Random Projections, Margins, Kernels and Feature Selection

Adithya Pediredla

Rice University Electrical and Computer Engineering

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

•
$$f(x_i) = w^T x_i + b$$

•
$$f(x_i) = w^T x_i + b$$

• Primal: $\min_{w \in \mathcal{R}^d} ||w||^2 + C \sum_{i}^{N} \max(0, 1 - y_i f(x_i));$

・ロ・・(型・・モ・・モ・・ モー うへぐ

•
$$f(x_i) = w^T x_i + b$$

• Primal: $\min_{w \in \mathcal{R}^d} ||w||^2 + C \sum_{i}^{N} \max(0, 1 - y_i f(x_i));$
• Dual: $\max_{\alpha_i \ge 0} \sum_{i} \alpha_i - \frac{1}{2} \sum_{j,k} \alpha_i \alpha_j y_j y_k(x_j^T x_k);$
S.T. $0 \le \alpha_i \le C; \sum_{i} \alpha_i y_i = 0, \forall i$

・ロ・・母・・ヨ・・ヨ・ ・ ヨ・ うへの

•
$$f(x_i) = w^T x_i + b$$

• Primal: $\min_{w \in \mathcal{R}^d} ||w||^2 + C \sum_{i}^{N} \max(0, 1 - y_i f(x_i));$
• Dual: $\max_{\alpha_i \ge 0} \sum_{i} \alpha_i - \frac{1}{2} \sum_{j,k} \alpha_i \alpha_j y_j y_k (x_j^T x_k);$
S.T. $0 \le \alpha_i \le C; \sum_{i} \alpha_i y_i = 0, \forall i$
only inner products matter

・ロ・・母・・ヨ・・ヨ・ ・ ヨ・ うへの

•
$$f(x_i) = w^T x_i + b$$

• Primal: $\min_{w \in \mathcal{R}^d} ||w||^2 + C \sum_{i}^{N} \max(0, 1 - y_i f(x_i)); \mathcal{O}(nd^2 + d^3)$
• Dual: $\max_{\alpha_i \ge 0} \sum_{i} \alpha_i - \frac{1}{2} \sum_{j,k} \alpha_i \alpha_j y_j y_k(x_j^T x_k); \mathcal{O}(dn^2 + n^3)$
S.T. $0 \le \alpha_i \le C; \sum_{i} \alpha_i y_i = 0, \forall i$
only inner products matter

・ロ・・(型・・モ・・モ・・ モー うへぐ

• Only inner products matter.

- Only inner products matter.
- Can we approximate x_i with z_i so that $\dim(z_i) << \dim(x_i)$ and $x_i^T x_j \approx z_i^T z_j$.

・ロ・・母・・ヨ・・ヨ・ うへぐ

- Only inner products matter.
- Can we approximate x_i with z_i so that $\dim(z_i) << \dim(x_i)$ and $x_i^T x_j \approx z_i^T z_j$.
- One way $z_i = Ax_i$.

・ロ・・母・・ヨ・・ヨ・ うへぐ

- Only inner products matter.
- Can we approximate x_i with z_i so that $\dim(z_i) << \dim(x_i)$ and $x_i^T x_j \approx z_i^T z_j$.
- One way $z_i = Ax_i$.

Any comment on rows vs columns of A.

・ロ・・師・・用・・日・ のへの

- Only inner products matter.
- Can we approximate x_i with z_i so that $\dim(z_i) << \dim(x_i)$ and $x_i^T x_j \approx z_i^T z_j$.
- One way $z_i = Ax_i$.

Any comment on rows vs columns of A.

• Turns out a random A is good !!

・ロ・・日・・日・・日・ シック

• If
$$d_{new} = \omega(\frac{1}{\gamma^2} \log n)$$
, relative angles are preserved up to $1 \pm \gamma$.

If d_{new} = ω(¹/_{γ²} log n), relative angles are preserved up to 1 ± γ.
How big can γ be?

which data set can have higher γ

- 5

・ロト ・日ト ・ヨト ・ヨト

which data set can have higher γ

・ロ・・聞・・聞・・聞・ 「四・・日・

which data set can have higher γ

A simple weak learner whose speed is proportional to margin. **step 1:** Pick random h.

step 2: Evaluate error in step 1. If error $< \frac{1}{2} - \frac{\gamma}{4}$, stop else, goto step 1.

・ロト・4日・4日・4日・日 のへの

A simple weak learner whose speed is proportional to margin. **step 1:** Pick random h.

step 2: Evaluate error in step 1. If error $< \frac{1}{2} - \frac{\gamma}{4}$, stop else, goto step 1. Bigger the margin, lesser the iterations

・ロ・・母・・ヨ・・ヨ・ うへぐ

() Choose columns to be D random orthogonal unit-length vectors.

- Choose columns to be D random orthogonal unit-length vectors.
- **2** Choose each entry in A independently from a standard Gaussian.

- Choose columns to be D random orthogonal unit-length vectors.
- **②** Choose each entry in A independently from a standard Gaussian.
- Schoose each entry in A to be 1 or -1 independently at random.

- Choose columns to be D random orthogonal unit-length vectors.
- **2** Choose each entry in A independently from a standard Gaussian.
- Solution Choose each entry in A to be 1 or -1 independently at random.

