COMP 642 — Machine Learning Jan 20, 2021

Lecture 4

Lecturer: A. Shrivastava Scribe By: Sinead Tracey, Kyle Rewick, Dan Fakin, Zach Lashaway

Disclaimer: These lecture notes are intended to develop the thought process and intuition
in machine learning. The materials are not thoroughly reviewed and can contain errors.

1 Review of Jan-18 Lecture
Logistics
e This is the last online class. In-person instruction starts Jan-25

e TAs were announced and introdcued:

— Keming Zhang (Office Hours every Wednesday 11:00am-12:00pm and Thursday 10:30-
11:30am in McMurtry College Commons)

— Minghao Yan (Office Hours from 3:30pm to 4:30pm every Tuesday at DCH3060)
— Zhaozhuo (Office Hours from 1:30 am to 2:30 am every Monday at DCH3135)

Review of Jan-18 lecture:
Regression classifier and loss function:
Linear function follows the format ax + b:

d
Fy(x) :wTJJer:Zwimier (1)
i=1

Loss function (least square):
L(z) = (Fu(z) —y)? (2)

General Notes on classification versus regression:
e Regression used to predict a number, Classifiction used to predict a class

e Can’t use least square as the loss function for classification. This is illustrated by the
following example:

A O P G
0o 1 2 3

Given sample x; and correct classification y; = G:

e Least square loss function would suggest that y; = P(L(z) = (4 — 3)? = 1) is *more*
correct than predicting y; = A(L(z) = (4 — 0)? = 16)

e This is not correct (one class is not closer to another class in this example)
Therefore, we need to use percetptron (aka linear binary classifier):

e "Perception is usually used to classify data into 2 parts:”?
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e Binary classification:

1 class 2

0/—-1 class 1
- fo

o (Classifier:
Fu(z) = sign(w? = +b) (4)

e Loss function (indicator function adds 1 for every incorrect classification):

1 . n
L= i =1"0r, )y (5)

References

1. What the Hell is Perceptron?: https://towardsdatascience.com/what-the-hell-is-perceptron-
626217814£53
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2 Large Margin SVMs as regularized hinge loss

Recall, binary linear classifiers aim to differentiate observations into 2 categories. The classifi-
cation is accomplished by way of a decision boundary dividing the data space into 2 regions,
where f(w) < 0 and f(w) > 0. The classification boundary, also known as the discriminate,
corresponds to f(w) = 0. In 2D, the boundary is a line whereas it is a plane or hyper-plane in
higher dimensions.

Linear classifiers suffer from what is called the ”Identifiability Problem” whereby multiple
models that lead to 0 training errors exist. Furthermore, the identification of the best model
among the 0 training error options is not possible.

Support Vector Machines

Support Vector Machines (SVMs) are supervised learning models used for binary classifi-
cation problems. They have been successful in classifying observations as either positive or
negative instances by exploiting the concept of regularized hinge loss. Hinge loss is a cost
function that employs a margin from the classification boundary as a measure of confidence.
Observations residing farther from the classification boundary are considered higher confidence
classifications.

The equation for an SVM model is
fw(w) = wlz + wy (6)

The outputs are
§ = sign(fw(w)) € {-1,+1} (7)

Accordingly, the classification boundary whose margin, defined as the perpendicular dis-
tance in both the positive and negative directions from the classification boundary prior to
encountering a point in the training data set, is maximal is selected. The margin is equidistant
from f(w) = 0 in the positive and negative direction and therefore, parallel to f(w) = 0. This
method enables the selection of an optimal model by seeking the boundary with the largest
margin. The margin distance can be defined by constant k as follows

wlez +wy >k when y; =+1 (8)

wle 4wy < —k  when g = —1 9)

The concept in 2D is depicted in Figure 1.

The optimization of an SVM is given by

min C’Zmax((], 1- yi[wTﬂ«"z’ +wol) + A || w H% (10)
i=1
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linearly separable data +
° '

Margin = 2

[[wl|

Figure 1: SVM Margin

The first term is the hinge loss and represents the classification errors. The second term
is the regularization term. The hinge loss is zero if the data point is classified correctly and
increases when data points reside close to the classification boundary inside the margin. A data
point residing on the margin will have a hinge loss of 0 (Figure 2).

penalty (loss) size

_— 0 : —
incorrectly classified ’ correctly classified
distance from boundary

Figure 2: Hinge Loss

The parameter C' is the regularization parameter. The regularization parameter becomes
relevant when data sets are overlapping, i.e. not definitively separable by a classification bound-
ary. This is known as a soft margin SVM. Large regularization parameter values correspond
to smaller margins leading to an increased number of correct classifications. Conversely, large
margins are associated with smaller parameter values and more instances of misclassification.

The distance, dy,(z;), of a data point z; from the line f(w) = w’z; + wp is

wTaci -+ wo

(11)

Zero loss occurs beyond the margin, specifically when,

maz(0,1 — y;[w’ z; + wo]) =0 (12)
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which then implies

yilwh z; + we] = 1 (13)

when a data point is on the margin.

