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We investigate probabilistic hashing techniques for addressing computational

and memory challenges in large scale machine learning and data mining sys-

tems. In this thesis, we show that the traditional idea of hashing goes far be-

yond near-neighbor search and there are some striking new possibilities. We

show that hashing can improve state of the art large scale learning algorithms,

and it goes beyond the conventional notions of pairwise similarities. Despite

being a very well studied topic in literature, we found several opportunities for

fundamentally improving some of the well know textbook hashing algorithms.

In particular, we show that the traditional way of computing minwise hashes is

unnecessarily expensive and without loosing anything we can achieve an order

of magnitude speedup. We also found that for cosine similarity search there is

a better scheme than SimHash.

In the end, we show that the existing locality sensitive hashing framework

itself is very restrictive, and we cannot have efficient algorithms for some im-

portant measures like inner products which are ubiquitous in machine learning.

We propose asymmetric locality sensitive hashing (ALSH), an extended frame-

work, where we show provable and practical efficient algorithms for Maximum

Inner Product Search (MIPS). Having such an efficient solutions to MIPS directly

scales up many popular machine learning algorithms.

We believe that this thesis provides significant improvements to some of the

heavily used subroutines in big-data systems, which we hope will be adopted.
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CHAPTER 1

INTRODUCTION

Modern applications are constantly dealing with datasets at tera-byte scale

and the anticipation is that very soon it will reach peta-byte levels. Being able

to utilize this enormous amounts of data is the key factor behind recent break-

throughs in vision, speech and natural language, search, social networks, etc.

It is beyond doubt that the unprecedented opportunity provided by learning

algorithms in improving our life is bottlenecked by our ability to exploit large

amounts of data. As we continuously collect more data scaling up existing ma-

chine learning and data mining algorithms becomes increasingly challenging.

Simple data mining operations such as search, learning, clustering, etc., become

hard at this scale. A brute force linear scan of the whole data for search is im-

practical because of latency. Even with all the parallelism, it is infeasible to run

any algorithm quadratic in the size of the data.

Hashing algorithms are becoming popular for modern big data systems.

These algorithms trade a very small amount of certainty, which typically is in-

significant for most purposes, with a huge, often exponential gains, in the com-

putations and the memory. In this dissertation we present several fundamental

insights and improvements in the classical textbook hashing algorithms in the

literature. Some of these frequently encountered problems, which can be solved

using the techniques proposed in this dissertation were known to be hard, and

in fact cannot be accomplished otherwise. We demonstrate the direct conse-

quences of the obtained fundamental improvements in many real applications

which include search, query matching, classification and regression, collabora-

tive filtering for large scale recommendations, and Google sets.

1



1.1 Results

We introduce the following techniques and paradigms, which address the scal-

ing challenges common in large scale learning systems. We improve few

decade-old textbook hashing algorithms and also provide solutions to some

known problems in literature. We summarize the contributions and their sig-

nificance in this section. We discuss them, in details, in the respective chapters.

1) Asymmetric Locality Sensitive Hashing (ALSH) Paradigm [80, 85, 86]: Max-

imum inner product search (MIPS) occurs as a subroutine in numerous ma-

chine learning algorithms [80]. Finding hashing-based sub-linear algorithms

for MIPS was a known hard problem and it is not difficult to show that it is

in fact impossible in the classical hashing paradigm. We introduced the ALSH

paradigm, a strict extension of the existing framework, where we can carefully

apply asymmetric transformations and eventually construct practical and prov-

able sub-linear algorithms for MIPS.

Fundamental Contributions: A sub-linear solution to MIPS will directly trans-

late into efficient algorithms for many machine learning subroutines which in-

clude training massive deep networks, object detection, fast classification, active

learning for optimization, orthogonal matching pursuit, collaborative filtering,

cutting plane methods, etc. Apart from solving MIPS, asymmetric transforma-

tions add a new dimension, yet to be fully explored, to the existing hashing

literature. With asymmetric transformations, we can reduce the search prob-

lem in one similarity measure to search problem in another similarity measure

which is known to be efficient. This allows us to exploit good hash functions

in one domain for efficiently solving search problem in another domain which

may not have any known efficient algorithm. With this paradigm, we also im-
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prove classical minwise hashing algorithm for retrieving set containment [85].

Demonstrated Practical Impact: As a direct consequence, we show huge com-

putational savings, compared to the state-of-the-art algorithms, in the task of

top-k item recommendations with collaborative filtering approaches [80, 83]. We

also demonstrate computational improvements in searching with set contain-

ment [85]. Set containment is a similarity measure commonly used for record

matching and plagiarism detection in practice.

2) A new randomized technique called “Densification” [81, 82]: Large scale

data processing applications require computing several minwise hashes of the

data matrix as one of the primitive operations. This is computationally very ex-

pensive. We found a new way of generating multiple minwise hashes by first

binning the data, computing local minwise like hashes in each bin, and finally

densifying the bins via random rotation. As a result, we can generate thou-

sands (even more) different hashes, with the required property, for the same

cost as one vanilla minwise hash. This procedure leads to algorithmic query

time improvement over classical widely adopted search algorithms. For very

sparse data, adding coin flips during the densification step provably improves

the variance due to extra randomization [82].

Fundamental Contributions: Sparsity in hashes makes indexing for sub-linear

search impossible. The “densification” scheme is of independent interest in it-

self and is directly applicable for densifying any general sparse hashes where

sparsity is not desirable. In addition to algorithmic query time improvement,

this densification procedure naturally leads to an order of magnitude faster ker-

nel features for the resemblance kernel [65].

Demonstrated Practical Impact: In the task of similarity search [81], we obtain
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1000 folds savings in the hashing time, for generating 1000 hashes, without los-

ing any accuracy. The densification procedure makes training and testing time

of SVMs and logistic regression, with resemblance kernel features, around 100

times faster

3) MinHash or SimHash ? A paradigm for comparing hash functions across

similarity measures [84, 78]: In the existing literature, it was taken for granted

that the two popular hashing schemes, MinHash and SimHash, are theoretically

incomparable and the choice between them is decided based on whether the

desired notion of similarity is cosine similarity or resemblance. We found the

rather surprising fact that for cosine similarity search with sparse binary data,

MinHash is provably superior to the usual SimHash which was the only known

hash function for this task in the literature. We also provide the theoretical quan-

tification of the advantages.

Fundamental Contributions: MinHash and SimHash are widely popular hash

functions in both theory as well as in industrial practice. This work provides

precise recommendations for practitioners about the choice between them.

Apart from theoretical comparisons between MinHash and SimHash, this work

also provides conditions under which hash functions for different similarity

measures can be compared. In particular, it turns out that if two similarity

measures are distortions of each other then we can compare the correspond-

ing locality sensitive hash functions associated with them. This gives a generic

paradigm to compare two hash functions meant for different similarity mea-

sures. This is the first formal comparison of two locality sensitive hash function

meant for different similarity measures.

Demonstrated Practical Impact: For searching with cosine similarity, we
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demonstrate that MinHash leads to significant computational savings compared

to SimHash which is very valuable for practitioners.

4) Hashing framework for k-way similarities [79]: There are notions of sim-

ilarity which are not pairwise, for instance the k-way resemblance which is a

simultaneous similarity function between k elements. Such similarity measures

naturally model many real scenarios like group recommendations, clustering,

etc. K-way similarity measures lead to a blow up in the computation complexity

because of the possible number of combinations. It turns out that for searching

with the k-way resemblance, we can do a lot better than brute force scan.

Fundamental Contributions: We formalized the notions of search with k-way

similarity measures and found provably fast hashing algorithms to solve them.

This is the first non-trivial fast hashing algorithm for k-way similarity search in

the literature. In addition, any probabilistic combination of k-way resemblance

naturally admits such fast algorithms, leading to a new class of k-way similarity

measures which admits efficient solutions.

Demonstrated Practical Impact: We show that k-way resemblance improves

conventional similarity search, and it naturally models the “Google sets” appli-

cation, leading to better performance compared to other methods.

5) Hash-based kernel features for large scale classification and regression [65,

61, 63, 64, 58, 78, 59] The computational complexity of kernel-based classifiers

is quadratic in the size of the dataset because they require computation of the

costly kernel matrix. We show how to convert a locality sensitive hashing

scheme into efficient features for kernel learning in linear time. To be able to
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compute these features we need the range of the hash function to be small. We

propose b-bit minwise hashing [65, 61, 63, 64, 78] and efficient quantizations of

random projections [58, 59] for reducing the range space. These two quantiza-

tions lead to efficient kernel features for learning with kernels in linear time.

Fundamental Contributions: Finding the right hash quantization naturally

translates into the fundamental problem of information theory, which deals

with the amount of information content in the hash codes. The new quanti-

zations for random projections theoretically improve the classical known quan-

tization for the euclidean distance. The b-bit minwise hashing quantizations

provably improve over the popular random projections based hash kernels.

Demonstrated Practical Impact: Experimental results show that such quanti-

zations are very effective and outperform other state-of-the-art hash kernels in-

cluding the hashing scheme of VW (Vowpal Wabbit) [65, 61]. We obtain huge

reduction in training and testing time with SVMs and logistic regression on

benchmark datasets. The new quantizations can also be used for indexing,

leading to improvements over the state-of-the-art hashing algorithm for L2 dis-

tance. [65, 61].

1.2 Organization

The dissertation is organized as follows. We start by reviewing the existing

notions of Locality Sensitive Hashing (LSH) for near-neighbor search problem

and related work in Chapter 2. LSH schemes and related algorithms will be

the common background needed for the rest of this thesis. In Chapter 3 we

show how the same hashing framework, originally meant for sub-linear search,

can be converted into kernel features leading to fast linear time algorithms for
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learning with kernels. In Chapter 4 we show a very counter intuitive result that

for binary datasets MinHash is a superior LSH for cosine similarity compared to

SimHash, which goes against the traditional belief of always using SimHash for

cosine similarity. We later show in Chapter 5 that MinHash based algorithms

can be extended for beyond pairwise similarities and we can solve a class of

k-way similarity search problem very efficiently using MinHash.

After showing many striking and new advantages of MinHash, we argue

in Chapter 6 that the decade-old standard scheme for computing MinHash is

very inefficient. We provide a one pass and one permutation solution leading

to an order of magnitude faster hashing scheme. Finally in Chapter 7 we show

that the existing LSH framework itself is very restrictive and there are many

similarities, e.g. inner products, which cannot be hashed. We extend the frame-

work to allow asymmetry and derive the first sub-linear provable and practical

algorithm for maximum inner product search (MIPS). MIPS is ubiquitous sub-

routine in machine learning application. We later show the power of the new

framework by deriving many new improved hashing algorithms which prov-

ably improve the state-of-the-art.

Proofs of theorems are deferred to appendix except at few places, for in-

stance Chapter 5, where the proofs are constructive and convey the main idea.
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CHAPTER 2

BACKGROUND: CLASSICAL LOCALITY SENSITIVE HASHING (LSH)

In this chapter, we briefly review Locality Sensitive Hashing (LSH) families

and their applications in sub-linear time near neighbor search. We refer readers

to [36] for detailed description of existing works in LSH literature. This thesis

provides several new fundamental results and improvements in the LSH do-

main. The concepts described in this chapter will be heavily referred through-

out the course of this thesis.

2.1 The Near-Neighbor Search Problem

Near-neighbor search or similarity search is one of the fundamental problems in

computer science. In this problem, we are typically given a giant collection C ⊂

RD and a query q ∈ RD. The task is to search for point x ∈ Cwhich minimizes (or

maximizes) the distance (or similarity) with the query q, i.e., we are interested

in

x = arg min
x∈C

Dist(x, q), (2.1)

where Dist is the distance metric of interest. To work with similarities we can

change to arg max and replace distance by the appropriate similarity. Near-

neighbor search algorithms have been one of the basic building blocks in numer-

ous applications including search, databases, learning, recommendation sys-

tems, computer vision, etc. It is one of the most heavily used subroutine in

almost all applications dealing with data.

With the explosion of data in recent times, typically, the size of the collection

C blows up. For instance, documents (or items) over the web. A linear scan
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is very expensive at this scale. Moreover, querying is a frequent and latency

critical operation. Therefore, it is infeasible to scan the whole collection for an-

swering every query. To mitigate this problem there are plenty of literatures that

create smart data structures which can answer near neighbor queries efficiently.

These data structures require one time costly preprocessing of the collection C

during their construction. After this pre-processing querying is very fast and is

sub-linear in the size of the collection.

Early techniques for sub linear time near-neighbor search were based on de-

terministic space partitioning methods like trees and Voronoi cells [26]. It was

later found that techniques based on space partitioning suffer from the curse of

dimensionality and the runtime guarantees typically scale exponentially in the

dimensions. For example, it was shown in [89] (both empirically and theoreti-

cally) that all current techniques (based on space partitioning) degrade to linear

search, even for dimensions as small as 10 or 20.

Locality Sensitive Hashing (LSH) [42] based randomized techniques are

common and successful in industrial practice for efficiently solving near-

neighbor search. Unlike space partitioning techniques, both the running time

as well as the accuracy guarantees of LSH based algorithms are independent of

the dimensionality of the data. This makes LSH suitable for large scale process-

ing systems dealing with ultra-high dimensional data which are common these

days. Furthermore, LSH based schemes are massively parallelizable, which

makes them ideal for modern “Big” datasets. The prime focus of this thesis

will be on hashing based algorithms for large scale search and learning, which

do not suffer from the curse of dimensionality and works well in practice.
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2.2 Definitions

Finding efficient (sub-linear time) algorithms for exact near neighbor search

turned out to be a disappointment with the massive dimensionality of current

datasets [31, 89]. Approximate versions of the near-neighbor search problem

were proposed [42, 36] to break the linear query time bottleneck. One widely

adopted formalism is the c-approximate near neighbor or c-NN.

Definition 1 (c-Approximate Near Neighbor or c-NN). Given a set of points in

a d-dimensional space Rd, and parameters S 0 > 0, δ > 0, construct a data structure

which, given any query point q, does the following with probability 1 − δ: if there exist

an S 0-near neighbor of q in P, it reports some cS 0-near neighbor of q in P.

The usual notion of S 0-near neighbor is in terms of the distance function.

While dealing with similarities, we can equivalently define S 0-near neighbor of

point q as a point p with S im(q, p) ≥ S 0, where S im is the desired similarity.

2.2.1 Locality Sensitive Hashing (LSH)

A popular technique for c-NN, uses the underlying theory of Locality Sensitive

Hashing (LSH) [42]. LSH is a family of functions, with the property that similar

input objects in the domain of these functions have a higher probability of col-

liding in the range space than non-similar ones. In formal terms, consider H a

family of hash functions mapping RD to some set S.
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Definition 2 Locality Sensitive Hashing (LSH) Family A family H is called

(S 0, cS 0, p1, p2)-sensitive if for any two point x, y ∈ Rd and h chosen uniformly from

H satisfies the following:

• if S im(x, y) ≥ S 0 then PrH (h(x) = h(y)) ≥ p1

• if S im(x, y) ≤ cS 0 then PrH (h(x) = h(y)) ≤ p2

For approximate nearest neighbor search typically, p1 > p2 and c < 1 is

needed. Since we will be mostly dealing with similarities we need c < 1. To

get distance analogy we can use the transformation D(x, y) = 1− S im(x, y) with a

requirement of c > 1. The definition of LSH family H is tightly linked with the

similarity function of interest S im. An LSH allows us to construct data struc-

tures that give provably efficient query time algorithms for c-NN problem.

One sufficient condition for a hash familyH to be a locality sensitive hashing

family is that the collision probability PrH (h(x) = h(y)) is monotonically increas-

ing function of the similarity S im. We can easily see that if PrH (h(x) = h(y)) =

f (S im(x, y)), where f is a monotonically increasing function, then the two re-

quired conditions in the Definition 2.2.1 is always satisfied for any S 0 and c < 1.

It was shown [42] that having an LSH family for a given similarity measure

is sufficient for efficiency solving c-NN instances. Formally,

Fact 1 Given a family of (S 0, cS 0, p1, p2) -sensitive hash functions, one can construct a

data structure for c-NN with O(nρ log1/p2
n) query time, where ρ =

log p1
log p2

.

The quantity ρ < 1 measures the efficiency of a given LSH, the smaller the

better. In theory, in the worst case, the number of points scanned by a given
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LSH to find a c-approximate near neighbor is O(nρ) [42], which is dependent

on ρ. Thus given two LSHs, for the same c-NN problem, the LSH with smaller

value of ρ will achieve the same approximation guarantee and at the same time

will have faster query time. LSH with lower value of ρ will report fewer points

from the database as the potential near neighbors, which is desirable. It should

be noted that the efficiency of an LSH scheme, the ρ value, is dependent on

many things. It depends on the similarity threshold S 0 and the value of c the

approximation factor.

2.2.2 Some Popular LSHs

Minwise Hashing (MinHash)

One of the most popular measure of similarity between web documents is re-

semblance (or Jaccard Similarity) R [12]. This similarity measure is only de-

fined over sets which can be equivalently thought of as binary vectors over the

universe, with non-zeros indicating the elements belonging to the given set.

The resemblance similarity between two given sets S 1, S 2 ⊆ Ω = {1, 2, ...,D} is

defined as

R =
|S 1 ∩ S 2|

|S 1 ∪ S 2|
=

a
f1 + f2 − a

, (2.2)

where f1 = |S 1|, f2 = |S 2|, and a = |S 1 ∪ S 2|.

Minwise hashing [13] is the LSH for resemblance similarity. The minwise

hashing family applies a random permutation π : Ω → Ω, on the given set S ,

and stores only the minimum value after the permutation mapping. Formally
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MinHash is defined as:

hmin
π (S ) = min(π(S )). (2.3)

Given sets S 1 and S 2, it can be shown by elementary probability argument that

Prπ(hmin
π (S 1) = hmin

π (S 2)) =
|S 1 ∩ S 2|

|S 1 ∪ S 2|
= R. (2.4)

It follows from Equation 2.4 that minwise hashing is (S 0, cS 0, S 0, cS 0) sensi-

tive family of hash function when the similarity function of interest is resem-

blance i.e R. From Fact 1 it has efficiency

ρ =
log S 0

log cS 0
, (2.5)

for approximate resemblance based search.

SimHash

SimHash is another popular LSH for the cosine similarity measure, which orig-

inates from the concept of Signed Random Projections (SRP) [18]. Given a vec-

tor x, SRP utilizes a random w vector with each component generated from i.i.d.

normal, i.e., wi ∼ N(0, 1), and only stores the sign of the projection. Formally

SimHash is given by

hS ign
w (x) = sign(wT x). (2.6)

It was shown in the seminal work [33] that collision under SRP satisfies the

following equation:

Prw(hS ign
w (x) = hS ign

w (y)) = 1 −
θ

π
, (2.7)

where θ = cos−1
(

xT y
||x||2 ||y||2

)
. The term xT y

||x||2 ||y||2
, is the cosine similarity.
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For sets (or binary vectors) S 1 and S 2, the Cosine Similarity reduces to

S =
a√
f1 f2

, (2.8)

with f1 = |S 1|, f2 = |S 2|, and a = |S 1 ∪ S 2|.

There is a variant of SimHash where, instead of wi ∼ N(0, 1), we choose each

wi independently as either +1 or -1 with probability 1
2 . It is known that this

variant performs similar to the one with w ∼ N(0, 1) [75, 39].

Since 1− θ
π

is monotonic with respect to cosine similarity S. Equation 2.7 im-

plies that SimHash is a
(
S 0, cS 0,

(
1 − cos−1(S 0)

π

)
,
(
1 − cos−1(cS 0)

π

) )
sensitive hash func-

tion with efficiency

ρ =
log

(
1 − cos−1(S 0)

π

)
log

(
1 − cos−1(cS 0)

π

) , (2.9)

when the similarity function of interest is the cosine similarity S.

LSH for L2 Distance (L2-LSH)

[25] presented a novel LSH family for all Lp (p ∈ (0, 2]) distances. In particular,

when p = 2, this scheme provides an LSH family for L2 distances. Formally,

given a fixed (real) number r, we choose a random vector a with each compo-

nent generated from i.i.d. normal, i.e., ai ∼ N(0, 1), and a scalar b generated

uniformly at random from [0, r]. The hash function is defined as:

hL2
a,b(x) =

⌊
aT x + b

r

⌋
(2.10)
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where bc is the floor operation. The collision probability under this scheme can

be shown to be

Pr(hL2
a,b(x) = hL2

a,b(y)) = Fr(d); Fr(d) = 1 − 2Φ(−r/d) −
2

√
2π(r/d)

(
1 − e−(r/d)2/2

)
(2.11)

where Φ(x) =
∫ x

−∞

1
√

2π
e−

x2
2 dx is the cumulative density function (cdf) of standard

normal distribution and d = ||x − y||2 is the Euclidean distance between the vec-

tors x and y. This collision probability Fr(d) is a monotonically decreasing func-

tion of the distance d and hence hL2
a,b is an LSH for L2 distances. This scheme is

also the part of LSH package [6]. Here r is a parameter. As argued previously,

||x − y||2 =

√
(||x||22 + ||y||22 − 2xT y) is not monotonic in the inner product xT y unless

the given data has a constant norm. Hence, hL2
a,b is not suitable for MIPS.

Except minwise hashing, most of the popular LSH schemes, such as

SimHash and L2-LSH, are based on smart quantizations of random projections.

These random projections based hashing schemes can be computed efficiently

by utilizing faster variants of matrix multiplication, see [54, 4, 24] for more de-

tails. In chapter 6, we will show that with a the novel idea of “densification” we

can even make minwise hashing faster.

2.3 Classical LSH Algorithm

To be able to answer queries in sub-linear time, the idea behind the LSH al-

gorithm is to create hash tables from the given collection C which we are in-

terested in searching. The hash table construction is one time costly operation

which makes further querying efficient. The hash tables are generated using the

locality sensitive hash family.
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Figure 2.1: Illustration of hash table for the classical LSH algorithm

We assume that we have an access to the appropriate locality sensitive family

H for the similarity search problem of interest. The classical (K, L) parameter-

ized LSH algorithm, which we also refer to as bucketing algorithm, works as

follows. We generate L different meta-hash functions. Each of these meta-hash

functions is formed by concatenating K sampled hash values fromH .

B j(x) = [h j1(x); h j2(x); ...; h jK(x)], (2.12)

where hi j, i ∈ {1, 2, ...,K} and j ∈ {1, 2, ...,K}, are KL different hash evaluations of

the locality sensitive hash function under consideration.

The algorithm works in two phases:

1) Preprocessing Phase: We construct L hash tables from the data by storing

element x ∈ C, at location B j(x) in hash-table j (See Figure 2.1 for an illustration).

We do not store the whole data vectors in the hash tables, which will be very

inefficient from the memory perspective. We only store pointers or references

to the vector.

2) Query Phase: Given a query Q, we report the union of all the points in the
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buckets B j(Q) ∀ j ∈ {1, 2, ..., L}, where the union is over L hash tables. It should

be noted that we do not scan all the elements in C, we only probe L different

buckets, one from each hash tables.

The probability of finding a point x is a function of K, L and S im(x,Q) which

is the similarity of the point with the query Q. Therefore, for a given instance of

c-NN problem we need the appropriate values of K and L to obtain query time

algorithmic guarantees given by fact 1. We refer readers to [6] for more details

on choices of K and L. Optimal choice of K and L for a given c-NN instance

leads to the guarantee given by Fact 1.
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CHAPTER 3

NON-LINEAR LEARNING IN LINEAR TIME VIA HASHING

With the advent of the Internet, many machine learning applications are

faced with very large and inherently high-dimensional datasets, resulting in

challenges in scaling up training algorithms and storing the data. Especially in

the context of search and machine translation, corpus sizes used in industrial

practice have long exceeded the main memory capacity of single machine. For

example, [88] discusses training sets with 1011 items and 109 distinct features,

requiring novel algorithmic approaches and architectures. As a consequence,

there has been a renewed emphasis on scaling up machine learning techniques.

In this chapter we show that locality sensitive hashing techniques which are

used for efficient indexing, for sub-linear time near-neighbor search, also lead

to very efficient and practical large scale learning algorithms. In particular, we

show that a locality sensitive hashing family directly leads to kernel features for

the associated similarity function. These kernel features can then be used for

approximate learning with (non-linear) kernels in linear time, which otherwise

is quadratic and prohibitively expensive.

3.1 Approximate Kernel Learning in Linear Time with Hashing

Linear algorithms such as linear SVM and logistic regression have become very

powerful and extremely popular. Given a dataset {(xi, yi)}ni=1, xi ∈ R
D, yi ∈ {−1, 1}.

The L2-regularized linear SVM solves the following optimization problem):

min
w

1
2

wTw + C
n∑

i=1

max
{
1 − yiwTxi, 0

}
, (3.1)
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The above optimization learns a linear boundary between positive and negative

examples as shown in Figure 3.1 on left hand side. Owing to a series of work, the

optimization in Equation 3.1 can be solved very efficiently and can be accom-

plished in linear time. Representative software packages include SVMperf [45],

Pegasos [77], Bottou’s SGD SVM [10], and LIBLINEAR [29].

An equivalent formulation of optimization problem, given by Equation 3.1,

in dual form is

max
αi≥0

∑
i

αi −
1
2

∑
jk

α jαky jyk
(
xT

j xk
)

(3.2)

s.t 0 ≤ αi ≤ C ∀i and
∑

i

αiyi = 0

In many scenarios we are interested in learning a non-linear boundary, as

shown on the right panel of Figure 3.1. This can be achieved using an appro-

priate positive semidefinite kernel function k(x, y) and solving the optimization

given by

max
αi≥0

∑
i

αi −
1
2

∑
jk

α jαky jyk
(
k(xj, xk)

)
(3.3)

s.t 0 ≤ αi ≤ C ∀i and
∑

i

αiyi = 0.

It relies on the observation that any positive definite function k(x, y) defines a

generalized inner product and the optimization algorithms can still be solved.

The cost of this convenience is that algorithms access the data only through

evaluations of k(x, y), or through the kernel matrix. This incurs quadratic com-

putational and storage costs.

Recently, the idea of kernel features [73] has become very popular for ap-

proximate learning with kernels in linear time. Observe that the only differ-

ence between Equation 3.2 and Equation 3.3 is that the inner product xT
j xk is
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Figure 3.1: Linear SVMs (left) and Kernel SVMs (right) with non-linear
boundary.

replaced by the kernel k(x j, xk). This motivates an efficient approximate opti-

mization using random kernel features. The idea is to generate a transforma-

tion φ : RD 7→ Rm s.t. φ(x)Tφ(y) ' k(x, y). After having such a transformation

φ, simply using traditional fast linear SVM, i.e. optimizing Equation 3.2, with

{(φ(x)i, yi)}ni=1 instead of {(xi, yi)}ni=1 will approximately solve Equation 3.3. Thus

we can learn a non-linear boundary by solving Equation 3.2 which is the dual

of the optimization given by Equation 3.1 and therefore is solvable in linear

time. Thus we avoid the infeasible quadratic cost. In next section, we show that

LSH scheme for a given similarity (or kernel) automatically implies generation

of such mapping (or kernel features) φ(x).

3.2 From LSH to Kernel Features

Let the range of the randomized hash functions be h : x→ [0,D−1]. The key ob-

servation is that given a locality sensitive hash familyH , such that Prh∈H (h(x) =

h(y)) = k(x, y), then if we define φ(x)i = 1{h(x) = i} for i = {0, 1, ..., D − 1}. We can
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easily see that

E
[
φ(x)Tφ(y)

]
= E

[
1{h(x) = h(y)}

]
= k(x, y).

