Importance Sampling via Locality Sensitive Hashing.

ง R \sec

Rice University
Anshumali Shrivastava
anshumali@rice.edu
$7^{\text {th }}$ March 2019

Motivating Problem: Stochastic Gradient Descent

$$
\begin{equation*}
\theta^{*}=\arg \min _{\theta} F(\theta)=\arg \min _{\theta} \frac{1}{N} \sum_{i=1}^{N} f\left(x_{i}, \theta\right) \tag{1}
\end{equation*}
$$

Standard GD

$$
\begin{equation*}
\theta_{t}=\theta_{t-1}-\eta^{t} \frac{1}{N} \sum_{i=1}^{N} \nabla f\left(x_{j}, \theta_{t-1}\right) \tag{2}
\end{equation*}
$$

SGD, pick a random x_{i}, and

$$
\begin{equation*}
\theta_{t}=\theta_{t-1}-\eta^{t} \nabla f\left(x_{j}, \theta_{t-1}\right) \tag{3}
\end{equation*}
$$

SGD Preferred over GD in Large-Scale Optimization.

- Slow Convergence per epoch.
- Faster Epoch, $\mathrm{O}(\mathrm{N})$ times and hence overall faster convergence.

Better SGD?

Why SGD Works? (It is Unbiased Estimator)

$$
\begin{equation*}
\mathbb{E}\left(\nabla f\left(x_{j}, \theta_{t-1}\right)\right)=\frac{1}{N} \sum_{i=1}^{N} \nabla f\left(x_{i}, \theta_{t-1}\right) \tag{4}
\end{equation*}
$$

Are there better estimators? YES!!

- Pick x_{i}, with probability proportional to w_{i}
- Optimal Variance (Alain et. al. 2015): $w_{i}=\left\|\nabla f\left(x_{i}, \theta_{t-1}\right)\right\|_{2}$
- Many works on other Importance Weights (e.g. works by Rachel Ward)

The Chicken-and-Egg Loop

- Maintaining w_{i}, requires $O(N)$ work.
- For Least Squares, $w_{i}=\left\|\nabla f\left(x_{i}, \theta_{t}\right)\right\|_{2}=\left|2\left(\theta_{t} \cdot x_{i}-y_{i}\right)\left\|x_{i}\right\|_{2}\right|$, changes in every iteration.

Better SGD?

Why SGD Works? (It is Unbiased Estimator)

$$
\begin{equation*}
\mathbb{E}\left(\nabla f\left(x_{j}, \theta_{t-1}\right)\right)=\frac{1}{N} \sum_{i=1}^{N} \nabla f\left(x_{i}, \theta_{t-1}\right) \tag{4}
\end{equation*}
$$

Are there better estimators? YES!!

- Pick x_{i}, with probability proportional to w_{i}
- Optimal Variance (Alain et. al. 2015): $w_{i}=\left\|\nabla f\left(x_{i}, \theta_{t-1}\right)\right\|_{2}$
- Many works on other Importance Weights (e.g. works by Rachel Ward)

The Chicken-and-Egg Loop

- Maintaining w_{i}, requires $O(N)$ work.
- For Least Squares, $w_{i}=\left\|\nabla f\left(x_{i}, \theta_{t}\right)\right\|_{2}=\left|2\left(\theta_{t} \cdot x_{i}-y_{i}\right)\left\|x_{i}\right\|_{2}\right|$, changes in every iteration.

Can we Break this Chicken-and-Egg Loop? Can we get adaptive sampling in constant time $\mathbf{O}(1)$ per Iterations, similar to cost of

Detour: Probabilistic Hashing

Probabilistic Fingerprinting (Hashing)
 Hashing: Function (Randomized) h that maps a given data object (say $x \in \mathbb{R}^{D}$) to an integer key $h: \mathbb{R}^{D} \mapsto\{0,1,2, \ldots, N\} . h(x)$ serves as a discrete fingerprint.

