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Main Contribution

A succinct and informative Covariance Matrix for graph structure.

Gains:

Can be computed in O(E), scalable.

Dealing with covariance matrix easier than graphs.

Can directly compare different graph structures by simply comparing
corresponding covariance matrices.

Directly apply machine learning on matrices. No worry about graph
and its combinatorial isomorphic variants.
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Networks: A New Source of Information

The connectivity (or the presence of absence of edges) in various
networks carries a altogether new set of valuable information.

The local connectivity structure of an individual (or his/her ego
network), can be used to infer many peculiarities about him/her.

Analyzing this network connectivity structure can lead to many interesting
and useful applications.
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Identify users across networks

Get ego networks, try to match it across networks ?
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New Classifications Based on Ego Networks

 

The, collaboration pattern gets reflected in the ego network of an
individual.

High Energy Physics (HEnP) collaboration network is very dense.
Dependence on specialized labs leads to more collaboration.

Can we classify a researcher purely on the basis of his/her
collaboration ego network ?
YES !! (This work)
Gains: Personalized Recommendations
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Chemical Compound/Activity Classification

Yes !! (Available in a separate tech report)
http://arxiv.org/abs/1404.5214
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Many More Applications ....

Synonym extraction using word graphs.

Structure matching across databases.

Structured text translation.

Protein alignment.
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The Underlying Fundamental Problem

What is the right common space (with a well defined metric) for graph
structure.
Challenges:

Varying sizes.

Node correspondence is usually not available.

Same graph object exhibits many isomorphic forms.

Succinct summarization of graphs is a wide open research direction.
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Graph Representation : Permutation Invariance

A property that does not change with node renumbering.
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Adjacency Matrices are not permutation invariant, they are not
comparable.
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Hardness

Graph Isomorphism is a special case of graph comparison (checking
equality).

Graph Isomorphism is a hard problem. (Its belongingness in P or NP
is still open)

Its hopeless to have an efficient exact embedding for all possible
graph.
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Good News: Real World Graphs are Special

Very specific spectrum.

Has triadic closures and local clustering.

The degree distribution follows power law.

Lot of hubs.

We can hope to capture all of these in a succinct representation.
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The Right Object for Studying Graphs

Should be Permutation invariant.

Should be sensitive to variations in the spectral properties.

Should be sensitive to distributions of different substructures (or
subgraphs).

The last two are related, so its not clear what is the right balance.

Should be efficient to compute !!

Anshumali Shrivastava and Ping Li ASONAM 2014 August 18th 2014 12 / 38



Existing Approach 1

A normalized feature vector representation of various known graph
invariants.

Top eigenvalues of adjacency matrix.

Clustering coefficient.

Mean and Variance of Degrees, edges, etc.
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Problems

Graphs of different sizes have different number of eigenvalues.

Not really clear if their values are directly comparable.

How many graph invariants are enough ?

What relative importance to give to different invariants ?(some
characteristic might dominate others)
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Existing Approach 2

A histogram based on frequency of small graphs (graphlets) contained
in the given graph.

Usually frequency of small graphs of size 3-4 is used.

The histogram can be efficiently and accurately estimated by
sampling.
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Problems

Small graphs do not always capture enough structural information.
We need frequency of larger graphs for richer information.

Counting graphs of size ≥ 5 is very costly.

For every sampled subgraphs, we need to match it with one of the
many isomorphic variants.

Every sampling step encode the graph isomorphism problem. (costly
for large substructures)

Computation time increases exponentially with size of graph, even after
sampling.
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Alternative View: Power Iteration of Adjacency Matrix

Power iteration is a cheap and effective way of summarizing any matrix.

View adjacency matrix A as a dynamical operator (function)
operating on vectors.

If two operators A and B are ”similar” then vectors {Ax ,A2x , ...Akx}
should be ”similar” to {Bx ,B2x , ...Bkx}
The subspace {Ax ,A2x , ...Akx} is a well studied object known as
k-th order ”Krylov” subspace.

”Krylov” subspace based methods are to some of the fastest known
linear algebraic algorithms for sparse matrices.

Problem: ”Krylov” subspace are not permutation invariant in general.
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Summarization with Power Iteration on Unit Vector

Start with vector as e, the vector of all 1′s.
Given adjacency matrix A, the generated subspace will be
{Ae,A2e,A3e, ....}
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Here (Ae)i is the i th component of vector Ae.
Truncated power iteration are very informative.
Power iteration over unit vector is key ingredient in many web algorithms
including the famous HITS.
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Observation: Power Iteration on Unit Vector is Special

If A and B are the adjacancy matrices of same graph under reordering,
then rows of MB is simply row shuffled version of MA.
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Graphs as Bag-of-Vectors
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We can associate a set of n vectors, corresponding to rows of MA,
with a graph having n nodes.

