Locality Sensitive Hashing and its Application

Rice University

Anshumali Shrivastava
anshumali At rice.edu

31th August 2015

Pairwise Comparisons Everywhere

- Near Duplicate Detections over web. (mirror pages)
- Plagiarism Detection
- Find Customers With Similar Taste.
- Movie Recommendations. (Find Similar profiles)

Activity : Exact Duplicates

Remove all repeated items in an array example $\{1,2,3,8,2,7,3,3,4,8,9\}$

Activity : Exact Duplicates

Remove all repeated items in an array example $\{1,2,3,8,2,7,3,3,4,8,9\}$

$$
O(n) \text { or } O\left(n^{2}\right)
$$

Activity : Exact Duplicates

Remove all repeated items in an array example $\{1,2,3,8,2,7,3,3,4,8,9\}$

$$
O(n) \text { or } O\left(n^{2}\right)
$$

Array of vectors instead of numbers ?

Documents as Sets

Given 3 short documents

- "Earth is the third planet"
- "USA is the third largest country"
- "Pluto is the nineth planet"

How do we mathematically represent documents and compare between them ?

Documents as Sets

Given 3 short documents

- "Earth is the third planet"
- "USA is the third largest country"
- "Pluto is the nineth planet"

How do we mathematically represent documents and compare between them ?

A very reasonable and practical idea

- Two documents with more words overlap are likely to be similar.
- Represent documents as set of words appearing in it. (Bag of Words)

Documents as Sets

Given 3 short documents

- "Earth is the third planet"
- "USA is the third largest country"
- "Pluto is the nineth planet"

How do we mathematically represent documents and compare between them ?

A very reasonable and practical idea

- Two documents with more words overlap are likely to be similar.
- Represent documents as set of words appearing in it. (Bag of Words)

Problems

- Different but similar meaning words (synonyms) ?
- Order information ?

Better Representation: k-Shingles

Definition

- A document is a string.
- k-shingles is the set of all length k substrings that appear one or more times within that document. (character k-grams)
- Popular Variant: Treat words as basic tokens. (word k-grams)

Example 1: Document "abc dab d" for $k=2$. The set of 2-shingles is $\{a b, b c, c, d, d a, b, d\}$.
Example 2: Document "This is Rice University" for $\mathrm{k}=2$.
The set of 2-word grams is $\{$ This is, is Rice, Rice University $\}$.
Bottom Line: Documents can be reasonably represented as sets.

Better Representation: k-Shingles

Definition

- A document is a string.
- k-shingles is the set of all length k substrings that appear one or more times within that document. (character k-grams)
- Popular Variant: Treat words as basic tokens. (word k-grams)

Example 1: Document "abc dab d" for $k=2$.
The set of 2-shingles is $\{a b, b c, c, d, d a, b, d\}$.
Example 2: Document "This is Rice University" for $\mathrm{k}=2$.
The set of 2-word grams is $\{$ This is, is Rice, Rice University $\}$.
Bottom Line: Documents can be reasonably represented as sets.
What are the universal sets in these examples ?

Jaccard Similarity

The popular resemblance (Jaccard) similarity between two sets $X, Y \subset \Omega$ is defined as:

$$
\mathcal{R}=\frac{|X \cap Y|}{|X \cup Y|}=\frac{a}{f_{x}+f_{y}-a}
$$

where $a=|X \cap Y|, f_{x}=|X|, f_{y}=|Y|$ and $|$.$| denotes the cardinality.$

Jaccard Similarity

The popular resemblance (Jaccard) similarity between two sets $X, Y \subset \Omega$ is defined as:

$$
\mathcal{R}=\frac{|X \cap Y|}{|X \cup Y|}=\frac{a}{f_{x}+f_{y}-a}
$$

where $a=|X \cap Y|, f_{x}=|X|, f_{y}=|Y|$ and $|$.$| denotes the cardinality.$
Question: Why not just the intersection $|X \cap Y|$?

Jaccard Similarity

The popular resemblance (Jaccard) similarity between two sets $X, Y \subset \Omega$ is defined as:

$$
\mathcal{R}=\frac{|X \cap Y|}{|X \cup Y|}=\frac{a}{f_{x}+f_{y}-a}
$$

where $a=|X \cap Y|, f_{x}=|X|, f_{y}=|Y|$ and $|$.$| denotes the cardinality.$
Question: Why not just the intersection $|X \cap Y|$?

