
Asymmetric Minwise Hashing for Indexing Binary Inner
Products and Set Containment

Anshumali Shrivastava and Ping Li

Cornell University1 and Rutgers University

WWW 2015
Florence, Italy

May 21st 2015

1Will Join Rice Univ. as TT Asst. Prof. Fall 2015
Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 1 / 27

What are we solving ?

Minwise hashing is widely popular for search and retrieval.

Major Complaint: Document length is unnecessarily penalized.

We precisely fix this and provide a practical solution.

Other consequence: Algorithmic improvement for binary maximum
inner product search (MIPS).

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 2 / 27

Outline

Motivation

Asymmetric LSH for General Inner Products

Asymmetric Minwise Hashing

Faster Sampling

Experimental Results.

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 3 / 27

Shingle Based Representation

Shingle based representation (Bag-of-Words) widely adopted.

Document is represented as a set of tokens over a vocabulary Ω.

Example Sentence : “Five Kitchen Berkley”.
Shingle Representation (Uni-grams): {Five, Kitchen, Berkeley}
Shingle Representation (Bi-grams): {Five Kitchen, Kitchen Berkeley}

Sparse Binary High Dimensional Data Everywhere

Sets can be represented as binary vector indicating presence/absence.

Vocabulary is typically huge in practice.

Modern “Big data” systems use only binary data matrix.

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 4 / 27

Shingle Based Representation

Shingle based representation (Bag-of-Words) widely adopted.

Document is represented as a set of tokens over a vocabulary Ω.

Example Sentence : “Five Kitchen Berkley”.
Shingle Representation (Uni-grams): {Five, Kitchen, Berkeley}
Shingle Representation (Bi-grams): {Five Kitchen, Kitchen Berkeley}

Sparse Binary High Dimensional Data Everywhere

Sets can be represented as binary vector indicating presence/absence.

Vocabulary is typically huge in practice.

Modern “Big data” systems use only binary data matrix.

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 4 / 27

Resemblance (Jaccard) Similarity

The popular resemblance (Jaccard) similarity between two sets (or
binary vectors) X , Y ⊂ Ω is defined as:

R =
|X ∩ Y |
|X ∪ Y |

=
a

fx + fy − a
,

where a = |X ∩ Y |, fx = |X |, fy = |Y | and |.| denotes the cardinality.

For binary (0/1) vector representation ⇐⇒ a set (locations of nonzeros).

a = |X ∩ Y | = xT y ; fx = nonzeros(x); fy = nonzeros(y),

where x and y are the binary vector equivalents of sets X and Y
respectively.

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 5 / 27

Minwise Hashing (Broder 97)

The standard practice in the search industry:

Given a random permutation π (or a random hash function) over Ω, i.e.,

π : Ω −→ Ω, where Ω = {0, 1, ...,D − 1}.

The MinHash is given by

hπ(x) = min(π(x))

An elementary probability argument shows that

Pr (min(π(X)) = min(π(Y))) =
|X ∩ Y |
|X ∪ Y |

= R.

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 6 / 27

Traditional Minwise Hashing Computation2

1 Uniformly sample a permutation over attributes π : [0,D] 7→ [0,D].

2 Shuffle the vectors under π.

3 The hash value is smallest index which is not zero.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

0

1

1

1

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

S
1
:

S
2
:

S
3
:

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

1

0

0

1

1

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

π(S
1
):

π(S
2
):

π(S
3
):

hπ(S1) = 2, hπ(S2) = 0, hπ(S3) = 0

For any two binary vectors S1, S2 we always have

Pr (hπ(S1) = hπ(S2)) =
|S1 ∩ S2|
|S1 ∪ S2|

= R (Jaccard Similarity.).

2This is very inefficient, we recently found faster ways ICML 2014 and UAI 2014
Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 7 / 27

Traditional Minwise Hashing Computation2

1 Uniformly sample a permutation over attributes π : [0,D] 7→ [0,D].

2 Shuffle the vectors under π.

3 The hash value is smallest index which is not zero.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

0

1

1

1

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

S
1
:

S
2
:

S
3
:

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

1

0

0

1

1

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

π(S
1
):

π(S
2
):

π(S
3
):

hπ(S1) = 2, hπ(S2) = 0, hπ(S3) = 0

For any two binary vectors S1, S2 we always have

Pr (hπ(S1) = hπ(S2)) =
|S1 ∩ S2|
|S1 ∪ S2|

= R (Jaccard Similarity.).

