Asymmetric Minwise Hashing for Indexing Binary Inner Products and Set Containment

Anshumali Shrivastava and Ping Li

Cornell University ${ }^{1}$ and Rutgers University

WWW 2015

Florence, Italy
May 21st 2015

[^0]
What are we solving ?

Minwise hashing is widely popular for search and retrieval. Major Complaint: Document length is unnecessarily penalized.

We precisely fix this and provide a practical solution.

Other consequence: Algorithmic improvement for binary maximum inner product search (MIPS).

Outline

- Motivation
- Asymmetric LSH for General Inner Products
- Asymmetric Minwise Hashing
- Faster Sampling
- Experimental Results.

Shingle Based Representation

- Shingle based representation (Bag-of-Words) widely adopted.
- Document is represented as a set of tokens over a vocabulary Ω.

Example Sentence : "Five Kitchen Berkley".
Shingle Representation (Uni-grams): \{Five, Kitchen, Berkeley\} Shingle Representation (Bi-grams): \{Five Kitchen, Kitchen Berkeley\}

Shingle Based Representation

- Shingle based representation (Bag-of-Words) widely adopted.
- Document is represented as a set of tokens over a vocabulary Ω.

Example Sentence : "Five Kitchen Berkley".
Shingle Representation (Uni-grams): \{Five, Kitchen, Berkeley\} Shingle Representation (Bi-grams): \{Five Kitchen, Kitchen Berkeley\}

Sparse Binary High Dimensional Data Everywhere

- Sets can be represented as binary vector indicating presence/absence.
- Vocabulary is typically huge in practice.
- Modern "Big data" systems use only binary data matrix.

Resemblance (Jaccard) Similarity

The popular resemblance (Jaccard) similarity between two sets (or binary vectors) $X, Y \subset \Omega$ is defined as:

$$
\mathcal{R}=\frac{|X \cap Y|}{|X \cup Y|}=\frac{a}{f_{x}+f_{y}-a}
$$

where $a=|X \cap Y|, f_{x}=|X|, f_{y}=|Y|$ and $|$.$| denotes the cardinality.$
For binary $(0 / 1)$ vector representation \Longleftrightarrow a set (locations of nonzeros).

$$
a=|X \cap Y|=x^{T} y ; \quad f_{x}=\operatorname{nonzeros}(x) ; \quad f_{y}=\operatorname{nonzeros}(y)
$$

where x and y are the binary vector equivalents of sets X and Y respectively.

Minwise Hashing (Broder 97)

The standard practice in the search industry:
Given a random permutation π (or a random hash function) over Ω, i.e.,

$$
\pi: \Omega \longrightarrow \Omega, \quad \text { where } \quad \Omega=\{0,1, \ldots, D-1\}
$$

The MinHash is given by

$$
h_{\pi}(x)=\min (\pi(x))
$$

An elementary probability argument shows that

$$
\operatorname{Pr}(\min (\pi(X))=\min (\pi(Y)))=\frac{|X \cap Y|}{|X \cup Y|}=\mathcal{R} .
$$

Traditional Minwise Hashing Computation²

(1) Uniformly sample a permutation over attributes π : $[0, D] \mapsto[0, D]$.
(2) Shuffle the vectors under π.
(3) The hash value is smallest index which is not zero.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

$\mathrm{S}_{3}: \begin{array}{llllllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}$
${ }^{2}$ This is very inefficient, we recently found faster ways ICML 2014 and UAI 2014

Traditional Minwise Hashing Computation²

(1) Uniformly sample a permutation over attributes π : $[0, D] \mapsto[0, D]$.
(2) Shuffle the vectors under π.
(3) The hash value is smallest index which is not zero.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

$S_{1}: 01100111001000000000$

$\mathrm{S}_{3}: \begin{array}{llllllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}$

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\pi\left(\mathrm{S}_{1}\right): \quad 0 \quad 0 \quad 1 \quad 0 \quad 1000110000000100$

${ }^{2}$ This is very inefficient, we recently found faster ways ICML 2014 and UAI 2014

Traditional Minwise Hashing Computation²

(1) Uniformly sample a permutation over attributes π : $[0, D] \mapsto[0, D]$.
(2) Shuffle the vectors under π.
(3) The hash value is smallest index which is not zero.

$$
\begin{aligned}
& \begin{array}{llllllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline
\end{array} \\
& \begin{array}{lllllllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline
\end{array} \\
& S_{1}: 01100111001000100000
\end{aligned}
$$

$$
\begin{aligned}
& \pi\left(\mathrm{S}_{1}\right): \quad 0 \begin{array}{lllllllllllllll}
0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{S}_{3}: \begin{array}{llllllllllllllll}
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array}
\end{aligned}
$$

$$
h_{\pi}\left(S_{1}\right)=2, \quad h_{\pi}\left(S_{2}\right)=0, \quad h_{\pi}\left(S_{3}\right)=0
$$

