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Motivating Problem: Stochastic Gradient Descent

θ∗ = arg min
θ

F (θ) = arg min
θ

1

N

N∑
i=1

f (xi , θ) (1)

Standard GD

θt = θt−1 − ηt
1

N

N∑
i=1

∇f (xj , θt−1) (2)

SGD, pick a random xi , and

θt = θt−1 − ηt∇f (xj , θt−1) (3)

SGD Preferred over GD in Large-Scale Optimization.

Slow Convergence per epoch.

Faster Epoch, O(N) times and hence overall faster convergence.

Anshumali Shrivastava (Rice University) COMP 480/580 7th March 2019 2 / 23



Better SGD?
Why SGD Works? (It is Unbiased Estimator)

E(∇f (xj , θt−1)) =
1

N

N∑
i=1

∇f (xi , θt−1). (4)

Are there better estimators? YES!!

Pick xi , with probability proportional to wi

Optimal Variance (Alain et. al. 2015): wi = ||∇f (xi , θt−1)||2
Many works on other Importance Weights (e.g. works by Rachel
Ward)

The Chicken-and-Egg Loop

Maintaining wi , requires O(N) work.
For Least Squares, wi = ||∇f (xi , θt)||2 =

∣∣2(θt · xi − yi )||xi ||2
∣∣,

changes in every iteration.

Can we Break this Chicken-and-Egg Loop? Can we get adaptive
sampling in constant time O(1) per Iterations, similar to cost of

SGD?
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Detour: Probabilistic Hashing
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Probabilistic Fingerprinting (Hashing)
Hashing: Function (Randomized) h that maps a given data object (say
x ∈ RD) to an integer key h : RD 7→ {0, 1, 2, ...,N}. h(x) serves as a
discrete fingerprint.

Locality Sensitive Property:

if x = y Sim(x,y) is high then h(x) = h(y) Pr(h(x) = h(y)) is high.
if x 6= y Sim(x,y) is low then h(x) 6= h(y) Pr(h(x) = h(y)) is low.

Similar points are more likely to have the same hash value (hash collision)
compared to dissimilar points.
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Popular Hashing Scheme 1: SimHash (SRP) 

 

  
𝜃 

hr (x) =

{
1 if rT x ≥ 0

0 otherwise
r ∈ RD ∼ N(0, I)

Prr (hr (x) = hr (y)) = 1− 1

π
cos−1(θ), monotonic in θ (Cosine Similarity)

A classical result from Goemans-Williamson (95)
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Some Popular Measures that are Hashable

Many Popular Measures.

Jaccard Similarity (MinHash)

Cosine Similarity (Simhash and also MinHash if Data is Binary)

Euclidian Distance

Earth Mover Distance, etc.

Recently, Un-normalized Inner Products1

1 With bounded norm assumption.

2 Allowing Asymmetry.

1SL [NIPS 14 (Best Paper), UAI 15, WWW 15], APRS [PODS 16].
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Sub-linear Near-Neighbor Search

Given a query q ∈ RD and a giant collection C of N vectors in RD , search
for p ∈ C s.t.,

p = arg max
x∈C

sim(q, x)

sim is the similarity, like Cosine Similarity, Resemblance, etc.

Worst case O(N) for any query. N is huge.

Querying is a very frequent operation.

Our goal is to find sub-linear query time algorithm.

1 Approximate (or Inexact) answer suffices.

2 We are allowed to pre-process C once. (offline costly step)
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Probabilities Hash Tables

Given: Prh
[
h(x) = h(y)

]
= f (sim(x , y)), f is monotonic.

 

𝒉𝟏 𝒉𝟐 Buckets 
(pointers only) 

00 00  

00 01            

00 10  

… …  

11 11      

𝒉𝟏 

𝒉𝟐 
𝑅𝐷 

𝒉𝟏, 𝒉𝟐: 𝑹𝑫 →   {𝟎, 𝟏, 𝟐, 𝟑} 

Given query q, if h1(q) = 11 and h2(q) = 01, then probe bucket with
index 1101. It is a good bucket !!

(Locality Sensitive) hi (q) = hi (x) noisy indicator of high similarity.

Doing better than random !!
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The Classical LSH Algorithm

 

𝒉𝟏
𝟏 … 𝒉𝑲

𝟏  Buckets  

00 … 00       … 

00 … 01         …   

00 … 10 Empty 

… … … … 

11 … 11  … 

 

Table 1 

We use K concatenation.

Repeat the process L times. (L Independent Hash Tables)

Querying : Probe one bucket from each of L tables. Report union.

1 Two knobs K and L to control.
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Success of LSH

Similarity Search or Related (Reduce n)

Similarity Search or related.

Plenty of Applications.

Similarity Estimation and Embedding (Reduce dimensionality d)

Basically JL (Johnson-Lindenstrauss) or Random Projections does
most of the job!!

Similarity Estimation. (Usually not optimal in Fisher Information
Sense)

Non-Linear SVMs in Learning Linear Time 2.

Result: Won 2012 ACM Paris Kanellakis Theory and Practice Award.

Are there other Fundamental Problems?

2Li et. al. NIPS 2011
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A Step Back

 

𝒉𝟏 𝒉𝟐 Buckets 
(pointers only) 

00 00          … 

00 01            …   

00 10 Empty 

… … … 

11 11     … 

𝒉𝟏 

𝒉𝟐 
𝑅𝐷 

𝒉𝟏, 𝒉𝟐: 𝑹𝑫 →   {𝟎, 𝟏, 𝟐, 𝟑} 

Is LSH really a search algorithm?