2This is very inefficient, we recently found faster ways ICML 2014 and UAI 2014
Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 7 / 27

Traditional Minwise Hashing Computation2

1 Uniformly sample a permutation over attributes π : [0,D] 7→ [0,D].

2 Shuffle the vectors under π.

3 The hash value is smallest index which is not zero.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

0

1

1

1

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

S
1
:

S
2
:

S
3
:

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

1

0

0

1

1

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

π(S
1
):

π(S
2
):

π(S
3
):

hπ(S1) = 2, hπ(S2) = 0, hπ(S3) = 0

For any two binary vectors S1, S2 we always have

Pr (hπ(S1) = hπ(S2)) =
|S1 ∩ S2|
|S1 ∪ S2|

= R (Jaccard Similarity.).

2This is very inefficient, we recently found faster ways ICML 2014 and UAI 2014
Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 7 / 27

Traditional Minwise Hashing Computation2

1 Uniformly sample a permutation over attributes π : [0,D] 7→ [0,D].

2 Shuffle the vectors under π.

3 The hash value is smallest index which is not zero.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

0

1

1

1

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

S
1
:

S
2
:

S
3
:

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

1

0

0

1

1

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

π(S
1
):

π(S
2
):

π(S
3
):

hπ(S1) = 2, hπ(S2) = 0, hπ(S3) = 0

For any two binary vectors S1, S2 we always have

Pr (hπ(S1) = hπ(S2)) =
|S1 ∩ S2|
|S1 ∪ S2|

= R (Jaccard Similarity.).

2This is very inefficient, we recently found faster ways ICML 2014 and UAI 2014
Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 7 / 27

Locality Sensitive Hashing (LSH) and Sub-linear Search

Locality Sensitive : A family (randomized) of hash functions h s.t.

Prh
[
h(x) = h(y)

]
= f (sim(x , y)),

where f is monotonically increasing3.

MinHash is LSH for Resemblance or Jaccard Similarity

Well Known: Existence of LSH for a similarity =⇒ fast search
algorithms with query time O(nρ), ρ < 1 (Indyk & Motwani 98)

The quantity ρ:

A property dependent f .

Smaller is better.

3A stronger sufficient condition than the classical one
Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 8 / 27

Locality Sensitive Hashing (LSH) and Sub-linear Search

Locality Sensitive : A family (randomized) of hash functions h s.t.

Prh
[
h(x) = h(y)

]
= f (sim(x , y)),

where f is monotonically increasing3.

MinHash is LSH for Resemblance or Jaccard Similarity

Well Known: Existence of LSH for a similarity =⇒ fast search
algorithms with query time O(nρ), ρ < 1 (Indyk & Motwani 98)

The quantity ρ:

A property dependent f .

Smaller is better.

3A stronger sufficient condition than the classical one
Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 8 / 27

Known Complaints with Resemblance

R =
|X ∩ Y |
|X ∪ Y |

=
a

fx + fy − a
,

Consider “text” description of two restaurants:
1 “Five Guys Burgers and Fries Downtown Brooklyn New York”
{five, guys, burgers, and, fries, downtown, brooklyn, new, york}

2 “Five Kitchen Berkley”
{five, kitchen, berkley}

Search Query (Q): “Five Guys” {five, guys}

Resemblance with descriptions:
1 |X ∩ Q| = 2, |X ∪ Q| = 9, R = 2

9 = 0.22
2 |X ∩ Q| = 1, |X ∪ Q| = 4, R = 1

4 = 0.25

Resemblance penalizes the size of the document.

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 9 / 27

Known Complaints with Resemblance

R =
|X ∩ Y |
|X ∪ Y |

=
a

fx + fy − a
,

Consider “text” description of two restaurants:
1 “Five Guys Burgers and Fries Downtown Brooklyn New York”
{five, guys, burgers, and, fries, downtown, brooklyn, new, york}

2 “Five Kitchen Berkley”
{five, kitchen, berkley}

Search Query (Q): “Five Guys” {five, guys}

Resemblance with descriptions:
1 |X ∩ Q| = 2, |X ∪ Q| = 9, R = 2

9 = 0.22
2 |X ∩ Q| = 1, |X ∪ Q| = 4, R = 1

4 = 0.25

Resemblance penalizes the size of the document.