${ }^{2}$ This is very inefficient, we recently found faster ways ICML 2014 and UAI 2014

Traditional Minwise Hashing Computation²

(1) Uniformly sample a permutation over attributes π : $[0, D] \mapsto[0, D]$.
(2) Shuffle the vectors under π.
(3) The hash value is smallest index which is not zero.

$$
\begin{aligned}
& \begin{array}{llllllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline
\end{array} \\
& \begin{array}{lllllllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { S3: } 0000100011000000010 \\
& \pi\left(\mathrm{~S}_{3}\right): 11000000000101000 \\
& h_{\pi}\left(S_{1}\right)=2, \quad h_{\pi}\left(S_{2}\right)=0, \quad h_{\pi}\left(S_{3}\right)=0
\end{aligned}
$$

For any two binary vectors S_{1}, S_{2} we always have

$$
\operatorname{Pr}\left(h_{\pi}\left(S_{1}\right)=h_{\pi}\left(S_{2}\right)\right)=\frac{\left|S_{1} \cap S_{2}\right|}{\left|S_{1} \cup S_{2}\right|}=R \quad \text { (Jaccard Similarity.). }
$$

${ }^{2}$ This is very inefficient, we recently found faster ways ICML 2014 and UAI 2014

Locality Sensitive Hashing (LSH) and Sub-linear Search

Locality Sensitive : A family (randomized) of hash functions h s.t.

$$
\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y))
$$

where f is monotonically increasing ${ }^{3}$.

MinHash is LSH for Resemblance or Jaccard Similarity

[^1]
Locality Sensitive Hashing (LSH) and Sub-linear Search

Locality Sensitive : A family (randomized) of hash functions h s.t.

$$
\operatorname{Pr}_{h}[h(x)=h(y)]=f(\operatorname{sim}(x, y))
$$

where f is monotonically increasing ${ }^{3}$.

MinHash is LSH for Resemblance or Jaccard Similarity

Well Known: Existence of LSH for a similarity \Longrightarrow fast search algorithms with query time $O\left(n^{\rho}\right), \quad \rho<1$ (Indyk \& Motwani 98)

The quantity ρ :

- A property dependent f.
- Smaller is better.

[^2]
Known Complaints with Resemblance

$$
\mathcal{R}=\frac{|X \cap Y|}{|X \cup Y|}=\frac{a}{f_{x}+f_{y}-a},
$$

Consider "text" description of two restaurants:
(1) "Five Guys Burgers and Fries Downtown Brooklyn New York" \{five, guys, burgers, and, fries, downtown, brooklyn, new, york\}
(2) "Five Kitchen Berkley" \{five, kitchen, berkley\}

Search Query (Q): "Five Guys" \{five, guys\}

Known Complaints with Resemblance

$$
\mathcal{R}=\frac{|X \cap Y|}{|X \cup Y|}=\frac{a}{f_{x}+f_{y}-a}
$$

Consider "text" description of two restaurants:
(1) "Five Guys Burgers and Fries Downtown Brooklyn New York"
\{five, guys, burgers, and, fries, downtown, brooklyn, new, york\}
(2) "Five Kitchen Berkley"
\{five, kitchen, berkley\}

Search Query (Q): "Five Guys" \{five, guys\}

Resemblance with descriptions:
(1) $|X \cap Q|=2,|X \cup Q|=9, \mathcal{R}=\frac{2}{9}=0.22$
(2) $|X \cap Q|=1,|X \cup Q|=4, \mathcal{R}=\frac{1}{4}=0.25$

Resemblance penalizes the size of the document.

Alternatives: Set containment and Inner Product

For many applications (e.g. record matching, plagiarism detection etc.) Jaccard Containment more suited than Resemblance.

Jaccard Containment w.r.t. Q between X and Q

$$
\begin{equation*}
\mathcal{J}_{\mathcal{C}}=\frac{|X \cap Q|}{|Q|}=\frac{a}{f_{q}} . \tag{1}
\end{equation*}
$$

Some Observations
(1) Does not penalize the size of text.
(2) Ordering same as the ordering of inner products a (or overlap).
(3) Desirable ordering in the previous example.

