Asymmetric Minwise Hashing for Indexing Binary Inner Products and Set Containment

Anshumali Shrivastava and Ping Li

Cornell University¹ and Rutgers University

WWW 2015

Florence, Italy

May 21st 2015

¹Will Join Rice Univ. as TT Asst. Prof. Fall 2015 () () () () ()

Anshumali Shrivastava and Ping Li

WWW 2015

Minwise hashing is widely popular for search and retrieval. **Major Complaint:** Document length is unnecessarily penalized.

We precisely fix this and provide a practical solution.

Other consequence: Algorithmic improvement for binary maximum inner product search (MIPS).

Motivation

- Asymmetric LSH for General Inner Products
- Asymmetric Minwise Hashing
- Faster Sampling
- Experimental Results.

- Shingle based representation (Bag-of-Words) widely adopted.
- Document is represented as a set of tokens over a vocabulary Ω.

Example Sentence : "Five Kitchen Berkley". **Shingle Representation (Uni-grams):** {Five, Kitchen, Berkeley} **Shingle Representation (Bi-grams):** {Five Kitchen, Kitchen Berkeley}

- Shingle based representation (Bag-of-Words) widely adopted.
- Document is represented as a set of tokens over a vocabulary Ω.

Example Sentence : "Five Kitchen Berkley".

Shingle Representation (Uni-grams): {Five, Kitchen, Berkeley} Shingle Representation (Bi-grams): {Five Kitchen, Kitchen Berkeley}

Sparse Binary High Dimensional Data Everywhere

- Sets can be represented as binary vector indicating presence/absence.
- Vocabulary is typically huge in practice.
- Modern "Big data" systems use only binary data matrix.

The popular resemblance (Jaccard) similarity between two sets (or binary vectors) $X, Y \subset \Omega$ is defined as:

$$\mathcal{R} = rac{|X \cap Y|}{|X \cup Y|} = rac{a}{f_x + f_y - a},$$

where $a = |X \cap Y|$, $f_x = |X|$, $f_y = |Y|$ and |.| denotes the cardinality.

For binary (0/1) vector representation \iff a set (locations of nonzeros).

$$a = |X \cap Y| = x^T y;$$
 $f_x = nonzeros(x);$ $f_y = nonzeros(y),$

where x and y are the binary vector equivalents of sets X and Y respectively.

The standard practice in the search industry:

Given a random permutation π (or a random hash function) over Ω , i.e.,

$$\pi: \ \Omega \longrightarrow \Omega, \qquad ext{where} \quad \Omega = \{0, 1, ..., D-1\}.$$

The MinHash is given by

$$h_{\pi}(x) = \min(\pi(x))$$

An elementary probability argument shows that

$$\operatorname{Pr}(\min(\pi(X)) = \min(\pi(Y))) = rac{|X \cap Y|}{|X \cup Y|} = \mathcal{R}.$$

- **(**) Uniformly sample a permutation over attributes $\pi : [0, D] \mapsto [0, D]$.
- 2 Shuffle the vectors under π .
- The hash value is smallest index which is not zero.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
S ₁ :	0	1	0	0	1	1	0	0	1	0	0	0	0	0	0	0
S ₂ :	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0
S ₃ :	0	0	0	1	0	0	1	1	0	0	0	0	0	0	1	0

 2 This is very inefficient, we recently found faster ways ICML 2014 and UAI 2014 \sim 0.0

- **(**) Uniformly sample a permutation over attributes $\pi : [0, D] \mapsto [0, D]$.
- 2 Shuffle the vectors under π .
- The hash value is smallest index which is not zero.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
S ₁ :	0	1	0	0	1	1	0	0	1	0	0	0	0	0	0	0	π(S ₁):	0	0	1	0	1	0	0	1	0	0	0	0	0	1	0	0
S ₂ :	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0	π(S ₂):	1	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
S ₃ :	0	0	0	1	0	0	1	1	0	0	0	0	0	0	1	0	π(S ₃):	1	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0