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 9 / 27

Alternatives: Set containment and Inner Product

For many applications (e.g. record matching, plagiarism detection
etc.) Jaccard Containment more suited than Resemblance.

Jaccard Containment w.r.t. Q between X and Q

JC =
|X ∩ Q|
|Q|

=
a

fq
. (1)

Some Observations

1 Does not penalize the size of text.

2 Ordering same as the ordering of inner products a (or overlap).

3 Desirable ordering in the previous example.

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 10 / 27

LSH Framework Not Sufficient for Inner Products

Locality Sensitive Requirement:

Prh
[
h(x) = h(y)

]
= f (xT y),

where f is monotonically increasing.

Theorem (Shrivastava and Li NIPS 2014): Impossible for dot products

For inner products, we can have x and y , s.t. xT y > xT x .
Self similarity is not the highest similarity.

Under any hash function Pr(h(x) = h(x)) = 1. But we need

Pr(h(x) = h(y)) > Pr(h(x) = h(x)) = 1

For Binary Inner Products : Still Impossible

xT y ≤ xT x is always true.
We instead need x , y , z such that xT y > zT z

Hopeless to find Locality Sensitive Hashing!

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 11 / 27

LSH Framework Not Sufficient for Inner Products

Locality Sensitive Requirement:

Prh
[
h(x) = h(y)

]
= f (xT y),

where f is monotonically increasing.

Theorem (Shrivastava and Li NIPS 2014): Impossible for dot products

For inner products, we can have x and y , s.t. xT y > xT x .
Self similarity is not the highest similarity.

Under any hash function Pr(h(x) = h(x)) = 1. But we need

Pr(h(x) = h(y)) > Pr(h(x) = h(x)) = 1

For Binary Inner Products : Still Impossible

xT y ≤ xT x is always true.
We instead need x , y , z such that xT y > zT z

Hopeless to find Locality Sensitive Hashing!

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 11 / 27

LSH Framework Not Sufficient for Inner Products

Locality Sensitive Requirement:

Prh
[
h(x) = h(y)

]
= f (xT y),

where f is monotonically increasing.

Theorem (Shrivastava and Li NIPS 2014): Impossible for dot products

For inner products, we can have x and y , s.t. xT y > xT x .
Self similarity is not the highest similarity.

Under any hash function Pr(h(x) = h(x)) = 1. But we need

Pr(h(x) = h(y)) > Pr(h(x) = h(x)) = 1

For Binary Inner Products : Still Impossible

xT y ≤ xT x is always true.
We instead need x , y , z such that xT y > zT z

Hopeless to find Locality Sensitive Hashing!

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 11 / 27

Asymmetric LSH (ALSH) for General Inner Products

Shrivastava and Li (NIPS 2014): Despite no LSH, Maximum Inner
Product Search (MIPS) is still efficient via an extended framework

Asymmetric LSH Framework : Idea

1 Construct two transformations P(.) and Q(.) (P 6= Q) along with a
randomized hash functions h.

2 P(.), Q(.) and h satisfies

Prh [h(P(x)) = h(Q(q))] = f (xTq), f is monotonic

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 12 / 27

Asymmetric LSH (ALSH) for General Inner Products

Shrivastava and Li (NIPS 2014): Despite no LSH, Maximum Inner
Product Search (MIPS) is still efficient via an extended framework

Asymmetric LSH Framework : Idea

1 Construct two transformations P(.) and Q(.) (P 6= Q) along with a
randomized hash functions h.

2 P(.), Q(.) and h satisfies

Prh [h(P(x)) = h(Q(q))] = f (xTq), f is monotonic

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 12 / 27

Small things that made BIG difference

Shrivastava and Li NIPS 2014 construction (L2-ALSH)
1 P(x): Scale data to shrink norms < 0.83. Append ||x ||2, ||x ||4, and
||x ||8 to vector x . (just 3 scalars)

2 Q(q): Normalize. Append three 0.5 to vector q.
3 h: Use standard LSH family for L2 distance.

Caution: Scaling is asymmetry in strict sense, it changes the
distribution (e.g. variance) of hashes.