LSH Framework Not Sufficient for Inner Products

Locality Sensitive Requirement:

$$
\operatorname{Pr}_{h}[h(x)=h(y)]=f\left(x^{\top} y\right)
$$

where f is monotonically increasing.
Theorem (Shrivastava and Li NIPS 2014): Impossible for dot products

- For inner products, we can have x and y, s.t. $x^{\top} y>x^{\top} x$. Self similarity is not the highest similarity.
- Under any hash function $\operatorname{Pr}(h(x)=h(x))=1$. But we need

$$
\operatorname{Pr}(h(x)=h(y))>\operatorname{Pr}(h(x)=h(x))=1
$$

LSH Framework Not Sufficient for Inner Products

Locality Sensitive Requirement:

$$
\operatorname{Pr}_{h}[h(x)=h(y)]=f\left(x^{\top} y\right)
$$

where f is monotonically increasing.
Theorem (Shrivastava and Li NIPS 2014): Impossible for dot products

- For inner products, we can have x and y, s.t. $x^{\top} y>x^{\top} x$. Self similarity is not the highest similarity.
- Under any hash function $\operatorname{Pr}(h(x)=h(x))=1$. But we need

$$
\operatorname{Pr}(h(x)=h(y))>\operatorname{Pr}(h(x)=h(x))=1
$$

For Binary Inner Products: Still Impossible

- $x^{T} y \leq x^{T} x$ is always true.
- We instead need x, y, z such that $x^{T} y>z^{T} z$

LSH Framework Not Sufficient for Inner Products

Locality Sensitive Requirement:

$$
\operatorname{Pr}_{h}[h(x)=h(y)]=f\left(x^{\top} y\right)
$$

where f is monotonically increasing.
Theorem (Shrivastava and Li NIPS 2014): Impossible for dot products

- For inner products, we can have x and y, s.t. $x^{\top} y>x^{\top} x$. Self similarity is not the highest similarity.
- Under any hash function $\operatorname{Pr}(h(x)=h(x))=1$. But we need

$$
\operatorname{Pr}(h(x)=h(y))>\operatorname{Pr}(h(x)=h(x))=1
$$

For Binary Inner Products: Still Impossible

- $x^{T} y \leq x^{T} x$ is always true.
- We instead need x, y, z such that $x^{T} y>z^{T} z$

Hopeless to find Locality Sensitive Hashing!

Asymmetric LSH (ALSH) for General Inner Products

Shrivastava and Li (NIPS 2014): Despite no LSH, Maximum Inner Product Search (MIPS) is still efficient via an extended framework

Asymmetric LSH (ALSH) for General Inner Products

Shrivastava and Li (NIPS 2014): Despite no LSH, Maximum Inner Product Search (MIPS) is still efficient via an extended framework

Asymmetric LSH Framework: Idea

(1) Construct two transformations $P($.$) and Q().(P \neq Q)$ along with a randomized hash functions h.
(2) $P(),. Q($.$) and h$ satisfies

$$
\operatorname{Pr}_{h}[h(P(x))=h(Q(q))]=f\left(x^{T} q\right), \quad \mathrm{f} \text { is monotonic }
$$

Small things that made BIG difference

Shrivastava and Li NIPS 2014 construction (L2-ALSH)

(1) $\mathrm{P}(\mathrm{x})$: Scale data to shrink norms <0.83. Append $\|x\|^{2},\|x\|^{4}$, and $\|x\|^{8}$ to vector x. (just 3 scalars)
(2) $\mathrm{Q}(\mathrm{q})$: Normalize. Append three 0.5 to vector q.
(3) h: Use standard LSH family for L_{2} distance.

Caution: Scaling is asymmetry in strict sense, it changes the distribution (e.g. variance) of hashes.

First Practical and Provable Algorithm for General MIPS :

A Generic Recipe : Even better ALSH for MIPS

The Recipe:

- Start with a similarity $\mathcal{S}^{\prime}(q, x)$ for which we have an LSH (or ALSH).
- Design $P($.$) and Q($.$) , such that \mathcal{S}^{\prime}(Q(q), P(x))$ is monotonic in $q^{\top} x$
- Use extra dimensions.

Improved ALSH (Sign-ALSH) Construction for General MIPS

$\mathcal{S}^{\prime}(q, x)=\frac{q^{\top} x}{\|q\|_{2}\|x\|_{2}}$ and Simhash ${ }^{4}$. (Shrivastava and Li UAI 2015)

	Sign-ALSH	L2-ALSH	Cone Trees
MNIST	$\mathbf{7 , 9 4 4}$	9,971	11,202
WEBSPAM	$\mathbf{2 , 8 6 6}$	3,813	22,467
RCV1	$\mathbf{9 , 9 5 1}$	11,883	38,162

[^3]
Binary MIPS: A Sampling based ALSH

Idea: Sample index i, if $x_{i}=1$ and $q_{i}=1$, make hash collision, else not.

$$
\begin{gathered}
\mathcal{H}_{S}(f(x))= \begin{cases}0 & \text { if } x_{i}=1, i \text { drawn uniformly } \\
1 & \text { if } \mathrm{f}=\mathrm{Q}(\text { for query }) \\
2 & \text { if } \mathrm{f}=\mathrm{P} \text { (while preprocessing) }\end{cases} \\
\operatorname{Pr}\left(\mathcal{H}_{S}(P(x))=\mathcal{H}_{S}(Q(y))\right)=\frac{a}{D}, \\
\frac{a}{D} \text { is monotonic in inner product } a .
\end{gathered}
$$

Problems:

(1) Only informative if $x_{i}=1$, else hash just indicates query or not.
(2) Sparse data, with $D \gg f, \frac{a}{D} \simeq 0$, almost all hashes are un-informative.

