COMP 642 — Machine Learning Jan 25, 2022

Lecture 5: Deep Learning: Logistic Regression

Lecturer: Anshumali Shrivastava
Scribe By: Kristina Sanclemente, James Kafer, Tess Houlette, and Sarah McDonnell

Disclaimer: These lecture notes are intended to develop the thought process and intuition
in machine learning. The materials are not thoroughly reviewed and can contain errors.

1 Multi-Class Classification: One-vs-All

A multi-class classification is a classification technique that allows us to categorize data with
more than two class labels. Trained multi-class classifiers are able to predict labels for test
data based on those that are present in training data. One-Vs-All Classification is a method
of multi-class classification. It can be broken down by splitting up the multi-class classification
problem into multiple binary classifier models. For k class labels present in the dataset, k
binary classifiers are needed in One-vs-All multi-class classification.

Since binary classification is the foundation of One-vs-All classification, here is a quick review
of binary classification before we explore One-vs-All classification further.

1.1 Review of Binary Classification Model

In binary classification, the given data D = {z;,y;}"; is classified into two discrete classes:

o 0 class 1
vi= 1 class 2

Binary classification problems requires only one classifier and its effectiveness is easily visualized

and understood using a confusion matrix.’.

Predicted Class
Normal Attack

" E True Negative False Positive
R (TN) (FP)
S| %
=
2|
< g False Negative True Positive

2 (FN) (TP)

If you can solve a binary classification problem, you can solve a multi-class classification

problem.

"https://towardsdatascience.com/demystifying-confusion-matrix-confusion-9e82201592fd

5: Deep Learning: Logistic Regression-1

1.2 One-vs-All Classification

Again, one-vs-all classification breaks down k classes present in our dataset D into k binary
classifier models that aims to classify a data point as either part of the current class k; or as
part of all other classes. Each model can discriminate the i class with everything else.

Example: Suppose you have classes A, B, and C. We will build one model for each class:

Model 1: A or BC
Model 2: B or AC
Model 3: C or AB

Another way to think about the models is each class vs everything else (hence the name):

Model 1: A or not A
Model 2: B or not B
Model 3: C or not C

A visual representation of One-vs-All classification can be seen below?.

One-vs-all (one-vs-rest): %2 &:‘1
p T ~0 - _
K “ Xx *] o o
DD - . 07 =
O 030
> ! >
X1 . X
Class 1: ~ 00 Xox
Class 2: X
Class 3: Red O
Xy

1.2.1 Confidence (or score) about a Prediction

The Problem: Suppose your confidence that the chances a data point belongs to Class 1 is
very low. Logically, we know this should increase our confidence that this particular data point
belongs to all the other classes. However, in One-vs-All classification, each binary classifier
(Perceptron) is completely independent from all other & — 1 classifiers that have been built to
model the dataset at hand, meaning the probabilities output from each binary classifier need

not sum to 1.

The Solution: Logistic Regression

https:/ /towardsdatascience.com /multi-class-classification-one-vs-all-one-vs-one-94daed32a87b

5: Deep Learning: Logistic Regression-2

2 Logistic Regression

Note: Although named Logistic ”"Regression”, it is used for classification.

2.1 What is Logistic Regression?

Logistic Regression is a classification algorithm used when the dependent (target) variables are
categorical in nature- meaning the data can be grouped into discrete outputs {0, 1,...,k — 1}.
Since we are dealing with categorical variables, logistical models must be used to map proba-
bilities to predicted labels of the data. Examples of Logistic Regression classification include
spam detection in email, cancer detection, and credit fraud detection.

There are three types of Logistic Regression:

1) Binomial: Where target variable is one of two classes
2) Multinomial: Where the target variable has three or more possible classes
3) Ordinal: Where the target variables have ordered categories

Out of the three types, logistic regression is most commonly used for predicting binary target
variables. This lecture scribe will focus on Multinomial classification and briefly touch on
Binomial classification.

2.2 Activation Functions used in Classification

Classification activation functions map probabilities of an outcome to categorical values. We
will explore the Softmax Function and briefly the Sigmoid Function, which is a special case of
the Softmax Function.

2.2.1 Softmax Activation Function

The Softmax function can be used in multi-class classification problems where the goal is to
predict a single label from multiple classes. Let us make the assumption that the probability
that = belongs to a certain class 7 is proportional to an exponential function as follows:

P(x belongs to class i) oc (@)
There are many reasons why people like e:

e It is easy to take the derivative of and you can take n number of derivatives with it.
e It is very sensitive. (or spiking)

e It has been proven to work really well in practice over time by many people.

In order solve the independence problem described in All-vs-One classification, we have to en-
force proportionality and dependence in the outcomes of each class. This is done by normalizing
e(@wi) from our previous proportionality assumption:

(zw;)
a(z;) = softmax(z;) = _c 7 2 =T w; (1)

Zk 0 e(mwj)’

Jj=

5: Deep Learning: Logistic Regression-3

Note: zw; is exactly what was used before: Fj(x) = w”x (expression can be written in

different orientations depending on shape of input matrices W and X). zw; could be used, and
it might give us a very good classifier.