Thus, we obtain kernel feature mapping φ, such that φ(x)Tφ(y) in expectation is

k(x, y). Just like [73], we have to concatenate sufficiently many independent φ(x)s

to get the required concentrations of inner product around k(x, y). In fact, the im-

plications are stronger. Any randomized hashing scheme leads to a kernel given

by k(x, y) = Prh∈H (h(x) = h(y)). This kernel automatically leads to corresponding

kernel features with features give by φ(x)i = 1{h(x) = i}. Formally, we can state

Theorem 1 (Hashability implies Learnability) Given any randomized hashing

family H and a function h drawn uniformly from H . Then the function f (x, y) =

Prh∈H (h(x) = h(y)) is positive semidefinite and hence a valid kernel. Moreover, there

exist a construction of randomized kernel features φ : RD 7→ Rm s.t.

E[φ(x)Tφ(y)] = f (x, y).

Proof: A function is positive semidefinite if it can be written as an inner product.

Observe that the collision event can be written as an inner product,

1{h(x) = h(y)} =

R−1∑
t=0

1{h(x) = t} × 1{h(y) = t}, (3.4)

where R is the range of the hash function h. Thus 1{h(x) = h(y)} is a kernel. The

proof of f (x, y) being positive semidefinite follows from taking the expectation.

Note that expectation is a linear operator and hence preserve positive semidefi-

nite property. The construction of random kernel features is immediate. �

The dimensionality of φ(x) blows up if the range of h is large. A simple fix

is to randomly rehash h(x) to a smaller range. Let us assume that we have a

random 2-independent universal hashing scheme H : x → [0, B] where B is
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sufficiently small. It is not difficult to show that if h is locality sensitive then so

is H(h(.)), but with a smaller range.

We illustrate the above concept with b-bit minwise hashing which we later

show outperforms the popular Vowpal Wabbit for large scale learning. There

are few more recent works [49, 50] where different hashing schemes have been

used as kernel features for efficient (linear time) large scale learning with some

important newer kernels. Such derived kernel features lead to drastic improve-

ments in classification accuracy.

Corollary 1 Consider n sets S 1, ..., S n ⊆ Ω = {0, 1, ...,D − 1}. Apply one permutation

π to each set. Define zi = min{π(S i)} and z(b)
i the lowest b bits of zi. The following three

matrices are PD.

1. The resemblance matrix R ∈ Rn×n, whose (i, j)-th entry is the resemblance be-

tween set S i and set S j: Ri j =
|S i∩S j |

|S i∪S j |
=

|S i∩S j |

|S i |+|S j |−|S i∩S j |
.

2. The minwise hashing matrix M ∈ Rn×n: Mi j = 1{zi = z j}.

3. The b-bit minwise hashing matrix M(b) ∈ Rn×n: M(b)
i j = 1

{
z(b)

i = z(b)
j

}
.

Consequently, consider k independent permutations and denote M(b)
(s) the b-bit minwise

hashing matrix generated by the s-th permutation. Then
∑k

s=1 M(b)
(s) is also PD.

Proof: The proof is similar to the proof of Theorem 1. A matrix A is PD if it can be

written as an inner product BTB. Because

Mi j = 1{zi = z j} =

D−1∑
t=0

1{zi = t} × 1{z j = t}, (3.5)

Mi j is the inner product of two D-dim vectors. Thus, M is PD. Similarly, M(b) is PD

because M(b)
i j =

∑2b−1
t=0 1{z(b)

i = t} × 1{z(b)
j = t}. R is PD because Ri j = Pr{Mi j = 1} = E

(
Mi j

)
and Mi j is the (i, j)-th element of M. Note that the expectation is a linear operation. �
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3.3 Integrating b-Bit Minwise Hashing with (Linear) Learning

Algorithms

We demonstrate the effectiveness of kernel features using b-bit hashing. To sim-

plify the arguments, we use standard C-SVM (Equation 3.1) and provide all

results for a wide range of C values. We assume that the best performance is

achievable if we conduct cross-validations.

In our approach, we apply k random permutations on each feature vector

xi and store the lowest b bits of each hashed value. This way, we obtain a new

dataset which can be stored using merely nbk bits. At run-time, we expand each

new data point into a 2b × k-length vector with exactly k 1’s. We will see in

Section 6 that we can achieve this in one pass over the feature vector and we

can do everything with just one permutation.

For example, suppose k = 3 and the minwise hashed values are originally

{12013, 25964, 20191}, whose binary digits are

{010111011101101, 110010101101100, 100111011011111}.

Consider b = 2. Then the binary digits are stored as {01, 00, 11} (which corre-

sponds to {1, 0, 3} in decimals). At run-time, we need to expand them into a

vector of length 2bk = 12, to be

{0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0},

which will be the new feature vector fed to a solver such as LIBLINEAR. Clearly,

this expansion is directly inspired by the proof that the b-bit minwise hashing

matrix is PD in Corollary 1.
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3.4 Experiments

Our experiment settings closely follow the work in [92]. They conducted ex-

periments on three datasets, of which only the webspam dataset is public and

reasonably high-dimensional (n = 350000, D = 16609143). Therefore, our exper-

iments focus on webspam. Following [92], we randomly selected 20% of samples

for testing and used the remaining 80% samples for training.

We chose LIBLINEAR [29] as the workhorse to demonstrate the effective-

ness of our algorithm. All experiments were conducted on workstations with

Xeon(R) CPU (W5590@3.33GHz) and 48GB RAM, under Windows 7 System.

Thus, in our case, the original data (about 24GB in LIBSVM format) fit in mem-

ory. In applications when the data do not fit in memory, we expect that b-bit

hashing will be even more substantially advantageous, because the hashed data

are relatively very small. In fact, our experimental results will show that for this

dataset, using k = 200 and b = 8 can achieve similar testing accuracies as us-

ing the original data. The effective storage for the reduced dataset (with 350K

examples, using k = 200 and b = 8) would be merely about 70MB.

3.4.1 Evaluations with SVMs

We implemented a new resemblance kernel function and tried to use LIBSVM

to train an SVM using the webspam dataset. The training time well exceeded 24

hours. Fortunately, using b-bit minswise hashing as kernel features to estimate

the resemblance kernels provides a substantial improvement as expected from

Section 3.2. For example, with k = 150, b = 4, and C = 1, the training time
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is about 5185 seconds and the testing accuracy is quite close to the best results

given by LIBLINEAR on the original webspam data.

There is an important tuning parameter C. To capture the best performance

and ensure repeatability, we experimented with a wide range of C values (from

10−3 to 102) with fine spacings in [0.1, 10].

We experimented with k = 10 to k = 500, and b = 1, 2, 4, 6, 8, 10, and

16. Figure 3.2 (average) and Figure 3.3 (std, standard deviation) provide the test

accuracies. Figure 3.2 demonstrates that using b ≥ 8 and k ≥ 200 achieves similar

test accuracies as using the original data. Since our method is randomized, we

repeated every experiment 50 times. We report both the mean and std values.

Figure 3.3 illustrates that the stds are very small, especially with b ≥ 4. In other

words, our algorithm produces stable predictions. For this dataset, the best

performances were usually achieved at C ≥ 1.
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Figure 3.2: SVM test accuracy (averaged over 50 repetitions). With k ≥ 200
and b ≥ 8. b-bit hashing achieves very similar accuracies as
using the original data (dashed, red if color is available).

Compared with the original training time (about 100 seconds), Figure 3.4

(upper panels) shows that our method only needs about 3 seconds (near C = 1).
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Figure 3.3: SVM test accuracy (std). The standard deviations are com-
puted from 50 repetitions. When b ≥ 8, the standard deviations
become extremely small (e.g., 0.02%).

Note that our reported training time did not include data loading (about 12

minutes for the original data and 10 seconds for the hashed data). Of course,

there is a cost for processing (hashing) the data. We show in Chapter 6 that in

this case this cost can be made as small as the data reading cost.

Compared with the original testing time (about 150 seconds), Figure 3.4 (bot-

tom panels) shows that our method needs merely about 2 seconds. Note that the

testing time includes both the data loading time, as designed by LIBLINEAR.

The efficiency of testing may be very important in practice, for example, when

the classifier is deployed in a user-facing application (such as search), while the

cost of training or preprocessing may be less critical and can be conducted off-

line.

3.4.2 Evaluations with Logistic Regression

Figure 3.5 presents the test accuracies and training time using logistic regres-

sion. Again, with k ≥ 200 and b ≥ 8, b-bit minwise hashing can achieve similar

test accuracies as using the original data. The training time is substantially re-

duced, from about 1000 seconds to about 30 seconds only.

26



10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g 
tim

e 
(s

ec
)

svm: k = 50
Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g 
tim

e 
(s

ec
)

svm: k =100
Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

C

T
ra

in
in

g 
tim

e 
(s

ec
)

b = 16

svm: k = 200
Spam: Training time

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
0

10
1

10
2

10
3

Spam: Training time

b = 10

b = 16

C

T
ra

in
in

g 
tim

e 
(s

ec
)

svm: k = 500

10
−3

10
−2

10
−1

10
0

10
1

10
2

1
2

10

100

1000

C

T
es

tin
g 

tim
e 

(s
ec

)

svm: k = 50
Spam: Testing time

10
−3

10
−2

10
−1

10
0

10
1

10
2

1
2

10

100

1000

C

T
es

tin
g 

tim
e 

(s
ec

)

svm: k = 100
Spam: Testing time

10
−3

10
−2

10
−1

10
0

10
1

10
2

1
2

10

100

1000

C

T
es

tin
g 

tim
e 

(s
ec

)

svm: k = 200
Spam: Testing time

10
−3

10
−2

10
−1

10
0

10
1

10
2

1
2

10

100

1000

C

T
es

tin
g 

tim
e 

(s
ec

)

svm: k = 500
Spam: Testing time

Figure 3.4: SVM training time (upper panels) and testing time (bottom
panels). The original costs are plotted using dashed (red, if
color is available) curves.
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Figure 3.5: Logistic regression test accuracy (upper panels) and training
time (bottom panels).

In summary, it appears b-bit hashing is highly effective in reducing the data

size and speeding up the training (and testing), for both SVM and logistic re-

gression. We notice that when using b = 16, the training time can be much

larger than using b ≤ 8.
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3.5 Comparing b-Bit Minwise Hashing with VW (and Random

Projections)

We implemented the Vowpal Wabbit (VW) algorithm [] and experimented it on

the same webspam dataset. Figure 3.6 shows that b-bit minwise hashing is sub-

stantially more accurate (at the same sample size k) and requires significantly

less training time (to achieve the same accuracy). Basically, for 8-bit minwise

hashing with k = 200 achieves similar test accuracies as VW with k = 104 ∼ 106

(note that we only stored the non-zeros).
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Figure 3.6: Comparison of b-bit minwise hashing (dashed red) with Vow-
pal Wabbit (VW) (solid black)

This empirical finding is not surprising, because the variance of b-bit hash-

ing is usually substantially smaller than the variance of VW (and random pro-

jections) [65].

3.6 Discussions

It is known that randomized hashing makes approximate near-neighbor search

problem easier. In particular, existence of locality sensitive hashing scheme,

for a given similarity measure, automatically guarantees existence of provable

sub-linear time search algorithms for the corresponding similarity measure. In
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this chapter we have seen that existence of locality sensitive hashing implies

something more. It also implies existence of fast kernel learning algorithms

with the corresponding similarity measure as a kernel. In particular, there is a

generic construction of random kernel features, using the underlying locality

sensitive hashing family, which leads to scalable and efficient linear time kernel

learning algorithms.

The generic construction of random kernel features, using LSH, will make

various kernel learning with newer kernels feasible at large scale. Kernel learn-

ing, in general, is a quadratic time optimization which is prohibitive for modern

big-data. We have demonstrated the usefulness of kernel feature constructions

using b-bit minwise hashing. The superiority of b-bit minwise hashing features

over popular random features like VW [90] is very exciting, and in near future

we hope to see many interesting kernels and their corresponding features based

on hashing.
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CHAPTER 4

MINHASH OR SIMHASH ?

Locality Sensitive Hashing (LSH) (Section 2.2.1) scheme is tightly coupled with

the underlying hash function which in turn is defined with respect to a similar-

ity measure. An LSH scheme for one similarity measure cannot be used in gen-

eral for a different similarity measure. Therefore, it is taken for granted that the

two popular hashing schemes MinHash and SimHash, defined in Section 2.2.2,

are incomparable and the choice between them is based on whether the desired

notion of similarity is resemblance or cosine similarity.

In this chapter, we show that for sparse binary data, which is usually of

interest over the web, there is actually a fixed choice among these two hashing

schemes. Our theoretical and empirical results show a counter-intuitive fact that

for sparse data MinHash is the preferred choice even when the desired measure

is cosine similarity. Although the decade old concept of LSH comes with a rich

theoretical analysis, there is no machinery to mathematically compare two LSH

schemes for different similarity measures. By showing that MinHash is prov-

ably superior to SimHash for retrieval with cosine similarity, we provide the

first evidence that two LSHs for different similarity measures can be compared.

4.1 MinHash and SimHash for Sparse Binary Data

Current web datasets are typically very sparse and extremely high dimensional,

mainly due to the wide adoption of the “Bag of Words” (BoW) representations

for documents and images. In BoW or shingle representations, it is known that
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the word frequency within a document follows power law [8], indicating that

most of the words occur rarely in the document. In “BoW” representations most

of the higher order shingles in the document occur only once. It is often the case

that just the presence or absence information suffices in practice [16, 38, 44, 65].

Thus, high dimensional web data are almost always binary or binary like. The

most information is in the sparsity structure of a vector rather than the magni-

tude of its components. Many leading search companies use only sparse binary

representations in their large data systems [15]. Furthermore, there are many

empirical studies which suggest that binary quantizations of datasets achieve

good performance in practice [16, 38, 44]. All these factors lead to an increased

emphasis on techniques which are capable of exploiting binary datasets.

MinHash is an LSH for resemblance similarity which is only defined over bi-

nary vectors. On the other hand SimHash is an LSH for cosine similarity which

works for general vectors with real valued components. With the abundance of

binary data over the web, it has become a practically important question: which

LSH should be preferred in binary data?. This question has not been adequately

answered in existing literature. In particular it is not even clear if there is a

mathematical answer. There were prior empirical evidences. For instance, [78]

empirically demonstrated that b-bit minwise hashing [56], a small space variant

of MinHash, outperformed SimHash and spectral hashing [91].
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4.1.1 Few Notations

Binary data can be viewed as sets (locations of nonzeros). Consider two sets

S 1, S 2 ⊆ Ω = {1, 2, ...,D}. The cosine similarity (S) is

S =
a√
f1 f2

, where f1 = |S 1|, f2 = |S 2|, a = |S 1 ∩ S 2| (4.1)

The resemblance similarity, denoted by R, is

R =
|S 1 ∩ S 2|

|S 1 ∪ S 2|
=

a
f1 + f2 − a

(4.2)

Clearly these two similarities vary only in the normalization. To better illustrate

the connection, we re-write R as

R =
a/

√
f1 f2√

f1/ f2 +
√

f2/ f1 − a/
√

f1 f2

=
S

z − S
(4.3)

where z = z(r) =
√

r +
1
√

r
≥ 2, r =

f2

f1
≥ 0 (4.4)

4.1.2 An Important Inequality

There are two degrees of freedom: f2/ f1 and a/ f2 between cosine similarity and

resemblance in Equation 4.3. This makes it inconvenient for analysis. Fortu-

nately, in the current case, we show in Theorem 2 that we can bound R by purely

functions of S. This is not usually true for other similarity measures. In fact we

are not aware of any popular similarity pairs which admit such a relation.

Theorem 2

S2 ≤ R ≤
S

2 − S
(4.5)
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Tightness Without making assumptions on the data, neither the lower bound S2 or the

upper bound S

2−S can be improved in the domain of continuous functions.

Data dependent bound: If the data satisfy z ≤ z∗, where z is defined in (4.4), then

S

z∗ − S
≤ R ≤

S

2 − S
(4.6)

Proof: See Appendix A.0.1 �

Figure 4.1 plots the upper and the lower bounds from Theorem 2. It is ev-

ident that in high similarity region (e.g., when S > 0.8), the upper and lower

bounds essentially overlap. Note that, in order for S to be close to 1, we must

have f1 ≈ f2 (i.e., z ≈ 2).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

S

S2

S
2−S

Figure 4.1: Plot of upper and lower bounds in Theorem 2

The inequality in Theorem 2 suggests that any methodology that performs

well with respect to resemblance R will also perform good with respect to S.

We make this argument more formal and show that MinHash is also an LSH for

cosine similarity and in fact it should be the preferred choice.
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4.2 MinHash an LSH for Cosine Similarity

We would like to highlight that the well known ρ values for MinHash and

SimHash from Equations 2.5 and 2.9 respectively, which determine the worst

case query complexity of these algorithms, are not directly comparable because

they are in the context of different similarity measures i.e. resemblance and

cosine similarity. To make the comparison possible, we fix our gold standard

similarity measure to be the cosine similarity S im = S. Theorem 2 leads to two

simple corollaries:

Corollary 2 If S(x, y) ≥ S 0, then we have

Pr
(
hmin
π (x) = hmin

π (y)
)

= R(x, y) ≥ S(x, y)2 ≥ S 2
0

Corollary 3 If S(x, y) ≤ cS 0, then we have

Pr
(
hmin
π (x) = hmin

π (y)
)

= R(x, y) ≤
cS(x, y)

2 − cS(x, y)
≤

cS 0

2 − cS 0

Immediate consequence of these two corollaries combined with the defini-

tion of LSH is the following:

Theorem 3 For binary data, MinHash is (S 0, cS 0, S 2
0,

cS 0
2−cS 0

) sensitive family of hash

function for cosine similarity with ρ =
log S 2

0

log cS 0
2−cS 0

.

Note we need one more condition that p1 ≥ p2, i.e. c ≤ 2S 0
1+S 2

0
, for the above

definition to be useful because we want ρ ≤ 1. We will see that, for almost all

interesting region, this condition is always satisfied.
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4.2.1 1-bit Minwise Hashing

SimHash generates a single bit output (only the signs) whereas MinHash gen-

erates an integer value. Recently proposed b-bit minwise hashing [56] provides

simple strategy to generate an informative single bit output from MinHash, by

using the parity of MinHash values:

hmin,1−bit
π (S 1) =


1 if hmin

π (S 1) is odd

0 otherwise
(4.7)

For 1-bit MinHash and very sparse data (i.e., f1
D → 0, f2

D → 0), we have the

following collision probability1

Pr(hmin,1bit
π (S 1) = hmin,1−bit

π (S 2)) =
R + 1

2
(4.8)

There are empirical evidence [78] suggesting that for the task of near neigh-

bor search this scheme outperforms SRP. There is no theoretical justification that

explains such empirical findings. Our analysis presented in previous sections

allow us to theoretically analyze this new scheme. The inequality in Theorem 2

can be modified for R+1
2 as well, which leads to

Theorem 4 For binary data, 1-bit MH (minwise hashing) is (S 0, cS 0,
S 2

0+1
2 , 1

2−cS 0
) sen-

sitive family of hash function for cosine similarity with ρ =
log 2

S 2
0+1

log (2−cS 0) .

Similar to Theorem 3 we need one condition S 2
0+1
2 ≥ 1

2−cS 0
.

1The exact collision probability for 1-bit MinHash is slightly different but we can always
randomly rehash to 0 or 1 and obtain this exact collision probability if necessary
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4.2.2 Theoretical Comparisons

Worst Case

Since we fixed our standard similarity measure to be the cosine similarity and

re-derive the ρ values from the definitions of LSH. These ρ values are now di-

rectly comparable.

SimHash: ρ =
log

(
1 − cos−1(S0)

π

)
log

(
1 − cos−1(cS0)

π

) (4.9)

MinHash: ρ =
log S 2

0

log cS 0
2−cS 0

(4.10)

1-bit MH: ρ =
log 2

S 2
0+1

log (2 − cS 0)
(4.11)

This is a worst case analysis. Nevertheless, for high similarity region, the

comparisons of the ρ values indicate that MinHash significantly outperforms

SimHash as shown in Figure 4.2, at least for S0 ≥ 0.8.

Restricted Worst Case

The worst case analysis does not make any assumption on the data. Although,

there is not much hope to improve the lower bound in theory because of the

tightness result, we argue that the bound S2 ≤ R in Equation 4.5 is usually

very conservative in practice. We empirically verify this. We show that for six

different real datasets (Table 4.1) covering a wide range of variations, we often

have R = S

z−S with z only being slightly larger than 2, as shown in Figure 4.3.

For each dataset, we compute both cosine and resemblance for every query-

train pair (e.g., 10000 × 60000 pairs for MNIST dataset). For each query point,
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Figure 4.2: Worst case gap (ρ) analysis between MinHash and SimHash for
high similarity region.

Table 4.1: Datasets Used for Comparing MinHash and SimHash

Dataset # Query # Train # Dim

MNIST 10,000 60,000 784

NEWS20 2,000 18,000 1,355,191

NYTIMES 5,000 100,000 102,660

RCV1 5,000 100,000 47,236

URL 5,000 90,000 3,231,958

WEBSPAM 5,000 100,000 16,609,143

we rank its similarities to all training points in descending order. We examine

the top-1000 locations as in Figure 4.4. For every top location, we plot the me-

dian (among all query points) of the similarities, separately for cosine (dashed)
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Figure 4.3: Frequencies of the z (Eq 4.4) values for different datasets.
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Figure 4.4: Plot of Median Cosine Similarity (dashed), Resemblance (bold)
from different real datasets along with theoretical upper and
lower bounds (dot dashed)

and resemblance (solid), together with the lower and upper bounds of R (dot-

dashed). Interestingly, for all six datasets, R matches fairly well with the upper

bound S

2−S . In other words, the lower bound S2, although tight, can be very

conservative in practice.
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We know that if the data satisfy z ≤ z∗, where z is defined in (4.4), then we

have better bound from Theorem 2. Figure 4.3 has demonstrated that in real

data, we can fairly safely replace the lower bound S2 with S

z−S for some z which,

defined in (4.4), is very close to 2 (for example, 2.1). If we are willing to make

this assumption, then we can go through the same analysis for MinHash as an

LSH for cosine and compute the corresponding ρ values:

MinHash: ρ =
log S0

z−S0

log cS0
2−cS0

(4.12)

1-bit MH: ρ =
log 2(z−S0)

z

log (2 − cS0)
(4.13)

Note that this is still a worst case analysis (and hence can still be very conserva-

tive). Figure 4.5 presents the ρ values for this restricted worst case gap analysis,

for two values of z (2.1 and 2.3) and S0 as small as 0.2. The results confirms

that MinHash still significantly outperforms SimHash theoretically even in low

similarity region.
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Figure 4.5: Restricted worst case gap (ρ) analysis, between MinHash and
SimHash, by assuming the data satisfy S

z−S ≤ R ≤ S

2−S , where z
is defined in (4.4).
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Both Figure 4.2 and Figure 4.5 show that 1-bit MinHash can be less compet-

itive when the similarity is not high. This is expected as analyzed in [55]. The

remedy is to use more bits.

Idealized Case Gap Analysis

The restricted worst case analysis can still be very conservative and may not

fully explain the stunning performance of MinHash in our experiments on

datasets of low similarities. The problem with the existing analysis is that we

require bounding the p1 and p2 (LSH Definition 2) for MinHash. On the other

hand for SimHash we have exact values and no bounds. This makes the ρ value

comparisons favorable for SimHash. Therefore to mitigate this factor, we also

provide an analysis based on fixed z value. That is, we only analyze the gap

ρ by assuming R = S

z−S for a fixed z. We call this idealized gap analysis. Not

surprisingly, Figure 4.6 confirms that, with this assumption, MinHash signifi-

cantly outperform SimHash even for extremely low similarity. We should keep

in mind that this idealized gap analysis can be somewhat optimistic and should

only be used as some side information.

4.3 Benefits In Practice

We evaluate both MinHash and SimHash in the actual task of retrieving top-k

near neighbors. We implemented the standard (K, L) parameterized LSH [42]

algorithm with both MinHash and SimHash. That is, we concatenate K hash

functions to form a new hash function for each table, and we generate L such

tables. We used all the six binarized datasets with the query and training parti-
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Figure 4.6: Idealized case gap (ρ) analysis, between MinHash and
SimHash, by assuming R = S

z−S for a fixed z (z = 2 and z = 2.5
in the plots).

tion size as shown in Table 4.1. For each of the datasets, elements from training

partition were used for constructing hash tables, while the elements of the query

partition was used as query for top-k neighbor search. For every query, we com-

pute the gold standard top-k near neighbors using the cosine similarity.

In standard (K, L) parameterized bucketing scheme the choice of K and L is

dependent on the similarity thresholds and the hash function under considera-

tion. In the task of top-k near-neighbor retrieval, the similarity thresholds vary

with the datasets. Hence, the actual choice of ideal K and L is hard to determine.

To ensure that this choice does not affect our evaluations, we implemented all

the combination K ∈ {1, 2, ..., 30} and L ∈ {1, 2, ..., 200}. This combination includes

all the reasonable choices for both the hash functions.

For each combinations of (K, L) and for both of the hash functions, we com-
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Figure 4.7: MinHash and SimHash comparisons on binary data.
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Figure 4.8: MinHash and SimHash comparison on sparse real-valued
data. MinHash does not uses value information but still out-
performs SimHash

puted the mean recall of the top-k gold standard neighbors along with the av-

erage number of points reported per query. We then compute the least number

of points needed, by each of the two hash functions, to achieve a given percent-

age of recall of the gold standard top-k, where the least was computed over the

choices of K and L. We are therefore ensuring the best over all the choices of

K and L for each hash function independently. This eliminates the effect of K

and L, if any, in the evaluations. The plots of the fraction of points retrieved at

different recall levels, for k = 1, 10, 20, 100 are in Figure 4.7.

A good hash function, at a given recall should retrieve less number of points.

MinHash needs to evaluate significantly less fraction of the total data points to

achieve a given recall compared to SimHash. MinHash is consistently better

than SimHash, in most cases very significantly, irrespective of the choices of

dataset and k. It should be noted that our gold standard measure for comput-

ing top-k neighbors is cosine similarity. This should favor SimHash because

it was the only known LSH for cosine similarity. Despite this “disadvantage”,
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MinHash still outperforms SimHash in top near neighbor search with cosine

similarity. This nicely confirms our theoretical gap analysis.

To conclude this section, we also add a set of experiments using the original

(real-valued) datasets, for MNIST and RCV1. We apply SimHash on the orig-

inal data and MinHash on the binarized data. We also evaluate the retrieval

results based on the cosine similarities of the original data. This set-up places

MinHash in a very disadvantageous place compared to SimHash. Nevertheless,

we can see from Figure 4.8 that MinHash still noticeably outperforms SimHash,

although the improvements are not as significant, compared to the experiments

on binarized data (Figure 4.7). The supports the fact that for very sparse dataset

binary information is sufficient for most purposes.

4.4 Discussions

The fact that, for binary data, MinHash is provably superior to SimHash, even

for retrieving with cosine similarity, was quite unexpected. It might appear

as orange to apple comparison at first, but closer investigation reveals some-

thing different, as shown in this chapter. We believe that the conclusions pre-

sented here provide sufficient evidence for revisiting existing recommended al-

gorithm for different measures of interest, for example different kernels in ma-

chine learning. A relation between cosine similarity and resemblance made all

the comparisons possible. This motivates the study of relations between differ-

ent similarity measures, which can be helpful in finding better algorithms for

the problem at hand. We hope to see many results along these lines in future.
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CHAPTER 5

HASHABILITY FOR K-WAY SIMILARITIES

Existing notions of similarity in search problems mainly work with pairwise

similarity functions. In this chapter, we go beyond this notion and look at the

problem of k-way similarity search, where the similarity function of interest in-

volves k arguments (k ≥ 2). An example of higher order similarity is the 3-way

Jaccard similarity which is defined as:

R3way =
|S 1 ∩ S 2 ∩ S 3|

|S 1 ∪ S 2 ∪ S 3|
, (5.1)

S 1, S 2, S 3 ∈ C, where C is a size n collection of sets (or binary vectors). In this

chapter, we investigate the usefulness of higher order similarity search in many

practical applications and furthermore show some fundamental results on the

efficiency of these search problems. In particular, we show that a class of ap-

proximate R3way Jaccard similarity search problems admit fast algorithms with

provable guarantees, analogous to the pairwise case. Our analysis and speedup

guarantees naturally extend to k-way resemblance [52, 57] defined over k sets

{S 1, S 2, ..., S k} as

Rk−way =
|S 1 ∩ S 2 ∩ ... ∩ S k|

|S 1 ∪ S 2 ∪ ... ∪ S k|
. (5.2)

In the process, we extend traditional framework of locality sensitive hashing (LSH)

to handle higher-order similarities, which could be of independent theoretical

interest.