Then, by equation 11,
1 1
dy(z) = = (14)
T yilwllz w2
is the margin distance in either the positive or negative direction. The total margin distance is
2
dp(z) = —— (15)
“ | w [l2

As a result, minimizing the loss function is equivalent to maximizing the margin because
the training errors are fewest when the margin distance is maximal. Mathematically, the loss
function is minimized when the hinge loss term in equation 5 is 0 and the L2 Norm is minimized

. 2
min || w3 (16)
Minimizing the L2 Norm (equation 11) is equivalent to maximizing the margin (equation 10).

N
min [|w[[2+ CY" max (0,1 - y;f(x;))
weRd R

loss function o °

Points are in three categories: Support Vector,

1oyif(zi) > 1
Point is outside margin. o
No contribution to loss

2. yif(z) =1 °
Point is on margin.
No contribution to loss.
As in hard margin case.

3. yif(z) <1
Point violates margin constraint. E
Contributes to loss °

Figure 3: Hinge Loss

References
1. Support Vector Machines:
https://en.wikipedia.org/wiki/Support-vector-machine

2. Support Vector Machine (SVM) Theory:
https://www.commonlounge.com /discussion /a49bcd907bdc4824ae53483c060f0259

3. Understanding Hinge Loss and the SVM Cost Function:
https://programmathically.com/understanding-hinge-loss-and-the-svm-cost-function/

4. A definitive explanation to the Hinge Loss for Support Vector Machines:
https://towardsdatascience.com/a-definitive-explanation-to-hinge-loss-for-support-vector-
machines-ab6d8d3178f1
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3 Set up to Regularization

Summary of Margins

e Margin:
Ve, 3D f(z;) > k Vz; where y; =1 f(z;) < —k Va; where y; =0

e Best practice is to choose a classifier with the maximum margin K

e The classifier that is most robust to perturbation (on the training data set) has the
maximum margin which is a unique solution

e We want to maximize K (2k) — > margin, such that:

wTari + b

> k when y; =1, and
wlz; + b < —k when y; = —1

n constraints => {

- *If you know your margin is K, also want to maximize the number of constraints that
are also being satisfied

Translation:

- For all positive data points, k is the distance one can go without touching them

- For all negative data points, -k is the distance one can go without touching them
Assumptions:

- Constraint that we have at least k margin (k can be as small as 0 or as large as infinity)
- Assuming separable data (0 training error on the training data)

Issues:

- If you artificially scale w, i.e. multiply w”z;*100, K will increase

e max K (2k) equation then becomes:

wle; +b
’LUT:Ei +b

min||w||2(norm \/w2+w2+...w2, such that:
frlletmorm) -y { 1, Vi) y = 0

>
<

e You want a classifier that separates the data and minimizes the norm. More specifically,
in machine learning you want to not only minimize the loss function, but also the norm
of your classifier

e Minimizing the norm makes your classifier robust to perturbations, and leads to a unique
classifier

This is REGULARIZATION.
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4 Issues with Linear Classifiers

Linear classification at first might appear simple given the simplicity of the algorithm.
fz)=wlz+b (17)

However, the difficulty is in training the linear classifier, that is, in determining the parameters
w and b based on the training set.

Perceptron networks have several limitations. First, the output values of a perceptron can
take on only one of two values (0 or 1) because of the hard-limit transfer function. Second,
perceptrons can only classify linearly separable sets of vectors.

SVM (support vector machine) has several limitations such as: SVM algorithm is not ac-
ceptable for large data sets, does not execute very well when the data set has more sound i.e.
target classes are overlapping, in cases where the number of properties for each data point
outstrips the number of training data specimens, SVM will under-perform.

As the support vector classifier works by placing data points, above and below the classifying
hyperplane there is no probabilistic clarification for the classification.

5 XOR Problem

4 ’
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Figure 4: XOR Problem

Can never have a linear classifier that results in zero training error. However, in a higher
dimension space can always have a solution.
For example consider an extended feature space such as:

Instead of an input vector x, make use of a feature vector v, with three elements, x1, x2, and x1z9
These non-linear features allow linear classifiers to solve non-linear classification problems.

This is analogous to polynomial curve fitting as well as Support Vector Machines wherein we

use kernels to lift the feature vector space.

3D Example:
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Figure 5: XOR Problem

Observe how the green points are below the plane and the red points are above the plane.
This plane is nothing but the XOR operator’s decision boundary.

So, by shifting our focus from a 2-dimensional visualization to a 3-dimensional one, we are
able to classify the points generated by the XOR operator far more easily.

This exercise brings to light the importance of representing a problem correctly. If we
represent the problem at hand in a more suitable way, many difficult scenarios become easy to
solve as we saw in the case of the XOR problem. Let’s understand this better.