Sets \Longleftrightarrow Binary Vectors

$$
a=|X \cap Y|=x^{T} y ; \quad f_{x}=\operatorname{nonzeros}(x) ; \quad f_{y}=\operatorname{nonzeros}(y)
$$

where x and y are the binary vector equivalents of sets X and Y respectively.

Cosine Similarity

Cosine similarity between two sets $X, Y \subset \Omega$ is defined as:

$$
\mathcal{R}=\frac{|X \cap Y|}{\sqrt{|X||Y|}}=\frac{a}{\sqrt{f_{x} f_{y}}}
$$

where $a=|X \cap Y|, f_{x}=|X|, f_{y}=|Y|$ and $|$.$| denotes the cardinality.$

Recent Results: Cosine and Jaccard only differs in normalization.

- Both are distortions of each other.
- We actually don't need two, doing good on any one is enough.
- Check "Shrivastava and Li In Defense of Minhash over Simhash AISTATS 2014"

So Far

- Shingle Representation
- Documents as sets
- Two popular similarities over sets
- Jaccard Similarity
- Cosine Similarity

Subroutine of Interest: Similarity Search

Given a query $q \in \mathbb{R}^{D}$ and a giant collection \mathcal{C} of N vectors in \mathbb{R}^{D}, search for $p \in \mathcal{C}$ s.t.,

$$
p=\arg \max _{x \in \mathcal{C}} \operatorname{sim}(q, x)
$$

Subroutine of Interest: Similarity Search

Given a query $q \in \mathbb{R}^{D}$ and a giant collection \mathcal{C} of N vectors in \mathbb{R}^{D}, search for $p \in \mathcal{C}$ s.t.,

$$
p=\arg \max _{x \in \mathcal{C}} \operatorname{sim}(q, x)
$$

- sim is the similarity, like Cosine Similarity, Resemblance, etc.
- Worst case $O(N)$ for any query. N is huge.
- Querying is a very frequent operation.

Subroutine of Interest: Similarity Search

 Given a query $q \in \mathbb{R}^{D}$ and a giant collection \mathcal{C} of N vectors in \mathbb{R}^{D}, search for $p \in \mathcal{C}$ s.t.,$$
p=\arg \max _{x \in \mathcal{C}} \operatorname{sim}(q, x)
$$

- sim is the similarity, like Cosine Similarity, Resemblance, etc.
- Worst case $O(N)$ for any query. N is huge.
- Querying is a very frequent operation.

Our goal is to find sub-linear query time algorithm.

Subroutine of Interest: Similarity Search

 Given a query $q \in \mathbb{R}^{D}$ and a giant collection \mathcal{C} of N vectors in \mathbb{R}^{D}, search for $p \in \mathcal{C}$ s.t.,$$
p=\arg \max _{x \in \mathcal{C}} \operatorname{sim}(q, x)
$$

- sim is the similarity, like Cosine Similarity, Resemblance, etc.
- Worst case $O(N)$ for any query. N is huge.
- Querying is a very frequent operation.

Our goal is to find sub-linear query time algorithm.
(1) Approximate answer suffices.
(2) We are allowed to pre-process \mathcal{C} once. (offline costly step)

Locality Sensitive Hashing

Hashing: Function (randomized) h that maps a given data vector $x \in \mathbb{R}^{D}$ to an integer key $h: \mathbb{R}^{D} \mapsto\{0,1,2, \ldots, N\}$

Locality Sensitive Hashing

Hashing: Function (randomized) h that maps a given data vector $x \in \mathbb{R}^{D}$ to an integer key $h: \mathbb{R}^{D} \mapsto\{0,1,2, \ldots, N\}$

Locality Sensitive: Additional property

$$
\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y))
$$

where f is monotonically increasing. sim is any similarity of interest.

Locality Sensitive Hashing

Hashing: Function (randomized) h that maps a given data vector $x \in \mathbb{R}^{D}$ to an integer key $h: \mathbb{R}^{D} \mapsto\{0,1,2, \ldots, N\}$

Locality Sensitive: Additional property

$$
\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y))
$$

where f is monotonically increasing. sim is any similarity of interest.
Similar points are more likely to have the same hash value (hash collision). Question: Does this definition implies the definition given in the book ?

