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Disclaimer: These lecture notes are intended to develop the thought process and intuition
in machine learning. The materials are not thoroughly reviewed and can contain errors.

1 Supervised Learning

We will start with the most popular form of machine learning. Supervised learning subsumes
all attractive models and applications that we hear.

1.1 Supervised Data and Problem Definition

We will continue with our house price prediction example. Data is part of the problem definition
and input to the program. We will first define the problem, and the notion of data naturally
follows.

A dataset of n pairs of objects and labels {xi, yi}ni=1. Here xi represents the Features of
object xi, typically it is a vector in d (for some d) dimensions Rd or xi = {xi1, xi2, ...., xid}.
In our house price prediction problem object xi will denote the house and xi1 can be say no of
bedrooms, xi2 can be no of bathrooms, xi3 could be heating type in the house, xi4 could be lot
size of house xi, etc. yi is the Target variable. It can be vector or scalar. For simplicity we
can start with a single variable. In our house price prediction problem, yi is the price that we
want to predict.

The Problem: Given a dataset of n pairs of object and labels {xi, yi}ni=1, design a program
F that takes a feature vector as input, such that given a new object with feature vectors given
by xtest when we can calculate the value of the program (or function) F(xtest), it is a very good
estimate of the target variable ytest.

Few Notes:

• Dataset is part of problem definition and the design process.

• The success of program F depends on the quality of data. Garbage in Garbage out
principle.

• Most machine learning courses define data as i.i.d draw from some distribution. The
assumption that a fixed distribution exists is itself restrictive but needed to define gener-
alization formally. Also, data samples being i.i.d drawn seems far from reality. For this
course, there is no need to define the data formally.

1.2 Model

Note, our program is a function, it is consuming an input vector xtest and returns a number
ŷtest which is an estimate for the actual target ytest. The function, or the program F , is called
the Model.
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Thus machine learning can be formulated as a search problem. From a set of, say, all
exciting functions that can be designed, find a function F that gives a ”good (or best)” result.
So far, we haven’t defined ”good (or best)” yet, and we will do that next.

Example: Say we have only three possible functions (oversimplification) {F1,F2,F3}, can
you device a strategy to pick the best function for a given data-set {xi, yi}ni=1? (We will need
a loss function.)

1.3 Loss Function as a measure of goodness. Validation and Test Data set
for Evaluations

We need a measure to compare two models F1 and F2.
Natural Idea: We know that F(xi) is the models prediction for object features xi and it
should be ”close” to yi, and this should hold for all the examples xi in the dataset. We can
define the measure of goodness of a function F as follows

L(F) =
1

n

n∑
i=1

dist(F(xi), yi),

here distance is any distance. In our house price prediction, we know that yi is a one dimensional
number. We can use the standard euclidean distance where dist(F(xi), yi) = (F(xi)−yi)

2. The
distance is problem dependent, for example later we will see for classification we use cross en-
tropy loss which is closer to KL divergence distance.

Clearly, we prefer F1 or F2 depending on whichever has a lower value of the loss.
Caveat: Remember, the model F is any function or program and hence can even return a
simple map of key-value pairs given by (xi, yi) ∀ i. It will give us 0 for the loss value, the best
possible value. However, it is useless because it cannot predict anything outside the dataset.
(Dumb memorization).

To avoid that, we create a partition of the data {xi, yi}ni=1 into the train and test set. We
develop and find the model F using only the train set, and we evaluate the loss on the test
set. The loss of F on the train is called train loss, and the loss on the test set is called test
or holdout loss. Since the model never sees xi from the test set, dumb memorization will not
work on test loss. The loss on the test set also measures how well the model generalizes to data
samples it has never seen before.

In practice, we also use a validation set, a third partition, and its use will be more apparent
when we go into experiments.

2 How to find a ”good” Model? Iterative Descent Algorithms

If someone gives me a small finite set of potential models, we can always find the best. However,
we want to search for a much larger class. Ideally, all possible functions, but that is impossible.
We want to search through a broad class of functions likely to contain a ”good enough” function
(or model).

