Fast Near Neighbor Search in High-Dimensional Binary Data

Anshumali Shrivastava

Dept. of Computer Science

Cornell University

Ping Li

Dept. of Statistical Science

Cornell University

High Dimensional Sparse Binary Data in Practice

- Consider a Web-scale term-doc matrix X ∈ R^{n×D} with each row representing one Web page. Certain industry applications used 5-grams (i.e., D = O(10²⁵) is conceptually possible. Assuming 10⁵ common English words).
- Usually, when using 3- to 5-grams, most of the grams only occur at most once in each document. It is thus common to utilize only binary data when using n-grams.
- Conceptually, the textual content of the Web may be viewed as a giant matrix of size $n \times D$, with $n = 10^{11}$ Web pages and each page in $D = 2^{64}$ dims.
- Image Representations for retrieval and search using vector quantization naturally leads to sparse high dimensional binary data.

Near Neighbor Search

- The Classical Problem: Given a high dimensional query vector (Document or Image) we want to search a huge database for items similar to the given query.
- The simple strategy to scan all the database and compute similarities is prohibitive when
 - The data matrix X itself may be too large for the memory.
 - Computing similarities on the fly can be too time-consuming when the dimensionality D is high.
 - The cost of scanning all n data points is prohibitive and may not meet the demand in user-facing applications (e.g., search).
 - Parallelizing linear scans will not be energy-efficient if a significant portion of the computations is not needed.

Locality Sensitive Hashing (LSH)

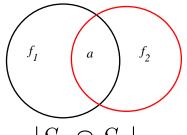
- Early space partitioning based approaches like K-D trees, R trees, etc, only good for low dimensions, typically D < 10, but leads to almost linear scan for higher D.
- LSH is currently one of the most popular technique in industrial practice.
- The basic idea behind LSH is to construct a randomized hash function such that similar objects are more likely to have the same hash key.
- More specifically, we are interested in hash function families \mathcal{H} , such that $Pr_{h\in\mathcal{H}}(h(x) = h(y)) = F(sim(x, y))$, where F is a monotonically increasing function and sim(x,y) is the similarity of interest between x and y.

- For each point x, generate a hash key by concatenating K hash signatures $g(x) = \{h_1(x), h_2(x), ..., h_K(x)\}$, where each $h_i(x)$ drawn independently from the LSH family \mathcal{H} .
- Store data point x in a hashtable at location g(x).
- Generate *L* such independent hashtables.
- For a given query point q, retrieve elements from the bucket $g(q) = \{h_1(q), h_2(q), ..., h_K(q)\}$ corresponding to each of the *L* hashtables.
- Smart choices of L, K lead to worst case approximate solution in O(n^{ρ}) where $\rho < 1$. (Adoni-Indyk 08)

Minwise Hashing: LSH for Set Similarity

• Binary vector can be thought of as sets. Consider two sets

$$S_1, S_2 \subseteq \Omega = \{0, 1, 2, ..., D-1\}$$
 (e.g., $D = 2^{64}$)



$$f_1 = |S_1|, \ f_2 = |S_2|, \ a = |S_1 \cap S_2|.$$

The **resemblance** is a popular measure of similarity

$$R = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|} = \frac{a}{f_1 + f_2 - a}$$

Suppose a random permutation π is performed on Ω , i.e., $\pi : \Omega \longrightarrow \Omega$

An elementary probability argument shows that

$$\mathbf{Pr}\left(\min(\pi(S_1)) = \min(\pi(S_2))\right) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|} = R.$$

Shortcomings of Minwise Hashing

- The signatures from Minwise Hashing could be potentially 64-bits, after concatenation of *K* signatures, the size of hashtable will just blow up beyond feasibility.
- We are mostly interested in highly similar pairs, we probably don't need all the 64-bits.

