
Introduction to Stream Computing
and Reservoir Sampling

COMP 480/580

February 6, 2020



Data Streams

I Data that are continuously generated by many sources at very
fast rates

I Examples:

I Google queries

I Twitter feeds

I Financial markets

I Internet traffic

I We do not have complete information (e.g., size) on the entire
dataset

I Convenient to think about data as infinite

I Question: “How do you make critical calculations about the
stream using limited amount of memory?”



Applications

I Mining query streams

I Google wants to know what queries are more frequent today
than yesterday

I Mining click streams

I Yahoo wants to know which of its pages are getting an unusual
number of hits in the past hour

I Mining social network news feeds

I E.g., look for trending topics on Twitter, Facebook, etc.

From http://www.mmds.org



Applications (cont’d)

I Sensor networks

I Many sensors feeding into a central controller

I Telephone call records

I Data feeds into customer bills as well as settlements between
telephone companies

I IP packets monitored at a switch

I Gather information for optimal routing

I Detect denial-of-service attacks

From http://www.mmds.org



One Pass Model

I Given a data stream D = x1, x2, x3 . . .

I At time t, we observe xt

I For analysis, observed Dt = x1, x2, . . . , xt so far
(don’t know how many points we will observe in advance)

I We have a limited memory budget, i.e., � t

I Task: at any point of time t, compute some function of Dt

(i.e.,f(Dt))

I What is an approach to approximating f(Dt)), given
xt, xt−1, . . .?



Basic Question

I If we can get a representative sample of the data stream, then
we can do analysis on it

I How to sample a stream?

I Sampling is . . .?



Sampling (example 1)

I Suppose we have seen x1, . . . , x1000

I Memory can only store sample size of 100

I Task: sample 10% of the stream

I How?

I Take every 10th element

I q ∼ {1, 2, . . . , 10}, take every q + 1 element

I Issues?



Sampling (example 1)

I Suppose we have seen x1, . . . , x1000

I Memory can only store sample size of 100

I Task: sample 10% of the stream

I How?

I Take every 10th element

I q ∼ {1, 2, . . . , 10}, take every q + 1 element

I Issues?



Sampling (example 2)

I Dataset:

I # of unique elements = U

I # of (pairwise) duplicate elements = 2D

I total # of elements: N = U + 2D

I Fraction of duplicates: α =
2D

U + 2D

I Take 10% sample and estimate α

I Questions:

I What is the probability that a pair of duplicate items is in the
sample?

I What happens to the estimation?



Sampling From Stream

Task: sample s elements from a stream; at element xt, we want:

I Every element was sampled with probability
s

t

I We have s number of samples

Can this be accomplished? If yes, then how?

Let us think through this . . .



Reservoir Sampling

I Sample size s

I Algorithm:

I observe xt from stream

I if t < s, then add xt to reservoir

I else with probability
s

t
:

uniformly select an element from reservoir
and replace it with xt

I Claim: at any time t, any element in x1, x2, . . . , xt has exactly
s

t
chance of being sampled



Reservoir Sampling - Proof by Induction

I Inductive hypothesis: after observing t elements, each element

in the reservoir was sampled with probability
s

t

I Base case: first t elements in the reservoir was sampled with

probability
s

t
= 1

I Inductive step: element xt+1 arrives . . .

work on the board. . .



Weighted Reservoir Sampling

I Each element xi has a weight wi > 0

I Task: sample elements from the stream, such that:

I at time t, every element xi was sampled with probability

wi∑
i wi

I have s elements

I Reservoir sampling is special case (wi = 1)



Weighted Reservoir Sampling

I Solution by (Pavlos S. Efraimidis and Paul G. Spirakis, 2006)

I Observe xi

I Sample ri ∼ U(0, 1)

I Set score σi = r
1
wi
i

I Keep elements (xi, σi) with with highest s scores as sample



Weighted Reservoir Sampling

I Implementation considerations:

I Use heap to maintain top scores (xi, σi); O(log(s)) time
complexity

I σi ∈ (0, 1) ⇒ top scores get closer to 1, which becomes hard
to distinguish



Weighted Reservoir Sampling

I Lemma: Let U1 and U2 be independent random variables with
uniform distributions in [0, 1]. If X1 = (U1)

1/w1 and
X2 = (U2)

1/w2 , for w1, w2 > 0, then

Pr[X1 ≤ X2] =
w2

w1 + w2
.

I Partial proof:

Pr[X1 ≤ X2] = Pr[(U1)
1/w1 ≤ (U2)

1/w2 ]

= Pr[(U1) ≤ (U2)
w1/w2 ]

=

∫ 1

U2=0

∫ U
w1/w2
2

U1=0
dU1dU2 = . . . =

w2

w1 + w2