A Closer Look at MinHash

Collision Probability:

$$
\operatorname{Pr}\left(h_{\pi}(x)=h_{\pi}(q)\right)=\frac{a}{f_{x}+f_{q}-a} \gg \frac{a}{D} \simeq 0
$$

Useful: $\frac{a}{f_{x}+f_{q}-a}$ very sensitive w.r.t a compared to $\frac{a}{D}$. $(D \gg f)$ The core reason why MinHash is better than random sampling.

Problem: $\frac{a}{f_{x}+f_{q}-a}$ is not monotonic in a (inner product).
Not LSH for binary inner product. (Though a good heuristic!)

Why we are biased in favor of MinHash ? :

- SL "In defense of MinHash over Simhash" AISTATS $2014 \Longrightarrow$ For binary data MinHash is provably superior than SimHash.
- Already some hope to beat state-of-the-art Sign-ALSH for Binary Data

The Fix: Asymmetric Minwise Hashing

Let M be the maximum sparsity of the data vectors.

$$
M=\max _{x \in \mathcal{C}}|x|
$$

Define $P:[0,1]^{D} \rightarrow[0,1]^{D+M}$ and $Q:[0,1]^{D} \rightarrow[0,1]^{D+M}$ as:

$$
\begin{aligned}
& P(x)=[x ; 1 ; 1 ; 1 ; \ldots ; 1 ; 0 ; 0 ; \ldots ; 0] M-f_{x} 1 \text { s and } f_{x} \text { zeros } \\
& Q(q)=[x ; 0 ; 0 ; 0 ; \ldots ; 0], M \text { zeros }
\end{aligned}
$$

The Fix: Asymmetric Minwise Hashing

Let M be the maximum sparsity of the data vectors.

$$
M=\max _{x \in \mathcal{C}}|x|
$$

Define $P:[0,1]^{D} \rightarrow[0,1]^{D+M}$ and $Q:[0,1]^{D} \rightarrow[0,1]^{D+M}$ as:

$$
\begin{aligned}
& P(x)=[x ; 1 ; 1 ; 1 ; \ldots ; 1 ; 0 ; 0 ; \ldots ; 0] M-f_{x} 1 \text { s and } f_{x} \text { zeros } \\
& Q(q)=[x ; 0 ; 0 ; 0 ; \ldots ; 0], M \text { zeros }
\end{aligned}
$$

After Transformation:
$R^{\prime}=\frac{|P(x) \cap Q(q)|}{|P(x) \cup Q(q)|}=\frac{a}{M+f_{q}-a}$,

monotonic in the inner product a

Also, $M+f_{q}-a \ll D$ (M of order of sparsity, handle outliers separately.)
Note : To get rid of f_{q} change $P($.$) to P(Q()$.$) and Q($.$) to Q(P()$.$) .$

Asymmetric Minwise Hashing: Alternative View

$$
\begin{aligned}
P^{\prime}(x) & =\left[x ; M-f_{x} ; 0\right] \\
Q^{\prime}(x) & =\left[x ; 0 ; M-f_{x}\right]
\end{aligned}
$$

The weighted Jaccard between $P^{\prime}(x)$ and $Q^{\prime}(q)$ is

$$
\mathcal{R}_{W}=\frac{\sum_{i} \min \left(P^{\prime}(x)_{i}, Q^{\prime}(q)_{i}\right)}{\sum_{i} \max \left(P^{\prime}(x)_{i}, Q^{\prime}(q)_{i}\right)}=\frac{a}{2 M-a}
$$

Fast Consistent Weighted Sampling (CWS) to get asymmetric MinHash in $O\left(f_{x}\right)$ time instead of $O(2 M)$ where $M \geq f_{x}$.

Asymmetric Minwise Hashing: Alternative View

$$
\begin{aligned}
P^{\prime}(x) & =\left[x ; M-f_{x} ; 0\right] \\
Q^{\prime}(x) & =\left[x ; 0 ; M-f_{x}\right]
\end{aligned}
$$

The weighted Jaccard between $P^{\prime}(x)$ and $Q^{\prime}(q)$ is

$$
\mathcal{R}_{W}=\frac{\sum_{i} \min \left(P^{\prime}(x)_{i}, Q^{\prime}(q)_{i}\right)}{\sum_{i} \max \left(P^{\prime}(x)_{i}, Q^{\prime}(q)_{i}\right)}=\frac{a}{2 M-a}
$$

Fast Consistent Weighted Sampling (CWS) to get asymmetric MinHash in $O\left(f_{x}\right)$ time instead of $O(2 M)$ where $M \geq f_{x}$.