5.1 Importance of k-way Resemblance

We list four practical scenarios where k-way resemblance search would be a

natural choice and in the later section provide some empirical support.
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(i) Google Sets: (http://googlesystem.blogspot.com/2012/11/google-sets-

still-available.html) Google Sets is among the earliest google projects, which

allows users to generate list of similar words by typing only few related key-

words. For example, if the user types “mazda” and “honda” the application

will automatically generate related words like “bmw”, “ford”, “toyota”, etc.

This application is currently available in google spreadsheet. If we assume the

term document binary representation of each word w in the database, then given

query w1 and w2, we show that |w1∩w2∩w|
|w1∪w2∪w| turns out to be a very good similarity

measure for this application (see Section 5.1.1).

(ii) Joint recommendations: Users A and B would like to watch a movie

together. The profile of each person can be represented as a sparse vector over a

giant universe of attributes. For example, a user profile may be the set of actors,

actresses, genres, directors, etc, which she/he likes. On the other hand, we can

represent a movie M in the database over the same universe based on attributes

associated with the movie. If we have to recommend movie M, jointly to users

A and B, then a natural measure to maximize is |A∩B∩M|
|A∪B∪M| . The problem of group

recommendation [5] is applicable in many more settings such as recommending

people to join circles, etc.

(iii) Improving retrieval quality: We are interested in finding images of

a particular type of object, and we have two or three(possibly noisy) represen-

tative images. In such a scenario, a natural expectation is that retrieving im-

ages simultaneously similar to all the representative images should be more re-

fined than just retrieving images similar to any one of them. In Section 5.1.1, we

demonstrate that in cases where we have more than one elements to search for,

we can refine our search quality using k-way resemblance search. In a dynamic
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feedback environment [11], we can improve subsequent search quality by using

k-way similarity search on the pages already clicked by the user.

(iv) Beyond pairwise clustering: While machine learning algorithms of-

ten utilize the data through pairwise similarities (e.g., inner product or resem-

blance), there are natural scenarios where the affinity relations are not pairwise,

but rather triadic, tetradic or higher [2, 93]. The computational cost, of course,

will increase exponentially if we go beyond pairwise similarity.

5.1.1 Empirical Observations

In this section, we empirically demonstrate the usefulness of 3-way and higher-

order similarity search using (i) Google Sets, and (ii) Improving retrieval quality.

Google Sets: Generating Semantically Similar Words

The task is to retrieve words which are “semantically” similar to the given set of

query words. We collected 1.2 million random documents from Wikipedia and

created a standard term-doc binary vector representation of each term present in

the collected documents after removing standard stop words and punctuation

marks. More specifically, every word is represented as a 1.2 million dimension

binary vector indicating its presence or absence in the corresponding document.

The total number of terms (or words) was around 60,000 in this experiment.

Since there is no standard benchmark available for this task, we show qual-

itative evaluations. For querying, we used the following four pairs of semanti-

cally related words: (i) “jaguar” and “tiger”; (ii) “artificial” and “intelligence”;
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(iii) “milky” and “way” ; (iv) “finger” and “lakes”. Given the query words w1

and w2, we compare the results obtained by the following four methods.

• Google Sets: We use Google’s algorithm and report 5 words from Google

spreadsheets [1]. This is Google’s algorithm which uses its own data.

• 3-way Resemblance (3-way): We use 3-way resemblance |w1∩w2∩w|
|w1∪w2∪w| to rank

every word w and report top 5 words based on this ranking.

• Sum Resemblance (SR): Another intuitive method is to use the sum of

pairwise resemblance |w1∩w|
|w1∪w| + |w2∩w|

|w2∪w| and report top 5 words based on this

ranking.

• Pairwise Intersection (PI): We first retrieve top 100 words based on pair-

wise resemblance for each w1 and w2 independently. We then report the

words common in both. If there is no word in common we do not report

anything.

The results in Table 5.1 demonstrate that using 3-way resemblance retrieves

reasonable candidates for these four queries. An interesting query is “finger”

and “lakes”. Finger Lakes is a region in upstate New York. Google could only

relate it to New York, while 3-way resemblance could even retrieve the names

of cities and lakes in the region. Also, for query “milky” and “way”, we can

see some (perhaps) unrelated words like “dance” returned by Google. We do

not see such random behavior with 3-way resemblance. For the query “Jaguar”

and “Tiger” all the results given by 3-way resemblance belong to the cat family

where as Google retrieves dog which seems suboptimal. Although we are not

aware of the algorithm and the dataset used by Google, we can see that 3-way

resemblance appears to be a right measure for this application.
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Table 5.1: Retrieval with various measure on Google Sets queries

“JAGUAR” AND “ TIGER” “ARTIFICIAL” AND “INTELLIGENCE”

GOOGLE 3-WAY SR PI

LION LEOPARD CAT —

LEOPARD CHEETAH LEOPARD —

CHEETAH LION LITRE —

CAT PANTHER BMW —

DOG CAT CHASIS —

GOOGLE 3-WAY SR PI

COMPUTER COMPUTER SECURITY —

PROGRAMMING SCIENCE WEAPONS —

SCIENCE INTELLIGENT SECRET —

ROBOT HUMAN ATTACKS —

ROBOTICS TECHNOLOGY HUMAN —

“MILKY” AND “ WAY” “FINGER” AND “LAKES”

GOOGLE 3-WAY SR PI

DANCE GALAXY EVEN —

STARS STARS ANOTHER —

SPACE EARTH STILL —

THE LIGHT BACK —

UNIVERSE SPACE TIME —

GOOGLE 3-WAY SR PI

NEW SENECA RIVERS —

YORK CAYUGA FRESHWATER —

NY ERIE FISH —

PARK ROCHESTER STREAMS —

CITY IROQUOIS FORESTED —

The results clearly show the problem with the sum of pairwise similarity

method. The similarity value with one of the words dominate the sum and

hence we see for queries “artificial” and “intelligence” that all the retrieved

words are mostly related to the word “intelligence”. Same is the case with query

“finger” and “lakes” as well as “jaguar” and “tiger”. Note, “jaguar” is also a car

brand. Also, for all 4 queries, there was no common word in the top 100 words

similar to the each query word individually and so PI method gives no answer.

The results are not surprising because 3-way resemblance seems the most

reasonable metric which clearly models co-occurrences. We should note the

importance of the denominator term in 3-way resemblance, without which fre-

quent words will be blindly favored. 3-way resemblance seems a very natural

and useful measure. The most exciting part , which we show later, is that 3-way

resemblance similarity search admits provable sub-linear guarantees making it

an ideal choice. On the other hand, no such known provable guarantees exist
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for SR and other such heuristic based search methods.

Improving Retrieval Quality in Similarity Search

In traditional near neighbor similarity search, we have a single query, and we

are interested in searching a database for candidates very similar to the given

query. In many situations it is possible to get a very small set of representative

object instead of just one, for instance we might be interested in searching for an

image of an animal or an object and we have two or three representative images

instead of just one. Even in the case when we just have one query, we can

search for few similar objects and then filter those retrieved points to generate

a few representative candidate to refine the search. This filtering of retrieved

candidates could be application dependent, for instance it could be the click

feedback of initial search query results. In such scenario a natural expectation

is that searching for objects simultaneously similar to the set of representative

candidates should be of better compared to any single query search.

We demonstrate how the retrieval quality of traditional similarity search can

be boosted by utilizing more query candidates instead of just one. For the evalu-

ations we choose two public datasets: MNIST and WEBSPAM. The two datasets

reflect diversity both in terms of task and scale that is encountered in practice.

The MNIST dataset consists of handwritten digit samples. Each sample is an

image of 28 × 28 pixel yielding a 784 dimension vector with the associated class

label (digit 0−9). We binarize the data by settings all non zeros to be 1. We used

the standard partition of MNIST, which consists of 10,000 samples in one set and

60,000 in the other. The WEBSPAM dataset, with 16,609,143 features, consists of

sparse vector representation of emails labeled as spam or not. We randomly
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sample 70,000 data points and partitioned them into two independent sets of

size 35,000 each.

Table 5.2: Percentage of top candidates with the same labels as that of
query retrieved using k-way (k = 2, 3 and 4) resemblance.

MNIST WEBSPAM

TOP

Pairwise

3-way

4-way

1 10 20 50

94.20 92.33 91.10 89.06

96.90 96.13 95.36 93.78

97.70 96.89 96.28 95.10

1 10 20 50

98.45 96.94 96.46 95.12

99.75 98.68 97.80 96.11

99.90 98.87 98.15 96.45

For evaluation, we need to generate potential similar search query candi-

dates for k-way search. It makes no sense in trying to search for object simulta-

neously similar to two very different objects. To generate such query candidates,

we took one independent set of the data and partition it according to the class

labels. We then run a cheap k-mean clustering on each class, and randomly

sample triplets < x1, x2, x3 > from each cluster for evaluating 2-way, 3-way and

4-way similarity search. For MNIST dataset, the standard 10,000 test set was

partitioned according to the labels into 10 sets, each partition was then clus-

tered into 10 clusters, and we choose 10 triplets randomly from each cluster. In

all we had 100 such triplets for each class, and thus 1000 overall query triplets.

For WEBSPAM, which consists only of 2 classes, we choose one of the indepen-

dent set and performed the same procedure. We selected 100 triplets from each

cluster. We thus have 1000 triplets from each class making the total number of

2000 query candidates.

The above procedures ensures that the elements in each triplets < x1, x2, x3 >

are not very far from each other and are of the same class label. For each triplet
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< x1, x2, x3 >, we sort all the points x in the other independent set based on:

• Pairwise: We only use x1 and rank x based on resemblance |x1∩x|
|x1∪x| .

• 3-way NN: We rank x based on 3-way resemblance |x1∩x2∩x|
|x1∪x2∪x| .

• 4-way NN: We rank x based on 4-way resemblance |x1∩x2∩x3∩x|
|x1∪x2∪x3∪x| .

We look at the top 1, 10, 20 and 50 points based on orderings described above.

Since, all the query triplets are of the same label, The percentage of top retrieved

candidates having same label as that of the query items is a natural metric to

evaluate the retrieval quality. This percentage values accumulated over all the

triplets are summarized in Table 5.2.

We can see that top candidates retrieved by 3-way resemblance similarity, us-

ing 2 query points, are of better quality than vanilla pairwise similarity search.

Also 4-way resemblance, with 3 query points, further improves the results com-

pared to 3-way resemblance similarity search. This clearly demonstrates that

multi-way resemblance similarity search is more desirable whenever we have

more than one representative query in mind. Note that, for MNIST, which con-

tains 10 classes, the boost compared to pairwise retrieval is substantial. The

results follow a consistent trend.

In is evident from experiments that searching with k-way resemblance can be

significantly beneficial in practice. With the data explosion in modern applica-

tions, the brute force way of scanning all the data for searching is prohibitively

expensive, specially in user-facing applications like search. The need for k-way

similarity search can only be fulfilled if it admits efficient algorithms. As we

shown later, it turns out that searching with k-way resemblance is efficient.
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5.2 Problem Formulation

Our focus will remain on binary vectors which can also be viewed as

sets. We illustrate our method using 3-way resemblance similarity function

S im(S 1, S 2, S 3) = |S 1∩S 2∩S 3 |

|S 1∪S 2∪S 3 |
. The algorithm and guarantees naturally extends to

k-way resemblance. Given a size n collection C ⊆ 2Ω of sets (or binary vectors),

we are particularly interested in the following three problems:

1. Given two query sets S 1 and S 2, find S 3 ∈ C that maximizes S im(S 1, S 2, S 3).

2. Given a query set S 1, find two sets S 2, S 3 ∈ Cmaximizing S im(S 1, S 2, S 3).

3. Find three sets S 1, S 2, S 3 ∈ Cmaximizing S im(S 1, S 2, S 3).

The brute force way of enumerating all possibilities leads to the worst case

query time of O(n), O(n2) and O(n3) for problem 1, 2 and 3, respectively. In a

hope to break this barrier, just like the case of pairwise near neighbor search,

we define the c-approximate (c < 1) versions (Definition 1) of the above three

problems. As in the case of c-NN, we are given two parameters R0 > 0 and δ > 0.

For each of the following cases, the guarantee is with probability at least 1 − δ:

1. (3-way c-Near Neighbor or 3-way c-NN) Given two query sets S 1 and S 2,

if there exist S 3 ∈ C with S im(S 1, S 2, S 3) ≥ R0, then we report some S ′3 ∈ C

so that S im(S 1, S 2, S ′3) ≥ cR0.

2. (3-way c-Close Pair or 3-way c-CP) Given a query set S 1, if there exist a

pair of set S 2, S 3 ∈ C with S im(S 1, S 2, S 3) ≥ R0, then we report sets S ′2, S
′
3 ∈

C so that S im(S 1, S ′2, S
′
3) ≥ cR0.
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3. (3-way c-Best Cluster or 3-way c-BC) If there exist sets S 1, S 2, S 3 ∈ C

with S im(S 1, S 2, S 3) ≥ R0, then we report sets S ′1, S
′
2, S

′
3 ∈ C so that

S im(S ′1, S
′
2, S

′
3) ≥ cR0.

5.3 Fast Algorithms via Hashing

In this section we show that using hashing we can obtain provably fast algo-

rithms for the c-approximate search problem formalized in the previous Section.

5.3.1 Sub-linear Algorithm for 3-way c-NN

The basic philosophy behind sub-linear search is bucketing, which allows us to

preprocess dataset in a fashion so that we can filter many bad candidates with-

out scanning all of them. LSH-based techniques rely on randomized hash func-

tions to create buckets that probabilistically filter bad candidates. This philoso-

phy is not restricted for binary similarity functions and is much more general.

Here, we first focus on 3-way c-NN problem for binary data.

Theorem 5 For R3way c-NN one can construct a data structure with O(nρ log1/cR0
n)

query time and O(n1+ρ) space, where ρ = 1 − log 1/c
log 1/c+log 1/R0

. �

Minwise hashing idea for 2-way resemblance can be naturally extended to

k-way resemblance. Specifically, given three sets S 1, S 2, S 3 ⊆ Ω and an indepen-

dent random permutation π : Ω→ Ω, we have with MinHash (Section 2.4):

Pr (min(π(S 1))=min(π(S 2))=min(π(S 3))) = R3way. (5.3)
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Equation 5.3 shows that minwise hashing, although it operates on sets individ-

ually, preserves all 3-way (in fact k-way) similarity structure of the data. The

existence of such a hash function is the key requirement behind the existence of

efficient approximate search. For the pairwise case, the probability event was

a simple hash collision, and the min-hash itself serves as the bucket index. In

case of 3-way (and higher) c-NN problem, we have to take care of a more com-

plicated event to create an indexing scheme. In particular, during preprocessing

we need to create buckets for each individual S 3, and while querying we need

to associate the query sets S 1 and S 2 to the appropriate bucket. We need extra

mechanisms to manipulate these minwise hashes to obtain a bucketing scheme.

Later in Chapter 7, we will see that this idea, of having a mechanism for assign-

ing buckets to query and a different mechanism for preprocessing the elements

in the collection, is very powerful and a strict generalization of existing LSH

framework. The proof of Theorem 5 is constructive and conveys the major idea.

Proof of Theorem 5: We use two additional functions: f1 : Ω → N for ma-

nipulating min(π(S 3)) and f2 : Ω × Ω → N for manipulating both min(π(S 1))

and min(π(S 2)). Let a ∈ N+ be such that |Ω| = D < 10a. We define f1(x) =

(10a + 1) × x and f2(x, y) = 10ax + y. This choice ensures that given query

S 1 and S 2, for any S 3 ∈ C, f1(min(π(S 3)) = f2(min(π(S 1)),min(π(S 2))) holds if

and only if (min(π(S 1)) = min(π(S 2)) = min(π(S 2)), and thus we get a buck-

eting scheme. To complete the proof, we introduce two integer parameters

K and L. Define a new hash function by concatenating K events. To be

more precise, while preprocessing, for every element S 3 ∈ C create buckets

g1(S 3) = [ f1(h1(S 3)); ...; f1(hK(S 3))] where hi is chosen uniformly from minwise

hashing family. For given query points S 1 and S 2, retrieve only points in the

bucket g2(S 1, S 2) = [ f2(h1(S 1), h1(S 2)); ...; f2(hK(S 1), hK(S 2))]. Repeat this process L
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times independently. For any S 3 ∈ C, with S im(S 1, S 2, S 3) ≥ R0, is retrieved with

probability at least 1 − (1 − RK
0 )L. Using K = d

log n
log 1

cR0

e and L = dnρ log( 1
δ
)e, where

ρ = 1 − log 1/c
log 1/c+log 1/R0

, the proof can be obtained using standard concentration ar-

guments used to prove Fact 1, see [42, 36]. It is worth noting that the probability

guarantee parameter δ gets absorbed in the constants as log(1
δ
). Note, the process

is stopped as soon as we find some element with R3way ≥ cR0. �

Theorem 5 can be easily extended to k-way resemblance with same query

time and space guarantees. Note that k-way c-NN is at least as hard as k∗-way c-

NN for any k∗ ≤ k, because we can always choose (k− k∗ + 1) identical query sets

in k-way c-NN, and it reduces to k∗-way c-NN problem. With this observation,

and noting that the expression for ρ is similar with the ρ for the pairwise case,

we can infer that the guarantees are hard to improve. Any improvements in

R3way c-NN will imply improvements in the classical min-hash LSH for Jaccard

similarity.

One Universal Data Structure for All: An interesting consequence is that

it possible to also perform the traditional pairwise c-NN search using the same

hash tables deployed for 3-way c-NN. In the query phase we have an option,

if we have two different queries S 1, S 2, then we retrieve from bucket g2(S 1, S 2)

and that is usual 3-way c-NN search. If we are just interested in pairwise near

neighbor search given one query S 1, then we will look into bucket g2(S 1, S 1),

and we know that the 3-way resemblance between S 1, S 1, S 3 boils down to the

pairwise resemblance between S 1 and S 3. So, the same hash tables can be used

for both the purposes. This property generalizes, and hash tables created for

k-way c-NN can be used for any k∗-way similarity search for k∗ ≤ k. The approx-

imation guarantees still holds. This flexibility makes k-way bucketing strictly
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Figure 5.1: ρ = 1 − log 1/c
log 1/c+log 1/R0

values for 3-way similarity search.

advantageous over the pairwise scheme.

One of the peculiarity of LSH based techniques is that the query complexity

exponent ρ < 1 is dependent on the choice of the threshold R0 we are interested

in and the value of c which is the approximation ratio that we will tolerate.

Figure 5.1 plots ρ = 1 − log 1/c
log 1/c+log 1/R0

with respect to c, for selected R0 values

from 0.01 to 0.99. For instance, if we are interested in highly similar pairs, i.e.

R0 ≈ 1, then we are looking at near O(log n) query complexity for c-NN problem

as ρ ≈ 0. On the other hand, for very lower threshold R0, there is not much of

hope of time-saving because ρ is close to 1.

5.3.2 Other Efficient k-way Similarities

We refer to the k-way similarities for which there exist sub-linear algorithms for

c-NN search, with query and space complexity exactly as given in Theorem 5,
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as efficient . We have demonstrated existence of one such example of efficient

similarity, which is the k-way resemblance. This leads to a natural question:

“Are there more of them?”.

[20] analyzed all the transformations on similarities that preserve existence

of efficient LSH based search. In particular, they showed that if S is a similarity

for which there exists an LSH family, then there also exists an LSH family for

any similarity which is a probability generating function (PGF) transformation on

S. PGF transformation on S is defined as PGF(S) =
∑∞

i=1 piS
i, where S ∈ [0, 1]

and pi ≥ 0 satisfies
∑∞

i=1 pi = 1. Similar theorem can also be shown in the case of

3-way resemblance.

Theorem 6 Any PGF transformation on 3-way resemblance R3way is efficient. �

Recall in the proof of Theorem 5, we created hash assignments f1(min(π(S 3))

and f2(min(π(S 1)),min(π(S 2))), which lead to a bucketing scheme for the 3-

way resemblance search, where the collision event E = { f1(min(π(S 3)) =

f2(min(π(S 1)),min(π(S 2)))} happens with probability Pr(E) = R3way. To prove

the above Theorem 6, we will need to create hash events having probability

PGF(R3way) =
∑∞

i=1 pi(R3way)i. Note that 0 ≤ PGF(R3way) ≤ 1. We will make use of

the following simple lemma.

Lemma 1 (R3way)n is efficient for all n ∈ N.

Proof: Define new hash assignments gn
1(S 3) = [ f1(h1(S 3)); ...; f1(hn(S 3))] and

gn
2(S 1, S 2) = [ f2(h1(S 1), h1(S 2)); ...; f2(hn(S 1), hn(S 2))]. The collision event gn

1(S 3) =

gn
2(S 1, S 2) has probability (R3way)n. We now use the pair < gn

1, gn
2 > instead of < f1,
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f2 > and obtain same guarantees, as in Theorem 5, for (R3way)n as well. �

Proof of Theorem 6: From Lemma 1, let < gi
1, g

i
2 > be the hash pair corre-

sponding to (R3way)i as used in above lemma. We sample one hash pair from the

set {< gi
1, g

i
2 >: i ∈ N}, where the probability of sampling < gi

1, g
i
2 > is propor-

tional to pi. Note that pi ≥ 0, and satisfies
∑∞

i=1 pi = 1, and so the above sampling

is valid. It is not difficult to see that the collision of the sampled hash pair has

probability exactly
∑∞

i=1 pi(R3way)i. �

Theorem 6 can be naturally extended to k-way similarity for any k ≥ 2. Thus,

we now have infinitely many k-way similarity functions admitting efficient sub-

linear search. One, that might be interesting, because of its radial basis kernel

like nature, is shown in the following corollary.

Corollary 4 eR
k−way−1 is efficient.

Proof: Use the expansion of eR
k−way normalized by e to see that eR

k−way−1 is a PGF

on Rk−way. �

5.3.3 Fast Algorithms for 3-way c-CP and 3-way c-BC Problems

For 3-way c-CP and 3-way c-BC problems, using bucketing scheme with min-

wise hashing family will save even more computations.

Theorem 7 For R3way c-Close Pair Problem (or c-CP) one can construct a data struc-

ture with O(n2ρ log1/cR0
n) query time and O(n1+2ρ) space, where ρ = 1 − log 1/c

log 1/c+log 1/R0
.�
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Note that we can switch the role of f1 and f2 in the proof of Theorem 5. We

are thus left with a c-NN problem with search space O(n2) (all pairs) instead of

n. A bit of analysis, similar to Theorem 5, will show that this procedure achieves

the required query time O(n2ρ log1/cR0
n), but uses a lot more space, O(n2(1+ρ)), than

shown in the above theorem. It turns out that there is a better way of doing c-CP

that saves us space.

Proof of Theorem 7: We again start with constructing hash tables. For

every element S c ∈ C, we create a hash-table and store S c in bucket B(S c) =

[h1(S c); h2(S c); ...; hK(S c)], where hi is chosen uniformly from minwise indepen-

dent family of hash functions H . We create L such hash-tables. For a query

element S q we look for all pairs in bucket B(S q) = [h1(S q); h2(S q); ...; hK(S q)] and

repeat this for each of the L tables. Note, we do not form pairs of elements re-

trieved from different tables as they do not satisfy Equation 2.4. If there exist

a pair S 1, S 2 ∈ C with S im(S q, S 1, S 2) ≥ R0, using Equation 2.4, we can see that

we will find that pair in bucket B(S q) with probability 1 − (1 − RK
0 )L. Here, we

cannot use traditional choice of K and L, similar to what we did in Theorem 5,

as there are O(n2) instead of O(n) possible pairs. We instead use K = d
2 log n
log 1

cR0

e

and L = dn2ρ log(1
δ
)e, with ρ = 1 − log 1/c

log 1/c+log 1/R0
. With this choice of K and L, the

result follows. Note, the process is stopped as soon as we find pairs S 1 and S 2

with S im(S q, S 1, S 2) ≥ cR0. The key argument that saves space from O(n2(1+ρ))

to O(n1+2ρ) is that we hash n points individually. Eq. (2.4) makes it clear that

hashing all possible pairs is not needed when every point can be processed

individually, and pairs formed within each bucket itself filter out most of the

unnecessary combinations. �

Theorem 8 For R3way c-Best Cluster Problem (or c-BC) there exist an algorithm with
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running time O(n1+2ρ log1/cR0
n), where ρ = 1 − log 1/c

log 1/c+log 1/R0
. �

The argument similar to one used in proof of Theorem 7 leads to the running

time of O(n1+3ρ log1/cR0
n) as we need L = O(n3ρ), and we have to processes all

points at least once.

Proof of Theorem 8: Repeat c-CP problem n times for every element in col-

lection C acting as query once. We use the same set of hash tables and hash

functions every time. The preprocessing time is O(n1+2ρ log1/cR0
n) evaluations of

hash functions and the total querying time is O(n × n2ρ log1/cR0
n), which makes

the total running time O(n1+2ρ log1/cR0
n). �

For k-way c-BC Problem, we can achieve O(n1+(k−1)ρ log1/cR0
n) running time.

If we are interested in very high similarity cluster, with R0 ≈ 1, then ρ ≈ 0,

and the running time is around O(n log n). This is a huge saving over the brute

force O(nk). In most practical cases, specially in big data regime where we have

enormous amount of data, we can expect the k-way similarity of good clusters

to be high and finding them should be efficient. We can see that with increasing

k, hashing techniques save more computations.

5.4 Practical Implementation

For theoretical analysis just existence of hash functions guaranteeing the re-

quired collision probability suffices, and we can assume bucket probing as a

constant time operation. There are two major practical concerns that arise when

constructing tables using minwise hashes: 1) The range of hash values can
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be potentially huge. Moreover, we need to concatenate K of these signatures,

which makes construction of constant time lookup tables impossible. 2) The

hash functions do not map uniformly into the bucket space leading to many

buckets being empty. For the pairwise case, both of these issues were handled

by employing universal hashing scheme to remap the theoretical buckets uni-

formly to manageable size addresses space, see [32]. The basic idea being trad-

ing practicality with a very small random collision probability. We will follow

the same route.

Suppose for 3-way c-NN problem, we want to create hash tables of

size S for lookup. While preprocessing, the theoretical bucket g1(S 3) =

[ f1(h1(S 3)); ...; f1(hk(S 3))], corresponding to an element S 3 ∈ C, is associated with

the actual bucket

B(S 3) = ((
i=k∑
i=1

ri × f1(hi(S 3))mod P)mod S),

where ris are random integers and P is any prime number sufficiently larger

than S to ensure uniformness. After we have preprocessed all the elements of

C, during the query stage, for query elements S 1 and S 2, we retrieve from hash

tables only the elements stored at the location (or index)

B(S 1, S 2) = ((
i=k∑
i=1

ri × f2(hi(S 1), hi(S 2))mod P)mod S)

This scheme incurs an addition 1
S

probability of retrieving a random point. This

probability is negligible and there are more ways to reduce this probability, for

example, use another hash function for chaining, see [6].