So we pick a family of models: Linear, Neural Networks, Decision Trees, etc. (they will
become clearer later). We usually define a family of models. Then we “try” to pick the best
model from the family. Usually, the easiest way to find a “reasonable” class of models is to
define a parameterized family.
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For example: We can find the best model F from a linear family Fw(x) = wTx =
∑d

i=1wi×
xi, or say a quadratic family Fw(x) =

∑d
i=1wi × xi +

∑i,j=d
i,j=1 wij × xi ×Xj . here w is any real

vector. Thus, our class of functions have infinite functions (or models).
Once, we pick the model class, parameterized by w, the goal can be formally stated: Goal:

Find a w which minimized the loss L(Fw) =
1
n

∑n
i=1 dist(Fw(xi), yi) or formally

w∗ = argmin
w

N∑
i=1

dist(Fw(xi), yi),

we then return Fw as our program or model.

2.1 How do I find a minimum of a parametric function?

Clearly, we are looking at finding an assignment to the parameters w that minimizes the loss
function. We should note that the variable is w and not x. x is data and is given to us.

High School Memory: Compute Gradient with respect to w, and equate to 0, etc., etc.
Thinkable with well-chosen functions. We won’t be able to find a closed-form solution with
almost all interesting models. When we equate to 0, we won’t be able to solve that equation.
In high school, we were only given solvable things, and most optimization in real machine
learning is not solvable in closed form.

Figure 1: .

Savior: Iterative Methods In High
School: Single variable functions, finding
roots, tangent-secant, Netwon-Raphson, etc.
All these methods, start from w0, find suc-
cessive wt, such that f(wt) < f(wt−1), the
process will always converge. We can dis-
cuss if the convergence is good or not later.
But it will converge or stop making reason-
able progress after a while.

In one dimension there are only two
directions: Assuming f is continuous. We
have only two directions to move wt, positive
or negative, wt+δ or wt−δ (δ > 0). A simple
idea is to pick δ small enough such that we can
always find a better wt+1 unless wt is already
local minimum.

wt+1 =

{
wt + δ if f(w + δ) ≤ f(w)
wt − δ otherwise.

(1)

In more than one dimension there are infinite directions: If wt is a vector, we have
infinitely many possible δ choices. Good news: It turns out half of them will lead to a decrease
in the function value. Why? (see next, either they have a positive projection with the gradient
vector or a negative projection), but we can randomly pick a few directions and test them.
We saw a python notebook (in Assignment 1) in the class where we randomly probed from 8
random directions to get a direction of decrease.
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2.2 Gradients: Direction of Steepest Descent

It turns out that there is a sure-shot way to find a very good direction to reduce the function
value, provided we can compute its gradients. Since we have a function over vectors, we can
approximate as small change in the direction δ⃗, where δ⃗ is a unit vector, via Taylor series as

f(w⃗t + ηδ⃗) = f(w⃗t) + η(δ⃗ · ⃗∇f(w)|wt) + higherorderterms

Here ⃗∇f(w)|wt = ⃗∇f(wt) is the gradient vector evaluated at wt, assuming it exits. This

approximation clearly states that the magnitude of change is given by (δ⃗ · ⃗∇f(wt)). Thus, if the

unit vector’s direction δ⃗ is aligned with − ⃗∇f(wt) we will see the smallest value of f(w⃗t + ηδ⃗).
Thus, for small enough η, we have a simple iterative Gradient Descent Algorithm to

minimize a function f(w), where we start with random w0 and iteratively calculate wt, given by

wt+1 = wt − η∇f(wt)

Some points of ponder:

• Gradient Descent wont make progress if you reach any (Local) Minima (where the gradient
∇f(w)|wt = 0

• If you reach any minima, gradients will be zero, and you will not make any update.

• Close of minima, the gradients will be small, and progress will be slow.

• The reduction is guaranteed if the step size is infinitesimal, but then the progress will also
be infinitesimal. Large step size may overshoot.

2.3 Ideal Step Size and Oscillations

We have been saying η is small enough to ensure that we find a better f(wt+1) < f(wt). We
can ask, what is the best η and the answer is another optimization given by,

η∗ = argmin
η

f(wt + η∇f(wt))

The above optimization, which simply calculates the maximum possible decrease that can
happen in a given direction ∇f(wt) may be even harder than the original optimization.

