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Sparse Binary High Dimensional Data Everywhere

e Wide adoption of the “Bag of Words” (BoW) representations for documents

and images.

e \When using higher shingles, most of the shingles only occur at most once.

e Most information in the sparsity structure rather than the magnitude.

e Modern “Big data” systems use binary data matrix n X ), with both n and D

easily running into billions and even trillions (e.g SIBYL).




In Defense of MinHash over SimHash AISTATS 2014

Notation

A binary (0/1) vector <— a set (locations of nonzeros).
Consider two sets W1, Wy C Q = {0,1,2,...,D — 1} (e.g., D = 2%%)
fi=Wil,  fao=|Ws|, a=|WiNWs|

The resemblance R and cosine similarity S are two popular measures

adopted in practice.

o ‘WlﬂW2| o a
WLuUWs|  fi+fo—a

o |W1ﬂW2‘ o a
VIWiWe| - Vi

R
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LSH and Sub-linear Near Neighbor Search

Locality Sensitive Hashing (LSH) function families 7, satisfies
Prypey(h(z) = h(y)) = F(sim(x,y)), where F is a monotonically
increasing function and sim(az, y) is the similarity of interest between x and .

Sub-Linear Near Neighbor Bucketing Algorithm

e For each point x, generate a hash key by concatenating /< hash signatures
g(x) ={hi(x), ho(x), ..., hg(x)}, where each h;(x) drawn

independently, and store data point x in a hashtable at location g(z)

e [or a given query point q, retrieve elements from the bucket g(q).

e Repeat L times independently. Smart choices of L, /{ lead to worst case

approximate query time of O(n”) where p < 1. (Adoni-Indyk 08)

e p a property of H, the smaller the better
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The Two Popular LSH in Practice

MinHash for resemblance Suppose a random permutation 7 is performed on (2,

i.e., m: () — () An elementary probability argument shows that

RENEN
5, U S,

Pr (min(w(W7)) = min(m(Ws))) =R.

SimHash for cosine similarity,

1 ifrfxz>0
h,(x) =

0 otherwise

where r € RY drawn independently from N (0, Z) The seminal work of
Geomens-Williamson showed that Pr(h(x) = h(y)) = 1 — + cos™*(S)
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The Main Questions

e Which among the two hash functions, MinHash or SimHash, should be

preferred for modern web datasets which are binary and sparse ?

e The two hash function are in the context of different similarity measures, is it

even possible to compare them theoretically ?
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Our Answers

For binary sparse datasets MinHash is provably a better hash function than

SimHash even when the desired similarity measure is cosine similarity!!.

e Yes, it turns out that we can compare the two hash functions theoretically

even though they are meant for different similarity measures.

e For binary datasets, the preferred choice of hash function is MinHash, and it

is independent of whether the similarity measure is resemblance or cosine

similarity.

Key Connection: For binary data resemblance and cosine similarity are

distortions of each other.
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Worst Case Analysis

S
Worst Case Distortion: S? <R < ——
2—-S8
The bounds are tight over continuous functions. MinHash can be shown as a
provable LSH for cosine similarity. MinHash and SimHash can be compared !!.

We compare their p values for retrieving with cosine similarity.
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Figure 1: Worst case p values of different hash functions; lower is better.
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Real Datasets
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Figure 2: Frequencies of the z values for the six real datasets used in paper
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Restricted Worst Case Analysis

Distortion in Practi 5 <R < S
istortion in Practice: ~—— S
-8 T 2=-S

z lies roughly between 2 and 2.3. Even for low similarity regions, we observe

superior p values with MinHash compared to SimHash.

1k 1 1r=sg 1= -
X N - --SimHash N = N

0.8 \\\\ 08 *':\\\ —MinHash 0.8 NG 0.8
- = 1-bit MH B
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Figure 3: Restricted worst case p values of different hash functions; lower is better.
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Performance on Near Neighbor Retrieval Task
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Performance on Near Neighbor Retrieval Task
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