First Practical and Provable Algorithm for General MIPS :

0 20 40 60 80 100
0

20

40

60

Recall (%)

P
re

ci
si

on
 (

%
)

Movielens

Top 10, K = 256

Proposed
L2LSH
SRP

0 20 40 60 80 100
0

10

20

30

40

50

Recall (%)

P
re

ci
si

on
 (

%
)

NetFlix

Top 10, K = 256

Proposed
L2LSH
SRP

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 13 / 27

A Generic Recipe : Even better ALSH for MIPS

The Recipe:

Start with a similarity S ′(q, x) for which we have an LSH (or ALSH).

Design P(.) and Q(.), such that S ′(Q(q),P(x)) is monotonic in qT x

Use extra dimensions.

Improved ALSH (Sign-ALSH) Construction for General MIPS

S ′(q, x) = qT x
||q||2||x ||2 and Simhash4. (Shrivastava and Li UAI 2015)

Sign-ALSH L2-ALSH Cone Trees

MNIST 7,944 9,971 11,202
WEBSPAM 2,866 3,813 22,467

RCV1 9,951 11,883 38,162

4Expected after Shrivastava and Li ICML 2014 “Codings for Random Projections”
Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 14 / 27

Binary MIPS: A Sampling based ALSH

Idea: Sample index i , if xi = 1 and qi = 1, make hash collision, else not.

HS(f (x)) =

0 if xi = 1, i drawn uniformly

1 if f = Q (for query)

2 if f = P (while preprocessing)

Pr(HS(P(x)) = HS(Q(y))) =
a

D
,

a
D is monotonic in inner product a.

Problems:

1 Only informative if xi = 1, else hash just indicates query or not.

2 Sparse data, with D � f , a
D ' 0, almost all hashes are

un-informative.

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 15 / 27

A Closer Look at MinHash

Collision Probability:

Pr(hπ(x) = hπ(q)) =
a

fx + fq − a
� a

D
' 0

Useful: a
fx+fq−a very sensitive w.r.t a compared to a

D . (D � f)
The core reason why MinHash is better than random sampling.

Problem: a
fx+fq−a is not monotonic in a (inner product).

Not LSH for binary inner product. (Though a good heuristic !)

Why we are biased in favor of MinHash ? :

SL “In defense of MinHash over Simhash” AISTATS 2014 =⇒
For binary data MinHash is provably superior than SimHash.

Already some hope to beat state-of-the-art Sign-ALSH for Binary
Data

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 16 / 27

The Fix: Asymmetric Minwise Hashing

Let M be the maximum sparsity of the data vectors.

M = max
x∈C
|x |

Define P : [0, 1]D → [0, 1]D+M and Q : [0, 1]D → [0, 1]D+M as:

P(x) = [x ; 1; 1; 1; ...; 1; 0; 0; ...; 0] M − fx 1s and fx zeros

Q(q) = [x ; 0; 0; 0; ...; 0], M zeros

After Transformation:

R ′ =
|P(x) ∩ Q(q)|
|P(x) ∪ Q(q)|

=
a

M + fq − a
, monotonic in the inner product a

Also, M + fq − a� D (M of order of sparsity, handle outliers separately.)

Note : To get rid of fq change P(.) to P(Q(.)) and Q(.) to Q(P(.)).

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 17 / 27

The Fix: Asymmetric Minwise Hashing

Let M be the maximum sparsity of the data vectors.

M = max
x∈C
|x |

Define P : [0, 1]D → [0, 1]D+M and Q : [0, 1]D → [0, 1]D+M as:

P(x) = [x ; 1; 1; 1; ...; 1; 0; 0; ...; 0] M − fx 1s and fx zeros

Q(q) = [x ; 0; 0; 0; ...; 0], M zeros

After Transformation:

R ′ =
|P(x) ∩ Q(q)|
|P(x) ∪ Q(q)|

=
a

M + fq − a
, monotonic in the inner product a

Also, M + fq − a� D (M of order of sparsity, handle outliers separately.)

Note : To get rid of fq change P(.) to P(Q(.)) and Q(.) to Q(P(.)).