Probabilistic Fingerprinting (Hashing)

Hashing: Function (Randomized) h that maps a given data object (say $x \in \mathbb{R}^{D}$) to an integer key $h: \mathbb{R}^{D} \mapsto\{0,1,2, \ldots, N\}$. $h(x)$ serves as a discrete fingerprint.

Locality Sensitive Property:

- if $*=y \operatorname{Sim}(x, y)$ is high then $h(x)=h(y) \operatorname{Pr}(h(x)=h(y))$ is high.
- if $x \neq y \operatorname{Sim}(x, y)$ is low then $h(x) \neq h(y) \operatorname{Pr}(h(x)=h(y))$ is low.

Similar points are more likely to have the same hash value (hash collision) compared to dissimilar points.

Likely

Popular Hashing Scheme 1: SimHash (SRP)

$$
h_{r}(x)= \begin{cases}1 & \text { if } r^{T} x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

$$
r \in \mathbb{R}^{D} \sim N(0, \mathcal{I})
$$

$\operatorname{Pr}_{r}\left(h_{r}(x)=h_{r}(y)\right)=1-\frac{1}{\pi} \cos ^{-1}(\theta), \quad$ monotonic in θ (Cosine Similarity)
A classical result from Goemans-Williamson (95)

Popular Hashing Scheme 1: SimHash (SRP)

$$
h_{r}(x)=\left\{\begin{array}{ll}
1 & \text { if } r^{T} x \geq 0 \\
0 & \text { otherwise }
\end{array} \quad r \in \mathbb{R}^{D} \sim N(0, \mathcal{I})\right.
$$

$\operatorname{Pr}_{r}\left(h_{r}(x)=h_{r}(y)\right)=1-\frac{1}{\pi} \cos ^{-1}(\theta), \quad$ monotonic in θ (Cosine Similarity)
A classical result from Goemans-Williamson (95)

Some Popular Measures that are Hashable

Many Popular Measures.

- Jaccard Similarity (MinHash)
- Cosine Similarity (Simhash and also MinHash if Data is Binary)
- Euclidian Distance
- Earth Mover Distance, etc.

Recently, Un-normalized Inner Products ${ }^{1}$
(1) With bounded norm assumption.
(2) Allowing Asymmetry.

Sub-linear Near-Neighbor Search

Given a query $q \in \mathbb{R}^{D}$ and a giant collection \mathcal{C} of N vectors in \mathbb{R}^{D}, search for $p \in \mathcal{C}$ s.t.,

$$
p=\arg \max _{x \in \mathcal{C}} \operatorname{sim}(q, x)
$$

- sim is the similarity, like Cosine Similarity, Resemblance, etc.
- Worst case $O(N)$ for any query. N is huge.
- Querying is a very frequent operation.

Sub-linear Near-Neighbor Search

Given a query $q \in \mathbb{R}^{D}$ and a giant collection \mathcal{C} of N vectors in \mathbb{R}^{D}, search for $p \in \mathcal{C}$ s.t.,

$$
p=\arg \max _{x \in \mathcal{C}} \operatorname{sim}(q, x)
$$

- sim is the similarity, like Cosine Similarity, Resemblance, etc.
- Worst case $O(N)$ for any query. N is huge.
- Querying is a very frequent operation.

Our goal is to find sub-linear query time algorithm.
(1) Approximate (or Inexact) answer suffices.
(2) We are allowed to pre-process \mathcal{C} once. (offline costly step)

Probabilities Hash Tables

Given: $\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y)), \mathrm{f}$ is monotonic.

Probabilities Hash Tables

Given: $\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y)), \mathrm{f}$ is monotonic.

Probabilities Hash Tables

Given: $\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y)), \mathrm{f}$ is monotonic.

Probabilities Hash Tables

Given: $\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y)), \mathrm{f}$ is monotonic.

- Given query q, if $h_{1}(q)=11$ and $h_{2}(q)=01$, then probe bucket with index 1101. It is a good bucket !!

