
COMP 480/580 — Probabilistic Algorithms and Data Structure Jan 28, 2020

Lecture 5

Lecturer: Anshumali Shrivastava Scribe By: Takahiro Mollenkamp

1 Separate Chaining

Separate chaining is a way of hashing so that each hash table entry points to a linked list of
all the items that hash to that entry. Expected chain length is 1 + m−1

n . The load factor α is
m−1
n . Expected addition and search time is 1 + α but the worst case is m.

Now, we do a probabilistic analysis to improve search time.

Theorem: In the special case m = n, with p = 1− 1
n , longest list is O(ln(n)

ln(ln(n)))

Proof: Let Xi,j = 1 if key i in hash slot j, 0 otherwise. Then, p(Xi,k) = 1
n . Assuming a lot of

independence, probability that a slot j receives > k keys is(
n

k

)
1

mk
=

(
n

k

)
1

mk
<

1

k!

.

Choosing k = 3 ln(k)
ln(ln(k)) , k! > n2 so 1/k! < 1/n2. Thus, the probability that any n slots receives

> k keys is < 1/n

If we use two hash functions and choose to insert at the location with shorter chain, with the
condition m = n and with probability 1 - 1/n, the longest chain is O(log(log(n))

2 Linear Probing

Linear probing is a hashing scheme where collisions are resolved by continuing to hash cells
h(k)+1, h(k)+2 until an empty cell if cell h(k) is occupied during insertions and searches. In
practice, linear probing is one of the fastest since it has a low memory overhead and an excellent
locality in collisions.

Analysis: assume load factor α = 1/3. Let a region R of size m denote a consecutive set of m
locations. An element hashes to R if h(q) ∈ R.

E(number of hashes in R of size 2s) = 1
32s

A region is overloaded if at least 2
32s elements hash to R.

Theorem: p[element q ends up between 2s and 2s+1 from h(q)] is bounded by

c * p[region of size 2S centered on h(q) is overloaded]

for some constant c.

Proof: https://arxiv.org/abs/1509.04549

5-1

https://arxiv.org/abs/1509.04549

E[lookup time] ≤ O(1)

log(n)∑
s=1

2sp[q is between 2sand2s+1slots from h(q)]

= O(1)Σ
log(n)
s=1 c ∗ p[region of size 2s centered at h(q) is overloaded]

Let Bs represent the number of keys that hash into a block of size 2s centered on h(q).

E(Bs) = 1
32s so

E(lookup time) = O(1)

log(n)∑
s=1

2s ∗ P [Bs ≥ 2 ∗ E(Bs)]

.

Using Markov’s inequality, P [BS ≥ 2 ∗ E(BS)] ≤ 1/2. As a result,

E(lookup time) = O(1)

log(n)∑
S=1

2S−1, which is O(n).

Now, we aim to bound the variance so that we can use Chebyshev’s inequality. Define Xi = 1
if i-th element maps to region R of size 2m, Xi = 0 otherwise.

E(Xi) = 2s/N ;E(Bs) = E(ΣXi) = 2s/3

V ar[BS] = E[B2
S]− (E[BS])2

E[(
∑

Xi)
2] = E[

∑
X2

i +
∑

XiXj]

=
∑

E[Xi] +
∑

E[Xi] ∗ E[Xj] assuming independence

Since
∑
E[Xi]E[Xj] < E[BS]2, V ar[Bs] ≤ E[Bs]

Using this result, we use Chebyshev’s inequality, letting a = E[Bs]. Then,

P [|Bs − E[Bs]| ≥ E[Bs] ≤
V ar[Bs]

(E[Bs]2)

≤ 1

(E[Bs])

≤ 3 ∗ 2−s

Finally,

E(lookup time) = O(1)

log(n)∑
s=1

2s ∗ P [Bs ≥ 2 ∗ E(Bs)]

= O(1)

log(n)∑
S=1

1

= O(log(n))

5-2

3 Cuckoo Hashing

Cuckoo hashing utilizes two hash tables and corresponding two hash functions to achieve worst
case O(1) lookup time. When a new key is inserted, if one of two cells corresponding to each
hash function’s result is open, the new key goes there. Other wise, we replace the occupying
key with new key and move the displaced key to its other hashed cell, continuing the pattern
if necessary.

This pattern has the potential of infinite loop if a displaced key eventually displaces a key that
was inserted earlier. However, we only need to check two cells for our item so it has a O(1)
search time.

In practice, it is 20-30% slower than linear probing.

5-3

	Separate Chaining
	Linear Probing
	Cuckoo Hashing