Introduction to b-Bit Minwise Hashing

Define the minimum values to be : $z_1 = \min(\pi(S_1))$, $z_2 = \min(\pi(S_2))$. Recall minwise hashing: $\Pr(z_1 = z_2) = R$. For b-bit minwise hashing,

 \mathbf{Pr} (lowest b bits of $z_1 =$ lowest b bits of $z_2) = C_{1,b} + (1 - C_{2,b}) R$

$$r_{1} = \frac{f_{1}}{D}, \quad r_{2} = \frac{f_{2}}{D}, \quad f_{1} = |S_{1}|, \quad f_{2} = |S_{2}|, \quad D = |\Omega|$$

$$C_{1,b} = A_{1,b} \frac{r_{2}}{r_{1} + r_{2}} + A_{2,b} \frac{r_{1}}{r_{1} + r_{2}},$$

$$C_{2,b} = A_{1,b} \frac{r_{1}}{r_{1} + r_{2}} + A_{2,b} \frac{r_{2}}{r_{1} + r_{2}},$$

$$A_{1,b} = \frac{r_{1} [1 - r_{1}]^{2^{b} - 1}}{1 - [1 - r_{1}]^{2^{b}}}, \quad A_{2,b} = \frac{r_{2} [1 - r_{2}]^{2^{b} - 1}}{1 - [1 - r_{2}]^{2^{b}}}.$$

Accuracy Space Tradeoff

- When the data are highly similar, a small b (e.g., 1 or 2) may be good enough.
 However, when the data are not very similar, b cannot be too small.
- The advantage of *b*-bit minwise hashing can be demonstrated through the "variance-space" trade-off: Var $(\hat{R}_b) \times b$.
- For all practical purposes, the similarities estimated from 4-bit is indistinguishable compared to 64-bit minwise hashing. (Li-Konig WWW 2010)

Our Proposal for Near Neighbor Search

- In the limiting case when the data is very sparse and r_j is typically very small then for all practical purposes we can set $A_{j,b} = \frac{1}{2^b}$ in the formula.
- b-bit minwise hashing in such case is LSH with collision probability

 \mathbf{Pr} (lowest b bits of $z_1 =$ lowest b bits of $z_2) = \frac{1}{2^b} + (1 - \frac{1}{2^b})(R)$

 The signatures are now at most b (1,2,4, etc.) bits, the hash table size is manageable and so it can naturally be used to build hash table for sublinear search.

Index		Data Points		Index		Data Points
00	00	<mark>8</mark> , 13, 251		00	00	2, 19, 83
00	01	5, 14, 19, 29		00	01	17, 36, 129
00	10	(empty)		00	10	4, 34, 52, 796
	- - - - -					
11	01	7, 24, 156		11	01	7, 198
11	10	, 33, 174, 3153		11	10	56, 989
11	11	61, 342		11	11	¦₿,9, 156, 879

Figure 1: An example of hash tables, with b = 2, K = 2, and L = 2.

Real Datasets used for Comparisons and Evaluations

Table 1: Data Information

Dataset	n	D
Webspam	70,000	16,609,143
NYTimes	20,000	102,660
EM30k	30,000	34,950,038

Competitor 1: Signed Random Projections (SRP)

• One of the most popular LSH is SRP (Charikar STOC 2002),

$$h_r(x) = egin{cases} 1 & ext{if } r^T x \geq 0 \ 0 & ext{otherwise} \end{cases}$$