Probabilities Hash Tables

Given: $\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y)), \mathrm{f}$ is monotonic.

- Given query q, if $h_{1}(q)=11$ and $h_{2}(q)=01$, then probe bucket with index 1101. It is a good bucket !!
- (Locality Sensitive) $h_{i}(q)=h_{i}(x)$ noisy indicator of high similarity.
- Doing better than random!!

The Classical LSH Algorithm

Table 1

h_{1}^{1}	\cdots	h_{K}^{1}	Buckets
$\mathbf{0 0}$	\cdots	$\mathbf{0 0}$	\cdots
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$0 \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	Empty
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	\cdots

- We use K concatenation.

The Classical LSH Algorithm

Table 1

h_{1}^{1}	\cdots	h_{K}^{1}	Buckets
$\mathbf{0 0}$	\cdots	$\mathbf{0 0}$	\cdots
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$0 \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	Empty
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	\cdots

Table L

h_{1}^{L}	\cdots	h_{K}^{L}	Buckets
$\mathbf{0 0}$	\cdots	$\mathbf{0 0}$	$\bullet \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$\bullet \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	0
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	Empty

- We use K concatenation.
- Repeat the process L times. (L Independent Hash Tables)

The Classical LSH Algorithm

Table 1

h_{1}^{1}	\cdots	h_{K}^{1}	Buckets
$\mathbf{0 0}$	\cdots	$\mathbf{0 0}$	\cdots
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$0 \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	Empty
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	\cdots

Table L

h_{1}^{L}	\cdots	h_{K}^{L}	Buckets
$\mathbf{0 0}$	\cdots	$\mathbf{0 0}$	$\bullet \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$\bullet \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	0
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	Empty

- We use K concatenation.
- Repeat the process L times. (L Independent Hash Tables)
- Querying : Probe one bucket from each of L tables. Report union.

The Classical LSH Algorithm

Table 1

h_{1}^{1}	\cdots	h_{K}^{1}	Buckets
$\mathbf{0 0}$	\cdots	$\mathbf{0 0}$	\cdots
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$0 \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	Empty
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	\cdots

Table L

h_{1}^{L}	\cdots	h_{K}^{L}	Buckets
$\mathbf{0 0}$	\cdots	$\mathbf{0 0}$	$\bullet \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$\bullet \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	0
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	Empty

- We use K concatenation.
- Repeat the process L times. (L Independent Hash Tables)
- Querying : Probe one bucket from each of L tables. Report union.
(1) Two knobs K and L to control.

Success of LSH

Similarity Search or Related (Reduce n)

- Similarity Search or related.
- Plenty of Applications.

[^0]
Success of LSH

Similarity Search or Related (Reduce n)

- Similarity Search or related.
- Plenty of Applications.

Similarity Estimation and Embedding (Reduce dimensionality d)

- Basically JL (Johnson-Lindenstrauss) or Random Projections does most of the job!!
- Similarity Estimation. (Usually not optimal in Fisher Information Sense)
- Non-Linear SVMs in Learning Linear Time ${ }^{2}$.

Result: Won 2012 ACM Paris Kanellakis Theory and Practice Award.

[^1]
Success of LSH

Similarity Search or Related (Reduce n)

- Similarity Search or related.
- Plenty of Applications.

Similarity Estimation and Embedding (Reduce dimensionality d)

- Basically JL (Johnson-Lindenstrauss) or Random Projections does most of the job!!
- Similarity Estimation. (Usually not optimal in Fisher Information Sense)
- Non-Linear SVMs in Learning Linear Time ${ }^{2}$.

Result: Won 2012 ACM Paris Kanellakis Theory and Practice Award.
Are there other Fundamental Problems?
${ }^{2}$ Li et. al. NIPS 2011

A Step Back

Is LSH really a search algorithm?