In case when f1(hi(S 3)) is very large, which is possible for k-way resemblance

with large k, we can rehash f1(hi(S 3)) itself to a manageable size and then create

buckets, an idea very similar to recently proposed b-bit minwise hashing [78].
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5.5 Computation Savings in Practice

In this section, we will demonstrate the savings in computation obtained via the

proposed bucketing (Theorem 5) scheme in the context of 3-way resemblance

search. We chose the same query candidates generated in section 5.1.1. From

each triplet (x1, x2, x3), we use the 1st and the 2nd data-point x1 and x2 as the

3-way c-NN query.

10 20 30 40 50 60 70 80 90 100
10

−4

10
−3

10
−2

10
−1

10
0

K=4

K=6

K=8

K=10
K=12
K=14

L (Number of Tables)

F
ra

ct
io

n 
E

va
lu

at
ed

 

MNIST

10 20 30 40 50 60 70 80 90 100
10

−3

10
−2

10
−1

10
0

K=4

K=6 K=8
K=10

K=12
K=14

L (Number of Tables)

F
ra

ct
io

n 
E

va
lu

at
ed
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Figure 5.2: Fraction of the total points retrieved by the bucketing scheme
for fast 3-way resemblance search with various K and L

Traditional evaluations of bucketing scheme need a similarity threshold R0

as input. The values of parameters K and L is then determined on the basis of

this R0. We follow a more rigorous evaluation. We implement the bucketing

procedure, for 3-way c-NN search, exactly as described in Section 5.4. We chose

a fixed table-size of S = 224, i.e., 24 bits addresses. We evaluate the bucketing

procedure over a set of values of K and L. In particular, we use the following

choices: K ∈ {4, 6, 8, 10, 12, 14} and L ∈ {10, 20, 50, 75, 100}. For each combination

of K and L, we compute the total number of points retrieved by the bucketing

scheme. Figure 5.2 summarizes the plot of the ratio of total number of points

scanned by the bucketing scheme to the total number of points that would be
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Figure 5.3: Recall of the points with 3-way resemblance greater than R0 for
various combinations of parameters K and L

required by a brute force linear scan. The y-axis is on the log scale.

Figure 5.2 gives a nice overview of how the values of parameters K and L af-

fect the number of points retrieved by the bucketing scheme. It should be noted

that the number of points retrieved also depends on the similarity distribution

of data. For example, if the whole data are just duplicates, of the given query,

then any hashing scheme will retrieve all the elements. The speedup obtained

is very much dependent on the similarity value distribution of data, and it is

usually much better than the worst case theoretical guarantees.
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To evaluate the accuracy of this bucketing scheme, we report the recall of

all the points with similarity greater than R0. In particular, we chose R0 ∈

{0.8, 0.7, 0.6}. Figure 5.3 plots the recall, given a value of R0, over all choices

of K and L for both the datasets.

Few things that we can observe in the plots is that the recall values goes

down with similarity level R0, which is what one should expect from any prob-

abilistic bucketing scheme. To get an estimate of how much computation we

save, for simplicity, let us assume that we are interested in almost perfect re-

call. For MNIST data if we are interested in retrieving all 3-way neighbors with

R0 ≥ 0.8, then a good combination is K = 14 and L = 75. This combination

evaluates on an average of 72 points per query. For R0 ≥ 0.7, perfect recall can

be achieved with K = 10 and L = 100 which scans around 265 points per query.

While for R0 ≥ 0.6, we need K = 6 and L = 75, and that scans around 2200 points

per query. Compare this with brute force way of 60000 points per query. This is

a massive saving. As pointed out before, the savings are more if our interest is

in retrieving very similar neighbors.

In the case of WEBSPAM dataset, achieving almost perfect recall for R0 ≥ 0.8

can be done using K = 14 and L = 50. This combination scans an average of

around 205 points per query. For R0 ≥ 0.7, the average points retrieved per

query is 762 with K = 10 and L = 75. Perfect recall for R0 ≥ 0.6 with K = 6

and L = 50 scans around 1678 points per query. The brute force way is scanning

all of the 35000 points. The savings are even more prominent when the total

number of data points, i.e. n, is large.

In practice, especially in the “Big Data” regime, we will be mostly interested

in high similarity thresholds. And therefore, we expect this scheme to be much
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more beneficial. For simplicity, we restricted our arguments to the case where

we are interested in perfect recall. In most practical cases, we are interested only

in retrieving few elements from dataset with high similarity, which should be

much more efficient. These are some of the many crucial reasons why proba-

bilistic bucketing scheme is popular for pairwise similarity search.

5.6 Discussions

We believe that we have presented the first evidence of usefulness of k-way sim-

ilarity search and also demonstrated its feasibility in practice. While the work

presented in this Chapter is promising for efficient 3-way and k-way similar-

ity search in binary high-dimensional data, there are numerous interesting and

useful research directions. We mention two important such examples.

Limited Randomness and k-way Hashing: A lot is known about the ef-

fect of limited randomness on minwise hashing for pairwise estimation and

retrieval [40, 41, 71, 62]. Studying the effect of limited randomness for k-way

search and estimation is wide open. The analysis may be combinatorially inter-

esting and challenging.

k-way sign random projections: It would be very useful to develop the-

ory for k-way sign random projections for non-binary data. Under usual (real-

valued) random projections, it is known that the volume (which is related to the

determinant) is approximately preserved [66, 48]. We speculate that the colli-

sion probability of k-way sign random projections might be also a (monotonic)

function of the determinant. In case the collision probability is monotonic, the

ideas presented to create buckets for the k-way cases are directly applicable.
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CHAPTER 6

AN ORDER OF MAGNITUDE FASTER MINHASH

MinHash is a decade old algorithm which has made innumerable applica-

tions over the web faster. We have further shown in chapter 4 that MinHash

is arguably the best hash function for the web by showing its superiority over

another very popular hashing scheme SimHash. In chapter 5, we show that the

properties of MinHash go beyond pairwise similarity, and we can use MinHash

signatures for efficient querying with k-way similarity measures, which is a very

promising direction in many real applications.

The query complexity of MinHash based similarity search is dominated by

the number of hash evaluations, and this number grows with the data size [42].

For large scale learning with kernel feature for resemblance kernel, we need

multiple (hundreds to thousands) MinHash signatures. As discussed in Chap-

ter 3, the bottleneck cost is feature generation because it requires computation

of multiple hashes. This is true with any application using MinHash. In in-

dustrial applications such as search where the data are often high-dimensional

and binary (e.g., text n-grams), minwise hashing is widely adopted. Traditional

scheme for computing MinHash requires computing hundreds or thousands of

MinHash signatures of the data. This multiple hash computation is the bot-

tleneck step in many applications, which is costly both in terms of computation

and memory. We argue that this cost in the decade old algorithm is unnecessary.

In this chapter, we propose an order of magnitude faster variant of minwise

hashing (MinHash) which generates all the necessary hash evaluations (for sim-

ilarity search or linear learning), using one single permutation and one pass

over the data. The heart of the proposed hash function is a “rotation” scheme
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which densifies the sparse sketches of one permutation hashing [60] in an unbi-

ased fashion thereby achieving the LSH property. This LSH property is required

for hash table construction and kernel feature generation. This idea of rotation

presented in this chapter could be of independent theoretical interest for densi-

fying other types of sparse sketches in an unbiased manner.

With the new hashing method, the query time of a (K, L)-parameterized LSH

(Section 2.3) is reduced from the typical O(dKL) complexity to merely O(KL+dL),

where d is the number of nonzeros of the data vector, K is the number of hashes

in each hash table, and L is the number of hash tables. This is an algorithmic

improvement over existing (K, L)-parameterized LSH for resemblance similar-

ity search which has innumerable applications. The proposed hashing scheme

also leads to linear estimator for resemblance. Linear estimator leads to kernel

features. Thus speedup in hash computation automatically implies fast kernel

features for learning with resemblance kernel (See Chapter 3 for details).

6.1 Problems with Classical Minwise Hashing Scheme

Minwise hashing is one of the widely adopted hash function that is used to

construct index structures for resemblance based similarity search. In hashing

based methods, the total number of hash evaluations needed to perform sub-

linear similarity search is O(nρlogn) [42] per query, which in practice can run

into hundreds and even in thousands. Thus, processing a single query with

minwise hashing requires to store and process hundreds or even thousands of

giant permutations of size equal to the dimensionality of the datasets D which

in practice can go to D = 264. Querying with minwise hashing, even though

parallelizable [62], is computational expensive and hence not energy efficient.
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Why not Conditional Random Sampling Sketches ? The idea of Conditional

Random Sampling (CRS) sketches, that generates multiple hashes (or sketches)

from a single permutation, has been there in literature for a while [12, 51, 52, 53],

also referred to as “bottom-k Sketches” [21]. It turns out that CRS sketches are

only suitable for estimation of similarity, and they cannot be used to construct

hash buckets for fast similarity search. Minwise hashing satisfies the LSH prop-

erty of having the “collision probability” equal to the similarity value. This

property makes minwise hashing an ideal candidate for generating index struc-

tures [42]. CRS sketches do not satisfy this LSH property and hence are unsuit-

able for LSH based table construction. See Appendix B for more details and

experimental comparisons.

6.2 One Permutation Hashing

The idea of binning has proven quite powerful in streaming applications for

generating efficient data sketches [17, 22]. It involves partitioning the data vec-

tor into multiple bins, and then storing appropriate summary statistics com-

puted over each of the bins. Based on this idea, [60] developed one permutation

hashing. As illustrated in Figure 6.1, the method breaks the space equally into k

bins after one permutation and stores the smallest nonzero of each bin. In this

way, the samples are naturally aligned. Note that if k = D, where D = |Ω|, then

we get back the (permuted) original data matrix. One of the major concerns

with one permutation hashing is the occurrence of empty bins.

For example, in Figure 6.1, π(S 1) and π(S 2) denote the state of the binary

vectors S 1 and S 2 after applying permutation π. These shuffled vectors are then
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 Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 

     0    1   2    3      4     5    6    7        8   9   10  11 12  13  14  15 16  17  18  19 20  21  22 23 

 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

    ) 0 0 0 0 0 1 0 1  0 0 0 0 0 0 1 1  1 0 1 0 0 1 1 0 

    ) 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0  1 1 0 0 0 0 0 0 

OPH(  ) E      1 E 2       0 1 

OPH(  ) E      1 E 0       0 E 

Figure 6.1: One Permutation Hashing. Instead of only storing the small-
est nonzero in each permutation and repeating the permuta-
tion k times, we can use just one permutation, break the space
evenly into k bins, and store the smallest nonzero in each bin.

divided into 6 bins of length 4 each. We start the numbering from 0. We look

into each bin and store the corresponding minimum non-zero index. For bins

not containing any non-zeros, we use a special symbol “E” to denote empty

bins. We also denote

M j(π(S )) =

{
π(S ) ∩

[
D j
k
,

D( j + 1)
k

)}
(6.1)

We assume for the rest of the chapter that D is divisible by k, otherwise we can

always pad extra dummy features. We define OPH
j

(“OPH” for one permutation

hashing) as

OPH
j

(π(S )) =


“E”, if π(S ) ∩

[
D j
k ,

D( j+1)
k

)
= φ

M j(π(S )) mod D
k , otherwise

(6.2)

i.e., OPH
j

(π(S )) denotes the minimum value in Bin j, under permutation map-

ping π, as shown in the example in Figure 6.1. If this intersection is null, i.e.,

π(S ) ∩
[

D j
k ,

D( j+1)
k

)
= φ, then OPH

j
(π(S )) = “E”.
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One permutation hashing generate many values, including the empty value

’E’, of the data using a single permutation. It was shown that one permutation,

was enough to estimate the resemblance with lesser variance than the original

minwise hashing. Although, it turns out that it is not suitable for the task of

similarity search because of the empty bins.

6.2.1 The Problem of Empty Bins

Consider the events of “simultaneously empty bin” I j
emp = 1 and “simultane-

ously non-empty bin” I j
emp = 0, between given vectors S 1 and S 2, defined as:

I j
emp =


1, if OPH

j
(π(S 1)) = OPH

j
(π(S 2)) = E

0 otherwise
(6.3)

Simultaneously empty bins are only defined with respect to two sets S 1 and

S 2. In Figure 6.1, I0
emp = 1 and I2

emp = 1, while I1
emp = I3

emp = I4
emp = I5

emp = 0. Bin 5 is

only empty for S 2 and not for S 1, so I5
emp = 0.

Given a bin number j, if it is not simultaneously empty (I j
emp = 0) for both

the vectors S 1 and S 2, [60] showed

Pr
(
OPH

j
(π(S 1)) = OPH

j
(π(S 2))

∣∣∣∣∣I j
emp = 0

)
= R. (6.4)

On the other hand, when I j
emp = 1, no such guarantee exists. When I j

emp = 1

collision does not have enough information about the similarity R. Since the

event I j
emp = 1 can only be determined given the two vectors S 1 and S 2 and

the materialization of π, one permutation hashing cannot be directly used for

indexing, especially when the data are very sparse. In particular, OPH
j

(π(S ))
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does not lead to a valid LSH hash function because of the coupled event I j
emp = 1

in (6.4). The simple strategy of ignoring empty bins leads to biased estimators

of resemblance and shows poor performance [81]. Because of this same reason,

one permutation hashing cannot be directly used to extract random features for

linear learning with resemblance kernel.

6.3 Densifying One Permutation Hashing

We propose a “rotation” scheme that assigns new values to all the empty bins,

generated from one permutation hashing, in an unbiased fashion. The rotation

scheme for filling the empty bins from Figure 6.1 is shown in Figure 6.2. The

idea is that for every empty bin, the scheme borrows the value of the closest

non-empty bin in the clockwise direction (circular right hand side) added with

offset C.

 
 

 Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 

 (  ) 1+C      1 2+C 2       0 1 

 (  ) 1+C      1 0+C 0       0 1+2C 

Figure 6.2: Densification by “rotation” for filling empty bins generated
from one permutation hashing [81]. Every empty bin is as-
signed the value of the closest non-empty bin, towards right
(circular), with an offset C. For the configuration shown in Fig-
ure 6.1, the above figure shows the new assigned values (in red)
of empty bins after densification.

Our proposed hashing method is simple and effective. After one permuta-

tion hashing, we collect the hashed values for each set. If a bin is empty, we
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“borrow” the hashed value from the first non-empty bin on the right (circular).

Due to the circular operation, the scheme for filling empty bins appears like a

“rotation”. We can show mathematically that we obtain a valid LSH scheme.

Because we generate all necessary hash values from merely one permutation,

the query time of a (K, L)-parameterized LSH scheme is reduced from O(dKL)

to O(KL + dL), where d is the number of nonzeros of the query vector. We will

later show empirically that its performance in near neighbor search is virtually

identical to that of the original MinHash.

Given the configuration in Figure 6.1, for Bin 2 corresponding to S 1, we bor-

row the value 2 from Bin 3 along with an additional offset of C. Interesting is the

case of Bin 5 for S 2, the circular right is Bin 0 which was empty. Bin 0 borrows

from Bin 1 acquiring value 1 + C, Bin 5 borrows this value with another offset

C. The value of Bin 5 finally becomes 1 + 2C. The value of C = D
k + 1 enforces

proper alignment and ensures no unexpected collisions. Without this offset C,

Bin 5 which was not simultaneously empty, after reassignment, will have value

1 for both S 1 and S 2. This is an error as initially there was no collision (note

I5
emp = 0). Multiplication by the distance of the non-empty bin, from where the

value was borrowed, ensures that the new values of simultaneous empty bins

(I j
emp = 1), at any location j for S 1 and S 2, never match if their new values come

from different bin numbers.
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Formally the hashing scheme with “rotation”, denoted byH , is defined as:

H j(S ) =


OPH

j
(π(S )) if OPH

j
(π(S )) , E

OPH
( j+t) mod k

(π(S )) + tC otherwise

(6.5)

t = min z, s.t. OPH
( j+z) mod k

(π(S )) , E (6.6)

Here C = D
k + 1 is a constant.

This densification scheme ensures that whenever I j
emp = 0, i.e., Bin j is si-

multaneously empty for any two S 1 and S 2 under considerations, the newly as-

signed value mimics the collision probability of the nearest simultaneously non-

empty bin towards right (circular) hand side making the final collision proba-

bility equal to R, irrespective of whether I j
emp = 0 or I j

emp = 1.

Theorem 9

Pr
(
H j(S 1) = H j(S 2)

)
= R (6.7)

Proof: See Appendix A.0.2 �

Theorem 9 proves that our proposed method provides a valid hash func-

tion which satisfies the LSH property from one permutation. While the main

application of our method is for approximate neighbor search, which we will

elaborate in Section 6.3.3, another promising use of our work is for estimating

resemblance using only a linear estimator (i.e., an estimator which is an inner

product); see Section 6.3.1. Generating KL different hash values of H only re-

quires O(d + KL), which saves a factor of d in the query processing cost com-

pared to the cost of O(dKL) with traditional minwise hashing. For fast linear
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learning [65] with k different hash values the new scheme only needs O(d + k)

testing (or prediction) time compared to standard b-bit minwise hashing which

requires O(dk) time for testing.

6.3.1 Resemblance Estimation

Theorem 9 naturally suggests a linear, unbiased estimator of the resemblance R:

R̂ =
1
k

k−1∑
j=0

1
{
H j(π(S 1)) = H j(π(S 2))

}
(6.8)

Linear estimator is important because it implies that the hashed data form

an inner product space, which allows us to take advantage of the modern linear

learning algorithms [45, 77, 10, 29] such as linear SVM.

The original one permutation hashing paper [60] proved the following un-

biased estimator of R

R̂OPH,ub =
Nmat

k − Nemp
(6.9)

Nemp =

k−1∑
j=0

1
{

OPH
j

(π(S 1)) = E and OPH
j

(π(S 2)) = E
}

Nmat =

k−1∑
j=0

1
{

OPH
j

(π(S 1)) = OPH
j

(π(S 2)) , E
}

which unfortunately is not a linear estimator because the number of “jointly

empty” bins Nemp would not be known until we see both hashed sets. To address
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this issue, [60] provided a modified estimator

R̂OPH =
Nmat√

k − N(1)
emp

√
k − N(2)

emp

(6.10)

N(1)
emp =

k−1∑
j=0

1
{

OPH
j

(π(S 1)) = E
}
,

N(2)
emp =

k−1∑
j=0

1
{

OPH
j

(π(S 2)) = E
}

This estimator, is not unbiased (for estimating R). It is easy to see that as k

increases (to D), R̂OPH estimates the original (normalized) inner product, not

resemblance. From the perspective of applications (in linear learning), this is

not necessarily a bad choice, of course.

Here, we provide an experimental study to compare the two estimators, R̂ in

(6.8) and R̂OPH in (6.10). The dataset, extracted from a chunk of Web crawl (with

216 documents), is described in Table 6.2, which consists of 12 pairs of sets (i.e.,

total 24 words). Each set consists of the document IDs which contain the word.

Figure 6.3 and Figure 6.4 summarizes the estimation accuracies in terms

of the bias and mean square error (MSE). For R̂, bias = E
(
R̂ − R

)
and MSE =

E
(
R̂ − R

)2
. The definitions for R̂OPH is analogous. The results confirm that our

proposed hash method leads to an unbiased estimator regardless of the data

sparsity or number of bins k. The estimator in the one permutation hashing [60]

can be severely biased when k is too large (i.e., when there are many empty

bins). The MSEs suggest that the variance of R̂ essentially follows R(1−R)
k , which

is the variance of the original minwise hashing estimator [55], unless k is too

large. But even when the MSEs deviate from R(1−R)
k , they are not large, unlike

R̂OPH.

This experimental study confirms that our proposed hash method works

76



Table 6.1: 12 pairs of words vectors used for compare MSE.

Word 1 Word 2 |S 1| |S 2| R

HONG KONG 940 948 0.925

RIGHTS RESERVED 12234 11272 0.877

A THE 39063 42754 0.644

UNITED STATES 4079 3981 0.591

SAN FRANCISCO 3194 1651 0.456

CREDIT CARD 2999 2697 0.285

TOP BUSINESS 9151 8284 0.163

SEARCH ENGINE 14029 2708 0.152

TIME JOB 12386 3263 0.128

LOW PAY 2936 2828 0.112

SCHOOL DISTRICT 4555 1471 0.087

REVIEW PAPER 3197 1944 0.078

well for resemblance estimation and hence it is useful for, e.g., training resem-

blance kernel SVM using a linear algorithm.

6.3.2 Variance Analysis

We provide the variance analysis of the existing scheme. Theorem 9 leads to an

unbiased estimator of R between S 1 and S 2 defined as:

R̂ =
1
k

k−1∑
j=0

1{H j(S 1) = H j(S 2)}. (6.11)
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Figure 6.3: Bias in resemblance estimation. The plots are the biases of the
proposed estimator R̂ defined in (6.8) and the previous estima-
tor R̂OPH defined in (6.10) with respect to number of bins k

Denote the number of simultaneously empty bins by

Nemp =

k−1∑
j=0

1{I j
emp = 1}, (6.12)

where 1 is the indicator function. We partition the event
(
H j(S 1) = H j(S 2)

)
into

two cases depending on I j
emp. Let MN

j (Non-empty Match at j) and ME
j (Empty

Match at j) be the events defined as:

MN
j = 1{I j

emp = 0 and H j(S 1) = H j(S 2)} (6.13)

ME
j = 1{I j

emp = 1 and H j(S 1) = H j(S 2)} (6.14)
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Figure 6.4: MSE in resemblance estimation. The MSE of the proposed
estimator R̂ defined in (6.8) and the previous estimator R̂OPH

defined in (6.10) with respect to number of bins k

Note that, MN
j = 1 =⇒ ME

j = 0 and ME
j = 1 =⇒ MN

j = 0. This combined with

Equation 6.4 implies,

E(MN
j |I

j
emp = 0) = E(ME

j |I
j
emp = 1)

= E(ME
j + MN

j ) = R ∀ j (6.15)

It is not difficult to show that,

E
(
MN

j MN
i

∣∣∣i , j, I j
emp = 0 and Ii

emp = 0
)

= RR̃,

where R̃ = a−1
f 1+ f 2−a−1 . Using these new events, we have

R̂ =
1
k

k−1∑
j=0

[
ME

j + MN
j

]
(6.16)
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We are interested in computing

Var(R̂) = E


1

k

k−1∑
j=0

[
ME

j + MN
j

]
2 − R2 (6.17)

For notational convenience we will use m to denote the event k − Nemp = m,

i.e., the expression E(.|m) means E(.|k − Nemp = m). To simplify the analysis, we

will first compute the conditional expectation

f (m) = E


1

k

k−1∑
j=0

[
ME

j + MN
j

]
2 ∣∣∣∣∣ m

 (6.18)

By expansion and linearity of expectation, we obtain

k2 f (m) = E

∑
i, j

MN
i MN

j

∣∣∣∣∣m
 + E

∑
i, j

MN
i ME

j

∣∣∣∣∣m


+E

∑
i, j

ME
i ME

j

∣∣∣∣∣m
 + E

 k∑
i=1

[
(MN

j )2 + (ME
j )2

] ∣∣∣∣∣m


MN
j = (MN

j )2 and ME
j = (ME

j )2 as they are indicator functions and can only take

values 0 and 1. Hence,

E

 k−1∑
j=0

[
(MN

j )2 + (ME
j )2

] ∣∣∣∣∣m
 = kR (6.19)

The values of the remaining three terms are given by the following 3 Lemmas;

See the proofs in the Appendix.

Lemma 2

E

∑
i, j

MN
i MN

j

∣∣∣∣∣m
 = m(m − 1)RR̃ (6.20)

Proof: See Appendix A.0.3 �

Lemma 3

E

∑
i, j

MN
i ME

j

∣∣∣∣∣m
 = 2m(k − m)

[
R
m

+
(m − 1)RR̃

m

]
(6.21)

80



Proof: See Appendix A.0.3 �

Lemma 4

E

∑
i, j

ME
i ME

j

∣∣∣∣∣m
 = (k − m)(k − m − 1)

×

[
2R

m + 1
+

(m − 1)RR̃
m + 1

]
(6.22)

Proof: See Appendix A.0.3 �

Combining the expressions from the above 3 Lemmas and Eq.(6.19), we can

compute f (m). Taking a further expectation over values of m to remove the

conditional dependency, the variance of R̂ can be shown in the next Theorem.

Theorem 10

Var(R̂) =
R
k

+ A
R
k

+ B
RR̃
k
− R2 (6.23)

A = 2E
[

Nemp

k − Nemp + 1

]
B = (k + 1)E

[
k − Nemp − 1
k − Nemp + 1

]
The theoretical values of A and B can be computed using the probability of the event

Pr(Nemp = i), denoted by Pi, which is given by Theorem 3 in [60].

Pi =

k−i∑
s=0

(−1)sk!
i!s!(k − i − s)!

f1+ f2−a−1∏
t=0

D
(
1 − i+s

k

)
− t

D − t

6.3.3 Experimental Comparisons

We implement the classical LSH algorithm described in Section 2.3 using the

standard procedures with the following choices of hash functions:
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Figure 6.5: Fraction of points retrieved by the bucketing scheme per query
corresponding to K = 10 shown over different choices of L.
Results are averaged over 10 independent runs.

• Traditional Minwise Hashing We use the standard minwise hashing

scheme hi(S ) = min(πi(S )) which uses K × L independent permutations.

• The Proposed Scheme We use our proposed hashing scheme H given

by (6.27) which uses only one permutation to generate all the K × L hash

evaluations.

• Empty Equal Scheme (EE) We use a heuristic way of dealing with empty

bins by treating the event of simultaneous empty bins as a match (or hash

collision). This can be achieved by assigning a fixed special symbol to

all the empty bins. We call this Empty Equal (EE) scheme. This can be
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formally defined as:

hEE
j (S ) =


OPH

j
(π(S )), if OPH

j
(π(S )) , E

A fixed special symbol, otherwise
(6.24)

• Empty Not Equal Scheme (ENE) Alternatively, one can also consider the

strategy of treating simultaneous empty bins as a mismatch of hash values

referred to as Empty Not Equal (ENE). ENE can be reasonably achieved

by assigning a new random number to each empty bin independently. The

random number will ensure, with high probability, that two empty bins do

not match. This leads to the following hash function

hENE
j (S ) =


OPH

j
(π(S )), if OPH

j
(π(S )) , E

rand(new seed), otherwise
(6.25)

Our aim is to compare the performance of minwise hashing with the pro-

posed hash functionH . In particular, we would like to evaluate the deviation in

performance ofH with respect to the performance of minwise hashing. SinceH

has the same collision probability as that of minwise hashing, we expect them to

have similar performance. In addition, we would like to study the performance

of simple strategies (EE and ENE) on real data.

Datasets

To evaluate the proposed bucketing scheme, we chose the following three pub-

licly available datasets.

• MNIST Standard dataset of handwritten digit samples. The feature di-

mension is 784 with an average number of around 150 non-zeros. We use
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the standard partition of MNIST, which consists of 10000 data points in

one set and 60000 in the other.

• NEWS20 Collection of newsgroup documents. The feature dimension is

1,355,191 with 500 non-zeros on an average. We randomly split the dataset

in two halves having around 10000 points in each partition.

• WEBSPAM Collection of emails documents. The feature dimension is

16,609,143 with about 4000 non-zeros on average. We randomly selected

70000 data points and generated two partitions of 35000 each.

These datasets cover a wide variety in terms of size, sparsity and task. In the

above datasets, one partition, the bigger one in case of MNIST, was used for

creating hash buckets and the other partition was used as the query set. All

datasets were binarized by setting non-zero values to 1.

We perform a rigorous evaluation of these hash functions, by comparing

their performances, over a wide range of choices for parameters K and L. In

particular, we want to understand if there is a different effect of varying the

parameters K and L on the performance ofH as compared to minwise hashing.