where $r \in R^d$ drawn independently from $N(0,\mathcal{I})$

• The seminal work of Geomens-Williamson showed that

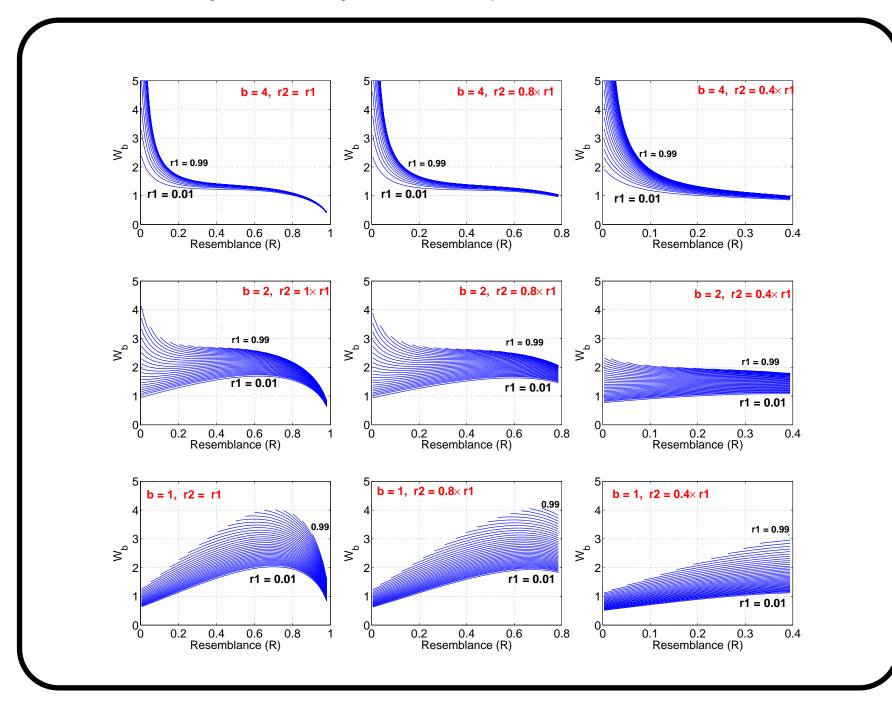
$$Pr(h(x) = h(y)) = 1 - \frac{1}{\pi} \cos^{-1}\left(\frac{x^T y}{\|x\| \|y\|}\right)$$

Why b-bit minwise hashing should be better ?

- We compare the variance of estimators of resemblance (R) using b-bit hashing $Var\left(\hat{R}_{b}\right)$ and signed random projections $Var\left(\hat{R}_{S}\right)$.
- We compute the ratio

$$W_{b} = \frac{Var\left(\hat{R}_{S}\right)}{Var\left(\hat{R}_{b}\right) \times b} = \frac{\theta(\pi - \theta)f_{1}f_{2}\sin^{2}(\theta)\left(\frac{f_{1} + f_{2}}{(f_{1} + f_{2} - a)^{2}}\right)^{2}}{\frac{[C_{1,b} + (1 - C_{2,b})R][1 - C_{1,b} - (1 - C_{2,b})R]}{[1 - C_{2,b}]^{2}}} \quad (1)$$

• $W_b > 1$ means *b*-bit minwise hashing is more accurate than SRP at the same storage.



Learning Approaches

- The idea is to learn a mapping from data vectors to compact binary codes which preserves the pairwise similarity.
- Unlike LSH, these approaches take into account the underlying data distribution.
- Machine learning approaches tend to outperform LSH where the data is usually sitting on some low dimensional manifolds.
- What about extremely high dimensional sparse data?
 - Most of these methods are almost impossible to train at such scale.
 - Not much is known about the performance of these approaches at such scale.

Competitor 2: Spectral Hashing

- Spectral Hashing is one of the state-of-the-art learning based hashing methods.
- Closely related to the problem of spectral graph partitioning.
- Aims to minimize the average hamming distance between the output codes of similar objects, subject to constraints that the bits are independent and uncorrelated.
- The minimization is done efficiently via one dimensional eigenfunctions.

Spectral Hashing (SH) Formulation

Let $\{y_i\}$ be the list of code words (binary vectors of length k) for each data point and $W_{ij} = e^{\frac{-||x_i - x_j||^2}{\epsilon^2}}$ be the similarity function. The SH aims to solve

$$minimize: \sum_{ij} W_{ij} ||y_i - y_j||^2$$

subject to:

$$y_i \in \{-1, 1\}^k$$
$$\sum_i y_i = 0$$
$$\frac{1}{n} \sum_i y_i y_i^T = \mathcal{I}$$