- Given the query x, LSH samples θ_{y} from the dataset, with probability exactly $p_{y}=1-\left(1-p\left(x, \theta_{y}\right)^{K}\right)^{L}$.
- LSH is considered a black box for near-neighbor search. It is not!!
- Adaptive Sampling is being converted into an algorithm for high similarity search.

New View: Hashing is an Efficient Adaptive Sampling in Disguise.

Partition Function in Log-Linear Models

$$
P(y \mid x, \theta)=\frac{e^{\theta_{y} \cdot x}}{Z_{\theta}}
$$

- θ_{y} is the weight vector
- x is the (current context) feature vector (word2vec).
- $Z_{\theta}=\sum_{y \in Y} e^{\theta_{y} \cdot x}$ is the partition function

Issues:

- Z_{θ} is expensive. $|Y|$ is huge. (billion word2vec)
- Change in context x requires to recompute Z_{θ}.

Question: Can we reduce the amortized cost of estimating Z_{θ} ?

Importance Sampling (IS)

Summation by expectation: But sampling $y_{i} \propto e^{\theta_{y} \cdot x}$ is equally harder.

Importance Sampling

- Given a normalized proposal distribution $g(y)$ where $\sum_{y} g(y)=1$.
- We have an unbiased estimator

$$
\mathbb{E}\left[\frac{f(y)}{g(y)}\right]=\sum_{y} g(y) \frac{f(y)}{g(y)}=\sum_{y} f(y)=Z_{\theta}
$$

- Draw N samples $y_{i} \sim g(y)$ for $i=1 \ldots N$. we can estimate $Z_{\theta}=\frac{1}{N} \operatorname{sum}_{i=1}^{N} \frac{f\left(y_{i}\right)}{g\left(y_{i}\right)}$.

Yet Another Chicken and Egg Loop:

- Does not really work if $g(y)$ is not close to $f(y)$.
- Getting $g(y)$ which is efficient and close to $f(y)$ is not known.
- No efficient choice in literature. Random sampling or other heuristics.

Detour: LSH as Samplers

(K, L) parameterized LSH algorithm is an efficient sampling:

- Given the query x, LSH samples θ_{y} from the dataset, with probability exactly $p_{y}=1-\left(1-p\left(x, \theta_{y}\right)^{K}\right)^{L}$.
- LSH is considered a black box for near-neighbor search. It is not.

Detour: LSH as Samplers

(K, L) parameterized LSH algorithm is an efficient sampling:

- Given the query x, LSH samples θ_{y} from the dataset, with probability exactly $p_{y}=1-\left(1-p\left(x, \theta_{y}\right)^{K}\right)^{L}$.
- LSH is considered a black box for near-neighbor search. It is not.

Unnormalized Importance Sampling:

- It is not normalized $\sum_{y} p_{y} \neq 1$
- Samples are correlated.

It turns out, we can still make them work!

Beyond IS: The Unbiased LSH Based Estimator

Procedure:

- For context x, report all the retrieved y_{i} s from the (K, L) parameterized LSH Algorithm. (just one NN query)
- Report $\hat{Z}_{\theta}=\sum_{i} \frac{e^{\theta_{y_{i}} \cdot x}}{1-\left(1-p\left(x, \theta_{y_{i}}\right)^{K}\right)^{L}}$

Properties:

- $E\left[\hat{Z}_{\theta}\right]=Z_{\theta}$ (Unbiased)

$$
\begin{aligned}
\operatorname{Var}\left[\hat{Z}_{\theta}\right] & =\sum_{i} \frac{f\left(y_{i}\right)^{2}}{p_{i}}-\sum_{i=1}^{N} f\left(y_{i}\right)^{2} \\
& +\sum_{i \neq j} \frac{f\left(y_{i}\right) f\left(y_{j}\right)}{p_{i} p_{j}} \operatorname{Cov}\left(\mathbf{1}_{\left[y_{i} \in S\right]} \cdot \mathbf{1}_{\left[y_{j} \in S\right]}\right)
\end{aligned}
$$

- Correlations are mostly negative (favorable) with LSH.