 2 This is very inefficient, we recently found faster ways ICML 2014 and UAI 2014 \sim 0.0

- **(**) Uniformly sample a permutation over attributes $\pi : [0, D] \mapsto [0, D]$.
- 2 Shuffle the vectors under π .
- The hash value is smallest index which is not zero.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
S ₁ :	0	1	0	0	1	1	0	0	1	0	0	0	0	0	0	0		π(S ₁):	0	0	1	0	1	0	0	1	0	0	0	0	0	1	0	0
S ₂ :	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0		π(S ₂):	1	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
S ₃ :	0	0	0	1	0	0	1	1	0	0	0	0	0	0	1	0		π(S ₃):	1	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0
							ł	h_{π}	(5	$\overline{\mathfrak{s}}_1)$) =	=	2,		h	π(<i>S</i> ₂)	= 0,		h	π((S)	3)	=	= ()								

²This is very inefficient, we recently found faster ways ICML-2014 and UAI 2014 on C Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 7 / 27

- **(**) Uniformly sample a permutation over attributes $\pi : [0, D] \mapsto [0, D]$.
- 2 Shuffle the vectors under π .
- The hash value is smallest index which is not zero.

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
S ₁ :	0	1	0	0	1	1	0	0	1	0	0	0	0	0	0	0	π(S ₁):	0	0	1	0	1	0	0	1	0	0	0	0	0	1	0	0
S ₂ :	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0	π(S ₂):	1	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
S ₃ :	0	0	0	1	0	0	1	1	0	0	0	0	0	0	1	0	π(S ₃):	1	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0

$$h_{\pi}(S_1) = 2$$
, $h_{\pi}(S_2) = 0$, $h_{\pi}(S_3) = 0$

For any two binary vectors S_1, S_2 we always have

$$\mathsf{Pr}\left(h_{\pi}(S_1) = h_{\pi}(S_2)\right) = \frac{|S_1 \cap S_2|}{|S_1 \cup S_2|} = R \quad (\mathsf{Jaccard Similarity.}).$$

²This is very inefficient, we recently found faster ways ICML 2014 and UAL 2014 المحرية Anshumali Shrivastava and Ping Li WWW 2015 May 21st 2015 7/27

Locality Sensitive Hashing (LSH) and Sub-linear Search

Locality Sensitive : A family (randomized) of hash functions *h* s.t.

$$Pr_h[h(x) = h(y)] = f(sim(x, y)),$$

where f is monotonically increasing 3 .

MinHash is LSH for Resemblance or Jaccard Similarity

 3 A stronger sufficient condition than the classical one < _ > < _

Locality Sensitive Hashing (LSH) and Sub-linear Search

Locality Sensitive : A family (randomized) of hash functions *h* s.t.

$$Pr_h[h(x) = h(y)] = f(sim(x, y)),$$

where f is monotonically increasing 3 .

MinHash is LSH for Resemblance or Jaccard Similarity

Well Known: Existence of LSH for a similarity \implies fast search algorithms with query time $O(n^{\rho})$, $\rho < 1$ (Indyk & Motwani 98)

The quantity ρ :

- A property dependent *f*.
- Smaller is better.

 3A stronger sufficient condition than the classical one ${\scriptstyle{\triangleleft}}$ = ${\scriptstyle{\vee}}$ ${\scriptstyle{\triangleleft}}$ = ${\scriptstyle{\vee}}$ ${\scriptstyle{\vee}}$

Anshumali Shrivastava and Ping Li

Known Complaints with Resemblance

$$\mathcal{R} = rac{|X \cap Y|}{|X \cup Y|} = rac{a}{f_x + f_y - a},$$

Consider "text" description of two restaurants:

- "Five Guys Burgers and Fries Downtown Brooklyn New York"
 {five, guys, burgers, and, fries, downtown, brooklyn, new, york}
- "Five Kitchen Berkley" {five, kitchen, berkley}

Search Query (Q): "Five Guys" {five, guys}

Known Complaints with Resemblance

$$\mathcal{R} = rac{|X \cap Y|}{|X \cup Y|} = rac{a}{f_x + f_y - a},$$

Consider "text" description of two restaurants:

- "Five Guys Burgers and Fries Downtown Brooklyn New York"
 {five, guys, burgers, and, fries, downtown, brooklyn, new, york}
- "Five Kitchen Berkley"
 {five, kitchen, berkley}

Search Query (Q): "Five Guys" {five, guys}

Resemblance with descriptions:

1
$$|X \cap Q| = 2, |X \cup Q| = 9, \mathcal{R} = \frac{2}{9} = 0.22$$

2
$$|X \cap Q| = 1$$
, $|X \cup Q| = 4$, $\mathcal{R} = \frac{1}{4} = 0.25$

Resemblance penalizes the size of the document.