Spectral Hashing (SH) Algorithm

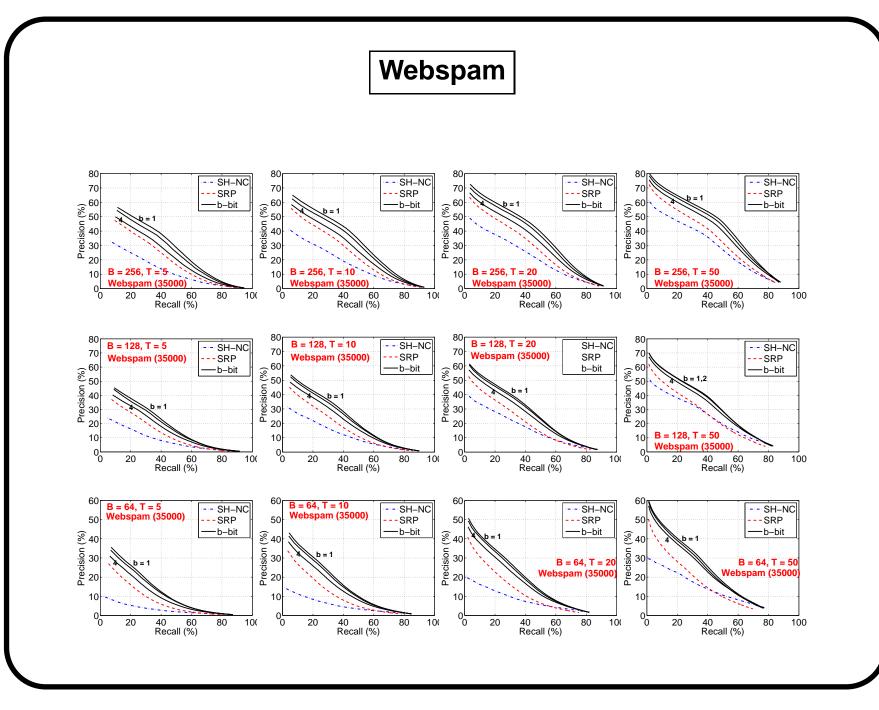
- Fit a multi-dimensional rectangle to the data. (Run PCA to align axes, then bound uniform distribution.)
- For each dimension, calculate k smallest eigenfunctions.
- Threshold eigenfunctions at zero to give binary codes.

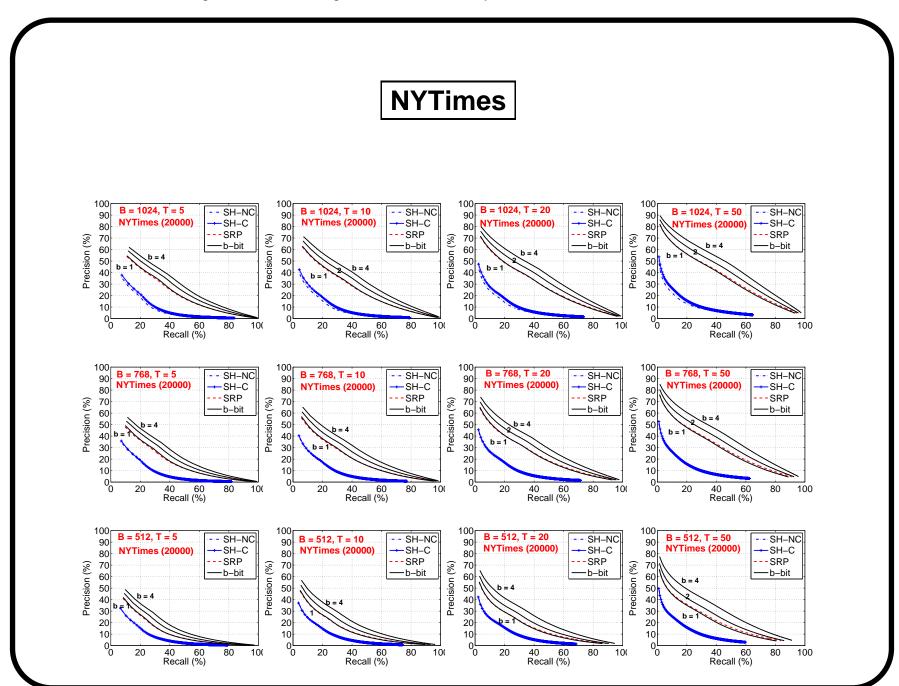
Making Spectral Hashing Work

- We replace the eigen-decomposition operations by equivalent SVD operations which avoids materializing the dense covariance matrix.
- PCA need a centering step which makes the data non-sparse and impossible to handle.
- We empirically observe that skipping centering step does not affect the performance of SH on the small subsets of data.
- Skipping the centering step made it possible to train SH on full datasets instead of small samples.

