Locality Sensitive Hashing and its Application

Rice University

Anshumali Shrivastava

anshumali At rice.edu

31th August 2015

47 ▶

- Near Duplicate Detections over web. (mirror pages)
- Plagiarism Detection
- Find Customers With Similar Taste.
- Movie Recommendations. (Find Similar profiles)

Activity : Exact Duplicates

Remove all repeated items in an array example $\{1,2,3,8,2,7,3,3,4,8,9\}$

Rice University (COMP 640)

3

∃ → (∃ →

Activity : Exact Duplicates

Remove all repeated items in an array example $\{1,2,3,8,2,7,3,3,4,8,9\}$

O(n) or $O(n^2)$

3

∃ → (∃ →

< 4 **₽** ► <

Activity : Exact Duplicates

Remove all repeated items in an array example $\{1,2,3,8,2,7,3,3,4,8,9\}$

O(n) or $O(n^2)$

Array of vectors instead of numbers ?

< 67 ▶

Documents as Sets

Given 3 short documents

- "Earth is the third planet"
- "USA is the third largest country"
- "Pluto is the nineth planet"

How do we mathematically represent documents and compare between them ?

Documents as Sets

RICE

Given 3 short documents

- "Earth is the third planet"
- "USA is the third largest country"
- "Pluto is the nineth planet"

How do we mathematically represent documents and compare between them ?

A very reasonable and practical idea

- Two documents with more words overlap are likely to be similar.
- Represent documents as set of words appearing in it. (Bag of Words)

Documents as Sets

RICE

Given 3 short documents

- "Earth is the third planet"
- "USA is the third largest country"
- "Pluto is the nineth planet"

How do we mathematically represent documents and compare between them ?

A very reasonable and practical idea

- Two documents with more words overlap are likely to be similar.
- Represent documents as set of words appearing in it. (Bag of Words)

Problems

- Different but similar meaning words (synonyms) ?
- Order information ?

Better Representation: k-Shingles

Definition

- A document is a string.
- k-shingles is the set of all length k substrings that appear one or more times within that document. (character k-grams)
- Popular Variant: Treat words as basic tokens. (word k-grams)

Example 1: Document "abc dab d" for k =2. The set of 2-shingles is {ab, bc, c , d, da, b , d}.
Example 2: Document "This is Rice University" for k =2. The set of 2-word grams is {This is, is Rice, Rice University}.

Bottom Line: Documents can be reasonably represented as sets.

Better Representation: *k*-Shingles

Definition

- A document is a string.
- k-shingles is the set of all length k substrings that appear one or more times within that document. (character k-grams)
- Popular Variant: Treat words as basic tokens. (word k-grams)

Example 1: Document "abc dab d" for k =2. The set of 2-shingles is {ab, bc, c , d, da, b , d}.
Example 2: Document "This is Rice University" for k =2.

The set of 2-word grams is {This is, is Rice, Rice University}.

Bottom Line: Documents can be reasonably represented as sets.

What are the universal sets in these examples ?

(4 個) トイヨト イヨト

Jaccard Similarity

The popular resemblance (Jaccard) similarity between two sets $X, Y \subset \Omega$ is defined as:

$$\mathcal{R} = rac{|X \cap Y|}{|X \cup Y|} = rac{a}{f_x + f_y - a},$$

where $a = |X \cap Y|$, $f_x = |X|$, $f_y = |Y|$ and |.| denotes the cardinality.

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Jaccard Similarity

The popular resemblance (Jaccard) similarity between two sets $X, Y \subset \Omega$ is defined as:

$$\mathcal{R} = rac{|X \cap Y|}{|X \cup Y|} = rac{a}{f_x + f_y - a},$$

where $a = |X \cap Y|$, $f_x = |X|$, $f_y = |Y|$ and |.| denotes the cardinality.

Question: Why not just the intersection $|X \cap Y|$?

