
Stream Processor Architecture

by

Scott Rixner
Rice University

ii Stream Processor Architecture

iv Stream Processor Architecture

Contents
Foreword... ix

Acknowledgements...xiii

1 Introduction... 1

1.1 Stream Architecture..2
1.1.1 Stream Programming ...2
1.1.2 Bandwidth Hierarchy ...4
1.1.3 Parallel Processing ..6

1.2 The Imagine Media Processor..7

1.3 Contributions..9

1.4 Overview ..9

2 Background.. 11

2.1 Special-purpose Media Processors...11

2.2 Programmable Media Processors ...12

2.3 Vector Processors ...13
v

STREAM PROCESSOR ARCHITECTURE
2.4 Stream Processors ..13

2.5 Storage Hierarchy...14

2.6 DRAM Access Scheduling...15

2.7 Summary ..16

3 Media Processing Applications 19

3.1 Media Processing ...19

3.2 Sample Applications ..20
3.2.1 Stereo Depth Extraction ...20
3.2.2 MPEG2 Encoding ..20
3.2.3 QR Matrix Decomposition ...21
3.2.4 Space-time Adaptive Processing ..21
3.2.5 Polygon Rendering...21

3.3 Application Characteristics ..22
3.3.1 Operations..22
3.3.2 Global Data..23
3.3.3 Compute Intensity...24
3.3.4 Summary...24

4 The Imagine Stream Processor 27

4.1 Stream Processing ..28
4.1.1 Stream Programming ...29
4.1.2 MPEG2 I-frame Encoding ...30

4.2 Architecture..34
4.2.1 Stream Register File (SRF) ..35
4.2.2 Arithmetic Clusters...37
4.2.3 Microcontroller ..39
4.2.4 Streaming Memory System ...40
4.2.5 Network Interface...42
4.2.6 Stream Controller ...43
4.2.7 Host Processor ...43

4.3 Programming Model ..44
4.3.1 Stream-level Programming ..44
4.3.2 Kernel-level Programming...47

4.4 Implementation...48
vi

CONTENTS
4.5 Scalability and Extensibility...50
4.5.1 Scalability...50
4.5.2 Extensibility..51

5 Data Bandwidth Hierarchy .. 53

5.1 Overview ..53

5.2 Communication Bottlenecks ..56
5.2.1 Register File Structure ...58
5.2.2 Cache Hierarchy ..58
5.2.3 DRAM...59

5.3 Register Organization...60

5.4 Evaluation...64
5.4.1 Kernel Comparison ..65
5.4.2 Application Evaluation...72
5.4.3 Application Bandwidth Demands...75
5.4.4 Bandwidth Sensitivity ...78
5.4.5 Arithmetic Unit Utilization...79

5.5 Summary ..82

6 Memory Access Scheduling.. 83

6.1 Overview ..84
6.1.1 Stream Memory Transfers ..84
6.1.2 Memory Access Scheduling..86

6.2 Modern DRAM ..88

6.3 Memory Access Scheduling...92
6.3.1 Architecture ..92
6.3.2 Algorithms ..94

6.4 Evaluation...96
6.4.1 Microbenchmarks...96
6.4.2 Memory Demands ..100
6.4.3 Application Performance ...101

6.5 Summary ..105
vii

STREAM PROCESSOR ARCHITECTURE
7 Conclusions .. 107

7.1 Imagine Summary ..108

7.2 Future Architectures ...109

References .. 113

Index... 119
viii

 Foreword
We stand at the brink of a revolution in computer architecture. The conventional (von
Neumann) processor architecture that has reigned for over 50 years is likely to be
replaced over the next decade. This pending revolution is driven by two factors: the
wire-limited nature of emerging semiconductor technology and the trend toward
media applications. Professor Rixner, in this monograph, shows how architecture can
evolve to match emerging technology to demanding media applications.

Advancing semiconductor technology enables us to pack an enormous amount of
arithmetic capability on a single chip but also limits the communication latency and
bandwidth both on and off chip. As wire widths shrink the delay of wires dominates
the delay of transistors and gates. These trends place a premium on locality – to mini-
mize communication – and concurrency – to make use of the large numbers of arith-
metic units. Conventional processors can exploit neither locality nor concurrency.
They have a single arithmetic unit and lump all storage at a given level (e.g., registers,
cache, main memory) together — rather than localizing storage near its point of use.

Media applications also change the equation. Compared to conventional applications
– for which processors have been tuned over decades – they have little spatial or tem-
poral locality – a pixel of an image is often visited exactly once – and hence are
poorly matched to conventional cache-based memory systems. They make use of
low-precision fixed-point data types (16-bits is typical) as opposed to the high-preci-
sion (64-bit) data of scientific applications. They also have enormous amounts of data
parallelism – all pixels can be processed in parallel – so they can tolerate considerable
latency.
ix

STREAM PROCESSOR ARCHITECTURE
In this monograph, Professor Rixner shows how a stream processor architecture is
ideally suited for applying emerging, wire-limited semiconductor technology to
media applications. Stream processors operate by passing streams of data records
through computation kernels. Operating on streams allows the concurrency of modern
technology to be applied to the data parallelism of media applications. Explicitly
dividing the application into kernels exposes locality on two levels. At one level, data
within each kernel is entirely local to the kernel and can be kept entirely in local reg-
isters. At the next level, a stream generated by one kernel and consumed in the next
can be passed through stream register file so it consumes no memory bandwidth —
even if each pixel is only touched once. Stream processing shares its ability to exploit
concurrency with vector processing. It is distinguished from vector processing in its
ability to exploit locality.

Professor Rixner explores stream processing in the context of the Imagine stream pro-
cessor which was developed in my research group at MIT and Stanford from 1996 to
2001. As described in Chapter 4 of this monograph, Imagine is a load-store architec-
ture for streams. All operations pass streams into and out of a stream register file
(SRF) that serves as a nexus for the processor. Load and store operations pass streams
of records – not words or vectors – between memory and the SRF. Network opera-
tions send and receive streams of records. Finally, arithmetic kernels operate on one
or more streams from the SRF generating new streams that are in turn written to the
SRF. Professor Rixner explains this stream architecture in detail and shows how it
efficiently supports the abstraction of stream programming.

After reviewing stream architecture and the Imagine stream processor, Professor Rix-
ner addresses two aspects of optimizing bandwidth in stream processors: the use of a
bandwidth hierarchy and the optimization of DRAM accesses. In Chapter 5, Professor
Rixner shows how organizing storage into three levels – local registers, stream regis-
ters, and memory – can supply a large number of function units with data. The band-
width hierarchy results in most data movement occurring where bandwidth is
inexpensive – between local registers and adjacent ALUs. With order of magnitude
reductions in bandwidth moving out to the stream registers and to memory respec-
tively. This organization enables a relatively modest 2GB/s memory system in Imag-
ine to support an ALU complex that can demand over 500GB/s of local bandwidth.

Memory access scheduling reorders memory operations to maximize the bandwidth
realized from a conventional DRAM. Modern dynamic random access memories are
in fact not random access. Their bandwidth and latency depends strongly on the
access pattern. In Chapter 6, Professor Rixner shows that reordering memory opera-
tions to match the internal structure of the DRAMs can result in significant bandwidth
improvement.
x

FOREWARD
Stream processing is in its infancy, but it promises to be a major force in the coming
decade. As the Imagine project moves toward completion and a working prototype
the next steps in the evolution of stream processing are already taking shape. Major
CPU vendors are evaluating the use of stream processors as media co-processors for
conventional CPUs. Stream processing is being considered for a new generation of
supercomputing. Also, researchers are looking at ways to generalize stream process-
ing to make it applicable to a wider range of applications.

In this monograph, Professor Rixner gives the reader an accessible introduction to the
emerging field of stream processing along with a scientific exploration of key band-
width issues affecting the architecture of stream processing. Readers wanting to join
the upcoming revolution in computer architecture are encouraged to read on.

William J. Dally
Stanford University
Palo Alto, California
August 1, 2001
xi

STREAM PROCESSOR ARCHITECTURE
xii

 Acknowledgements
A victorious army first wins and then seeks battle; a defeated army first battles and
then seeks victory.

-Sun Tzu, The Art of War

I would like to thank Professor William J. Dally, to whom I am greatly indebted. He
has an amazing ability to only fight the battles worth fighting which shows in the
quality of his research program. I can only hope that some of that ability has rubbed
off on me. Bill has provided me with countless opportunities to lead and to learn that I
doubt I would have found otherwise. I am thankful to Bill for giving me the opportu-
nity to take a leadership role on the Imagine project, which while not always easy,
was a tremendous experience. Bill also gave me the opportunity to spend several
years at Stanford University, and while I may not have embraced Stanford, the time I
spent there was invaluable. Thanks also to the members of my thesis committee at
MIT, Professors Leonard McMillan and Donald Troxel.

The Imagine project is the work of many, and this research would not have been pos-
sible without the contributions of others. I would like to thank the Imagine team:
Ujval Kapasi, Brucek Khailany, Peter Mattson, John Owens, and many others who
contributed along the way. We are all grateful to each other for pulling together to
make such an ambitious project successful.
xiii

STREAM PROCESSOR ARCHITECTURE
Many thanks go to my officemates Steve Keckler and Kelly Shaw. They not only put
up with me all of those years, but also made my days as a graduate student enjoyable.
I only hope I did the same for them.

I would also like to thank those who helped with the preparation of this document.
Shelley Russell typed early versions of many chapters and proofread the final docu-
ment. Without her help, my wrists may not have lasted to allow me to finish writing.
Kelly Shaw spent countless hours proofreading all of the chapters at least once. Her
comments significantly improved the overall quality of the writing.

My family has supported me throughout the process. There were many struggles and
many accomplishments along the way, but through them all, they were always there.
Thanks.

The research described here was supported by the Defense Advanced Research
Projects Agency under ARPA order E254 and monitored by the Army Intelligence
Center under contract DABT63-96-C-0037.
xiv

CHAPTER 1 Introduction
Media processing applications, such as three-dimensional graphics, video compres-
sion, and image processing, demand very high arithmetic rates. To meet the demands
of these applications, a programmable media processor must support tens to hundreds
of arithmetic units. In modern VLSI, hundreds of arithmetic units can easily fit on a
modestly sized 1cm2 chip. The challenge, however, is to efficiently provide the neces-
sary data bandwidth to keep those units busy. A stream architecture, which includes a
data bandwidth hierarchy, enables a programmable media processor implemented in
modern VLSI technology to efficiently provide data bandwidth for tens to hundreds
of arithmetic units.

Applications must make efficient use of the available bandwidth in order to achieve
high sustained computation rates. Media processing applications can naturally be
expressed as a sequence of computation kernels that operate on data streams. These
stream programs map easily and efficiently to the data bandwidth hierarchy of the
stream architecture. This enables media processing applications to utilize inexpensive
local data bandwidth when possible, and consume expensive global data bandwidth
only when necessary.

The Imagine media processor implements a stream architecture to provide high sus-
tained media processing performance. Imagine supports 48 arithmetic units with a
three-tiered data bandwidth hierarchy, yielding a peak computation rate of 20 billion
floating-point operations per second (GFLOPS). Applications are able to sustain a
significant fraction of this peak rate. For example, QR matrix decomposition, useful
Introduction 1

Introduction
in many signal processing applications, can be performed on Imagine at a sustained
rate of 12.5GFLOPS.

1.1 Stream Architecture

The stream programming model exposes the locality and concurrency in media pro-
cessing applications. In this model, applications are expressed as a sequence of com-
putation kernels that operate on streams of data. A kernel is a small program that is
repeated for each successive element in its input streams to produce output streams
that are fed to subsequent kernels. Each data stream is a variable length collection of
records, where each record is a logical grouping of media data. For example, a record
could represent a triangle vertex in a polygon rendering application or a pixel in an
image processing application. A data stream would then be a sequence of hundreds of
these vertices or pixels. In the stream programming model, locality and concurrency
are exposed both within a kernel and between kernels.

1.1.1 Stream Programming

To illustrate the stream programming model, consider the stream program for the
intracoded frame (I-frame) encoder of an MPEG2 encoder. An MPEG2 encoder takes
a video sequence as input and compresses the sequence of images into a single bit
stream consisting of the following three types of frames: intracoded (I), predicted (P),
and bidirectional (B). I-frames are compressed using only information contained in
the current frame. P- and B-frames are compressed using information from the cur-
rent frame and additional reference frames. This example application will be dis-
cussed further in subsequent chapters.

Figure 1.1 shows the kernel operations and stream data flow required to encode an I-
frame. In the figure, the ovals represent computation kernels, the solid lines represent
data streams, and the dashed lines represent scalar feedback. For example, the first
kernel of the application, color conversion, takes one input stream, which is com-
posed of the pixels of the original image in RGB format, and generates two output
streams, which contain the luminance and the chrominance of the image.

The operations within each kernel are performed locally and independently on each
stream element. Temporary data generated during the processing of each stream ele-
ment does not need to be referenced during the processing of other stream elements or
outside of the kernel. For example, the computations required to convert a pixel from
2 Stream Processor Architecture

Stream Architecture
RGB format to luminance and chrominance generate numerous temporary values.
These temporaries do not affect other pixels and will never be referenced again after
the pixel is converted. Therefore, that data is local to the kernel while it is processing
each pixel in its input stream. Also, since the processing of each stream element is
largely independent of the processing of other stream elements, multiple elements can
be processed concurrently by the kernels. For instance, given enough hardware, the
color conversion kernel could convert every pixel in the input image simultaneously,
as the calculations for each pixel do not depend on the calculations for any other
pixel.

As can be seen in the figure, kernels communicate between each other by passing data
streams from one kernel to the next. The color conversion kernel, for example passes
a stream of luminance values to the Discrete Cosine Transform (DCT) kernel. These
localized stream transfers replace arbitrary global data references, yielding simple,
regular communication patterns among kernels. Since kernels only pass data streams
from one kernel to the next, multiple kernels can also operate concurrently on succes-
sive data streams in a pipelined fashion. One processor could convert the stream of
RGB pixels into luminance and chrominance values in batches of several hundred
pixels, while another processor could simultaneously transform previously converted
batches of pixels into the frequency domain using the DCT.

FIGURE 1.1 I-Frame Encoding from MPEG2 Encoder

Color
Conversion

DCT

DCT IDCT

IDCT

Run-Level
Encoding

Variable
Length
Coding

Input Image
Luminance

Chrominance
Luminance Reference

Chrominance Reference

Bitstream

Rate Control

Kernels

Streams

Scalar
Feedback
Introduction 3

Introduction
1.1.2 Bandwidth Hierarchy

A stream architecture can exploit the locality inherent in media processing applica-
tions when they are expressed in the stream programming model. A stream architec-
ture is organized around a three-tiered bandwidth hierarchy that includes a streaming
memory system, a global stream register file, and local register files that feed the
arithmetic units.

Figure 1.2 shows how the MPEG2 I-Frame encoder maps to the three-tiered band-
width hierarchy. The figure also shows the number of bytes that are referenced by the
application at each level of the hierarchy while a single frame is encoded. The seven
computation kernels of the application execute on the arithmetic clusters, as shown in
the figure. During the execution of each kernel, all of the temporary data that is com-
puted and referenced during the course of the kernel is kept in the local register files.
The stream register file is only referenced to read the kernel’s inputs and to write the
kernel’s outputs. Also, data streams that are passed from kernel to kernel are stored
within the stream register file and do not need to return to memory.

The highest level of the bandwidth hierarchy, the local distributed register files within
the arithmetic clusters, exploits the locality within a kernel. Local register files are
small, contain few ports, and are close to the arithmetic units. This enables them to
collectively provide high data bandwidth cheaply and efficiently. Local data within a
kernel can be stored in these register files so that it can be accessed frequently and
quickly. The figure shows that the I-frame encoder references 154.4MB of data within
these local register files. For example, all temporary values generated by the color
conversion kernel in the process of converting pixels are stored in local registers.
Since this data is not accessed outside of the kernel, it does not need to be stored in
more expensive global storage. This allows kernels to utilize inexpensive local band-
width when possible and only rely on more expensive global bandwidth when neces-
sary.

In contrast, the arithmetic units in a conventional microprocessor are connected
directly to a global register file. This forces the arithmetic units to consume expensive
global data bandwidth to access local data. For example, to perform an FIR filter,
Texas Instruments’ TMS320C6203 ('C6) digital signal processor [TH97] accesses
about 664 bytes of data per filter output in the global register file. The 'C6 consumes
24.9GB/s of data bandwidth out of that register file to achieve a sustained perfor-
mance of 1 billion operations per second (GOPS). The Imagine stream processor,
however, makes use of a bandwidth hierarchy to reduce the global data bandwidth
demands. To perform the same FIR filter, Imagine only accesses about 4 bytes of data
per filter output in the global register file. Instead of using global resources, tempo-
4 Stream Processor Architecture

Stream Architecture
rary data is stored and accessed in local register files. The consumption of global data
bandwidth is drastically reduced to 2.6GB/s. By using over 273GB/s of inexpensive
local data bandwidth, Imagine is able to achieve a performance of over 17GOPS.

The center of the bandwidth hierarchy, the stream register file, exploits the locality
between kernels. The stream register file is a large global register file that allows data
to be accessed sequentially as streams by the arithmetic clusters and the memory sys-
tem. Kernels consume their input streams from the stream register file and store their

FIGURE 1.2 I-Frame Encoding from MPEG2 Encoder

Color
Conversion

DCT

DCT

IDCT

IDCT

Run-Level
Encoding

Variable
Length
Coding

Arithmetic ClustersStream Register FileMemory (or I/O)

Input
Image

RGB
Pixels

Luminance
Pixels

Transformed
Luminance

Luminance
Reference

Encoded
Bitstream

RLE Stream

Bitstream

Reference
Chrominance

Image

Reference
Luminance

Image

Chrominance
Pixels

Transformed
Chrominance

Chrominance
Reference

Data Referenced: 835KB 4.8MB 154.4MB

Memory
Bandwidth

SRF
Bandwidth
Introduction 5

Introduction
produced output streams back to the stream register file. These output streams then
become the input streams of subsequent kernels, enabling the stream register file to
exploit the locality of stream recirculation. When a kernel finishes processing its
streams, its outputs remain in the stream register file to be used as inputs for another
kernel. For example, the luminance values that are generated by the color conversion
kernel are stored in the stream register file until they can be processed by the DCT
kernel; they never return to memory. The figure shows that the I-frame encoder refer-
ences 4.8MB of data within the stream register file. This is 32 times fewer references
than are made to the local register files. Storing intermediate streams in the global
stream register file eliminates costly memory references, allowing stream programs to
utilize global bandwidth when possible and rely on more expensive memory band-
width only when necessary.

The lowest level of the bandwidth hierarchy, the streaming memory system, is uti-
lized for global data storage. In the I-frame encoder, no intermediate data generated in
the encoding process of the current frame is stored to memory. The only memory ref-
erences that the application performs are to read the original, unencoded image, to
write the final encoded bit stream, and to write the reference images that will be used
to encode future P- or B-frames, resulting in 835KB of memory references. About six
times less data is referenced in memory than in the stream register file and about 189
times less data is referenced in memory than in the local register files for this applica-
tion.

1.1.3 Parallel Processing

A stream architecture can also exploit the concurrency inherent in media processing
applications when they are expressed in the stream programming model. The band-
width hierarchy scales the data bandwidth across multiple levels to support large
numbers of arithmetic units. These arithmetic units are organized into single-instruc-
tion, multiple-data (SIMD) clusters that perform identical computations on different
data elements. Each cluster contains multiple arithmetic units that are controlled by a
very long instruction word (VLIW). The arithmetic clusters store temporary data
locally, but transfer global data into and out of the stream register file. To enable mul-
tiple stream processors to be interconnected, the stream register file also connects to a
network interface. The network interface allows entire data streams to be transferred
from the stream register file of one processor to the stream register file of another pro-
cessor through an external network.

The SIMD arithmetic clusters exploit the concurrency within kernels by operating on
multiple stream elements simultaneously. A single, shared controller issues the same
6 Stream Processor Architecture

The Imagine Media Processor
instructions to each cluster as they each operate on different elements of the kernel’s
input data streams. An arithmetic cluster contains multiple arithmetic units that
exploit the instruction-level parallelism within the kernels. By using software pipelin-
ing, each cluster can also process multiple stream elements simultaneously. The com-
bination of data parallelism, instruction-level parallelism, and software pipelining
allows a stream processor to utilize large numbers of arithmetic units for media pro-
cessing applications.

Multiple processors can exploit the concurrency among kernels by executing several
kernels simultaneously. By splitting up the kernels in an application across the proces-
sors, multiple kernels can operate in parallel on different sections of the data. The first
processor in the pipeline would execute one or more kernels to produce output
streams that would then be passed to the next processor. As the next processor oper-
ates on those streams, the original processor could repeat its kernels on the next set of
input data. Depending on the amount of parallelism in the program, this pipeline
could be arbitrarily wide, in terms of the number of processors executing the same
kernels across the data, or deep, in terms of the number of processors in the pipeline.

1.2 The Imagine Media Processor

Imagine is designed to be a proof-of-concept programmable stream processor show-
ing the viability of structures such as the bandwidth hierarchy to enable scalable
microprocessors that deliver high sustained multimedia performance. Imagine is
organized around a three-tiered data bandwidth hierarchy consisting of a streaming
memory system (2GB/s), a global stream register file (32GB/s), and a set of local dis-
tributed register files located near the arithmetic units (544GB/s). The bandwidth
hierarchy of Imagine therefore provides memory bandwidth, global register band-
width, and local register bandwidth with a ratio of 1:16:272. For each word accessed
in memory, 16 words may be accessed in the global stream register file, and 272
words may be accessed in the clusters’ local register file. At the lowest level, the
memory system is designed to maximize the bandwidth of stream data transfers from
external DRAM, rather than minimize the latency of individual references. The
128KB SRF at the center of the bandwidth hierarchy not only provides intermediate
storage for data streams but also enables additional stream clients to be modularly
connected to Imagine, such as a streaming network interface or a graphics texture
caching unit. At the highest level, local, distributed register files feed 48 arithmetic
units organized into a SIMD array of eight identical clusters.
Introduction 7

Introduction
Figure 1.3 shows a block diagram of Imagine’s microarchitecture. Imagine is
designed to be a coprocessor that operates on multimedia data streams. The stream
register file (SRF) effectively isolates the arithmetic units from the memory system,
making Imagine a load/store architecture for streams. As shown in the figure, eight
arithmetic clusters, a microcontroller, a streaming memory system, a network inter-
face, and a stream controller are connected to the SRF. The arithmetic clusters con-
sume data streams from the SRF, process them, and return their output data streams to
the SRF. The eight clusters operate simultaneously on interleaved data records trans-
ferred from the SRF, allowing eight elements to be processed in parallel. Each arith-
metic cluster contains three adders, two multipliers, and one divide/square root unit.
These units are controlled by statically scheduled VLIW instructions issued by the
microcontroller.

Imagine is targeted to operate at 500MHz in a 0.15µm CMOS standard-cell imple-
mentation. The peak computation rate of the 48 arithmetic units is 20GOPS for both
32-bit integer and floating-point operations. For 16-bit and 8-bit parallel-subword
operations, the peak performance increases to 40 and 80GOPS, respectively.

FIGURE 1.3 Imagine Block Diagram

Imagine Stream Processor

Stream Register File
Network
Interface

Stream
Controller

Streaming Memory System

A
L

U
 C

lu
st

er
 0

A
L

U
 C

lu
st

er
 7

A
L

U
 C

lu
st

er
 6

A
L

U
 C

lu
st

er
 5

A
L

U
 C

lu
st

er
 4

A
L

U
 C

lu
st

er
 3

A
L

U
 C

lu
st

er
 2

A
L

U
 C

lu
st

er
 1

M
ic

ro
co

nt
ro

ll
er

SDRAM SDRAMSDRAM SDRAM

N
et

w
or

kHost
Processor
8 Stream Processor Architecture

Contributions
1.3 Contributions

The primary contributions of this research are as follows:

1. The concept of a bandwidth hierarchy which efficiently utilizes data bandwidth
for media processing applications at three levels: local register files, global regis-
ter files, and off-chip memory.

2. The architecture of a memory access scheduler to maximize the sustainable
throughput of modern DRAM.

3. The architecture of a bandwidth-efficient stream processor that can sustain a sig-
nificant fraction of its peak performance on media processing applications.

4. An experimental evaluation of the data bandwidth demands of media processing
applications, the effectiveness of the bandwidth hierarchy, and the benefits of
memory access scheduling.

1.4 Overview

This work focuses on the efficient use of data bandwidth for media processing appli-
cations. Chapter 2 presents background information on media processors and band-
width management. The chapter shows that media processors have mirrored the
designs of more conventional programmable processors with slight deviations. The
storage hierarchy of a conventional processor, however, is not able to provide suffi-
cient data bandwidth for media processing, as it is designed to minimize latency,
rather than maximize bandwidth.

Chapter 3 presents the differentiating characteristics of media processing applica-
tions. These applications operate on streams of low-precision integer data, have abun-
dant data parallelism, do not reuse global data frequently, and perform tens to
hundreds of computations per global data reference. These characteristics differ from
those of traditional applications for which modern programmable processors have
been designed, motivating a departure from conventional microarchitectures for
media processing.

Chapter 4 presents the architecture of the Imagine stream processor. Imagine is orga-
nized around a three-tiered bandwidth hierarchy that effectively supports 48 arith-
metic units for media processing applications. Imagine is designed to demonstrate
that an efficient bandwidth hierarchy enables high sustained multimedia performance.
Imagine is expected to fit on a chip about 2.5cm2 in size and deliver a peak perfor-
Introduction 9

Introduction
mance of 20GFLOPS. Media processing applications can actually achieve and sustain
from a quarter to over half of the peak computation rate.

Chapter 5 introduces the concept of a data bandwidth hierarchy that efficiently pro-
vides data bandwidth to the arithmetic units of a media processor. The chapter shows
how technology constraints and media processing characteristics motivate microar-
chitectures for media processing that include storage hierarchies that scale the pro-
vided data bandwidth across multiple levels. A data bandwidth hierarchy enables a
media processor to effectively utilize tens to hundreds of arithmetic units to sustain
high computation rates.

Chapter 6 introduces the concept of memory access scheduling to maximize the sus-
tained bandwidth of external DRAM at the lowest level of the data bandwidth hierar-
chy. The structure of modern DRAMs makes their achievable throughput and latency
highly dependent on the access pattern. Memory access scheduling takes advantage of
the internal structure of DRAM to reorder DRAM operations to maximize sustained
throughput.

Finally, Chapter 7 reiterates the importance of careful bandwidth management to
maximize media processing performance subject to the constraints of modern VLSI
technology.
10 Stream Processor Architecture

CHAPTER 2 Background
In order to provide the peak computation rates that media applications demand, mod-
ern media processors typically take advantage of special-purpose hardware. These
processors sacrifice the flexibility of programmability but provide high multimedia
performance by efficiently utilizing silicon resources. Special-purpose solutions man-
age bandwidth efficiently for the particular application they target. Programmable
processors, in contrast, must rely on more flexible structures to support a wider range
of applications. The data parallelism inherent to media processing applications
enables the use of efficient SIMD and vector operations, but programmable proces-
sors still must be able to communicate data among arithmetic units and memory in a
flexible manner. Therefore, these processors have traditionally included cache or reg-
ister hierarchies. To be effective for media processing, these hierarchies require high
sustained bandwidth from external memory. However, the techniques used to maxi-
mize bandwidth largely neglect the scatter/gather access patterns commonly found in
complicated media processing applications, such as MPEG encoding and three-
dimensional graphics.