Given parameters K and L, we need K × L number of hash evaluations per data

point. For minwise hashing, we need K × L permutations while for the other

three schemes we bin the data into k = K × L bins using only one permutation.

For both WEBSPAM and NEWS20, we implemented all the combinations for

K = {6, 8, 10, 12} and L = {4, 8, 16, 32, 64, 128}. For MNIST, with only 784 features,

we used K = {6, 8, 10, 12} and L = {4, 8, 16, 32}.

We use two metrics for evaluating retrieval: (i) the fraction of the total num-

ber of points retrieved by the bucketing scheme per query, (ii) the recall at a
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Figure 6.6: NEWS20: Recall values of all the points having similarity with
the query greater than T , shown over all the combinations.
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Figure 6.7: MNIST: Recall values of all the points having similarity with
the query greater than T , shown over all the combinations.
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Figure 6.8: WEBSPAM: Recall values of all the points having similarity
with the query greater than T , shown over all the combina-
tions.

given threshold T0, defined as the ratio of retrieved elements having similarity,

with the query, greater than T0, to the total number of elements having simi-

larity, with the query, greater than T0. It is important to balance both of them,

for instance in linear scan we retrieve everything, and so we always achieve

a perfect recall. For a given choice of K and L, we report both of these met-

rics independently. For reporting the recall, we choose two values of threshold

T0 = {0.5, 0.8}. Since the implementation involves randomizations, we repeat

the experiments for each combination 10 times, and report the average.

Figure 6.5 presents the plots of the fraction of points retrieved per query cor-

responding to K = {6, 8, 10, 12} for all the three datasets with different choices of

L. We show the recall plots for various values of L and T0 corresponding to these

K in Figure 6.6, 6.7 and 6.8. One can see that the performance of the proposed

hash function H is indistinguishable from minwise hashing, irrespective of the

sparsity of data and the choices of K, L and T0. Thus, we conclude that minwise

hashing can be replaced byH without loss in the performance and with a huge
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gain in query processing time (see Section 6.3.4).

Except for the WEBSPAM dataset, the EE scheme retrieves almost all the

points, and so its not surprising that it achieves a perfect recall even at T0 =

0.5. EE scheme treats the event of simultaneous empty bins as a match. The

probability of this event is high in general for sparse data, especially for large k,

and therefore even non-similar points have significant chance of being retrieved.

On the other hand, ENE shows the opposite behavior. Simultaneous empty

bins are highly likely even for very similar sparse vectors, but ENE treats this

event as a rejection, and therefore we can see that as k = K × L increases, the

recall values starts decreasing even for the case of T0 = 0.8. WEBSPAM has

significantly more nonzeros, so the occurrence of empty bins is rare for small k.

Even in WEBSPAM, we observe an undesirable deviation in the performance of

EE and ENE with K ≥ 10.

6.3.4 Reduction in Computation Cost
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Figure 6.9: Ratio of time taken by minwise hashing to the time taken by
our proposed scheme with respect to the number of hash eval-
uations, on the NEWS20 and WEBSPAM datasets.
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Query Processing Cost Reduction

Let d denote the average number of nonzeros in the dataset. For running a

(K, L)-parameterized LSH algorithm, we need to generate K×L hash evaluations

of a given query vector [42]. With minwise hashing, this requires storing and

processing K × L different permutations. The total computation cost for simply

processing a query is thus O(dKL).

On the other hand, generating K × L hash evaluations using the proposed

hash functionH requires only processing a single permutation. It involves eval-

uating K × L minimums with one permutation hashing and one pass over the

K × L bins to reassign empty values via “rotation”. Overall, the total query

processing cost is O(d + KL). This is a massive saving over minwise hashing.

To verify the above claim, we compute the ratio of the time taken by minwise

hashing to the time taken by our proposed scheme H for NEWS20 and WEB-

SPAM dataset. We randomly choose 1000 points from each dataset. For every

vector, we compute 1024 hash evaluations using minwise hashing and the pro-

posed H . The plot of the ratio with the number of hash evaluations is shown

in Figure 6.9. As expected, with the increase in the number of hash evaluations

minwise hashing is linearly more costly than our proposal.

Figure 6.9 does not include the time required to generate permutations. Min-

wise hashing requires storing K × L random permutation in memory while our

proposed hash function H only needs to store 1 permutation. Each fully ran-

dom permutation needs a space of size D. Thus with minwise hashing stor-

ing K × L permutations take O(KLD) space which can be huge, given that D

in billions is common in practice and can even run into trillions. Approximat-
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ing these K × L permutations using cheap universal hash functions [14, 70, 68]

reduces the memory cost but comes with extra computational burden of eval-

uating K × L universal hash function for each query. These are not our main

concerns as we only need one permutation.

Reduction in Total Query Time

The total query complexity of the LSH algorithm for retrieving approximate

near neighbor using minwise hashing is the sum of the query processing cost

and the cost incurred in evaluating retrieved candidates. The total running cost

of LSH algorithm is dominated by the query processing cost [42, 24]. In the-

ory, the number of data points retrieved using the appropriate choice of LSH

parameters (K, L), in the worst case, is O(L) [42]. The total cost of evaluating

retrieved candidates in brute force fashion is O(dL). Thus, the total query time

of LSH based retrieval with minwise hashing is O(dKL + dL) = O(dKL). Since,

both scheme behaves very similarly for any given (K, L), the total query time

with the proposed scheme is O(KL + d + dL) which comes down to O(KL + dL).

This analysis ignores the effect of correlation in the LSH algorithm but we can

see from the plots that the effect is negligible.

The need for evaluating all the retrieved data points based on exact similarity

leads to O(dL) cost. In practice, an efficient estimate of similarity can be obtained

by using the same hash evaluations used for indexing [78]. This decreases the

re-ranking cost further.
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Pre-processing Cost Reduction

The LSH algorithm needs a costly pre-processing step which is the bucket as-

signment for all N points in the collection. The bucket assignment takes in total

O(dNKL) with minwise hashing. The proposed hashing schemeH reduces this

cost to O(NKL + Nd).

6.4 A Strictly Better Densification Scheme

The densification scheme shown in the previous section was the first attempt

to obtain k hashes with collision probability R in time O(d +k). There is a sub-

optimality in that scheme which hurts performance for very sparse datasets. In

this section we provide a strictly better densification scheme.

6.4.1 Intuition for the Improved Scheme
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Figure 6.10: Illustration of the old densification scheme [81] from previous
section. The randomness is in the position number of these
bins which depends on π.
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Consider a situation in Figure 6.10, where there are 3 simultaneously non-

empty bins (Iemp = 0) for given S 1 and S 2. The actual position numbers of these

simultaneously non-empty bins are random. The simultaneously empty bins

(Iemp = 1) can occur in any order in the 4 blank spaces. The arrows in the fig-

ure show the simultaneously non-empty bins which are being picked by the

simultaneously empty bins (Iemp = 1) located in the shown blank spaces. The

randomness in the system is in the ordering of simultaneously empty and si-

multaneously non-empty bins.

Given a simultaneously non-empty Bin t (It
emp = 0), the probability that it

is picked by a given simultaneously empty Bin i (Ii
emp = 1) is exactly 1

m . This

is because the permutation π is perfectly random and given m, any ordering

of m simultaneously non-empty bins and k − m simultaneously empty bins are

equally likely. Hence, we obtain the term
[

R
m +

(m−1)RR̃
m

]
in Lemma 3.

On the other hand, under the given scheme, the probability that two simul-

taneously empty bins, i and j, (i.e., Ii
emp = 1, I j

emp = 1), both pick the same simul-

taneous non-empty Bin t (It
emp = 0) is given by (see proof of Lemma 4)

p =
2

m + 1
(6.26)

The value of p is high because there is not enough randomness in the selection

procedure. Since R ≤ 1 and R ≤ RR̃, if we can reduce this probability p then we

reduce the value of [pR + (1− p)RR̃]. This directly reduces the value of (k−m)(k−

m − 1)
[

2R
m+1 +

(m−1)RR̃
m+1

]
as given by Lemma 4. The reduction scales with Nemp.

For every simultaneously empty bin, the current scheme uses the informa-

tion of the closest non-empty bin in the right. Because of the symmetry in the

arguments, changing the direction to left instead of right also leads to a valid

densification scheme with exactly same variance. This is where we can infuse
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randomness without violating the alignment necessary for unbiased densifica-

tion. We show that randomly switching between left and right provably im-

proves (reduces) the variance by making the sampling procedure of simultane-

ously non-empty bins more random.
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Figure 6.11: Illustration of the improved densification scheme. We infuse
more randomness in choosing the directions.

Our proposal is explained in Figure 6.11. Instead of using the value of the

closest non-empty bin from the right (circular), we will choose to go either left or

right with probability 1
2 . This adds more randomness in the selection procedure.

In the new scheme, we only need to store 1 random bit for each bin, which

decides the direction (circular left or circular right) to proceed for finding the

closest non-empty bin. The new assignment of the empty bins from Figure 6.1

is shown in Figure 6.12. Every bin number i has an i.i.d. Bernoulli random

variable qi (1 bit) associated with it. If Bin i is empty, we check the value of qi.

If qi = 1, we move circular right to find the closest non-empty bin and use its

value. In case when q = 0, we move circular left.

For S 1, we have q0 = 0 for empty Bin 0, we therefore move circular left and

borrow value from Bin 5 with offset C making the final value 1+C. Similarly for
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 Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 

Direction 
Bits (q) 

0 1 0 0 1 1 

  (  ) 1+C      1 1+C 2       0 1 

  (  ) 0+2C      1 1+C 0       0 1+2C 

Figure 6.12: Assigned values (in red) of empty bins from Figure 6.1 using
the improved densification procedure.

empty Bin 2 we have q2 = 0 and we use the value of Bin 1 (circular left) added

with C. For S 2 and Bin 0, we have q0 = 0 and the next circular left bin is Bin 5

which is empty so we continue and borrow value from Bin 4, which is 0, with

offset 2C. A factor of 2 because we traveled 2 bins to locate the first non-empty

bin. For Bin 2, again q2 = 0 and the closest circular left non-empty bin is Bin 1,

at distance 1, so the new value of Bin 2 for S 2 is 1 + C. For Bin 5, q5 = 1, so we

go circular right and find non-empty Bin 1 at distance 2. The new hash value of

Bin 5 is therefore 1 + 2C. Note that the non-empty bins remain unchanged.

Formally, let qh j = {0, 2, ..., k − 1} be k i.i.d. Bernoulli random variables such
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that q j = 1 with probability 1
2 . The improved hash functionH+ is given by

H+
j (S ) =



OPH
( j−t1)mod k

(π(S )) + t1C

if q j = 0 and OPH
j

(π(S )) = E

OPH
( j+t2)mod k

(π(S )) + t2C

if q j = 1 and OPH
j

(π(S )) = E

OPH
j

(π(S )) otherwise

(6.27)

where

t1 = min z, s.t. OPH
( j−z) mod k

(π(S )) , E (6.28)

t2 = min z, s.t. OPH
( j+z) mod k

(π(S )) , E (6.29)

with same C = D
k +1. Computing k hash evaluations withH+ requires evaluating

π(S ) followed by two passes over the k bins from different directions. The total

complexity of computing k hash evaluation is again O(d+k) which is the same as

that of the existing densification scheme. We need an additional storage of the k

bits (roughly hundreds or thousands in practice) which is practically negligible.

Similar to the arguments used for Theorem 9, it is not difficult to show that

H+ satisfies the LSH property for resemblance.

Theorem 11

Pr
(
H+

j (S 1) = H+
j (S 2)

)
= R (6.30)

H+ leads to an unbiased estimator of resemblance R̂+

R̂+ =
1
k

k−1∑
j=0

1{H+
j (S 1) = H+

j (S 2)}. (6.31)
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6.4.2 Variance Analysis of Improved Scheme

When m = 1 (an event with prob
(

1
k

) f1+ f2−a
' 0), i.e., only one simultane-

ously non-empty bin, both the schemes are exactly same. For simplicity of ex-

pressions, we will assume that the number of simultaneous non-empty bins is

strictly greater than 1, i.e., m > 1. The general case has an extra term for m = 1,

which makes the expression unnecessarily complicated without changing the

final conclusion.

Following the notation as in Section 6.3.2, we denote

MN+
j = 1{I j

emp = 0 andH+
j (S 1) = H+

j (S 2)} (6.32)

ME+
j = 1{I j

emp = 1 andH+
j (S 1) = H+

j (S 2)} (6.33)

The two expectations E
[∑

i, j MN+
i MN+

j

∣∣∣∣∣m]
and E

[∑
i, j MN+

i ME+
j

∣∣∣∣∣m]
are the same

as given by Lemma 2 and Lemma 3 respectively, as all the arguments used

to prove them still hold for the new scheme. The only change is in the term

E
[∑

i, j ME
i ME

j

∣∣∣∣∣m]
.

Lemma 5

E

∑
i, j

ME+
i ME+

j

∣∣∣∣∣m
 = (k − m)(k − m − 1)

×

[
3R

2(m + 1)
+

(2m − 1)RR̃
2(m + 1)

]
(6.34)

Proof: See Appendix A.0.4. �

The theoretical variance of the new estimator R̂+ is
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Theorem 12

Var(R̂+) =
R
k

+ A+ R
k2 + B+ RR̃

k2 − R2 (6.35)

A+ = E

[
Nemp(4k − Nemp + 1)

2(k − Nemp + 1)

]
B+ = E

2k3 + N2
emp − Nemp(2k2 + 2k + 1) − 2k

2(k − Nemp + 1)


The new scheme reduces the value of p (see Eq.( 6.26)) from 2

m+1 to 1.5
(m+1) . As

argued in Section 6.4.1, this reduces the overall variance.

Theorem 13

Var(R̂+) ≤ Var(R̂) (6.36)

More precisely,

Var(R̂) − Var(R̂+)

=E

[
(Nemp)(Nemp − 1)
2k2(k − Nemp + 1)

[R − RR̃]
]
≥ 0 (6.37)

Proof: See Appendix A.0.4. �

The probability of simultaneously empty bins increases with increasing spar-

sity in dataset and the total number of bins k. We can see from Theorem 13 that

with more simultaneously empty bins, i.e., higher Nemp, the gain with the im-

proved schemeH+ is higher compared toH . Hence,H+ should be significantly

better than the existing scheme for very sparse datasets or in scenarios when we

need a large number of hash values.
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6.4.3 Comparisons of Mean Square Errors

We empirically verify the theoretical variances of R and R+ and their effects in

many practical scenarios. To achieve this, we extracted 12 pairs of words (which

cover a wide spectrum of sparsity and similarity) from the web-crawl dataset.

The detailed information about the data is summarized in Table 6.2.

Table 6.2: 12 pairs of words used in Experiment 1. Every word is a set
of documents in which the word is contained. For example,
‘HONG” correspond to the sets of document IDs which con-
tained word “HONG”.

Word 1 Word 2 f1 f2 R

HONG KONG 940 948 0.925

RIGHTS RESERVED 12,234 11,272 0.877

A THE 39,063 42,754 0.644

UNITED STATES 4,079 3,981 0.591

TOGO GREENLAND 231 200 0.528

ANTILLES ALBANIA 184 275 0.457

CREDIT CARD 2,999 2,697 0.285

COSTA RICO 773 611 0.234

LOW PAY 2,936 2,828 0.112

VIRUSES ANTIVIRUS 212 152 0.113

REVIEW PAPER 3,197 1,944 0.078

FUNNIEST ADDICT 68 77 0.028

For all 12 pairs of words, we estimate the resemblance using the two estima-

tors R and R+. We plot the empirical Mean Square Error (MSE) of both of both

estimators with respect to k which is the number of hash evaluations. To vali-

date the theoretical variances (which is also the MSE because the estimators are
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unbiased), we also plot the values of the theoretical variances computed from

Theorem 10 and Theorem 12. The results are summarized in Figure 6.13.
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Figure 6.13: Mean Square Error (MSE) of the old scheme R̂ and the im-
proved scheme R̂+ along with their theoretical values on 12
word pairs (Table 6.2) from web-crawl dataset.

From the plots we can see that the theoretical and the empirical MSE values

overlap in both the cases validating both Theorem 10 and Theorem 12. When

k is small both the schemes have similar variances, but when k increases the

improved scheme always shows better variance. For very sparse pairs, we start

seeing a significant difference in variance even for k as small as 100. For a sparse

pair, e.g., “TOGO” and “GREENLAND”, the difference in variance, between

the two schemes, is more compared to the dense pair “A” and “THE”. This is in

agreement with Theorem 13.
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6.4.4 Near Neighbor Retrieval Comparison

Table 6.3: Dataset information.

Data # dim # nonzeros # train # query

RCV1 47,236 73 100,000 5,000

URL 3,231,961 115 90,000 5,000

In this experiment, we evaluate the two hashing schemes H and H+ on the

standard (K, L) parameterized LSH algorithm [42, 6] for retrieving near neigh-

bors. Two publicly available sparse text datasets, RCV1 and URL, are described

in Table 7.3.

In (K, L) parameterized LSH algorithm for near neighbor search, we generate

L different meta-hash functions. Each of these meta-hash functions is formed by

concatenating K different hash values as

B j(S ) = [h j1(S ); h j2(S ); ...; h jK(S )], (6.38)

where hi j, i ∈ {1, 2, ...,K}, j ∈ {1, 2, ..., L}, are KL realizations of the hash function

under consideration. The (K, L) parameterized LSH works in two phases:

1. Preprocessing Phase: We construct L hash tables from the data by storing

element S , in the train set, at location B j(S ) in hash-table j.

2. Query Phase: Given a query Q, we report the union of all the points in the

buckets B j(Q) ∀ j ∈ {1, 2, ..., L}, where the union is over L hash tables.

For every dataset, based on the similarity levels, we chose a K based on

standard recommendation. For this K we show results for a set of values of L
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depending on the recall values. Please refer to [6] for details on the implemen-

tation and the choice of K and L. Since both H and H+ have the same collision

probability, the choice of K and L is the same in both cases.

For every query point, the gold standard top 10 near neighbors from the train

set were computed based on actual resemblance. We then compute the recall of

these gold standard neighbors and the total number of points retrieved by the

(K, L) bucketing scheme. We report the mean computed over all the points in

the query set. Since, the experiments involve randomization the final results

presented are averaged over 10 independent runs. The recall and the points

retrieved per query is summarized in Figure 6.14.
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Figure 6.14: Average number of points scanned per query and the mean
recall values of top 10 near neighbors, obtained from (K, L)
parameterized LSH algorithm, usingH (old) andH+ (Imp).

It is clear from Figure 6.14 that the improved hashing scheme H+ achieves
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the same recall but at the same time retrieves less number of points compared

to the old scheme H . To achieve 90% recall on URL dataset, the old scheme re-

trieves around 3300 points per query on an average while the improved scheme

only needs to check around 2700 points per query. For RCV1 dataset, with

L = 200 the old scheme retrieves around 3000 points and achieves a recall of

80%, while the same recall is achieved by the improved scheme after retrieving

only about 2350 points per query. A good hash function provides a right bal-

ance between recall and number of points retrieved. In particular, hash function

which achieves a given recall and retrieves less number of points is desirable

because it implies better precision. The above results clearly demonstrate the

superiority of the indexing scheme with improved hash function H+ over the

indexing scheme withH .

WhyH+ retrieves less number of points thanH ?

The number of points retrieved, by the (K, L) parameterized LSH algorithm,

is directly related to the collision probability of the meta-hash function B j(.)

(Eq.(7.46)). Given S 1 and S 2 with resemblance R, the higher the probability of

event B j(S 1) = B j(S 2), under a hashing scheme, the more number of points it

will retrieve per table.

The analysis of the variance (second moment) about the event B j(S 1) = B j(S 2)

under H+ and H provides some reasonable insight. Recall that since both es-

timators under the two hashing schemes are unbiased, the analysis of the first
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moment does not provide information in this regard.

E
[
1{H j1(S 1) = H j1(S 2)} × 1{H j2(S 1) = H j2(S 2)}

]
= E

[
MN

j1MN
j2 + MN

j1ME
j2 + ME

j1MN
j2 + ME

j1ME
j2

]

As we know from our analysis that the first three terms inside expectation, in

the RHS of the above equation, behaves similarly for bothH+ andH . The fourth

term E
[
ME

j1ME
j2

]
is likely to be smaller in case ofH+ because of smaller values of

p. We therefore see thatH retrieves more points than necessary as compared to

H+. The difference is visible when empty bins dominate and ME
1 ME

2 = 1 is more

likely. This happens in case of sparse datasets which are common in practice.

6.5 Discussions

MinHash is a decade old algorithm which has made numerous online algo-

rithms faster. In most of these algorithms, the bottleneck step is the compu-

tations of many MinHashes of the data. We have found a way to reduced this

hashing time drastically. Although, we have only demonstrated the benefit in

the task of near-neighbor search, the improvement in hashing time that we have

obtained can be directly use to speedup most of the randomized algorithms over

the web drastically, which use MinHash as a subroutine.

The idea of densification of one permutation hashing is general, and it can

be used to densify any sparse sketches where sparsity is not desired. This could

be of independent theoretical interest in itself.
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CHAPTER 7

ASYMMETRIC LSH : INNER PRODUCTS ARE HASHABLE

The focus of this chapter is on the problem of Maximum Inner Product Search

(MIPS). In this problem, we are given a giant data vector collection S of size N,

where S ⊂ RD, and a given query point q ∈ RD. We are interested in searching

for p ∈ S which maximizes (or approximately maximizes) the inner product

qT p. Formally, we are interested in efficiently computing

p = arg max
x∈S

qT x (7.1)

The MIPS problem is related to near neighbor search (NNS), which instead re-

quires computing

p = arg min
x∈S
||q − x||22 = arg min

x∈S
(||x||22 − 2qT x) (7.2)

These two problems are equivalent if the norm of every element x ∈ S is con-

stant. Note that the value of the norm ||q||2 has no effect as it is a constant

throughout and does not change the identity of arg max or arg min. There are

many scenarios in which MIPS arises naturally at places where the norms of the

elements in S have very significant variations [46] and can not be controlled. We

list few (among many) practical scenarios where MIPS is solved as a subroutine.

1. Recommender Systems: Recommender systems are often based on col-

laborative filtering which relies on past behavior of users, e.g., past purchases

and ratings. Latent factor modeling based on matrix factorization [47] is a popu-

lar approach for solving collaborative filtering. In a typical matrix factorization

model, a user i is associated with a latent user characteristic vector ui, and simi-

larly, an item j is associated with a latent item characteristic vector v j. The rating
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ri, j of item j by user i is modeled as the inner product between the correspond-

ing characteristic vectors.

In this setting, given a user i and the corresponding learned latent vector ui

finding the right item j, to recommend to this user, involves computing

j = arg max
j′

ri, j′ = arg max
j′

uT
i v j′ (7.3)

which is an instance of the standard MIPS problem. It should be noted that we

do not have control over the norm of the learned vector, i.e., ‖v j‖2, which often

has a wide range in practice [46].

If there are N items to recommend, solving (7.3) requires computing N inner

products. Recommendation systems are typically deployed in on-line applica-

tion over web where the number N is huge. A brute force linear scan over all

items, for computing arg max, would be prohibitively expensive.

2. Large-Scale Object Detection with DPM: Deformable Part Model

(DPM) based representation of images is the state-of-the-art in object detection

tasks [30]. In DPM model, first a set of part filters are learned from the train

dataset. During detection, these learned filter activations over various patches

of the test image are used to score the test image. The activation of a filter on an

image patch is an inner product between them. Typically, the number of possi-

ble filters are large (e.g., millions) and so scoring the test image is costly. Very

recently, it was shown that scoring based only on filters with high activations

performs well in practice [28]. Identifying filters, from a large collection of pos-

sible filters, having high activations on a given image patch requires computing

top inner products. Consequently, an efficient solution to the MIPS problem will

benefit large scale object detections based on DPM.
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3. Multi-Class Label Prediction: The models for multi-class SVM (or logistic

regression) learn a weight vector wi for each of the class label i. After the weights

are learned, given a new test data vector xtest, predicting its class label is basically

an MIPS problem:

ytest = arg max
i∈L

xT
test wi (7.4)

where L is the set of possible class labels. Note, the vectors ‖wi‖2 are learned as

a part of an optimization and therefore we have no control over norms.

The size, |L|, of the set of class labels differs in applications. Classifying with

large number of possible class labels is common in fine grained object classifi-

cation, for instance, prediction task with 100,000 classes [28] (i.e., |L| = 100, 000).

Computing such high-dimensional vector multiplications for predicting the

class label of a single instance can be expensive in, e.g., user-facing applications.

4. Large Scale Deep Learning Systems: Modern deep learning systems with

millions or billions of nodes in every hidden layer are becoming more and more

popular. To regularize such a humongous parameter space various algorithms,

such as, Maxout [34] networks, max product networks [72] and networks with

adaptive dropouts [7], have shown significant success. These algorithms require

computation of maximum inner products as a subroutine for computing activa-

tion (or max activations), which is invoked during every iteration of training.

Even during testing which is latency critical the same operations are needed.

Computing all possible inner products, for finding the maximum or large inner

products, is very inefficient from energy perspective. A faster subroutine for

MIPS will significantly make these networks more scalable.

In this chapter, we present the first provably sublinear time hashing algo-

rithm for approximate Maximum Inner Product Search (MIPS) [80, 85, 86]. Search-
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ing with (un-normalized) inner product as the underlying similarity measure

was a known difficult problem and finding hashing schemes for MIPS was con-

sidered hard. While the existing Locality Sensitive Hashing (LSH) framework is

insufficient for solving MIPS, in this Chapter, we extend the LSH framework to

allow asymmetric hashing schemes. In the extended framework we show that

MIPS admits efficient algorithms. In the new framework, we provide explicit

constructions of different hash functions which leads to provable sublinear al-

gorithms for MIPS. These obtained algorithms are also practical. The ideas used

provide a generic recipe for constructing new hashing schemes for many simi-

larity measures, which could be of independent theoretical interest in itself.

7.1 Impossibility of LSH for Inner Products

We first start by observing a negative result that it is mathematically impossi-

ble to obtain a locality sensitive hashing for MIPS. In [76, 46], the authors also

argued that finding locality sensitive hashing for inner products could be hard,

but to the best of our knowledge we have not seen a formal proof.

Theorem 14 There can not exist any LSH family for MIPS.

Proof: Suppose, there exists such hash function h. For un-normalized inner products

the self similarity of a point x with itself is S im(x, x) = xT x = ||x||22 and there may exist

another points y, such that S im(x, y) = yT x > ||x||22 + M, for any constant M. Under any

single randomized hash function h, the collision probability of the event {h(x) = h(x)} is

always 1. So if h is an LSH for inner product then the event {h(x) = h(y)} should have

higher probability compared to the event {h(x) = h(x)}, since we can always choose y

with S im(x, y) = S 0 + δ > S 0 and cS 0 > S im(x, x) ∀S 0 and c < 1. This is not possible

because the probability can not be greater than 1. This completes the proof. �
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Note that in [18] it was shown that we can not have a hash function where

the collision probability is equal to the inner product, because “1 - inner prod-

uct” does not satisfy the triangle inequality. This does not totally eliminates

the existence of LSH. For instance, under L2-LSH, the collision probability is a

monotonic function of distance and not the distance itself.