For many applications (e.g. record matching, plagiarism detection etc.) Jaccard Containment more suited than Resemblance.

Jaccard Containment w.r.t. Q between X and Q

$$\mathcal{J}_{\mathcal{C}} = \frac{|X \cap Q|}{|Q|} = \frac{\mathsf{a}}{f_q}.$$
(1)

Some Observations

- O Does not penalize the size of text.
- Ordering same as the ordering of inner products a (or overlap).
- Solution Desirable ordering in the previous example.

LSH Framework Not Sufficient for Inner Products

Locality Sensitive Requirement:

$$Pr_h[h(x) = h(y)] = f(x^T y),$$

where f is monotonically increasing.

Theorem (Shrivastava and Li NIPS 2014): Impossible for dot products

- For inner products, we can have x and y, s.t. $x^T y > x^T x$. Self similarity is not the highest similarity.
- Under any hash function Pr(h(x) = h(x)) = 1. But we need

Pr(h(x) = h(y)) > Pr(h(x) = h(x)) = 1

LSH Framework Not Sufficient for Inner Products

Locality Sensitive Requirement:

$$Pr_h[h(x) = h(y)] = f(x^T y),$$

where f is monotonically increasing.

Theorem (Shrivastava and Li NIPS 2014): Impossible for dot products

- For inner products, we can have x and y, s.t. $x^T y > x^T x$. Self similarity is not the highest similarity.
- Under any hash function Pr(h(x) = h(x)) = 1. But we need

Pr(h(x) = h(y)) > Pr(h(x) = h(x)) = 1

For Binary Inner Products : Still Impossible

- $x^T y \le x^T x$ is always true.
- We instead need x, y, z such that $x^T y > z^T z$

LSH Framework Not Sufficient for Inner Products

Locality Sensitive Requirement:

$$Pr_h[h(x) = h(y)] = f(x^T y),$$

where f is monotonically increasing.

Theorem (Shrivastava and Li NIPS 2014): Impossible for dot products

- For inner products, we can have x and y, s.t. $x^T y > x^T x$. Self similarity is not the highest similarity.
- Under any hash function Pr(h(x) = h(x)) = 1. But we need

Pr(h(x) = h(y)) > Pr(h(x) = h(x)) = 1

For Binary Inner Products : Still Impossible

- $x^T y \le x^T x$ is always true.
- We instead need x, y, z such that $x^T y > z^T z$

Hopeless to find Locality Sensitive Hashing!

Shrivastava and Li (NIPS 2014): Despite no LSH, Maximum Inner Product Search (MIPS) is still efficient via an extended framework Shrivastava and Li (NIPS 2014): Despite no LSH, Maximum Inner Product Search (MIPS) is still efficient via an extended framework

Asymmetric LSH Framework : Idea

- Construct two transformations P(.) and Q(.) ($P \neq Q$) along with a randomized hash functions h.
- \bigcirc P(.), Q(.) and h satisfies

$$Pr_h[h(P(x)) = h(Q(q))] = f(x^T q)$$
, f is monotonic

Small things that made BIG difference

Shrivastava and Li NIPS 2014 construction (L2-ALSH)

- P(x): Scale data to shrink norms < 0.83. Append ||x||², ||x||⁴, and ||x||⁸ to vector x. (just 3 scalars)
- **Q**(q): Normalize. Append three 0.5 to vector q.
- **(a)** h: Use standard LSH family for L_2 distance.

Caution: Scaling is asymmetry in strict sense, it changes the distribution (e.g. variance) of hashes.