2.1 Special-purpose Media Processors

Media processing systems typically employ dedicated, special-purpose hardware to
meet the performance demands of media applications, especially three-dimensional
graphics. For example, the InfiniteReality from SGI is a special-purpose multiproces-
Background 11

Background
sor system designed to provide high sustained graphics performance [MBDM97]. The
InfiniteReality is composed of four custom Geometry Engines and 80-320 custom
Image Engines. Combined, these special-purpose processors are able to deliver
graphics rendering performance of up to 11 million triangles per second and 830 mil-
lion pixels per second. Overall, the InfiniteReality achieves high performance graph-
ics by distributing storage throughout the system which holds the appropriate data for
different processing stages. This distributed storage provides a large amount of mem-
ory bandwidth at the cost of excessive amounts of memory capacity.

Recently, special-purpose, single-chip graphics processors have been able to provide
the computational power of an InfiniteReality system. For example, the NVIDIA
GeForce 256 provides a peak rendering performance of 15 million vertices per second
and 480 million pixels per second [Gla99]. Special-purpose processors, such as the
GeForce, are able to achieve high performance by customizing the processor to the
demands of a single application and carefully managing bandwidth and computation
resources on the chip. Both the InfiniteReality and the GeForce are specifically tai-
lored for certain rendering algorithms, so performance rapidly degrades when there
are any deviations from those algorithms.

2.2 Programmable Media Processors

Programmable media processors, including Chromatic’s Mpact [Fol96], Philips’ Tri-
Media [RS96], Philips’ VSP [VPPL94], are far more flexible than special-purpose
graphics systems. Media processors typically have architectures similar to digital sig-
nal processors but are augmented with special-purpose hardware pipelines and
instructions for media processing. These processors also may have specialized storage
hierarchies. For example, Mpact includes a 4KB global register file and makes use of
high bandwidth Rambus DRAM to achieve the required data bandwidth to perform 3-
D graphics. This reasonably large global register file significantly decreases the
amount of memory bandwidth required by explicitly caching the working set of a
graphics application, thereby minimizing transfers to memory.

Programmable media processors, however, have largely been replaced by multimedia
extensions to general-purpose processors. These extensions, including MMX
[PW96], MAX-2 [Lee96], and VIS [TONH96], perform SIMD operations on multiple
narrow integer data values stored within the wide registers of general-purpose proces-
sors. More recently, SSE extends MMX to add support for prefetching stream data
from memory and for SIMD floating point operations [Die99] [TH99]. Multimedia
12 Stream Processor Architecture

Vector Processors
extensions such as these improve the performance of media processing kernels by
exploiting fine-grained data parallelism. Furthermore, packed data types efficiently
utilize the data bandwidth available in these processors by transferring several values
in each wide data word.

2.3 Vector Processors

Vector processors are a natural choice to exploit the data parallelism inherent in media
processing applications [Koz99] [LS98]. A vector consists of a fixed-length set of
data words. A single vector instruction performs multiple, identical operations on
these vectors. To efficiently exploit the data parallelism in vectors, the architecture of
a vector processor commonly includes some combination of a vector register file,
deeply pipelined arithmetic units, and a SIMD organization [Lin82] [Oed92] [Rus78].
A vector register file stores vectors of data, rather than individual words, that are
transferred sequentially during vector operations. Vector processors, whether or not
they include a vector register file, transfer entire vectors, rather than individual words,
between the processor and memory. Vector memory transfers hide the memory access
latency of individual word references. The arithmetic units of a vector processor are
usually deeply pipelined and organized in a SIMD fashion. The data parallelism
inherent in vector operations allows deep pipelining and SIMD processing, since it is
guaranteed that all of the operations on the elements of a vector will be independent
of each other. Therefore, the arithmetic unit pipelines will remain full for the duration
of the vector operation.

2.4 Stream Processors

Media processing applications can naturally be expressed as a series of computations
performed on streams of data. Systems such as Cheops [BW95] and SYDAMA
[GMG89] directly map the stream dataflow graphs of media processing applications
to one or more stream processing elements. For example, Cheops consists of a set of
specialized stream processors that each accept one or two data streams as inputs and
generate one or two data streams as outputs. Each stream processor is designed to per-
form a specific video processing function. To allow some flexibility, a general-pur-
pose programmable processor is also included in the system. Functions not provided
by the specialized stream processors can then be implemented in software on the gen-
Background 13

Background
eral-purpose processor. Cheops stores data streams in VRAM1. Direct memory access
controllers use the random access VRAM ports to reorganize data that will later be
processed using the sequential access port. Data streams may either be forwarded
directly from one stream processor to the next based on the application’s dataflow
graph or transferred between the VRAM and the stream processors. Stream proces-
sors are able to exploit the inherent streaming nature of media processing applications
by directly mapping the dataflow graph of the application to hardware.

2.5 Storage Hierarchy

Since programmable processors cannot tailor communication and storage resources to
specific applications or algorithms, a storage hierarchy is required to provide flexible
communication and storage for large amounts of data. The storage hierarchy in a pro-
grammable processor can be controlled either by hardware or software. Hardware
managed caches appeared as early as in the IBM 360/85 [Lip68]. Today, almost all
microprocessors include a hardware managed cache hierarchy to reduce memory
latency and improve performance [Die99] [HL99] [Kes99]. Caching takes advantage
of spatial and temporal locality of reference to minimize average memory latency.
Applications that exhibit large amounts of locality benefit from a cache’s ability to
dynamically store frequently accessed data close to the arithmetic units.

Several processors incorporate a software managed register hierarchy to reduce the
latency to access frequently referenced data. Such processors have a small global reg-
ister file connected to the arithmetic units and a larger register file that holds addi-
tional data. For example, the Cray-1 included a 64-entry T register file which acted as
backup storage to an 8-entry S register file [Rus78]. The Cray-1’s memory system did
not include a cache; the compiler stores frequently accessed values in the T registers
so that they do not need to be refetched from memory. Texas Instruments
TMS320C6000 digital signal processors, representative of modern DSPs, include two
small register files that feed the arithmetic units and a large, on-chip memory that can
be configured either as cache or as addressable storage [TH97]. By configuring the
on-chip memory as addressable storage, media data can be staged from memory and
held during computations when the register files near the arithmetic units do not have
enough space.

1. Video RAM (VRAM) is two-ported DRAM with one port allowing random access and the
other port allowing fast sequential access.
14 Stream Processor Architecture

DRAM Access Scheduling
2.6 DRAM Access Scheduling

Storage hierarchies minimize the amount of data that must be referenced in external
DRAM. However, DRAM bandwidth can still be a performance bottleneck, espe-
cially for media processing applications. Several mechanisms have been employed to
improve the performance of external DRAM on streaming reference patterns, which
are common to media processing.

Stream buffers prefetch data structured as streams or vectors to hide memory access
latency [Jou90]. Stream buffers do not, however, reorder the access stream to take
advantage of the internal structure of DRAM. For streams with small, fixed strides,
references from one stream tend to make several column accesses for each row acti-
vation, giving good performance on a modern DRAM. However, conflicts with other
streams and non-stream accesses often evict the active row of the DRAM, thereby
reducing performance. McKee’s Stream Memory Controller (SMC) extends a simple
stream buffer to reduce memory conflicts among streams by issuing several refer-
ences from one stream before switching streams [HMS+99] [MW95]. The SMC,
however, does not reorder references within a single stream.

The Command Vector Memory System (CVMS) [CEV98] reduces the required pro-
cessor to memory address bandwidth by transferring commands to the memory con-
trollers, rather than individual references. A command includes a base and a stride
which is expanded into the appropriate sequence of references by each off-chip mem-
ory bank controller. The bank controllers in the CVMS schedule accesses among
commands to improve the bandwidth and latency of the SDRAM. The Parallel Vector
Access unit (PVA) [MMCD00] augments the Impulse memory system [CHS+99]
with a similar mechanism for transferring commands to the Impulse memory control-
ler. Neither of these systems reorder references within a single stream. Conserving
address bandwidth, as in the CVMS and the PVA, is important for systems with off-
chip memory controllers but is largely orthogonal to scheduling memory accesses.

The SMC, CVMS, and PVA do not handle indirect (scatter/gather) streams. These ref-
erences are usually handled by the processor cache, as they are not easily described to
a stream prefetching unit. However, indirect stream references do not cache well
because they lack both spatial and temporal locality. These references also do not typ-
ically make consecutive column accesses to the same row, severely limiting the sus-
tainable data bandwidth when those references are satisfied in order.

Several memory access schedulers have been proposed as part of systems-on-a-chip
[WAM+99] [YHO97]. Hitachi has built a test chip of their access optimizer for
Background 15

Background
embedded DRAM that contains the access optimizer and DRAM [WAM+99]. A sim-
ple scheduler is implemented which performs accesses for the oldest pending refer-
ence that can access the DRAM subject to timing and resource constraints. The access
optimizer is 1.5mm2, dissipates 26mW, and runs at 100MHz in a 0.18µm process.
More aggressive scheduling would require more logic and slightly increase the area
and power of such an access optimizer.

2.7 Summary

A stream architecture, which will be described here, bridges the performance gap
between special-purpose and programmable media processors. A stream architecture
exploits the data parallelism and instruction-level parallelism inherent in media pro-
cessing applications by directly operating on the applications’ data streams in a single
processor.

Previous stream processors have passed data streams among processing elements and
have stored streams in dedicated memories or external DRAM. The stream architec-
ture that will be described here differs from previous stream processors in that the
entire stream dataflow from an application can be mapped to a single processor by
using an efficient storage hierarchy. The storage hierarchy of such a stream architec-
ture differs from both the conventional cache hierarchy and register hierarchy in that
it is optimized for data bandwidth and is organized expressly to transfer data streams.

A stream processor differs from a vector processor in a few key ways. First, a stream
consists of a set of data records, where each record is one or more related data words.
Each stream can have a different length. In contrast, vectors all have the same length
and are composed of a set of single data words. Second, a single stream instruction
performs multiple, independent computations on these streams. Stream instructions
perform an entire function, or kernel, on successive stream elements, whereas vector
instructions perform primitive arithmetic operations on successive vector elements.
Finally, the arithmetic units within a stream processor are organized into arithmetic
clusters that include local storage. An arithmetic cluster performs the operations
within a kernel on each stream element, so the arithmetic units within a cluster exploit
the instruction-level parallelism and the locality of the kernel. Similar to a vector pro-
cessor, multiple SIMD arithmetic clusters exploit the data parallelism of the stream
operation by performing identical processing on interleaved stream elements.
16 Stream Processor Architecture

Summary
The streaming memory system of a stream processor transfers streams of data
between the processor and external DRAM, rather than individual words as in a con-
ventional memory system. Many previous methods of scheduling memory accesses
have reordered references among such streams to maximize the sustained bandwidth
from external DRAM. They typically have not, however, reordered references within
a single stream to maximize the bandwidth of scatter/gather streams. The memory
access scheduling techniques presented here reorder memory accesses independent of
the streams from which they were generated, allowing scatter/gather stream accesses
to be scheduled as effectively as strided accesses. Furthermore, the hardware organi-
zation and scheduling algorithms that will be introduced more aggressively exploit
the internal structure of the DRAM to maximize sustained memory bandwidth.
Background 17

Background
18 Stream Processor Architecture

CHAPTER 3 Media Processing
Applications
Media processing applications operate on streams of low-precision data, have abun-
dant data-parallelism, rarely reuse global data, and perform tens to hundreds of opera-
tions per global data reference. These characteristics differ from the traditional
applications for which modern programmable microprocessors are designed. This
chapter describes the distinguishing characteristics of media processing applications
and presents five applications that will be studied throughout this monograph.

3.1 Media Processing

Media processing applications, such as video compression, three-dimensional graph-
ics, and image processing, are prominent consumers of computing cycles. These
applications have entered the mainstream computer market and users have come to
expect high quality multimedia computing. Media applications demand very high
arithmetic rates, 10-100 billion operations per second, and these demands will con-
tinue to grow as applications become more realistic and compelling.

Media processing applications, which have requirements similar to signal processing
applications, differ significantly from the applications for which traditional micropro-
cessors are designed. Conventional applications operate on high-precision data, have
complex control flow and many data dependencies, exhibit large amounts of temporal
and spatial locality of reference, and perform very few operations per global data ref-
Media Processing Applications 19

Media Processing Applications
erence. In contrast, media applications operate on low-precision data, have abundant
data-parallelism, rarely reuse global data, and perform tens to hundreds of operations
per global data reference. The differences between these two families of applications
limit the performance of media processing applications when they are run on modern
programmable microprocessors optimized for traditional applications.

3.2 Sample Applications

This section briefly describes five representative media processing applications: ste-
reo depth extraction, MPEG2 encoding, QR matrix decomposition, space-time adap-
tive processing and polygon rendering. Stereo depth extraction (DEPTH) is a
representative image processing application that computes the depth of pixels within
an image. MPEG2 encoding (MPEG) is a representative video compression application
that generates a compressed bit stream from a video sequence. QR matrix decomposi-
tion (QRD) and space-time adaptive processing (STAP) are representative signal pro-
cessing applications that can be used for radar processing. Finally, polygon rendering
(RENDER) is a representative graphics application that synthesizes images from polyg-
onal models. In the following section, these applications will be characterized to
quantify some important properties of media processing applications.

3.2.1 Stereo Depth Extraction

DEPTH takes a pair of 320x240 8-bit grayscale camera images of the same scene as
input and produces a depth map of that scene using Kanade’s multi-baseline stereo
algorithm [KKK95]. The depth map encodes the distance from one of the cameras,
designated as the reference, to each pixel in the scene.

3.2.2 MPEG2 Encoding

MPEG takes three frames of 360x288 24-bit color video and compresses them into an
MPEG2 compliant bit stream [Jac96]. An MPEG encoder can encode sequence of
images into a single bit stream consisting of the following three types of frames: intra-
coded (I), predicted (P), and bidirectional (B). The three types of frames differ in
which images are used to compress them. I-frames are compressed using only infor-
mation contained in the current frame. P-frames are compressed using information
from the current frame and the previous I- or P-frame, allowing still and slowly mov-
ing objects to be encoded more compactly than they would be in an I-frame. Finally,
B-frames are compressed using information from the current frame, the previous I- or
20 Stream Processor Architecture

Sample Applications
P-frame, and the next I- or P-frame. B-frames achieve the highest compression ratio
and decrease noise by using two images as references. The MPEG application encodes
its three input frames into one I-frame and two P-frames. The output of this applica-
tion is the run-level encoding that would be fed into a Huffman encoder.

3.2.3 QR Matrix Decomposition

QRD uses the compact-WY [SV89] representation of the blocked-Householder trans-
form to compute an orthogonal Q matrix and an upper triangular R matrix such that
Q·R is equal to the input matrix [GV96]. This can be used to solve linear equations
that are found in a variety of signal and radar processing applications. QRD operates
on a 192x96 element matrix of floating-point numbers.

3.2.4 Space-time Adaptive Processing

STAP is used to cancel clutter and interference in airborne radar images. STAP includes
preprocessing, Doppler processing, weight computation, and weight application. The
preprocessing steps prepare the raw data from the antenna for adaptive processing.
The Doppler processing step attenuates signals that are moving at the same velocity
and in the opposite direction of the radar, eliminating ground clutter from the return.
The weight computation step involves performing several QR matrix decompositions
to find the adaptive filter weights. Finally, these weights are applied to the radar sig-
nal to generate the output of the STAP algorithm. The MITRE RT_STAP easy bench-
mark is used for this implementation [CTW97]. The easy benchmark uses a post-
Doppler adaptive displaced phase center antenna algorithm [Nit99] to compensate for
the motion of the antenna and is equivalent to current airborne radar systems.

3.2.5 Polygon Rendering

RENDER takes three-dimensional polygonal models of objects as input and produces a
24-bit color image composed of these objects projected onto a two-dimensional
720x720 pixel viewing area. RENDER performs back-face culling to eliminate poly-
gons that are facing away from the viewer and applies modelview, projection, and
viewport transformations to generate polygons in the two-dimensional screen space.
These polygons are then rasterized and textured using depth buffering and mipmap-
ping to generate the final image. A complete description of polygon rendering can be
found in [FvFH96] and a description of the RENDER application (called ADVS-8 in the
paper) can be found in [ODK+00].
Media Processing Applications 21

Media Processing Applications
3.3 Application Characteristics

These five representative media processing applications share four important charac-
teristics: they operate on low-precision data, they exhibit abundant data parallelism,
they rarely reuse global data, and they perform tens to hundreds of operations per glo-
bal data reference. This section shows the precision and type of operations used in
these applications, the size of their global data, and their computational intensity. The
numbers collected to support these characteristics are from the implementation of
these applications for the Imagine stream processor. However, the data is collected
independently of the applications’ execution on the Imagine processor.

3.3.1 Operations

Table 3.1 shows the precision and type of operations performed by the media process-
ing applications. The five applications perform between 15 and 154 million opera-
tions over the course of their execution. The table shows the percentage of operations
in each application by precision and type. The types of operations are divided into
three categories: add/sub, multiply, and other. The add/sub category includes all addi-
tion and subtraction operations. The multiply category includes all types of multipli-
cation operations. Finally, the other category includes all other operations, such as
divide, shift and logical operations. The table shows that the bulk of these operations
are on low-precision data. For instance, over 56% of the operations performed by
MPEG are 8-bit integer addition or subtraction operations.

Both DEPTH and MPEG perform only integer operations. Their data is mostly 8-bit and
16-bit integers. A few 32-bit integer operations are performed, but these operations
are mostly for bookkeeping purposes and do not manipulate image data. In contrast,
QRD and STAP perform mostly floating point operations. Again, a few 32-bit integer
operations are performed by these applications, but they are for bookkeeping pur-
poses and do not manipulate media data. Even though these applications use floating
point data for its range, they still use low-precision data, as they are able to make
effective use of single-precision (32-bit) floating point operations, instead of the dou-
ble-precision (64-bit) operations found in many modern microprocessors.

The table shows that almost half of the operations performed collectively by these
applications are 8-bit and 16-bit addition and subtraction operations. Most of the rest
of the operations are 32-bit floating point addition, subtraction, and multiplication.
Therefore, the bulk of media operations found in these applications operate on low-
precision integer and floating point data.
22 Stream Processor Architecture

Application Characteristics
3.3.2 Global Data

Table 3.2 shows the size of the global data in these media applications, how much of
that data is accessed, and how many times it is accessed. The size of the global data in
these applications ranges from only 144KB up to almost 6MB. All of the applications,
except for RENDER, reference all of their global data during the course of execution.
The global data in the RENDER application includes a mipmapped texture map and the
frame buffer. The texture map can be very large, and much of the map is not accessed
during the rendering of a single image. This results in a large amount of global data
that is never used. There is no reason why all of the data from all of the levels of the
mipmap would be referenced to draw any particular frame of an image, and in fact,
studies have shown that usually only a small fraction of the texture map is referenced
[HG97]. RENDER also includes a large frame buffer that stores both depth and color
information for each pixel in the final image. The RENDER application does not draw
the background of the image, so only pixels that appear in the foreground are refer-
enced in the frame buffer. In this scene, almost 89% of the frame buffer is never refer-
enced.

DEPTH MPEG QRD STAP RENDER Total

Operations (Millions) 54.5 154.0 15.1 82.4 57.2 363.2

32-bit

Float-
ing
Point

add/sub (%) 0 0 50.0 49.7 18.3 16.2

multiply (%) 0 0 49.0 46.2 15.8 15.0

other (%) 0 0 0 0.5 6.7 1.2

32-bit

Integer

add/sub (%) 0.2 3.2 0.2 0.6 10.9 3.2

multiply (%) 0 0 0 0 0.3 0.1

other (%) 4.8 9.5 0.8 3.0 34.7 10.9

16-bit

Integer

add/sub (%) 70.9 21.6 0 0 5.2 20.6

multiply (%) 19.2 4.2 0 0 8.2 6.0

other (%) 4.9 5.2 0 0 0 2.9

8-bit

Integer

add/sub (%) 0 56.3 0 0 0 23.9

multiply (%) 0 0 0 0 0 0

other (%) 0 0 0 0 0 0

TABLE 3.1 Precision and Type of Operations in Media Processing Applications
Media Processing Applications 23

Media Processing Applications
The table also shows the total amount of global data that must be referenced over the
course of execution of these applications. Additional accesses performed by the par-
ticular implementation of the programs are ignored, as are aggressive optimizations
that eliminate global data accesses. This eliminates the effects of inadequately sized
register files and other hardware limitations. By dividing the total amount of refer-
enced data by the unique amount of referenced data, the average number of accesses
per global data element can be determined. As shown in the table, global data is refer-
enced between 1 and 5.5 times for these applications. Therefore, the bulk of the glo-
bal data is rarely reused.

3.3.3 Compute Intensity

Table 3.3 shows the computational requirements of these media processing applica-
tions. The number of operations and the total amount of global data referenced are
repeated from Tables 3.1 and 3.2. The bottom row of the table shows the number of
operations that are performed for each word of global data that is referenced, where a
word is assumed to be four bytes. As can be seen in the table, between 58 and 473
operations are performed by these applications for each word of global data that is
referenced.

3.3.4 Summary

The five applications considered in this chapter operate mostly on 8-bit and 16-bit
integers, contain abundant data parallelism, access each unique global data item an
average of only 1.53 times, and perform 127.4 operations per global data reference.

DEPTH MPEG QRD STAP RENDER Total

Global Data (KB) 450.0 2633.0 144.0 2160.0 6020.9 11407.9

Unique Global Data
Referenced (KB)

450.0 2633.0 144.0 2160.0 1896.1 7283.1

Total Global Data
Referenced (KB)

450.0 3875.0 793.0 2160.0 3858.8 11136.8

Accesses per Unique
Data Referenced

1.00 1.47 5.51 1.00 2.04 1.53

TABLE 3.2 Size and Reuse of Global Data in Media Processing Applications
24 Stream Processor Architecture

Application Characteristics
To achieve high sustained media performance, programmable processors must be
designed to exploit these characteristics, rather than those of traditional applications
for which most microprocessors have been designed.

DEPTH MPEG QRD STAP RENDER Total

Operations (Millions) 54.5 154.0 15.1 82.4 57.2 363.2

Total Global Data Refer-
enced (KB)

450.0 3875.0 793.0 2160.0 3858.8 11136.8

Operations per Refer-
enced Word (4 bytes)

473.3 155.3 74.3 149.0 57.9 127.4

TABLE 3.3 Operations per Global Data Reference
Media Processing Applications 25

Media Processing Applications
26 Stream Processor Architecture

CHAPTER 4 The Imagine Stream
Processor
The Imagine stream processor is a programmable media processor designed to pro-
cess data streams. Imagine is organized around a three-tiered data bandwidth hierar-
chy consisting of a streaming memory system (2GB/s), a global stream register file
(32GB/s), and a set of local distributed register files near the arithmetic units
(544GB/s). This hierarchy therefore provides memory bandwidth, global register
bandwidth, and local register bandwidth with a ratio of 1:16:272. For each word
accessed in memory, 16 words may be accessed in the global stream register file
(SRF), and 272 words may be accessed in the clusters’ local register files. At the low-
est level, the memory system is designed to maximize the bandwidth of stream data
transfers from external DRAM, rather than minimize the latency of individual refer-
ences. The 128KB SRF at the center of the bandwidth hierarchy not only provides
intermediate storage for data streams, but also enables additional stream clients to be
modularly connected to Imagine, such as a streaming network interface or a graphics
texture caching unit. At the highest level, local distributed register files feed 48 arith-
metic units organized into a single-instruction, multiple-data (SIMD) array of eight
identical clusters. Imagine is designed to be a proof-of-concept stream processor
showing the viability of structures such as the bandwidth hierarchy and the streaming
memory system to enable scalable microprocessors that deliver high sustained multi-
media performance. In a 0.15µm CMOS standard-cell implementation, Imagine will
operate at 500MHz, yielding a peak performance of 20GFLOPS on a 2.5cm2 chip.
This chapter explains the Imagine architecture, its stream programming model, and its
scalability.
The Imagine Stream Processor 27

The Imagine Stream Processor
4.1 Stream Processing

Technology and application trends together motivate a shift away from the scalar,
general-purpose register architecture in wide use today toward a stream-based archi-
tecture with a bandwidth-efficient register organization. A 32-bit floating-point multi-
plier requires less than 0.25mm2 of chip area in a contemporary 0.18µm CMOS
technology, so hundreds of arithmetic units can fit on an inexpensive 1cm2 chip. The
challenge, however, is keeping these units fed with instructions and data. It is infeasi-
ble to support tens to hundreds of arithmetic units with a single register file and
instruction issue unit. Therefore, partitioned structures that use local communication
are required to take advantage of the available computation resources.

Media processing applications, including rendering 2-D and 3-D graphics, image and
video compression and decompression, and image processing, contain significant
amounts of locality and concurrency. These applications operate on large streams of
low-precision integer data and share the following three key characteristics: opera-
tions on elements within streams are data-parallel, global data is rarely reused, and as
many as 100-200 operations are performed per global data reference. These applica-
tions are poorly matched to conventional architectures that exploit very little parallel-
ism, depend on data reuse, and can perform very few operations per memory
reference.

Fortunately, these applications are well matched to the characteristics of modern
VLSI technology. The data parallelism inherent in these applications allows a single
instruction to control multiple arithmetic units and allows intermediate data to be
localized to small clusters of units, significantly reducing communication demands.
Even though global data is rarely reused, forwarding streams of data from one pro-
cessing kernel to the next localizes data communication. Furthermore, the computa-
tion demands of these applications can be satisfied by keeping intermediate data close
to the arithmetic units, rather than in memory, and by organizing multiple arithmetic
units to take advantage of both data parallelism and instruction-level parallelism.

The Imagine architecture matches the demands of media applications to the capabili-
ties of VLSI technology by supporting a stream programming model which exposes
the desired locality and concurrency within the applications. Imagine is organized
around a large (128KByte) stream register file (SRF). Memory load and store opera-
tions move entire streams of data between memory and the SRF. To the programmer,
Imagine is a load/store architecture for streams; an application loads streams into the
SRF, passes these streams through a number of computation kernels, and stores the
results back to memory.
28 Stream Processor Architecture

Stream Processing
This chapter describes the basic elements of the Imagine architecture and the stream
programming model. It provides the basis for the in-depth explanation of the band-
width hierarchy and memory access scheduling presented in Chapters 5 and 6. Imag-
ine will also act as the baseline architecture for the experimental evaluation of those
features.

4.1.1 Stream Programming

Media processing applications are naturally expressed as a sequence of computation
kernels that operate on long data streams. A kernel is a small program that is repeated
for each successive stream element in its input streams to produce output streams that
are fed to subsequent kernels. Each data stream is a variable length collection of
records, where each record is a logical grouping of media data. For example, a record
could represent a triangle vertex in a polygon rendering application. A data stream,
then, could be a collection of hundreds of these vertices.

Records within a data stream are accessed sequentially and processed identically. This
greatly simplifies the movement of data through a media processor by allowing the
instruction overhead to be amortized over the length of these homogeneous data
streams. For instance, a single memory stream transfer operation can collect hundreds
of records from memory to form a homogeneous stream that is stored sequentially in
a stream register file on the processor. This stream can then be transferred across the
network, again with a single instruction, or processed by a computation kernel.