7.2 New Framework: Asymmetric LSH (ALSH)

The basic idea of LSH is probabilistic bucketing and it is more general than

the requirement of having a single hash function h. In the LSH algorithm (Sec-

tion 2.3), we use the same hash function h for both the preprocessing step and

the query step. We assign buckets in the hash table to all the candidates x ∈ S

using h. We use the same h on the query q to identify relevant buckets. The only

requirement for the proof, of Fact 1, to work is that the collision probability of

the event {h(q) = h(x)} increases with the similarity S im(q, x). The theory [36]

behind LSH still works if we use hash function h1 for preprocessing x ∈ S and

a different hash function h2 for querying, as long as the probability of the event

{h2(q) = h1(x)} increases with S im(q, x), and there exist p1 and p2 with the re-

quired property. The traditional LSH definition does not allow this asymmetry

but it is not a required condition in the proof. For this reason, we can relax

the definition of c-NN without losing runtime guarantees. As the first step we

define Asymmetric locality sensitive hashing, which will be useful later.

Definition 3 (Asymmetric Locality Sensitive Hashing (ALSH)) A family H , along

with the two vector functions Q : RD 7→ RD′ (Query Transformation) and P :

RD 7→ RD′ (Preprocessing Transformation), is called (S 0, cS 0, p1, p2)-sensitive if
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for a given c-NN instance with query q, and the hash function h chosen uniformly from

H satisfies the following:

• if S im(q, x) ≥ S 0 then PrH (h(Q(q))) = h(P(x))) ≥ p1

• if S im(q, x) ≤ cS 0 then PrH (h(Q(q)) = h(P(x))) ≤ p2

Here x is any point in the collection S. When Q(x) = P(x) = x, we recover the

vanilla LSH definition with h(.) as the required hash function. Coming back to

the problem of MIPS, if Q and P are different, the event {h(Q(x)) = h(P(x))} will

not have probability equal to 1 in general. Thus, Q , P can counter the fact that

self similarity is not highest with inner products. We just need the probability of

the new collision event {h(Q(q)) = h(P(y))} to satisfy the conditions of Definition

of c-NN for S im(q, y) = qT y. Note that the query transformation Q is only applied

on the query and the pre-processing transformation P is applied to x ∈ S while

creating hash tables. It is this asymmetry which will allow us to solve MIPS

efficiently. In Section 7.5.2, we explicitly show a construction (and hence the

existence) of asymmetric locality sensitive hash function for solving MIPS. The

source of randomization h for both q and x ∈ S is the same. Formally, it is not

difficult to show a result analogous to Fact 1.

Theorem 15 Given a family of hash function H and the associated query and pre-

processing transformations P and Q, which is (S 0, cS 0, p1, p2) -sensitive, one can con-

struct a data structure for c-NN with O(nρ log n) query time and space O(n1+ρ), where

ρ =
log p1
log p2

.
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7.3 The First Construction of ALSH for MIPS

In this section, we provide the first construction of hashing scheme for MIPS. In

later sections, we show few improved versions.

7.3.1 From MIPS to Near Neighbor Search (NNS)

Without loss of any generality, let U < 1 be a number such that ||xi||2 ≤ U <

1, ∀xi ∈ S. If this is not the case then define a scaling transformation,

S (x) =
U
M
× x; M = maxxi∈S||xi||2; (7.5)

Note, that we are allowed one time preprocessing and asymmetry, S is the part

of asymmetric transformation. For simplicity of arguments, let us assume that

||q||2 = 1, the arg max in Equation 7.1 is independent of the query. Later we show

in Section 7.3.3 that it can be easily removed.

We are now ready to describe the key step in our algorithm. First, we define

two vector transformations P : RD 7→ RD+m and Q : RD 7→ RD+m as follows:

P(x) = [x; ||x||22; ||x||42; ....; ||x||2
m

2 ]; Q(x) = [x; 1/2; 1/2; ....; 1/2], (7.6)

where [;] is the concatenation. P(x) appends m scalers of the form ||x||2i

2 at the end

of the vector x, while Q(x) simply appends m “1/2” to the end of the vector x.

By observing that

Q(q)T P(xi) = qT xi +
1
2

(||xi||
2
2 + ||xi||

4
2 + ... + ||xi||

2m

2 ); ||P(xi)||22 = ||xi||
2
2 + ||xi||

4
2 + ... + ||xi||

2m+1

2

we obtain the following key equality:

||Q(q) − P(xi)||22 = (1 + m/4) − 2qT xi + ||xi||
2m+1

2 (7.7)
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Since ||xi||2 ≤ U < 1, ||xi||
2m+1
→ 0, at the tower rate (exponential to exponential).

The term (1 + m/4) is a fixed constant. As long as m is not too small (e.g., m ≥ 3

would suffice), we have

arg max
x∈S

qT x ' arg min
x∈S
||Q(q) − P(x)||2 (7.8)

This gives us connection between solving un-normalized MIPS and approxi-

mate near neighbor search. Transformations P and Q, when norms are less than

1, provide correction to the L2 distance ||Q(q) − P(xi)||2 making it rank correlate

with the (un-normalized) inner product. This works only after shrinking the

norms, as norms greater than 1 will instead blow the term ||xi||
2m+1

2 .

7.3.2 L2-ALSH

Eq. ( 7.8) shows that MIPS reduces to the standard approximate near neighbor

search problem which can be efficiently solved. As the error term ||xi||
2m+1

2 < U2m+1

goes to zero at a tower rate, it quickly becomes negligible for any practical pur-

poses. In fact, from theoretical perspective, since we are interested in guarantees

for c-approximate solutions, this additional error can be absorbed in the approx-

imation parameter c. Formally, we can state the following theorem.

Theorem 16 Given a c-approximate instance of MIPS, i.e., S im(q, x) = qT x, and a

query q such that ||q||2 = 1 along with a collection S having ||x||2 ≤ U < 1 ∀x ∈ S. Let

P and Q be the vector transformations defined in Eq. (7.16), respectively. We have the

following two conditions for hash function hL2
a,b (defined by Eq. (2.10))

1) if qT x ≥ S 0 then Pr[hL2
a,b(Q(q)) = hL2

a,b(P(x))] ≥ Fr
( √

1 + m/4 − 2S 0 + U2m+1)
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2) if qT x ≤ cS 0 then Pr[hL2
a,b(Q(q)) = hL2

a,b(P(x))] ≤ Fr
(√

1 + m/4 − 2cS 0
)

where the function Fr is defined in Eq. (2.11).

Proof: See Appendix A.0.5. �

Thus, we have obtained p1 = Fr
( √

(1 + m/4) − 2S 0 + U2m+1) and p2 =

Fr
(√

(1 + m/4) − 2cS 0
)
. Applying Theorem 15, we can construct data struc-

tures with worst case O(nρ log n) query time guarantees for c-approximate MIPS,

where

ρ =
log Fr

( √
1 + m/4 − 2S 0 + U2m+1)

log Fr
( √

1 + m/4 − 2cS 0
) (7.9)

We also need p1 > p2 in order for ρ < 1. This requires us to have −2S 0 + U2m+1
<

−2cS 0, which boils down to the condition c < 1 − U2m+1

2S 0
. Note that U2m+1

2S 0
can be

made arbitrarily close to zero with the appropriate value of m. For any given

c < 1, there always exist U < 1 and m such that ρ < 1. This way, we obtain a

sublinear query time algorithm for MIPS. The guarantee holds for any values

of U and m satisfying m ∈ N+ and U ∈ (0, 1). We also have one more parameter

r for the hash function ha,b. Recall the definition of Fr in Eq. (2.11): Fr(d) =

1 − 2Φ(−r/d) − 2
√

2π(r/d)

(
1 − e−(r/d)2/2

)
.

Given a c-approximate MIPS instance, ρ is a function of 3 parameters: U, m,

r. The algorithm with the best query time chooses U, m and r, which minimizes

the value of ρ. For convenience, we define

ρ∗ = min
U,m,r

log Fr
( √

1 + m/4 − 2S 0 + U2m+1)
log Fr

(√
1 + m/4 − 2cS 0

) s.t.
U2m+1

2S 0
< 1 − c, m ∈ N+, 0 < U < 1.

(7.10)

See Figure 7.6 for the plots of ρ∗. With this best value of ρ, we can state our main

result in Theorem 20.
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Figure 7.1: Left: Optimal values of ρ∗ with respect to approximation ratio
c for different S 0. Right: ρ values (dashed curves) for m = 3,
U = 0.83 and r = 2.5. The solid curves are ρ∗ values.

Theorem 17 (Approximate MIPS is Efficient) For the problem of c-approximate

MIPS with ||q||2 = 1, one can construct a data structure having O(nρ
∗

log n) query time

and space O(n1+ρ∗), where ρ∗ < 1 is the solution to constraint optimization (7.23).

Just like in the typical LSH framework, the value of ρ∗ in Theorem 20 de-

pends on the c-approximate instance we aim to solve, which requires knowing

the similarity threshold S 0 and the approximation ratio c. Since, ||q||2 = 1 and

||x||2 ≤ U < 1, ∀x ∈ S, we have qtx ≤ U. A reasonable choice of the threshold S 0

is to choose a high fraction of U, for example, S 0 = 0.9U or S 0 = 0.8U.

The computation of ρ∗ and the optimal values of corresponding parameters

can be conducted via a grid search over the possible values of U, m and r, as

we only have 3 parameters. We compute the values of ρ∗ along with the corre-

sponding optimal values of U, m and r for S 0 ∈ {0.9U, 0.8U, 0.7U, 0.6U, 0.5U}

for different approximation ratios c ranging from 0 to 1. The plot of the optimal

ρ∗ is shown in Figure 7.6, and the corresponding optimal values of U, m and r

are shown in Figure 7.2.
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Practical Recommendation of Parameters In practice, the actual choice of

S 0 and c is dependent on the data and is often unknown. Figure 7.2 illustrates

that m ∈ {2, 3, 4}, U ∈ [0.8, 0.85], and r ∈ [1.5, 3] are reasonable choices. For

convenience, we recommend to use m = 3, U = 0.83, and r = 2.5. With this

choice of the parameters, Figure 7.6 (Right Panel) shows that the ρ values using

these parameters are very close to ρ∗ values.

7.3.3 Removing the condition ||q||2 = 1

Changing norms of the query does not affect the arg maxx∈C qT x, and hence, in

practice for retrieving top-k, normalizing the query should not affect the per-

formance. But for theoretical purposes, we want the runtime guarantee to be

independent of ||q||2. We are interested in the c-approximate instance which be-

ing a threshold based approximation changes if the query is normalized.

Transformations P and Q were precisely meant to remove the dependency

of euclidean distance on the norms of x. Realizing the fact that we are allowed

asymmetry, we can use the same idea to get rid of the norm of q. Let M be the

upper bound on all the norms or the radius of the space as defined in equa-
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tion 7.5. Let the transformations P,Q : RD → RD+m and S : RD → RD be the ones

defined in Eq (7.16), (7.17) and (7.5) respectively.

Given the query q and data point x, our new asymmetric transformations are

P(Q(S (q))) and Q(P(S (x))) respectively. Observe that

||P(Q(S (q))) − Q(P(S (x)))||2 =
m
2

+ ||S (x)||2
m+1

2 + ||S (q)||2
m+1

2 − 2qtx ×
(

U2

M2

)
(7.11)

P(Q(S (q))) appends first m 1/2s to S (q) and then m components of the form

||S (q)||2
i . Q(P(T (q))) does the same thing but in a different order. Now we are

working in D+2m dimensions. The transformations are asymmetric in ordering

but we know that asymmetry is necessary. Both ||S (x)||2
m+1

2 , ||S (q)||2
m+1

2 ≤ U2m+1
→ 0.

Using exactly same arguments as before, we get

Theorem 18 (Unconditional Approximate MIPS is Efficient) For the problem of

c-approximate MIPS in a bounded space, one can construct a data structure having

O(nρ
∗
u log n) query time and space O(n1+ρ∗u), where ρ∗u < 1 is the solution to constraint

optimization (7.23).

ρ∗u = min
0<U<1,m∈N,r

log Fr
(√

m/2 − 2S 0

(
U2

M2

)
+ 2U2m+1)

log Fr
(√

m/2 − 2cS 0

(
U2

M2

)) s.t.
U (2m+1−2)M2

S 0
< 1 − c, (7.12)

Again, for any c-approximate MIPS instance, with S 0 and c, we can always

choose m big enough such that the constraint is always satisfied leading to

ρ∗u < 1. Thus we obtain first sub-linear solutions to c-approximate MIPS. The

theoretical guarantee only depends on the radius of the space M.
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7.3.4 Computational Savings in Collaborative Filtering

We evaluate our proposed hash function for the MIPS problem on two popular

collaborative filtering datasets (on the task of item recommendations):

1. Movielens. We choose the largest available Movielens dataset, the Movielens

10M, which contains around 10 million movie ratings from 70,000 users over

10,000 movie titles. The ratings are between 1 to 5, with increments of 0.5 (i.e.,

10 possible ratings in total).

2. Netflix. This dataset contains 100 million movie ratings from 480,000 users

over 17,000 movie titles. The ratings are on a scale from 1 to 5 (integer).

Each dataset forms a sparse user-item matrix R, where the value of R(i, j)

indicates the rating of user i for movie j. Given the user-item ratings matrix R,

we follow the standard PureSVD procedure described in [23] to generate user

and item latent vectors. This procedure generates latent vectors ui for each user

i and vector v j for each item j, in some chosen fixed dimension f . The PureSVD

method returns top-ranked items based on the inner products uT
i v j, ∀ j.

The PureSVD procedure, despite its simplicity, outperforms other popular

recommendation algorithms for the task of top-k recommendations (see [23])

on these two datasets. Following [23], we use the same choices for the latent

dimension f , i.e., f = 150 for Movielens and f = 300 for Netflix.

Baseline Heuristics: Our proposal is the first provable hashing scheme in

the literature for retrieving inner products and hence there is no existing base-

line. Since, our hash function uses Hashing for L2 distance after asymmetric

transformation P and Q (7.16), we would like to know if such transformations

are even needed and furthermore get an estimate of the improvements obtained
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Figure 7.3: Precision-Recall curves (higher is better), of the rankings based
on hash collisions for top-10 items.

using these transformations. We therefore compare our proposal with L2-LSH

the hashing scheme hL2
a,b described by Eq. (2.10). It is implemented in the LSH

package for near neighbor search with Euclidean distance. In addition, we com-

pare with SRP which is the other popular LSH in literature.

Hash Code Quality Evaluations

We are interested in knowing, how the two hash functions correlate with the

top-T inner products. For this task, given a user i and its corresponding user

vector ui, we compute the top-T gold standard items based on the actual inner

products uT
i v j, ∀ j. We then compute K different hash codes of the vector ui and

all the item vectors v js. For every item v j, we then compute the number of times

its hash values matches (or collides) with the hash values of query which is user

ui, i.e., we compute Matches j =
∑K

t=1 1(ht(ui) = ht(v j)) where 1 is the indicator
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function. Based on Matches j we rank all the items. Here, we use standard hash

functions for SRP and L2-LSH. For our proposed asymmetric hash function we

have h(ui) = hL2
a,b(Q(ui)), since ui is the query, and h(v j) = hL2

a,b(P(v j)) for all the

items. We compute the precision and recall of the top-T items for T ∈ {1, 5, 10},

obtained from the sorted list based on Matches for different hash functions. We

use our recommended setting of m = 3, U = 0.83, and r = 2.5 for both datasets.

We plot all combinations of r in {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5} for L2-LSH. SRP does

not have any parameter. To compute this precision and recall, we start at the top

of the ranked item list and walk down in order. Suppose we are at the kth ranked

item, we check if this item belongs to the gold standard top-T list. If it is one of

the top-T gold standard item, then we increment the count of relevant seen by 1,

else we move to k + 1. By kth step, we have already seen k items, so the total items

seen is k. The precision and recall at that point is then computed as:

Precision =
relevant seen

k
, Recall =

relevant seen
T

(7.13)

We vary a large number of k values to obtain continuously-looking precision-

recall curves. Note that it is important to balance both precision and re-

call. Methodology which obtains higher precision at a given recall is superior.

Higher precision indicates higher ranking of the relevant items. We average this

value of precision and recall over different users. The results for K = 16, 64 and

256 hash codes is summarized in Figure 7.8.

We can clearly see, that the proposed hashing scheme is significantly better

than SRP and L2-LSH. This is not surprising because we know from Theorem 16

that collision under the new hash function is a direct indicator of high inner

product. The suboptimal performance of SRP and L2-LSH clearly indicates that

the norms of the item characteristic vectors do play a significant role in item

recommendation task.
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Figure 7.4: Mean number of inner products per query, relative to a linear
scan, evaluated by different hashing schemes at different recall
levels, for generating top-50 recommendations. The plot in-
cludes the additional inner product computations while hash-
ing the query. The best performing K and L at a given recall
value, for all the three hashing schemes, is shown.

Actual Savings in Top Items Retrieval

We implemented the standard (K, L) parametrized bucketing algorithm as de-

scribed in Section 2.3 for retrieving top-50 items based on PureSVD procedure

using the proposed hash function and the two heuristics hash function SRP and

L2-LSH. We plot the recall, with the mean ratio of inner product required to

achieve a particular recall with the number of inner products required in a lin-

ear scan. This ratio include the inner products required while hashing queries.

The results are summarized in Figure 7.11. Again, we use m = 3, U = 0.83, and

r = 2.5 for our hashing scheme. For L2-LSH, we observe that the recommended

setting [25] of r = 4 usually performs the best and so we show r = 4.

It is evident from the plots that the proposed hashing scheme leads to signif-

icant savings compared to other hash functions in the task of top-50 recommen-

dations. In order to correctly identify the top-50 item, with 80% accuracy, the
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proposed scheme only needs to evaluate 20% of the total inner products, while

L2-LSH roughly need 60%. SRP needs to evaluate 40% of the total inner prod-

uct. For the Movielens dataset, this translates roughly into an average of 2k,

6k and 4k inner product evaluations per query with the proposed scheme, SRP

and L2-LSH respectively. On the Netflix dataset the numbers are 3.4k, 13.6k,

and 8.5k respectively. Clearly L2-LSH and SRP heuristics are suboptimal for

retrieving inner products.

7.4 A Generic Framework for ALSH Construction

We are allowed any asymmetric transformation on x and q. This gives us a lot

of flexibility to construct ALSH for new similarities S that we are interested in.

The generic idea is to take a particular similarity S im(x, q) for which we know

an existing LSH or ALSH. Then we construct transformations P and Q such

S im(P(x),Q(q)) is monotonic in the similarity S that we are interested in. The

other observation that makes it easier to construct P and Q is that LSH based

guarantees are independent of dimensions, thus we can expand the dimensions

like we did for P and Q. In the next two Sections, we demonstrate the power of

this framework by constructing provably superior ALSH schemes.

7.5 Sign-ALSH: Better ALSH for MIPS

It was argued in [58] that the quantizations used in traditional L2-LSH is sub-

optimal and it hurts the variance of the hashes. This raises a natural question

that L2-ALSH, developed in previous Section, which uses L2-LSH as a subrout-
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Figure 7.5: Values of ρS RP and ρL2−LS H (Lower is better) for normalized
data. It is clear that SRP is more suited for retrieving inner
products when the data is normalized

ing for solving MIPS could be suboptimal and there may be a better hashing

scheme. We provide such a scheme in this Section.

7.5.1 Intuition for the Better Scheme : Why Signed Random

Projections (SRP)

Recently [58], it was observed that the quantization of random projections used

by traditional L2-LSH scheme is not desirable when the data is normalized and

in fact the shift b in Equation 2.10 hurts the variance leading to less informative

hashes. The sub-optimality of L2-LSH hints towards existence of better hashing

functions for MIPS.

As argued before when the data is normalized then both L2-NNS and

correlation-NNS are equivalent to MIPS. Therefore, for normalized data we can

use either L2-LSH which is popular LSH for L2 distance or SRP which is pop-

ular LSH for correlation to solve MIPS directly. This raises a natural question
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”Which will perform better ?”.

If we assume that the data is normalized, i.e., all the norms are equal to 1,

then both SRP and L2-LSH are monotonic in the inner product and their corre-

sponding ρ values for retrieving max inner product can be computed as

ρS RP =
log

(
1 − 1

π
cos−1(S 0)

)
log

(
1 − 1

π
cos−1(cS 0)

) (7.14)

ρL2−LS H =
log

(
Fr(
√

2 − 2S 0)
)

log
(
Fr(
√

2 − 2cS 0)
) (7.15)

where the function Fr(.) is given by Equation 2.11. The values of ρS RP and ρL2−LS H

for different S 0 = {0.1, 0.2, .., 0.9, 0.95} with respect to approximation ratio c is

shown in Figure 7.5. We use standard recommendation of r = 2.5 for L2-LSH.

We can clearly see that ρS RP is consistently better than ρL2−LS H given any S 0 and

c. Thus, for MIPS with normalized data L2-LSH type of quantization given

by equation 2.10 seems suboptimal. It is clear that when the data is normal-

ized then SRP is always a better choice for MIPS as compared to L2-LSH. This

motivates us to explore the possibility of better hashing algorithm for general

(unnormalized) instance of MIPS using SRP, which will have impact in many

applications as pointed out in [80].

Asymmetric transformations give us enough flexibility to modify norms

without changing inner products. The transformations provided in [80] used

this flexibility to convert MIPS to standard near neighbor search in L2 space

for which we have standard hash functions. Signed random projections are

popular hash functions widely adopted for correlation or cosine similarity. We

use asymmetric transformations to convert approximate MIPS into approximate

maximum correlation search and thus we avoid the use of sub-optimal L2-LSH.

The collision probability of the hash functions is one of the key constituents
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which determine the efficiency of the obtained ALSH algorithm. We show that

our proposed transformation with SRP is better suited for ALSH compared to

the existing L2-ALSH for solving general MIPS instance.

7.5.2 From MIPS to Correlation-NNS

We assume for simplicity that ||q||2 = 1 as the norm of the query does not change

the ordering, we show in the next section how to get rid of this assumption.

Without loss of generality let ||xi||2 ≤ U < 1, ∀xi ∈ S as it can always be achieved

by scaling the data by large enough number. We define two vector transforma-

tions P : RD 7→ RD+m and Q : RD 7→ RD+m as follows:

P(x) = [x; 1/2 − ||x||22; 1/2 − ||x||42; ....; 1/2 − ||x||2
m

2 ] (7.16)

Q(x) = [x; 0; 0; ....; 0], (7.17)

Using ||Q(q)||22 = ||q||22 = 1, Q(q)T P(xi) = qT xi, and

||P(xi)||22

= ||xi||
2
2 + 1/4 + ||xi||

4
2 − ||xi||

2
2 + 1/4 + ||xi||

8
2 − ||xi||

4
2 + ...

+ 1/4 + ||xi||
2m+1

2 − ||xi||
2m

2

= m/4 + ||xi||
2m+1

2

we obtain the following key equality:

Q(q)T P(xi)
‖Q(q)‖2‖P(xi)‖2

=
qT xi√

m/4 + ||xi||
2m+1

2

(7.18)

The term ||xi||
2m+1
→ 0, again vanishes at the tower rate. This means we have

approximately

arg max
x∈S

qT x ' arg max
x∈S

Q(q)T P(xi)
‖Q(q)‖2‖P(xi)‖2

(7.19)
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This provides another solution for solving MIPS using known methods for ap-

proximate correlation-NNS. Asymmetric transformations P and Q provide a lot

of flexibility. It should be noted that transformations P and Q are not unique for

this task and there are other possibilities [9, 69]. Transformations P and Q allow

us to use signed random projections and thereby making it possible to avoid

suboptimal L2-LSH.

7.5.3 Fast Algorithms for MIPS Using Sign Random Projec-

tions

Eq. (7.19) shows that MIPS reduces to the standard approximate near neighbor

search problem which can be efficiently solved by sign random projections, i.e.,

hS ign (defined by Eq. ( 2.6)). Formally, we can state the following theorem.

Theorem 19 Given a c-approximate instance of MIPS, i.e., S im(q, x) = qT x, and a

query q such that ||q||2 = 1 along with a collection S having ||x||2 ≤ U < 1 ∀x ∈ S. Let P

and Q be the vector transformations defined in Eq. (7.16) and Eq. (7.17), respectively.

We have the following two conditions for hash function hS ign (defined by Eq. (2.7))

• if qT x ≥ S 0 then

Pr[hS ign(Q(q)) = hS ign(P(x))]

≥ 1 −
1
π

cos−1

 S 0√
m/4 + U2m+1
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Figure 7.6: Optimal values of ρ∗ (lower is better) with respect to approxi-
mation ratio c for different S 0, obtained by a grid search over
parameters U and m, given S 0 and c.

• if qT x ≤ cS 0 then

Pr[hS ign(Q(q)) = hS ign(P(x))]

≤ 1 −
1
π

cos−1

 min{cS 0, z∗}√
m/4 + (min{cS 0, z∗})2m+1


where z∗ =

(
m/2

2m+1−2

)2−m−1

.

Proof: See Appendix A.0.6. �

Therefore, we have obtained, in LSH terminology,

p1 = 1 −
1
π

cos−1

 S 0√
m/4 + U2m+1

 (7.20)

p2 = 1 −
1
π

cos−1

 min{cS 0, z∗}√
m/4 + (min{cS 0, z∗})2m+1

 , (7.21)

z∗ =

(
m/2

2m+1 − 2

)2−m−1

(7.22)

Theorem 15 allows us to construct data structures with worst case O(nρ log n)

query time guarantees for c-approximate MIPS, where ρ =
log p1
log p2

. For any given
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c < 1, there always exist U < 1 and m such that ρ < 1. This way, we obtain a

sublinear query time algorithm for MIPS. Because ρ is a function of 2 parame-

ters, the best query time chooses U and m, which minimizes the value of ρ. For

convenience, we define

ρ∗ = min
U,m

log
(
1 − 1

π
cos−1

(
S 0√

m/4+U2m+1

))
log

(
1 − 1

π
cos−1

(
min{cS 0,z∗}√

m/4+(min{cS 0,z∗})2m+1

)) (7.23)

See Figure 7.6 for the plots of ρ∗, which also compares the optimal ρ values for

L2-ALSH in the prior work [80]. Sign-ALSH is noticeably better.

Parameter Selection

Figure 7.7 presents the ρ values for a selected parameters: (m,U) = (2, 0.75)

We can see that even if we use fixed parameters, the performance would not

degrade much. This frees practitioners from the burden of choosing parameters.
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7.5.4 Removing the Dependence on the Norm of the Query.

We can use the same idea used in Section 7.3.3 to get rid of the norm of q. Let M

be the upper bound on all the norms i.e. M = maxx∈C||x||2. In other words M is

the radius of the space.

Let U < 1, define the transformations, T : RD → RD as

T (x) =
Ux
M

(7.24)

and transformations P,Q : RD → RD+m are the same for the Sign-ALSH scheme

as defined in Eq (7.16) and (7.17).

Given the query q and any data point x, observe that the inner products

between P(Q(T (q))) and Q(P(T (x))) is

P(Q(T (q)))T Q(P(T (x))) = qT x ×
(

U2

M2

)
(7.25)

P(Q(T (q))) appends first m zeros components to T (q) and then m components

of the form 1/2 − ||q||2
i . Q(P(T (q))) does the same thing but in a different order.

Now we are working in D + 2m dimensions. It is not difficult to see that the

norms of P(Q(T (q))) and Q(P(T (q))) is given by

||P(Q(T (q)))||2 =

√
m
4

+ ||T (q)||2m+1

2 (7.26)

||Q(P(T (x)))||2 =

√
m
4

+ ||T (x)||2m+1

2 (7.27)

The transformations are very asymmetric but we know that it is necessary.

Therefore the correlation or the cosine similarity between P(Q(T (q))) and

Q(P(T (x))) is

Corr =
qT x ×

(
U2

M2

)
√

m
4 + ||T (q)||2m+1

2

√
m
4 + ||T (x)||2m+1

2

(7.28)
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Note ||T (q)||2
m+1

2 , ||T (x)||2
m+1

2 ≤ U < 1, therefore both ||T (q)||2
m+1

2 and ||T (x)||2
m+1

2 con-

verge to zero at a tower rate and we get approximate monotonicity of correla-

tion with the inner products. We can apply sign random projections to hash

P(Q(T (q))) and Q(P(T (q))).