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 17 / 27

Asymmetric Minwise Hashing: Alternative View

P ′(x) = [x ;M − fx ; 0]

Q ′(x) = [x ; 0;M − fx]

The weighted Jaccard between P ′(x) and Q ′(q) is

RW =

∑
i min(P ′(x)i ,Q

′(q)i)∑
i max(P ′(x)i ,Q ′(q)i)

=
a

2M − a
.

Fast Consistent Weighted Sampling (CWS) to get asymmetric
MinHash in O(fx) time instead of O(2M) where M ≥ fx .

Alternative View:

M − fx favors larger documents in proportion to −fx , which cancels
the inherent bias of minhash towards smaller set.

A novel bias correction, which works well in practice.

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 18 / 27

Asymmetric Minwise Hashing: Alternative View

P ′(x) = [x ;M − fx ; 0]

Q ′(x) = [x ; 0;M − fx]

The weighted Jaccard between P ′(x) and Q ′(q) is

RW =

∑
i min(P ′(x)i ,Q

′(q)i)∑
i max(P ′(x)i ,Q ′(q)i)

=
a

2M − a
.

Fast Consistent Weighted Sampling (CWS) to get asymmetric
MinHash in O(fx) time instead of O(2M) where M ≥ fx .

Alternative View:

M − fx favors larger documents in proportion to −fx , which cancels
the inherent bias of minhash towards smaller set.

A novel bias correction, which works well in practice.

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 18 / 27

Theoretical Comparisons

Collision probability monotonic in inner product =⇒ asymmetric
minwise hashing is an ALSH for binary MIPS.

ρMH−ALSH =
log S0/M

2−S0/M

log cS0/M
2−cS0/M

; ρSign =

log

(
1− 1

π cos−1
(

S0
M

))
log

(
1− 1

π cos−1
(

cS0
M

))

00.20.40.60.81

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

c

ρ

Theoretical ρ

0.5

0.95

0.95

0.5

0.9

0.9

ρ
MH−ALSH

ρ
sign

00.20.40.60.81

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

c

ρ 0.4

Theoretical ρ

0.3 0.2 0.1

0.4 0.3
0.2

0.1

ρ
MH−ALSH

ρ
sign

Asymmetric Minwise Hashing is significantly better than Sign-ALSH
(SL UAI 2015) (Expected after SL AISTATS 2014)

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 19 / 27

Theoretical Comparisons

Collision probability monotonic in inner product =⇒ asymmetric
minwise hashing is an ALSH for binary MIPS.

ρMH−ALSH =
log S0/M

2−S0/M

log cS0/M
2−cS0/M

; ρSign =

log

(
1− 1

π cos−1
(

S0
M

))
log

(
1− 1

π cos−1
(

cS0
M

))

00.20.40.60.81

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

c

ρ

Theoretical ρ

0.5

0.95

0.95

0.5

0.9

0.9

ρ
MH−ALSH

ρ
sign

00.20.40.60.81

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

c

ρ 0.4

Theoretical ρ

0.3 0.2 0.1

0.4 0.3
0.2

0.1

ρ
MH−ALSH

ρ
sign

Asymmetric Minwise Hashing is significantly better than Sign-ALSH
(SL UAI 2015) (Expected after SL AISTATS 2014)
Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 19 / 27

Complaints with MinHash: Costly Sampling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

0

1

1

1

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

S
1
:

S
2
:

S
3
:

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

1

0

0

1

1

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

π(S
1
):

π(S
2
):

π(S
3
):

hπ(S1) = 2, hπ(S2) = 0, hπ(S3) = 0

Process the entire vector to compute one minhash O(d).

Search time is dominated by the hashing query. O(KLd)

Training and Testing time dominated by the hashing time. O(kd)

Parallelization possible but not energy efficient. (LSK WWW 2012)

Storing only the minimum seems quite wasteful.

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 20 / 27

Complaints with MinHash: Costly Sampling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

0

1

1

1

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

S
1
:

S
2
:

S
3
:

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

1

0

0

1

1

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

π(S
1
):

π(S
2
):

π(S
3
):

hπ(S1) = 2, hπ(S2) = 0, hπ(S3) = 0

Process the entire vector to compute one minhash O(d).

