# Random Projections, Margins, Kernels and Feature Selection 

Adithya Pediredla

Rice University
Electrical and Computer Engineering

## SVM: Revision

- $f\left(x_{i}\right)=w^{T} x_{i}+b$


## SVM: Revision

- $f\left(x_{i}\right)=w^{\top} x_{i}+b$
- Primal: $\min _{w \in \mathcal{R}^{d}}\|w\|^{2}+C \sum_{i}^{N} \max \left(0,1-y_{i} f\left(x_{i}\right)\right)$;


## SVM: Revision

- $f\left(x_{i}\right)=w^{T} x_{i}+b$
- Primal: $\min _{w \in \mathcal{R}^{d}}\|w\|^{2}+C \sum_{i}^{N} \max \left(0,1-y_{i} f\left(x_{i}\right)\right)$;
- Dual: $\max _{\alpha_{i} \geq 0} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{j, k} \alpha_{i} \alpha_{j} y_{j} y_{k}\left(x_{j}^{T} x_{k}\right)$;
S.T. $0 \leq \alpha_{i} \leq C ; \sum_{i} \alpha_{i} y_{i}=0, \forall i$


## SVM: Revision

- $f\left(x_{i}\right)=w^{T} x_{i}+b$
- Primal: $\min _{w \in \mathcal{R}^{d}}\|w\|^{2}+C \sum_{i}^{N} \max \left(0,1-y_{i} f\left(x_{i}\right)\right)$;
- Dual: $\max _{\alpha_{i} \geq 0} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{j, k} \alpha_{i} \alpha_{j} y_{j} y_{k}\left(x_{j}^{T} x_{k}\right)$;
S.T. $0 \leq \alpha_{i} \leq C ; \sum_{i} \alpha_{i} y_{i}=0, \forall i$
only inner products matter


## SVM: Revision

- $f\left(x_{i}\right)=w^{T} x_{i}+b$
- Primal: $\min _{w \in \mathcal{R}^{d}}\|w\|^{2}+C \sum_{i}^{N} \max \left(0,1-y_{i} f\left(x_{i}\right)\right) ; \mathcal{O}\left(n d^{2}+d^{3}\right)$
- Dual: $\max _{\alpha_{i} \geq 0} \sum_{i} \alpha_{i}-\frac{1}{2} \sum_{j, k} \alpha_{i} \alpha_{j} y_{j} y_{k}\left(x_{j}^{T} x_{k}\right) ; \mathcal{O}\left(d n^{2}+n^{3}\right)$
S.T. $0 \leq \alpha_{i} \leq C ; \sum_{i} \alpha_{i} y_{i}=0, \forall i$
only inner products matter


## Decreasing computations

- Only inner products matter.


## Decreasing computations

- Only inner products matter.
- Can we approximate $x_{i}$ with $z_{i}$ so that $\operatorname{dim}\left(z_{i}\right) \ll \operatorname{dim}\left(x_{i}\right)$ and $x_{i}^{T} x_{j} \approx z_{i}^{T} z_{j}$.


## Decreasing computations

- Only inner products matter.
- Can we approximate $x_{i}$ with $z_{i}$ so that $\operatorname{dim}\left(z_{i}\right) \ll \operatorname{dim}\left(x_{i}\right)$ and $x_{i}^{T} x_{j} \approx z_{i}^{T} z_{j}$.
- One way $z_{i}=A x_{i}$.


## Decreasing computations

- Only inner products matter.
- Can we approximate $x_{i}$ with $z_{i}$ so that $\operatorname{dim}\left(z_{i}\right) \ll \operatorname{dim}\left(x_{i}\right)$ and $x_{i}^{T} x_{j} \approx z_{i}^{T} z_{j}$.
- One way $z_{i}=A x_{i}$. Any comment on rows vs columns of $A$.


## Decreasing computations

- Only inner products matter.
- Can we approximate $x_{i}$ with $z_{i}$ so that $\operatorname{dim}\left(z_{i}\right) \ll \operatorname{dim}\left(x_{i}\right)$ and $x_{i}^{T} x_{j} \approx z_{i}^{T} z_{j}$.
- One way $z_{i}=A x_{i}$. Any comment on rows vs columns of $A$.
- Turns out a random $A$ is good !!


## Johnson-Linderstrauss Lemma

- If $d_{\text {new }}=\omega\left(\frac{1}{\gamma^{2}} \log n\right)$, relative angles are preserved up to $1 \pm \gamma$.