2.3.1 Higher order approximation and why they are almost always prohibitive.

It is possible to get a better mathematical update by doing higher order Taylor series approxi-
mation

f(w⃗t + ηδ⃗) = f(w⃗t) + η(δ⃗ · ⃗∇f(w)|wt) +
η2(∇2)vec(f(w))

2
+

∞∑
n=3

ηn(∇n)vec(f(w))

n!

If we truncate the Taylor series at second order (quadratics), we get what is called Newtons
update. Note we cannot go beyond quadratics because we don’t have closed-form solutions
anymore. High School Wisdom: We can always minimize quadratics in closed form but not
beyond that. This is the only reason why second-order methods are the only ones we find in
books and not beyond that. Computation-wise, even second-order methods are barely worth
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the efforts.

In a head-to-head comparison, the second-order method is likely to be slower than
first-order: Second-order methods require computing the inverse of a second derivative matrix
(also called Hessian a dxd matrix). This cost is almost always not justifiable over first-order
methods. When we do one update with the second-order method (require O(d3) operations due
to inversion), we can do d2 steps of straightforward gradient descent, which will almost always
result in a faster algorithm. The best way is to verify the wall clock time execution of these
two methods (left to exercise if you are interested)

2.3.2 Total Cost = Cost per Update x No of Updates

Reducing the no of steps to convergence need not be faster. For example, Method 1 can take
100 steps, but each step is 20x costly. This optimization will be slower than Method 2, taking
300 steps but with a less costly update step!. Exception: when we have additional parallelism
while calculating the update. However, giving additional parallelism to computing gradients
implies we are not using “enough data parallelism” which we will discuss later in the course.
We can also state the same as follows:

Total Cost = Cost to find a direction and move x No of times we move

3 Batch Gradient Descent: Even a gradient computation may
not be worth it.

We need a ”good enough” direction to move: Coming back to the problem of minimizing
loss. Our loss is a function over parameters w, which is an average over the n data points.

L(F)w =
1

n

n∑
i=1

dist(F(xi), yi),

the gradient of this is another average

∇wL(F)w =
1

n

n∑
i=1

∇Wdist(F(xi), yi),

Clearly, the total cost to compute a gradient O(n) as it requires computing the gradient
over all the n data samples {xi, yi} and averaging them. Clearly if n is large (big dataset), this
is prohibitive. In many application reading the full data itself is the primary cost.

A simple idea, and one of the most powerful which makes machine learning practical on
large dataset is the “heuristic” of approximating the average gradient by picking a small sample
of data and only averaging the gradient over it. Thus, we pick a random small fraction of k ≪ n
data samples {xi, yi}ki=1 and return

∇wL(F)w =
1

k

k∑
i=1

∇Wdist(F(xi), yi),

as a good enough direction for update. When k = 1 we have a popular name of the method
known as Stochastic Gradient Descent.
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Tradeoffs: When k, also called Batch Size, is big, the cost of update is more but the
gradient direction is better and will require less total number of updates. On the other hand,
when k is small, the cost of update is less but the direction is more noisy and may not always
results in good decrease leading to more number of updates.

Ideally, we want more samples to average, but cannot afford to read and average over large
data samples in many applications.

There is no good recommendation for k: However, just like every other hyperparam-
eters in machine learning, including step size, the ideal choice of k is a mystery. What works
best for the problem at hand is always determined by experimental evaluations. Having said
that many popular pipelines use 128 to 256 most of the time.

4 Idea of Running Average and momentum as a cheap proxy to
get better gradient estimates. We already calculated some-
thing in the last few steps that can be useful

So let say, we are at wt we randomly sampled k data points, compute the gradient approximate
with batch size k as ∇f(wt). Then we make a move to wt+1 = wt − η∇f(wt). Now we again
used batch size k to calculate ∇f(wt+1). Here, assume that wt and wt+1 are not very far

wt+1 ≃ wt, then
∇f(wt)+∇f(wt+1)

2 is a better gradient estimate. Why? (We are averaging over
a larger random sample set of effectively 2k, but we don’t pay the cost of a bigger average as
we already calculated ∇f(wt) on a random sample before.). In fact, we can even think about
∇f(wt−1)+∇f(wt)+∇f(wt+1)

3 .,

4.1 Decay to discount for old gradients. Stale gradients should be treated
appropriately

Clearly, if we are at wt, we want to give more weights to recent gradient ∇f(wt) as compared
to a slightly old ∇f(wt−1) because we have moved from wt−1 and that information is stale.
Ideally, we can re weight the average to reflect this kind of intuition by giving more weights
to recent gradients and less weight to older gradients as β∇f(wt) + (1 − β)∇f(wt+1), with
beta < 0.5. The older the gradient should decay more.