First Practical and Provable Algorithm for General MIPS :

Anshumali Shrivastava and Ping Li

The Recipe:

- Start with a similarity S'(q, x) for which we have an LSH (or ALSH).
- Design P(.) and Q(.), such that $\mathcal{S}'(Q(q), P(x))$ is monotonic in $q^T x$
- Use extra dimensions.

Improved ALSH (Sign-ALSH) Construction for General MIPS $S'(q, x) = \frac{q^T x}{||q||_2 ||x||_2}$ and Simhash⁴. (Shrivastava and Li UAI 2015)

	Sign-ALSH	L2-ALSH	Cone Trees
MNIST	7,944	9,971	11,202
WEBSPAM	2,866	3,813	22,467
RCV1	9,951	11,883	38,162

⁴Expected after Shrivastava and Li ICML 2014 "Codings for Random Projections" and

Binary MIPS: A Sampling based ALSH

Idea: Sample index *i*, if $x_i = 1$ and $q_i = 1$, make hash collision, else not.

$$\mathcal{H}_{S}(f(x)) = \begin{cases} 0 & \text{if } x_{i} = 1, \text{ } i \text{ drawn uniformly} \\ 1 & \text{if } f = Q \text{ (for query)} \\ 2 & \text{if } f = P \text{ (while preprocessing)} \end{cases}$$

$$Pr(\mathcal{H}_{\mathcal{S}}(P(x)) = \mathcal{H}_{\mathcal{S}}(Q(y))) = \frac{a}{D},$$

 $\frac{a}{D}$ is monotonic in inner product *a*.

Problems:

- **(**) Only informative if $x_i = 1$, else hash just indicates query or not.
- ② Sparse data, with $D \gg f$, $\frac{a}{D} \simeq 0$, almost all hashes are un-informative.

A Closer Look at MinHash

Collision Probability:

$$Pr(h_{\pi}(x) = h_{\pi}(q)) = rac{\mathsf{a}}{f_x + f_q - \mathsf{a}} \gg rac{\mathsf{a}}{D} \simeq 0$$

Useful: $\frac{a}{f_x+f_q-a}$ very sensitive w.r.t *a* compared to $\frac{a}{D}$. $(D \gg f)$ The core reason why MinHash is better than random sampling.

Problem: $\frac{a}{f_x+f_q-a}$ is not monotonic in *a* (inner product). **Not LSH for binary inner product.** (Though a good heuristic !)

Why we are biased in favor of MinHash ? :

- SL "In defense of MinHash over Simhash" AISTATS 2014 ⇒ For binary data MinHash is provably superior than SimHash.
- Already some hope to beat state-of-the-art Sign-ALSH for Binary Data

The Fix: Asymmetric Minwise Hashing

Let M be the maximum sparsity of the data vectors.

$$M = \max_{x \in \mathcal{C}} |x|$$

Define $P: [0,1]^D \rightarrow [0,1]^{D+M}$ and $Q: [0,1]^D \rightarrow [0,1]^{D+M}$ as:

 $P(x) = [x; 1; 1; 1; ...; 1; 0; 0; ...; 0] \quad M - f_x \text{ 1s and } f_x \text{ zeros}$ $Q(q) = [x; 0; 0; 0; ...; 0], \quad M \text{ zeros}$

The Fix: Asymmetric Minwise Hashing

Let M be the maximum sparsity of the data vectors.

$$M = \max_{x \in \mathcal{C}} |x|$$

Define $P: [0,1]^D \rightarrow [0,1]^{D+M}$ and $Q: [0,1]^D \rightarrow [0,1]^{D+M}$ as:

$$P(x) = [x; 1; 1; 1; ...; 1; 0; 0; ...; 0] \quad M - f_x \text{ 1s and } f_x \text{ zeros}$$
$$Q(q) = [x; 0; 0; 0; ...; 0], \quad M \text{ zeros}$$

After Transformation:

 $R' = \frac{|P(x) \cap Q(q)|}{|P(x) \cup Q(q)|} = \frac{a}{M + f_q - a},$ monotonic in the inner product *a*

Also, $M + f_q - a \ll D$ (M of order of sparsity, handle outliers separately.)