## Johnson-Linderstrauss Lemma

- If $d_{\text {new }}=\omega\left(\frac{1}{\gamma^{2}} \log n\right)$, relative angles are preserved up to $1 \pm \gamma$. - How big can $\gamma$ be?


## which data set can have higher $\gamma$




## which data set can have higher $\gamma$




## which data set can have higher $\gamma$



## How else can big margin help

A simple weak learner whose speed is proportional to margin. step 1: Pick random h.
step 2: Evaluate error in step 1.
If error $<\frac{1}{2}-\frac{\gamma}{4}$, stop
else, goto step 1.

## How else can big margin help

A simple weak learner whose speed is proportional to margin. step 1: Pick random h.
step 2: Evaluate error in step 1.
If error $<\frac{1}{2}-\frac{\gamma}{4}$, stop
else, goto step 1.
Bigger the margin, lesser the iterations

## Dimensionality reduction: random projection

Coming back to random projection. $A_{d \times D}$
(1) Choose columns to be D random orthogonal unit-length vectors.

## Dimensionality reduction: random projection

Coming back to random projection. $A_{d \times D}$
(1) Choose columns to be D random orthogonal unit-length vectors.
(2) Choose each entry in A independently from a standard Gaussian.

## Dimensionality reduction: random projection

Coming back to random projection. $A_{d \times D}$
(1) Choose columns to be D random orthogonal unit-length vectors.
(2) Choose each entry in A independently from a standard Gaussian.
(3) Choose each entry in $A$ to be 1 or -1 independently at random.

## Dimensionality reduction: random projection

Coming back to random projection. $A_{d \times D}$
(1) Choose columns to be D random orthogonal unit-length vectors.
(2) Choose each entry in A independently from a standard Gaussian.
(3) Choose each entry in A to be 1 or -1 independently at random.

For (2) and (3):
$\operatorname{Pr}_{A}\left[(1-\gamma)\|u-v\|^{2} \leq\left\|u^{\prime}-v^{\prime}\right\|^{2} \leq(1+\gamma)\|u-v\|^{2}\right] \geq 1-2 e^{-\left(\gamma^{2}-\gamma^{3}\right) \frac{d}{4}}$

## Dimensionality reduction: random projection

Coming back to random projection. $A_{d \times D}$
(1) Choose columns to be D random orthogonal unit-length vectors.
(2) Choose each entry in A independently from a standard Gaussian.
(3) Choose each entry in A to be 1 or -1 independently at random.

For (2) and (3):
$\operatorname{Pr}_{A}\left[(1-\gamma)\|u-v\|^{2} \leq\left\|u^{\prime}-v^{\prime}\right\|^{2} \leq(1+\gamma)\|u-v\|^{2}\right] \geq 1-2 e^{-\left(\gamma^{2}-\gamma^{3}\right) \frac{d}{4}}$
Can we do better?

## Can we do better

If $\operatorname{Pr}($ error $<\epsilon)<\delta$

## Can we do better

$$
\begin{aligned}
& \text { If } \operatorname{Pr}(\text { error }<\epsilon)<\delta \\
& d=\mathcal{O}\left(\frac{1}{\gamma^{2}} \log \left(\frac{1}{\epsilon \delta}\right)\right) \text { is sufficient. }
\end{aligned}
$$

## Kernel functions

- What if we know that $K\left(x_{1}, x_{2}\right)=\phi\left(x_{1}\right) \phi\left(x_{2}\right)$ ?


## Kernel functions

- What if we know that $K\left(x_{1}, x_{2}\right)=\phi\left(x_{1}\right) \phi\left(x_{2}\right)$ ?
- What if we do not?


## Kernel functions

- What if we know that $K\left(x_{1}, x_{2}\right)=\phi\left(x_{1}\right) \phi\left(x_{2}\right)$ ?
- What if we do not? Finding Inner products approximately is enough


## Kernel functions

- What if we know that $K\left(x_{1}, x_{2}\right)=\phi\left(x_{1}\right) \phi\left(x_{2}\right)$ ?
- What if we do not? Finding Inner products approximately is enough
- We need to know the distribution of data set


## Mapping-1

Lemma: Consider any distribution over labelled data.

## Mapping-1

Lemma: Consider any distribution over labelled data.
Assume $\exists w \ni P[\|w \cdot x\|>\gamma]=0$.