For (2) and (3):

$$Pr_{\mathcal{A}}[(1-\gamma)\|u-v\|^2 \le \|u'-v'\|^2 \le (1+\gamma)\|u-v\|^2] \ge 1 - 2e^{-(\gamma^2-\gamma^3)\frac{d}{4}}$$

- Choose columns to be D random orthogonal unit-length vectors.
- **2** Choose each entry in A independently from a standard Gaussian.
- Schoose each entry in A to be 1 or -1 independently at random.

Can we do better?

・ロ・・母・・ヨ・・ヨ・ シック

If $Pr(error < \epsilon) < \delta$

If
$$Pr(\operatorname{error} < \epsilon) < \delta$$

$$d = \mathcal{O}(\frac{1}{\gamma^2}\log(\frac{1}{\epsilon\delta})) \text{ is sufficient.}$$

• What if we know that $K(x_1, x_2) = \phi(x_1)\phi(x_2)$?

- What if we know that $K(x_1, x_2) = \phi(x_1)\phi(x_2)$?
- What if we do not?

- What if we know that $K(x_1, x_2) = \phi(x_1)\phi(x_2)$?
- What if we do not? Finding Inner products approximately is enough

- What if we know that $K(x_1, x_2) = \phi(x_1)\phi(x_2)$?
- What if we do not? Finding Inner products approximately is enough
- We need to know the distribution of data set

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

Lemma: Consider any distribution over labelled data.

Lemma: Consider any distribution over labelled data. Assume $\exists w \ni P[||w \cdot x|| > \gamma] = 0.$

Mapping-1

Lemma: Consider any distribution over labelled data. Assume $\exists w \ni P[||w \cdot x|| > \gamma] = 0$. If we draw $z_1, z_2, \dots z_d$ iid with $d \ge \frac{8}{\epsilon} \left[\frac{1}{\gamma^2} + \ln \frac{1}{\delta}\right]$ then with probability $\ge 1 - \delta$, $\exists w' = \operatorname{span}(z_1, z_2, \dots, z_d) \ni P[||w' \cdot x|| > \gamma/2] < \epsilon$

Mapping-1

Lemma: Consider any distribution over labelled data. Assume $\exists w \ni P[||w \cdot x|| > \gamma] = 0$. If we draw $z_1, z_2, \dots z_d$ iid with $d \ge \frac{8}{\epsilon} \left[\frac{1}{\gamma^2} + \ln \frac{1}{\delta}\right]$ then with probability $\ge 1 - \delta$, $\exists w' = \operatorname{span}(z_1, z_2, \dots, z_d) \ni P[||w' \cdot x|| > \gamma/2] < \epsilon$

Therefore, if $\exists w \text{ in } \phi$ -space, by sampling x_1, x_2, \dots, x_n , we are guaranteed: $w' = \alpha_1 \phi(x_1) + \alpha_2 \phi(x_2) + \dots + \alpha_d \phi(x_d)$ Hence,

 $w'\phi(x) = \alpha_1 K(x, x_1) + \alpha_2 K(x, x_2) + \ldots \alpha_d K(x, x_d);$

Mapping-1

Lemma: Consider any distribution over labelled data. Assume $\exists w \ni P[||w \cdot x|| > \gamma] = 0$. If we draw $z_1, z_2, \dots z_d$ iid with $d \ge \frac{8}{\epsilon} \left[\frac{1}{\gamma^2} + \ln \frac{1}{\delta}\right]$ then with probability $\ge 1 - \delta$, $\exists w' = \operatorname{span}(z_1, z_2, \dots, z_d) \ni P[||w' \cdot x|| > \gamma/2] < \epsilon$

Therefore, if $\exists w$ in ϕ -space, by sampling x_1, x_2, \dots, x_n , we are guaranteed: $w' = \alpha_1 \phi(x_1) + \alpha_2 \phi(x_2) + \dots + \alpha_d \phi(x_d)$ Hence, $w' \phi(x) = \alpha_1 K(x, x_1) + \alpha_2 K(x, x_2) + \dots + \alpha_d K(x, x_d)$;

If we define $F_1(x) = (K(x, x_1), \dots, K(x, x_d))$; then with high probability the vector $(\alpha_1, \dots, \alpha_d)$ is an approximate linear separator.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• We can normalize $K(x, x_i)$ and get better bounds.

- We can normalize $K(x, x_i)$ and get better bounds.
- Compute $K = U^T U$;

◆□ → ◆□ → ◆三 → ▲三 → ●● ◆○ ◆

- We can normalize $K(x, x_i)$ and get better bounds.
- Compute $K = U^T U$;
- Compute $F_2(x) = F_1(x)U^{-1}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

- We can normalize $K(x, x_i)$ and get better bounds.
- Compute $K = U^T U$;
- Compute $F_2(x) = F_1(x)U^{-1}$.
- F_2 is linearly separable with error at most ϵ at margin $\gamma/2$

- Inner products are enough.
- Random projections are good.
- Higher the margin, lower the dimension.
- If okay with error, we can project to much lower dimension.
- While using Kernels, randomly drawn data points act as good features.

イロト (部) (日) (日) (日) (日)