Reordering of nodes does not change this set. (It simply permutes
them)

The dimension k of these vectors (no of columns) is the no of power
iteration performed.

We are looking for an object that richly describes a set of vectors.
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What Describes a Set (Bag) of Vectors ?

Set of vectors easier to deal with than graphs.

The cardinality of set n can vary.

Two objects

Subspace spanned by n vectors. (bad choice as n� k )

Most likely probability distribution generating these vectors. (Fit the
most likely Gaussians)

Key component of M.L.E multivariate Gaussian over n samples, “The
Covariance Matrix”.
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Our Proposal: The Covariance Matrix Representation

We propose CA ∈ Rk×k , the covariance matrix of MA as a
representation for graph with adjacancy matrix A.

Input: Adjacency matrix A ∈ Rn×n, k , no of power iterations.
Initialize x0 = e ∈ Rn×1.
for t = 1 to k do

M(:),(t) = n × Ax t−1

||Ax t−1||1
x t = M(:),(t)

end for
µ = e ∈ Rk×1

CA = 1
n

∑n
i=1(M(i),(:) − µ)(M(i),(:) − µ)T

return CA ∈ Rk×k

Whats Nice ?: For a fixed k, all graphs (irrespective of size) represented
in a common space of Rk×k p.s.d Covariance Matrix.
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Property 1

Theorem

CA is a graph invariant.

Proof Idea: The covariance matrix is independent of the ordering of rows.

Implications: CA can be used as a representation for graph.
Covariance matrix is a well studied object which is easier to handle than
graphs.
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Property 2

Theorem

CA
i ,j =

 n
(∑n

t=1 λ
i+j
t s2t

)
(∑n

t=1 λ
i
ts

2
t

) (∑n
t=1 λ

j
ts

2
t

)
− 1,

where λt is the tth eigenvalue and st is the component wise sum of the tth

eigenvector.

Proof Idea: The mean of vector Aie can be written as [eTAie]
n . Some

algebra CA
i ,j =

(
n [eTAi+je]
[eTAie][eTAje]

)
− 1, use representation of e in the

eigenbasis of A to complete the proof.
Implications: CA encodes the spectrum. Components of matrix CA

(weighted and exponentiated) combination of all λ′ts and s ′ts.
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Property 3

Theorem
Given the adjacency matrix A of an undirected graph with n nodes and m
edges, we have

CA
1,2 =

n

2m

(
3∆ + P3 + n(Var(deg)) + m

(
4m
n − 1

)
(P2 + m)

)
− 1

where ∆ denotes the total number of triangles, P3 is the total number of
distinct simple paths of length 3, P2 is the total number of distinct simple

paths of length 2 and Var(deg) = 1
n

∑n
i=1 deg(i)2 −

(
1
n

∑n
i=1 deg(i)

)2
is

the variance of degree.

Proof Idea: We get CA
i ,j =

(
n [eTA3e]
[eTA1e][eTA2e]

)
− 1. Terms of the form

[eTAie] is the sum of total number of paths of length i although with lot
of repetition. Careful counting leads to the above expression.
Implications:Components of CA is sensitive to counts of
substructures.
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How many Iterations ?
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k is the number of power iteration, or the number of columns in MA.

Power iteration converges to the dominant eigenvector geometrically.

Near convergence the new columns are uninformative.

We only need very few iterations, like 4 or 5.
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Similarity between Graphs

We compare the corresponding covariance matrices. We use standard
Bhattacharrya similarity between CA ∈ Rk×k and CB ∈ Rk×k .

Sim(CA,CB) = exp−Dist(CA,CB)

Dist(CA,CB) =
1

2
log

(
det(Σ)√

(det(CA)det(CB))

)

Σ =
CA + CB

2

Theorem

Sim(CA,CB) is a positive semi-definite (hence a valid kernel).

Note: Covariance matrix has special properties (e.g. symmetric), so the
similarity measure should respect that structure.
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Computation Time

Given a choice of k, computing the set of vectors {Ae,A2e,
A3e, ...,Ake} recursively is O(E ∗ k). (A is sparse !!)

Computing the covariance matrix CA is O(nk2).

Computing similarity is O(k3).