Note : To get rid of f_q change P(.) to P(Q(.)) and Q(.) to Q(P(.)).

Asymmetric Minwise Hashing: Alternative View

$$P'(x) = [x; M - f_x; 0]$$
$$Q'(x) = [x; 0; M - f_x]$$

The weighted Jaccard between P'(x) and Q'(q) is

$$\mathcal{R}_W = \frac{\sum_i \min(P'(x)_i, Q'(q)_i)}{\sum_i \max(P'(x)_i, Q'(q)_i)} = \frac{a}{2M - a}.$$

Fast Consistent Weighted Sampling (CWS) to get asymmetric MinHash in $O(f_x)$ time instead of O(2M) where $M \ge f_x$.

Asymmetric Minwise Hashing: Alternative View

$$P'(x) = [x; M - f_x; 0]$$

 $Q'(x) = [x; 0; M - f_x]$

The weighted Jaccard between P'(x) and Q'(q) is

$$\mathcal{R}_W = \frac{\sum_i \min(P'(x)_i, Q'(q)_i)}{\sum_i \max(P'(x)_i, Q'(q)_i)} = \frac{a}{2M - a}.$$

Fast Consistent Weighted Sampling (CWS) to get asymmetric MinHash in $O(f_x)$ time instead of O(2M) where $M \ge f_x$.

Alternative View:

- $M f_x$ favors larger documents in proportion to $-f_x$, which cancels the inherent bias of minhash towards smaller set.
- A novel bias correction, which works well in practice.

Theoretical Comparisons

Collision probability monotonic in inner product \implies asymmetric minwise hashing is an ALSH for binary MIPS.

Theoretical Comparisons

Collision probability monotonic in inner product \implies asymmetric minwise hashing is an ALSH for binary MIPS.

Asymmetric Minwise Hashing is significantly better than Sign-ALSH (SL UAI 2015) (Expected after SL AISTATS 2014)

Anshumali Shrivastava and Ping Li

May 21st 2015 19 / 27

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
S ₁ :	0	1	0	0	1	1	0	0	1	0	0	0	0	0	0	0	
S ₂ :	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0	
S ₃ :	0	0	0	1	0	0	1	1	0	0	0	0	0	0	1	0	

Image: Image:

э

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
S ₁ :	0	1	0	0	1	1	0	0	1	0	0	0	0	0	0	0		π(S ₁):	0	0	1	0	1	0	0	1	0	0	0	0	0	1	0	0
S ₂ :	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0		π(S ₂):	1	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
S ₃ :	0	0	0	1	0	0	1	1	0	0	0	0	0	0	1	0		π(S ₃):	1	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0
							ŀ	n_{π}	(5	(5_1)) =	_	2,		h	π(S_2)	0 = 0,		h	π	(S)	3)	=	= ()								

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
S ₁ :	0	1	0	0	1	1	0	0	1	0	0	0	0	0	0	0		π(S ₁):	0	0	1	0	1	0	0	1	0	0	0	0	0	1	0	0
S ₂ :	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0		π(S ₂):	1	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
S ₃ :	0	0	0	1	0	0	1	1	0	0	0	0	0	0	1	0		π(S ₃):	1	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0
							ŀ	h_{π}	(5	5_{1}) =	_	2,		h	π(S_2)	= 0,		h	π	(S)	3)	=	= ()								

Process the entire vector to compute one minhash O(d).

- Search time is dominated by the hashing query. O(KLd)
- Training and Testing time dominated by the hashing time. O(kd)

Parallelization possible but not energy efficient. (LSK WWW 2012)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15			0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
S ₁ :	0	1	0	0	1	1	0	0	1	0	0	0	0	0	0	0		π(S ₁):	0	0	1	0	1	0	0	1	0	0	0	0	0	1	0	0
S ₂ :	0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0		π(S ₂):	1	0	0	1	0	0	1	0	0	0	0	0	0	1	0	0
S ₃ :	0	0	0	1	0	0	1	1	0	0	0	0	0	0	1	0		π(S ₃):	1	1	0	0	0	0	0	0	0	0	1	0	1	0	0	0
							ŀ	h_{π}	(5	5_{1}) =	_	2,		h	π(S_2)	= 0,		h	π	(S)	3)	=	= ()								

Process the entire vector to compute one minhash O(d).