By organizing media processing applications in this stream model, the following
characteristics that were enumerated in the previous chapter are exposed: data paral-
lelism is abundant, very little data is reused, and many operations are required per
memory reference. These properties can easily be exploited by a media processor
designed to operate on data streams. The abstraction of a data stream maps naturally
to the streaming data types found in media processing applications. The inputs to
most media processing applications are already data streams and the expected outputs
are data streams as well. Streams expose the fine-grained data parallelism inherent in
media applications as well. Each record of a stream, whether it is 8 bits or 24 words,
will be processed identically, so multiple records can be processed in parallel using
the same instructions.

Kernels naturally expose the coarse-grained control parallelism in media processing
applications, as they form a pipeline of tasks. Multiple kernels can therefore operate
in parallel on different sections of the application’s data. The first kernel in the pipe-
line would produce output streams that would then be passed to the next kernel. As
The Imagine Stream Processor 29

The Imagine Stream Processor
the next kernel operates on those streams, the original kernel could operate on the
next set of input data. Finally, the memory and network bandwidth demands of media
processing applications can also be met using this stream model. Since all data is
organized as streams, single memory or network transfer operations initiate long
transfers with little control overhead that can be optimized for bandwidth.

4.1.2 MPEG2 I-frame Encoding

To illustrate the stream programming model, consider the stream program for the
intracoded frame (I-frame) encoder of an MPEG2 encoder [Jac96]. An MPEG2
encoder takes a video sequence as input and compresses the sequence of images into a
single bit stream consisting of three types of frames: intracoded (I), predicted (P), and
bidirectional (B). I-frames are compressed using only information contained in the
current frame. P-frames are compressed using information from the current frame and
the previous I- or P-frame, allowing small amounts of motion to be encoded more
compactly. Finally, B-frames are compressed using information from the current
frame, the previous I- or P-frame, and the next I- or P-frame. B-frames achieve the
highest compression ratio and decrease noise by using two images as references.

Figure 4.1 shows the kernel operations and stream dataflow required to encode an I-
frame.1 In the figure, the ovals represent computation kernels, the solid lines repre-
sent data streams, and the dashed lines represent scalar feedback. The first kernel of
the application, color conversion, takes the original image in RGB format as input and

FIGURE 4.1 I-Frame Encoding from MPEG2 Encoder

1. Note that the I-frame encoder is used for illustrative purposes, since it is simpler. The
MPEG application described and analyzed earlier encodes both I- and P-frames.

Color
Conversion

DCT

DCT IDCT

IDCT

Run-Level
Encoding

Variable
Length
Coding

Input Image
Luminance

Chrominance
Luminance Reference

Chrominance Reference

Bitstream

Rate Control
30 Stream Processor Architecture

Stream Processing
generates two output streams: the luminance (Y) and the chrominance (CbCr) of the
image.

Each kernel depicted in Figure 4.1 is written in the KernelC language, described in
Section 4.3.2. Figure 4.2 shows a simplified version of the color conversion kernel
(convert).2 This kernel takes one input stream and produces two output streams, cor-
responding directly to the streams indicated by the arrows in Figure 4.1. Figure 4.3
graphically depicts the VLIW code for the color conversion kernel compiled by the
kernel compiler, iscd [MDR+00]. For clarity, the preprocessing before the loop and
the postprocessing after the loop are not shown in either figure. In Figure 4.3, the col-
umns are the functional units in the arithmetic clusters, the rows are instructions, and
each box indicates an operation. The box indicating each operation spans the appro-
priate number of instructions given that particular operation’s latency. Since the units
are pipelined, operations can overlap. Using a three-stage software pipeline and pro-
cessing two pixels per loop iteration per cluster, this particular unoptimized kernel
achieves 74% utilization of the adders and multipliers. KernelC eliminates the need to
program in assembly, as this visualization of the compiled code can be used to drive
source code optimizations to improve kernel performance.

kernel convert(istream<RGB> RGB_pixels,
ostream<Y> Y_pixels,
ostream<CbCr> CbCr_pixels)

{
RGB inPix;
Y outY;
CbCr outCbCr;

loop_stream(RGB_pixels) {
// Input next pixel
RGB_pixels >> inPix;

// Convert RGB to YCbCr
outY = 0.257*inPix.r + 0.504*inPix.g + 0.098*inPix.b + 16;
outCbCr.cb = -0.148*inPix.r - 0.291*inPix.g + 0.439*inPix.b + 128;
outCbCr.cr = 0.439*inPix.r - 0.368*inPix.g - 0.071*inPix.b + 128;

// Output resulting pixel
Y_pixels << outY;
CbCr_pixels << outCbCr;

}
}

FIGURE 4.2 Color Conversion Kernel

2. The actual color conversion kernel also filters and subsamples the chrominance values.
The Imagine Stream Processor 31

The Imagine Stream Processor
As shown in Figure 4.1, after the image is separated into a luminance and chromi-
nance stream, each 8x8 pixel block is transformed by a two-dimensional discrete
cosine transform (DCT) to convert the image to the frequency domain. The DCT ker-
nel also quantizes its results to compress the blocks in the frequency domain. The
resulting values are run-level encoded to eliminate the numerous zero entries in the
quantized data. Finally, the results are Huffman encoded by a variable length coding
(VLC) kernel to produce the final MPEG2 bit stream. In order to regulate the bit
stream rate, the VLC kernel provides scaling feedback to the DCT kernels to raise or
lower the bit rate, as necessary, with a corresponding increase or decrease in image
quality. An overview of the run-level encoding and Huffman encoding functions can
be found in [Jac96] and [Sed90].

In order to encode future frames relative to this one, the transformed and quantized
values are decoded by performing the inverse quantization and inverse DCT to create
a reference frame of luminance and chrominance values. This reference frame is iden-
tical to the frame that the decoder will generate, preventing quantization differences
from propagating from frame to frame.

The MPEG application is written in the StreamC language, described in Section 4.3.1.
Figure 4.4 shows the StreamC for the MPEG2 I-frame encoder. The StreamC exe-
cutes on the host processor which would also be running a stream scheduler. This

FIGURE 4.3 Schedule Visualization of the Color Conversion Kernel Inner Loop
32 Stream Processor Architecture

Stream Processing
stream scheduler is a run-time memory manager that manages data streams on the
stream processor. The kernel calls shown in the figure will actually call StreamC
library functions that will initiate kernel operations on Imagine. For example, the call
to the convert kernel with three stream arguments will issue a kernel instruction to
Imagine which includes the address of the color conversion kernel in the microcon-
troller’s microcode store and descriptors for the input stream, InputRow, and two out-
put streams, YRow and CbCrRow.

In addition, the stream scheduler will transfer the dependencies among stream opera-
tions to Imagine, so that the on-chip stream controller can issue the kernel instruction
without further intervention from the host processor when all dependent stream oper-
ations have completed. For example, the stream scheduler will inform the stream con-
troller that an input row of pixels must be loaded before the convert kernel can
commence. If the color conversion kernel has not yet been loaded into the microcode
store, the stream scheduler would first load the kernel program from memory and
transfer it into the microcode store. Similarly, if the stream descriptors for the data
streams are not already located on the chip, the stream scheduler would first update
those descriptors before initiating the kernel. The rest of the I-frame encoder’s
StreamC after convert would be similarly converted into Imagine stream operations.

for (row=0; row<NROWS; row++) {
// update quantization factor for rate control
quantizerScale = newQuantizerScale;

// setup streams for this row
...

// Perform I-Frame encoding
convert(InputRow, &YRow, &CbCrRow);
dct(YRow, dctIconstants, quantizerScale, &DCTYRow);
dct(CbCrRow, dctIconstants, quantizerScale, &DCTCbCrRow);
rle(DCTYRow, DCTCbCrRow, rleConstants, &RunLevelsRow);
vlc(RunLevelsRow, &bitStream, &newQuantizerScale);

// Store generated bit stream
...

// Generate reference image for subsequent P or B frames
idct(DCTYRow, idctIconstants, quantizerScale, &RefYRow);
idct(DCTCbCrRow, idctIconstants, quantizerScale, &RefCbCrRow);

// Store reference rows
...

}

FIGURE 4.4 I-frame Encoding StreamC
The Imagine Stream Processor 33

The Imagine Stream Processor
This I-frame encoder illustrates the three key properties of media processing applica-
tions mentioned earlier: very little data is reused, data parallelism is abundant, and
many operations are required per memory reference. First, data is rarely reused in this
application; for example, once the image is color converted, the original input image
is never referred to again. Second, most computations within the encoder are data par-
allel. If there were enough hardware, all of the blocks in the image could be color con-
verted in parallel, since there is no dependence from one block to another. Finally,
assuming that only the original image, the final coded bit stream, and the reference
images are actually stored in memory, this I-frame encoder would perform 49.5 arith-
metic operations per memory reference.

4.2 Architecture

The stream architecture of the Imagine media processor effectively exploits the desir-
able application characteristics exposed by the stream model. Imagine meets the com-
putation and bandwidth demands of media applications by directly processing the
naturally occurring data streams within these applications. Figure 4.5 shows a block
diagram of Imagine’s microarchitecture. Imagine is designed to be a coprocessor that
operates on multimedia data streams. The stream register file (SRF) effectively iso-

FIGURE 4.5 Imagine Block Diagram

Imagine Stream Processor

Stream Register File
Network
Interface

Stream
Controller

Streaming Memory System

A
L

U
 C

lu
st

er
 0

A
L

U
 C

lu
st

er
 7

A
L

U
 C

lu
st

er
 6

A
L

U
 C

lu
st

er
 5

A
L

U
 C

lu
st

er
 4

A
L

U
 C

lu
st

er
 3

A
L

U
 C

lu
st

er
 2

A
L

U
 C

lu
st

er
 1

M
ic

ro
co

nt
ro

ll
er

SDRAM SDRAMSDRAM SDRAM

N
et

w
or

kHost
Processor
34 Stream Processor Architecture

Architecture
lates the arithmetic units from the memory system, making Imagine a load/store
architecture for streams. All stream operations transfer data streams to or from the
SRF. For instance, the network interface transfers streams directly out of and into the
SRF, isolating network transfers from memory accesses and computation. This sim-
plifies the design of the processor and allows the clients (the arithmetic clusters, the
memory system, the network interface, etc.) to tolerate the latency of other stream cli-
ents. In essence, the SRF enables the streaming data types inherent in media process-
ing applications to be routed efficiently throughout the processor.

As shown in Figure 4.5, eight arithmetic clusters, a microcontroller, a streaming
memory system, a network interface, and a stream controller are connected to the
SRF. The arithmetic clusters consume data streams from the SRF, process them, and
return their output data streams to the SRF. The microcontroller is connected to the
SRF to allow compiled kernel programs to be loaded from the SRF into the microcon-
troller’s microcode store. The streaming memory system transfers streams between
the SRF and the off-chip DRAM. The network interface transfers streams between the
SRF and other processors or devices connected to the network. The stream controller
allows the host processor to transfer data and microcode programs into or out of the
SRF, although large data transfers would be made through the Imagine network.

4.2.1 Stream Register File (SRF)

The SRF is a 128KB (1Mbit) memory optimized for stream transfers. The SRF can
hold multiple variable-length data streams, subject only to capacity constraints. A
data stream is an arbitrary length sequence of records, such as a row of pixels from an
image or a set of vertices from a polygonal graphics model. Streams are referenced
using stream descriptors which are held in a 64-entry stream descriptor register file
(SDRF). Each stream descriptor register (SDR) includes a base address in the SRF
and a stream length. The memory array of the SRF has 1024 rows of 1024 bits with a
single port.

The stream register file supports numerous clients, including the arithmetic clusters
and memory system, through a single physical port. However, each has its own dedi-
cated logical port(s) into the SRF. To support this abstraction, all clients are connected
to the SRF by stream buffers. Each stream buffer is composed of two 1024-bit half-
buffers. A half-buffer of a single stream buffer may be filled or drained each cycle
through the 1024-bit port into the SRF memory array. If a stream buffer that is sup-
porting a client reading from the SRF has an empty half-buffer, then that stream
buffer requests access to the memory array. Similarly, if a stream buffer that is sup-
porting a client writing to the SRF has a full half-buffer, then it also requests access to
The Imagine Stream Processor 35

The Imagine Stream Processor
the memory array. When granted access to the memory array, a stream buffer transfers
the next consecutive 1024 bits in its associated data stream. This enables each client
connected to the SRF to act as if it has its own dedicated stream port into the SRF.
Since the clients access fewer than 1024 bits in the SRF at a time, the stream buffers
are able to distribute the bandwidth of the single port across the multiple stream cli-
ents dynamically. However, the clients may only access stream data sequentially. This
is matched to the stream programming model, as stream applications do not reference
arbitrary data. Rather, they only access data streams sequentially.

There are 22 stream buffers connected to the SRF memory array. These 22 stream
buffers are associated with the clients listed in Table 4.1. Eight streams are associated
with the network interface, so there can be eight active network stream transfers at
any given time. The network interface transfers two 32-bit words per cycle to/from
one of these stream buffers in order to match the available network bandwidth. The
stream controller has access to a dedicated stream buffer to allow the host processor
to transfer streams to/from Imagine. One stream buffer is connected to the microcode
store to allow kernel microcode to be loaded into the microcontroller. Two sets of
stream buffers connect to the memory system. Each set consists of a data stream and
an index stream which provides indices for indirect (gather/scatter) transfers. Finally,
eight stream buffers are allocated to the arithmetic clusters. This allows kernels exe-
cuting on the arithmetic clusters to have up to eight total input/output streams. All
eight streams are connected to all of the arithmetic clusters. Each of these streams can
transfer eight 32-bit words per cycle (one word per cluster).

Client Streams Type Words per Cycle

Network 8 read/write 2W per stream

Stream Controller 1 read/write 1W per stream

Microcontroller 1 read only 1W per stream

Memory Index 2 read only 1W per stream

Memory Data 2 read/write 1W per stream

Arithmetic Clusters 8 read/write 8W per stream

TABLE 4.1 SRF Streams
36 Stream Processor Architecture

Architecture
4.2.2 Arithmetic Clusters

Imagine contains eight arithmetic clusters controlled by a single microcontroller in a
SIMD fashion. The arithmetic clusters operate simultaneously on interleaved data
records transferred from the SRF, allowing eight data records to be processed in paral-
lel. As shown in Figure 4.6, each arithmetic cluster contains three adders, two multi-
pliers, one divide/square root unit, one 256-entry scratch-pad memory, and one
intercluster communication unit. These units are controlled by statically scheduled
VLIW instructions issued by the microcontroller. Across the eight arithmetic clusters,
Imagine’s 48 arithmetic units achieve the high sustained computation rates required
by media processing applications. The mix of arithmetic units in Imagine are matched
to the demands of the targeted media applications, but the architectural concept is
compatible with other mixes of arithmetic units within the clusters.

All of the arithmetic units support both 32-bit single precision floating point and 32-
bit integer operations. In addition, the adders and multipliers also support 16-bit and
8-bit parallel-subword operations for a subset of the integer operations. These arith-
metic operations are well-matched to the low-precision data types commonly found in
media processing applications. These parallel-subword instructions, similar to the
multimedia instructions commonly added to general-purpose processors [Lee96]
[PW96] [TONH96], exploit the fine-grained data parallelism inherent in media appli-
cations. The adders, multipliers, scratch-pad, and communication unit are fully pipe-
lined, allowing a new operation to issue every cycle. The divide/square root unit has
two SRT cores, so no more than two divide or square root operations can be in flight
at any given time.

Data cannot be transferred directly from memory to the arithmetic clusters. All data
from memory must first be loaded into the SRF and then transferred to the arithmetic

FIGURE 4.6 Arithmetic Cluster

+ /**++ Comm.
Unit

In
te

rc
lu

st
er

N
et

w
o

rk

To SRF

From SRF

Scratch-Pad

Cross Point
The Imagine Stream Processor 37

The Imagine Stream Processor
clusters. Sometimes, however, kernels executing in the arithmetic clusters benefit
from being able to index into small arrays or lookup tables. The scratch-pad units in
each cluster provide this functionality; they are accessed with a base address provided
by the microcontroller added to an offset provided locally by each cluster. This
enables each cluster to access different array elements within its scratch-pad.

Rather than the conventional centralized register file organization, the arithmetic units
utilize a distributed register file (DRF) structure. As shown in Figure 4.6, each arith-
metic unit has a small dedicated two-port register file connected to each of its inputs.
A switch then connects the outputs of all of the arithmetic units to the 17 register files
within the cluster. Effectively, the DRF organization eliminates the implicit switch
that would be replicated within each register of a conventional register file. Only one
explicit switch is needed in the DRF organization. The cross points in Figure 4.6
show where connections from the outputs of arithmetic units to register files can be
made. On the Imagine chip there is enough area over the arithmetic cluster to allow a
complete switch, so all of the cross points are connected. However, a sparse intercon-
nect could be used and is fully supported by the compiler tools [MDR+00]. By mak-
ing the communication among arithmetic units explicit through this switch, rather
than implicit through a centralized register file, the area, delay, and power dissipation
of the register file structure is drastically reduced with only a slight degradation in
performance [MDR+00] [RDK+00b].

Media applications are not always perfectly data parallel, and in fact often require
extensive data reorganization. To facilitate this reorganization, the communication
unit, shown on the right of Figure 4.6, allows data to be transferred among arithmetic
clusters through the intercluster network, whereas the intracluster switch of the DRF
organization only allows data to be communicated among arithmetic units within a
cluster. The communication unit within each cluster is able to drive one word per
cycle onto its own dedicated bus. The microcontroller also has a dedicated bus onto
which it can drive data, to allow immediates and other data to be broadcast to the
clusters. Collectively, these buses form the intercluster network, shown in Figure 4.7.
Each cluster’s communication unit may read from any one of these nine buses each
cycle. A permutation descriptor controls which bus will be read by the communica-
tion units in each cluster. This descriptor can either be provided globally by the
microcontroller or generated locally within each cluster. The ability to communicate
among the arithmetic clusters significantly improves performance of applications that
are not perfectly data-parallel, since each cluster may only access one eighth of the
memory in the SRF.
38 Stream Processor Architecture

Architecture
4.2.3 Microcontroller

The microcontroller is a very long instruction word (VLIW) control engine that issues
instructions to the arithmetic clusters. Each cycle, the microcontroller broadcasts a
single 568-bit VLIW instruction to all eight clusters. Since instructions are statically
scheduled by the compiler, the only dynamic behavior is that the microcontroller may
be forced to stall the arithmetic clusters when a stream buffer is not ready for a cluster
access. This occurs when the kernel attempts a stream input from an empty stream
buffer or a stream output to a full stream buffer. In both of these cases, the microcon-
troller stalls the arithmetic clusters until that stream buffer receives access to the SRF
memory array and is consequently made ready for cluster accesses.

Kernels are stored in a 2K instruction by 568 bit (1.1Mbit) microcode store located
within the microcontroller. The microcontroller takes advantage of the high instruc-
tion reference locality in small loops found in media processing applications by stor-
ing kernels directly in this microcode store, rather than fetching them from memory
or a cache. Consequently, kernel instructions are never fetched from memory during
the course of kernel execution, so kernels never need to stall due to instruction fetch
latencies. Frequently, the microcode store is large enough to hold all of the kernels for
an application. In this case, kernels only need to be loaded once from memory for the
entire execution of the application. However, if the kernels do not all fit, then they are
loaded into the microcode store prior to their execution. In this case, the loading of
one kernel can be overlapped with the execution of other kernels in the application.

FIGURE 4.7 Intercluster Communication Network

Comm.
Unit

Cluster 0

Comm.
Unit

Cluster 1

Comm.
Unit

Cluster 2

Comm.
Unit

Cluster 3

Comm.
Unit

Cluster 4

Comm.
Unit

Cluster 5

Comm.
Unit

Cluster 6

Comm.
Unit

Cluster 7

Microcontroller
The Imagine Stream Processor 39

The Imagine Stream Processor
4.2.4 Streaming Memory System

The memory system supports data stream transfers between the SRF and off-chip
DRAM. This stream load/store architecture simplifies programming and minimizes
stalling in the arithmetic clusters by isolating them from variable memory access
latencies. Because the granularity of memory references is streams of data and not
individual words, the memory system can be optimized for throughput, rather than
reference latency, which will be explored further in Chapter 6. Furthermore, accesses
to external DRAM can be reordered to maximize the sustained bandwidth of the off-
chip memory. Since a consumer of a stream, such as a kernel executing in the arith-
metic clusters, cannot commence until the entire stream is available in the SRF, the
time it takes to load the entire stream is far more important than the latency of any
particular reference. Moreover, these references can easily be overlapped with com-
putation. The memory system can be loading streams for the next set of computations
and storing streams for the previous set of computations while the current set of com-
putations is occurring.

As shown in Figure 4.8, the Imagine streaming memory system consists of a pair of
address generators, four interleaved memory banks, and a pair of reorder buffers that
place stream data in the SRF in the correct order. All of these units are on the same
chip as the Imagine processor core, except for the off-chip SDRAM memory.

FIGURE 4.8 Streaming Memory System

Memory
Bank 0

SDRAM

Memory
Bank 1

SDRAM

Memory
Bank 2

SDRAM

Memory
Bank 3

SDRAM

SRF

Address
Generator 0

Address
Generator 1

Reorder
Buffer 0

Reorder
Buffer 1

In
de

x

In
de

x

D
at

a

D
at

a

Processor Chip

Off-chip Memory
40 Stream Processor Architecture

Architecture
The address generators may generate memory reference streams of any length, as
long as the data fits in the SRF, using one of the following three addressing modes:
constant stride, indirect, and bit-reversed. Elements within a record are stored contig-
uously in memory, so the addressing modes dictate how the starting memory address
of each record in a stream is calculated, and the record length dictates how many con-
secutive words are accessed for each record. For constant stride references, the
address generator takes a base, stride, and length, and computes successive record
addresses by incrementing the base address by the stride. For indirect references, the
address generator takes a base address and an index stream from the SRF and calcu-
lates record addresses by adding each index to the base address. Bit-reversed address-
ing is used for FFT memory references and is similar to constant stride addressing,
except that bit-reversed addition (carries are propagated to the right instead of to the
left) is used to calculate addresses [OSB99]. The addressing information needed by
the address generators is stored in a memory address register file (MARF). A stream
load/store operation, issued by the stream controller, indicates which memory address
register (MAR) contains the addressing mode, base address, stream length, and other
information needed for that transfer.

Figure 4.9 shows the architecture of the memory banks within the streaming memory
system. References arriving at the memory banks from the address generators are

FIGURE 4.9 Memory Bank Architecture

Holding
Buffer

Holding
Buffer

MSHRs

Reply
Buffer

Bank
Buffer

Memory Access
Scheduler

Memory Bank
Controller

Interface

Memory
Controller

SDRAM

From Address Generator 1

From Address Generator 0

To Reorder Buffer 0

To Reorder Buffer 1

Processor

Off-chip Memory
The Imagine Stream Processor 41

The Imagine Stream Processor
stored in a small holding buffer until they can be processed. Despite the fact that there
is no cache, a set of registers similar in function to the miss status holding registers
(MSHRs) of a non-blocking cache [Kro81] exist to keep track of in-flight references
and to do read and write coalescing. When a reference arrives for a location that is
already the target of another in-flight reference, the MSHR entry for that reference is
updated to reflect that this reference will be satisfied by the same DRAM access.
When a reference to a location that is not already the target of another in-flight refer-
ence arrives, a new MSHR is allocated and the reference is sent to the bank buffer.
The memory controller schedules DRAM accesses to satisfy the pending references
in the bank buffer and returns completed accesses to the MSHRs. The MSHRs send
completed loads to a reply buffer which holds them until they can be sent back to the
reorder buffers. As the name implies, the reorder buffers receive out of order refer-
ences and transfer the data to the SRF in order.

In this streaming memory system, memory consistency is maintained in the following
two ways: conflicting memory stream references are issued in dependency order, and
the MSHRs ensure that references to the same address complete in the order that they
arrive. This means that a stream load that follows a stream store to overlapping mem-
ory locations may be issued as soon as the address generators have sent all of the
store’s references to the memory banks.

4.2.5 Network Interface

The network interface connects the SRF of the Imagine stream processor to an exter-
nal network, enabling source routed data stream transfers through that network.
Source routing information is held in a network route register file (NRRF) within the
network interface. Each network route register (NRR) can be written with a source
route that can then be used to control the path taken by network stream transfers. The
network interface transfers entire data streams from one processor to another through
the Imagine network. This drastically increases the ratio of data to control that must
go through the network, as well as eliminating instructions to send and receive each
data element within the stream.

The Imagine processor has four bidirectional network channels that can be intercon-
nected in an arbitrary topology. Each channel is 16-bits wide in each direction and
uses differential signaling, requiring a total of 256 data pins in the network interface.
Not only can other Imagine processors be connected to the external network, but I/O
devices can also be connected to the network, with some additional logic, to send and
receive streams using the Imagine network protocol. Since the channels may be inter-
connected in an arbitrary topology, multiprocessor solutions can be constructed that
42 Stream Processor Architecture

Architecture
provide network bandwidth tailored to the communication demands of the targeted
applications. For instance, all four channels of two Imagine processors could be con-
nected to each other to provide four times the network bandwidth between those two
processors. This flexible topology combined with the amortization of instructions and
control over entire data streams enable Imagine to deliver the high network band-
width demanded by media processing applications.

4.2.6 Stream Controller

The stream controller receives stream instructions from the host processor and issues
them to the units of Imagine, described in Sections 4.2.1-4.2.5, subject to dependency
constraints. The stream controller is similar in function to the issue unit in a supersca-
lar processor; it issues stream instructions, possibly out of order, to available stream
units without violating the dependencies among stream instructions. The stream con-
troller accepts instructions from the host processor, stores them in a pending instruc-
tion queue, and determines which instructions are available for issue. Status signals
from the stream units are used to determine when operations complete, allowing the
stream controller to know when an instruction’s dependencies have been satisfied.
The stream controller simply selects an instruction that is ready to issue and issues it
to the appropriate stream unit. The stream controller also includes a general-purpose
register file (SCTRF) that can be accessed by stream register read, write, and move
instructions, which will be described in Section 4.3.1. These registers are used to
transfer data between the stream controller and other modules, such as the host pro-
cessor or control registers within the stream units.

4.2.7 Host Processor

An external host processor executes all scalar code and transfers stream instructions
to Imagine, which acts as a coprocessor. A stream processor could include a serial
host processor on the same chip. This would allow the two processors to be tightly
integrated so that the overhead of issuing instructions to the stream processor would
be negligible. However, since Imagine is a proof-of-concept research project, an off-
the-shelf host processor is used to control Imagine. The host processor is able to exe-
cute small serial sections of code that exist in any real-world application. Imagine is
tailored to take advantage of the characteristics of media processing applications, as
described in Chapter 3. Code that is not actually operating on media data, but is rather
orchestrating the control flow of the overall application, is much better suited to a
conventional serial processor than a SIMD stream processor like Imagine. Therefore,
The Imagine Stream Processor 43

The Imagine Stream Processor
each processor is able to execute the code for which it was designed — the host pro-
cessor executes small sections of control intensive serial code and Imagine executes
large data parallel stream programs.

4.3 Programming Model

The stream programming model exposes the following three key properties of media
processing applications: very little data is reused, data parallelism is abundant, and
many arithmetic operations are required per memory reference. In media processing
applications expressed in this form, most data is passed directly from kernel to kernel
through data streams. Kernels are usually perfectly data-parallel, or nearly so, allow-
ing multiple stream elements to be processed simultaneously. Finally, data streams
can be recirculated from one kernel to the next through the SRF, without requiring
data to be returned to memory for intermediate storage.