Search time is dominated by the hashing query. O(KLd)

Training and Testing time dominated by the hashing time. O(kd)

Parallelization possible but not energy efficient. (LSK WWW 2012)

Storing only the minimum seems quite wasteful.

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 20 / 27

Complaints with MinHash: Costly Sampling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

0

1

1

1

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

S
1
:

S
2
:

S
3
:

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

1

0

0

1

1

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

π(S
1
):

π(S
2
):

π(S
3
):

hπ(S1) = 2, hπ(S2) = 0, hπ(S3) = 0

Process the entire vector to compute one minhash O(d).

Search time is dominated by the hashing query. O(KLd)

Training and Testing time dominated by the hashing time. O(kd)

Parallelization possible but not energy efficient. (LSK WWW 2012)

Storing only the minimum seems quite wasteful.

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 20 / 27

Complaints with MinHash: Costly Sampling

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

1

0

0

0

0

1

0

0

1

1

1

0

0

0

0

0

1

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

S
1
:

S
2
:

S
3
:

0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1

1

0

0

1

1

0

0

0

1

0

1

0

0

0

0

0

0

1

0

1

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

π(S
1
):

π(S
2
):

π(S
3
):

hπ(S1) = 2, hπ(S2) = 0, hπ(S3) = 0

Process the entire vector to compute one minhash O(d).

Search time is dominated by the hashing query. O(KLd)

Training and Testing time dominated by the hashing time. O(kd)

Parallelization possible but not energy efficient. (LSK WWW 2012)

Storing only the minimum seems quite wasteful.

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 20 / 27

Solution: One Pass for All hashes

1. Sketching: Bin and compute minimum non-zero index in each bin.

𝝅(𝑺𝟏) 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0

𝝅(𝑺𝟐) 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0

2. Fill Empty Bins: Borrow from right (circular) with shift.

 Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

𝑯(𝑺𝟏) E 1 E 2 0 1

𝑯(𝑺𝟐) E 1 E 0 0 E

Pr (Hj(S1) = Hj(S2)) = R for i = {0, 1, 2..., k}
O(d + k) instead of traditional O(dk) !

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 21 / 27

Solution: One Pass for All hashes

1. Sketching: Bin and compute minimum non-zero index in each bin.

 Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

𝝅(𝑺𝟏) 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0

𝝅(𝑺𝟐) 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0

2. Fill Empty Bins: Borrow from right (circular) with shift.

 Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

𝑯(𝑺𝟏) E 1 E 2 0 1

𝑯(𝑺𝟐) E 1 E 0 0 E

Pr (Hj(S1) = Hj(S2)) = R for i = {0, 1, 2..., k}
O(d + k) instead of traditional O(dk) !

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 21 / 27

Solution: One Pass for All hashes

1. Sketching: Bin and compute minimum non-zero index in each bin.

 Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

𝝅(𝑺𝟏) 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0

𝝅(𝑺𝟐) 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0

2. Fill Empty Bins: Borrow from right (circular) with shift.

 Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

𝑯(𝑺𝟏) E 1 E 2 0 1

𝑯(𝑺𝟐) E 1 E 0 0 E

Pr (Hj(S1) = Hj(S2)) = R for i = {0, 1, 2..., k}
O(d + k) instead of traditional O(dk) !

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 21 / 27

Solution: One Pass for All hashes

1. Sketching: Bin and compute minimum non-zero index in each bin.

 Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

𝝅(𝑺𝟏) 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0

𝝅(𝑺𝟐) 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0

OPH(𝑺𝟏) E 1 E 2 0 1

OPH(𝑺𝟐) E 1 E 0 0 E

2. Fill Empty Bins: Borrow from right (circular) with shift.

 Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

𝑯(𝑺𝟏) E 1 E 2 0 1

𝑯(𝑺𝟐) E 1 E 0 0 E

Pr (Hj(S1) = Hj(S2)) = R for i = {0, 1, 2..., k}
O(d + k) instead of traditional O(dk) !