- 31

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Jaccard Similarity

The popular resemblance (Jaccard) similarity between two sets $X, Y \subset \Omega$ is defined as:

$$\mathcal{R} = rac{|X \cap Y|}{|X \cup Y|} = rac{a}{f_x + f_y - a},$$

where $a = |X \cap Y|$, $f_x = |X|$, $f_y = |Y|$ and |.| denotes the cardinality.

Question: Why not just the intersection $|X \cap Y|$?

Sets \iff Binary Vectors

 $a = |X \cap Y| = x^T y; \quad f_x = nonzeros(x); \quad f_y = nonzeros(y),$

where x and y are the binary vector equivalents of sets X and Y respectively.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Cosine Similarity

Cosine similarity between two sets $X, Y \subset \Omega$ is defined as:

$$\mathcal{R} = rac{|X \cap Y|}{\sqrt{|X||Y|}} = rac{\mathsf{a}}{\sqrt{f_x f_y}},$$

where $a = |X \cap Y|$, $f_x = |X|$, $f_y = |Y|$ and |.| denotes the cardinality.

Recent Results: Cosine and Jaccard only differs in normalization.

- Both are distortions of each other.
- We actually don't need two, doing good on any one is enough.
- Check "Shrivastava and Li In Defense of Minhash over Simhash AISTATS 2014"

So Far

- Shingle Representation
- Documents as sets
- Two popular similarities over sets
 - Jaccard Similarity
 - Cosine Similarity

3

▶ < ∃ >

< A > < 3

Given a query $q \in \mathbb{R}^D$ and a giant collection C of N vectors in \mathbb{R}^D , search for $p \in C$ s.t.,

$$p = rg\max_{x \in \mathcal{C}} \ sim(q,x)$$

A 🖓

Given a query $q \in \mathbb{R}^D$ and a giant collection C of N vectors in \mathbb{R}^D , search for $p \in C$ s.t.,

$$p = rg\max_{x \in \mathcal{C}} \ \ sim(q,x)$$

- sim is the similarity, like Cosine Similarity, Resemblance, etc.
- Worst case O(N) for any query. N is huge.
- Querying is a very frequent operation.

Given a query $q \in \mathbb{R}^D$ and a giant collection C of N vectors in \mathbb{R}^D , search for $p \in C$ s.t.,

$$p = rg\max_{x \in \mathcal{C}} \ \ sim(q,x)$$

- sim is the similarity, like Cosine Similarity, Resemblance, etc.
- Worst case O(N) for any query. N is huge.
- Querying is a very frequent operation.

Our goal is to find sub-linear query time algorithm.

Given a query $q \in \mathbb{R}^D$ and a giant collection C of N vectors in \mathbb{R}^D , search for $p \in C$ s.t.,

$$p = rg\max_{x \in \mathcal{C}} \ \ sim(q,x)$$

- sim is the similarity, like Cosine Similarity, Resemblance, etc.
- Worst case O(N) for any query. N is huge.
- Querying is a very frequent operation.

Our goal is to find sub-linear query time algorithm.

- Approximate answer suffices.
- **2** We are allowed to pre-process C once. (offline costly step)

Locality Sensitive Hashing

Hashing: Function (randomized) *h* that maps a given data vector $x \in \mathbb{R}^D$ to an integer key $h : \mathbb{R}^D \mapsto \{0, 1, 2, ..., N\}$

< 🗗 🕨 🔸

Locality Sensitive Hashing

Hashing: Function (randomized) *h* that maps a given data vector $x \in \mathbb{R}^D$ to an integer key $h : \mathbb{R}^D \mapsto \{0, 1, 2, ..., N\}$

Locality Sensitive: Additional property

$$Pr_h[h(x) = h(y)] = f(sim(x, y)),$$

where f is monotonically increasing. *sim* is any similarity of interest.

