# In Defense of MinHash over SimHash

# **Anshumali Shrivastava**

Dept. of Computer Science
Cornell University

anshu@cs.cornell.edu

# **Ping Li**

Dept. of Statistics & Biostatistics

Dept. of Computer Science

**Rutgers University** 

pingli@stat.rutgers.edu

# **Sparse Binary High Dimensional Data Everywhere**

- Wide adoption of the "Bag of Words" (BoW) representations for documents and images.
- When using higher shingles, most of the shingles only occur at most once.
- Most information in the sparsity structure rather than the magnitude.
- Modern "Big data" systems use binary data matrix  $n \times D$ , with both n and D easily running into billions and even trillions (e.g SIBYL).

#### **Notation**

A binary (0/1) vector  $\iff$  a set (locations of nonzeros).

Consider two sets  $W_1, W_2 \subseteq \Omega = \{0, 1, 2, ..., D-1\}$  (e.g.,  $D=2^{64}$ )

$$f_1 = |W_1|, \quad f_2 = |W_2|, \quad a = |W_1 \cap W_2|.$$

The resemblance  $\mathcal{R}$  and cosine similarity  $\mathcal{S}$  are two popular measures adopted in practice.

$$\mathcal{R} = \frac{|W_1 \cap W_2|}{|W_1 \cup W_2|} = \frac{a}{f_1 + f_2 - a}.$$

$$S = \frac{|W_1 \cap W_2|}{\sqrt{|W_1||W_2|}} = \frac{a}{\sqrt{f_1 f_2}}.$$

# LSH and Sub-linear Near Neighbor Search

**Locality Sensitive Hashing (LSH)** function families  $\mathcal{H}$ , satisfies  $Pr_{h\in\mathcal{H}}(h(x)=h(y))=F(sim(x,y))$ , where F is a monotonically increasing function and sim(x,y) is the similarity of interest between x and y.

#### **Sub-Linear Near Neighbor Bucketing Algorithm**

- For each point x, generate a hash key by concatenating K hash signatures  $g(x) = \{h_1(x), h_2(x), ..., h_K(x)\}$ , where each  $h_i(x)$  drawn independently, and store data point x in a hashtable at location g(x)
- For a given query point q, retrieve elements from the bucket g(q).
- Repeat L times independently. Smart choices of L, K lead to worst case approximate query time of  $O(n^{\rho})$  where  $\rho < 1$ . (Adoni-Indyk 08)
- $\bullet$   $\rho$  a property of H, the smaller the better

### **The Two Popular LSH in Practice**

MinHash for resemblance Suppose a random permutation  $\pi$  is performed on  $\Omega$ , i.e.,  $\pi:\Omega\longrightarrow\Omega$  An elementary probability argument shows that

$$\mathbf{Pr}\left(\min(\pi(W_1)) = \min(\pi(W_2))\right) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|} = \mathcal{R}.$$

SimHash for cosine similarity,

$$h_r(x) = \begin{cases} 1 & \text{if } r^T x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

where  $r\in R^d$  drawn independently from  $N(0,\mathcal{I})$  The seminal work of Geomens-Williamson showed that  $Pr(h(x)=h(y))=1-\frac{1}{\pi}\cos^{-1}(\mathcal{S})$ 

#### **The Main Questions**

- Which among the two hash functions, MinHash or SimHash, should be preferred for modern web datasets which are binary and sparse?
- The two hash function are in the context of different similarity measures, is it even possible to compare them theoretically?

#### **Our Answers**

For binary sparse datasets MinHash is provably a better hash function than SimHash even when the desired similarity measure is cosine similarity!!.

- Yes, it turns out that we can compare the two hash functions theoretically even though they are meant for different similarity measures.
- For binary datasets, the preferred choice of hash function is MinHash, and it is independent of whether the similarity measure is resemblance or cosine similarity.

**Key Connection:** For binary data resemblance and cosine similarity are distortions of each other.

# **Worst Case Analysis**

Worst Case Distortion: 
$$S^2 \leq R \leq \frac{S}{2-S}$$

The bounds are tight over continuous functions. MinHash can be shown as a provable LSH for cosine similarity. MinHash and SimHash can be compared !!. We compare their  $\rho$  values for retrieving with cosine similarity.