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 21 / 27

Solution: One Pass for All hashes

1. Sketching: Bin and compute minimum non-zero index in each bin.

 Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

𝝅(𝑺𝟏) 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0

𝝅(𝑺𝟐) 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0

OPH(𝑺𝟏) E 1 E 2 0 1

OPH(𝑺𝟐) E 1 E 0 0 E

2. Fill Empty Bins: Borrow from right (circular) with shift.

 Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

𝑯(𝑺𝟏) E 1 E 2 0 1

𝑯(𝑺𝟐) E 1 E 0 0 E

Pr (Hj(S1) = Hj(S2)) = R for i = {0, 1, 2..., k}
O(d + k) instead of traditional O(dk) !

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 21 / 27

Solution: One Pass for All hashes

1. Sketching: Bin and compute minimum non-zero index in each bin.

 Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

𝝅(𝑺𝟏) 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0

𝝅(𝑺𝟐) 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0

OPH(𝑺𝟏) E 1 E 2 0 1

OPH(𝑺𝟐) E 1 E 0 0 E

2. Fill Empty Bins: Borrow from right (circular) with shift.

 Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

𝑯(𝑺𝟏) E 1 E 2 0 1

𝑯(𝑺𝟐) E 1 E 0 0 E

Pr (Hj(S1) = Hj(S2)) = R for i = {0, 1, 2..., k}
O(d + k) instead of traditional O(dk) !

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 21 / 27

Solution: One Pass for All hashes

1. Sketching: Bin and compute minimum non-zero index in each bin.

 Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

𝝅(𝑺𝟏) 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0

𝝅(𝑺𝟐) 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0

OPH(𝑺𝟏) E 1 E 2 0 1

OPH(𝑺𝟐) E 1 E 0 0 E

2. Fill Empty Bins: Borrow from right (circular) with shift.

 Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

𝑯(𝑺𝟏) 1+C 1 E 2 0 1

𝑯(𝑺𝟐) E 1 E 0 0 E

Pr (Hj(S1) = Hj(S2)) = R for i = {0, 1, 2..., k}
O(d + k) instead of traditional O(dk) !

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 21 / 27

Solution: One Pass for All hashes

1. Sketching: Bin and compute minimum non-zero index in each bin.

 Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

𝝅(𝑺𝟏) 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0

𝝅(𝑺𝟐) 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0

OPH(𝑺𝟏) E 1 E 2 0 1

OPH(𝑺𝟐) E 1 E 0 0 E

2. Fill Empty Bins: Borrow from right (circular) with shift.

 Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

𝑯(𝑺𝟏) 1+C 1 2+C 2 0 1

𝑯(𝑺𝟐) 1+C 1 0+C 0 0 E

Pr (Hj(S1) = Hj(S2)) = R for i = {0, 1, 2..., k}
O(d + k) instead of traditional O(dk) !

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 21 / 27

Solution: One Pass for All hashes

1. Sketching: Bin and compute minimum non-zero index in each bin.

 Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

𝝅(𝑺𝟏) 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 1 0 1 0 0 1 1 0

𝝅(𝑺𝟐) 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 0

OPH(𝑺𝟏) E 1 E 2 0 1

OPH(𝑺𝟐) E 1 E 0 0 E

2. Fill Empty Bins: Borrow from right (circular) with shift.

 Bin 0 Bin 1 Bin 2 Bin 3 Bin 4 Bin 5

𝑯(𝑺𝟏) 1+C 1 2+C 2 0 1

𝑯(𝑺𝟐) 1+C 1 0+C 0 0 1+2C

Pr (Hj(S1) = Hj(S2)) = R for i = {0, 1, 2..., k}
O(d + k) instead of traditional O(dk) !

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 21 / 27

Speedup

200 400 600 800 1000
0

200

400

600

800

1000

Number of Hash Evaluations

R
at

io
WEBSPAM

Figure: Ratio of old and new hashing time indicates a linear time speedup

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 22 / 27

Datasets and Baselines

Table: Datasets

Dataset # Query # Train # Dim nonzeros (mean ± std)
EP2006 2,000 17,395 4,272,227 6072 ± 3208
MNIST 2,000 68,000 784 150 ± 41
NEWS20 2,000 18,000 1,355,191 454 ± 654
NYTIMES 2,000 100,000 102,660 232 ± 114