Using the fact 0 ≤ ||T (q)||2
m+1

2 ≤ U and 0 ≤ ||T (x)||2
m+1

2 ≤ U, it is not difficult to

get p1 and p2 for Sign-ALSH, without any conditions on any norms. Simplifying

the expression, we get the following value of optimal ρu (u for unrestricted).

ρ∗u = min
U,m,

log
(
1 − 1

π
cos−1

( S 0×

(
U2

M2

)
m
4 +U2m+1

))
log

(
1 − 1

π
cos−1

( cS 0×

(
4U2

M2

)
m

)) (7.29)

s.t. U2m+1
<

m(1 − c)
4c

, m ∈ N+, and 0 < U < 1.

With this value of ρ∗u, we can state our main theorem.

Theorem 20 For the problem of c-approximate MIPS in a bounded space, one can con-

struct a data structure having O(nρ
∗
u log n) query time and space O(n1+ρ∗u), where ρ∗u < 1

is the solution to constraint optimization (7.29).

Note, for all c < 1, we always have ρ∗u < 1 because the constraint U2m+1
< m(1−c)

4c is

always true for big enough m. The only assumption for efficiently solving MIPS

that we need is that the space is bounded, which is always satisfied for any finite

dataset. ρ∗u depends on M, the radius of the space, which is expected.

7.6 Random Space Partitioning with ALSH

In this section, we show that due to the nature of the new transformations P

and Q from there is one subtle but surprising advantage of Sign-ALSH over
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L2-ALSH.

One popular application of LSH (Locality Sensitive Hashing) is random par-

titioning of the data for large scale clustering, where similar points map to the

same partition (or bucket). Such partitions are very useful in many applica-

tions [37]. With classical LSH, we simply use h(x) to generate partition for x.

Since PrH (h(x) = h(y)) is high if sim(x, y) is high, similar points are likely to go

into the same partition under the usual LSH mapping. For general ALSH, this

property is lost because of asymmetry.

In case of ALSH, we only know that Pr(h(P(x)) = h(Q(y)) is high if sim(x, y) is

high. Therefore, given x we cannot determine whether to assign partition using

h(P(.)) or h(Q(.)). Neither Pr(h(P(x)) = h(P(y)) nor PrH (h(Q(x)) = h(Q(y)) strictly

indicates high value of sim(x, y) in general. Therefore, partitioning property of

classical LSH does not hold anymore with general ALSHs. However for the case

of inner products using Sign-ALSH, there is a subtle observation which allows

us to construct the required assignment function, where pairs of points with

high inner products are more likely to get mapped in the same partition while

pairs with low inner products are more likely to map into different partitions.

In case of Sign-ALSH for MIPS, we have the transformations P(Q(T (x))) and

Q(P(T (x))) given by

P(Q(T (x))) = [x; 1/2 − ||T (x)||22; ....; 1/2 − ||T (x)||2
m

2 , 0, ..., 0]

Q(P(T (x))) = [x; 0, ..., 0, 1/2 − ||T (x)||22; ....; 1/2 − ||T (x)||2
m

2 ].

After this transformation, we multiply the generated D + 2m dimensional vector

by a random vector a ∈ RD+2m whose entries are i.i.d. Gaussian followed by

taking the sign. For illustration let a = [w; s1, ...sm, t1, ...tm] where w ∈ RD bi and ci

are numbers. All components of a are i.i.d. from N(0, 1). With this notation, we
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can write the final Sign-ALSH as

hS ign(P(Q(T (x)))) = S ign(wT T (x) +

m∑
i=1

si(1/2 − ||T (x)||2
i

2 ))

hS ign(Q(P(T (x)))) = S ign(wT T (x) +

m∑
i=1

ti(1/2 − ||T (x)||2
i

2 ))

The key observation here is that hS ign(P(Q(T (x)))) does not depend on tis and

hS ign(Q(P(T (x)))) does not depend on sis. If we define a mapping (it is not exactly

a mapping as it involve independent random αi for every evaluation)

hw(x) = S ign(wT T (x) +

m∑
i=1

αi(1/2 − ||T (x)||2
i

2 )) (7.30)

where αi are sampled i.i.d. from N(0, 1) for every x independently of everything

else. Then, under the randomization of w, it is not difficult to show that

Prw(hw(x) = hw(y)) = Pr(hS ign(P(x)) = hS ign(Q(y)))

for any x and y. The term Pr(hS ign(P(x)) = hS ign(Q(y))) satisfies the LSH like prop-

erty and therefore, in any partitions using hw, points with high inner products

are more likely to be together. Thus, hw(x) is the required assignment. Note, hw is

not technically an LSH because we are randomly sampling αi for all x indepen-

dently. The construction of hw using independent randomizations could be of

separate interest in itself. To the best of our knowledge, this is the first example

of LSH like partition using hash function with independent randomization for

every data point.

The function hw is little subtle here, we sample w i.i.d from Gaussian and use

the same w for all x, but while computing hw we use αi independent of every-

thing for every x. The probability is under the randomization of w and indepen-

dence of all αi ensures the asymmetry. We are not sure if such construction is

possible with L2-ALSH. For LSH partitions with binary data, a very same idea,
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used here, can be applied to asymmetric minwise hashing which is discussed

later in Section 7.7.1.

7.6.1 Ranking Experiments

In Section 7.6.1, the L2-ALSH scheme was shown to outperform other reason-

able heuristics in retrieving maximum inner products. Since our proposal is an

improvement over L2-ALSH, we first focus on comparisons with L2-ALSH. In

this section, we compare L2-ALSH with Sign-ALSH based on ranking.

7.6.2 Datasets

We use three publicly available dataset MNIST, WEBSPAM and RCV1 for evalu-

ations. For each of the three dataset we generate two independent partitions, the

query set and the train set. Each element in the query set is used for querying,

while the training set serves as the collection C that will be searched for MIPS.

The statistics of the dataset and the partitions are summarized in Table 7.1

Dataset Dimension Query size Train size
MNIST 784 10,000 60,000

WEBSPAM 16,609,143 5,000 100,000
RCV1 47,236 5,000 100,000

Table 7.1: Datasets used for evaluations.

In this section, we show how the ranking of the two ALSH schemes, L2-

ALSH and Sign-ALSH, correlates with inner products. Given a query vector

q, we compute the top-10 gold standard elements based on the actual inner

products qT x, ∀x ∈ C, here our collection is the train set. We then generate K
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Figure 7.8: Precision-Recall curves for L2-ALSH and the improved Sign-
ALSH for retrieving top-10 elements.

different hash codes of the query q and all the elements x ∈ C and then compute

Matchesx =

K∑
t=1

1(ht(Q(q)) = ht(P(x))), (7.31)

where 1 is the indicator function and the subscript t is used to distinguish inde-

pendent draws of h. Based on Matchesx we rank all the elements x. Ideally, for a

better hashing scheme, Matchesx should be higher for element x having higher

inner products with the given query q. This procedure generates a sorted list
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of all the items for a given query vector q corresponding to the each of the two

asymmetric hash functions under consideration.

For L2-ALSH, we used the same parameters used and recommended in [80].

For Sign-ALSH, we used the recommended choice shown in Section 7.5.3, which

is U = 0.75, m = 2. Note that Sign-ALSH does not have parameter r.

We compute precision and recall of the top-10 gold standard elements, ob-

tained from the sorted list based on Matchesx. To compute this precision and

recall, we start at the top of the ranked item list and walk down in order. Sup-

pose we are at the kth ranked item, we check if this element belongs to the gold

standard top-10 list. If it is one of the top-10 gold standard elements, then we

increment the count of relevant seen by 1, else we move to k + 1. By kth step, we

have already seen k elements, so the total items seen is k. The precision and recall

at that point is then computed as:

Precision =
relevant seen

k
, Recall =

relevant seen
10

We show performance for K ∈ {64, 128, 256, 512}. Note that it is important to

balance both precision and recall. The method which obtains higher precision

at a given recall is superior. Higher precision indicates higher ranking of the

top-10 inner products which is desirable. We report averaged precisions and

recalls.

The plots for all the three datasets are shown in Figure 7.8. We can clearly

see, that our proposed Sign-ALSH scheme gives significantly higher precision

recall curves than the L2-ALSH scheme, indicating better correlation of top in-

ner products with Sign-ALSH compared to L2-ALSH. The results are consistent

across datasets.
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7.6.3 Comparisons of Hashing Based and Tree Based Methods

Sign-ALSH L2-ALSH [80] Cone Trees [76]
MNIST 7,944 9,971 11,202

WEBSPAM 2,866 3,813 22,467
RCV1 9,951 11,883 38,162

Table 7.2: Mean number of inner products evaluated per query by differ-
ent algorithms for MIPS.

We have shown in the previous Section that Sign-ALSH outperforms L2-

ALSH in ranking evaluations. In this Section, we consider the actual task of

finding the maximum inner product. Our aim is to estimate the computa-

tional saving, in finding the maximum inner product, with Sign-ALSH com-

pared to the existing scheme L2-ALSH. In addition to L2-ALSH which is a hash-

ing scheme, there is an another tree based space partitioning method [76] for

solving MIPS. Although, in theory, it is know that tree based methods perform

poorly [89] due to their exponential dependence on the dimensionality, it is still

important to understand the impact of such dependency in practice. Unfortu-

nately no empirical comparison between hashing and tree based methods exists

for the problem of MIPS in the literature. To provide such a comparison, we also

consider tree based space partitioning method [76] for evaluations. We use the

same three datasets as described in Section 7.6.2.

Tree based and hashing based methodologies are very different in nature.

The major difference is in the stopping criteria. Hashing based methods cre-

ate buckets and stop the search once they find a good enough point, they may

not succeed with some probability. On the other hand, tree based methods use

branch and bound criteria to stop exploring further. So it is possible that a tree

based algorithm finds the optimal point but continues to explore further re-

quiring more computations. The usual stopping criteria thus makes tree based
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methods unnecessarily expensive compared to hashing based methods where

the criteria is to stop after finding a good point. Therefore, to ensure fair com-

parisons, we allow the tree based method to stop the evaluations immediately

once the algorithm finds the maximum inner product and prevent it from ex-

ploring further. Also, in case when hashing based algorithm fails to find the

best inner product we resort to the full linear scan and penalize the hashing

based algorithm for not succeeding. All this is required to ensure that tree based

algorithm is not at any disadvantage compare to hashing methods.

We implemented the bucketing scheme with Sign-ALSH and L2-ALSH. The

bucketing scheme requires creating many hash tables during the preprocess-

ing stage. During query phase, given a query, we compute many hashes of the

query and probe appropriate buckets in each table. Please refer [6] for more de-

tails on the process. We use the same fixed parameters for all the evaluations,

i.e., (m=2, U=0.75) for Sign-ALSH and (m=3, U=0.83, r=2.5) for L2-ALSH as

recommended in [80]. The total number of inner products evaluated by a hash-

ing scheme, for a given query, is the total number of hash computation for the

query plus the total number of points retrieved from the hash tables. In rare

cases, with very small probability, if the hash tables are unable to retrieve the

gold standard maximum inner product, we resort to linear scan and also in-

clude the total number of inner products computed during the linear scan. We

stop as soon as we reach the gold standard point.

We implemented Algorithm 5 from [76], which is the best performing algo-

rithm as shown in the evaluations. For this algorithm, we need to select one

parameter which is the minimum number of elements in the node required for

splitting. We found that on all the three datasets the value of 100 for this pa-
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rameter works the best among {500, 200, 100, 50}. Therefore, we use 100 in all

our experiments. The total number of inner products evaluated by tree based

algorithm is the total number of points reported plus the total number of nodes

visited, where we compute the branch and bound constraint. Again we stop the

search process as soon as we reach the point with gold standard maximum inner

product. As argued, we need this common stopping condition to compare with

hashing based methods, where we do not have any other stopping criteria [42].

For every query we compute the number of inner products evaluated by dif-

ferent methods for MIPS. We report the mean of the total number of inner prod-

ucts evaluated per query in Table 7.2. We can clearly see that hashing based

methods are always better than the tree based algorithm. Except on MNIST

dataset, hashing based methods are significantly superior, which is also not sur-

prising because MNIST is an image dataset having low intrinsic dimensionality.

Among the two hashing schemes Sign-ALSH is always better than L2-ALSH,

which verifies our theoretical findings and supports our arguments in favor of

Sign-ALSH over L2-ALSH for MIPS.

7.7 Even Better ALSH for Binary MIPS

We know that binary representations for web data are common, owing to the

wide adoption of the “bag of words (n-gram)” representations for documents

and images. In this Section, we show that for binary data there is even a better

ALSH than Sign-ALSH. The new ALSH makes use of MinHash.

MinHash is one of the widely used indexing scheme for search and record

matching. The underlying similarity measure of interest with MinHash is the
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resemblance (also known as the Jaccard similarity). The resemblance similarity

between two sets x, y ⊆ Ω = {1, 2, ...,D} is

R =
|x ∩ y|
|x ∪ y|

=
a

fx + fy − a
, (7.32)

where fx = |x|, fy = |y|, a = |x ∩ y|.

While the resemblance similarity is convenient and useful in numerous ap-

plications, there are also many scenarios where the resemblance is not the de-

sired similarity measure [3, 19]. For instance, consider text descriptions of two

restaurants:

1. “Five Guys Burgers and Fries Downtown Brooklyn New York”

2. “Five Kitchen Berkley”

Shingle (n-gram) based representations for strings are common in practice. Typ-

ical (first-order) shingle based representations of these names will be (i) {five,

guys, burgers, and, fries, downtown, brooklyn, new, york } and (ii) {five,

kitchen, berkley}. Now suppose the query is “Five Guys” which in shingle rep-

resentation is {Five, Guys}. Suppose we hope to match and search the records,

for this query “Five Guys”, based on resemblance. Observe that the resemblance

between query and record (i) is 2
9 = 0.22, while that with record (ii) is 1

4 = 0.25.

Thus, simply based on resemblance, record (ii) is a better match for query “Five

Guys” than record (i), which however should not be correct in this content.

Clearly the issue here is that resemblance penalizes the sizes of the sets in-

volved. Shorter sets are unnecessarily favored over longer ones, which hurts the

performance in (e.g.,) record matching [3]. There are other scenarios where such

136



penalization is undesirable. For instance, in plagiarism detection, it is typically

immaterial whether the text is plagiarized from a long or a short document.

To counter the often unnecessary penalization of the sizes of the sets with

resemblance, a modified measure, the set containment (or Jaccard containment)

was adopted [12, 3, 19]. Containment of set x and y with respect to x is defined

as

JC =
|x ∩ y|
|x|

=
a
fx
. (7.33)

In the above example with query “Five Guys”, the set containment with respect

to query for record (i) will be 2
2 = 1 and with respect to record (ii) it will be 1

2 ,

leading to the desired ordering. It should be noted that for any fixed query x,

the ordering under set containment with respect to the query, is the same as the

ordering with respect to the intersection a (or binary inner product). Thus, near

neighbor search problem with respect toJC is equivalent to the maximum inner

product search problem or MIPS.

Both L2-ALSH and Sign-ALSH construccted in previous Sections work for

any general inner products over RD. For sparse and high-dimensional binary

dataset which are common over the web, we showed that MinHash is typi-

cally the preferred choice of hashing over random projection based hash func-

tions [84]. Therefore it is worth investigating if we can make use of MinHash

and asymmetric transformations to come up with a better ALSH for MIPS. In

this section, we show an affirmative result that we can actually derive better

ALSH for binary MIPS using MinHash. We call the new scheme asymmetric

minwise hashing (MH-ALSH), which is more suitable for indexing binary inner

products compared to the existing ALSHs for general inner products.

In Theorem 14, we showed that there cannot exist any LSH for general un-
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normalized inner product. The argument relies on the fact that we can have

pairs x and y, s.t. xT y � xT x. This argument does not hold true for binary inner

products and we always have xT y ≤ xT x ∀ binary x and y. But, using a slightly

different argument it can still be shown that even for binary MIPS we cannot

have any LSH scheme. For binary inner product we can have x, y and z such

that xT y >> zT z. Now, Pr(h(x) = h(y)) > Pr(h(z) = h(z)) = 1 is again impossible.

7.7.1 Asymmetric Minwise Hashing

In this section, we provide a very simple asymmetric fix to MinHash, named

asymmetric minwise hashing (MH-ALSH), which makes the overall collision prob-

ability monotonic in the original inner product a.

Following the general ALSH framework, we define the new preprocessing

and query transformations P′ : [0, 1]D → [0, 1]D+M and Q′ : [0, 1]D → [0, 1]D+M as:

P′(x) = [x; 1; 1; 1; ...; 1; 0; 0; ...; 0] (7.34)

Q′(x) = [x; 0; 0; 0; ...; 0], (7.35)

For P′(x) we append M− fx 1s and rest fx zeros, while in Q′(x) we simply append

M zeros.

At this point we can already see the power of asymmetric transformations.

The original inner product between P′(x) and Q′(x) is unchanged and its value

is a = xT y. Given the query q, the new resemblance R′ between P′(x) and Q′(q) is

R′ =
|P′(x) ∩ Q′(q)|
|P′(x) ∪ Q′(q)|

=
a

M + fq − a
. (7.36)

If we define our new similarity as S im(x, y) = a
M+ fq−a , then the near neighbors

in this new similarity are the same as near neighbors with respect to either set
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intersection a or set containment a
fq

. Thus, we can instead compute near neigh-

bors in a
M+ fq−a which is also the resemblance between P′(x) and Q′(q). We can

therefore use MinHash on P′(x) and Q′(q).

Observe that now we have M + fq − a in the denominator, where M is the

maximum nonzeros seen in the dataset (the cardinality of largest set), which

for very sparse data is likely to be much smaller than D. Thus, asymmetric

MinHash is a better scheme thanHS with collision probability a
D for very sparse

datasets where we usually have M � D.

From theoretical perspective, to obtain an upper bound on the query and

space complexity of c-approximate near neighbor with binary inner products,

we want the collision probability to be independent of the quantity fq. This is

not difficult to achieve. The asymmetric transformation used to get rid of fx in

the denominator can be reapplied to get rid of fq.

Formally, we can define P′′ : [0, 1]D → [0, 1]D+2M and Q′′ : [0, 1]D → [0, 1]D+2M

as :

P′′(x) = Q′(P′(x)); Q′′(x) = P′(Q′(x)); (7.37)

where in P′′(x) we append M − fx 1s and rest M + | fx| zeros, while in Q′′(x) we

append M zeros, then M − fq 1s and rest zeros

Again the inner product a is unaltered, and the new resemblance then be-

comes

R′′ =
|P′′(x) ∩ Q′′(q)|
|P′′(x) ∪ Q′′(q)|

=
a

2M − a
. (7.38)

which is independent of fq and is monotonic in a. This allows us to achieve a for-

mal upper bound on the complexity of c-approximate maximum inner product

search with the new asymmetric MinHash.
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From the collision probability expression, i.e., Eq. (7.38), we have

Theorem 21 Minwise hashing along with Query transformation Q′′ and Preprocess-

ing transformation P′′ defined by Equation 7.37 is a (S 0, cS 0,
S 0

2M−S 0
, cS 0

2M−cS 0
) sensitive

asymmetric hashing family for set intersection.

This leads to an important corollary.

Corollary 5 There exists an algorithm for c-approximate set intersection, with

bounded sparsity M, that requires O(n1+ρMH−ALS H ) space and O(nρMH−ALS H log n), where

ρMH−ALS H =
log S 0

2M−S 0

log cS 0
2M−cS 0

< 1 (7.39)

Given query q and any point x ∈ C, the collision probability under traditional

MinHash is R = a
fx+ fq−a . This penalizes sets with high fx, which in many scenar-

ios is not desirable. To balance this negative effect, asymmetric transformation

penalizes sets with smaller fx. Note, that M − fx ones added in the transforma-

tions P′(x) gives additional chance in proportion to M − fx for MinHash of P′(x)

not to match with the MinHash of Q′(x). This asymmetric probabilistic correc-

tion balances the penalization inherent in MinHash. This is a simple way of

correcting the probability of collision which could be of independent interest in

itself. We will show in our evaluation section, that despite this simplicity such

correction leads to significant improvement over plain MinHash.

7.7.2 Efficient Sampling

Our transformations P′′ and Q′′ always create sets with 2M nonzeros. In case

when M is big, hashing might take a lot of time. We can use (improved) con-
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sistent weighted sampling [67, 43] for efficient generation of hashes. We can

instead use transformations P′′′ and Q′′′ that makes the data non-binary as fol-

lows

P′′′(x) = [x; M − fx; 0] (7.40)

Q′′′(x) = [x; 0; M − fx]

It is not difficult to see that the weighted resemblance (or weighted Jaccard sim-

ilarity) between P′′′(x) and Q′′′(q) for given query q and any x ∈ C is

RW =

∑
i min(P′′′(x)i,Q′′′(q)i)∑
i max(P′′′(x)i,Q′′′(q)i)

=
a

2M − a
. (7.41)

Therefore, we can use fast consistent weighted sampling for weighted resem-

blance on P′′′(x) and Q′′′(x) to compute the hash values in time constant per

nonzero weights, rather than maximum sparsity M. In practice we will need

many hashes for which we can utilize the recent line of work that make Min-

Hash and weighted MinHash significantly much faster [60, 81, 82, 35].

7.7.3 Theoretical Comparisons

For solving the MIPS problem in general data types, we already know two

asymmetric hashing schemes, L2-ALSH and Sign-ALSH, as described in Sec-

tion 7.3 and Section 7.5 respectively. In this section, we provide theoretical

comparisons of the two existing ALSH methods with the proposed asymmet-

ric minwise hashing (MH-ALSH).

Before we formally compare various asymmetric LSH schemes for maxi-

mum inner product search, we argue why asymmetric MinHash should be ad-

vantageous over traditional MinHash for retrieving inner products. Let q be the
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binary query vector, and fq denotes the number of nonzeros in the query. The

ρMH−ALS H for asymmetric MinHash in terms of fq and M is straightforward:

ρ
q
MH−ALS H =

log S 0
fq+M−S 0

log cS 0
fq+M−cS 0

(7.42)

For MinHash, we have ρ
q
min =

log S 0
fq+M−S 0

log cS 0
fq

(see [85] for details). Since M is the

upper bound on the sparsity and cS 0 is some value of inner product, we have

M − cS 0 ≥ 0. Using this fact, the following theorem immediately follows

Theorem 22 For any query q, we have ρq
MH−ALS H ≤ ρ

q
min.

This result theoretically explains why asymmetric MinHash is better for re-

trieval with binary inner products, compared to plain MinHash.
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Figure 7.9: Comparisons of ρMH−ALS H and ρsign (lower is better) with respect
to approximation ratio c for different S 0

M .

For comparing asymmetric MinHash with ALSH for general inner products,

we compare ρMH−ALS H with the ALSH for inner products based on sign random

projections. In Section 7.5 it was shown that Sign-ALSH has better theoretical

ρ values compared to L2-ALSH. Therefore, it suffices to show that asymmetric
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MinHash outperforms sign random projection based ALSH. Both ρMH−ALS H and

ρsign can be rewritten in terms of ratio S 0
M as follows. Note that for binary data

we have M = maxx∈C ||x||2 = V2

ρMH−ALS H =
log S 0/M

2−S 0/M

log cS 0/M
2−cS 0/M

; ρS ign =

log
(
1 − 1

π
cos−1

(
S 0
M

))
log

(
1 − 1

π
cos−1

(
cS 0
M

)) (7.43)

Observe that M is also the upper bound on any inner product. Therefore,

we have 0 ≤ S 0
M ≤ 1. We plot the values of ρMH−ALS H and ρsign for S 0

M =

{0.1, 0.2, ..., 0.8, 0.9, 0.95} with c. The comparison is summarized in Figure 7.9.

Note that here we use ρS ign based on the slightly more convenient transforma-

tion from [9, 69] instead of ρS ign−ALS H for convenience although the two schemes

perform essentially the same.

Clearly, irrespective of the choice of threshold S 0
M or the approximation ra-

tio c, asymmetric MinHash outperforms sign random projection based ALSH

in terms of the theoretical ρ values. This is not surprising, because it is known

that MinHash based methods are often significantly powerful for binary data

compared to SRP (or SimHash) [84]. Therefore ALSH based on MinHash out-

performs ALSH based on SRP as shown by our theoretical comparisons. Our

proposal thus leads to an algorithmic improvement over state-of-the-art hash-

ing techniques for retrieving binary inner products.

7.7.4 Evaluations

In this section, we compare the different hashing schemes on the actual task of

retrieving top-ranked elements based on set Jaccard containment. The experi-

ments are divided into two parts. In the first part, we show how the ranking
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based on various hash functions correlate with the ordering of set containment.

In the second part, we perform the actual LSH based bucketing experiment for

retrieving top-ranked elements and compare the computational saving obtained

by various hashing algorithms.

Datasets

We chose four publicly available high dimensional sparse datasets: EP2006,

MNIST, NEWS20, and NYTIMES. (Note that “EP2006” is a short name for

“E2006LOG1P” from LIBSVM web site.) Except for MNIST, the other three

datasets are high dimensional binary “BoW” representation of the correspond-

ing text corpus. MNIST is an image dataset consisting of 784 pixel image of

handwritten digits. Binarized versions of MNIST are commonly used in litera-

ture. The pixel values in MNIST were binarized to 0 or 1 values. For each of the

four datasets, we generate two partitions. The bigger partition was used to cre-

ate hash tables and is referred as the training partition. The small partition which

we call the query partition is used for querying. The statistics of these datasets

are summarized in Table 7.3. The datasets cover a wide spectrum of sparsity

and dimensionality.

Table 7.3: Datasets

Dataset # Query # Train # Dim nonzeros (mean ± std)

EP2006 2,000 17,395 4,272,227 6072 ± 3208

MNIST 2,000 68,000 784 150 ± 41

NEWS20 2,000 18,000 1,355,191 454 ± 654

NYTIMES 2,000 100,000 102,660 232 ± 114
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Competing Hash Functions

We consider the following hash functions for evaluations:

1. Asymmetric minwise hashing (Proposed): This is our proposal, the

asymmetric MinHash described in Section 7.7.1.

2. Traditional minwise hashing (MinHash): This is the usual minwise hash-

ing, the popular heuristic described in Section 2.2.2. This is a symmetric

hash function, we use hmin
π as define in Eq.(2.4) for both query and the

training set.

3. L2 based Asymmetric LSH for Inner products (L2-ALSH): This is the first

asymmetric LSH described in Section 7.3 for general inner products based

on LSH for L2 distance.

4. SRP based Asymmetric LSH for Inner Products (Sign-ALSH): This is the

imporved asymmetric hash function defined in Section 7.5 for general in-

ner products based on SRP.

Ranking Experiment: Hash Quality Evaluations

We are interested in knowing, how the orderings under different competing

hash functions correlate with the ordering of the underlying similarity measure

which in this case is the set containment. For this task, given a query q vector,

we compute the top-100 gold standard elements from the training set based on

the set containment a
fq

. Note that this is the same as the top-100 elements based

on binary inner products. Give a query q, we compute K different hash codes of

the vector q and all the vectors in the training set. We then compute the number
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of times the hash values of a vector x in the training set matches (or collides)

with the hash values of query q defined by

Matchesx =

K∑
t=1

1(ht(q) = ht(x)), (7.44)

where 1 is the indicator function. t subscript is used to distinguish indepen-

dent draws of the underlying hash function. Based on Matchesx we rank all

elements in the training set. This procedure generates a sorted list for every

query for every hash function. For asymmetric hash functions, in computing

total collisions, on the query vector we use the corresponding Q function (query

transformation) followed by underlying hash function, while for elements in

the training set we use the P function (preprocessing transformation) followed

by the corresponding hash function.