- Search time is dominated by the hashing query. O(KLd)
- Training and Testing time dominated by the hashing time. O(kd)

Parallelization possible but not energy efficient. (LSK WWW 2012)

Storing only the minimum seems quite wasteful.

$\pi(S_1)$	0000 0101	0000 0011	1010 0110
$\pi(S_2)$	0000 0111	0000 1010	1100 0000

	Bin 0	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5
$\pi(S_1)$	0000	0101	0000	0011	1010	0110
$\pi(S_2)$	0000	0111	0000	1010	1100	0000

	Bin 0	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5
$\pi(S_1)$	0000	0 <u>1</u> 0 1	0000	0 0 <u>1</u> 1	<u>1</u> 010	0 <u>1</u> 1 0
π(S ₂)	0000	0 <u>1</u> 1 1	0000	<u>1</u> 010	<u>1</u> 100	0000

	Bin 0 Bin 1		Bin 2	Bin 3	Bin 4	Bin 5
$\pi(S_1)$	0000	0 <u>1</u> 0 1	0000	0 0 <u>1</u> 1	<u>1</u> 010	0 <u>1</u> 1 0
π(S ₂)	0000	0 <u>1</u> 1 1	0000	<u>1</u> 010	<u>1</u> 100	0000
OPH (<i>S</i> ₁)	E	1	E	2	0	1
OPH (<i>S</i> ₂)	Ε	1	E	0	0	E

1. Sketching: Bin and compute minimum non-zero index in each bin.

	Bin 0	in 0 Bin 1 Bin 2		Bin 3	Bin 4	Bin 5
$\pi(S_1)$	0000	0 <u>1</u> 0 1	0000	0 0 <u>1</u> 1	<u>1</u> 010	0 <u>1</u> 1 0
π(S ₂)	0000	0 <u>1</u> 1 1	0000	<u>1</u> 010	<u>1</u> 100	0000
OPH(<i>S</i> ₁)	E	1	E	2	0	1
OPH(<i>S</i> ₂)	Ε	1	E	0	0	E

	Bin 0	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5
<i>H</i> (<i>S</i> ₁)	Ε	1	Ε	2	0	1
<i>H</i> (<i>S</i> ₂)	E	1	Ε	0	0	E

1. Sketching: Bin and compute minimum non-zero index in each bin.

	Bin 0	in 0 Bin 1 Bin 2		Bin 3	Bin 4	Bin 5
$\pi(S_1)$	0000	0 <u>1</u> 0 1	0000	0 0 <u>1</u> 1	<u>1</u> 010	0 <u>1</u> 1 0
π(S ₂)	0000	0 <u>1</u> 1 1	0000	<u>1</u> 010	<u>1</u> 100	0000
OPH(<i>S</i> ₁)	E	1	E	2	0	1
OPH(<i>S</i> ₂)	Ε	1	E	0	0	E

	Bin 0	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5
<i>H</i> (<i>S</i> ₁)	E 🔶	—1	Ε	2	0	1
<i>H</i> (<i>S</i> ₂)	Ε	1	Ε	0	0	E

1. Sketching: Bin and compute minimum non-zero index in each bin.

	Bin 0	in 0 Bin 1 Bin 2		Bin 3	Bin 4	Bin 5
$\pi(S_1)$	0000	0 <u>1</u> 0 1	0000	0 0 <u>1</u> 1	<u>1</u> 010	0 <u>1</u> 1 0
π(S ₂)	0000	0 <u>1</u> 1 1	0000	<u>1</u> 010	<u>1</u> 100	0000
OPH(<i>S</i> ₁)	E	1	E	2	0	1
OPH(<i>S</i> ₂)	Ε	1	E	0	0	E

	Bin 0	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5
<i>H</i> (<i>S</i> ₁)	1+C ←	—1	Ε	2	0	1
<i>H</i> (<i>S</i> ₂)	Ε	1	Ε	0	0	E