Alternative View:

- $M-f_{x}$ favors larger documents in proportion to $-f_{x}$, which cancels the inherent bias of minhash towards smaller set.
- A novel bias correction, which works well in practice.

Theoretical Comparisons

Collision probability monotonic in inner product \Longrightarrow asymmetric minwise hashing is an ALSH for binary MIPS.

$$
\rho_{M H-A L S H}=\frac{\log \frac{S_{0} / M}{2-S_{0} / M}}{\log \frac{c S_{0} / M}{2-c S_{0} / M}} ; \quad \rho_{S i g n}=\frac{\log \left(1-\frac{1}{\pi} \cos ^{-1}\left(\frac{S_{0}}{M}\right)\right)}{\log \left(1-\frac{1}{\pi} \cos ^{-1}\left(\frac{c S_{0}}{M}\right)\right)}
$$

Theoretical Comparisons

Collision probability monotonic in inner product \Longrightarrow asymmetric minwise hashing is an ALSH for binary MIPS.

$$
\rho_{M H-A L S H}=\frac{\log \frac{S_{0} / M}{2-S_{0} / M}}{\log \frac{c S_{0} / M}{2-c S_{0} / M}} ; \quad \rho_{S i g n}=\frac{\log \left(1-\frac{1}{\pi} \cos ^{-1}\left(\frac{S_{0}}{M}\right)\right)}{\log \left(1-\frac{1}{\pi} \cos ^{-1}\left(\frac{c S_{0}}{M}\right)\right)}
$$

Asymmetric Minwise Hashing is significantly better than Sign-ALSH (SL UAI 2015) (Expected after SL AISTATS 2014)

Complaints with MinHash: Costly Sampling

	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	6	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$	$\mathbf{1 4}$	$\mathbf{1 5}$
$\mathrm{~S}_{1}:$	0	1	0	0	1	1	0	0	1	0	0	0	0	0	0	0
$\mathrm{~S}_{2}:$	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0
$\mathrm{~S}_{3}:$	0	0	0	1	0	0	1	1	0	0	0	0	0	0	1	0

Complaints with MinHash: Costly Sampling

$$
h_{\pi}\left(S_{1}\right)=2, \quad h_{\pi}\left(S_{2}\right)=0, \quad h_{\pi}\left(S_{3}\right)=0
$$

$$
\begin{aligned}
& \begin{array}{llllllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline
\end{array} \\
& \begin{array}{llllllllllllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{S}_{2}: 0 \begin{array}{lllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1
\end{array} 0 \\
& S_{3}: 1 \begin{array}{lllllllllllllll}
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array} 0 \\
& \pi\left(\mathrm{~S}_{1}\right): \quad 0 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 100 \\
& \pi\left(\mathrm{~S}_{2}\right): 1 \begin{array}{lllllllllllllll}
& 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{array} 0 \\
& \pi\left(\mathrm{~S}_{3}\right): 111 \begin{array}{llllllllllllll}
& 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0
\end{array} 0
\end{aligned}
$$

Complaints with MinHash: Costly Sampling

$\begin{array}{llllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$

$\mathrm{S}_{2}: 01000100000010010010010$
$\mathrm{S}_{3}: 10 \begin{array}{lllllllllllllll} & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0\end{array} 10$

$$
\begin{array}{lllllllllllllllll}
\pi\left(\mathrm{S}_{1}\right): & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\pi\left(\mathrm{~S}_{2}\right): & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\pi\left(\mathrm{~S}_{3}\right): & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}
$$

$$
h_{\pi}\left(S_{1}\right)=2, \quad h_{\pi}\left(S_{2}\right)=0, \quad h_{\pi}\left(S_{3}\right)=0
$$

Process the entire vector to compute one minhash $O(d)$.

- Search time is dominated by the hashing query. $O(K L d)$
- Training and Testing time dominated by the hashing time. $O(k d)$

Parallelization possible but not energy efficient. (LSK WWW 2012)

Complaints with MinHash: Costly Sampling

$\begin{array}{llllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15\end{array}$

$\mathrm{S}_{2}: 010010 \begin{array}{lllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1\end{array} 0$
$S_{3}: \begin{array}{llllllllllllllll}0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0\end{array}$

$$
\begin{array}{lllllllllllllllll}
\pi\left(\mathrm{S}_{1}\right): & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\pi\left(\mathrm{~S}_{2}\right): & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\pi\left(\mathrm{~S}_{3}\right): & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0
\end{array}
$$

$$
h_{\pi}\left(S_{1}\right)=2, \quad h_{\pi}\left(S_{2}\right)=0, \quad h_{\pi}\left(S_{3}\right)=0
$$

Process the entire vector to compute one minhash $O(d)$.