We compute the precision and the recall of the top-100 gold standard el-

ements in the ranked list generated by different hash functions. To compute

precision and recall, we start at the top of the ranked item list and walk down

in order, suppose we are at the pth ranked element, we check if this element be-

longs to the gold standard top-100 list. If it is one of the top 100 gold standard

elements, then we increment the count of relevant seen by 1, else we move to

p + 1. By pth step, we have already seen p elements, so the total elements seen is

p. The precision and recall at that point is then computed as:

Precision =
relevant seen

p
, Recall =

relevant seen
100

(7.45)

It is important to balance both. Methodology which obtains higher precision

at a given recall is superior. Higher precision indicates higher ranking of the

relevant items. We finally average these values of precision and recall over all

elements in the query set. The results for K ∈ {32, 64, 128} are summarized in

Figure 7.10.

146



We can clearly see, that the proposed hashing scheme always achieves better,

often significantly, precision at any given recall compared to other hash func-

tions. The two ALSH schemes are usually always better than traditional min-

wise hashing. This confirms that fact that ranking based on collisions under

minwise hashing can be different from the rankings under set containment or

inner products. This is expected, because MinHash in addition penalizes the

number of nonzeros leading to a ranking very different from the ranking of in-

ner products. Sign-ALSH usually performs better than L2-LSH, this is in line

with the results obtained in Section 7.5.

It should be noted that ranking experiments only validate the monotonicity

of the collision probability. Although, better ranking is certainly a good indica-

tor of good hash function, it does not always mean that we will achieve faster

sub-linear LSH algorithm. For bucketing the probability sensitivity around a

particular threshold is the most important factor, see [74] for more details. What

matters is the gap between the collision probability of good and the bad points.

In the next subsection, we compare these schemes on the actual task of near

neighbor retrieval with set containment.

LSH Bucketing Experiment: Computational Savings in Near Neighbor Re-

trieval

In this section, we evaluate the four hashing schemes on the standard (K, L)-

parameterized bucketing algorithm [6] for sub-linear time retrieval of near

neighbors based on set containment. In (K, L)-parameterized LSH algorithm,

we generate L different meta-hash functions. Each of these meta-hash functions
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Figure 7.10: Ranking Experiments for Asymmetric Minwise Hashing.
Precision Vs Recall curves for retrieving top-100 items, for dif-
ferent hashing schemes on 4 chosen datasets.

is formed by concatenating K different hash values as

B j(x) = [h j1(x); h j2(x); ...; h jK(x)], (7.46)

where hi j, i ∈ {1, 2, ...,K} and j ∈ {1, 2, ..., L}, are KL different independent eval-

uations of the hash function under consideration. Different competing scheme

uses its own underlying randomized hash function h.

148



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n 
of

 L
in

ea
r 

S
ca

n

Top 5

EP2006
 

 

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n 
of

 L
in

ea
r 

S
ca

n

Top 10
EP2006

 

 

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n 
of

 L
in

ea
r 

S
ca

n

Top 20
EP2006

 

 

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n 
of

 L
in

ea
r 

S
ca

n

Top 50
EP2006

 

 

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Recall

F
ra

ct
io

n 
of

 L
in

ea
r 

S
ca

n Top 5

MNIST

 

 

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

Recall

F
ra

ct
io

n 
of

 L
in

ea
r 

S
ca

n
Top 10

MNIST

 

 

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Recall

F
ra

ct
io

n 
of

 L
in

ea
r 

S
ca

n Top 20

MNIST

 

 

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Recall

F
ra

ct
io

n 
of

 L
in

ea
r 

S
ca

n

Top 50

MNIST
 

 

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n 
of

 L
in

ea
r 

S
ca

n

Top 5

NEWS20

 

 

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n 
of

 L
in

ea
r 

S
ca

n

Top 10

NEWS20

 

 

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall
F

ra
ct

io
n 

of
 L

in
ea

r 
S

ca
n

Top 20
NEWS20

 

 
MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n 
of

 L
in

ea
r 

S
ca

n

Top 50

NEWS20
 

 
MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n 
of

 L
in

ea
r 

S
ca

n Top 5

NYTimes
 

 

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n 
of

 L
in

ea
r 

S
ca

n

Top 10

NYTimes

 

 

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n 
of

 L
in

ea
r 

S
ca

n Top 20

NYTimes
 

 

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n 
of

 L
in

ea
r 

S
ca

n

Top 50

NYTimes
 

 

MinHash
Proposed
L2−ALSH
Sign−ALSH

Figure 7.11: LSH Bucketing Experiments for Asymmetric Minwise
Hashing. Average number of points retrieved per query
(lower is better), relative to linear scan, evaluated by different
hashing schemes at different recall levels, for top-5, top-10,
top-20, top-50 nearest neighbors based on set containment
(or equivalently inner products), on four datasets.

In general, the (K, L)-parameterized LSH works in two phases:

1. Preprocessing Phase: We construct L hash tables from the data by storing

element x, in the training set, at location B j(P(x)) in the hash-table j. Note

that for vanilla MinHash which is a symmetric hashing scheme P(x) = x.

For other asymmetric schemes, we use their corresponding P functions.

Preprocessing is a one time operation, once the hash tables are created
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they are fixed.

2. Query Phase: Given a query q, we report the union of all the points in

the buckets B j(Q(q)) ∀ j ∈ {1, 2, ..., L}, where the union is over L hash tables.

Again here Q is the corresponding Q function of the asymmetric hashing

scheme, for MinHash Q(x) = x.

Typically, the performance of a bucketing algorithm is sensitive to the choice

of parameters K and L. Ideally, to find best K and L, we need to know the

operating threshold S 0 and the approximation ratio c in advance. Unfortunately,

the data and the queries are very diverse and therefore for retrieving top-ranked

near neighbors there are no common fixed threshold S 0 and approximation ratio

c that work for all the queries.

Our objective is to compare the four hashing schemes and minimize the ef-

fect of K and L, if any, on the evaluations. This is achieved by finding best K

and L at every recall level. We run the bucketing experiment for all combina-

tions of K ∈ {1, 2, 3, ...40} and L ∈ {1, 2, 3, ..., 400} for all the four hash functions

independently. These choices include the recommended optimal combinations

at various thresholds. We then compute, for every K and L, the mean recall of

Top-T pairs and the mean number of points reported, per query, to achieve that

recall. The best K and L at every recall level is chosen independently for differ-

ent Ts. The plot of the mean fraction of points scanned with respect to the recall

of top-T gold standard near neighbors, where T ∈ {5, 10, 20, 50}, is summarized

in Figure 7.11.

The performance of a hashing based method varies with the variations in

the similarity levels in the datasets. It can be seen that the proposed asymmetric

MinHash always retrieves much less number of points, and hence requires sig-
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nificantly less computations, compared to other hashing schemes at any recall

level on all the four datasets. Asymmetric MinHash consistently outperforms

other hash functions irrespective of the operating point. The plots clearly es-

tablish the superiority of the proposed scheme for indexing set containment (or

inner products).

L2-ALSH and Sign-ALSH perform better than traditional MinHash on

EP2006 and NEWS20 datasets while they are worse than plain MinHash on NY-

TIMES and MNIST datasets. If we look at the statistics of the dataset from Ta-

ble 7.3, NYTIMES and MNIST are precisely the datasets with less variations in

the number of nonzeros and hence MinHash performs better. In fact, for MNIST

dataset with very small variations in the number of nonzeros, the performance

of plain MinHash is very close to the performance of asymmetric MinHash. This

is of course expected because there is negligible effect of penalization on the or-

dering. EP2006 and NEWS20 datasets have huge variations in their number of

nonzeros and hence MinHash performs very poorly on these datasets. What is

exciting is that despite these variations in the nonzeros, asymmetric MinHash

always outperforms other ALSH for general inner products.

The difference in the performance of plain MinHash and asymmetric Min-

Hash clearly establishes the utility of our proposal which is simple and does

not require any major modification over traditional MinHash implementation.

Given the fact that MinHash is widely popular, we hope that our proposal will

be adopted.
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7.8 Discussions

We have questioned the symmetry in the classical locality sensitive hashing def-

inition, and, as a consequence, found a wide room for new opportunities. We

found an extended ALSH framework which is a strict generalization of the clas-

sical LSH framework. We show that searching for maximum inner product ad-

mits sub-linear algorithm. Such an efficient solution is not possible in the clas-

sical LSH framework. MIPS is a common subroutine in a variety of machine

learning algorithms, and all these algorithms will directly benefit from faster

MIPS routines shown in this chapter.

In the ALSH framework, we show construction of three hashing algorithms

for MIPS. We believe, what we have found is just the tip of an iceberg. The

implications of ALSH framework, presented in this chapter, are far deeper. In

particular, as a direct consequence, now it is possible to reduce one similarity

search problem into another, by smartly engineering asymmetric transforma-

tions. There is now a hope of finding faster algorithms for many new search

problems by reducing them to some know efficient similarity search problem.

It is also an interesting direction to explore the properties of such similarities

which can be reduced to one another. We believe that many exciting results will

come in this directions.
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CHAPTER 8

MOVING FORWARD

With the fundamental improvements in the hashing techniques and the new

paradigms proposed in this thesis, we see further enormous opportunities to

improve current large scale learning systems to a very significant extent. Fol-

lowing are some of the interesting future directions.

Web-scale deep networks via hashing: Scaling up deep networks is becoming

an important research direction. One of the our motivations in finding efficient

solutions to maximum inner product search (Chapter 7) was to scale up ex-

isting deep learning architectures. Recent results have shown that for dealing

with massive datasets we need to train massive networks with the number of

parameters potentially running into billions [27]. Regularizing such huge net-

works with techniques like adaptive dropouts [7] and maxouts [34] have proved

to be the key reason behind their success. These regularization techniques only

use few nodes, out of potentially billions, having large activations. Finding

these nodes with large activations directly reduces to a maximum inner prod-

uct search (MIPS) instance. We have shown first practical sub-linear solutions to

MIPS in Chapter 7, an immediate follow up is to scale up the training and test-

ing of giant deep networks using asymmetric hashing framework. Training and

testing operations require identifying nodes with maximum activations, which

can now be done in sub-linear time. Being able to train deep nets with an order

of magnitude more parameters will be a big leap.

Joint or group recommendations: Current algorithms for group recommenda-
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tion recommend items which are usually high in some weighted additive rel-

evance with respect to everyone in the group. This technique has problems,

because some relevance may dominate the others, and the item with maximum

relevance may not be a balanced choice for all. It is more natural and useful to

make use of k-way resemblance as shown in Chapter 5. Having found efficient

sub-linear search algorithms for k-way resemblance, it is worth revisiting the

problem of group recommendations with this new perspective.

A new privacy framework with hashing: Hashes themselves provide a ran-

domized representation of the dataset which can be directly used for search,

estimation and also learning as shown in Chapter 3. This totally eliminates the

need for storing (or transmitting) the data anywhere, and it is possible to only

work with hashes. The hashes are typically based on random projections or

minwise hashing. These hashes are randomized and do not reveal direct infor-

mation about the variables in the datasets. Thus, hashing provides a naturally

reasonably encrypted interface. This leads to some natural questions “What

kind of queries can we reasonably answer just on the basis of hashes ?” and

“How much private are these random hashes?”. Both of these questions are

worthy of further explorations given the utility of hashing and the need for

privacy. This is also a very promising domain because there are few works

showing positive results that random hashes have privacy properties such as

k-anonymity [87].

Hashing with limited randomness: In this thesis, we have developed many

new hashing schemes for big data systems. An interesting and useful line of
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work is to study the effect of randomness on these new hash functions. This will

open up further possibilities of making these hash functions even faster using

very cheap randomizations. There are lot of interesting works on tabulation-

based hash functions [71] that are cheap to compute and at the same time be-

have like fully random hash functions. Design and analysis of these cheap

randomizations-based on tabulations, for the newly developed hash functions,

is an important and interesting direction to proceed.

This is the most exciting time to work on big data. The scale and the variability

of the current datasets have made us rethink about the conventional assump-

tions prevailing in the existing literature. The modified settings open enor-

mous opportunities for researchers to build new foundations by revisiting old

assumptions. This opens a wide room for fundamental improvements in the

existing well studied algorithms, some of which are shown in this thesis. The

encouraging results that we have found with probabilistic hashing make us feel

very optimistic and confident about the future of hashing algorithms for large

scale search and learning.
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APPENDIX A

PROOFS

A.0.1 Proof of Theorem 2

The proof of inequality is not difficult given r ≤ 1
S2 and using Equations 4.3.

Proof of tightness: The proof requires a bit of analysis. Let a continuous func-

tion f (S) be a sharper upper bound i.e., R ≤ f (S) ≤ S

2−S . For any rational S =
p
q ,

with p, q ∈ N and p ≤ q, choose f1 = f2 = q and a = p. Note that f1, f2 and a are

positive integers. This choice leads to S

2−S = R =
p

2q−p . Thus, the upper bound

is achievable for all rational S. Hence, it must be the case that f (S) = S

2−S = R

for all rational values of S. For any real number c ∈ [0, 1], there exist a Cauchy

sequence of rational numbers {r1, r2, ...rn, ...} such that rn ∈ Q and limn→∞ rn = c.

Since all rn’s are rational, f (rn) = rn
2−rn

. From the continuity of both f and S

2−S , we

have f (limn→∞ rn) = limn→∞
rn

2−rn
which implies f (c) = c

2−c implying ∀c ∈ [0, 1].

For proving tightness of S2, let S =
√

p
q , choosing f2 = a = p and f1 = q

gives an infinite set of points having R = S2. We can now use similar arguments

used to prove the tightness of upper bound. All we need is the existence of a

Cauchy sequence of square root of rational numbers converging to any real c,

which is just the square root of rational Cauchy sequence converging to c2 (we

used continuity of square root function). �
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A.0.2 Proof of Theorem 9

The proof is a simple case based analysis. Note, C is always greater than the

value of any non empty bin.

CASE I: (I j
emp = 0)

Without loss of generality, let min
j
π(S 1) , E. If we have min

j
π(S 2) , E, then both

of these values are untouched and we get

H j(π(S 1)) = H j(π(S 2)) ⇐⇒ min
j
π(S 1) = min

j
π(S 2).

In case if min
j
π(S 2) = E, then by the choice of C ,

H j(π(S 2)) > C > min
j
π(S 1) = H j(π(S 1)).

Therefore, either way we have

H j(π(S 1)) = H j(π(S 2)) ⇐⇒ min
j
π(S 1) = min

j
π(S 2).

Pr(H j(π(S 1)) = H j(π(S 2))|I j
emp = 0) = Pr(min

j
(π(S 1)) = min

j
(π(S 2))|I j

emp = 0) = R

.

CASE II: (I j
emp = 1)

Let

t1 = min x s.t min
( j+x)mod k

(π(S 1)) , E.

t2 = min x s.t min
( j+x)mod k

(π(S 2)) , E.

Let m = min(t1, t2) and t = ( j + m)mod k. The definition of t1 and t2 implies

It
emp = 0.

Subcase I: (t1 = t2 = m)

We have

H j(π(S 1)) = min
t

(π(S 1)) + mC and H j(π(S 2)) = min
t

(π(S 2)) + mC.

157



H j(π(S 1)) = H j(π(S 2)) ⇐⇒ min
t
π(S 1) = min

t
π(S 2).

Subcase II: (t1 , t2) Without loss of generality t1 > t2 = m. Clearly, by definition

of t, t1 and t2, we have

min
t

(π(S 1)) = E; and min
t

(π(S 2)) , E.

Also,

H j(π(S 1)) = min
( j+t1)mod k

(π(S 1)) + t1C > min
( j+t2)mod k

(π(S 2)) + t2C = H j(π(S 2)).

Thus, from the two subcases we can write,

Pr(H j(π(S 1)) = H j(π(S 2))|I j
emp = 1) = Pr(min

t
(π(S 1)) = min

t
(π(S 2))|It

emp = 0) = R.

A.0.3 Proof of Theorem 10

For the analysis, it is sufficient to consider the configurations, of empty and

non-empty bins, arising after throwing |S 1 ∪ S 2| balls uniformly into k bins with

exactly m non-empty bins and k − m empty bins. Under uniform throwing of

balls any ordering of m non-empty and k − m empty bins are equally likely. The

proofs involve elementary combinatorial arguments of counting configurations.

Proof of Lemma 2

Given exactly m simultaneous non empty bins, any two of them can be

chosen in m(m − 1) ways (with ordering of i and j). Each term MN
i MN

j ,

for both simultaneously non-empty i and j, is 1 with probability RR̃ (Note,

E
(
MN

i MN
j

∣∣∣i , j, Ii
emp = 0, I j

emp = 0
)

= RR̃).

158



Proof of Lemma 3

The permutation is random and any sequence of simultaneous m non-empty

and remaining k − m empty bins are equally likely. This is because, while ran-

domly throwing |S 1 ∪ S 2| balls into k bins with exactly m non-empty bins ev-

ery sequence of simultaneous empty and non-empty bins has equal probability.

Given m, there are total 2m(k − m) different pairs of empty and non-empty bins

(including the ordering). Now, for every simultaneous empty bin j, i.e., I j
emp = 1,

ME
j replicates MN

t corresponding to nearest non-empty Bin t which is towards

the circular right. There are two cases,

Case 1: t = i, which has probability 1
m and

E(MN
i ME

j |I
i
emp = 0, I j

emp = 1) = E(MN
i |I

i
emp = 0) = R

Case 2: t , i, which has probability m−1
m and

E(MN
i ME

j |I
i
emp = 0, I j

emp = 1)

=E(MN
i MN

t |t , i, Ii
emp = 0, It

emp = 0) = RR̃

Thus, the value of E
[∑

i, j MN
i ME

j

∣∣∣∣∣m]
comes out to be

2m(k − m)
[

R
m

+
(m − 1)RR̃

m

]
which is the desired expression.

Proof of Lemma 4

Given m, we have (k − m)(k − m − 1) different pairs of simultaneous non-empty

bins. There are two cases, if the closest simultaneous non-empty bins towards

159



their circular right are identical, then for such i and j, ME
i ME

j = 1 with proba-

bility R, else ME
i ME

j = 1 with probability RR̃. Let p be the probability that two

simultaneously empty bins i and j has the same closest bin on the right. Then

E
[∑

i, j ME
i ME

j

∣∣∣∣∣m]
is given by

(k − m)(k − m − 1)
[
pR + (1 − p)RR̃

]
(A.1)

because with probability (1 − p), it uses estimators from different simultaneous

non-empty bin and in that case the ME
i ME

j = 1 with probability RR̃.

Consider Figure 6.10, here we have 3 simultaneous non-empty bins, i.e.,

m = 3 (shown by colored boxes). Given any two simultaneous empty bins Bin

i and Bin j (out of total k − m) they will occupy any of the m + 1 = 4 blank

positions. The arrow shows the chosen non-empty bins, for filling the empty

bins, corresponding each of the positions of the non-empty bins. There are

(m + 1)2 + (m + 1) = (m + 1)(m + 2) different ways of fitting two simultaneous

non-empty bins i and j between m non-empty bins. Note, if both i and j goes to

the same blank positions they can be permuted. This adds extra term (m + 1).

If both i and j chooses same blank space or the first and the last blank space,

then both the simultaneous empty bins, Bin i and Bin j, corresponds to the same

non-empty bin. The number of ways in which this happens is 2(m + 1) + 2 =

2(m + 2). So, we have

p =
2(m + 2)

(m + 1)(m + 2)
=

2
m + 1

.

Substituting p in Eq.(A.1) leads to the desired expression.
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A.0.4 Proof of Theorem 12

Proof of Lemma 5

Similar to the proof of Lemma 4, we need to compute p which is the probabil-

ity that two simultaneously empty bins, Bin i and Bin j, use information from

the same bin. As argued before, the total number of positions for any two si-

multaneously empty bins i and j, given m simultaneously non-empty bins is

(m + 1)(m + 2). Consider Figure 6.11, under the improved scheme, if both Bin i

and Bin j choose the same blank position then they choose the same simultane-

ously non-empty bin with probability 1
2 . If Bin i and Bin j choose consecutive

positions (e.g., position 2 and position 3) then they choose the same simulta-

neously non-empty bin (Bin b) with probability 1
4 . There are several boundary

cases to consider too. Accumulating the terms leads to

p =

2(m+2)
2 + 2m+4

4

(m + 1)(m + 2)
=

3
2(m + 1)

.

Substituting p in Eq.(A.1) yields the desired result.

Note that m = 1 (an event with almost zero probability) leads to the value

of p = 1. We ignore this case because it unnecessarily complicates the final

expressions. m = 1 can be easily handled and does not affect the final conclusion.

Proof of Theorem 13

Immediate from Lemma 4 and Lemma 5 and the fact that R ≤ RR̃. For computing

gain all we need is to subtract the two expressions from Lemma 3 and Lemma

4 respectively. All other components involved in the variance remain the same

for both R̂ and R̂+.
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A.0.5 Proof of Theorem 16

From Equation 2.11, we have

Pr[hL2
a,b(Q(q)) = hL2

a,b(P(x))] = Fr(||Q(q) − P(x)||2)

=Fr
(√

1 + m/4 − 2qT x + ||x||2m+1

2
)
≥ Fr

(√
1 + m/4 − 2S 0 + U2m+1)

The last step follows from the monotonically decreasing nature of F combined

with inequalities qT x ≥ S 0 and ||x||2 ≤ U. We have also used the monotonicity

of the square root function. The second inequality similarly follows using qT x ≤

cS 0 and ||x||2 ≥ 0.. This completes the proof

A.0.6 Proof of Theorem 19

Proof: When qT x ≥ S 0, we have, according to Equation 2.7

Pr[hS ign(Q(q)) = hS ign(P(x))] = 1 −
1
π

cos−1

 qT x√
m/4 + ||x||2m+1

2


≥ 1 −

1
π

cos−1

 qT x√
m/4 + U2m+1


When qT x ≤ cS 0, by noting that qT x ≤ ‖x‖2, we have

Pr[hS ign(Q(q)) = hS ign(P(x))] = 1 −
1
π

cos−1

 qT x√
m/4 + ||x||2m+1

2


≤ 1 −

1
π

cos−1

 qT x√
m/4 + (qT x)2m+1


For this one-dimensional function f (z) = z√

a+zb
, where z = qT x, a = m/4 and

b = 2m+1 ≥ 2, we know

f ′(z) =
a − zb (b/2 − 1)

(a + zb)3/2
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One can also check that f ′′(z) ≤ 0 for 0 < z < 1, i.e., f (z) is a concave function.

The maximum of f (z) is attained at z∗ =
(

2a
b−2

)1/b
=

(
m/2

2m+1−2

)2−m−1

If z∗ ≥ cS 0, then we

need to use f (cS 0) as the bound.
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APPENDIX B

CRS (CONDITIONAL RANDOM SAMPLING) SKETCHES AND

DENSIFIED ONE PERMUTATION HASHING

In their seminal work [12, 51, 52, 53], another sketching scheme was pro-

posed for estimating resemblance similarity between two sets or binary vectors.

Instead of using only the minimum under a permutation π, as in case of minwise

hashing, the idea was to use the k minimums (for some k ≥ 1) as a sketch.

Sticking to the old notation of [12], we define a new operator MINk(S ) oper-

ating over a set S as

MINk(S ) =


Set of smallest k elements of S, if |S | > k

S , otherwise

Also, define Mi(S ) to be the ith smallest elements of set S .

Formally, the CRS sketches under a given permutation π is MINk(π(S )). This

generates k sketches simultaneously for a given data S if |S | > k, else it generates

only |S | sketches. It was shown that one can obtain an unbiased estimator of

resemblance between sets S 1 and S 2 as follows:

R̂Bot−k =
|MINk(π(S 1 ∪ S 2)) ∩ MINk(π(S 1)) ∩ MINk(π(S 2))|

|MINk(π(S 1 ∪ S 2))|

The CRS sketches with k = 8 for the sets S 1 and S 2 is shown in Figure B.1.

CRS sketches are not aligned and do not satisfy the LSH property, except when

i = 1, in which case we recover minwise hashing. The expression of the form

1
k

k∑
i=1

1(Mi(π(S 1) = Mi(π(S 2))),
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Botk(��) 6 8 15 16 17 19 22 23 

Botk(��) 6 7 8 13 15 17 18   - 
 

Figure B.1: Example CRS sketches of example vectors S 1 and S 2 used in
Figure 1 of the main Chapter

is not an unbiased estimator of resemblance. In particular, the event Mi(π(S 1))

= Mi(π(S 2)), unlike minwise hashing is not purely a function of similarity R be-

tween S 1 and S 2 . It does depend on other information about S 1 and S 2. Thus,

other factors adversely affects the collision probability, and hence the bucket as-

signment Equation 7.46 does not guarantee similar points in same buckets. In

formal terms, CRS sketches do not satisfy LSH property.

It is reasonable to expect that Mi(π(S 1)) = Mi(π(S 2) is a positive indication of

high similarity between S 1 and S 2. CRS sketches, for small values of k, behaves

like minwise hashing and in limit when k = 1 they both are the same. Owing to

this, it may seem reasonable to reduce the processing time of minwise hashing

by using CRS sketches, for some small k, by generating k hash evaluations in

a single permutation. This, reduces the processing time over minwise hashing

by a factor of k. Unfortunately, this scheme will only work for small k (such as

k < 10). This is not much improvement over minwise hashing. As k increases

this scheme leads to large deviations. It should be noted that such usage of CRS
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Figure B.2: Comparisons of CRS sketches with the proposed hashing
scheme in retrieving all the points having similarity with the
query greater than T = 0.8. CRS sketches are in dashed red

for reducing the cost of minwise hashing is just a heuristic and not a principled

way to do near neighbor search.

To compete with our scheme in terms of computation, CRS sketches need to

set the value of k to be k = K × L. This high value of k comes with two major

problems: 1) K × L is sufficiently large and hence the collision of CRS sketches

will not be an indicator of high similarity. 2) The current web datasets are very

sparse. For datapoints with less than K × L non-zeros, we will not have the

necessary number of hash evaluations. Since there is a lot of variation in the

166



number of non-zeros in the given datasets, this problem is critical.

To provide experimental evidence, we perform experiments on the MNIST

and WEBSPAM datasets used in Chapter 6. We repeat the experimental evalu-

ation procedure described in Chapter 6 with high similarity threshold T = 0.8.

We use the same combinations of K and L and implement the bucketing scheme

with both CRS sketches and H . Out aim is to evaluate the performance of LSH

based retrieval using CRS sketches with only one permutation and compare it

with the performance of the proposed scheme. We set k = K × L. We also need

some mechanism to handle exceptionally sparse data points. We handle them

by setting Mi(π(S )) = 0, if |S | < i. The evaluation results are summarized in

Figure B.2.

It is evident from the plots that using a single permutation with CRS sketches

performs poorly even in retrieving elements with high similarity (T > 0.8). For

the WEBSPAM data, our proposed scheme can achieve a perfect recall with only

evaluating about 1/100 fraction of the data. On the other hand, CRS sketches

can achieve only a recall of around 50% after retrieving 1/100 fraction of data

points. The trends with variation in K and L clearly suggest the inferiority of

CRS sketches in retrieving highly similar points, which is expected because the

collision event with CRS sketches is not perfectly co-related with the resem-

blance.

In case of MNIST dataset we see a very unpredictable trend with CRS

sketches. This is because the average number of non-zeros in this dataset is

around 150 and as the number of hash evaluation exceed this number, CRS

sketches becomes undefined. We can see that Mi(π(S )) = 0, if |S | < i causes a

jump in the number of points retrieved when K × L is large. Even with small
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K×L, where we have well defined CRS sketches, the recall is very bad compared

to the prosed hash function. Despite this sparsity problem of MNIST dataset we

have seen in Chapter 6 that the proposed hashing scheme still behaves exactly

like minwise hashing, which is very exciting.
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