Stream applications are programmed at two levels: stream and kernel. As described in
Section 4.2.7, a stream processor acts as a coprocessor to a sequential host processor.
Stream-level programs execute on this host processor and orchestrate the flow of data
streams through the stream processor. These programs are written in StreamC, a
derivative of C++ that includes library functions that issue stream instructions to the
stream processor. Kernel-level programs operate on these data streams and execute on
the microcontroller and arithmetic clusters of the stream processor. Kernels are writ-
ten in KernelC, a subset of the C language, and may access local variables, read the
head elements of input streams, and write the tail elements of output streams. Kernels
may not, however, make arbitrary memory references. Kernels loop over their input
streams, perform computations on each stream record element in turn, and produce
successive data elements of their output streams.

4.3.1 Stream-level Programming

StreamC programs make calls to library functions in order to manipulate streams on
the stream processor. These library functions can send operations to the stream pro-
cessor from the stream instruction set, which includes the eleven basic instructions in
Table 4.2. All of the instructions, except READ, are asynchronous, in that the host pro-
cessor may issue them to the stream processor and then continue execution of the
stream program. The host processor must wait for the return value of the READ

instruction. The stream instructions can be grouped into the following four categories:
control word movement, synchronization, stream movement, and computation.
44 Stream Processor Architecture

Programming Model
Control Word Movement. The MOVE, WRITE_IMM, and READ instructions allow the
host processor to transfer control information to/from the non-cluster registers on the
stream processor. The MOVE instruction allows data values to be moved from one reg-
ister to another. This is useful if one stream instruction generates a value that will be
used by another stream instruction. The WRITE_IMM instruction writes a value to a
register in the stream processor. The READ instruction similarly reads a value from a
register in the stream processor. The target of these three instructions are usually the
microcontroller register file (UCRF), the stream descriptor register file (SDRF), the

Instruction Description

MOVE dst_reg src_reg Move the contents of src_reg to dst_reg

WRITE_IMM reg data Write data into reg

READ reg Return the contents of reg to the host processor

barrier Block all subsequent instructions from issuing until all previ-
ous instructions have issued

synch Synchronize microcontroller with stream controller

LOAD mar dat_sdr idx_sdr Load a stream from memory described by mar into a stream
in the SRF described by dat_sdr — idx_sdr describes an
index stream in the SRF for indexed loads

STORE mar dat_sdr idx_sdr Store a stream from the SRF described by dat_sdr to mem-
ory described by mar — idx_sdr describes an index stream
in the SRF for indexed store

SEND nrr tag sdr Send a stream from the SRF described by sdr to the network
using the route held in nrr and identified by tag

RECEIVE tag sdr Receive a stream from the network identified by tag into a
stream in the SRF described by sdr

LOAD_UCODE mpc sdr Load microcode program from a stream in the SRF
described by sdr to location mpc in the microcode store

CLUSTOP mpc sdr0..sdr7 Initiate a kernel on the arithmetic clusters starting at location
mpc in the microcode store — sdr0-sdr7 describe the
input/output data streams in the SRF

TABLE 4.2 Imagine Stream Instruction Set Architecture
The Imagine Stream Processor 45

The Imagine Stream Processor
memory address register file (MARF), the network route register file (NRRF), and the
stream controller register file (SCTRF), described in Section 4.2.

Synchronization. The BARRIER and SYNCH instructions enable the stream controller,
host processor, and microcontroller to synchronize with each other. The host proces-
sor sends a BARRIER instruction to indicate that all instructions that were sent prior to
the barrier instruction should issue before any instruction that was sent after the bar-
rier instruction is issued. The SYNCH instruction synchronizes the stream controller
with the microcontroller, leaving other stream transfers unaffected. When a kernel
issues a synchronization instruction, the microcontroller stalls and the stream control-
ler is notified that the microcontroller is waiting for a SYNCH instruction to resume
execution. While the microcontroller is stalled, the stream controller can perform any
number of stream operations, such as transferring information to or from the micro-
controller through the UCRF. When the stream controller is done issuing the required
stream operations, it issues the SYNCH instruction, which frees the microcontroller to
continue execution.

Stream Movement. The LOAD, STORE, SEND, and RECEIVE instructions transfer data
streams throughout the system. LOAD and STORE instructions move data streams
between the SRF and memory. These instructions take a stream descriptor (dat_sdr)
which specifies a starting location and length of a stream in the SRF, and an address
descriptor (mar) that provides the base address in memory, addressing mode (constant
stride, indexed, or bit-reversed), and the record size of data elements in the stream.
Indexed memory transfers take an additional stream descriptor (idx_sdr) which speci-
fies the start and length of the index stream in the SRF. SEND and RECEIVE instructions
allow streams to be transferred from the SRF of one Imagine processor to the SRF of
another Imagine processor through the network. SEND and RECEIVE instructions can
also be used for I/O transfers through the network.

Computation. Finally, the CLUSTOP instruction initiates a kernel operation on a set of
data streams. This instruction specifies a kernel to execute using an address into the
on-chip microcode storage (mpc) and stream descriptors for up to eight input and/or
output streams in the SRF (sdr0-sdr7). Kernels are loaded from the SRF (they are first
loaded from memory into the SRF using a normal stream LOAD instruction) to the
microcode store by a LOAD_UCODE instruction. If the microcode storage is large
enough to hold all of the kernels needed by an application (as it frequently is), then
each kernel need only be loaded into the microcode store once and may then be
reused by subsequent CLUSTOP instructions.
46 Stream Processor Architecture

Programming Model
4.3.2 Kernel-level Programming

KernelC programs are written in a subset of the C language. All C mathematical
expressions are supported, but pointers are not allowed and the control flow con-
structs are restricted. The C++ stream operators, >> and <<, are used to read records
into the clusters from input streams and write records to output streams in the SRF.
Kernels are optimized for stream computation, so they may not use pointers to make
arbitrary memory references. To allow limited memory addressing, either an index
stream can be generated that can be used to perform an indirect stream load or store,
or small arrays may be stored within the clusters’ scratch-pads. All instructions in a
KernelC program are executed simultaneously on all eight clusters, thereby process-
ing eight stream elements identically in parallel. On such a SIMD machine, data
dependent control flow constructs, such as if-then-else, are not allowed. The only
form of control flow allowed in a KernelC program is a loop which can be terminated
by a variety of conditions, such as a counter in the microcontroller or a combination
of cluster condition codes.

A KernelC program must be written with the knowledge that it will execute simulta-
neously on all eight clusters, since the Imagine compiler tools do not currently per-
form automatic SIMD parallelization. Because this parallelization is not automatic,
the programmer must orchestrate the movement of data between the arithmetic clus-
ters. A typical kernel will be written to first perform some preprocessing, then loop
over its input stream(s), and finally perform some postprocessing. The preprocessing
stage typically consists of setting up constants and reading in coefficients from SRF
streams. The main loop will then process eight elements of the kernel’s input
stream(s) per iteration. This loop can be unrolled and/or software pipelined to
improve performance. If the kernel operation is completely data-parallel, the loop
simply reads its inputs, performs some processing, and writes its outputs. However,
many media processing kernels involve some interaction among stream elements.
Consequently, the main loop may require communication among the clusters and/or
storage of previous stream elements. A set of communication instructions exist in
KernelC to transfer data among the clusters. These instructions compile to operations
that are executed by the communication units in the clusters. Finally, the post process-
ing stage performs any end-case cleanup that is necessary for the kernel. Kernels,
however, do not need to follow this structure since KernelC is flexible enough to
allow multiple loops or nested loops, as the algorithm requires.

Despite the abundant data parallelism available in media processing applications, data
dependent conditional control flow is sometimes necessary. Since the clusters operate
in a SIMD fashion, such data dependent conditional execution can be difficult. Imag-
ine provides the following three mechanisms that convert data dependent control flow
The Imagine Stream Processor 47

The Imagine Stream Processor
into conditional data movement: the select operation, scratch-pad access, and condi-
tional streams. First, the select operation is simply the C “?:” operator implemented
as an arithmetic primitive in hardware. The select operation allows data to be
accessed based on data-dependent conditions within each cluster. Second, each clus-
ter can access a different location within its scratch-pad by using a locally computed
offset. The scratch-pad therefore allows different clusters to operate on different array
elements stored within the scratch-pads. Finally, conditional streams allow each clus-
ter to conditionally transfer data to/from the SRF, independent of the other clusters,
based on condition codes computed within each cluster [KDR+00].

4.4 Implementation

Imagine is designed to operate at 500MHz in a Texas Instruments 0.15µm CMOS
process. As shown in the floorplan in Figure 4.10, the chip will measure slightly less
than 16x16mm, including pads. Imagine requires approximately 456 signal pins and
21 million transistors. The SRF and microcode store are approximately six million
transistors each, the arithmetic clusters are roughly 750 thousand transistors each, and
the remaining components are about three million transistors. To facilitate the imple-

FIGURE 4.10 Imagine Floorplan

Micro-Controller

S
tream

buffers

S
R

F

S
tream

buffers

M
em

ory S
ystem

SRF
Control

Stream
Controller

Network
Interface

16
m

m

16mm

ALU Cluster 0

ALU Cluster 1

ALU Cluster 2

ALU Cluster 3

ALU Cluster 4

ALU Cluster 5

ALU Cluster 6

ALU Cluster 7
48 Stream Processor Architecture

Implementation
mentation of a research prototype, not all of the chip need run at 500MHz. In fact,
many units are designed such that they can run slower with negligible performance
degradation.

At the base of the bandwidth hierarchy, the memory system can supply 2GB/s of peak
data bandwidth. The four memory banks are each attached to their own external 32-
bit wide SDRAMs. The memory controllers and SDRAMs operate at 125MHz, yield-
ing a peak memory bandwidth of 500MB/s per bank. Data can also be fed into the
SRF from the network. The network interface has a peak bandwidth of 8GB/s. The
four 16-bit network channels operate at 500MHz, yielding a peak bandwidth of
1GB/s per channel in each direction.

In the center of the bandwidth hierarchy, the 128KB SRF memory array is designed to
operate at 250MHz, yielding a peak bandwidth of 32GB/s. The 22 stream buffers,
however, operate at 500MHz, yielding instantaneous peak bandwidth of 172GB/s.
The stream buffers therefore scale the SRF bandwidth to enable short bursts of higher
bandwidth than the 32GB/s memory array can provide. In practice, the clients rarely
need an average bandwidth of more than the 32GB/s supplied by the memory array.

Finally, the arithmetic clusters contain 48 total arithmetic units (6 per cluster) and 136
local register files (17 per cluster) that yield a peak computation rate of 20GFLOPS
and a peak data bandwidth of 544GB/s. The clusters’ peak computation rate is
20GOPS for both 32-bit integer or floating-point operations. For 16-bit and 8-bit par-
allel-subword operations, the peak performance increases to 40 and 80GOPS, respec-
tively.

The three-tiered bandwidth hierarchy of Imagine therefore provides DRAM band-
width, global register bandwidth, and local register bandwidth with a ratio of
1:16:272. That is, for each word accessed in memory, 16 words may be accessed in
the SRF, and 272 words may be accessed in the clusters' local register files. Viewed
differently, Imagine can perform forty 32-bit arithmetic operations per 4-byte word
accessed in memory, or 2.5 operations per word accessed in the SRF. This is well-
matched to the compute intensive nature of media processing applications. For com-
parison, conventional architectures can typically perform about five operations per
word accessed in memory, and require three global register accesses per operation
[HL99] [Kes99].
The Imagine Stream Processor 49

The Imagine Stream Processor
4.5 Scalability and Extensibility

Media processing applications currently demand very high computation rates, and as
media processing algorithms and applications become more realistic and sophisti-
cated those rates will continue to increase. Therefore, any useful media processor
must be able to scale beyond its current capabilities. The modularity of the Imagine
architecture easily lends itself to scaling and extension. Internally, the Imagine pro-
cessor can easily be scaled or extended, as the SRF isolates the various stream units
from each other. The SRF also allows new stream clients to be added to the processor
without disrupting the rest of the architecture. The network interface allows multiple
Imagine processors to be interconnected without disrupting the programming model.
Applications that run on a single Imagine processor can be ported to a multiprocessor
configuration by inserting network send and receive instructions. These instructions
transfer streams from one processor to the next in the middle of the kernel processing
pipeline.

4.5.1 Scalability

The number of arithmetic clusters can be increased or reduced in order to provide
higher or lower stream throughput with a corresponding change in cost. The width of
the SRF and the peak memory bandwidth also needs to be scaled equivalently to
maintain the correct bandwidth ratios to keep the arithmetic units’ utilization high.
While increasing the number of arithmetic clusters does not incur any major costs
inside each cluster, some global communication may become prohibitive. For
instance, the microcode instructions must be broadcast to all of the clusters. Instruc-
tions could be buffered in clusters closer to the microcontroller so that they are
delayed long enough for the distant clusters to receive them. However, this would
increase the number of required branch delay slots. The microcontroller could be
placed in the center of the cluster array to allow a trivial doubling of the number of
clusters, but this introduces its own set of problems since it is more difficult for the
microcontroller to communicate and synchronize with the stream controller. The
intercluster communication network also has long global wires that would be affected
by scaling. The intercluster switch could be pipelined to continue to allow generalized
intercluster communication with increased latency and significant buffering.

A better way to scale the Imagine architecture is to place multiple Imagine cores on a
single chip. Figure 4.11 shows four 4-cluster Imagines on a single chip. The SRFs are
connected via an on-chip stream network that interfaces to an off-chip network.
Applications could also easily take advantage of such a structure, since the stream
programming model lends itself to multiprocessor configurations. Kernels could be
50 Stream Processor Architecture

Scalability and Extensibility
split across multiple stream cores in many different ways. For instance, kernels could
be pipelined such that one core could perform some amount of kernel processing on
batches of data and then forward the resulting streams to the next core while process-
ing the next batch of data. Similarly, multiple cores could run the same kernels on dif-
ferent subsets of the application data.

4.5.2 Extensibility

The modularity of the architecture also easily lends itself to extension. The stream
register file effectively isolates the stream units from each other. This allows addi-
tional stream clients to be added to the architecture by adding the appropriate number
of stream buffers to the SRF and adding the appropriate stream instruction(s) to pass
streams through the new unit. For example, a variable-length bit-coding unit could be
added to simplify Huffman encoding/decoding for MPEG processing. If given some
programmability, then such a unit could also perform any number of serial bit opera-
tions, such as 5-6-5 RGB pixel conversion to 8-8-8 RGB data. Another example
stream unit could be a texture caching unit that takes a stream of texture addresses as
input and returns both a stream of texels that were found in the cache and a stream of

FIGURE 4.11 Multi-Imagine Processor

Imagine Multi-processor

P0

SRF

C
lu

st
er

0

C
lu

st
er

3

C
lu

st
er

2

C
lu

st
er

1

M
ic

ro
-

co
nt

ro
lle

r

P2

SRF

C
lu

st
er

0

C
lu

st
er

3

C
lu

st
er

2

C
lu

st
er

1

M
ic

ro
-

co
nt

ro
lle

r

P1

SRF

C
lu

st
er

0

C
lu

st
er

3

C
lu

st
er

2

C
lu

st
er

1

M
ic

ro
-

co
nt

ro
lle

r
P3

SRF

C
lu

st
er

0

C
lu

st
er

3

C
lu

st
er

2

C
lu

st
er

1

M
ic

ro
-

co
nt

ro
lle

rS
w

itc
h

Network

Stream
Controller

Host
Processor

D
R

A
M

D
R

A
M

D
R

A
M

D
R

A
M

The Imagine Stream Processor 51

The Imagine Stream Processor
addresses for texels which must be acquired from memory. Any number of such
streaming units could be added to the basic core of the processor, only requiring the
appropriate scaling of SRF bandwidth and capacity. While each specialized streaming
unit is likely to have a limited range of applications for which it is useful, processors
could be designed such that the set of stream units they contain are tailored to the tar-
geted application domain.

The arithmetic clusters themselves can also be easily modified. The mix and compo-
sition of arithmetic units could easily be changed or extended, and units that support
special DSP or media processing operations could easily be added.

The stream register file at the center of the bandwidth hierarchy of the Imagine archi-
tecture allows the processor to be modularly scaled or extended. The SRF provides a
well defined interface to arbitrary stream processing units which also fit into the
stream programming model. To scale or extend the architecture, the bandwidth at the
different levels of the hierarchy simply needs to be adjusted to ensure that all of the
computation resources can be effectively utilized.
52 Stream Processor Architecture

CHAPTER 5 Data Bandwidth
Hierarchy
Currently, real-time media processing applications demand 10-100 GOPS of sus-
tained computation. As these applications become more compelling and realistic,
their computation demands will continue to grow. To meet the current demands, a
500MHz processor would have to support 20-200 arithmetic units at nearly 100% uti-
lization. In modern VLSI, this amount of computation is cheap. Hundreds of arith-
metic units can easily fit on a modestly sized 1cm2 die — a 32-bit floating point
multiplier is only 0.25mm2 in a 0.18µm CMOS process. Communication is the
expensive resource. Technology constraints prohibit conventional microarchitectural
organizations from supporting enough arithmetic units to meet the computational
requirements of media processing applications. However, a microarchitecture that
incorporates a data bandwidth hierarchy can efficiently scale to exploit the abundant
data parallelism inherent in these applications. This chapter will discuss the commu-
nication bottlenecks of modern microprocessors, the organization of a data bandwidth
hierarchy, and the impact of such a storage structure on media processing perfor-
mance.

5.1 Overview

Media processing applications demand computation rates of 10-100 GOPS. A mem-
ory system, such as that of the Imagine media processor, which provides a peak band-
width of 2GB/s could not effectively support enough arithmetic units to achieve the
Data Bandwidth Hierarchy 53

Data Bandwidth Hierarchy
required computation rates. Traditionally, programmable microprocessors have
bridged the bandwidth gap between DRAM and the arithmetic units by using a cache
hierarchy and a centralized register file to supply the arithmetic units with data.
Unfortunately, technology constraints and media application behavior prohibit these
structures from effectively scaling to support the tens to hundreds of arithmetic units
required for media processing.

A data bandwidth hierarchy, however, can bridge the bandwidth gap between DRAM
and the arithmetic units by scaling the provided bandwidth across the levels of the
storage hierarchy. Figure 5.1 shows the bandwidth hierarchy of the Imagine stream
processor. The external DRAM provides a peak bandwidth of 2GB/s. The next level
of the storage hierarchy, the stream register file (SRF), provides a peak bandwidth of
32GB/s, which is 16 times higher than the memory bandwidth. Finally, the distributed
register file structure within the arithmetic clusters provides a peak bandwidth of
544GB/s, which is 17 times higher than the SRF bandwidth. The external DRAM,
SRF, and local register files form a three-tiered bandwidth hierarchy in which the
bandwidth is scaled by a ratio of 1:16:272 across the levels.

A bandwidth hierarchy allows media processing applications to use data bandwidth
efficiently. Temporary data is stored locally in the arithmetic clusters where it may be
accessed frequently and quickly. Intermediate streams are stored on-chip in the SRF
where they can be recirculated between kernels without requiring costly memory ref-
erences. Finally, input, output, and other global data is stored in external DRAM,
since it is referenced infrequently and requires large amounts of storage space.

FIGURE 5.1 Imagine’s Bandwidth Hierarchy

SDRAM

Imagine Stream Processor

Stream
Register

File

SDRAM

SDRAM

SDRAM

ALU Cluster

ALU Cluster

ALU Cluster

2GB/s 32GB/s 544GB/s
54 Stream Processor Architecture

Overview
However, to take advantage of an explicitly managed storage hierarchy, such as the
bandwidth hierarchy shown in Figure 5.1, a programming model that exposes the
locality and concurrency of applications is required. The traditional sequential pro-
gramming model hides parallelism and locality, making it difficult to extract parallel
computations and manage data movement. The stream programming model, however,
enables parallelism to be readily exploited and makes most data movement explicit.
This enables a media processor that incorporates a bandwidth hierarchy to store data
and perform computations more efficiently.

A cache hierarchy dynamically manages data movement and storage. However,
media applications have regular, predictable memory behavior, so the programmer
and compiler have enough knowledge to manage the memory hierarchy effectively at
compile-time. The programmer and compiler are usually unable to take advantage of
this knowledge because of the complexity of detailed memory management at the
granularity of data words.

The stream programming model, however, simplifies memory management. Storage
in the stream register file is allocated to entire streams, rather than individual words.
The programmer or compiler can manage the small number of streams that are active
at any given time. This leads to far more efficient communication and storage, as data
is transferred only when necessary and the overhead required by a cache to manage
memory dynamically is eliminated.

Furthermore, media processing applications map naturally to a bandwidth hierarchy.
Kernels operate on data stored locally within the arithmetic clusters, data streams are
transferred through the SRF, and global data is stored in external DRAM. Therefore,
in this model the programmer allocates large data streams in the SRF, rather than indi-
vidual data words. This frees the programmer from detailed memory management,
making it easy to utilize the large SRF. The bandwidth provided at each level of the
hierarchy is well-matched to application demands, as well. For instance, STAP, a radar
processing application, has a ratio of memory references to SRF references to local
register file references of 1:11:276. This matches the bandwidth provided by the lev-
els of the hierarchy, enabling STAP to achieve a sustained performance of almost
5.5GFLOPS, which is over 25% of Imagine’s peak computation rate. Other applica-
tions perform even better, such as MPEG which achieves 17.9GOPS.
Data Bandwidth Hierarchy 55

Data Bandwidth Hierarchy
5.2 Communication Bottlenecks

Figure 5.2 shows the conventional storage hierarchy used to feed a processor’s arith-
metic units with data. At the lowest level, the arithmetic units are fed directly from a
global register file connected to all of the arithmetic units. The next level of the stor-
age hierarchy is one or more levels of cache memory. These caches get successively
larger and slower the further they get from the arithmetic units. Ultimately, data is
stored in large, slow DRAM, which has traditionally been located off the processor
chip.

A conventional storage hierarchy is optimized to minimize the arithmetic units’
latency to access data. The register file is typically small enough that it can be
accessed in a single cycle. The cache hierarchy keeps data that is likely to be accessed
soon close to the arithmetic units to minimize the latency of memory operations. The
slow DRAM is used as a large storage area which is only accessed when the cache
hierarchy does not hold the referenced data. This structure has been quite successful
for several reasons:

1. For small numbers of arithmetic units, the global register file is able to provide
general storage and communication among arithmetic units allowing data to be
quickly forwarded from one arithmetic unit to another.

2. Many applications have small working sets and large amounts of spatial and tem-
poral locality which allow a small cache to provide enough storage to hold most of
the useful data required by the program at any given time.

3. The sustainable bandwidth out of modern DRAM exceeds the bandwidth demands
of most applications because of the effectiveness of the cache hierarchy.

FIGURE 5.2 Conventional Storage Hierarchy

R
eg

is
te

r
F

ile

L1
Cache

L2 CacheSDRAM
56 Stream Processor Architecture

Communication Bottlenecks
Conventional storage hierarchies, however, are not well matched to the demands of
media processing applications. The structures within the conventional hierarchy are
optimized to minimize data access latency. The global register file is designed for fast
communication among a small number of arithmetic units, the cache hierarchy is
optimized to minimize memory latency, and the DRAM is utilized to provide large
amounts of storage. Rather than low latency, media processing applications demand
high data bandwidth to sustain large amounts of independent processing. They require
far more arithmetic units to achieve their requisite computation rates, tolerate longer
memory latencies, and demand high bandwidth from off-chip memory. These charac-
teristics are incompatible with the conventional storage hierarchy and render it inef-
fective in the following ways:

1. The large computation demands of media applications make a centralized global
register file inefficient, if not infeasible, because of the massive bandwidth
required by the tens to hundreds of arithmetic units accessing it.

2. Media applications have very large working sets (such as images) and have very
little temporal or spatial locality, making caches ineffective. Additionally, the
increased number of arithmetic units create bandwidth demands higher than a
cache hierarchy could deliver.

3. Media applications have extremely high memory bandwidth demands because
they operate on large amounts of raw data (such as video sequences) continuously
transferred from an external source that must be buffered in memory.

All three elements of the storage hierarchy prevent the required data bandwidth from
being supplied to the arithmetic units. To support numerous arithmetic units, a global
register file must provide a large amount of storage and provide high data bandwidth.
Technology constraints make such a register file costly. Furthermore, the cache hier-
archy cannot provide enough bandwidth to support the additional arithmetic units.
Caches are burdened by the fact that they are transparent to the programmer and com-
piler. Since the program does not direct data movement within the hardware, the
cache must dynamically transfer and store data which may or may not be used in the
future. The hardware overhead required to manage this memory limits the effective
bandwidth that a cache can provide. Without sufficient bandwidth from the cache
hierarchy, the arithmetic units will often sit idle waiting for data from the cache.
Finally, when the DRAM is managed to minimize the latency of references that must
access it, the sustained bandwidth of the DRAM is lowered. The following sections
further describe the communication bottlenecks of the global register file, cache hier-
archy, and DRAM.
Data Bandwidth Hierarchy 57

Data Bandwidth Hierarchy
5.2.1 Register File Structure

Programmable processors have typically combined storage and communication
among arithmetic units into a centralized global register file. These register files have
been designed to supply the peak bandwidth required by the arithmetic units. Since
most processors have few arithmetic units (typically less than 10), this register file
design has provided the simplest and most general mechanism for communicating
data among arithmetic units. However, current technology constraints make such cen-
tralized register files costly and inefficient, even for supporting relatively small num-
bers of arithmetic units. A centralized global register file used to interconnect four
arithmetic units would be approximately 0.2mm2 in a 0.18µm CMOS process. To
connect 16 arithmetic units, a centralized register file would be around 6.4mm2. In
fact, the size of a centralized register file grows as N3 for N arithmetic units. Similarly,
the power dissipated by a centralized register file grows as N3 and the delay grows as
N3/2 [RDK+00b].

A centralized register file cannot efficiently support tens to hundreds of arithmetic
units because of its cost, in terms of area, power, and delay. To support the large num-
ber of arithmetic units demanded by media processing applications, the register file
must be partitioned to reduce its cost. Register file partitioning has been used effec-
tively in architectures such as the Compaq Alpha 21264 microprocessor [Kes99] and
the Texas Instruments ’C6000 digital signal processors [TH97]. Partitioning enables
increased bandwidth from the register file structure at reduced cost, allowing the reg-
ister files to support larger numbers of arithmetic units efficiently. A partitioned regis-
ter file can be incorporated into the conventional storage hierarchy; however,
conventional caches cannot scale enough to supply data bandwidth for the tens to
hundreds of arithmetic units demanded by media processing applications.

5.2.2 Cache Hierarchy

In order for a cache hierarchy to be effective, applications must exhibit large amounts
of spatial and temporal locality. By keeping frequently accessed data closer to the
arithmetic units, the latency to access that data is drastically reduced. Media process-
ing applications do not exhibit much temporal locality, since they typically only refer-
ence data once, process it, and never reference it again. Therefore, holding recently
accessed data close to the arithmetic units in a cache is useless. Media applications
also do not exhibit much spatial locality, as they tend to access data in strided pat-
terns. For non-unit strides, this leads to many words of each cache line being unrefer-
enced, especially if the stride is larger than the cache line size. This renders the
cache’s ability to prefetch data located in the vicinity of referenced data useless, as
58 Stream Processor Architecture

Communication Bottlenecks
that prefetched data will not be accessed. Also, most media processing applications
have extremely large working sets, which can easily exceed the capacity of a cache
and cause thrashing.