- Search time is dominated by the hashing query. $O(K L d)$
- Training and Testing time dominated by the hashing time. $O(k d)$

Parallelization possible but not energy efficient. (LSK WWW 2012)
Storing only the minimum seems quite wasteful.

Solution: One Pass for All hashes

1. Sketching: Bin and compute minimum non-zero index in each bin.

	\mid
$\pi\left(S_{1}\right)$	000001010000001110100110
$\pi\left(S_{2}\right)$	000001110000101011000000

Solution: One Pass for All hashes

1. Sketching: Bin and compute minimum non-zero index in each bin.

	Bin 0	Bin 1	$\operatorname{Bin} 2$	$\operatorname{Bin} 3$	$\operatorname{Bin} 4$	$\operatorname{Bin} 5$
$\pi\left(S_{1}\right)$	0000	0101	0000	0011	1010	0110
$\pi\left(S_{2}\right)$	0000	0111	0000	1010	1100	0000

Solution: One Pass for All hashes

1. Sketching: Bin and compute minimum non-zero index in each bin.

	Bin 0	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5
$\pi\left(S_{1}\right)$	0000	$0 \underline{101}$	0000	0011	1010	0110
$\pi\left(S_{2}\right)$	0000	0111	0000	1010	1100	0000

Solution: One Pass for All hashes

1. Sketching: Bin and compute minimum non-zero index in each bin.

	$\operatorname{Bin} 0$	$\operatorname{Bin} \mathbf{1}$	$\operatorname{Bin} 2$	$\operatorname{Bin} \mathbf{3}$	$\operatorname{Bin} 4$	$\operatorname{Bin} \mathbf{5}$
$\boldsymbol{\pi}\left(\boldsymbol{S}_{1}\right)$	$\mathbf{0 0 0 0}$	$\mathbf{0 1 0 1}$	$\mathbf{0 0 0 0}$	$\mathbf{0 0 1 1}$	$\underline{1010}$	$\mathbf{0 1 1 0}$
$\boldsymbol{\pi}\left(\boldsymbol{S}_{2}\right)$	$\mathbf{0 0 0 0}$	$\mathbf{0 1 1 1}$	$\mathbf{0 0 0 0}$	$\underline{1010}$	$\underline{10100}$	$\mathbf{0 0 0 0}$
$\mathrm{OPH}\left(S_{1}\right)$	E	$\mathbf{1}$	E	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$
$\mathrm{OPH}\left(S_{2}\right)$	E	$\mathbf{1}$	E	$\mathbf{0}$	$\mathbf{0}$	E

Solution: One Pass for All hashes

1. Sketching: Bin and compute minimum non-zero index in each bin.

	$\operatorname{Bin} 0$	$\operatorname{Bin} 1$	$\operatorname{Bin} 2$	$\operatorname{Bin} \mathbf{3}$	$\operatorname{Bin} 4$	$\operatorname{Bin} 5$
$\pi\left(S_{1}\right)$	$\mathbf{0 0 0 0}$	$\mathbf{0 1 0 1}$	$\mathbf{0 0 0 0}$	$\mathbf{0 0 1 1}$	$\underline{1010}$	$\mathbf{0 1 1 0}$
$\pi\left(S_{2}\right)$	$\mathbf{0 0 0 0}$	$\mathbf{0 1 1 1 1}$	$\mathbf{0 0 0 0}$	$\underline{1010}$	$\underline{1000}$	$\mathbf{0 0 0 0}$
$\mathrm{OPH}\left(S_{1}\right)$	E	$\mathbf{1}$	E	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$
$\mathrm{OPH}\left(S_{2}\right)$	E	$\mathbf{1}$	E	$\mathbf{0}$	$\mathbf{0}$	E

2. Fill Empty Bins: Borrow from right (circular) with shift.

	$\operatorname{Bin} 0$	$\operatorname{Bin} 1$	$\operatorname{Bin} 2$	$\operatorname{Bin} 3$	$\operatorname{Bin} 4$	$\operatorname{Bin} 5$
$H\left(S_{1}\right)$	E	$\mathbf{1}$	E	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$
$H\left(S_{2}\right)$	E	$\mathbf{1}$	E	$\mathbf{0}$	$\mathbf{0}$	E