References

1. https://nlp.stanford.edu/IR-book/html/htmledition/linear-versus-nonlinear-classifiers-1.html

2. https://www.mathworks.com/help/deeplearning/ug/perceptron-neural-networks.html;jsessionid={207eed6d4
3. https://www.geeksforgeeks.org/support-vector-machine-in-machine-learning/ 4. https://www.tech-
quantum.com/solving-xor-problem-using-neural-network-c/ 5. https://datahacker.rs/006-solving-
the-xor-problem-using-neural-networks-with-pytorch/
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6 Overfitting

What is overfitting?

e Overfitting occurs when a model is constraint to a training set and not able to perform
well on unseen data (FigX, FigXc). Conversely, if our model is too simple, or has not
been trained long enough.

e Overfitting can be caused by:

- An overly complex model that that is predicting noise

- The search domain for the model function is large and there is not enough data to
constrain the search

- If you have lots of data, you see then phenomena of Double Descent (see Section 1)

Generalizing
1

Training Data |1
Test Data :
1
1
| : /Bad
3 | / (Overfitting)
Ay ’ : ‘-.
N\
\"--\. )
vl
Progress ——*

Figure 6: Schematic graph of model progress vs. loss. The model generalizes very well in the
training data but cannot replicate results in Test Data
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Figure 7: Schematic showing examples of underfitting, overfitting, and approriately fit date.
Modified from GeeksforGeeks: Regularization in Machine Learning
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7 Regularization and Model Constraint

What is Regularization?

e Regularization is introduced when you do not have a unique solution or you suspect that
your model is overfitting. It does this by penalizing unnecessary complexity in our model.

e The four most common types of regularization are:
- L1 (Lasso Regularization)
- L2 (Ridge Regularization)
- **More Data!

- Dropout *not covered (see bibliography for more information)

How does Regularization work?
In general, for a linear classifier, we add a penalty term to the loss function in form the
norm scaled by some value A

e L1 - Lasso Regularization

L(fw () = 3 (Fulwi) — i) + A= bl

i=1

- Gradients of parameters for L1 are independent of parameters, so some parameters can
be set to 0, or effectively ignored. May use this type of regularization when there are
useless features in your model.

¢ L2- Ridge Regression
1 n
L{fw(@) = o> (Fu(@) = 3i)* + A< ul,

i=1

- Gradient of the loss function is linearly dependent, so parameters can never be 0. Every
parameter has a minimal effect on the model.
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Adding More Data: How do we add more constraint to out data?

Remember, overfitting is caused by lack of constraint in the search space of an optimal
function. How can we fix this?

e Add more data - New features

e Augment current data

- Create more data from the data you already have by applying transformations. This will
make multiple versions of the dame feature that are different resulting in ”more” data!

XOR Problem in 1 dimension

L L
1 1
+ o+ o+

| I |
L B |
- - -+ o+ 4

Linearly separable in 2 dimensions

L
Transform x = ->[x,x2 ] 1

Figure 8: Schematic showing 1D XOR. If we apply a linear transformation to x, we can achieve
separability in 2D

- List of popular transformations: https://docs.fast.ai/vision.augment

e VC Dimension of a classifier
- Measure of how complex a model is

- Intuition is that if you give more parameters to a model, you can fit any training data.
Also see Section 1 ”Double Descent”.

References

1. Regularization Dropout In Deep Learning: https://towardsdatascience.com/regularization-
dropout-in-deep-learning-5198c2bf6107

2. List of popular transformations: https://docs.fast.ai/vision.augment

3. Regularization in Machine Learning: https://www.geeksforgeeks.org/regularization-in-
machine-learning/

4. Regularization. What, Why, When, and How? https://towardsdatascience.com/regularization-
what-why-when-and-how-d4a329b6b27f
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8 Overparameterization: The phenomena of Double Descent 2
e Classical machine learning (ML) models assumed that ”larger models are worse”

e This is illustrated by the following image (from Double Descent - URL in sources). The
x-axis describes model complexity:

under-fitting over-fitting

. Test risk

~ o Training risk
sweet spot_ o+ —

-
—

Capacity of H

Figure 9: Classical ML
e As we increase capacity / complexity: we overfit the training data but does not fit the
test risk well past a specific complexity

e Classical ML taught that models should be developed at the "sweet spot” (see image) to
minimize test risk and training risk

e In contrast, more modern ML algorithms tend to display the following trends:

under-parameterized /\ over-parameterized

“classical” “modern”

interpolating regime

Risk

~ Training risk:
S~ . _interpolation threshold
ol <

Capacity of H

Figure 10: Double Descent

e Note that this figure matches the classical image to a point called the *interpolation
threshold.* However, beyond that point the risk decreases for the test dataset.

— This implies that simpler may NOT be better for modern ML algorithms (ie nueural
networks)

— More complex models with a larger number of parameter may in fact be better for
modern machine learning models
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References

1. Double Descent: https://medium.com/mlearning-ai/double-descent-8f92dfdc442f
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