Given the query x , LSH samples θy from the dataset, with probability
exactly py = 1− (1− p(x , θy )K )L.

LSH is considered a black box for near-neighbor search. It is not!!

Adaptive Sampling is being converted into an algorithm for high
similarity search.
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New View: Hashing is an Efficient Adaptive Sampling in Disguise.
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Partition Function in Log-Linear Models

P(y |x , θ) =
eθy ·x

Zθ

θy is the weight vector

x is the (current context) feature vector (word2vec).

Zθ =
∑

y∈Y eθy ·x is the partition function

Issues:

Zθ is expensive. |Y | is huge. (billion word2vec)

Change in context x requires to recompute Zθ.

Question: Can we reduce the amortized cost of estimating Zθ?
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Importance Sampling (IS)

Summation by expectation: But sampling yi ∝ eθy ·x is equally harder.

Importance Sampling

Given a normalized proposal distribution g(y) where
∑

y g(y) = 1.

We have an unbiased estimator
E
[
f (y)
g(y)

]
=
∑

y g(y) f (y)
g(y) =

∑
y f (y) = Zθ

Draw N samples yi ∼ g(y) for i = 1 . . .N. we can estimate

Zθ = 1
N sum

N
i=1

f (yi )
g(yi )

.

Yet Another Chicken and Egg Loop:

Does not really work if g(y) is not close to f (y).

Getting g(y) which is efficient and close to f (y) is not known.

No efficient choice in literature. Random sampling or other heuristics.
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Detour: LSH as Samplers

 

𝒉𝟏 𝒉𝟐 Buckets 
(pointers only) 

00 00          … 

00 01            …   

00 10 Empty 

… … … 

11 11     … 

𝒉𝟏 

𝒉𝟐 
𝑅𝐷 

𝒉𝟏, 𝒉𝟐: 𝑹𝑫 →   {𝟎, 𝟏, 𝟐, 𝟑} 

(K , L) parameterized LSH algorithm is an efficient sampling:

Given the query x , LSH samples θy from the dataset, with probability
exactly py = 1− (1− p(x , θy )K )L.

LSH is considered a black box for near-neighbor search. It is not.

Unnormalized Importance Sampling:

It is not normalized
∑

y py 6= 1

Samples are correlated.

It turns out, we can still make them work!
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Beyond IS: The Unbiased LSH Based Estimator
Procedure:

For context x , report all the retrieved yi s from the (K , L)
parameterized LSH Algorithm. (just one NN query)

Report Ẑθ =
∑

i
eθyi ·x

1−(1−p(x ,θyi )K )L

Properties:

E [Ẑθ] = Zθ (Unbiased)

Var [Ẑθ] =
∑
i

f (yi )
2

pi
−

N∑
i=1

f (yi )
2

+
∑
i 6=j

f (yi )f (yj)

pipj
Cov(1[yi∈S] · 1[yj∈S])

Correlations are mostly negative (favorable) with LSH.
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MIPS Hashing is Ideal for Log-Linear Models

Theorem

For any two states y1 and y2:

P(y1|x ; θ) ≥ P(y2|x ; θ) ⇐⇒ p1 ≥ p2

where
pi = 1− (1− p(θyi · x)K )L

P(y |x , θ) ∝ eθy ·x

Corollary

The modes of both the sample and the target distributions are identical.

.
Efficient as well as similar to target (Adaptive).
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How does it works? (PTB and Text8 Datasets)

0 200 400 600 800 1000
#Samples

0

1

2

3

4

5

6

7

8

M
AE

PTB Uniform
LSH
Exact Gumbel
MIPS Gumbel

Running Time:

Samples Uniform LSH Exact Gumbel MIPS Gumbel
50 0.13 0.23 531.37 260.75
400 0.92 1.66 3,962.25 1,946.22
1500 3.41 6.14 1,4686.73 7,253.44
5000 9.69 17.40 42,034.58 20,668.61

Final Perplexity of Language Models

Standard LSH Uniform Exact
Gumbel

MIPS
Gumbel

91.8 98.8 524.3 91.9 Diverged
140.7 162.7 1347.5 152.9
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Back to Adaptive SGD

Why SGD Works? (It is Unbiased Estimator)

E(∇f (xj , θt−1)) =
1

N

N∑
i=1

∇f (xi , θt−1). (5)

Are there better estimators? YES!!

Pick xi , with probability proportional to wi

Optimal Variance (Alain et. al. 2015): wi = ||∇f (xi , θt−1)||2
Many works on Other Importance Weights

Optimal Variance wi

wi = ||∇f (xi , θt−1)||2 = 2
∣∣〈θt ,−1〉 · 〈xi ||xi ||, yi ||xi ||〉

∣∣
Large Inner Product, θt changes, xi ’s remains fixed :)

We wont sample exactly in proportion to wi , but with some w ′i , which
is monotonic in wi .
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The Complete Picture

One time Cost

Preprocess < xi ||xi ||, yi ||xi || > into Inner Product Hash Tables. (Data
Reading Cost)

Per Iteration

Query hash tables with < θt−1,−1 > for sample xi . (1-2 Hash
Lookups)

Estimate Gradient as ∇f (xi ,θt−1)
N×SamplingProbability

Can show: Unbiased and better variance than SGD.

Per iterations cost is 1.5 times that of SGD, but superior variance.
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How it works?
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Conclusion

Hashing can change the equation!!
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