Media processing applications are far more sensitive to bandwidth than latency. So,
even if caching were effective for these applications, a cache’s ability to reduce mem-
ory latency will not necessarily improve performance. Increasing the sustainable
memory bandwidth would be far more beneficial for these bandwidth intensive appli-
cations. An effective cache can reduce the bandwidth demands on external DRAM.
The cache prevents unnecessary off-chip memory references from occurring by hold-
ing recently accessed data on the chip. However, an ineffective cache can actually
increase the bandwidth demands on the DRAM. A cache, by its very nature, specula-
tively prefetches data on every memory access. If that data is never referenced, which
is the case in applications without spatial locality, then precious DRAM bandwidth
was wasted transferring that data. This is increasingly problematic as memory band-
width becomes more scarce compared to compute resources [BGK97].

Furthermore, a cache is an inefficient way to stage data from memory. Address trans-
lation is required on every reference, accesses are made with long memory addresses,
some storage within the cache must be allocated to address tags, and conflicts may
evict previously fetched data that will be referenced in the future. Despite this over-
head, caches reduce memory latency dynamically at run-time and allow hardware
controlled management of on-chip memory. In conventional processors, these bene-
fits offset the inefficiencies of a cache. However, media processing applications have
predictable memory behavior which allows entire streams of data to be non-specula-
tively prefetched long before they are needed. Therefore, it is more efficient to pro-
vide sufficient registers to hide the latency of memory and to prefetch data directly
into those registers rather than into a cache.

5.2.3 DRAM

Off-chip DRAM bandwidth is fundamentally limited by the pins on the chip, both in
terms of the number of available pins and the achievable bandwidth per pin. Conven-
tional synchronous DRAM (SDRAM) chips currently deliver a peak transfer rate of
up to about 133Mb/s per data pin. The peak data bandwidth of off-chip DRAM is fur-
ther related to the number of pins that the processor can allocate to such memory.
Somewhat recent improvements in DRAM have increased that rate to about 266Mb/s
per pin in Double Data Rate SDRAM (DDR SDRAM) and about 800Mb/s per pin in
Rambus Direct RDRAM (DRDRAM [Cri97]).
Data Bandwidth Hierarchy 59

Data Bandwidth Hierarchy
However, existing DRAM architectures cannot sustain these rates on random memory
accesses. To maximize memory bandwidth, modern DRAM components allow pipe-
lining of memory accesses, provide several independent memory banks, and cache
the most recently accessed row of each bank. While these features increase the peak
supplied memory bandwidth, they also make the performance of the DRAM highly
dependent on the access pattern. Depending on the reference pattern, 14-97% of off-
chip DRAM bandwidth can actually be utilized on continuous memory stream trans-
fers [RDK+00a]. Therefore, to maximize DRAM bandwidth, DRAM accesses must
be carefully managed to take advantage of the internal DRAM structure, rather than
attempting to minimize latency by satisfying references in order. Similarly, on-chip
storage and bandwidth must be organized and managed so as to minimize transfers to
this off-chip memory and thereby avoid wasting precious off-chip memory band-
width.

5.3 Register Organization

The communication bottlenecks of modern VLSI together with the streaming nature
of media processing applications motivate an explicitly managed bandwidth hierar-
chy to effectively utilize tens to hundreds of arithmetic units for media processing
tasks. A bandwidth hierarchy allows media processing applications to utilize commu-
nication-limited technology efficiently. Temporary data is stored locally in the arith-
metic clusters where it may be accessed frequently and quickly. Intermediate streams
are stored on-chip in the SRF where they can be recirculated between kernels without
requiring costly memory references. Finally, input, output, and global data is stored in
external DRAM, since it is referenced infrequently and requires large amounts of
storage space. Data is referenced far more frequently in the levels of the hierarchy
that are closer to the arithmetic units. Therefore, each level of the hierarchy must pro-
vide successively more bandwidth than the level below it. Media applications map
naturally to such a bandwidth hierarchy, enabling them to utilize inexpensive, local
bandwidth when possible, and only consume expensive, global data bandwidth when
absolutely necessary.

As shown in Section 5.2, the register file, cache, and DRAM are all communication
bottlenecks in modern VLSI. As explained in Section 5.2.3, modern DRAM band-
width is constrained by the peak bandwidth of the pins devoted to accessing that
DRAM. Therefore, the only thing that can be done to improve the sustained band-
width of the DRAM is to manage the accesses to that DRAM in order to take advan-
tage of its internal structure. Maximizing the sustained bandwidth of modern DRAM
60 Stream Processor Architecture

Register Organization
will be discussed in Chapter 6. Since caching is not an effective method of improving
media processing performance, the register file must be structured such that it can
hide the latency of memory. This section will therefore focus on how modern VLSI
technology constrains register file organization.

The cost of a register file, in terms of area, power, and delay, is directly related to the
number of registers in the file, R, and the number of ports that access the file, p. As
shown in [RDK+00b], the area of a register file is proportional to p2R, the power dis-
sipation is also proportional to p2R, and the delay is proportional to pR1/2. For a cen-
tralized register file, both p and R are proportional to the number of arithmetic units in
the processor, leading to area and power proportional to N3 and delay proportional to
N3/2 for N arithmetic units [RDK+00b]. Such a register file clearly does not scale well
to support large numbers of arithmetic units.

Media processing applications require more registers per arithmetic unit than a gen-
eral-purpose processor since a conventional cache hierarchy is ineffective. These
additional registers are used to hide the latency of memory directly within the register
file structure. This makes it even more difficult to scale the register file to support
large numbers of arithmetic units. As shown previously, media processing applica-
tions can easily be expressed in the stream programming model to expose the parallel-
ism in their computations and the regularity of their communications. The large data
streams that must be transferred to/from memory and between kernels could easily
interfere with each other within a cache, make inefficient use of cache lines, and
exceed a cache’s capacity. However, these same data streams can efficiently be stored
in a large register file, as their access is regular and predictable at compile time.
Unfortunately, the combined effect of these additional registers and the large number
of arithmetic units needed by media processing applications further increases the cost
of the register file. A register file must, therefore, be partitioned in order to reduce its
area, power, and delay to acceptable levels.

One efficient way to partition a register file is shown in Figure 5.3. A distributed reg-
ister file (DRF) organization such as this can provide inexpensive data bandwidth to a
large number of arithmetic units. Each arithmetic unit has a small two-ported register
file connected directly to each of its inputs. A single switch then routes data among
arithmetic units and register files, in contrast to the centralized register file structure
commonly used in practice which effectively contains this switch inside of every reg-
ister. The DRF organization reduces the area of the register file for N arithmetic units
to be proportional to N2, instead of N3. Similarly, the power and delay of such a struc-
ture is reduced N2 and N, respectively, as opposed to N3 and N3/2 [RDK+00b].
Data Bandwidth Hierarchy 61

Data Bandwidth Hierarchy
A stream register file organization, as shown in Figure 5.4, provides inexpensive stor-
age for data streams, which can be transferred sequentially to/from local DRF storage
near the arithmetic units. The global register file stores data streams that will be recir-
culated through the cluster of arithmetic units for successive kernel operations, so it
only needs to support sequential stream accesses. Since large, multiported register
files are expensive, the cost of this register file can be reduced by organizing it with a
single wide port and a set of stream buffers. Each stream buffer only allows sequential
accesses. The single port to the register file is shared in time by all the stream buffers
which transfer wide data words when they obtain access to the port. The arithmetic
units may then access the stream buffers at the granularity of individual data words.
Effectively, this organization separates the register file into two parts: a large register
file with a single port to stage data from memory and smaller register files that feed
the arithmetic units.

Data from memory is only transferred to/from the global stream register file (SRF),
similar to a conventional load/store architecture except that the unit of data is an

FIGURE 5.3 Distributed Register File Organization

FIGURE 5.4 Stream Register File Organization

Global Register File

Stream Buffers {

N Arithmetic Units
62 Stream Processor Architecture

Register Organization
entire stream. The SRF effectively isolates the arithmetic units from the long, variable
latencies of DRAM accesses. Since kernels are not started until their input streams are
available in the SRF, their stream input and output operations cannot stall the arith-
metic units. Therefore it is not only practical, but advantageous, to statically schedule
the arithmetic units at compile time. Since the compiler knows that stream references
will not stall the arithmetic clusters, it can schedule arithmetic operations more effi-
ciently than a dynamic scheduler. The compiler can consider a larger number of oper-
ations and does not need to consider variable dynamic latencies due to memory, since
all global data references access the stream register file. Additionally, the hardware
cost of a dynamic superscalar operation scheduler is eliminated.

The arithmetic units can be further partitioned into single-instruction, multiple-data
(SIMD) clusters, as shown in Figure 5.5. Because of the abundant data parallelism in
media processing applications, the arithmetic units and their distributed register files
can be grouped into identical clusters. Each arithmetic cluster can only access its ded-
icated portion of the SRF and operates on subsequent data records in parallel. By
reducing the number of arithmetic units that must be interconnected by a switch in
this manner, the area, power, and delay of the register file structure is reduced. Addi-
tionally, since the clusters are performing data-parallel computations, they can share a
single controller, further reducing the overhead associated with each arithmetic unit.
This structure reduces the area and power of the register file for N arithmetic units
organized into C clusters to be proportional to N2/C and the delay to be proportional
to N/C [RDK+00b].

FIGURE 5.5 Stream/SIMD Register File Organization

C SIMD Clusters

N/C Arith. UnitsN/C Arith. Units

Partitioned Global
Register File

Partitioned
Stream Buffers
Data Bandwidth Hierarchy 63

Data Bandwidth Hierarchy
A partitioned register organization, including local distributed register files and a glo-
bal stream register file divided into SIMD clusters, and external DRAM combine to
form an efficient bandwidth hierarchy. A 32-bit wide single data rate SDRAM operat-
ing at 125MHz yields a peak bandwidth of 500MB/s and a single Rambus channel
operating at 400MHz yields a peak bandwidth of 1.6GB/s. Therefore, by allocating
pins to four external banks of DRAM, modern DRAM can provide 2-6.4GB/s of peak
data bandwidth. A stream register file spanning most of the width of a 1cm2 chip pro-
vides a peak bandwidth of 32-64GB/s, an order of magnitude higher than DRAM. An
eight cluster, distributed register file structure supporting 48 total arithmetic units can
provide a peak bandwidth in excess of 500GB/s, an order of magnitude higher than a
global stream register file.

5.4 Evaluation

The bandwidth hierarchy described in the previous section is well-matched to modern
VLSI technology, but to be useful, applications must be able to take advantage of it. If
applications perform only a single operation on each unique word referenced in mem-
ory, then the bandwidth hierarchy would be rendered useless and the computation rate
would be entirely limited by memory bandwidth. Ideally, the ratio among memory
references, global data references, and local data references would exactly match the
supplied bandwidth of the three levels of the hierarchy. In practice, the application
demands lie somewhere between these two extremes.

This section will evaluate the efficiency of the bandwidth hierarchy. First, Section
5.4.1 will show that kernels can make efficient use of local register files for temporary
storage to feed the arithmetic units and of an SRF to feed input streams to the arith-
metic units and store output streams from the arithmetic units. Second, Section 5.4.2
will show that when kernels are considered as part of an application, rather than in
isolation, the SRF can be efficiently used to capture the locality of stream recircula-
tion within media processing applications, thereby limiting the bandwidth demands
on off-chip memory. Third, Section 5.4.3 will show that media processing applica-
tions demand successively increasing amounts of bandwidth when they are mapped to
the three-tiered storage hierarchy described in this chapter. Fourth, Section 5.4.4 will
show that the hierarchical bandwidth scaling of the storage hierarchy is in fact what
enables these media processing applications to achieve 77-96% of the performance
that they would sustain given infinite instantaneous data bandwidth. Finally, Section
5.4.5 will show the sustained performance and arithmetic utilization that the data
bandwidth hierarchy enables Imagine to achieve.
64 Stream Processor Architecture

Evaluation
5.4.1 Kernel Comparison

A comparison of kernel performance across programmable architectures shows the
advantages of the bandwidth hierarchy within a stream processor. Consider a simple
media processing kernel, a Finite Impulse Response (FIR) filter. An FIR filter is a one
dimensional convolution of a small kernel over a long data stream. The following
equation describes the operation (M is the number of coefficients in the filter):

(5.1)

Input values that do not exist on the boundaries of the computation are defined to be
0. In this section, a 13-tap filter is used consisting of 16-bit fixed-point coefficients
with 15 bits of fraction and one sign bit, making the coefficients, k, lie in the range
-1 ≤ k < 1. The input stream also consists of 16-bit fixed-point numbers with the out-
put having the same precision as the input. For accuracy, the 32-bit products are
summed at 32-bit precision and then rounded and shifted to generate the final 16-bit
results. The input stream can be zero padded to simplify boundary cases, although this
is not necessary.

Figure 5.6 shows the C code for a simple implementation of such an FIR filter. It
assumes that there are extra zeros at the beginning and end of the input stream so that
bounds checking does not need to be performed. Also, the coefficient array is
reversed to simplify the index calculations. All of the implementations of the FIR fil-
ter presented in this section are functionally equivalent to this C code, except that the
implementations either do not require zero padding or only require it on one end of
the input.

The number of global data references and the number of arithmetic operations
required by this kernel can be determined directly from the C code. Assuming an infi-

for (n=0; n<NUMOUTPUTS; n++)
{
 sum = 0; // 32-bit accumulator
 for (i=0; i<13; i++)
 sum += k[i] * input[n+i]; // MAC for convolution
 output[n] = (sum + 0x4000) >> 15; // Round and shift to 16 bits
}

FIGURE 5.6 C Code for a 13-tap, 16-bit Fixed-point, Real FIR Filter

y n() ki x n i–()⋅

i 0=

M 1–

∑=
Data Bandwidth Hierarchy 65

Data Bandwidth Hierarchy
nite amount of register storage, each input would have to be loaded once, each output
would have to be stored once, and the 13 coefficients would have to be loaded into the
register file once. This would lead to a total of slightly more than 4 bytes of memory
referenced per output. For each output, 13 multiplies, 13 additions, and one shift are
required (the C code performs one extra addition operation for simplicity). If the only
register file references made by the code were to support the minimum required trans-
fers between memory and the register file and to support the input and outputs of the
computations, this would lead to a total of 276 bytes referenced in the register file per
output.

Table 5.1 shows the bandwidth demands of this FIR filter for a scalar digital signal
processor (Texas Instruments TMS320C6203 [TH97]), a parallel-subword enhanced
general-purpose processor (Intel Pentium II MMX [PW96]), and a stream processor
(Imagine). The ’C6 DSP has a similar architecture to the conventional architecture
presented at the beginning of this chapter. However, instead of a single centralized
register file, the eight arithmetic units are split into two groups of four, each with its
own register file. The on-chip memory of the ’C6 can be configured either as cache or
as addressable memory, with equivalent bandwidth in both organizations. The archi-
tecture of the Pentium II is a very close approximation to the conventional storage
structure. The parallel-subword extensions (MMX [PW96]) allow SIMD operations
to be performed on data within the 64-bit floating-point registers. This improves per-
formance and efficiency when performing the 16-bit and 32-bit calculations of the
FIR filter. Imagine, described in Chapter 4, utilizes a data bandwidth hierarchy.

As can be seen in Table 5.1, all of the processors use more bandwidth than is strictly
necessary to perform the FIR filter. The DSP references 36 bytes of memory per out-
put, rather than the 4 bytes that are necessary, because 16 coefficients and 18 inputs
are loaded for every pair of outputs, leading to 32 bytes of additional memory traffic.
For each pair of outputs, 16 coefficients and 18 inputs are loaded, instead of 13 coef-

DSP Parallel-subword Stream

Memory 36.0 49.9 ≤ 4.03

Global Register File 664.1 296.7 4.03

Local Register File N/A N/A 420.02

TABLE 5.1 Bytes Referenced per 16-bit FIR Filter Output (2048 Output, 13-tap
filter)
66 Stream Processor Architecture

Evaluation
ficients and 14 inputs, because the filter procedure is unrolled such that the filter
length must be a multiple of eight. FIR filters with lengths that are not a multiple of
eight would achieve the same performance as if their length were the next multiple of
eight, so the code for a 16-tap filter was used with three of the taps being zero. Over
664 bytes are referenced within the register file per output for this version of the code,
as opposed to the 276 bytes that are strictly necessary, for the following reasons: the
extra memory traffic also generates additional register accesses, the 32-bit registers
are used to hold 16-bit values causing useless bytes to be accessed for 16-bit opera-
tions, and addressing and loop counting operations require register usage.

The MMX version of the code suffers similar problems as the DSP in terms of mem-
ory references. For every pair of outputs, 52 coefficients and 16 inputs are loaded.
Since the inputs are packed into 64-bit words, four copies of the 13 filter coefficients
are required. Each copy is stored in four 64-bit words, aligned to start at a different
16-bit boundary. Unlike the DSP version of the code, this version is optimized for a
13-tap filter, so the additional coefficients are only needed to solve alignment issues.
For each pair of outputs, 16 inputs are loaded, rather than 14, as the inputs are also
stored in 64-bit words. This leads to the additional 46 bytes of memory references
over the required 4 bytes per output. The MMX version of the code, however, is very
efficient in its register usage, requiring only about 297 bytes of register accesses in
comparison to the required 276. This is due to several factors: the Pentium allows one
operand of many operations to come from memory and the 64-bit words are used to
efficiently hold four 16-bit samples or two 32-bit accumulators. Otherwise, the MMX
code suffers from similar addressing and loop counting overhead.

The table clearly shows the benefits of the bandwidth hierarchy in the Imagine col-
umn. Imagine avoids unnecessary memory traffic, separates global and local data, and
does not require addressing calculations to access streams. Imagine makes very close
to the minimum required number of memory references (4.03 bytes). Each input is
loaded once, each output is stored once, and 26 coefficients are loaded once for the
entire filter (the 16-bit coefficients are packed into 32-bit words, so two differently
aligned copies are required, as in the MMX code). In an application, the input to the
FIR is likely to have been produced by a previous kernel and the output from the FIR
is likely to be consumed by a subsequent kernel. Therefore, the table lists Imagine’s
memory references as less than or equal to 4.03 bytes because, in practice, the input to
the FIR will already be in the SRF and the output will stay in the SRF. Imagine also
only references these same 4.03 bytes in the global register file. Once the coefficients
are moved into the arithmetic clusters, they are stored locally for the duration of the
computation. Similarly, since there is enough register storage provided by the DRF
structure of the local register files, inputs do not need to be loaded repeatedly. There-
Data Bandwidth Hierarchy 67

Data Bandwidth Hierarchy
fore, only 4.03 bytes per output are referenced in the SRF. Imagine references 420
bytes of local register storage per output, compared to the required 276 bytes, in order
to transfer data around from one register file to another within the DRF structure.
Data must be transferred among register files in the DRF structure to facilitate soft-
ware pipelining and to duplicate data that is needed by multiple functional units. This
local register bandwidth, however, is much cheaper to provide than global register
bandwidth, so these additional referenced bytes do not hurt performance.

Figure 5.7 shows the FIR filter kernel written in the stream programming model. The
inner loop from the C code implementation is completely unrolled to enable better
performance when the outer loop is software pipelined. The 16-bit inputs are packed
into 32-bit words (the half2 data type consists of two 16-bit values packed into a sin-
gle 32-bit word), so in each loop iteration, two inputs values are read per cluster and
two output values are written per cluster. The code in the first page of the figure is the
overhead required to correctly compute the FIR on an eight cluster SIMD machine.
At the top of each loop iteration, each cluster reads two new input values. Since the
inputs are interleaved across the eight clusters, they are rotated (using the
commucperm instruction), and delayed for one loop iteration if necessary (using the
?: operator and cluster_id() value), in order to provide each cluster with the previous
twelve inputs that will be needed to produce that cluster’s two outputs.

Since the setup code on the first page of the figure places the correct 14 inputs into
in01 through inAB, all eight clusters are able to compute their outputs in parallel. The
code in the second page of the figure is the unrolled computations needed to compute
two outputs of the FIR filter. The muld operator takes two packed 16-bit inputs and
multiplies the high 16-bit values of each word to produce one 32-bit result and multi-
plies the low 16-bit values of each word to produce another 32-bit result. The hi_lo
operator – which is a language construct, not a hardware instruction – places these
two 32-bit products into its two arguments. These products are then summed and
rounded to produce two output values, outC and outD. These 16-bit values are then
packed into a single 32-bit word and output to the SRF.

Table 5.2 shows the performance and bandwidth usage of the three processors on the
FIR filter. The results in the table are generated assuming that all three processors
have memory systems with infinite bandwidth that never cause the processors to stall.
The number of operations that an architecture can perform per byte referenced in reg-
ister files or memory can be calculated by dividing the sustained performance in the
table by the appropriate data bandwidth in the table. For example, Imagine is able to
perform 6.7 operations per byte referenced in the global register file, whereas the 'C6
and Pentium II are only able to perform 0.04 and 0.09 operations per byte, respec-
68 Stream Processor Architecture

Evaluation
tively. Therefore, to achieve a given level of performance, the bandwidth hierarchy of
Imagine requires two orders of magnitude less global register file bandwidth. By off-
loading the job of feeding the arithmetic units from the global register file to the local
register files, the bandwidth hierarchy is able to support a much larger number of
arithmetic units using a global register file with approximately the same peak band-
width. Imagine achieves a similar number of operations per byte of local register file
bandwidth (0.06) as the other architectures do per byte of global bandwidth. How-
ever, since local register bandwidth is inexpensive in terms of area, power, and delay,
far more arithmetic units can be supported. This allows Imagine to achieve over
17GOPS on the FIR filter, while the ’C6 and Pentium II can only achieve about 1 and
1.5GOPS, respectively. Even if the Pentium II’s clock speed is increased to 750MHz
to account for technology differences, it would still only achieve about 2.5GOPS with
0.09 operations per byte of global register bandwidth. Therefore, the bandwidth hier-
archy of a stream processor efficiently scales data bandwidth that can be effectively
utilized by media processing applications to achieve higher performance.

Table 5.2 also shows the utilization of the arithmetic units of each processor in the
inner loop of the FIR filter kernel. The 'C6, which is optimized for such digital signal
processing functions as the FIR filter, achieves 100% utilization of its eight arithmetic
units. This is possible because the types of arithmetic units are an exact match for this
kernel. The Pentium II is only able to achieve 94% utilization of its two arithmetic
units. Data dependencies prevent a few of the issue slots in the inner loop from being

DSP Parallel-subword Stream

Processor TMS320C6203 Pentium II MMX Imagine

Technology (µm) 0.15 0.25 0.15

Frequency (MHz) 300 450 500

Performance (GOPS) 1.01 1.47 17.57

Inner Loop ALU
Utilization (%)

100 94 77

Local RF BW (GB/s) N/A N/A 273.25

Global RF BW (GB/s) 24.88 16.20 2.62

Memory BW (GB/s) 1.42 2.73 ≤ 2.62

TABLE 5.2 FIR Filter Performance and Bandwidth (2048 Output, 13-tap Filter)
Data Bandwidth Hierarchy 69

Data Bandwidth Hierarchy
kernel firfx13(istream<half2> data,
istream<half2> krnl,
ostream<half2> output)

{
// Declare variables
half2 k01, k23, k45, k67, k89, kAB, kC_; // Kernel for high output
half2 k_0, k12, k34, k56, k78, k9A, kBC; // Kernel for low output
half2 in01, in23, in45, in67, in89, inAB, inCD; // Input Data
half2 com01, com23, com45, com67, com89, comAB; // Communicated data
half2 dly01, dly23, dly45, dly67, dly89, dlyAB; // Delayed data;
int p00, p11, p22, p33, p44, p55, p66, p77, p88, p99, pAA, pBB, pCC;
int p01, p12, p23, p34, p45, p56, p67, p78, p89, p9A, pAB, pBC, pCD;
int sum00, sum01, sum02;
int sum10, sum11, sum12;
int outC, outD;
half2 outCD;

// Input kernel (1.15 fixed point numbers)
krnl >> k01 >> k23 >> k45 >> k67 >> k89 >> kAB >> kC_;
krnl >> k_0 >> k12 >> k34 >> k56 >> k78 >> k9A >> kBC;

// Initialized delayed data to 0
dly01 = 0; dly23 = 0; dly45 = 0; dly67 = 0; dly89 = 0; dlyAB = 0;

// Mask to pack two 16-bit results into a 32-bit word
cc packcc = itocc(0xFFFF0000);

loop_stream(data) pipeline(1) {
 // Get next data elements (2 packed 16-bit values per 32-bit word)
 data >> inCD;

 // Communicate data to other clusters
 comAB = commucperm(rotateRightBy1, inCD);
 com89 = commucperm(rotateRightBy2, inCD);
 com67 = commucperm(rotateRightBy3, inCD);
 com45 = commucperm(rotateRightBy4, inCD);
 com23 = commucperm(rotateRightBy5, inCD);
 com01 = commucperm(rotateRightBy6, inCD);

 // Select between current and delayed data (for end clusters)
 inAB = (cluster_id() < 1) ? dlyAB : comAB;
 in89 = (cluster_id() < 2) ? dly89 : com89;
 in67 = (cluster_id() < 3) ? dly67 : com67;
 in45 = (cluster_id() < 4) ? dly45 : com45;
 in23 = (cluster_id() < 5) ? dly23 : com23;
 in01 = (cluster_id() < 6) ? dly01 : com01;

 // Delay data for end clusters
dlyAB = comAB; dly89 = com89; dly67 = com67;
dly45 = com45; dly23 = com23; dly01 = com01;

FIGURE 5.7 KernelC Code for a 13-tap, 16-bit Fixed-point, Real FIR Filter
70 Stream Processor Architecture

Evaluation
 // Calculate Products
 hi_lo(p00, p11) = muld(k01, in01);
 hi_lo(p22, p33) = muld(k23, in23);
 hi_lo(p44, p55) = muld(k45, in45);
 hi_lo(p66, p77) = muld(k67, in67);
 hi_lo(p88, p99) = muld(k89, in89);
 hi_lo(pAA, pBB) = muld(kAB, inAB);
 pCC = hi(muld(kC_, inCD));

 p01 = lo(muld(k_0, in01));
 hi_lo(p12, p23) = muld(k12, in23);
 hi_lo(p34, p45) = muld(k34, in45);
 hi_lo(p56, p67) = muld(k56, in67);
 hi_lo(p78, p89) = muld(k78, in89);
 hi_lo(p9A, pAB) = muld(k9A, inAB);
 hi_lo(pBC, pCD) = muld(kBC, inCD);

 // Calculate sums
 sum00 = ((p00 + p11) + (p22 + p33));
 sum01 = ((p44 + p55) + (p66 + p77));
 sum02 = ((p88 + p99) + (pAA + pBB));

 sum10 = ((p01 + p12) + (p23 + p34));
 sum11 = ((p45 + p56) + (p67 + p78));
 sum12 = ((p89 + p9A) + (pAB + pBC));

 outC = (sum00 + sum01) + (sum02 + pCC);
 outD = (sum10 + sum11) + (sum12 + pCD);

 // Round 32-bit results and shift back to 16-bit precision
 outC = (outC + 0x4000) << 1;
 outD = (outD + 0x4000) >> 15;

 // Pack results and append to output stream
outCD = select(packcc, outC, outD);
output << outCD;

 }
}

FIGURE 5.7 KernelC Code for a 13-tap, 16-bit Fixed-point, Real FIR Filter
Data Bandwidth Hierarchy 71

Data Bandwidth Hierarchy
used. Finally, Imagine achieves 77% utilization of it’s 48 arithmetic units. The eight
dividers go unused in this kernel, and the communication unit is 100% utilized, pre-
venting further improvement. Even though the mix of arithmetic units in Imagine is
not as ideally suited to the FIR filter kernel as the mix of units in the 'C6, the band-
width hierarchy still enables Imagine to keep over three-fourths of its compute
resources busy.

