### Introduction to Stream Computing and Reservoir Sampling

COMP 480/580



February 6, 2020

### Data Streams

- Data that are *continuously* generated by many sources at very *fast* rates
- Examples:
  - Google queries
  - Twitter feeds
  - Financial markets
  - Internet traffic
- We do not have complete information (e.g., size) on the entire dataset
- Convenient to think about data as infinite
- Question: "How do you make critical calculations about the stream using limited amount of memory?"

## **Applications**

- Mining query streams
  - Google wants to know what queries are more frequent today than yesterday
- Mining click streams
  - Yahoo wants to know which of its pages are getting an unusual number of hits in the past hour
- Mining social network news feeds
  - E.g., look for trending topics on Twitter, Facebook, etc.

## Applications (cont'd)

- Sensor networks
  - Many sensors feeding into a central controller
- Telephone call records
  - Data feeds into customer bills as well as settlements between telephone companies
- IP packets monitored at a switch
  - Gather information for optimal routing
  - Detect denial-of-service attacks

#### **One Pass Model**

- Given a data stream  $\mathcal{D} = x_1, x_2, x_3 \dots$
- At time t, we observe  $x_t$
- ▶ For analysis, observed D<sub>t</sub> = x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>t</sub> so far (don't know how many points we will observe in advance)
- $\blacktriangleright$  We have a limited memory budget, i.e.,  $\ll t$
- ► Task: at any point of time t, compute some function of D<sub>t</sub> (i.e., f(D<sub>t</sub>))
- What is an approach to approximating  $f(\mathcal{D}_t)$ ), given  $x_t, x_{t-1}, \ldots$ ?

### **Basic Question**

- If we can get a representative sample of the data stream, then we can do analysis on it
- How to sample a stream?
- Sampling is ...?

# Sampling (example 1)

Suppose we have seen  $x_1, \ldots, x_{1000}$ 

- $\blacktriangleright$  Memory can only store sample size of 100
- ► Task: sample 10% of the stream
- ► How?

# Sampling (example 1)

Suppose we have seen  $x_1, \ldots, x_{1000}$ 

- Memory can only store sample size of 100
- ▶ Task: sample 10% of the stream
- ► How?
  - ► Take every 10th element
  - $q \sim \{1, 2, \dots, 10\}$ , take every q+1 element

Issues?

# Sampling (example 2)

- Dataset:
  - # of unique elements = U
  - # of (pairwise) duplicate elements = 2D
  - total # of elements: N = U + 2D
- Fraction of duplicates:  $\alpha = \frac{2D}{U+2D}$
- $\blacktriangleright$  Take 10% sample and estimate  $\alpha$
- Questions:
  - What is the probability that a pair of duplicate items is in the sample?
  - What happens to the estimation?

## Sampling From Stream

Task: sample s elements from a stream; at element  $x_t$ , we want:

• Every element was sampled with probability 
$$\frac{s}{t}$$

We have s number of samples

Can this be accomplished? If yes, then how?

Let us think through this ....

### **Reservoir Sampling**

- Sample size s
- Algorithm:
  - observe  $x_t$  from stream
  - if t < s, then add  $x_t$  to reservoir
  - else with probability  $\frac{s}{t}$ :

uniformly select an element from reservoir and replace it with  $\boldsymbol{x}_t$ 

• Claim: at any time t, any element in  $x_1, x_2, \ldots, x_t$  has exactly  $\frac{s}{t}$  chance of being sampled

### **Reservoir Sampling - Proof by Induction**

- Inductive hypothesis: after observing t elements, each element in the reservoir was sampled with probability  $\frac{s}{t}$
- ▶ Base case: first t elements in the reservoir was sampled with probability  $\frac{s}{t} = 1$
- Inductive step: element  $x_{t+1}$  arrives ...

work on the board...

- Each element  $x_i$  has a weight  $w_i > 0$
- ► Task: sample elements from the stream, such that:
  - $\blacktriangleright$  at time t, every element  $x_i$  was sampled with probability

$$\frac{w_i}{\sum_i w_i}$$

- $\blacktriangleright$  have s elements
- Reservoir sampling is special case  $(w_i = 1)$

- Solution by (Pavlos S. Efraimidis and Paul G. Spirakis, 2006)
  - Observe  $x_i$
  - Sample  $r_i \sim \mathcal{U}(0,1)$

• Set score 
$$\sigma_i = r_i^{\frac{1}{w_i}}$$

• Keep elements  $(x_i, \sigma_i)$  with with highest s scores as sample

- Implementation considerations:
  - ▶ Use heap to maintain top scores  $(x_i, \sigma_i)$ ;  $\mathcal{O}(\log(s))$  time complexity
  - $\blacktriangleright \ \sigma_i \in (0,1) \Rightarrow$  top scores get closer to 1, which becomes hard to distinguish

▶ Lemma: Let  $U_1$  and  $U_2$  be independent random variables with uniform distributions in [0, 1]. If  $X_1 = (U_1)^{1/w_1}$  and  $X_2 = (U_2)^{1/w_2}$ , for  $w_1, w_2 > 0$ , then

$$\Pr[X_1 \le X_2] = \frac{w_2}{w_1 + w_2}$$

Partial proof:

$$\begin{aligned} \Pr[X_1 \le X_2] &= \Pr[(U_1)^{1/w_1} \le (U_2)^{1/w_2}] \\ &= \Pr[(U_1) \le (U_2)^{w_1/w_2}] \\ &= \int_{U_2=0}^1 \int_{U_1=0}^{U_2^{w_1/w_2}} dU_1 dU_2 = \ldots = \frac{w_2}{w_1 + w_2} \end{aligned}$$