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SVM: Revision

f (xi ) = wT xi + b

Primal: min
w∈Rd

‖w‖2 + C
N∑
i

max(0, 1− yi f (xi ));

O(nd2 + d3)

Dual: max
αi≥0

∑
i

αi −
1

2

∑
j ,k

αiαjyjyk(xTj xk);

O(dn2 + n3)

S.T. 0 ≤ αi ≤ C ;
∑
i

αiyi = 0, ∀i

only inner products matter
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Decreasing computations

Only inner products matter.

Can we approximate xi with zi so that dim(zi ) << dim(xi ) and
xTi xj ≈ zTi zj .

One way zi = Axi .
Any comment on rows vs columns of A.

Turns out a random A is good !!
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Johnson-Linderstrauss Lemma

If dnew = ω( 1
γ2

log n), relative angles are preserved up to 1± γ.

How big can γ be?
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which data set can have higher γ
Which problem is easy
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which data set can have higher γ

Which problem is easy
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which data set can have higher γ

Which problem is easy

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20

7



How else can big margin help

A simple weak learner whose speed is proportional to margin.
step 1: Pick random h.
step 2: Evaluate error in step 1.

If error < 1
2 −

γ
4 , stop

else, goto step 1.

Bigger the margin, lesser the iterations
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Dimensionality reduction: random projection

Coming back to random projection. Ad×D
1 Choose columns to be D random orthogonal unit-length vectors.

2 Choose each entry in A independently from a standard Gaussian.

3 Choose each entry in A to be 1 or -1 independently at random.

For (2) and (3):

PrA[(1− γ)‖u − v‖2 ≤ ‖u′ − v ′‖2 ≤ (1 + γ)‖u − v‖2] ≥ 1− 2e−(γ
2−γ3) d

4

Can we do better?
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Can we do better

If Pr(error < ε) < δ

d = O( 1
γ2

log( 1
εδ )) is sufficient.
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Kernel functions

What if we know that K (x1, x2) = φ(x1)φ(x2)?

What if we do not?

Finding Inner products approximately is enough

We need to know the distribution of data set
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Mapping-1

Lemma: Consider any distribution over labelled data.

Assume ∃w 3 P[‖w · x‖ > γ] = 0.

If we draw z1, z2, . . . zd iid with d ≥ 8

ε

[
1

γ2
+ ln

1

δ

]
then with

probability ≥ 1− δ, ∃w ′ = span(z1, z2, . . . , zd) 3 P[‖w ′ · x‖ > γ/2] < ε

Therefore, if ∃w in φ−space, by sampling x1, x2, . . . xn, we are guaranteed:
w ′ = α1φ(x1) + α2φ(x2) + · · ·+ αdφ(xd)
Hence,
w ′φ(x) = α1K (x , x1) + α2K (x , x2) + . . . αdK (x , xd);

If we define F1(x) = (K (x , x1), . . . ,K (x , xd)); then with high probability
the vector (α1, . . . αd) is an approximate linear separator.
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Mapping-2

We can normalize K (x , xi ) and get better bounds.

Compute K = UTU;

Compute F2(x) = F1(x)U−1.

F2 is linearly separable with error at most ε at margin γ/2
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Key take aways

Inner products are enough.

Random projections are good.

Higher the margin, lower the dimension.

If okay with error, we can project to much lower dimension.

While using Kernels, randomly drawn data points act as good
features.
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