Introduction to Stream Computing and Reservoir Sampling

COMP 480/580

February 6, 2020

Data Streams

- Data that are continuously generated by many sources at very fast rates
- Examples:
- Google queries
- Twitter feeds
- Financial markets
- Internet traffic
- We do not have complete information (e.g., size) on the entire dataset
- Convenient to think about data as infinite
- Question: "How do you make critical calculations about the stream using limited amount of memory?"

Applications

- Mining query streams
- Google wants to know what queries are more frequent today than yesterday
- Mining click streams
- Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour
- Mining social network news feeds
- E.g., look for trending topics on Twitter, Facebook, etc.

Applications (cont'd)

- Sensor networks
- Many sensors feeding into a central controller
- Telephone call records
- Data feeds into customer bills as well as settlements between telephone companies
- IP packets monitored at a switch
- Gather information for optimal routing
- Detect denial-of-service attacks

One Pass Model

- Given a data stream $\mathcal{D}=x_{1}, x_{2}, x_{3} \ldots$
- At time t, we observe x_{t}
- For analysis, observed $\mathcal{D}_{t}=x_{1}, x_{2}, \ldots, x_{t}$ so far (don't know how many points we will observe in advance)
- We have a limited memory budget, i.e., $\ll t$
- Task: at any point of time t, compute some function of D_{t} (i.e., $f\left(\mathcal{D}_{t}\right)$)
- What is an approach to approximating $f\left(\mathcal{D}_{t}\right)$), given x_{t}, x_{t-1}, \ldots ?

Basic Question

- If we can get a representative sample of the data stream, then we can do analysis on it
- How to sample a stream?
- Sampling is ...?

Sampling (example 1)

- Suppose we have seen x_{1}, \ldots, x_{1000}
- Memory can only store sample size of 100
- Task: sample 10% of the stream
- How?

Sampling (example 1)

- Suppose we have seen x_{1}, \ldots, x_{1000}
- Memory can only store sample size of 100
- Task: sample 10% of the stream
- How?
- Take every 10 th element
- $q \sim\{1,2, \ldots, 10\}$, take every $q+1$ element
- Issues?

Sampling (example 2)

- Dataset:
- \# of unique elements $=U$
- \# of (pairwise) duplicate elements $=2 D$
- total \# of elements: $N=U+2 D$
- Fraction of duplicates: $\alpha=\frac{2 D}{U+2 D}$
- Take 10% sample and estimate α
- Questions:
- What is the probability that a pair of duplicate items is in the sample?
- What happens to the estimation?

Sampling From Stream

Task: sample s elements from a stream; at element x_{t}, we want:

- Every element was sampled with probability $\frac{s}{t}$
- We have s number of samples

Can this be accomplished? If yes, then how?
Let us think through this...

Reservoir Sampling

- Sample size s
- Algorithm:
- observe x_{t} from stream
- if $t<s$, then add x_{t} to reservoir
- else with probability $\frac{s}{t}$:
uniformly select an element from reservoir and replace it with x_{t}
- Claim: at any time t, any element in $x_{1}, x_{2}, \ldots, x_{t}$ has exactly $\frac{s}{t}$ chance of being sampled

Reservoir Sampling - Proof by Induction

- Inductive hypothesis: after observing t elements, each element in the reservoir was sampled with probability $\frac{s}{t}$
- Base case: first t elements in the reservoir was sampled with probability $\frac{s}{t}=1$
- Inductive step: element x_{t+1} arrives ...

Weighted Reservoir Sampling

- Each element x_{i} has a weight $w_{i}>0$
- Task: sample elements from the stream, such that:
- at time t, every element x_{i} was sampled with probability

$$
\frac{w_{i}}{\sum_{i} w_{i}}
$$

- have s elements
- Reservoir sampling is special case $\left(w_{i}=1\right)$

Weighted Reservoir Sampling

- Solution by (Pavlos S. Efraimidis and Paul G. Spirakis, 2006)
- Observe x_{i}
- Sample $r_{i} \sim \mathcal{U}(0,1)$
- Set score $\sigma_{i}=r_{i}^{\frac{1}{w_{i}}}$
- Keep elements $\left(x_{i}, \sigma_{i}\right)$ with with highest s scores as sample

Weighted Reservoir Sampling

- Implementation considerations:
- Use heap to maintain top scores $\left(x_{i}, \sigma_{i}\right) ; \mathcal{O}(\log (s))$ time complexity
- $\sigma_{i} \in(0,1) \Rightarrow$ top scores get closer to 1 , which becomes hard to distinguish

Weighted Reservoir Sampling

- Lemma: Let U_{1} and U_{2} be independent random variables with uniform distributions in $[0,1]$. If $X_{1}=\left(U_{1}\right)^{1 / w_{1}}$ and $X_{2}=\left(U_{2}\right)^{1 / w_{2}}$, for $w_{1}, w_{2}>0$, then

$$
\operatorname{Pr}\left[X_{1} \leq X_{2}\right]=\frac{w_{2}}{w_{1}+w_{2}}
$$

- Partial proof:

$$
\begin{aligned}
\operatorname{Pr}\left[X_{1} \leq X_{2}\right] & =\operatorname{Pr}\left[\left(U_{1}\right)^{1 / w_{1}} \leq\left(U_{2}\right)^{1 / w_{2}}\right] \\
& =\operatorname{Pr}\left[\left(U_{1}\right) \leq\left(U_{2}\right)^{w_{1} / w_{2}}\right] \\
& =\int_{U_{2}=0}^{1} \int_{U_{1}=0}^{U_{2}^{w_{1} / w_{2}}} d U_{1} d U_{2}=\ldots=\frac{w_{2}}{w_{1}+w_{2}}
\end{aligned}
$$