## Mapping-1

Lemma: Consider any distribution over labelled data.
Assume $\exists w \ni P[\|w \cdot x\|>\gamma]=0$.
If we draw $z_{1}, z_{2}, \ldots z_{d}$ iid with $d \geq \frac{8}{\epsilon}\left[\frac{1}{\gamma^{2}}+\ln \frac{1}{\delta}\right]$ then with probability $\geq 1-\delta, \exists w^{\prime}=\operatorname{span}\left(z_{1}, z_{2}, \ldots, z_{d}\right) \ni P\left[\left\|w^{\prime} \cdot x\right\|>\gamma / 2\right]<\epsilon$

## Mapping-1

Lemma: Consider any distribution over labelled data.
Assume $\exists w \ni P[\|w \cdot x\|>\gamma]=0$.
If we draw $z_{1}, z_{2}, \ldots z_{d}$ iid with $d \geq \frac{8}{\epsilon}\left[\frac{1}{\gamma^{2}}+\ln \frac{1}{\delta}\right]$ then with
probability $\geq 1-\delta, \exists w^{\prime}=\operatorname{span}\left(z_{1}, z_{2}, \ldots, z_{d}\right) \ni P\left[\left\|w^{\prime} \cdot x\right\|>\gamma / 2\right]<\epsilon$
Therefore, if $\exists w$ in $\phi$-space, by sampling $x_{1}, x_{2}, \ldots x_{n}$, we are guaranteed: $w^{\prime}=\alpha_{1} \phi\left(x_{1}\right)+\alpha_{2} \phi\left(x_{2}\right)+\cdots+\alpha_{d} \phi\left(x_{d}\right)$
Hence,
$w^{\prime} \phi(x)=\alpha_{1} K\left(x, x_{1}\right)+\alpha_{2} K\left(x, x_{2}\right)+\ldots \alpha_{d} K\left(x, x_{d}\right)$;

## Mapping-1

Lemma: Consider any distribution over labelled data.
Assume $\exists w \ni P[\|w \cdot x\|>\gamma]=0$.
If we draw $z_{1}, z_{2}, \ldots z_{d}$ iid with $d \geq \frac{8}{\epsilon}\left[\frac{1}{\gamma^{2}}+\ln \frac{1}{\delta}\right]$ then with
probability $\geq 1-\delta, \exists w^{\prime}=\operatorname{span}\left(z_{1}, z_{2}, \ldots, z_{d}\right) \ni P\left[\left\|w^{\prime} \cdot x\right\|>\gamma / 2\right]<\epsilon$
Therefore, if $\exists w$ in $\phi$-space, by sampling $x_{1}, x_{2}, \ldots x_{n}$, we are guaranteed: $w^{\prime}=\alpha_{1} \phi\left(x_{1}\right)+\alpha_{2} \phi\left(x_{2}\right)+\cdots+\alpha_{d} \phi\left(x_{d}\right)$
Hence,
$w^{\prime} \phi(x)=\alpha_{1} K\left(x, x_{1}\right)+\alpha_{2} K\left(x, x_{2}\right)+\ldots \alpha_{d} K\left(x, x_{d}\right)$;
If we define $F_{1}(x)=\left(K\left(x, x_{1}\right), \ldots, K\left(x, x_{d}\right)\right)$; then with high probability the vector $\left(\alpha_{1}, \ldots \alpha_{d}\right)$ is an approximate linear separator.

## Mapping-2

- We can normalize $K\left(x, x_{i}\right)$ and get better bounds.


## Mapping-2

- We can normalize $K\left(x, x_{i}\right)$ and get better bounds.
- Compute $K=U^{T} U$;


## Mapping-2

- We can normalize $K\left(x, x_{i}\right)$ and get better bounds.
- Compute $K=U^{T} U$;
- Compute $F_{2}(x)=F_{1}(x) U^{-1}$.


## Mapping-2

- We can normalize $K\left(x, x_{i}\right)$ and get better bounds.
- Compute $K=U^{T} U$;
- Compute $F_{2}(x)=F_{1}(x) U^{-1}$.
- $F_{2}$ is linearly separable with error at most $\epsilon$ at margin $\gamma / 2$


## Key take aways

- Inner products are enough.
- Random projections are good.
- Higher the margin, lower the dimension.
- If okay with error, we can project to much lower dimension.
- While using Kernels, randomly drawn data points act as good features.

