
COMP 480/580 — Probabilistic Algorithms and Data Structure Jan 22, 2019

Lecture 5

Lecturer: Anshumali Shrivastava Scribe By: Spencer Chang

1 Problem: Memory Constraints

To see why we have a need for bloom filters, consider the problem we saw in the first lecture:
if we have need to make a malicious URL detector but have a memory constraint and cannot
hold a completely accurate mapping in memory, how can we do better? The usual trade-off we
have is that we can do better in space at the cost of computation and accuracy. This problem
can be broken down as follows:
Consider the problem of checking whether a query is malicious with the following circumstances:

• h: strings → [0-999]

• Given 100 queries (average 50 length), we would need a total space of 100 x 50 x 8 =
40000 bits for a complete mapping

• The key question is what can we do with 1000 bits?

2 Solution Approach

Consider a simple solution involving combining a bit map with universal hashing. For example,
let’s try to solve this using a hash function to map the input query into a location in a simple
bit map, where if h(q) = 1 for a particular query, it is malicious. In order to insert a query into
the mapping, we simply hash the query and set it’s corresponding hash location to 1. From
this we can make two observations:

1. This scheme cannot produce false negatives. This is true by virtue of the fact that if a
query is inserted into the bit map, the hash value of that query will always be the same,
and so the corresponding hash location will always be set after the insertion

2. This scheme can produce false positives because query A, a query that has not been
inserted, could happen to hash to the same location as query B, which has already been
inserted in the mapping, which would produce a false result of saying that query A is in
the bit map.

We can quantify the false positive rate as follows, taking N for the number of queries entered
and R for the size of the bitmap: FPrate < 1 − (1 − 1

R)N (assuming complete independence
between the N queries)
Proof:

• 1
R : probability for one bit location being set

• 1− 1
R : probability for bit location not being set

• (1− 1
R)N : probability for bit not being set for all N insertions

5-1



• 1− (1− 1
R)N : probability that bit location is set after all N insertions

Thus, the probability that we have a false positive for a given query, q, after all N insertions
is at most 1− (1− 1

R)N . In the case of n = 100, R = 1000, FPrate <
1
10 . As we can see, a false

positive rate of 10% is not ideal because that means one out of every 10 queries will result in
a incorrect membership check. Like we did in chaining, the way to decrease this error is to use
more hashes. The solution is a Bloom Filter.

3 Bloom Filters

3.1 Basic Idea

A Bloom Filter expands on this simple approach by using the same intuition we did in chaining
by adding more hashes. Bloom Filters solve the problem of an efficient membership query (or
a cache) because caches still work with false positives, since you can incur an extra cost to
actually check if it is positive. The guarantee of no false negatives is really helpful for caching
problems because we want to ensure low memory constraint, fast access, and accuracy. The
idea is as follows:

• Use K different independent hash functions (selecting seeds independently)

• Given query q, if hi(q) = 1∀i, 1 ≤ i ≥ K, return 1, else return 0

3.2 False Positive Rate

In this case, what is the false positive rate?

Pr[1 bit not set | N strings inserted] =
(
1− 1

R

)KN

Pr[1 bit set | N strings inserted] = 1−
(
1− 1

R

)KN

Pr[all k bits set without seeing q | N strings inserted] =
(

1−
(
1− 1

R

)KN
)K

3.3 What problem does this solve?

Bloom filters solve the problem for generic set compression. This is really important when you
have to deal with a set of elements that store a lot of information (strings, complex objects,
etc.). A bloom filter can compress such a set, S, to a lot less memory (10 bits per element) and
answer membership queries efficiently and effectively. They can also be updated dynamically
on the fly if the truth of membership changes in real-time.

3.4 Handling Deletions

Deletions are hard to handle with bloom filters because we can’t simply delete the bits of the
various hash locations associated with the desired query to delete since those locations could
correspond to other queries that were inserted as well.

5-2



3.4.1 Option 1: Two Bloom Filters

1. First bloom filter to keep track of added elements, BF0

2. Second bloom filter to keep track of deleted elements, BFD

Insertion stays the same, but when you want to delete an element, simply set the corresponding
hash bits in BFD. On membership check, first check BF0, and if BF0 returns true, check if
BFD returns false, then return true.
Q: What is the chance of false negatives?
This solution does introduce the possibility of false negatives. Take a query, q, that has actually
been inserted and not deleted. On membership check of q, there is a chance of running into
a false positive with checking for it in BFD (after correctly checking that it is in BF0 because
there is still no chance of false negative for that stage), in which case it would return false for
the membership check, believing that it has been deleted.
Q: What is the chance of false positives?
Compared to our previous analysis of the false positive rate, this solution has a lower chance of
false positives. Take a query, q, that has not been inserted. On membership check of q, there
could be a false positive on checking BF0 but then a following false positive on checking BFD,
which leads to a correct return result of false.

3.4.2 Option 2: Counting Filter

Instead of a simple bit array, the bloom filter maps to a array of counts. On addition, you
increment the associated locations that the object hashes to and decrease them on deletion.
Like the previous solution, this has a chance for both false positives and false negatives.

3.5 Manipulating Bloom Filters

3.5.1 Union of Bloom Filters

Given B1 for set S1 and B2 for set S2 with the same hash function, H, what is the bloom filter
of S1 ∪ S2?

This can be visualized as the OR of B1, B2. Given S1
H−→ B1 and S2

H−→ B2, S1 ∪ S2
H−→ BG,

and BG = B1||B2 because B1 contains the information of whether any element in S1 is present
and the same for B2 and S2. Thus, B1 ∩ B2, will give the results for whether an element is
present in S1 ∪ S2.
Because of this property, bloom filters can be organized in distributed data structures and
aggregated using the OR operation instead of any costly communication for synchronization.

3.5.2 Changing Size

Shrink size? Yes
Use a mod function on the hash to make it map into 1

2 the prior range, and apply an ”OR”
function on the first half with the second half of the original bit map to map it into half the
size.
Double size? No
This would mean you could do this indefinitely and get no error. There is no way to map the
original bit map into double the size since you have not preserved any of the original information
from the insertions.

5-3



3.6 Weaknesses

1. Requires fully independent hash functions

2. The space usage is still 1.44x more than the theoretically best possible for information
storage

3. Dynamically growing size is hard, and the best size depends on the false positive rate and
number of insertions (which you must determine a priori)

5-4