MIPS Hashing is Ideal for Log-Linear Models

Theorem

For any two states y_{1} and y_{2} :

$$
P\left(y_{1} \mid x ; \theta\right) \geq P\left(y_{2} \mid x ; \theta\right) \Longleftrightarrow p_{1} \geq p_{2}
$$

where

$$
\begin{gathered}
p_{i}= \\
1-\left(1-p\left(\theta_{y_{i}} \cdot x\right)^{K}\right)^{L} \\
P(y \mid x, \theta) \propto e^{\theta_{y} \cdot x}
\end{gathered}
$$

Corollary

The modes of both the sample and the target distributions are identical.

Efficient as well as similar to target (Adaptive).

How does it works? (PTB and Text8 Datasets)

Running Time:

Samples	Uniform	LSH	Exact Gumbel	MIPS Gumbel
50	0.13	0.23	531.37	260.75
400	0.92	1.66	$3,962.25$	$1,946.22$
1500	3.41	6.14	$1,4686.73$	$7,253.44$
5000	9.69	17.40	$42,034.58$	$20,668.61$

Final Perplexity of Language Models

Standard	LSH	Uniform	Exact Gumbel	MIPS Gumbel
91.8	98.8	524.3	91.9	Diverged
140.7	162.7	1347.5	152.9	

Back to Adaptive SGD

Why SGD Works? (It is Unbiased Estimator)

$$
\begin{equation*}
\mathbb{E}\left(\nabla f\left(x_{j}, \theta_{t-1}\right)\right)=\frac{1}{N} \sum_{i=1}^{N} \nabla f\left(x_{i}, \theta_{t-1}\right) \tag{5}
\end{equation*}
$$

Are there better estimators? YES!!

- Pick x_{i}, with probability proportional to w_{i}
- Optimal Variance (Alain et. al. 2015): $w_{i}=\left\|\nabla f\left(x_{i}, \theta_{t-1}\right)\right\|_{2}$
- Many works on Other Importance Weights

Optimal Variance w_{i}

- $\left.w_{i}=\left\|\nabla f\left(x_{i}, \theta_{t-1}\right)\right\|_{2}=2\left|\left\langle\theta_{t},-1\right\rangle \cdot\left\langle x_{i}\left\|x_{i}\right\|, y_{i}\right|\right| x_{i}| |\right\rangle \mid$
- Large Inner Product, θ_{t} changes, x_{i} 's remains fixed :)
- We wont sample exactly in proportion to w_{i}, but with some w_{i}^{\prime}, which is monotonic in w_{i}.

The Complete Picture

One time Cost

- Preprocess $<x_{i}\left\|x_{i}\right\|, y_{i}\left\|x_{i}\right\|>$ into Inner Product Hash Tables. (Data Reading Cost)

Per Iteration

- Query hash tables with $<\theta_{t-1},-1>$ for sample x_{i}. (1-2 Hash Lookups)
- Estimate Gradient as $\frac{\nabla f\left(x_{i}, \theta_{t-1}\right)}{N \times \text { SamplingProbability }}$
- Can show: Unbiased and better variance than SGD.

The Complete Picture

One time Cost

- Preprocess $<x_{i}\left\|x_{i}\right\|, y_{i}\left\|x_{i}\right\|>$ into Inner Product Hash Tables. (Data Reading Cost)

Per Iteration

- Query hash tables with $<\theta_{t-1},-1>$ for sample x_{i}. (1-2 Hash Lookups)
- Estimate Gradient as $\frac{\nabla f\left(x_{i}, \theta_{t-1}\right)}{N \times \text { SamplingProbability }}$
- Can show: Unbiased and better variance than SGD.

Per iterations cost is 1.5 times that of SGD, but superior variance.

How it works?

Conclusion

Hashing can change the equation!!

[^0]: ${ }^{2}$ Li et. al. NIPS 2011

[^1]: ${ }^{2}$ Li et. al. NIPS 2011