Minwise Hashing

A random permutation π is performed on Ω, i.e., $\pi: \Omega \longrightarrow \Omega, \quad$ where $\Omega=\{0,1, \ldots, D-1\}$. is the universal set For $S_{1}, S_{2} \subset \Omega$ we always have

$$
\operatorname{Pr}\left(\min \left(\pi\left(S_{1}\right)\right)=\min \left(\pi\left(S_{2}\right)\right)\right)=\frac{\left|S_{1} \cap S_{2}\right|}{\left|S_{1} \cup S_{2}\right|}=R \quad \text { (Jaccard Similarity.). }
$$

Example:
$D=5 . \quad S_{1}=\{0,3,4\}, \quad S_{2}=\{1,2,3\}, \quad R=\frac{\left|S_{1} \cap S_{2}\right|}{\left|S_{1} \cup S_{2}\right|}=\frac{1}{5}$.
One realization of the permutation π can be

$$
\begin{gathered}
0 \Longrightarrow 3 \quad 1 \Longrightarrow 2 \quad 2 \Longrightarrow 0 \quad 3 \Longrightarrow 4 \quad 4 \Longrightarrow 1 \\
\pi\left(S_{1}\right)=\{3,4,1\}, \quad \pi\left(S_{2}\right)=\{2,0,4\}
\end{gathered}
$$

In this example, $\min \left(\pi\left(S_{1}\right)\right) \neq \min \left(\pi\left(S_{2}\right)\right)$.

Minwise Hashing: Example Binary Vectors

(1) Uniformly sample a permutation over attributes $\pi:[0, D] \mapsto[0, D]$.
(2) Shuffle the vectors under π.
(3) The hash value is smallest index which is not zero.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

S $\mathrm{S}_{3}: 0 \begin{array}{lllllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array} 0$

Minwise Hashing: Example Binary Vectors

(1) Uniformly sample a permutation over attributes π : $[0, D] \mapsto[0, D]$.
(2) Shuffle the vectors under π.
(3) The hash value is smallest index which is not zero.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

$\mathrm{S}_{1}: 0101000110001000000000$
$\mathrm{S}_{2}: 1 \begin{array}{llllllllllllllll} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0\end{array}$
$\mathrm{S}_{3}: 0 \begin{array}{lllllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array} 0$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Minwise Hashing: Example Binary Vectors

(1) Uniformly sample a permutation over attributes π : $[0, D] \mapsto[0, D]$.
(2) Shuffle the vectors under π.
(3) The hash value is smallest index which is not zero.

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{S}_{2}: 10000000000010101010010$
$\mathrm{S}_{3}: 10 \begin{array}{llllllllllllll} & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 10$

$$
h_{\pi}\left(S_{1}\right)=2, \quad h_{\pi}\left(S_{2}\right)=0, \quad h_{\pi}\left(S_{3}\right)=0
$$

Minwise Hashing: Example Binary Vectors

(1) Uniformly sample a permutation over attributes π : $[0, D] \mapsto[0, D]$.
(2) Shuffle the vectors under π.
(3) The hash value is smallest index which is not zero.

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\mathrm{S}_{2}: 10$| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$$
h_{\pi}\left(S_{1}\right)=2, \quad h_{\pi}\left(S_{2}\right)=0, \quad h_{\pi}\left(S_{3}\right)=0
$$

For any two binary vectors S_{1}, S_{2} we always have

$$
\operatorname{Pr}\left(h_{\pi}\left(S_{1}\right)=h_{\pi}\left(S_{2}\right)\right)=\frac{\left|S_{1} \cap S_{2}\right|}{\left|S_{1} \cup S_{2}\right|}=R \quad \text { (Jaccard Similarity.). }
$$

Proof (On Board)

Signed Random Projections (SimHash)

$$
h_{r}(x)= \begin{cases}1 & \text { if } r^{T} x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

$$
r \in \mathbb{R}^{D} \sim N(0, \mathcal{I})
$$

$\operatorname{Pr}_{r}\left(h_{r}(x)=h_{r}(y)\right)=1-\frac{\theta}{\pi}, \quad$ monotonic in cosine similarity $\theta=\cos ^{-1} \mathcal{S}$
A classical result from Goemans-Williamson (95)

Signed Random Projections (SimHash)

$$
h_{r}(x)= \begin{cases}1 & \text { if } r^{T} x \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

$$
r \in \mathbb{R}^{D} \sim N(0, \mathcal{I})
$$

$\operatorname{Pr}_{r}\left(h_{r}(x)=h_{r}(y)\right)=1-\frac{\theta}{\pi}, \quad$ monotonic in cosine similarity $\theta=\cos ^{-1} \mathcal{S}$
A classical result from Goemans-Williamson (95)

For Binay Data, MinHash is better than SimHash

Recent Results: Cosine and Jaccard only differs in normalization.