The performance of the FIR filter kernel presented here does not show the actual
effects of memory latency and bandwidth. Table 5.2 shows the amount of memory
bandwidth that would be needed in order to sustain the given computation rates. The
structure of the memory system and the reference locality of the memory accesses
determine how much of that bandwidth would actually need to be provided by exter-
nal DRAM. The 'C6 and Pentium II would be able to satisfy many of their memory
references directly out of their on-chip caches. Depending on data placement, how-
ever, conflicts may evict some reusable data. The 'C6 would be able to avoid these
evictions by configuring on-chip memory as addressable storage, rather than a cache.
External DRAM must provide the bandwidth that is not provided by these on-chip
memories and caches. If the majority of the memory bandwidth demand is not satis-
fied by on-chip resources, then these applications will become memory bound and
their sustained computation rates will drop.

If the FIR filter was the only processing being performed on the data streams in Imag-
ine, then all of the required memory bandwidth given in Table 5.2 would have to
come from external DRAM. However, when entire applications are considered, the
bandwidth hierarchy of Imagine enables many of the memory references required by
the FIR filter kernel to be eliminated. Streams would be recirculated through the SRF
from one kernel to the next, so the inputs and outputs of the FIR would not need to be
stored in memory. Rather, the output of a previous kernel would be recirculated
through the SRF and input to the FIR, and the output of the FIR would be recirculated
through the SRF to another kernel. This recirculation of streams through the SRF dra-
matically reduces the bandwidth demands on memory in Imagine.

5.4.2 Application Evaluation

The MPEG2 I-frame encoder, introduced in Section 4.1.2, efficiently utilizes the
bandwidth hierarchy to minimize references to the SRF and off-chip memory. Figure
5.8 shows how the MPEG2 I-Frame encoder maps to the three-tiered bandwidth hier-
archy. The figure also shows the number of bytes that are referenced by the applica-
tion at each level of the hierarchy. The seven computation kernels of the application
execute on the arithmetic clusters, as shown in the figure. During the execution of
72 Stream Processor Architecture

Evaluation
each kernel, the SRF is only referenced to read the kernel’s inputs and write the ker-
nel’s outputs. For example, the color conversion kernel reads RGB pixels from its
input stream, performs operations on local data, and writes luminance and chromi-
nance pixels to its output streams. All intermediate data is stored in the local register
files within the clusters, resulting in 154.4MB of data being referenced within those
register files. As each pixel is converted by the color conversion kernel, for instance,
all of the partial sums and products are stored within these local register files. Data
streams that are passed from kernel to kernel are stored within the SRF and do not
need to return to memory, as shown in the figure. This results in 4.8MB of data being

FIGURE 5.8 I-Frame Encoding from MPEG2 Encoder

Color
Conversion

DCT

DCT

IDCT

IDCT

Run-Level
Encoding

Variable
Length
Coding

Arithmetic ClustersStream Register FileMemory (or I/O)

Input
Image

RGB
Pixels

Luminance
Pixels

Transformed
Luminance

Luminance
Reference

Encoded
Bitstream

RLE Stream

Bitstream

Reference
Chrominance

Image

Reference
Luminance

Image

Chrominance
Pixels

Transformed
Chrominance

Chrominance
Reference

Data Referenced: 835KB 4.8MB 154.4MB

Memory
Bandwidth

SRF
Bandwidth
Data Bandwidth Hierarchy 73

Data Bandwidth Hierarchy
referenced within the SRF. No intermediate data that is used in the encoding process
of the current frame is stored to memory. The only memory references that are per-
formed by the application are to read the original unencoded image, to write the final
encoded bit stream, and to write the reference images that will be used to encode
future P- or B-frames, resulting in 835KB referenced in memory. In practice, the
unencoded images could enter the SRF directly from an input device connected to the
Imagine network. Similarly, the encoded bit stream could leave the SRF directly for
the Imagine network, rather than being stored in memory.

Table 5.3 shows the bandwidth demanded by and used by the I-frame encoder. The
first column shows the bandwidth demands of the application when the bandwidth of
the memory system and the SRF are unconstrained. This demand is the amount of
data bandwidth that would be consumed by the application if it were executed on the
Imagine architecture with an SRF and memory system that could provide infinite
instantaneous bandwidth. This means that streams can be transferred between mem-
ory and the SRF instantaneously, and that the arithmetic clusters never stall when
reading from or writing to the SRF. The second column shows the bandwidth that
would be consumed by the application if it were executed on the Imagine architecture
with a normal SRF and a memory system that could provide infinite instantaneous
bandwidth. This means that memory transfers are only limited by the available SRF
bandwidth. Finally, the third column shows the sustained data bandwidth that the
application is able to achieve on the Imagine architecture given the actual limits of
both the SRF and memory system. As can be seen from the table, this application uses
almost six times more SRF bandwidth than memory bandwidth and about 32 times
more local register file bandwidth than SRF bandwidth.

This illustrates the effectiveness of the bandwidth hierarchy at all three levels. The
local register files are able to meet the demands of the arithmetic units and provide far

Unconstrained
Bandwidth

Constrained
SRF Bandwidth

Bandwidth
Use

Performance (GOPS) 10.89 10.83 10.58

Local Register File Bandwidth (GB/s) 167.47 166.53 162.64

Global Register File Bandwidth (GB/s) 5.23 5.20 5.08

Memory Bandwidth (GB/s) 0.88 0.88 0.86

TABLE 5.3 Bandwidth Demands and Use of MPEG2 I-frame Encoder
74 Stream Processor Architecture

Evaluation
more data bandwidth than would be available in traditional architectures. The SRF is
only utilized for stream storage between kernels and therefore only needs to sustain
an order of magnitude less data bandwidth. Finally, the memory system holds global
data and is referenced only when necessary, keeping the overall memory demands to a
minimum.

The local register files effectively supply the arithmetic units with data. The arith-
metic clusters demand about 167.5GB/s of data bandwidth to achieve 10.9GOPS of
computational throughput. In practice, the local register files actually provide about
162.6GB/s of bandwidth. However, the slight decrease from the demand occurs
because of SRF and memory bandwidth limitations, not bandwidth limitations of the
local register files. The SRF limits the sustainable performance slightly; the arith-
metic clusters are idle for about 0.5% of the run-time because the SRF is unable to
sustain bandwidth bursts above 32GB/s for extended periods of time. The table shows
that constraining the SRF bandwidth reduces the application’s performance to
10.8GOPS. The arithmetic clusters are also idle for about 2.5% of the run-time wait-
ing for memory transfers to complete, further reducing performance to about
10.6GOPS.

The SRF is utilized for intermediate stream storage between kernels. This results in a
sustained demand over the entire application of about 5GB/s. The SRF is actually
able to provide over 97% of this bandwidth. As previously mentioned, the drop in
bandwidth from the demand occurs because of limited memory bandwidth and
because the application has bursty SRF access patterns that sometimes exceed the
32GB/s of average bandwidth the SRF can provide. The utilization of the SRF for
stream recirculation keeps the memory bandwidth demands at a realizable level.

The application demands only 0.88GB/s of memory bandwidth to sustain 10.9GOPS
of computation. This is a ratio of 49.5 operations per word of memory referenced. It is
not difficult for the Imagine memory system to sustain a significant fraction of this
demand. In fact, it is able to achieve about 97% of this bandwidth, almost one half of
the peak bandwidth of the Imagine memory system.

5.4.3 Application Bandwidth Demands

For a given arithmetic capacity, a stream processor can achieve a peak computation
rate based on the available parallelism within the applications. This rate can be mea-
sured by providing infinite instantaneous data bandwidth from the SRF and memory
system. Table 5.4 shows the peak computation rate on the Imagine stream processor,
with 48 arithmetic units organized into eight SIMD clusters and a 128KB SRF, for the
Data Bandwidth Hierarchy 75

Data Bandwidth Hierarchy
five applications (DEPTH, MPEG, QRD, STAP, and RENDER) that were introduced in Sec-
tion 3.2. As can be seen in the table, these five applications can achieve sustained
computation rates from between 5 and 19 billion operations per second, if the 48
arithmetic units are provided with infinite data bandwidth. These values are a func-
tion of the available parallelism within the applications, the throughput and latency of
the arithmetic units, and the separation of the arithmetic units into SIMD clusters. The
table also shows that these applications perform between 25 and 165 operations per
word accessed in memory. This shows the computational intensity of these applica-
tions and further motivates the necessity of a bandwidth hierarchy to enable such
large amounts of computation per memory reference.

In order to achieve the computation rates presented in Table 5.4, each application
demands a certain amount of bandwidth from each level of the bandwidth hierarchy.
These demands are shown in Table 5.5. As can be seen from the table, all of the appli-
cations demand less than 1GB/s of memory bandwidth. This illustrates the effective-
ness of the bandwidth hierarchy in eliminating unnecessary memory references in
media processing applications. Without the global register file recirculating streams,
the memory system would have to sustain from 2.4 to 22.5 GB/s of data bandwidth to
enable these applications to achieve their peak computation rate. While it is possible
for the streaming memory system of the Imagine stream processor to sustain around
1GB/s of bandwidth out of modern DRAMs (see Chapter 6), it is impossible to
exceed the peak DRAM bandwidth of 2GB/s. Therefore, without the bandwidth hier-
archy, these applications would all be limited by memory bandwidth.

The table further shows that the bandwidth demands of the applications increase by
an order of magnitude at each tier of the bandwidth hierarchy. For example, the ratio

Application
Operations per

Memory Reference Performance

DEPTH 60.1 14.94 GOPS 274 frames per second

MPEG 164.8 18.69 GOPS 364 frames per second

QRD 131.3 13.79 GOPS 1.1 ms per QRD

STAP 43.3 7.03 GOPS 11.7 ms per interval

RENDER 25.1 4.77 GOPS 83 frames per second

TABLE 5.4 Computation Rate with Unlimited Data Bandwidth
76 Stream Processor Architecture

Evaluation
of memory references to global register file references to local register file references
in the STAP application is roughly 1:11:276. Across all of the applications, the
demands on the SRF are 5 to 23 times higher than the demands on the memory sys-
tem, and the demands on the local register files are 10 to 80 times higher than the
demands on the SRF. Therefore, the applications would clearly benefit from a band-
width scaling that increases by roughly an order of magnitude at each level of the
hierarchy.

Figure 5.9 shows the sensitivity of four of the applications to the size of the SRF. The
figure shows the computation rate of each of the applications when the SRF and
memory system can provide infinite instantaneous bandwidth. As can be seen in the
figure, an SRF size of 20KW (80KB) is sufficient for the applications to achieve their
peak rate for the problem sizes given in Section 3.2. MPEG benefits slightly from
more SRF space and is able to increase performance by 2% with a 36KW (144KB)
SRF.

The performance of each application plateaus as the size of the SRF is increased
because the SRF becomes large enough to hold the applications’ working sets. As the
SRF size is increased, so is the length of streams that can be processed by the applica-
tions’ kernels. Each kernel has some overhead associated with starting and stopping
the kernel. This overhead includes the time it takes the stream controller to initiate the
kernel and set up its streams in the SRF, the code outside of kernel loops that is exe-
cuted once each time a kernel is called, and the time spent priming and draining soft-
ware pipelined loops within the kernels. However, all of these applications have a
natural maximum useful stream length based on the input data. For instance, DEPTH

Application
Memory

Bandwidth (GB/s)
Global Register

Bandwidth (GB/s)
Local Register

Bandwidth (GB/s)

DEPTH 0.99 22.45 247.51

MPEG 0.45 2.40 197.51

QRD 0.42 4.23 298.72

STAP 0.65 6.94 179.07

RENDER 0.76 5.43 161.23

TABLE 5.5 Application Demands on a Stream Processor with Infinite Data
Bandwidth
Data Bandwidth Hierarchy 77

Data Bandwidth Hierarchy
and MPEG only benefit from operating on an entire row of their input images, as their
kernels cannot operate on more than one row at a time. Beyond that, they cannot take
advantage of longer streams. The graph shows that for the size of the data sets in these
experiments, a 20KW (80KB) SRF allows the maximum useful stream sizes for all of
the applications, except for MPEG. Larger problem sizes would benefit from larger
SRF sizes. However, the performance of these applications would always plateau
after the SRF becomes large enough to hold streams of the natural length for each
application. The RENDER application is not shown in Figure 5.9 because the polygon
renderer requires support from the stream scheduler which is not currently available
to correctly operate at different SRF sizes.

5.4.4 Bandwidth Sensitivity

The bandwidth hierarchy is not effective if the SRF does not provide significantly
more bandwidth than the memory system. By scaling the provided bandwidth across
the levels of the hierarchy, however, a stream processor is able to sustain a significant
fraction of the performance of media processing applications when they are provided
with infinite bandwidth.

Figure 5.10 shows the performance of the media applications for a 32KW SRF with a
peak bandwidth varying from 4 to 64GB/s. The 4GB/s SRF case corresponds roughly
to forcing the applications to rely solely on the memory system. With a 4GB/s SRF,
the memory system consumes from 0.5 to 1GB/s of that bandwidth to transfer streams
to/from the external DRAM, leaving about 3GB/s for transferring data to and from

FIGURE 5.9 Computation Rate with Unlimited Bandwidth vs. SRF Size

4

6

8

10

12

14

16

18

20

4 8 12 16 20 24 28 32 36 40

SRF Size (KW)

P
er

fo
rm

an
ce

 (
G

O
P

S
)

DEPTH

STAP

MPEG

QRD
78 Stream Processor Architecture

Evaluation
the arithmetic clusters. This is slightly more bandwidth than would be available from
the 2GB/s memory system if the SRF were not part of the bandwidth hierarchy but is
low enough to show the degradation in performance without an SRF that provides
significantly increased bandwidth over the memory system.

As can be seen in the figure, the sensitivity to the bandwidth of the SRF varies by
application. DEPTH shows the most sensitivity, with a performance of over 5.6 times
higher with a 64GB/s SRF compared to a 4GB/s SRF. This is not surprising, given
that DEPTH is the application that demands the most SRF bandwidth at 22.45GB/s. To
sustain over 20GB/s across the entire application, the SRF must have a significantly
higher peak bandwidth. The other applications show more modest improvements,
ranging from 20% to 60%. These applications achieve most of their peak perfor-
mance with an SRF that can provide 16GB/s, which is still eight times higher than the
peak memory bandwidth. Finally, the gap between the unlimited bandwidth perfor-
mance and the actual achieved performance of all of the applications, except DEPTH,
is due to memory bandwidth limitations. While DEPTH is able to overlap almost all of
its stream memory transfers with computation, dependencies prohibit the other appli-
cations from hiding all of their memory transfers. Therefore, while the memory sys-
tem is able to sustain a significant fraction of the average demand from these
applications, it is not always able to provide the applications with their peak band-
width demands.

5.4.5 Arithmetic Unit Utilization

Table 5.6 shows the utilization of the arithmetic units on Imagine and the resulting
application performance. The various applications are able to utilize the arithmetic
units between 18% and 61%. This is lower than the 77% utilization that is achieved in

Application Arithmetic Unit Utilization (%) Performance (GOPS)

DEPTH 33.4 13.09

MPEG 36.8 17.88

QRD 60.7 12.49

STAP 26.6 5.47

RENDER 17.9 3.95

TABLE 5.6 Application Arithmetic Utilization and Performance on Imagine
Data Bandwidth Hierarchy 79

Data Bandwidth Hierarchy
FIGURE 5.10 Sustained Performance vs. Bandwidth of a 32KW SRF

QRD

12.49 12.49 12.4812.46

10.45

8

10

12

14

16

0 10 20 30 40 50 60 70

Peak SRF Bandwidth (GB/s)

Unlimited Bandwidth Performance (13.79 GFLOPS)

P
er

fo
rm

an
ce

 (
G

F
L

O
P

S
)

DEPTH

8.52

13.09

14.46

4.86

2.582

4

6

8

10

12

14

16

0 10 20 30 40 50 60 70

Peak SRF Bandwidth (GB/s)

P
er

fo
rm

an
ce

 (
G

O
P

S
) Unlimited Bandwidth Performance (14.94 GOPS)

RENDER

3.89 3.95 3.97
3.48

2.65

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70

Peak SRF Bandwidth (GB/s)

Unlimited Bandwidth Performance (4.77 GOPS)

P
er

fo
rm

an
ce

 (
G

O
P

S
)

80 Stream Processor Architecture

Evaluation
FIGURE 5.10 Sustained Performance vs. Bandwidth of a 32KW SRF

MPEG

17.69 17.88 17.92

16.61

14.75

10

12

14

16

18

20

0 10 20 30 40 50 60 70

Peak SRF Bandwidth (GB/s)

P
er

fo
rm

an
ce

 (
G

O
P

S
) Unlimited Bandwidth Performance (18.69 GOPS)

STAP

5.40 5.47 5.48
5.04

3.40

0

2

4

6

8

0 10 20 30 40 50 60 70

Peak SRF Bandwidth (GB/s)

Unlimited Bandwidth Performance (7.03 GFLOPS)

P
er

fo
rm

an
ce

 (
G

F
L

O
P

S
)

Data Bandwidth Hierarchy 81

Data Bandwidth Hierarchy
the inner loop of the FIR filter kernel. During the execution of an application, the
arithmetic units are left idle when stalled waiting for data from memory of the SRF,
and there is far less computation outside of the inner loops of kernels. These factors
greatly decrease the achievable arithmetic utilization of entire applications. However,
because the data bandwidth hierarchy enables Imagine to support 48 arithmetic units
with very high utilization during the inner loops of kernels, applications are still able
to achieve from 4 to 18GOPS of sustained computation.

5.5 Summary

Media processing applications benefit from a bandwidth scaling across multiple lev-
els of the storage hierarchy to bridge the gap from modern DRAM bandwidth to the
data bandwidth required by the arithmetic units. Without this bandwidth scaling,
media applications are memory bandwidth limited, which severely reduces the num-
ber of arithmetic units that can be utilized efficiently. A three-tiered bandwidth hierar-
chy, including distributed local register files, a global stream register file, and external
DRAM, can effectively meet the needs of these applications by scaling the bandwidth
by over an order of magnitude at each level.

The bandwidth hierarchy enables media processing applications to utilize bandwidth
efficiently. Kernels make efficient use of local register files for temporary storage to
supply the arithmetic units with data and of an SRF to supply input streams to the
arithmetic units and store output streams from the arithmetic units. When kernels are
considered as part of an application, rather than in isolation, the SRF can be effi-
ciently used to capture the locality of stream recirculation within media processing
applications, thereby limiting the bandwidth demands on off-chip memory. When
mapped to the three-tiered storage hierarchy described in this chapter, media process-
ing applications demand successively increasing amounts of bandwidth. By matching
these demands, the bandwidth scaling of the storage hierarchy enables these media
processing applications to achieve 4-18GOPS, which is 77-96% of the performance
that they would sustain given infinite instantaneous data bandwidth.
82 Stream Processor Architecture

CHAPTER 6 Memory Access
Scheduling
A streaming memory system, which forms the base of a stream processor’s data band-
width hierarchy, transfers entire streams of data, rather than individual words. Sus-
tained memory bandwidth directly contributes to the overall performance of a stream
processor, so a streaming memory system is optimized for memory bandwidth, rather
than memory latency. To maximize bandwidth, the memory system must take advan-
tage of the characteristics of modern DRAM. The bandwidth and latency of a mem-
ory system are strongly dependent on the manner in which accesses interact with the
“3-D” structure of banks, rows, and columns characteristic of contemporary DRAM
chips. Modern DRAM components allow memory accesses to be pipelined, provide
several independent memory banks, and cache the most recently accessed row of each
bank. These features increase the peak performance of the DRAM, but also make the
sustained performance highly dependent on the access pattern. There is nearly an
order of magnitude difference in bandwidth between successive references to differ-
ent columns within a row and different rows within a bank. Memory access schedul-
ing improves the performance of a memory system by reordering memory references
to exploit locality within the 3-D memory structure. This chapter will discuss the
organization of modern DRAM, the architecture of a memory access scheduler, and
their impact on sustained memory bandwidth for media processing.
Memory Access Scheduling 83

Memory Access Scheduling
6.1 Overview

As discussed previously, media applications require up to 300GB/s of data bandwidth
to utilize 48 arithmetic units. An effective bandwidth hierarchy can bridge the gap
between modern DRAM bandwidth and the bandwidth required by the arithmetic
units, which is over two orders of magnitude. However, for such a hierarchy to be
successful, the memory system must be able to sustain a significant fraction of the
peak DRAM bandwidth. Chapter 5 showed that the five representative media process-
ing applications demand from 0.4 to 1.0GB/s of memory bandwidth to achieve their
peak computation rates. On the Imagine stream processor, this corresponds to 20-50%
of the peak DRAM bandwidth. This can be achieved with a streaming memory sys-
tem which employs memory access scheduling to take advantage of the locality and
concurrency of modern DRAM.

6.1.1 Stream Memory Transfers

A streaming memory system transfers streams of data between the processor and
external DRAM, rather than individual words or cache lines as in a conventional
memory system. A data stream is a sequence of records, where each record consists of
one or more words. Records represent media data, such as an audio sample, a com-
plex frequency value, or a triangle vertex. The words that compose an individual
record are stored contiguously in memory, but a stream may consist of records scat-
tered throughout the memory space. The starting addresses of the records that com-
pose a particular data stream can be calculated using a constant stride, bit-reversed
arithmetic, or an index stream. The streaming memory system of the Imagine media
processor was described in Section 4.2.4.

Since entire streams of data are transferred by the memory system, the latency of any
individual reference is not important. Rather, the bandwidth of the transfer is what
affects performance. For example, consider the execution of the MPEG2 I-frame
encoder on Imagine. Figure 6.1 shows the kernel operations and memory stream
transfers for a portion of the application’s execution. The figure shows parts of the
processing of three batches of macroblocks. The left column shows kernel execution
on the arithmetic clusters and the two columns on the right show stream memory
transfers. The load from memory of the macroblocks for batch i-1 occurs prior to
cycle 6000, so is not shown. First the color conversion kernel is executed to convert
the original macroblocks into luminance and chrominance streams. Then the DCT,
run-level encoding, and inverse DCT execute. The run-level encoded blocks are
stored to memory after they are encoded. The kernel labelled “reference” in the figure
simply reorganizes data from the IDCT kernels to be in the proper format for use in P-
84 Stream Processor Architecture

Overview
and B-frame encoding. After the reference kernel executes, the reference luminance
and chrominance images are stored to memory as well. The macroblock stream load
for batch i is shown in the figure, as are the first four kernels.

FIGURE 6.1 Excerpt of Execution of an MPEG2 I-frame Encoder

6 ,0 00

9 ,0 00

1 2 ,0 00

1 5 ,0 00

1 8 ,0 00

2 1 ,0 00

2 4 ,0 00

2 7 ,0 00

3 0 ,0 00

C L U S T E R S
M E M O R Y

S T R E A M 0
M E M O R Y

S T R E A M 1

C o lo r
C o n v e rs io n

L o a d
In p u t

B lo c k s

b a tc h i-1 b a tc h i b a tc h i+ 1

Y D C T

C rC b D C T

R u n -L e v e l
E n c o d in g

S to re
R u n -L e ve l
E n co d e d

B lo c k s

Y ID C T

L o a d
In p u t

B lo c k s

C rC b ID C T
R e fe re n c e

S to re
Y R e fe re n c e

C o lo r
C o n v e rs io n

S to re
C rC b R e fe re n c eY D C T

C rC b D C T

R u n -L e v e l
E n c o d in g
Memory Access Scheduling 85

Memory Access Scheduling
As can be seen in the figure, the memory stream transfers are overlapped with compu-
tation kernels that are processing other data streams. Notice that while the processing
for batch i-1 is occurring, the macroblocks for batch i are simultaneously loaded into
the SRF. Similarly, the results of processing batch i-1 are stored concurrently with
both processing and the macroblock load for batch i+1.

Since the SRF isolates the arithmetic kernels from memory stream transfers, batches
of macroblocks may be loaded into the SRF while arithmetic computations are being
performed on streams that are already in the SRF. Because a stream processor can
overlap memory stream transfers with kernel execution, applications can tolerate
large amounts of memory latency. Therefore, the streaming memory system of such a
processor can be optimized to maximize bandwidth, rather than latency, in order to
improve media processing performance.

6.1.2 Memory Access Scheduling

To maximize memory bandwidth, modern DRAM components allow pipelining of
memory accesses, provide several independent memory banks, and cache the most
recently accessed row of each bank. While these features increase the peak supplied
memory bandwidth, they also make the performance of the DRAM highly dependent
on the access pattern. Modern DRAMs are not truly random access devices (equal
access time to all locations) but rather are three-dimensional memory devices with
dimensions of bank, row, and column. Sequential accesses to different rows within
one bank have high latency and cannot be pipelined, while accesses to different banks
or different words within a single row have low latency and can be pipelined.

The three-dimensional nature of modern memory devices makes it advantageous to
reorder memory operations to exploit the non-uniform access times of the DRAM.
This optimization is similar to how a superscalar processor schedules arithmetic oper-
ations out of order. As with a superscalar processor, the semantics of sequential exe-
cution are preserved by reordering the results.

Memory access scheduling reorders DRAM operations, possibly completing memory
references out of order, to maximize sustained memory bandwidth. Figure 6.2 illus-
trates the benefits of memory access scheduling. The figure shows eight memory ref-
erences scheduled to access external DRAM in three different ways. Each reference is
denoted by its bank, row, and column address for clarity. The references are listed in
the order that they arrived at the memory controller from top to bottom.
86 Stream Processor Architecture

Overview
Figure 6.2(A) shows the DRAM operations that would be required to satisfy these
eight references in order. Modern systems commonly satisfy memory references in
this manner, possibly with slight variations such as automatically precharging the
bank when a cache line fetch is completed. Since no two subsequent references in the
example target the same row of the same bank, every reference must precharge a
bank, activate a row, and perform a column access. For a DRAM with a three cycle
bank precharge latency, a three cycle row activation latency, and a single cycle col-
umn access latency, these eight references require 56 DRAM cycles to complete in
order.