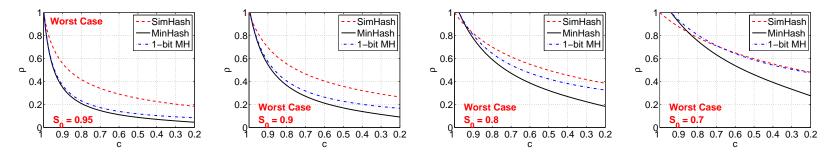


Figure 1: Worst case  $\rho$  values of different hash functions; lower is better.

## **Real Datasets**

$$z = z(r) = \sqrt{r} + \frac{1}{\sqrt{r}} \ge 2, \qquad r = \frac{f_2}{f_1} \ge 0$$

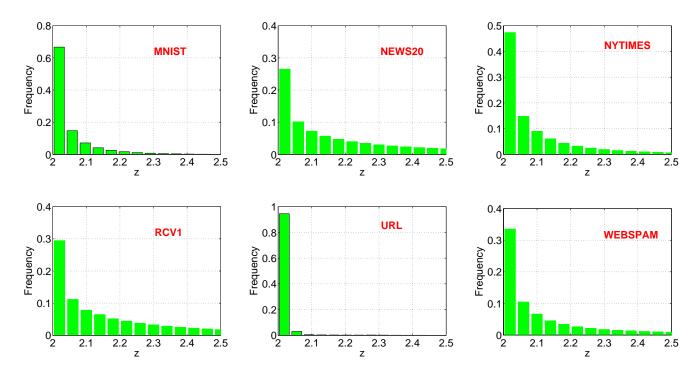


Figure 2: Frequencies of the z values for the six real datasets used in paper

### **Restricted Worst Case Analysis**

Distortion in Practice: 
$$\dfrac{\mathcal{S}}{z-\mathcal{S}} \leq \mathcal{R} \leq \dfrac{\mathcal{S}}{2-\mathcal{S}}$$

z lies roughly between 2 and 2.3. Even for low similarity regions, we observe superior  $\rho$  values with MinHash compared to SimHash.

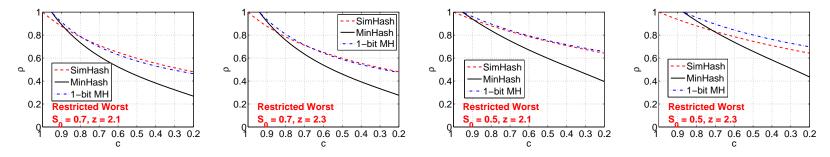
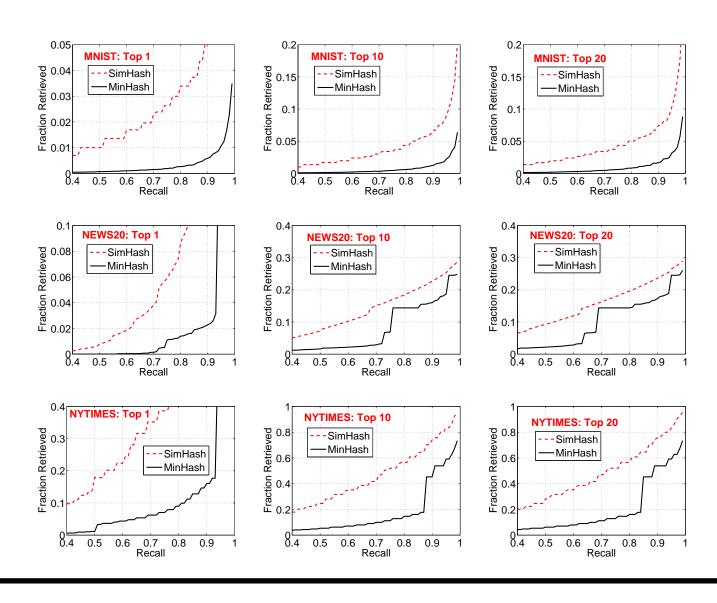


Figure 3: Restricted worst case  $\rho$  values of different hash functions; lower is better.

# **Performance on Near Neighbor Retrieval Task**



## **Performance on Near Neighbor Retrieval Task**