Locality Sensitive Hashing

Hashing: Function (randomized) *h* that maps a given data vector $x \in \mathbb{R}^D$ to an integer key $h : \mathbb{R}^D \mapsto \{0, 1, 2, ..., N\}$

Locality Sensitive: Additional property

$$Pr_h[h(x) = h(y)] = f(sim(x, y)),$$

where f is monotonically increasing. *sim* is any similarity of interest.

Similar points are more likely to have the same hash value (hash collision). **Question:** Does this definition implies the definition given in the book ?

Minwise Hashing

A random permutation π is performed on Ω , i.e., $\pi: \Omega \longrightarrow \Omega$, where $\Omega = \{0, 1, ..., D - 1\}$. is the universal set For $S_1, S_2 \subset \Omega$ we always have

$$\mathbf{Pr}\left(\min(\pi(S_1)) = \min(\pi(S_2))\right) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|} = R \quad (\textbf{Jaccard Similarity.}).$$

Example:

D = 5. $S_1 = \{0, 3, 4\}$, $S_2 = \{1, 2, 3\}$, $R = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|} = \frac{1}{5}$. One realization of the permutation π can be

 $0 \Longrightarrow 3 \quad 1 \Longrightarrow 2 \quad 2 \Longrightarrow 0 \quad 3 \Longrightarrow 4 \quad 4 \Longrightarrow 1$

 $\pi(S_1) = \{3, 4, 1\}, \qquad \pi(S_2) = \{2, 0, 4\}$

In this example, $\min(\pi(S_1)) \neq \min(\pi(S_2))$.

- **(**) Uniformly sample a permutation over attributes $\pi : [0, D] \mapsto [0, D]$.
- 2 Shuffle the vectors under π .
- The hash value is smallest index which is not zero.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
S ₁ :	0	1	0	0	1	1	0	0	1	0	0	0	0	0	0	0
S ₂ :	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0
S ₃ :	0	0	0	1	0	0	1	1	0	0	0	0	0	0	1	0

- **(**) Uniformly sample a permutation over attributes $\pi : [0, D] \mapsto [0, D]$.
- 2 Shuffle the vectors under π .
- The hash value is smallest index which is not zero.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
S ₁ :	0	1	0	0	1	1	0	0	1	0	0	0	0	0	0	0	π(S ₁):	0	0	1	0	1	0	0	1	0	0	0	0	0	1	0	0
S ₂ :	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0	π(S ₂):	1	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
S ₃ :	0	0	0	1	0	0	1	1	0	0	0	0	0	0	1	0	π(S ₃):	1	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0

- **(**) Uniformly sample a permutation over attributes $\pi : [0, D] \mapsto [0, D]$.
- 2 Shuffle the vectors under π .
- The hash value is smallest index which is not zero.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
S ₁ :	0	1	0	0	1	1	0	0	1	0	0	0	0	0	0	0	π(S ₁):	0	0	1	0	1	0	0	1	0	0	0	0	0	1	0	0
S _2:	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0	π(S ₂):	1	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
S ₃ :	0	0	0	1	0	0	1	1	0	0	0	0	0	0	1	0	π(S ₃):	1	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0

$$h_{\pi}(S_1) = 2$$
, $h_{\pi}(S_2) = 0$, $h_{\pi}(S_3) = 0$

- **(**) Uniformly sample a permutation over attributes $\pi : [0, D] \mapsto [0, D]$.
- 2 Shuffle the vectors under π .
- The hash value is smallest index which is not zero.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
S ₁ :	0	1	0	0	1	1	0	0	1	0	0	0	0	0	0	0	π(S ₁):	0	0	1	0	1	0	0	1	0	0	0	0	0	1	0	0
S ₂ :	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0	π(S ₂):	1	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
S ₃ :	0	0	0	1	0	0	1	1	0	0	0	0	0	0	1	0	π(S ₃):	1	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0

$$h_{\pi}(S_1) = 2$$
, $h_{\pi}(S_2) = 0$, $h_{\pi}(S_3) = 0$

For any two binary vectors S_1, S_2 we always have

$$\mathsf{Pr}\left(h_{\pi}(S_1) = h_{\pi}(S_2)\right) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|} = R \quad (\mathsf{Jaccard Similarity.}).$$

Proof (On Board)

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Signed Random Projections (SimHash)

Signed Random Projections (SimHash)

Recent Results: Cosine and Jaccard only differs in normalization.