Using a first-ready access scheduling algorithm, the same eight references can be
completed sooner, as shown in Figure 6.2(B). The first-ready scheduler considers all

FIGURE 6.2 Memory Access Schedules with Different Scheduling Algorithms

DRAM Operations:

Px: Precharge bank x(3 cycle occupancy)
Ay: Activate row y (3 cycle occupancy)
Cz: Access column z (1 cycle occupancy)

(A) In-order scheduling (56 DRAM Cycles)

(C) Row/open scheduling (20 DRAM Cycles)

(B) First-ready scheduling (30 DRAM Cycles)

11

(0,0,0)

(1,1,2)

(1,0,1)
(1,1,1)

(1,0,0)

(0,1,3)
(0,0,1)

(0,1,0)
P0 A0 C0

292827262524232221191817161514131210987654321 20 39383736353433323130 4443424140

P0 A1 C0
P0 A0 C1

P0 A1 C3
P1 A0 C0

P1 A1 C1
P1 A0 C1

P1 A1 C2

4948474645 50 565554535251

Time (Cycles)
R

ef
er

en
ce

s
(B

an
k,

 R
o

w
, C

o
lu

m
n

)

11

(0,0,0)

(1,1,2)
(1,0,1)

(1,1,1)

(1,0,0)
(0,1,3)

(0,0,1)

(0,1,0)
P0 A0 C0

292827262524232221191817161514131210987654321 20 30

P0 A1 C0
P0 A0 C1

P0 A1 C3

Time (Cycles)

R
ef

er
en

ce
s

(B
an

k,
 R

o
w

, C
o

lu
m

n
)

P1 A0 C0
P1 A1 C1

P1 A0 C1
P1 A1 C2

11

(0,0,0)

(1,1,2)

(1,0,1)
(1,1,1)

(1,0,0)
(0,1,3)

(0,0,1)
(0,1,0)

P0 A0 C0

191817161514131210987654321

P1 A0

C1
P0

C0
P1 A1

C1

A1 C0

C3

C1

C2

R
ef

er
en

ce
s

(B
an

k,
 R

o
w

, C
o

lu
m

n
)

Time (Cycles)

20
Memory Access Scheduling 87

Memory Access Scheduling
pending references and schedules a DRAM operation for the oldest pending reference
that does not violate the timing and resource constraints of the DRAM. The most
obvious benefit of this scheduling algorithm over the in-order scheduler is that
accesses to other banks can be made while waiting for a precharge or an activate oper-
ation to complete for the oldest pending reference. This relaxes the serialization of the
in-order scheduler and allows multiple references to progress in parallel. In this
example, the first-ready scheduler is able to exploit the bank parallelism in the refer-
ence stream. The accesses for the references that target bank 1 can mostly be over-
lapped with accesses for the references that target bank 0. The first-ready scheduler is
able to complete the eight references in only 30 cycles. It is not always the case that
first-ready scheduling exploits all of the available bank parallelism and none of the
row locality. If the same eight references had arrived in a different order, a first-ready
scheduler would be able to exploit varying degrees of each.

More sophisticated scheduling algorithms can maximize DRAM bandwidth by
exploiting more of the bank parallelism and row locality found in the pending mem-
ory references. Figure 6.2(C) shows the DRAM accesses performed by a row/open
scheduler, which will be explained later in the chapter. As can be seen in the figure, a
row/open scheduler completes the eight references in only 20 DRAM cycles. This
scheduler is able to exploit both the bank parallelism and row locality of the reference
stream by overlapping accesses to banks 0 and 1 and by performing all of the column
accesses to each row that is activated before precharging the bank for subsequent row
activations.

6.2 Modern DRAM

The previous example illustrates that the order in which DRAM accesses are sched-
uled can have a dramatic impact on memory throughput and latency. To maximize
memory bandwidth, modern DRAM components allow pipelining of memory
accesses, provide several independent memory banks, and cache the most recently
accessed row of each bank. While these features increase the peak supplied memory
bandwidth, they also make the performance of the DRAM highly dependent on the
access pattern. Therefore, a memory controller must take advantage of the character-
istics of modern DRAM to improve performance.

Figure 6.3 shows the internal organization of modern DRAMs. These DRAMs are
three-dimensional memories with the dimensions of bank, row, and column. Each
bank operates independently of the other banks and contains an array of memory cells
88 Stream Processor Architecture

Modern DRAM
that are accessed an entire row at a time. When a row of this memory array is
accessed (row activation), the entire row of the memory array is transferred into the
bank’s row buffer. The row buffer serves as a cache to reduce the latency of subse-
quent accesses to that row. While a row is active in the row buffer, any number of
reads or writes (column accesses) may be performed, typically with a throughput of
one per cycle. After completing the available column accesses, the cached row must
be written back to the memory array by an explicit operation (bank precharge), which
prepares the bank for a subsequent row activation. An overview of several different
modern DRAM types and organizations, along with a performance comparison for in-
order access, can be found in [CJDM99].

For example, the 128Mb NEC µPD45128163 [NEC98], a typical SDRAM, includes
four internal memory banks, each composed of 4096 rows and 512 columns. This
SDRAM may be operated at 125MHz, with a precharge latency of 3 cycles (24ns) and
a row access latency of 3 cycles (24ns). Pipelined column accesses that transfer 16
bits may issue at the rate of one per cycle (8ns), yielding a peak transfer rate of
250MB/s. However, it is difficult to achieve this rate on non-sequential access pat-
terns for several reasons. A bank cannot be accessed during its precharge/activate
latency, a single cycle of high impedance is required on the data pins when switching
between read and write column accesses, and a single set of address lines is shared by
all DRAM operations (bank precharge, row activation, and column access). The

FIGURE 6.3 Modern DRAM Organization

Bank N

Bank 1

 Sense Amplifiers
(Row Buffer)

Column Decoder

R
ow

 D
ec

od
er

Data

Address

Memory
Array

(Bank 0)
Memory Access Scheduling 89

Memory Access Scheduling
amount of bank parallelism that is exploited and the number of column accesses that
are made per row access dictate the sustainable memory bandwidth out of such a
DRAM.

A memory controller must generate a schedule that conforms to the timing and
resource constraints of these modern DRAMs. Figure 6.4 illustrates these constraints
for the NEC SDRAM with a simplified bank state diagram and a table of operation
resource utilization. Each DRAM operation makes different demands on the three
DRAM resources (the internal banks, a single set of address lines, and a single set of
data lines). The memory controller must ensure that the required resources are avail-
able for each DRAM operation it issues.

Each DRAM bank has two stable states, IDLE and ACTIVE, as shown in Figure 6.4(A).
In the IDLE state, the DRAM is precharged and ready for a row access. It will remain
in this state until a row activation operation is issued to the bank. To issue a row acti-
vation, the address lines must be used to select the bank and the row being activated,
as shown in Figure 6.4(B). Row activation requires 3 cycles, during which no other
operations may be issued to that bank, as indicated by the utilization of the bank
resource for the duration of the operation. During that time, however, operations may
be issued to other banks of the DRAM. Once the DRAM’s row activation latency has

FIGURE 6.4 Internal DRAM Bank State Diagram and Resource Utilization

IDLE ACTIVE

 Bank Precharge

Row Activation

Column Access

Address
Bank

Data

Cycle 1 2 3

Precharge:

Activate:

Read:

Write:

4

Address
Bank

Data

Address
Bank

Data

Address
Bank

Data

(A) Simplified bank state diagram (B) Operation resource utilization
90 Stream Processor Architecture

Modern DRAM
passed, the bank enters the ACTIVE state, during which the contents of the selected
row are held in the bank’s row buffer. Any number of pipelined column accesses may
be performed while the bank is in the ACTIVE state. To issue either a read or write col-
umn access, the address lines are required to indicate the bank and the column of the
active row in that bank. A write column access requires the data to be transferred to
the DRAM at the time of issue, whereas a read column access returns the requested
data three cycles later. Additional timing constraints not shown in Figure 6.4, such as
a required cycle of high impedance between reads and writes, may further restrict the
use of the data pins.

The bank will remain in the ACTIVE state until a precharge operation is issued to
return it to the IDLE state. The precharge operation requires the use of the address lines
to indicate the bank which is to be precharged. Like row activation, the precharge
operation utilizes the bank resource for 3 cycles, during which no new operations may
be issued to that bank. Again, operations may be issued to other banks during this
time. After the DRAM’s precharge latency, the bank is returned to the IDLE state and
is ready for a new row activation operation. Frequently, there are also timing con-
straints that govern the minimum latency between a column access and a subsequent
precharge operation. DRAMs typically also support column accesses with automatic
precharge, which implicitly precharges the DRAM bank as soon as possible after the
column access.

The address and data resources are usually shared among the banks, thereby serializ-
ing access to the internal banks.While the state machines for the individual banks are
independent, only a single bank can perform a transition requiring a particular shared
resource each cycle. For many DRAMs, the bank, row, and column addresses share a
single set of pins. Hence, the scheduler must arbitrate between precharge, row, and
column operations that all need to use this single resource. Other DRAMs, such as
Direct Rambus DRAMs (DRDRAMs) [Cri97], provide separate row and column
address lines (each with their own associated bank address) so that column and row
accesses can be initiated simultaneously. To approach the peak data rate with serial-
ized resources, there must be enough column accesses to each row to hide the pre-
charge/activate latencies of other banks. Whether or not this can be achieved is
dependent on the data reference patterns and the order in which the DRAM is
accessed to satisfy those references. The need to hide the precharge/activate latency
of the banks in order to sustain high bandwidth cannot be eliminated by any DRAM
architecture without reducing the precharge/activate latency, which would likely
come at the cost of decreased bandwidth or capacity, both of which are undesirable.
Memory Access Scheduling 91

Memory Access Scheduling
6.3 Memory Access Scheduling

The three-dimensional nature of modern memory devices makes it advantageous to
reorder memory operations to exploit the non-uniform access times of the DRAM.
However, reordering memory operations can potentially increase the latency of some
references. References can be delayed in order to allow other references to access the
DRAM, improving overall performance. As mentioned earlier, the streaming nature
of media processing applications makes them less sensitive to memory latency than
memory throughput. Also, the stream register file of a stream processor further iso-
lates the arithmetic units from the effects of memory latency, so the latency of any
individual reference will not affect overall performance. Furthermore, a good reorder-
ing will actually reduce the average latency of memory references because of the dif-
ferences in throughput and latency of the DRAM based on the reference pattern.
Therefore, a streaming media processor will benefit greatly from reordering memory
operations to achieve the maximum throughput out of modern DRAM.

Memory access scheduling is the process of ordering the DRAM operations (bank
precharge, row activation, and column access) necessary to complete the set of cur-
rently pending memory references. Used here, the term operation denotes a com-
mand, such as a row activation or a column access, issued by the memory controller
to the DRAM. Similarly, the term reference denotes a memory reference generated by
the processor, such as a load or store to a memory location. A single reference gener-
ates one or more memory operations depending on the schedule.

6.3.1 Architecture

Given a set of pending memory references, a memory access scheduler may choose
one or more row, column, or precharge operations each cycle, subject to resource con-
straints, to advance one or more of the pending references. The simplest, and most
common, scheduling algorithm only considers the oldest pending reference, so that
references are satisfied in the order that they arrive. If it is currently possible to make
progress on that reference by performing some DRAM operation, then the memory
controller performs the operation. While this does not require a complicated access
scheduler in the memory controller, it is clearly inefficient.

If the DRAM is not ready for the operation required by the oldest pending reference,
or if that operation would leave available resources idle, it makes sense to consider
operations for other pending references. Figure 6.5 shows the structure of a more
sophisticated access scheduler. As memory references arrive, they are allocated stor-
age space while they await service from the memory access scheduler. In the figure,
92 Stream Processor Architecture

Memory Access Scheduling
references are initially sorted by internal DRAM bank. Each pending reference is rep-
resented by the following six fields: valid (V), load/store (L/S), address (Row and
Col), data, and whatever additional state is necessary for the scheduling algorithm.
Examples of state that can be accessed and modified by the scheduler are the age of
the reference and whether or not that reference targets the currently active row. In
practice, the pending reference storage could be shared by all the banks (with the
addition of a bank address field) to allow dynamic allocation of that storage at the cost
of increased logic complexity in the scheduler.

Each internal DRAM bank has an associated precharge manager and row arbiter. The
precharge manager decides when its associated bank should be precharged. Similarly,
the row arbiter for each bank decides which row, if any, should be activated when that
bank is idle. Each set of data and address pins on the DRAM has a corresponding col-
umn arbiter and address arbiter within the memory access scheduler. These arbiters
are shared by all of the banks. All current DRAMs have a single set of data pins, so
there is a single column arbiter that grants the shared data line resources to a single
column access out of all the pending references to all of the banks. Finally, the pre-
charge managers, row arbiters, and column arbiter send their selected operations to
the address arbiter(s), which grant the shared address resources to one or more of
those operations.

The memory access scheduler hardware, shown in Figure 6.5, is incorporated into the
memory controller of the processor. Since the processor clock is likely to be faster
than the DRAM clock, it is possible for many new references to enter the bank buffer
each DRAM cycle. On each DRAM cycle, all of the arbiters update their decisions,

FIGURE 6.5 Memory Access Scheduler Architecture

Memory References

Precharge0

Row
 Arbiter0

Column
Arbiter

Address
Arbiter

PrechargeN

Row
 ArbiterN

DRAM Operations

Memory Access
Scheduler Logic

Bank 0 Pending References

V L/S Row Col Data State

Bank N Pending References

V L/S Row Col Data State

Bank Buffer
Memory Access Scheduling 93

Memory Access Scheduling
and the address arbiter makes a final decision as to what DRAM operation to perform,
if any. These decisions may or may not include the most recently arrived references,
depending on the degree of pipelining within the memory access scheduler.

6.3.2 Algorithms

The precharge managers, row arbiters, and column arbiter can use several different
policies to select DRAM operations. The combination of policies used by these arbi-
ters determine the memory access scheduling algorithm. As described in the previous
section, the precharge managers must decide whether or not their associated banks
should be precharged. The row arbiters must decide which row to activate in a pre-
charged bank, and the column arbiter must decide which column operation from
which bank should be granted access to the data line resources. Finally, the address
arbiter must decide which of the selected precharge, activate, and column operations
to perform subject to the constraints of the address line resources. If the address
resources are not shared, it is possible for both a precharge operation and a column
access to the same bank to be selected. This is likely to violate the timing constraints
of the DRAM. Ideally, this conflict can be handled by having the column access auto-
matically precharge the bank upon completion, which is supported by most modern
SDRAMs. This section describes the various policies that can be used by the arbiters
of a memory access scheduler.

In-order. This policy applies to any of the arbiters. A DRAM operation will only be
performed if it is required by the oldest pending reference. While used by almost all
memory controllers today, this policy yields poor performance compared to policies
that look ahead in the reference stream to better utilize DRAM resources.

Priority. This policy applies to any of the arbiters. The operation(s) required by the
highest priority ready reference(s) are performed. Three possible priority schemes are
as follows: ordered, older references are given higher priority; age-threshold, refer-
ences older than some threshold age gain increased priority; and load-over-store, load
references are given higher priority. These priority schemes can also be combined to
form more sophisticated schemes. Age-threshold prevents starvation while allowing
greater reordering flexibility than ordered. Load-over-store decreases load latency to
minimize processor stalling on stream loads.

Open. This policy applies to the precharge managers. A bank is only precharged if
some pending references target other rows in the bank and no pending references tar-
get the active row. The open policy should be employed if there is significant row
locality, making it likely that future references will target the same row as previous
references did.
94 Stream Processor Architecture

Memory Access Scheduling
Closed. This policy applies to the precharge managers. A bank is precharged as soon
as no more pending references target the active row. The closed policy should be
employed if it is unlikely that future references will target the same row as the previ-
ous set of references.

Most-pending. This policy applies to the row or column arbiters. The row or column
access to the row with the most pending references is selected. This allows rows to be
activated that will have the highest ratio of column to row accesses, while waiting for
other rows to accumulate more pending references. By selecting the column access to
the most demanded row, that bank will be freed up as soon as possible to allow other
references to make progress. This policy can be augmented by one of the priority
schemes described above to prevent starvation.

Fewest-pending. This policy applies to the column arbiter. The fewest pending pol-
icy selects the column access to the row targeted by the fewest pending references.
This minimizes the time that rows with little demand remain active, allowing refer-
ences to other rows in that bank to make progress sooner. A weighted combination of
the fewest pending and most pending policies could also be used to select a column
access. This policy can also be augmented by one of the priority schemes described
above to prevent starvation.

Precharge-first. This policy applies to the address arbiter. The precharge-first policy
always selects a precharge operation to issue to the DRAM if any are available. It
would then select a row activation operation, if any are available, and then finally
select a column operation to send to the DRAM. This policy can increase the amount
of bank parallelism that is exploited by initiating precharge/row operations first and
then overlapping the latency of those operations with available column accesses. This
policy can also be augmented by one of the priority schemes described above to select
which operation to perform if more than one is available.

Column-first. This policy applies to the address arbiter. The column-first policy
always selects a column operation to issue to the DRAM if any are available. It would
select a precharge or row operation if no column operation is available. This policy
can reduce the latency of pending references that target active rows. One of the prior-
ity schemes can be used to determine which precharge or row operation would be
selected if more than one is available.

Row-first. This policy applies to the address arbiter. It is nearly identical to the pre-
charge-first policy, except that instead of always favoring precharge operations, it
favors precharge and row activation operations equally. This policy is a compromise
between the precharge-first and column-first policies, as it increases the amount of
bank parallelism that is exploited by overlapping column accesses with the precharge/
activate latency of the DRAM, but it also attempts to reduce the latency of references
Memory Access Scheduling 95

Memory Access Scheduling
by activating rows targeted by higher priority references quickly. One of the priority
schemes described above can be used to determine which precharge or row activation
to select. Column accesses will be selected only if no precharge or row activation
operations are available.

6.4 Evaluation

Memory access scheduling exploits locality and concurrency in modern DRAM com-
ponents. However, some access patterns, such as unit stride stream accesses, already
interact well with the internal DRAM structure. If these patterns are common in appli-
cations, then scheduling memory accesses will have little effect. In practice, media
processing applications contain a mix of reference patterns, some of which interact
well with the DRAM’s structure, and some of which do not.

This section will evaluate the effect of memory access scheduling on the sustained
memory bandwidth of the Imagine stream processor. First, Section 6.4.1 will show
how different types of memory stream accesses interact with modern DRAM. Five
distinct microbenchmarks will be used to show the sustained memory bandwidth for
different types of stream accesses with and without memory access scheduling. Mem-
ory access scheduling can improve the sustained bandwidth of these microbench-
marks by 144%. Second, Section 6.4.2 will examine the memory behavior found in
media processing applications, giving an indication of the potential gains of memory
access scheduling. Finally, Section 6.4.3 will show that memory access scheduling is
able to improve the sustained memory bandwidth for media processing applications
by 8%, making several of the applications compute-bound. Furthermore, memory
access scheduling increases the sustained bandwidth achievable for the applications’
memory traces by 51%.

6.4.1 Microbenchmarks

Table 6.1 shows five microbenchmarks that will be used to understand the effects of
memory access scheduling. For these microbenchmarks, no computations are per-
formed outside of the address generators. This allows memory references to be issued
at their maximum throughput, constrained only by the buffer storage in the memory
banks. All of the microbenchmarks perform ten stream transfers, each of which con-
tain 512 references.
96 Stream Processor Architecture

Evaluation
A memory controller that performs no access reordering will serve as a basis for com-
parison. This controller uses an in-order policy, described in Section 6.3.2, for all
decisions. A column access will only be performed for the oldest pending reference, a
bank will only be precharged if necessary for the oldest pending reference, and a row
will only be activated if it is needed by the oldest pending reference. No other refer-
ences are considered in the scheduling decision. This algorithm, or slight variations,
such as automatically precharging the bank when a cache line fetch is completed, can
commonly be found in systems today.

The gray bars in the graph in Figure 6.6 show the performance of the benchmarks
using the baseline in-order access scheduler. Unit load performs very well with no
access scheduling, achieving 97% of the peak bandwidth (2GB/s) of the DRAMs.
Almost all of the references in the unit load benchmark access rows in the DRAM
that are active. The 3% overhead is the combined result of infrequent precharge/acti-
vate cycles and the start-up/shutdown delays of the streaming memory system.

The 14% drop in sustained bandwidth from the unit load benchmark to the unit
benchmark shows the performance degradation imposed by forcing intermixed load
and store references to complete in order. Each time the references switch between
loads and stores, a cycle of high impedance must be left on the data pins, decreasing
the sustainable bandwidth. The unit conflict benchmark further shows the penalty of
swapping back and forth between rows in the DRAM banks, which drops the sustain-
able bandwidth down to 51% of the peak. The random benchmarks sustain about 15%
of the bandwidth of the unit load benchmark. This loss roughly corresponds to the

Name Description

Unit Load Unit stride load stream accesses with parallel streams to different
rows in different internal DRAM banks.

Unit Unit stride load and store stream accesses with parallel streams to dif-
ferent rows in different internal DRAM banks.

Unit Conflict Unit stride load and store stream accesses with parallel streams to dif-
ferent rows in the same internal DRAM banks.

Constrained
Random

Random access load and store streams constrained to a 64KB range.

Random Random access load and store streams to the entire address space.

TABLE 6.1 Microbenchmarks
Memory Access Scheduling 97

Memory Access Scheduling
degradation incurred by performing accesses with a throughput of one word every
seven DRAM cycles (the random access throughput of the SDRAM) compared to a
throughput of one word every DRAM cycle (the column access throughput of the
SDRAM).

The use of a very simple first-ready access scheduler improves the performance of the
microbenchmarks by 0-132%. First-ready scheduling uses the ordered priority
scheme, as described in Section 6.3.2, to make all scheduling decisions. The first-
ready scheduler considers all pending references and schedules a DRAM operation
for the oldest pending reference that does not violate the timing and resource con-
straints of the DRAM. The most obvious benefit of this scheduling algorithm over the
baseline is that accesses targeting other banks can be made while waiting for a pre-
charge or activate operation to complete for the oldest pending reference. This relaxes
the serialization of the in-order scheduler and allows multiple references to progress
in parallel.

The black bars in the graph in Figure 6.6 shows the sustained bandwidth of the first-
ready scheduling algorithm for each benchmark. Unit load shows no improvement as
it already sustains almost all of the peak SDRAM bandwidth, and the random bench-
marks show an improvement of over 125%, as they are able to increase the number of
column accesses per row activation significantly.

When the oldest pending reference targets a different row than the active row in a par-
ticular bank, the first-ready scheduler will precharge that bank even if it still has pend-

FIGURE 6.6 Microbenchmark Performance using In-order and First-ready
Schedulers

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Unit Load Unit Unit Conflict Constrained
Random

Random

M
em

o
ry

 B
an

d
w

id
th

 (
M

B
/s

)

in-order

first-ready

Microbenchmarks
98 Stream Processor Architecture

Evaluation
ing references to its active row. More aggressive scheduling algorithms are required
to further improve performance. Table 6.2 presents four aggressive scheduling algo-
rithms that will further increase sustained memory bandwidth. The policies for each
of the schedulers in Table 6.2 are described in Section 6.3.2. The range of possible
memory access schedulers is quite large, and covering all of the schedulers examined
in Section 6.3 would be prohibitive. These four schedulers, however, are representa-
tive of many of the important characteristics of an aggressive memory access sched-
uler.

Figure 6.7 presents the microbenchmarks’ sustained memory bandwidth for each
memory access scheduling algorithm. The aggressive scheduling algorithms signifi-
cantly improve the memory bandwidth of the microbenchmarks over in-order sched-
uling. Again the unit load benchmark shows no improvement. The unit conflict
benchmark, however, improves by 115% with more aggressive scheduling. All of the
memory access scheduling algorithms considered are able to reorder accesses to the
DRAM, so that references to conflicting banks to not interfere with each other in the
DRAM. The random benchmarks improve by 125-250% with the more aggressive
scheduling algorithms. They favor a closed precharge policy, in which banks are pre-
charged as soon as no more pending references target their active row, because it is
unlikely that there will be any reference locality that would make it beneficial to keep
the row open. By precharging as soon as possible, the access latency of future refer-
ences is minimized. For most of the other benchmarks, the difference between an
open and a closed precharge policy is slight. Unit load is a notable exception, as it
performs worse with the col/closed algorithm. In this case, column accesses are satis-

Algorithm
Column
Access Precharging

Row
Activation

Access
Selection

col/open
priority

(ordered)
open

priority
(ordered)

column first

col/closed
priority

(ordered)
closed

priority
(ordered)

column first

row/open
priority

(ordered)
open

priority
(ordered)

row first

row/closed
priority

(ordered)
closed

priority
(ordered)

row first

TABLE 6.2 Memory Access Scheduling Algorithms
Memory Access Scheduling 99

Memory Access Scheduling
fied rapidly, emptying the bank buffer of references to a stream, allowing the banks to
be precharged prematurely in some instances.

6.4.2 Memory Demands

The memory performance of the microbenchmarks gives an indication of how much
bandwidth an application will be able to sustain, given that application’s memory
behavior. Table 6.3 shows the number and length of stream memory transfers in the
five applications presented in Chapter 3. The table shows that the applications make
from 114 thousand to 2.3 million memory references over the course of their execu-
tion. These references are part of over 25 thousand total stream transfers. The band-
width demands on the memory system, presented previously in Section 5.4.3, are also
shown in the table. These applications demand from 0.4 to 1.0GB/s of memory band-
width to achieve their peak performance on Imagine.

The table shows that the vast majority of stream transfers use constant strides. While
many of these strided transfers use a unit stride, especially in DEPTH and MPEG, many
do not. For example, QRD and STAP frequently access the columns of matrices, using
very large constant strides. The only applications that perform indirect stream trans-
fers are MPEG and RENDER. In both of these applications, those accesses roughly cor-
respond to the constrained random microbenchmark presented in the previous
section. MPEG performs indexed loads into the reference images during the motion
estimation phase of P-frame encoding. As the motion in images is somewhat random,
these references will also be somewhat random, but they will be constrained to lie
within the region of the reference image that was searched. RENDER performs indexed

FIGURE 6.7 Microbenchmark Performance Using Aggressive Schedulers

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Unit Load Unit Unit Conflict Constrained
Random

Random

M
em

o
ry

 B
an

d
w

id
th

 (
M

B
/s

) in-order
first-ready
col/open
col/closed
row/open
row/closed

Microbenchmarks
100 Stream Processor Architecture

Evaluation
loads and stores into the frame buffer and texture map. As pixels are rendered into
arbitrary locations, these references will also be somewhat random but constrained to
the frame buffer and texture map. There is some locality, in that adjacent pixels are
likely to lie close to each other in the frame buffer and access texels that are close to
each other as well. However, they may not necessarily reference pixels or texels that
are in consecutive locations in memory, as the frame buffer and texture map are stored
in row major order and the renderer may traverse those structures in arbitrary direc-
tions.

6.4.3 Application Performance

Application level experiments were performed both with and without the applica-
tions’ computation. When running just the memory traces, dependencies from the
application were maintained by assuming that the computation occurred at the appro-
priate times but was instantaneous. The applications show the performance improve-
ments that can be gained by using memory access scheduling on the Imagine stream
processor. The applications’ memory traces, with instantaneous computation, show
the potential of the scheduling techniques as processing power increases and the
applications become entirely limited by memory bandwidth.

DEPTH MPEG QRD STAP RENDER Total

References (Thousands) 907.0 934.6 114.4 1900.6 2278.2 6134.7

Bandwidth Demand
(GB/s)

0.99 0.45 0.42 0.65 0.76 0.64

Stride

Stream

Transfers

Loads 3131 83 19 3413 2630 9276

Avg. Length 185.4 842.0 3984.8 452.4 150.8 287.5

Stores 1440 324 78 2112 4050 8004

Avg. Length 226.7 1360.3 495.6 168.7 256.0 274.7

Indirect

Stream

Transfers

Loads 0 252 0 0 4074 4326

Avg. Length --- 1682.3 --- --- 172.8 260.7

Stores 0 0 0 0 3768 3768

Avg. Length --- --- --- --- 37.4 37.4

TABLE 6.3 Number and Length (in Words) of Stream Memory Transfers by Type
Memory Access Scheduling 101

Memory Access Scheduling
Figure 6.8 shows the sustained memory bandwidth of the applications when using an
in-order and first-ready memory access scheduler. The figure shows the memory per-
formance of both the applications and the applications’ memory traces. Even with in-
order scheduling, the memory system sustains very high throughput on the applica-
tions’ memory traces. The weighted mean of the traces’ performance is just over 50%
of the peak memory system performance. RENDER’s memory trace, which includes
the most indirect stream transfers, achieves the lowest sustained memory bandwidth
at just over 890MB/s. The memory trace of MPEG, even though it also contains indi-
rect memory transfers, is able to achieve the highest sustained bandwidth at over
1500MB/s. This results from the fact that the indirect references found in MPEG are

FIGURE 6.8 Application Performance Using In-order and First-ready Schedulers

0

200

400

600

800

1000

1200

1400

1600

1800

2000

DEPTH MPEG QRD STAP RENDER MEAN

M
em

o
ry

 B
an

d
w

id
th

 (
M

B
/s

)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

DEPTH MPEG QRD STAP RENDER MEAN

M
em

o
ry

 B
an

d
w

id
th

 (
M

B
/s

)

in-order

first-ready

Applications

Application Memory Traces
102 Stream Processor Architecture

Evaluation
far more constrained than those found in RENDER, so they exhibit much more row
locality within the DRAMs.

