Fast Approximate k-Way Similarity Search

Anshumali Shrivastava

Dept. of Computer Science
Cornell University

Ping Li

Dept. of Statistics & Biostatistics

Dept. of Computer Science

Rutgers University

The 3-way Resemblance

• Standard Jaccard or 2-way resemblance is one of the widely used similarity measures over set representations (e.g S_1 , S_2) of documents defined as

$$R = Sim(S_1, S_2) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|}$$

3-way resemblance is a natural extension defined over 3 sets as:

$$R^{3way} = Sim(S_1, S_2, S_3) = \frac{|S_1 \cap S_2 \cap S_3|}{|S_1 \cup S_2 \cup S_3|}$$

Can also be thought of as normalized co-occurrence.

A Simple Experiment with Google Sets

Problem: Given two (or a set of words) w_1 and w_2 , complete the set by finding more words representing the set (or words that are semantically similar).

Competing Methods:

- Google: The original Google's algorithm available via Google spreadsheet.
- 3-way resemblance (3-way): Use 3-way resemblance $\frac{|w_1 \cap w_2 \cap w|}{|w_1 \cup w_2 \cup w|}$ to rank every word w and report top 5 words.
- Sum Resemblance (SR): Use the sum of pairwise resemblance $\frac{|w_1 \cap w|}{|w_1 \cup w|}$ + $\frac{|w_2 \cap w|}{|w_2 \cup w|}$ and report top 5 words based on this similarity.
- Pairwise Intersection (PI): Retrieve top 100 words based on pairwise resemblance for each w_1 and w_2 independently. Report the common words.

In our experiments, all methods except Google use binary term-document representation generated from 1M wikipedia documents collected from Wikidump.

Google Sets: Results

"JAGUAR" AND " TIGER"				"MILKY" AND "WAY"				
Google	3-WAY	SR	PI	Google	3-WAY	SR	PI	
LION	LEOPARD	CAT	_	dance	GALAXY	even	_	
LEOPARD	СНЕЕТАН	LEOPARD	_	STARS	STARS	another	_	
СНЕЕТАН	LION	litre	_	SPACE	EARTH	still	_	
CAT	PANTHER	bmw	_	the	LIGHT	back	_	
DOG	CAT	chasis	_	UNIVERSE	SPACE	TIME	_	

Improving Retrieval

Problem: Refine search in presence of more than one representative query.

Scenarios:

- Pairwise: Just one query q, rank element e based on resemblance $\frac{|q \cap e|}{|q \cup e|}$.
- 3-way NNbor: Two representative queries q_1 and q_2 , rank based on 3-way resemblance $\frac{|q_1\cap q_2\cap e|}{|q_1\cup q_2\cup e|}$.
- 4-way NNbor: Three representative queries q_1,q_2 and q_3 , rank based on 4-way resemblance $\frac{|q_1\cap q_2\cap q_3\cap e|}{|q_1\cup q_2\cup q_3\cup e|}$.

Improving Retrieval: Results

Table 1: Percentage of top candidates with the same labels as that of query (queries) retrieved using various similarity criteria. Higher value indicates better retrieval quality.

		MNIST			WEBSPAM					
T	ОР	1	10	20	50		1	10	20	50
P	AIRWISE	94.20	92.33	91.10	89.06		98.45	96.94	96.46	95.12
3-	-WAY	96.90	96.13	95.36	93.78		99.75	98.68	97.80	96.11
4-	-WAY	97.70	96.89	96.28	95.10		99.90	98.87	98.15	96.45

Why 3-way Resemblance?

	SR	PI	3-way	Custom
Quality?	Poor	Poor	Looks Good	Say Good
Efficient?	No	Yes	Yes (this work)	

Note: Linear run time is not acceptable in applications like search.