Whatever score the numerator was, it has now been forced into a probability. This can be
seen as a probability distribution because sum of all the probabilities of each class z; will equal
1. Because of this, if a classifier has a high confidence on one of the classes, it automatically
implies that it cannot have a very high confidence on other classes.

For example, for a 3 class classification, if the probability of one class is 0.6, this implies the
sum of the probabilities of the other two classes must equal 0.4. The output probability of each
class from softmax function is translated into a prediction of the label and then compared to
the true label of the data. There is a full example in Section 2.3.

2.2.2 Sigmoid Activation Function

The Sigmoid function is commonly used for classification of binary responses in Logistic Re-
gression and is a special case of the Softmax where k = 2. It is a mathematical function that
takes any real number and maps it to a probability between 1 and 0.

Note: In cases of multi-class classification (such as One-vs-All) that use a concatenation of
binary logistic sigmoid functions, the sum of the probabilities of each model does not necessarily
equal 1. This is different from the Softmax function.

Here is the equation for the Sigmoid Function:

1
f(x) = sigmoid(x) = =
As shown in Figure 12, the Sigmoid func-
tion forms an S shape curve. As =z — 1
oo, the probability becomes 1. As z —
—o0, the probability becomes 0. The
model determines what range of proba-
bility is mapped to which binary wvari- 0.5
able. For example, in Figure 1, the
threshold was set at 0.5. So a proba-
bility greater than 0.5 would map to one

of the outcomes whereas a probability less L L 6 I | J
than 0.5 would map to the other out- -6 —4 =2 0 2 4 6
come.

Figure 1: .

Additional reference material for the Sigmoid

function can be found in this blog® which gives a simple overview of the Sigmoid function in
relation to Logistic Regression. A comparison of the Sigmoid and Softmax functions can be
found in this blog?.

Shttps: //www.educative.io/edpresso/what-is-sigmoid-and-its-role-in-logistic-regression
“https://medium.com /arteos-ai/the-differences-between-sigmoid-and-softmax-activation-function-
12adee8cf322

5: Deep Learning: Logistic Regression-4

2.3 Cross-Entropy Loss Function for multi-class classification

Any loss function is a ”measure of goodness” between two functions: a predicted and expected
target. This is usually in the form of an average distance between the two.

For multi-class classification with logistic regression, both the predicted and expected targets
are probability distributions. Therefore, the distance used in the loss function can be derived
from Kullback-Leibler (KL) Divergence. KL Divergence is a measure of distance between two
probability distributions and takes the form:

=" P(a)log(= " P(x)log(P(x)) = Y _ P(x)log(Q(x))

where P(x) represents the expected target and QQ(x) represents the predicted target.

When computing the loss function for different models, we will always have P(x) and the only
difference is Q(x). Therefore, we can ignore any ”constants” that do not rely on Q(x).

:—ZP)log(Q(x))

Replacing with our notation we obtain the Cross-Entropy Loss Function:

N K
=> >~y xlog(ap)

n=0 k=0

where

e Loss function (£)

e Number of features (D), indexed by (d)

e Number of samples (N), indexed by (n)

e Features (x) as a (N by D) matrix

e Number of target classes (K), indexed by (k), with specific target (t) € (T)

e True Values (y) hot-encoded as a (N by K) matrix where, for a given n, Zfzo(yg) =1
o Weights (w) as a (D by K) matrix, initialized to random numbers between 0 and 1.

e Net features (Logits) (z): x-w as a (N by K) matrix

e activation (a) for multi-class classifier uses softmax:

exp(zt)

ZkK:O exp(zy)

a(z)y = ,

5: Deep Learning: Logistic Regression-5

2.3.1 Example with Visualization: multi-class Classification with softmax activa-
tion

Run through Loss function:
+ Compareytoa

Example:
Given:
One sample, N=1
T={0,1,2},s0K=3
x=[x0,x1],soD=2
y = [y0, y1, y2], one-hot coded
Run through Softmax activation v [{ﬂgﬂiﬁ?}]

a=[a0, al, a2]

Net features:

(This is NOT another layer; this is just an intermediate calculation)
Z2=[20,71,72]
20 = (x0*W00) + (x1*w10)
Z1 = (x0*w01) + (x1*w11)
72 = (x0*WO02) + (x1*w12)

Softmax activation:
a=[a0, al, a2]
b =exp(Z0) + exp(Z1) + exp(Z2)
a0 =exp(Z0) /b
al=exp(Z1)/b
a2=exp(z2)/b

3 Note

The end of the lecture recaps XOR problem (see notes from lecture 3 or 4) and introduces deep
learning (see notes from lecture 6)

5: Deep Learning: Logistic Regression-6

