+IT/27

p(6—(1+0)In(1+94)) §“<5_(1+5)1+55/2>

1+6
—us(1—
“< 1+5/2>

(146/2-1-0
“5( 1+06/2 >

= <_1i/§/2>
62

N i

From equation 21, we can get to the expected upper bound.

1) s 2
c < e for § > 0
ite) | =¢€

P(X > (1+40)p) < ((1+5)

QED.

7.2.2 Proof of Lower Bound

The proof for the lower bound of Chernoff Bounds is shown below:

P(X <a)= p(e—sx > e_sa) B E {:—;X]
el =1
= —— (Lemma 3)

e—sa

Same reasoning for how we want to choose our value for s as the upper bound.

€(e_sfl)/l _ 6(675—1)M+3a
e—sa
d (e*=1)u+sa (e7*=1)p+sa —s
7sC HTst = ¢ ’ (—e p+ a) =0
S
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(Markov’s Inequality)

(19)

(21)

(24)



The only term that can equal 0 is —e™*u + a.

—e *u+a=0
e ‘u=a
s a
e’ =—
I (25)
es = F
a
s=Int
a
Let a = (1—90)pu.
s=1In—"t
(1—0)u (26)
1
—1 — _In(1-
no—s n(l—9)

Set s=—In(1—-¢) for 0 <d < 1.

ele” (0= 1y
P(X<(1-0)u)<
(X <( ) < o (—1n(1-8))(1-8)

e(eln (176)_1)M

T o (1-0)(1-0)u
e oK

C(1—6)=0)m

S\ (1=6)0-9
By taking the natural logarithm of the expression for the lower bound, we get

p(=6—(1—=96)In(1-14)) (28)
Knowing that (1 —0)In(1—0) > —d + % from the Taylor expansion of In (1 — ),

(27)

o (29)
_ Ko
2
From equation 29, we can get to the expected lower bound.
-0 # 2
e _wo”
QED.

7.3 Discussion

Assume an experiment where a fair coin is tossed 200 times. How likely is it to observe at least
150 heads?

In this situation, note that E [X;] = 2 and V [X;] = 1. Each flip is also independent of each
other.
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7.3.1 Markov’s Inequality

E[X]  3i2(0.5)
P(X >150) < = 2=l 6666
(X =2150) < 35 150

7.3.2 Chebyshev’s Inequality

VIX] _ YEVIX] 50

P(]X —100] > 50) < _ 2
( 250) < 5 502 502

= 0.02

7.3.3 Chernoff Bounds
_ 8%
P(X>(1+6p) <e 2
We know (1 + 6)u = 150 and p = 100, so 6 = 0.5.

_(0.5)2(100)
P(X >150) <e 205 = (0.0000453999

7.4 Alternate Form

Let X = X1+ X5+ -+ X, where all the X are independent random variables and a < X; < b

for all 7, and let y = E [X]. Then, for 6 > 0

252,,2

P(X > (1+406)p) <e nt-a?

and
52,2

P(X<(1—-6)p) <e n-a?
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