1. Sketching: Bin and compute minimum non-zero index in each bin.

	Bin 0	Bin 1 Bin 2		Bin 3	Bin 4	Bin 5
π(S ₁)	0000	0 <u>1</u> 0 1	0000	0 0 <u>1</u> 1	<u>1</u> 010	0 <u>1</u> 1 0
π(S ₂)	0000	0 <u>1</u> 1 1	0000	<u>1</u> 010	<u>1</u> 100	0000
OPH (<i>S</i> ₁)	Ε	1	Ε	2	0	1
OPH(<i>S</i> ₂)	Ε	1	E	0	0	E

	Bin 0	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5
<i>H</i> (<i>S</i> ₁)	1+C ←	1	2+C 🖛	 2	0	1
<i>H</i> (<i>S</i> ₂)	1+C ←	1	0+C <	0	0	E

1. Sketching: Bin and compute minimum non-zero index in each bin.

	Bin 0	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5
π(S ₁)	0000	0 <u>1</u> 0 1	0000	0 0 <u>1</u> 1	<u>1</u> 010	0 <u>1</u> 1 0
π(S ₂)	0000	0 <u>1</u> 1 1	0000	<u>1</u> 010	<u>1</u> 100	0000
OPH (<i>S</i> ₁)	Ε	1	E	2	0	1
OPH(<i>S</i> ₂)	Ε	1	E	0	0	E

2. Fill Empty Bins: Borrow from right (circular) with shift.

	Bin 0	Bin 1	Bin 2	Bin 3	Bin 4	Bin 5
<i>H</i> (<i>S</i> ₁)	1+C 🖛	—1	2+C ←	 2	0	1
<i>H</i> (<i>S</i> ₂)	1+C ←	1	0+C ←	0	0	1+2C
						2

• $\Pr(\mathcal{H}_j(S_1) = \mathcal{H}_j(S_2)) = R \text{ for } i = \{0, 1, 2..., k\}$

• O(d+k) instead of traditional O(dk) !

Figure: Ratio of old and new hashing time indicates a linear time speedup

Table: Datasets

Dataset	# Query	# Train	# Dim	nonzeros (mean \pm std)
EP2006	2,000	17,395	4,272,227	6072 ± 3208
MNIST	2,000	68,000	784	150 ± 41
NEWS20	2,000	18,000	1,355,191	454 ± 654
NYTIMES	2,000	100,000	102,660	232 ± 114

Competing Schemes

- Asymmetric minwise hashing (Proposed)
- Iraditional minwise hashing (MinHash)
- I2 based Asymmetric LSH for Inner products (L2-ALSH)
- SimHash based Asymmetric LSH for Inner Products (Sign-ALSH)

Actual Savings in Retrieval

Anshumali Shrivastava and Ping Li

WWW 2015

May 21st 2015 24 / 27

Ranking Verification

Anshumali Shrivastava and Ping Li

WWW 2015

May 21st 2015 25 / 27

- Minwise hashing has inherent bias towards smaller sets.
- Using the recent line of work on asymmetric LSH, we can fix the existing bias using asymmetric transformations.
- Asymmetric minwise hashing leads to an algorithmic improvement over state-of-the-art hashing scheme for binary MIPS .
- We can obtain huge speedups using recent line of work on one permutation hashing.
- The final algorithm performs very well in practice compared to popular schemes.

References

Asymmetric LSH framework and improvements.

- Shrivastava & Li "Asymmetric LSH (ALSH) for Sublinear Time Maximum Inner Product Search (MIPS)". NIPS 2014
- Shrivastava & Li "Improved Asymmetric Locality Sensitive Hashing (ALSH) for Maximum Inner Product Search (MIPS)". **UAI 2015**

Efficient replacements of minwise hashing.

- Li et. al. "One Permutation Hashing" NIPS 2012
- Shrivastava & Li "Densifying One Permutation Hashing via Rotation for Fast Near Neighbor Search". **ICML 2014**
- Shrivastava & Li "Improved Densification of One Permutation Hashing." UAI 2014

Minwise hashing is superior to SimHash for binary data.

 Shrivastava & Li "In Defense of MinHash over SimHash" AISTATS 2014