Solution: One Pass for All hashes

1. Sketching: Bin and compute minimum non-zero index in each bin.

	$\operatorname{Bin} 0$	$\operatorname{Bin} 1$	$\operatorname{Bin} 2$	$\operatorname{Bin} \mathbf{3}$	$\operatorname{Bin} 4$	$\operatorname{Bin} 5$
$\pi\left(S_{1}\right)$	$\mathbf{0 0 0 0}$	$\mathbf{0 1 0 1}$	$\mathbf{0 0 0 0}$	$\mathbf{0 0 1 1}$	$\underline{1010}$	$\mathbf{0 1 1 0}$
$\pi\left(S_{2}\right)$	$\mathbf{0 0 0 0}$	$\mathbf{0 1 1 1 1}$	$\mathbf{0 0 0 0}$	$\underline{1010}$	$\underline{1000}$	$\mathbf{0 0 0 0}$
$\mathrm{OPH}\left(S_{1}\right)$	E	$\mathbf{1}$	E	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$
$\mathrm{OPH}\left(S_{2}\right)$	E	$\mathbf{1}$	E	$\mathbf{0}$	$\mathbf{0}$	E

2. Fill Empty Bins: Borrow from right (circular) with shift.

	$\operatorname{Bin} 0$	$\operatorname{Bin} 1$	$\operatorname{Bin} 2$	$\operatorname{Bin} 3$	$\operatorname{Bin} 4$	$\operatorname{Bin} 5$
$H\left(S_{1}\right)$	E	$\mathbf{1}$	E	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$
$H\left(S_{2}\right)$	E	$\mathbf{1}$	E	$\mathbf{0}$	$\mathbf{0}$	E

Solution: One Pass for All hashes

1. Sketching: Bin and compute minimum non-zero index in each bin.

	$\operatorname{Bin} 0$	$\operatorname{Bin} 1$	$\operatorname{Bin} 2$	$\operatorname{Bin} \mathbf{3}$	$\operatorname{Bin} 4$	$\operatorname{Bin} 5$
$\pi\left(S_{1}\right)$	$\mathbf{0 0 0 0}$	$\mathbf{0 1 0 1}$	$\mathbf{0 0 0 0}$	$\mathbf{0 0 1 1}$	$\underline{1010}$	$\mathbf{0 1 1 0}$
$\pi\left(S_{2}\right)$	$\mathbf{0 0 0 0}$	$\mathbf{0 1 1 1 1}$	$\mathbf{0 0 0 0}$	$\underline{1010}$	$\underline{1000}$	$\mathbf{0 0 0 0}$
$\mathrm{OPH}\left(S_{1}\right)$	E	$\mathbf{1}$	E	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$
$\mathrm{OPH}\left(S_{2}\right)$	E	$\mathbf{1}$	E	$\mathbf{0}$	$\mathbf{0}$	E

2. Fill Empty Bins: Borrow from right (circular) with shift.

	$\operatorname{Bin} 0$	$\operatorname{Bin} 1$	$\operatorname{Bin} 2$	$\operatorname{Bin} 3$	$\operatorname{Bin} 4$	$\operatorname{Bin} 5$
$H\left(S_{1}\right)$	$1+\mathrm{C}$	$\mathbf{1}$	E	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$
$H\left(S_{2}\right)$	E	$\mathbf{1}$	E	$\mathbf{0}$	$\mathbf{0}$	E

Solution: One Pass for All hashes

1. Sketching: Bin and compute minimum non-zero index in each bin.

	$\operatorname{Bin} 0$	$\operatorname{Bin} 1$	$\operatorname{Bin} 2$	$\operatorname{Bin} \mathbf{3}$	$\operatorname{Bin} 4$	$\operatorname{Bin} 5$
$\pi\left(S_{1}\right)$	$\mathbf{0 0 0 0}$	$\mathbf{0 1 0 1}$	$\mathbf{0 0 0 0}$	$\mathbf{0 0 1 1}$	$\underline{1010}$	$\mathbf{0 1 1 0}$
$\pi\left(S_{2}\right)$	$\mathbf{0 0 0 0}$	$\mathbf{0 1 1 1 1}$	$\mathbf{0 0 0 0}$	$\underline{1010}$	$\underline{1000}$	$\mathbf{0 0 0 0}$
$\mathrm{OPH}\left(S_{1}\right)$	E	$\mathbf{1}$	E	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$
$\mathrm{OPH}\left(S_{2}\right)$	E	$\mathbf{1}$	E	$\mathbf{0}$	$\mathbf{0}$	E

2. Fill Empty Bins: Borrow from right (circular) with shift.

	$\operatorname{Bin} 0$	$\operatorname{Bin} 1$	$\operatorname{Bin} 2$	$\operatorname{Bin} 3$	$\operatorname{Bin} 4$	$\operatorname{Bin} 5$
$H\left(S_{1}\right)$	$1+\mathrm{C} \leftarrow-1$	$2+\mathrm{C} \longleftarrow-2$	0	$\mathbf{1}$		
$H\left(S_{2}\right)$	$1+\mathrm{C} \leftarrow-1$	$0+\mathrm{C} \longleftarrow 0$	0	E		