- Both similarities are distortions of each other.
- For Binary Data, MinHash is more informative and better for similarity search and estimation compared to SimHash.
- Check "Shrivastava and Li In Defense of Minhash over Simhash AISTATS 2014"

LSH for Estimation

We have

$$
\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y))
$$

where f is monotonically increasing.

LSH for Estimation

We have

$$
\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y))
$$

where f is monotonically increasing.

Activity: Design a strategy for estimating $\operatorname{sim}(x, y)$ given access to values of $h(x)$ and $h(y)$, with h sampled independently.

Sub-linear Near Neighbor Search: Idea

Given: $\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y))$, f is monotonic.

Sub-linear Near Neighbor Search: Idea

Given: $\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y)), \mathrm{f}$ is monotonic.

Sub-linear Near Neighbor Search: Idea

Given: $\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y)), \mathrm{f}$ is monotonic.

Sub-linear Near Neighbor Search: Idea

Given: $\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y)), \mathrm{f}$ is monotonic.

- Given query q, if $h_{1}(q)=11$ and $h_{2}(q)=01$, then probe bucket with index 1101. It is a good bucket !!

Sub-linear Near Neighbor Search: Idea

Given: $\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y)), \mathrm{f}$ is monotonic.

- Given query q, if $h_{1}(q)=11$ and $h_{2}(q)=01$, then probe bucket with index 1101. It is a good bucket !!
- (Locality Sensitive) $h_{i}(q)=h_{i}(x)$ implies high similarity.
- Doing better than random !!

The Classical LSH Algorithm

Table 1

h_{1}^{1}	\cdots	$h_{\boldsymbol{K}}^{1}$	Buckets
$\mathbf{0 0}$	\cdots	$\mathbf{0 0}$	\cdots
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$0 \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	Empty
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	\cdots

- We use K concatenation.

The Classical LSH Algorithm

Table 1

h_{1}^{1}	\cdots	h_{K}^{1}	Buckets
$\mathbf{0 0}$	\cdots	$\mathbf{0 0}$	\cdots
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$0 \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	Empty
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	\cdots

Table L

\boldsymbol{h}_{1}^{L}	\cdots	$\boldsymbol{h}_{\boldsymbol{K}}^{L}$	Buckets
$\mathbf{0 0}$	\cdots	$\mathbf{0 0}$	$\bullet \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$\bullet \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	0
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	Empty

- We use K concatenation.
- Repeat the process L times. (L Independent Hash Tables)

The Classical LSH Algorithm

Table 1

h_{1}^{1}	\cdots	h_{K}^{1}	Buckets
$\mathbf{0 0}$	\cdots	00	\cdots
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$0 \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	Empty
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	\cdots

Table L

h_{1}^{L}	\cdots	h_{K}^{L}	Buckets
$\mathbf{0 0}$	\cdots	$\mathbf{0 0}$	$\bullet \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$\bullet \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	0
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	Empty

- We use K concatenation.
- Repeat the process L times. (L Independent Hash Tables)
- Querying : Probe one bucket from each of L tables. Report union.

The Classical LSH Algorithm

Table 1

h_{1}^{1}	\cdots	h_{K}^{1}	Buckets
$\mathbf{0 0}$	\cdots	00	\cdots
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$0 \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	Empty
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	\cdots

Table L

h_{1}^{L}	\cdots	h_{K}^{L}	Buckets
$\mathbf{0 0}$	\cdots	$\mathbf{0 0}$	$\bullet \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{0 1}$	$\bullet \cdots$
$\mathbf{0 0}$	\cdots	$\mathbf{1 0}$	0
\cdots	\cdots	\cdots	\cdots
$\mathbf{1 1}$	\cdots	$\mathbf{1 1}$	Empty

- We use K concatenation.
- Repeat the process L times. (L Independent Hash Tables)
- Querying : Probe one bucket from each of L tables. Report union.
(1) Two knobs K and L to control.
(2) Theory says we have a sweet spot. Provable sub-linear algorithm. (Indyk \& Motwani 98)

A Real Problem: Avoiding Quadratic

Dataset of around 250,000 Syrian death records from 7 sources.

- A very short noisy text description of who died.
- Arabic suffixes and prefixes have many ambiguities.
- Selection biases.

A Real Problem: Avoiding Quadratic

Dataset of around 250,000 Syrian death records from 7 sources.

- A very short noisy text description of who died.
- Arabic suffixes and prefixes have many ambiguities.
- Selection biases.