- Both similarities are distortions of each other.
- For Binary Data, MinHash is more informative and better for similarity search and estimation compared to SimHash.
- Check "Shrivastava and Li In Defense of Minhash over Simhash AISTATS 2014"

LSH for Estimation

We have

$$Pr_h[h(x) = h(y)] = f(sim(x, y)),$$

where f is monotonically increasing.

3

→ < Ξ</p>

LSH for Estimation

We have

$$Pr_h[h(x) = h(y)] = f(sim(x, y)),$$

where f is monotonically increasing.

Activity: Design a strategy for estimating sim(x, y) given access to values of h(x) and h(y), with h sampled independently.

Sub-linear Near Neighbor Search: Idea

Given: $Pr_h[h(x) = h(y)] = f(sim(x, y))$, f is monotonic.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sub-linear Near Neighbor Search: Idea

Given: $Pr_h[h(x) = h(y)] = f(sim(x, y))$, f is monotonic.

- 31

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sub-linear Near Neighbor Search: Idea

Given: $Pr_h[h(x) = h(y)] = f(sim(x, y))$, f is monotonic.

イロト イポト イヨト イヨト

Sub-linear Near Neighbor Search: Idea

Given: $Pr_h[h(x) = h(y)] = f(sim(x, y))$, f is monotonic.

Given query q, if h₁(q) = 11 and h₂(q) = 01, then probe bucket with index 1101. It is a good bucket !!

- 31

(日) (周) (三) (三)

Sub-linear Near Neighbor Search: Idea

Given: $Pr_h[h(x) = h(y)] = f(sim(x, y))$, f is monotonic.

- Given query q, if h₁(q) = 11 and h₂(q) = 01, then probe bucket with index 1101. It is a good bucket !!
- (Locality Sensitive) $h_i(q) = h_i(x)$ implies high similarity.
- Doing better than random !!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Table 1

h_1^1		h_K^1	Buckets
00		00	•••
00	•••	01	••••
00	•••	10	Empty
•••	•••		
11		11	

• We use *K* concatenation.

3

∃ ► < ∃ ►</p>

• • • • • • • •

h_1^1	•••	h_K^1	Buckets
00	•••	00	•••
00	•••	01	• • •••
00	•••	10	Empty
•••	•••		
11	•••	11	

Table 1

Table L

h_1^L	 \boldsymbol{h}_{K}^{L}	Buckets
00	 00	• • …
00	 01	••…
00	 10	0
11	 11	Empty

- We use *K* concatenation.
- Repeat the process *L* times. (*L* Independent Hash Tables)

. . .

∃ ► < ∃ ►</p>

< 4 → <

Table 1

 h_{K}^{1} **Buckets** h_1^1 00 00 ... • • • • • 00 01 ... • • • • • • 00 10 Empty 11 11

Table L

h_1^L	•••	h_K^L	Buckets
00	•••	00	•••••
00		01	••…
00	•••	10	0
	•••		
11		11	Empty

- We use *K* concatenation.
- Repeat the process *L* times. (*L* Independent Hash Tables)
- **Querying :** Probe one bucket from each of *L* tables. Report union.

. . .

3

∃ ► < ∃ ►</p>

< 4 → <

Table 1

 h_{K}^{1} Buckets h_1^1 ... 00 00 ... ••• 00 01 ... • • • • • • 00 10 Empty 11 11

Table L

h_1^L	 \boldsymbol{h}_{K}^{L}	Buckets
00	 00	• • …
00	 01	••…
00	 10	0
11	 11	Empty

- We use *K* concatenation.
- Repeat the process *L* times. (*L* Independent Hash Tables)
- **Querying** : Probe one bucket from each of *L* tables. Report union.