3-way Search Problems and c-Approximate Versions

- Given two sets S_1 and S_2 , find $S_3 \in \mathcal{C}$ maximizing $\frac{|S_1 \cap S_2 \cap S_3|}{|S_1 \cup S_2 \cup S_3|}$. O(n) c-Approximate Version (3-way c-NN): Given two query sets S_1 and S_2 , if there exist $S_3 \in \mathcal{C}$ with $Sim(S_1, S_2, S_3) \geq R_0$, then we report some $S_3' \in \mathcal{C}$ so that $\frac{|S_1 \cap S_2 \cap S_3'|}{|S_1 \cup S_2 \cup S_3'|} \geq cR_0$ with probability $\geq 1 \delta$.
- Given set S_1 , find sets $S_2, S_3 \in \mathcal{C}$ maximizing $\frac{|S_1 \cap S_2 \cap S_3|}{|S_1 \cup S_2 \cup S_3|}$. $O(n^2)$ c-Approximate Version (3-way c-CP): Given a query set S_1 , if there exist a pair of set $S_2, S_3 \in \mathcal{C}$ with $Sim(S_1, S_2, S_3) \geq R_0$, then we report sets $S_2', S_3' \in \mathcal{C}$ so that $\frac{|S_1 \cap S_2' \cap S_3'|}{|S_1 \cup S_2' \cup S_3'|} \geq cR_0$ with probability $\geq 1 \delta$.
- Find $S_1, S_2, S_3 \in \mathcal{C}$ maximizing $\frac{|S_1 \cap S_2 \cap S_3|}{|S_1 \cup S_2 \cup S_3|}$. $O(n^3)$ c-Approximate Version (3-way c-BC): If there exist sets $S_1, S_2, S_3 \in \mathcal{C}$ with $Sim(S_1, S_2, S_3) \geq R_0$, then we report sets $S_1', S_2', S_3' \in \mathcal{C}$ so that $\frac{|S_1' \cap S_2' \cap S_3'|}{|S_1' \cup S_2' \cup S_3'|} \geq cR_0$ with probability $\geq 1 \delta$.

Key Ideas: Probabilistic Indexing

Given three sets S_1 , S_2 , $S_3 \subseteq \Omega$ and an independent random permutation $\pi: \Omega \to \Omega$, we have the following:

$$Pr(\min(\pi(S_1)) = \min(\pi(S_2)) = \min(\pi(S_3)) = \mathcal{R}^{3way}.$$

- This estimator leads to an efficient indexing scheme.
- If we map every element $S \in \mathcal{C}$ to the hash bucket indexed by $B(S) = [\min \pi(S); \min \pi(S)]$, given query S_1, S_2 we probe only the bucket $B'(S_1, S_2) = [\min \pi(S_1); \min \pi(S_2)]$ and we do better than random!
- This idea can be converted into a provably fast algorithm for c-NN search by adding two more handles K and L to control the probability.

Main Algorithmic Results

Theorem 1 For \mathcal{R}^{3way} c-NN one can construct a data structure with $O(n^{\rho} \log_{1/cR_0} n)$ query time and $O(n^{1+\rho})$ space.

Theorem 2 For \mathbb{R}^{3way} c-CP one can construct a data structure with $O(n^{2\rho}\log_{1/cR_0}n)$ query time and $O(n^{1+2\rho})$ space.

Theorem 3 For \mathbb{R}^{3way} c-BC there exist an algorithm with running time $O(n^{1+2\rho}\log_{1/cR_0}n)$.

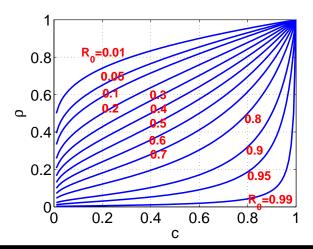


Figure 1: Plot of $\rho=1-\frac{\log 1/c}{\log 1/c+\log 1/R_0}<1$ values with respect to c for various thresholds R_0

Are there more k-way similarities which are efficient ?

Theorem 4 Any PGF transformation on 3-way resemblance \mathcal{R}^{3way} admits efficient c-NN search.

where
$$PGF(\mathcal{S}) = \sum_{i=1}^{\infty} p_i \mathcal{S}^i$$
 with all $p_i \geq 0$ satisfying $\sum_{i=1}^{\infty} p_i = 1$

Corollary 1 $e^{\mathcal{R}^{3way}-1}$ admits efficient c-NN search.

Theorem 5 Weighted 3-way resemblance, defined as $Sim(x,y,z) = \sum_i \frac{\min\{x_i,y_i,z_i\}}{\max\{x_i,y_i,z_i\}}$, naturally enjoys all efficiently guarantees of

3-way resemblance using consistent weighted sampling instead of Minhash.

Conclusions

- 3-way (and higher) resemblance seems a natural choice for many interesting search problems, and at the same time it admits efficient search algorithms.
- The idea of probabilistic hashing can reduce the computational requirements significantly.

More Possibilities

Joint Recommendations:

- Users A and B would like to watch a movie together. Profile of each person represented as a binary sparse vector over a giant universe of attributes. For example: actors, actresses, genres, directors, etc, which she/he likes.
 Represent movie M as binary vectors over the same universe.
- A natural measure to maximize is $\frac{|A \cap B \cap M|}{|A \cup B \cup M|}$