A Real Problem: Avoiding Quadratic

Dataset of around 250,000 Syrian death records from 7 sources.

- A very short noisy text description of who died.
- Arabic suffixes and prefixes have many ambiguities.
- Selection biases.

Many records correspond to the same individual.
Problem: Can we estimate how many people died ? (Record Linkage)

A Real Problem: Avoiding Quadratic

Dataset of around 250,000 Syrian death records from 7 sources.

- A very short noisy text description of who died.
- Arabic suffixes and prefixes have many ambiguities.
- Selection biases.

Many records correspond to the same individual.
Problem: Can we estimate how many people died ? (Record Linkage)
Reasonable Idea: Try predicting match/mismatch given a pair.
Concern: Just too many pairs! $\left(3.1 \times 10^{10}\right)$

Reducing Potential Pairs via Hashing

Reducing Potential Pairs via Hashing

h_{1}	h_{2}	Buckets (pointers only)
$\mathbf{0 0}$	$\mathbf{0 0}$	0
$\mathbf{0 0}$	$\mathbf{0 1}$	$-\cdots$
$\mathbf{0 0}$	$\mathbf{1 0}$	Empty
\cdots	\cdots	\cdots
$\mathbf{1 1}$	$\mathbf{1 1}$	\cdots

h_{3}	h_{4}	Buckets (pointers only)
$\mathbf{0 0}$	$\mathbf{0 0}$	$-\cdots$
$\mathbf{0 0}$	$\mathbf{0 1}$	$0 \cdots$
$\mathbf{0 0}$	$\mathbf{1 0}$	0
\cdots	\cdots	\cdots
$\mathbf{1 1}$	$\mathbf{1 1}$	Empty

Reducing Potential Pairs via Hashing

h_{3}	h_{4}	Buckets (pointers only)
$\mathbf{0 0}$	00	\cdots
$\mathbf{0 0}$	$\mathbf{0 1}$	0
$\mathbf{0 0}$	$\mathbf{1 0}$	0
\cdots	\cdots	\cdots
$\mathbf{1 1}$	$\mathbf{1 1}$	Empty

- Co-occurrence in bucket mean high resemblance between records.

Reducing Potential Pairs via Hashing

h_{1}	h_{2}	Buckets (pointers only)
$\mathbf{0 0}$	$\mathbf{0 0}$	0
$\mathbf{0 0}$	$\mathbf{0 1}$	0
$\mathbf{0 0}$	$\mathbf{1 0}$	Empty
\cdots	\cdots	\cdots
$\mathbf{1 1}$	$\mathbf{1 1}$	\cdots

h_{3}	h_{4}	Buckets (pointers only)
$\mathbf{0 0}$	$\mathbf{0 0}$	0
$\mathbf{0 0}$	$\mathbf{0 1}$	0
$\mathbf{0 0}$	$\mathbf{1 0}$	0
\cdots	\cdots	\cdots
$\mathbf{1 1}$	$\mathbf{1 1}$	Empty

- Co-occurrence in bucket mean high resemblance between records.
- Only form pairs within each bucket.

Reducing Potential Pairs via Hashing

h_{3}	h_{4}	Buckets (pointers only)
00	00	\cdots
00	01	$0 \cdots$
00	10	0
\cdots	\cdots	\cdots
11	11	Empty

- Co-occurrence in bucket mean high resemblance between records.
- Only form pairs within each bucket.
(1) All operations near linear.
(2) 99% recall and only evaluate 1% of the total pairs.

Reducing Potential Pairs via Hashing

h_{3}	h_{4}	Buckets (pointers only)
00	00	\cdots
00	01	$0 \cdots$
00	10	0
\cdots	\cdots	\cdots
11	11	Empty

- Co-occurrence in bucket mean high resemblance between records.
- Only form pairs within each bucket.
(1) All operations near linear.
(2) 99% recall and only evaluate 1% of the total pairs.
- Connect to get a sparse graph. Graph cuts to reduce more.

Brain Strom Activity : Graph Matching !

- Given a collection of n graphs find a reasonable routine to remove isomorphic (identical or duplicates) graphs
- Assume you have an subroutine islsomorphic $\left(G_{1}, G_{2}\right)$. Try to avoid quadratic call to this subroutine.

Brain Strom Activity : Graph Matching !

- Given a collection of n graphs find a reasonable routine to remove isomorphic (identical or duplicates) graphs
- Assume you have an subroutine isIsomorphic $\left(G_{1}, G_{2}\right)$. Try to avoid quadratic call to this subroutine.

Any real application ?