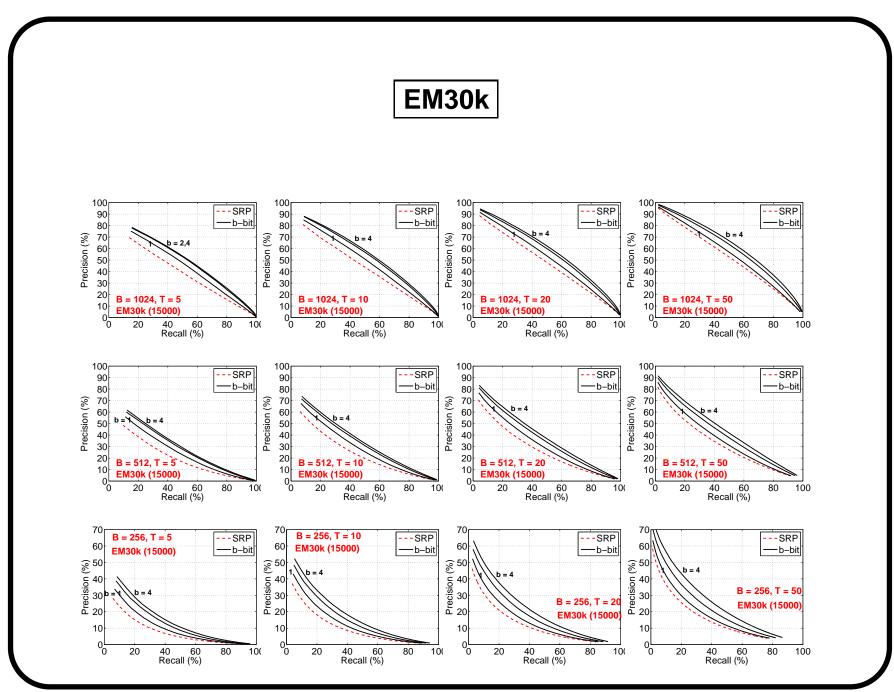
Evaluation 1: Hash Code Quality Evaluation

- We generate binary codes of fixed length using the three methodologies.
- Retrieve nearest neighbor based on the similarity between binary codes.
- Plot precision-recall curves.





Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data,

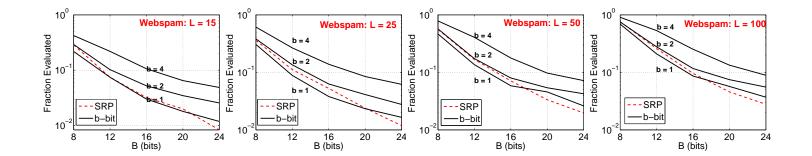


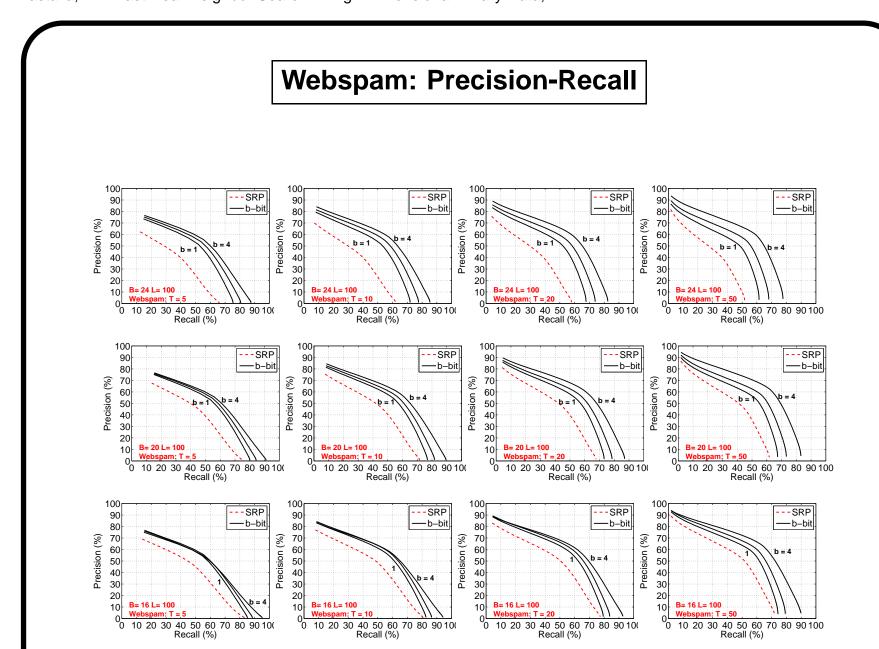
Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data,

Evaluation 2: Sublinear Near Neighbor Search

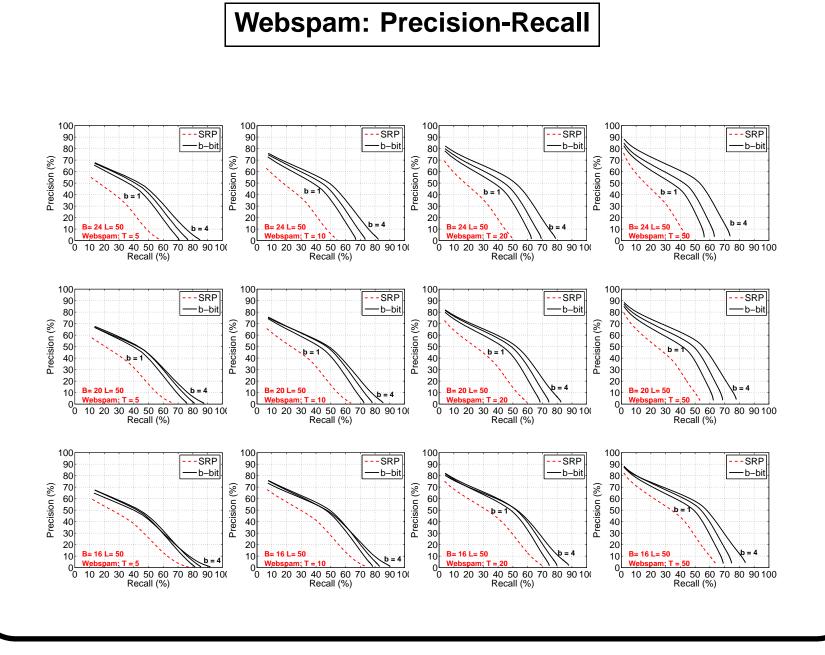
- Build hashtables with parameters L and K.
- Retrieve elements for every query point.
- Rank the retrieved candidates based on the total number of signature matches (note we already have precomputed signatures while building hash tables).
- Plot precision-recall curve.
- Plot number of points retrieved.