. . .

- Two knobs K and L to control.
- Theory says we have a sweet spot. Provable sub-linear algorithm. (Indyk & Motwani 98)

3

(日) (同) (三) (三)

Dataset of around 250,000 Syrian death records from 7 sources.

- A very short noisy text description of who died.
- Arabic suffixes and prefixes have many ambiguities.
- Selection biases.

Dataset of around 250,000 Syrian death records from 7 sources.

- A very short noisy text description of who died.
- Arabic suffixes and prefixes have many ambiguities.
- Selection biases.

Dataset of around 250,000 Syrian death records from 7 sources.

- A very short noisy text description of who died.
- Arabic suffixes and prefixes have many ambiguities.
- Selection biases.

Many records correspond to the same individual.

Problem: Can we estimate how many people died ? (Record Linkage)

Dataset of around 250,000 Syrian death records from 7 sources.

- A very short noisy text description of who died.
- Arabic suffixes and prefixes have many ambiguities.
- Selection biases.

Many records correspond to the same individual.

Problem: Can we estimate how many people died ? (Record Linkage)

Reasonable Idea: Try predicting match/mismatch given a pair. **Concern:** Just too many pairs ! (3.1×10^{10})

< 67 ▶

h_1	h ₂	Buckets (pointers only)
00	00	••••
00	01	•• ••
00	10	Empty
11	11	

h_3	h_4	Buckets
		(pointers only)
00	00	• • • • •
00	01	• • …
00	10	•••
11	11	Empty

< 67 ▶

h_1	h_2	Buckets
		(pointers only)
00	00	•••··
00	01	•• •••
00	10	Empty
11	11	

h_3	h_4	Buckets
		(pointers only)
00	00	• •
00	01	• • …
00	10	•••
11	11	Empty

• Co-occurrence in bucket mean high resemblance between records.

h_1	h ₂	Buckets (pointers only)
00	00	••••
00	01	•• •••
00	10	Empty
11	11	

h_3	h_4	Buckets
		(pointers only)
00	00	• • • • •
00	01	• • …
00	10	•••
11	11	Empty

- Co-occurrence in bucket mean high resemblance between records.
- Only form pairs within each bucket.

h_1	h ₂	Buckets (pointers only)
00	00	••••
00	01	•• ••
00	10	Empty
11	11	

h_3	h_4	Buckets
		(pointers only)
00	00	• •
00	01	• • …
00	10	•••
11	11	Empty

- Co-occurrence in bucket mean high resemblance between records.
- Only form pairs within each bucket.
 - All operations near linear.
 - **99% recall** and only evaluate **1% of the total pairs**.

h_1	h_2	Buckets
		(pointers only)
00	00	••••
00	01	•• •••
00	10	Empty
11	11	

h_3	h_4	Buckets
		(pointers only)
00	00	• •
00	01	• • …
00	10	•••
11	11	Empty

- Co-occurrence in bucket mean high resemblance between records.
- Only form pairs within each bucket.
 - All operations near linear.
 - **99% recall** and only evaluate **1% of the total pairs**.
- Connect to get a **sparse graph**. Graph cuts to reduce more.

Brain Strom Activity : Graph Matching !

- Given a collection of *n* graphs find a reasonable routine to remove isomorphic (identical or duplicates) graphs
- Assume you have an subroutine *islsomorphic*(G_1, G_2). Try to avoid quadratic call to this subroutine.

Brain Strom Activity : Graph Matching !

- Given a collection of *n* graphs find a reasonable routine to remove isomorphic (identical or duplicates) graphs
- Assume you have an subroutine *islsomorphic*(G_1, G_2). Try to avoid quadratic call to this subroutine.

Any real application ?