Running Average, we don’t need to store all past gradients: We can change our
gradient descent to be something like this: start with w0 at step t, we have wt, calculate
∇f(wt), keep one additional vector (they call is momentum, we remember our past direction)
mt = βmt + (1− β)∇f(xt), for some appropriate β < 1, and the do gradient descent as

xt+1 = xt − ηmt

Exercise: Note the decay is automatic. The weight of ∇f(wt−1) is in the average is β,
∇f(wt−1)’s weight is β2, ∇f(wt−2)’s become β3, etc. They are exponentially decaying. We
really don’t have much choice, because we don’t have the resource to memorize every ∇f(wt),
we can keep a running sum thought.

4.2 The use of (almost) a standard deviation: Adaptive Gradient Methods
are basically good normalization heuristics

Lets say we have two parameters w1 and w2. Imagine the last few gradients, say last 4 gradients,
using batch gradient descent for w1 has been w1t−3 = 10, wt−2 = 9.8, wt−2 = 10.2, wt−1 = 10,
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whereas the same updates for w2 were w2t−3 = 1, wt−2 = 19, wt−2 = −11, wt−1 = 21.
The running average (without decay) for both w1 and w2 are the same 10. However, the

gradient of +10 is very reliable for w1 as it is very consistent (small variation or standard
deviation). While the gradient for w2 is unreliable because of fluctuations, which could be due
to cheap approximate gradient computation for w2. As a result, we should not have a constant
learning rate η for both w1 and w2. Ideally, updates for w1 can be accelerated significantly as
we know its gradient has been positive ten all the time. However, we should decelerate for w2
because it oscillates.

A simple heuristic fix here is to standardise the mean of both w1 and w2 by dividing it
with something like a standard deviation. If m1 and m2 are the means and v1 and v2 are the
standard deviation (square root of variance (not exactly a variance as we don’t subtract the
mean)) then we replace the gradients by m1

v1 and m1
v1 .

If we include the decay, then we recover the popular ADAM algorithm. As we have seen,
we have mt for a discounted running average of gradient (called momentum). In addition, we
keep another discounted running average of something similar to variance vt (sum of squares of
discounted gradients), popularly called velocity (the name is confusing as it is merely used as
a proxy of standard deviation). Our algorithm for update looks like the follows:

Start with w0. At step t, we have wt, calculate ∇f(wt), keep two additional vector (they call
is momentum and velocity), we can keep running average without remembering all the history)
mt = β1mt + (1 − β1)∇f(xt), and vt = β2vt + (1 − β2)(∇f(xt) · ∇f(xt)) for some appropriate
β1, β2 < 1, and the do gradient descent as

xt+1 = xt − η
mt√
vt + ϵ

,

Here ∇f(xt) · ∇f(xt) is component wise vector multiplications (still a vector not an inner
product) and ϵ = 10−8 is used to prevent divide by zero error.

If you have understood this far, you can now appreciate the ideas behind several other
variants discussed in https://ruder.io/optimizing-gradient-descent/

5 Comments on Variety of Gradient Descent Ideas

Many Many More Similar Tricks with different twists: There are many many ideas
but they essentially revolve around what we just saw. Please read this1 nice blog to familiarize
with a variety of tricks. Note, people have different way of explaining different things and
they follow different lines of explanations. You are free to follow whatever resonates best with
you. However, there is no concrete mathematical way yet to argue which among the ones will
be better for problem at hand. Only real evaluation and experiments can identify the best
performing idea. Note, there is no silver bullet gradient descent method yet. Having said that
many software packages use Adam by default. If they show weird behavior on your problem,
now you should have some ideas on what to try!

1https://ruder.io/optimizing-gradient-descent/
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