Webspam: Number of Retrieved Points

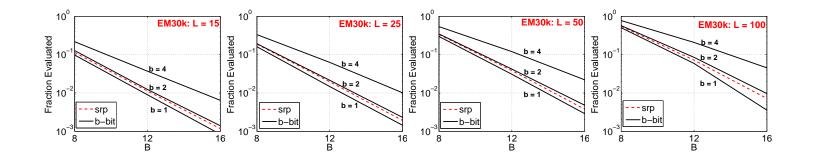


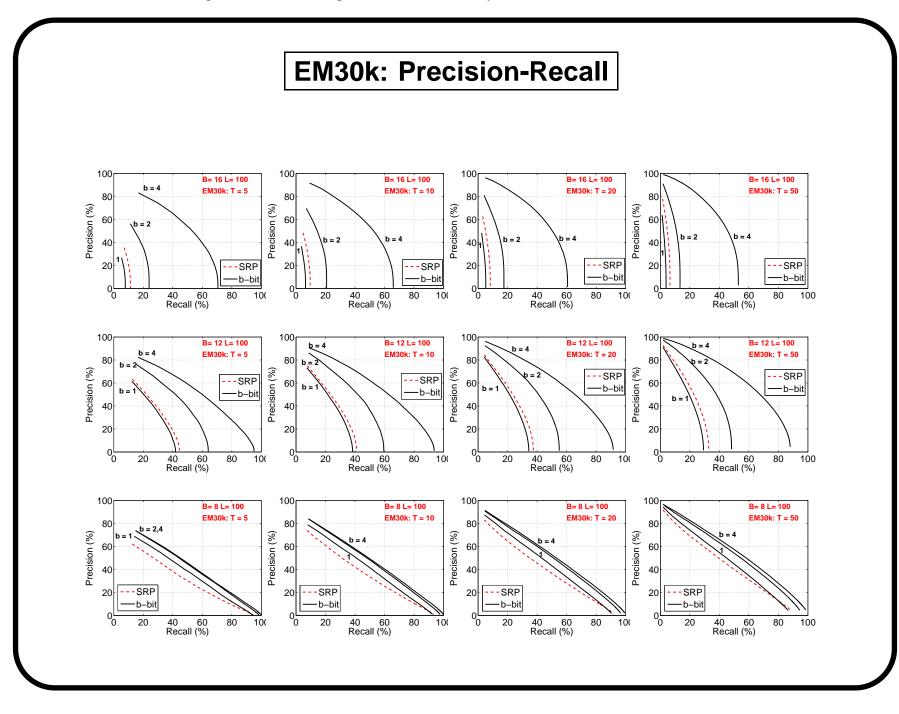


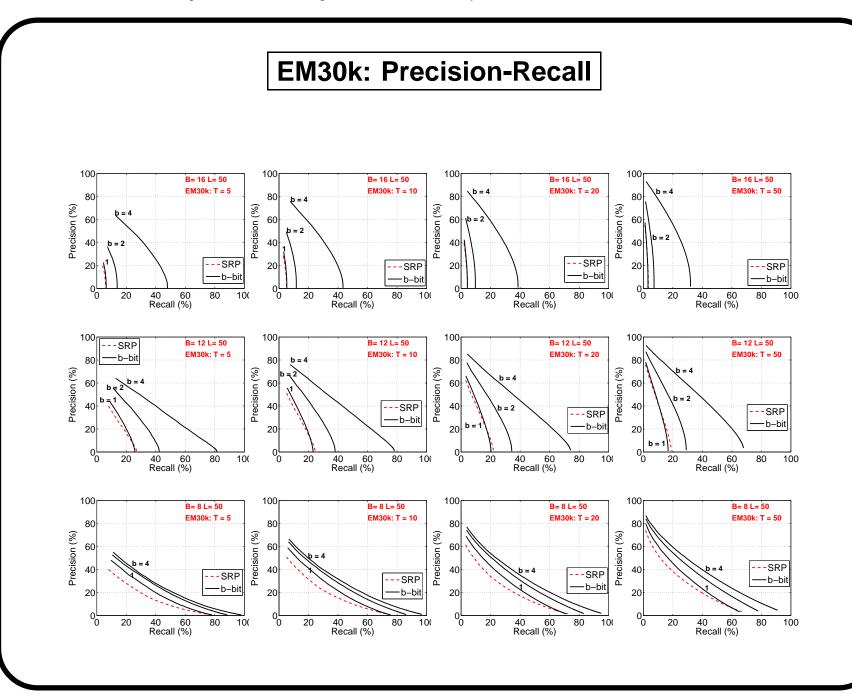
Shrivastava, Li Fast Near Neighbor Search in High-Dimensional Binary Data,



EM30k: Number of Retrieved Points







Analysis of b-bit minwise LSH

- b-bit minwise hashing comes with interesting behavior with parameters b, K, L.
- For fixed b, K, to guarantee approximate near neighbor with probability 1 δ , we need

$$L \ge \frac{\log 1/\delta}{\log \left(\frac{1}{1 - P_b^k(R)}\right)}$$

where $P_b(R)$ is collision probability at R.