Solution: One Pass for All hashes

1. Sketching: Bin and compute minimum non-zero index in each bin.

	$\operatorname{Bin} 0$	$\operatorname{Bin} 1$	$\operatorname{Bin} 2$	$\operatorname{Bin} \mathbf{3}$	$\operatorname{Bin} 4$	$\operatorname{Bin} \mathbf{5}$
$\pi\left(S_{1}\right)$	$\mathbf{0 0 0 0}$	$\mathbf{0 1 0 1}$	$\mathbf{0 0 0 0}$	$\mathbf{0 0 1 1}$	$\underline{1010}$	$\mathbf{0 1 1 0}$
$\pi\left(S_{2}\right)$	$\mathbf{0 0 0 0}$	$\mathbf{0 1 1 1 1}$	$\mathbf{0 0 0 0}$	$\underline{1010}$	$\underline{1000}$	$\mathbf{0 0 0 0}$
$\mathrm{OPH}\left(S_{1}\right)$	E	$\mathbf{1}$	E	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{1}$
$\mathrm{OPH}\left(S_{2}\right)$	E	$\mathbf{1}$	E	$\mathbf{0}$	$\mathbf{0}$	E

2. Fill Empty Bins: Borrow from right (circular) with shift.

	$\operatorname{Bin} 0$	$\operatorname{Bin} 1$	$\operatorname{Bin} 2$	$\operatorname{Bin} 3$	$\operatorname{Bin} 4$	$\operatorname{Bin} 5$
$H\left(S_{1}\right)$	$1+\mathrm{C} \leftarrow$	1	$2+\mathrm{C} \leftarrow$	2	0	1
$H\left(S_{2}\right)$	$1+\mathrm{C} \leftarrow$	1	$0+\mathrm{C} \leftarrow$	0	0	$1+2 \mathrm{C}$

- $\operatorname{Pr}\left(\mathcal{H}_{j}\left(S_{1}\right)=\mathcal{H}_{j}\left(S_{2}\right)\right)=R$ for $i=\{0,1,2 \ldots, k\}$
- $O(d+k)$ instead of traditional $O(d k)$!

Speedup

Figure: Ratio of old and new hashing time indicates a linear time speedup

Datasets and Baselines

Table: Datasets

Dataset	\# Query	\# Train	\# Dim	nonzeros (mean \pm std)
EP2006	2,000	17,395	$4,272,227$	6072 ± 3208
MNIST	2,000	68,000	784	150 ± 41
NEWS20	2,000	18,000	$1,355,191$	454 ± 654
NYTIMES	2,000	100,000	102,660	232 ± 114

Competing Schemes

(1) Asymmetric minwise hashing (Proposed)
(2) Traditional minwise hashing (MinHash)
(3) L2 based Asymmetric LSH for Inner products (L2-ALSH)
(9) SimHash based Asymmetric LSH for Inner Products (Sign-ALSH)

Actual Savings in Retrieval

Ranking Verification

Conclusions

- Minwise hashing has inherent bias towards smaller sets.
- Using the recent line of work on asymmetric LSH, we can fix the existing bias using asymmetric transformations.
- Asymmetric minwise hashing leads to an algorithmic improvement over state-of-the-art hashing scheme for binary MIPS .
- We can obtain huge speedups using recent line of work on one permutation hashing.
- The final algorithm performs very well in practice compared to popular schemes.

References

Asymmetric LSH framework and improvements.

- Shrivastava \& Li "Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS)". NIPS 2014
- Shrivastava \& Li "Improved Asymmetric Locality Sensitive Hashing (ALSH) for Maximum Inner Product Search (MIPS)". UAI 2015
Efficient replacements of minwise hashing.
- Li et. al. "One Permutation Hashing" NIPS 2012
- Shrivastava \& Li "Densifying One Permutation Hashing via Rotation for Fast Near Neighbor Search". ICML 2014
- Shrivastava \& Li "Improved Densification of One Permutation Hashing." UAI 2014
Minwise hashing is superior to SimHash for binary data.
- Shrivastava \& Li "In Defense of MinHash over SimHash" AISTATS 2014

[^0]: ${ }^{1}$ Will Join Rice Univ. as TT Asst. Prof. Fall 2015

[^1]: ${ }^{3} \mathrm{~A}$ stronger sufficient condition than the classical one

[^2]: ${ }^{3} \mathrm{~A}$ stronger sufficient condition than the classical one

[^3]: ${ }^{4}$ Expected after Shrivastava and Li ICML 2014 "Codings for Random Projections" \curvearrowleft Qल