Usually, we need very small k like 4 or 5. Hence, the overall complexity is
O(E ).
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Evaluation Tasks: How Good is this Representation ?

We test the effectiveness on two graph classification task.

Classifying researcher’s subfield based on his/her ego network
structure

Discriminating random Erdos-Reyni graphs from real graphs

A good representation (or similarity measure) should have better
discriminative power.
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Task 1

 

Classify Researcher’s Subfield :
We take three publicly available collaboration network dataset:

1 High energy physics (HEnP)
2 Condensed matter physics (CM)
3 Astro physics (ASTRO)

Sample ego networks from them to generate a dataset of graphs.

Given a researcher’s ego collaboration network, determine whether
he/she belongs to HenP, CM, or ASTRO.
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Task 2

Classify Random Vs Social:

Discriminate random Erdos-Reyni graphs from Twitter ego networks.

For every twitter ego network Erdos-Reyni graph is generated with
same number of nodes and edges.

A good similarity measure should be able to discriminate between graphs
following different distributions.
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Data Statistics

Table: Graph statistics of ego-networks used in the experiments.

STATS High
Energy

Condensed
Matter

Astro
Physics

Twitter Random

Number of
Graphs

1000 415 1000 973 973

Mean
Number of
Nodes

131.95 73.87 87.40 137.57 137.57

Mean
Number of
Edges

8644.53 410.20 1305.00 1709.20 1709.20

Mean
Clustering
Coefficient

0.95 0.86 0.85 0.55 0.18
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Competing Methodologies

Proposed similarity based on covariance matrix. We report results for
(k =4,5,6). No tuning.

Subgraph frequency histogram with graphs of size 3,4, and 5. Going
beyond 5 is way too costly.

Random Walk kernels.

Feature vector of eigenvalues. (Use Top-5 and Top-10 eigenvectors)
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Experimental Details

We run kernel SVMs, on the similarity values computed from
competing representations.

Generate 10 partition, use 9 for train and cross-validate for svm
parameter C , 10th part for testing.

Each experiment repeated 10 times randomizing over partitions.

We report classification accuracy and time required to compute similarity.
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Classification Accuracy

Methods COLLAB
(HEnP Vs
CM)

COLLAB
(HEnP Vs
ASTRO)

COLLAB
(ASTRO
Vs CM)

COLLAB
(Full)

SOCIAL
(Twit-
ter Vs
Random)

Our(k =4) 98.06(0.05) 87.70(0.13) 89.29(0.18) 82.94(0.16) 99.18(0.03)
Our(k =5) 98.22(0.06) 87.47(0.04) 89.26(0.17) 83.56(0.12) 99.43(0.02)
Our(k =6) 97.51(0.04) 82.07(0.06) 89.65(0.09) 82.87(0.11) 99.48(0.03)
FREQ-5 96.97(0.04) 85.61(0.1) 88.04(0.14) 81.50(0.08) 99.42(0.03)
FREQ-4 97.16(0.05) 82.78(0.06) 86.93(0.12) 78.55(0.08) 98.30(0.08)
FREQ-3 96.38(0.03) 80.35(0.06) 82.98(0.12) 73.42(0.13) 89.70(0.04)
RW 96.12(0.07) 80.43(0.14) 85.68(0.03) 75.64(0.09) 90.23(0.06)
EIGS-5 94.85(0.18) 77.69(0.24) 83.16(0.47) 72.02(0.25) 90.74(0.22)
EIGS-10 96.92(0.21) 78.15(0.17) 84.60(0.27) 72.93(0.19) 92.71(0.15)
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Running Time Comparisons

Table: Time (in sec) required for computing all pairwise similarities of the two
datasets.

SOCIAL COLLAB (Full)

Total Number of Graphs 1946 2415

Our (k =4) 177.20 260.56
Our (k =5) 200.28 276.77
Our (k =6) 207.20 286.87

FREQ-5 (1000 Samp) 5678.67 7433.41
FREQ-4 (1000 Samp) 193.39 265.77

FREQ-3 (All) 115.58 369.83
RW 19669.24 25195.54

EIGS-5 36.84 26.03
EIGS-10 41.15 29.46
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Lessons

Simply computing many graph invariant does not give the right
representation.

1 Issue of relative importance.

2 Never know how many are enough.

3 One graph usually has more invariants than others.

Histogram of subgraphs is a good representation but very costly when
computing for subgraphs of size ≥ 5.

Power iteration is a very cheap way of summarizing graphs which
caputres information of various substructures.

Finding right representation is the key in machine learning with
graphs.
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Thanks!!
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