• Expected fraction of retrieved points with similarity R, assuming uniform distribution over the similarity values is

$$1 - \sum_{i=0}^{L} {\binom{L}{i}} (-1)^{i} \frac{1}{2^{bki}} \frac{1}{(2^{b}-1)R} \frac{\left((2^{b}-1)R+1\right)^{ki+1}-1}{ki+1}$$

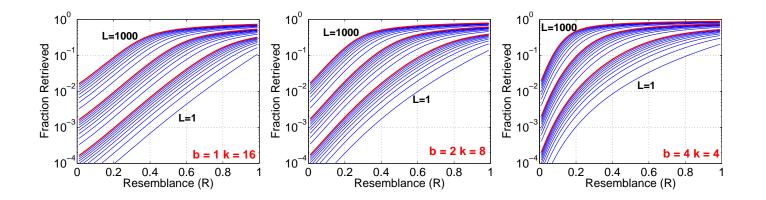


Figure 2: Numerical values for the fraction of retrieved points.

Operating Threshold

• The overall collision probability is

$$P_{b,k,L}(R) = 1 - \left(1 - P_b^k(R)\right)^L$$

• Given b, K, L, the optimum operating point is the point where the rate of change of probability is maximum or where the second derivative vanishes

$$R_0 = \frac{\left(\frac{k-1}{Lk-1}\right)^{1/k} - \frac{1}{2^b}}{1 - \frac{1}{2^b}}$$

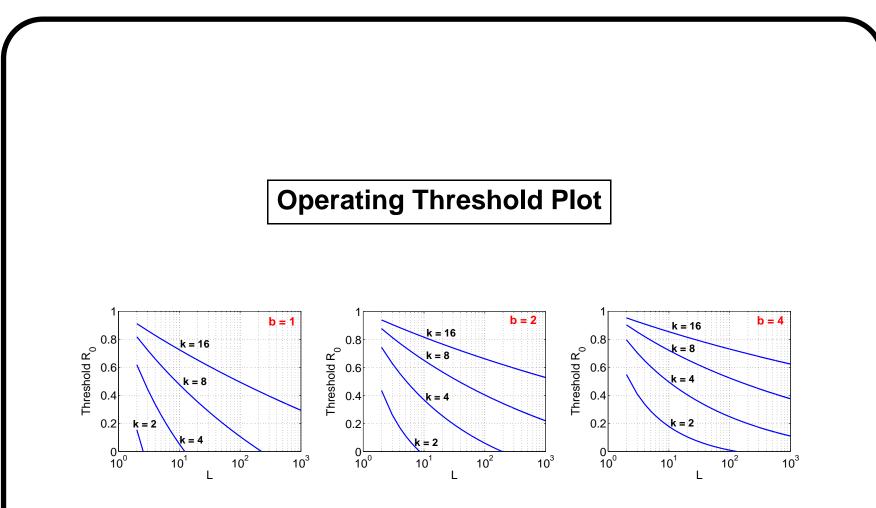


Figure 3: The threshold R_0 , i.e., inflection point of $P_{b,k,L}(R)$.

Conclusions

- We present a first study of directly using the bits generated by b-bit minwise hashing to construct hashtables.
- Our proposed scheme is extremely simple and exhibits superb performance compared to two strong baselines: spectral hashing (SH) and sign random projections (SRP).
- The new scheme poses some interesting tradeoffs.

References

- Li, P., Konig, A.C.: b-bit minwise hashing. In: WWW, Raleigh, NC (2010) 671-680.
- Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. Journal of ACM 42(6) (1995) 1115-1145.
- Charikar, M.S.: Similarity estimation techniques from rounding algorithms. In: STOC, Montreal, Quebec, Canada (2002) 380-388.
- Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In: Commun. ACM. Volume 51. (2008) 117-122.

Thanks for your attention