Competing Schemes

1 Asymmetric minwise hashing (Proposed)

2 Traditional minwise hashing (MinHash)

3 L2 based Asymmetric LSH for Inner products (L2-ALSH)

4 SimHash based Asymmetric LSH for Inner Products (Sign-ALSH)

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 23 / 27

Actual Savings in Retrieval

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n
of

 L
in

ea
r

S
ca

n

Top 5

EP2006

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Recall

F
ra

ct
io

n
of

 L
in

ea
r

S
ca

n Top 5

MNIST

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n
of

 L
in

ea
r

S
ca

n

Top 5

NEWS20

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n
of

 L
in

ea
r

S
ca

n Top 5

NYTimes

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n
of

 L
in

ea
r

S
ca

n

Top 10
EP2006

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

Recall

F
ra

ct
io

n
of

 L
in

ea
r

S
ca

n

Top 10

MNIST

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall
F

ra
ct

io
n

of
 L

in
ea

r
S

ca
n

Top 10

NEWS20

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n
of

 L
in

ea
r

S
ca

n

Top 10

NYTimes

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n
of

 L
in

ea
r

S
ca

n

Top 50
EP2006

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Recall

F
ra

ct
io

n
of

 L
in

ea
r

S
ca

n

Top 50

MNIST

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n
of

 L
in

ea
r

S
ca

n

Top 50

NEWS20

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

F
ra

ct
io

n
of

 L
in

ea
r

S
ca

n

Top 50

NYTimes

MinHash
Proposed
L2−ALSH
Sign−ALSH

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 24 / 27

Ranking Verification

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

Recall (%)

P
re

ci
si

on
 (

%
)

Top 100

32 Hashes

EP2006

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

Recall (%)

P
re

ci
si

on
 (

%
)

Top 100

32 Hashes

MNIST

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

Recall (%)

P
re

ci
si

on
 (

%
)

Top 100
32 Hashes

NEWS20
MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

Recall (%)

P
re

ci
si

on
 (

%
)

Top 100

32 Hashes

NYTimes
MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

Recall (%)

P
re

ci
si

on
 (

%
)

Top 100
64 Hashes

EP2006

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Recall (%)

P
re

ci
si

on
 (

%
)

Top 100
64 Hashes

MNIST MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

Recall (%)
P

re
ci

si
on

 (
%

)

Top 100

64 Hashes

NEWS20
MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

Recall (%)

P
re

ci
si

on
 (

%
)

Top 100

64 Hashes

NYTimes
MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

Recall (%)

P
re

ci
si

on
 (

%
)

Top 100

128 Hashes

EP2006

MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

Recall (%)

P
re

ci
si

on
 (

%
)

Top 100
128 Hashes

MNIST
MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

Recall (%)

P
re

ci
si

on
 (

%
)

Top 100
128 Hashes

NEWS20
MinHash
Proposed
L2−ALSH
Sign−ALSH

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

Recall (%)

P
re

ci
si

on
 (

%
)

Top 100

128 Hashes

NYTimes
MinHash
Proposed
L2−ALSH
Sign−ALSH

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 25 / 27

Conclusions

Minwise hashing has inherent bias towards smaller sets.

Using the recent line of work on asymmetric LSH, we can fix the
existing bias using asymmetric transformations.

Asymmetric minwise hashing leads to an algorithmic improvement
over state-of-the-art hashing scheme for binary MIPS .

We can obtain huge speedups using recent line of work on one
permutation hashing.

The final algorithm performs very well in practice compared to
popular schemes.

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 26 / 27

References

Asymmetric LSH framework and improvements.

Shrivastava & Li “Asymmetric LSH (ALSH) for Sublinear Time
Maximum Inner Product Search (MIPS)”. NIPS 2014

Shrivastava & Li “Improved Asymmetric Locality Sensitive Hashing
(ALSH) for Maximum Inner Product Search (MIPS)”. UAI 2015

Efficient replacements of minwise hashing.

Li et. al. “One Permutation Hashing” NIPS 2012

Shrivastava & Li “Densifying One Permutation Hashing via Rotation
for Fast Near Neighbor Search”. ICML 2014

Shrivastava & Li “Improved Densification of One Permutation
Hashing.” UAI 2014

Minwise hashing is superior to SimHash for binary data.

Shrivastava & Li “In Defense of MinHash over SimHash”
AISTATS 2014

Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 27 / 27