When using an in-order scheduler, the applications are not always able to overlap
memory and computation successfully. The processor is stalled waiting for memory
an average of 21% of the time on these applications. However, these applications are
compute-bound for large portions of their execution. During those times, there are no
outstanding memory transfers, so the sustained memory bandwidth of the applica-
tions is far lower than the sustained bandwidth of the memory traces. Across the
applications, the weighted mean of the sustained bandwidth for in-order scheduling is
just above 500MB/s, which is 25% of the peak memory bandwidth. The in-order
scheduler therefore provides 79% of the bandwidth demanded by the applications.

The improvements of first-ready scheduling are modest, both on the applications and
the memory traces. First-ready scheduling increases the memory bandwidth of the
applications by 4.5% and the memory traces by 14.8%. With a first-ready scheduler,
the memory system supplies 82% of the bandwidth demanded by the applications.

Figure 6.9 shows the sustained memory bandwidth of the applications when using the
aggressive memory access scheduling algorithms presented earlier in Table 6.2.
Again, the figure shows the memory performance of both the applications and the
applications’ memory traces. The row/open scheduling algorithm performs best,
improving the memory bandwidth of the applications by 8%, and the applications’
memory traces by 51%. Some applications, such as MPEG, show very little improve-
ment in performance with aggressive memory access scheduling. On the Imagine
stream architecture, MPEG efficiently utilizes the SRF to capture locality. This makes
MPEG compute-bound, so increasing the memory system bandwidth cannot improve
performance. However, the performance of the memory trace of MPEG achieves 94%
of the peak bandwidth of the memory system when memory access scheduling is
employed.

All of the applications and traces slightly favor an address arbiter policy which selects
row accesses first, rather than one that selects column accesses first. Also, algorithms
that include an open page precharging policy outperform those with a closed page
policy, suggesting that these applications exhibit significant row locality in their refer-
ence streams. The col/closed policy performs poorly across all of the applications and
traces in comparison with the other scheduling algorithms. As mentioned previously,
this algorithm satisfies column accesses rapidly, emptying the bank buffer of refer-
ences to a stream, allowing the banks to be precharged prematurely in some instances.
The row/open scheduler delivers an average of 547MB/s to the applications and
Memory Access Scheduling 103

Memory Access Scheduling
1641MB/s to the application traces. With this algorithm, DEPTH, MPEG, and QRD are
compute-bound, and would require additional computation resources to improve per-
formance. The memory system is able to deliver 79.5% and 87% of the memory
bandwidth demanded by STAP and RENDER, respectively. Data dependencies constrain
these applications from further overlapping memory and computation, limiting their
peak performance.

FIGURE 6.9 Application Performance Using Aggressive Schedulers

0

200

400

600

800

1000

1200

1400

1600

1800

2000

DEPTH MPEG QRD STAP RENDER MEAN

M
em

o
ry

 B
an

d
w

id
th

 (
M

B
/s

)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

DEPTH MPEG QRD STAP RENDER MEAN

M
em

o
ry

 B
an

d
w

id
th

 (
M

B
/s

)

in-order
first-ready
col/open
col/closed
row/open
row/closed

Applications

Application Memory Traces
104 Stream Processor Architecture

Summary
6.5 Summary

An effective bandwidth hierarchy can bridge the gap of over two orders of magnitude
between modern DRAM bandwidth and the bandwidth required by the arithmetic
units. However, for such a hierarchy to be successful, the memory system must be
able to sustain a significant fraction of the peak DRAM bandwidth. Five representa-
tive media processing applications demand from 0.4 to 1.0GB/s of memory band-
width to achieve their peak computation rates. On the Imagine stream processor, this
corresponds to 20-50% of the peak DRAM bandwidth. A streaming memory system
which employs memory access scheduling to take advantage of the structure of mod-
ern DRAM can make many of these applications compute-bound, even on a processor
with 48 arithmetic units.

Simple unit stride accesses can easily achieve 97% of the bandwidth of modern
DRAM. However, random accesses are only able to sustain 14% of the DRAM band-
width. The difference in performance corresponds to the degradation incurred by per-
forming an access once every seven DRAM cycles, which is the random access
throughput of the DRAM, compared to a throughput of one word every DRAM cycle,
which is the column access throughput of the DRAM. Memory access scheduling
closes this gap, and improves the performance across several microbenchmarks by an
average of 144%. In practice, media processing applications make many stream refer-
ences with constant strides, but they also access large two-dimensional buffers with
arbitrary reference patterns. By scheduling these stream references to take advantage
of the locality and concurrency of modern DRAM, the sustained memory bandwidth
for media processing applications can make many media applications compute-bound
and can increase the sustained bandwidth for the applications’ memory traces by an
average of 51%.

Memory access scheduling improves the sustainable throughput of modern DRAM
by reordering memory references to exploit the available bank parallelism and row
locality. As DRAM evolves, techniques such as memory access scheduling will con-
tinue to be necessary to overcome the non-uniform access times of the memory
arrays. However, the techniques and algorithms described here could be integrated
into the DRAM itself, with some modifications to enable the memory controller to
interact with the scheduler.
Memory Access Scheduling 105

Memory Access Scheduling
106 Stream Processor Architecture

CHAPTER 7 Conclusions
The major contribution of this work is a bandwidth-efficient stream architecture for
media processing. VLSI constraints motivate a data bandwidth hierarchy to provide
enough data bandwidth to support the demands of media processing. In modern
VLSI, hundreds of arithmetic units can fit on an inexpensive chip, but communication
among those arithmetic units is expensive in terms of area, power, and delay. Conven-
tional storage hierarchies do not provide enough data bandwidth to support large
numbers of arithmetic units. In contrast, a bandwidth hierarchy effectively feeds
numerous arithmetic units by scaling data bandwidth across multiple levels. This
bridges the gap between the bandwidth available from modern DRAM and the band-
width demanded by tens to hundreds of arithmetic units.

This work also contributes the design and evaluation of the Imagine stream processor
architecture to take advantage of the characteristics of media processing applications
subject to the constraints of modern VLSI. The Imagine stream processor implements
a data bandwidth hierarchy and memory access scheduling to efficiently provide data
bandwidth to 48 arithmetic units. When expressed in the stream programming model,
media processing applications map naturally to the data bandwidth hierarchy and are
able to efficiently utilize data bandwidth that is scaled across the levels of the hierar-
chy. Imagine is, therefore, able to execute media processing applications at high sus-
tained computation rates.

The stream programming model exposes the locality and concurrency of media pro-
cessing applications so these characteristics can effectively be exploited by a stream
Conclusions 107

Conclusions
processor. In this model, applications are expressed as a sequence of computation ker-
nels that operate on streams of data. This exposes the locality and concurrency both
within and among kernels, and enables the applications to effectively utilize a three-
tiered data bandwidth hierarchy. At the base of the bandwidth hierarchy, memory
access scheduling maximizes the throughput of modern DRAM enabling applications
to sustain 79-96% of the memory bandwidth they demand. At the center of the hierar-
chy, the global stream register file provides a factor of 16 times more bandwidth than
the memory system and enables data streams to be recirculated from kernel to kernel
without consuming costly memory bandwidth. At the top of the bandwidth hierarchy,
numerous local distributed register files feed 48 arithmetic units efficiently with a fac-
tor of 17 times more bandwidth than the stream register file. These local register files
enable temporary storage of local kernel data so that more expensive global register
bandwidth is only consumed to recirculate data streams. Imagine achieves 4 to
18GOPS of sustained computation on representative media processing applications
using both the bandwidth hierarchy and memory access scheduling.

7.1 Imagine Summary

Imagine is a programmable media processor that matches the demands of media pro-
cessing applications to the capabilities of modern VLSI technology. Imagine imple-
ments a stream architecture, which includes an efficient data bandwidth hierarchy and
a streaming memory system. The bandwidth hierarchy bridges the gap between the
2GB/s memory system and the arithmetic units that require 544GB/s to achieve their
full utilization. At the base of the bandwidth hierarchy, the streaming memory system
sustains a significant fraction of the available DRAM bandwidth, enabling media pro-
cessing applications to take full advantage of the bandwidth hierarchy.

The bandwidth hierarchy enables Imagine to achieve 77-96% of the performance of a
stream processor with infinite memory and global data bandwidth. Kernels make effi-
cient use of local register files for temporary storage to supply the arithmetic units
with data and of the stream register file to supply input streams to the arithmetic units
and store output streams from the arithmetic units. The stream register file efficiently
captures the locality of stream recirculation within media processing applications,
thereby limiting the bandwidth demands on off-chip memory. When mapped to the
three-tiered storage hierarchy, the bandwidth demands of media processing applica-
tions are well-matched to the provided bandwidth which is scaled by a ratio of
1:16:276 across the levels of the hierarchy.
108 Stream Processor Architecture

Future Architectures
Memory access scheduling improves the performance of media processing applica-
tions on Imagine by an average of 8%, making many applications compute-bound,
even with 48 arithmetic units. Simple unit stride accesses can easily achieve 97% of
the bandwidth of modern DRAM. However, random accesses are only able to sustain
14% of the DRAM bandwidth without memory access scheduling. The difference in
performance corresponds to the degradation incurred by performing an access once
every seven DRAM cycles (the random access throughput of the DRAM), compared
to a throughput of one word every DRAM cycle (the column access throughput of the
DRAM). Memory access scheduling closes this gap and improves the performance
across several representative microbenchmarks by an average of 144%. Using an
aggressive scheduler that exploits the row locality and bank parallelism of the refer-
ence stream, Imagine is able to improve the bandwidth of application memory traces
by an average of 51% and to provide 79-96% of the memory bandwidth demanded by
media processing applications.

Imagine is designed to fit on a 2.5cm2 chip and operate at 500MHz in a 0.15µm
CMOS standard-cell implementation. The peak computation rate of the 48 arithmetic
units is 20GOPS for both 32-bit integer and floating-point operations. For 16-bit and
8-bit parallel-subword operations, the peak performance increases to 40 and 80GOPS,
respectively. Applications achieve a significant fraction of this peak rate. For exam-
ple, an MPEG encoder can sustain 18GOPS on 16-bit data.

7.2 Future Architectures

Microprocessors have traditionally included a storage hierarchy consisting of DRAM,
caches, and a global register file. This organization is optimized to minimize the arith-
metic units’ latency to access data. The register file is typically small enough that it
can be accessed in a single cycle. The cache hierarchy keeps data that is likely to be
accessed soon close to the arithmetic units to minimize the latency of memory opera-
tions. The slow DRAM is used as a large storage area that is only accessed when the
cache hierarchy does not hold the referenced data.

The effectiveness of the cache hierarchy is deceptive, as many of the advantages of a
cache arise from the fact that register files are too small. A cache relies on data reuse
to reduce latency. An inadequately sized register file artificially inflates the amount of
data reuse within an application. For example, the FIR filter example of Chapter 5
showed that the coefficients of the filter needed to be reloaded from memory for the
computation of every set of outputs. If the register file were larger, then these coeffi-
Conclusions 109

Conclusions
cients could be kept in registers, rather than the cache, and would then only be
accessed outside the register file once, at the start of execution. Similarly, temporary
data produced during the course of a computation is frequently spilled to memory
because the register file is not large enough. Again, the cache captures this artificial
data reuse by holding that data until it is reloaded into the register file.

For applications with latency tolerance, as found in media processing, data can be
prefetched far in advance of its use. Ideally, that data would be loaded into registers,
but small register files do not have space for both the current data and the prefetched
data. A cache can hold this prefetched data, again making the cache appear beneficial.
Therefore, a cache’s effectiveness is largely due to the fact that modern VLSI con-
strains global register files that directly feed arithmetic units to be small.

A cache can also limit the available bandwidth for the arithmetic units and waste
external DRAM bandwidth, making it difficult to bridge the data bandwidth gap. A
cache is an inefficient way to stage data from memory because address translation is
required on every reference, accesses are made with long memory addresses, some
storage within the cache must be allocated to address tags, and conflicts may evict
previously fetched data that will be referenced in the future. These inefficiencies
make it difficult to scale the bandwidth of a cache without dramatically increasing its
cost. Furthermore, an ineffective cache actually wastes external DRAM bandwidth.
Cache line fetches retrieve more than one word from the DRAM on every cache miss.
If these words are not all accessed, then DRAM bandwidth was wasted transferring
the entire line. Similarly, writing back data can waste bandwidth. A write-through
policy will always write stored data back to the DRAM. This is particularly wasteful
if the data is actually temporary data that was spilled to memory due to limited regis-
ter space. That temporary data will never be referenced again after it is reloaded into
the register file, so it did not need to return to DRAM. A write-back policy will usu-
ally write the entire cache line back to DRAM, again wasting bandwidth if not all of
the words in the line are dirty.

As the number of arithmetic units in a processor rises, data bandwidth becomes
increasingly important. Since a cache is optimized to minimize latency rather than
maximize bandwidth, the traditional storage hierarchy needs to be reconsidered for
processors that contain tens to hundreds of arithmetic units. For example, an explic-
itly managed bandwidth hierarchy is a far more efficient use of resources for media
processing applications. A global stream register file does not incur the overhead of a
cache and is able to provide far more data bandwidth through a single, wide port.
Similarly, local distributed register files do not suffer from the bandwidth bottlenecks
110 Stream Processor Architecture

Future Architectures
of a global register file, so they can effectively support larger numbers of arithmetic
units.

A programming model that exposes the locality and concurrency of applications is
required to utilize an explicitly managed storage hierarchy effectively. The traditional
sequential programming model hides parallelism and locality, making it difficult to
extract parallel computations and manage data movement. The stream programming
model, however, enables parallelism to be readily exploited and makes most data
movement explicit. This enables a media processor to store data and perform compu-
tations more efficiently.

This work demonstrates the need for future media processors to be designed to maxi-
mize the data bandwidth delivered to the arithmetic units. Without sufficient data
bandwidth, media processors will not be able to support enough arithmetic units to
meet the demands of compelling media applications. The traditional storage hierarchy
found in most programmable processors is unable to provide enough data bandwidth
to support tens to hundreds of arithmetic units, both because the hardware structures
are inefficient and because the supported programming model hides the locality and
concurrency of the applications. Communication-limited VLSI technology makes it
difficult to extract locality and concurrency dynamically.

Therefore, future media processors must provide an explicitly managed storage hier-
archy, scale data bandwidth between external DRAM and the arithmetic units, and
provide local communication and storage resources. An explicitly managed storage
hierarchy can minimize global communication by allowing the compiler to be aware
of expensive communication and storage. This motivates the compiler to utilize inex-
pensive bandwidth when possible and resort to more expensive bandwidth only when
necessary. The bandwidth between external DRAM and the arithmetic units must be
scaled in order to support large numbers of arithmetic units. Without this scaling, uti-
lization will ultimately be limited by memory bandwidth. Finally, local communica-
tion and storage resources are required to enable temporary data to be efficiently
stored and communicated among arithmetic units. The traditional global register file
organization severely limits the sustainable computation rate by requiring global data
bandwidth to be used for local data transfers and memory bandwidth to be used for
intermediate data storage. Local register files can be utilized to store local data and
provide efficient bandwidth to the arithmetic units, which frees up the global register
file to hold intermediate values and prevent them from accessing external DRAM
unless absolutely necessary. Bandwidth-efficient architectures are therefore required
to overcome the communication-limited nature of modern VLSI.
Conclusions 111

Conclusions
112 Stream Processor Architecture

 References
[BW95] V. Michael Bove, Jr. and John A. Watlington. Cheops: A Reconfigurable
Data-Flow System for Video Processing. IEEE Transactions on Circuits
and Systems for Video Technology (April 5, 1995), pp. 140-149.

[BGK97] Doug Burger, James R. Goodman, and Alain Kägi. Limited Bandwidth
to Affect Processor Design. IEEE Micro (November/December 1997),
pp. 55-62.

[CTW97] Kenneth C. Cain, Jose A. Torres, and Ronald T. Williams. RT_STAP:
Real-Time Space-Time Adaptive Processing Benchmark. Technical
Report MTR 96B0000021, The MITRE Corporation, Bedford MA,
February 1997.

[CHS+99] John Carter, Wilson Hsieh, Leigh Stoller, Mark Swanson, Lixin Zhang,
Erik Brunvand, Al Davis, Chen-Chi Kuo, Ravindra Kuramkote, Michael
Parker, Lambert Schaelicke, and Terry Tateyama. Impulse: Building a
Smarter Memory Controller. Proceedings of the Fifth International
Symposium on High Performance Computer Architecture (January
1999), pp. 70-79.

[CEV98] Jesus Corbal, Roger Espasa, and Mateo Valero. Command Vector
Memory Systems: High Performance at Low Cost. Proceedings of the
1998 International Conference on Parallel Architectures and
Compilation Techniques (October 1998), pp. 68-77.
References 113

References
[Cri97] Richard Crisp. Direct Rambus Technology: The New Main Memory
Standard. IEEE Micro (November/December 1997), pp. 18-28.

[CJDM99] Vinodh Cuppu, Bruce Jacob, Brian Davis, and Trevor Mudge. A
Performance Comparison of Contemporary DRAM Architectures.
Proceedings of the International Symposium on Computer Architecture
(May 1999), pp. 222-233.

[Die99] Keith Diefendorff. Pentium III = Pentium II + SSE. Microprocessor
Report (March 1999), pp. 1-7.

[FvFH96] James D. Foley, Andries van Dam, Steven K. Feiner, and John F.
Hughes. Computer Graphics: Principles and Practice, Addison-Wesley
Publishing Company: Menlo Park, California, 1996.

[Fol96] Pete Foley. The Mpact Media Processor Redefines the Multimedia PC.
Proceedings of COMPCON (February 1996), pp. 311-318.

[Gla99] Peter N. Glaskowsky. Most Significant Bits: NVIDIA GeForce offers
acceleration. Microprocessor Report 13(12), 1999.

[GV96] Gene H. Golub and Charles F. Van Loan. Matrix Computations, Third
Edition, The John Hopkins University Press: Baltimore, Maryland, 1996.

[GMG89] A. Gunzinger, S. Mathis, and W. Guggenbühl. The SYnchronous
DAtaflow MAchine: Architecture and Performance. Proceedings of
Parallel Architectures and Languages Europe (June 1989), pp. 85-99.

[HG97] Ziyad S. Hakura and Anoop Gupta. The Design and Analysis of a Cache
Architecture for Texture Mapping. Proceedings of the International
Symposium on Computer Architecture (June 1997),pp. 108-120.

[HMS+99] Sung I. Hong, Sally A. McKee, Maximo H. Salinas, Robert H. Klenke,
James H. Aylor, and William A. Wulf. Access Order and Effective
Bandwidth for Streams on a Direct Rambus Memory. Proceedings of the
Fifth International Symposium on High Performance Computer
Architecture (January 1999), pp. 80-89.

[HL99] Tim Horel and Gary Lauterbach. UltraSPARC-III: Designing Third-
Generation 64-Bit Performance. IEEE Micro (May/June 1999), pp. 73-
85.

[Jac96] Keith Jack. Video Demystified: A Handbook for the Digital Engineer,
LLH Technology Publishing: Eagle Rock, Virginia, 1996.
114 Stream Processor Architecture

[Jou90] Norman P. Jouppi. Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers.
Proceedings of the International Symposium on Computer Architecture
(May 1990),pp. 364-373.

[KDR+00] Ujval Kapasi, William J. Dally, Scott Rixner, Peter Mattson, and John D.
Owens. Efficient Conditional Operations for Data-Parallel
Architectures. Proceedings of the International Symposium on
Microarchitecture (December 2000).

[Kes99] R. E. Kessler. The Alpha 21264 Microprocessor. IEEE Micro (March/
April 1999), pp. 24-36.

[KKK95] Takeo Kanade, Hiroshi Kano, and Shigeru Kimura. Development of a
Video-Rate Stereo Machine. Proceedings of the International Robotics
and Systems Conference (August 1995), pp. 95-100.

[Koz99] Christoforos Kozyrakis. A Media-Enhanced Vector Architecture for
Embedded Memory Systems. Technical Report UCB/CSD-99-1059,
University of California Computer Science Division, Berkeley, CA, July
1999.

[Kro81] David Kroft. Lockup-Free Instruction Fetch/Prefetch Cache
Organization. Proceedings of the International Symposium on Computer
Architecture (May 1981), pp. 81-87.

[LS98] Corinna G. Lee and Mark G. Stoodley. Simple Vector Microprocessors
for Multimedia Applications. Proceedings of the International
Symposium on Microarchitecture (December 1998), pp. 25-36.

[Lee96] Ruby B. Lee. Subword Parallelism with MAX-2. IEEE Micro (August,
1996), pp. 51-59.

[Lin82] N. R. Lincoln. Technology and Design Tradeoffs in the Creation of a
Modern Supercomputer. IEEE Transactions on Computers (May 1982),
pp. 363-376.

[Lip68] J. S. Liptay. Structural Aspects of the System/360 Model 85, Part II: The
Cache. IBM Systems Journal 7:1 (1968), pp. 15-21.

[MMCD00] Binu K. Matthew, Sally A. McKee, John B. Carter, and Al Davis. Design
of a Parallel Vector Access Unit for SDRAM Memory Systems.
Proceedings of the Sixth International Symposium on High-Performance
Computer Architecture (January 2000), pp. 39-48.
References 115

References
[MDR+00] Peter Mattson, William J. Dally, Scott Rixner, Ujval J. Kapasi, and John
D. Owens. Communication Scheduling. Proceedings of the International
Conference on Architectural Support for Programming Languages and
Operating Systems (November 2000).

[MW95] Sally A. McKee and William A. Wulf. Access Ordering and Memory-
Conscious Cache Utilization. Proceedings of the First Symposium on
High Performance Computer Architecture (January 1995), pp. 253-262.

[MBDM97] John S. Montrym, Daniel R. Baum, David L. Dignam, and Christopher
J. Migdal. InfiniteReality: A Real-Time Graphics System. Proceedings
of SIGGRAPH (August 1997), pp. 293-302.

[NEC98] NEC Corporation. 128M-bit Synchronous DRAM 4-bank, LVTTL Data
Sheet. Document No. M12650EJ5V0DS00, 5th Edition, Revision K
(July 1998).

[Nit99] Ramon Nitzberg. Radar Signal Processing and Adaptive Systems,
Artech House: Boston, MA, 1999.

[Oed92] Wilfried Oed. Cray Y-MP C90: System features and early benchmark
results. Parallel Computing (August 1992), pp. 947-954.

[OSB99] Alan V. Oppenheim and Ronald W. Shafer with John R. Buck. Discrete-
Time Signal Processing, Second Edition, Prentice Hall: Upper Saddle
River, NJ, 1999.

[ODK+00] John Owens, William J. Dally, Ujval J. Kapasi, Scott Rixner, Peter
Mattson, and Ben Mowery. Polygon Rendering on a Stream
Architecture. Proceedings of the Eurographics/SIGGRAPH Workshop
on Graphics Hardware (August 2000).

[PW96] Alex Peleg and Uri Weiser. MMX Technology Extension to the Intel
Architecture. IEEE Micro (August, 1996), pp. 42-50.

[RS96] Selliah Rathnam and Gerrit A. Slavenburg. An Architectural Overview
of the Programmable Multimedia Processor, TM-1. Proceedings of
COMPCON (February 1996), pp. 319-326.

[RDK+98] Scott Rixner, William J. Dally, Ujval J. Kapasi, Brucek Khailany,
Abelardo López-Lagunas, Peter R. Mattson, and John D. Owens. A
Bandwidth-Efficient Architecture for Media Processing. Proceedings of
the International Symposium on Microarchitecture (December 1998),
pp. 3-13.
116 Stream Processor Architecture

[RDK+00a] Scott Rixner, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John
D. Owens. Memory Access Scheduling. Proceedings of the International
Symposium on Computer Architecture (June 2000), pp. 128-138.

[RDK+00b] Scott Rixner, William J. Dally, Brucek Khailany, Peter Mattson, Ujval J.
Kapasi, and John D. Owens. Register Organization for Media
Processing. Proceedings of the Sixth Symposium on High Performance
Computer Architecture (January 2000), pp. 375-386.

[Rus78] Richard M. Russell. The Cray-1 Computer System. Communications of
the ACM (January 1978), pp. 63-72.

[SV89] R. Schreiber and C. Van Loan. A storage-efficient WY representation for
products of Householder transformations. SIAM J. Scientific and
Statistical Computing, 10(1):53--57, 1989.

[Sed90] Robert Sedgewick. Algorithms in C, Addison-Wesley Publishing
Company, 1990.

[TH99] Shreekant Thakkar and Tom Huff. Internet Streaming SIMD Extensions.
Computer (December 1999), pp. 26-34.

[TONH96] Marc Tremblay, J. Michael O’Connor, Venkatesh Narayanan, and Liang
He. VIS Speeds New Media Processing. IEEE Micro (August, 1996), pp.
10-20.

[TH97] Jim Turley and Harri Hakkarainen. TI’s New 'C6x DSP Screams at 1,600
MIPS. Microprocessor Report (February 17, 1997), pp. 14-17.

[VPPL94] H. Veendrick, O. Popp, G. Postuma, and M. Lecoutere. A 1.5 GIPS video
signal processor (VSP). Proceedings of the IEEE Custom Integrated
Circuits Conference (May 1994), pp. 95-98.

[WAM+99] Takeo Watanabe, Kazushige Ayukawa, Seiji Miura, Makoto Toda,
Tetsuya Iwamura, Kouichi Hoshi, Jun Sato, and KazumasaYanagisawa.
Access Optimizer to Overcome the “Future Walls of Embedded
DRAMs” in the Era of Systems on Silicon. IEEE International Solid-
State Circuits Conference Digest of Technical Papers (February 1999),
pp. 370-371.

[YHO97] Tadaaki Yamauchi, Lance Hammond, and Kunle Olukotun. The
Hierarchical Multi-bank DRAM: A High-Performance Architecture for
Memory Integrated with Processors. Proceedings of the Conference on
Advanced Research in VLSI (September 1997), pp. 303-319.
References 117

References
118 Stream Processor Architecture

Index
A
Address arbiter 93
Address generators 40–41
Arithmetic clusters 6, 8, 37–38

B
Bandwidth hierarchy

See Data bandwidth hierarchy
Bandwidth sensitivity 78–79

C
Cache hierarchy 55–59, 109
Centralized register file 58
Cheops 13
Column arbiter 93–94
Conditional streams 48
Cray-1 14

D
Data bandwidth hierarchy 1, 4–6, 9, 27, 53–

82, 107–108
Distributed register files 38, 61

See also Local register files
DRAM 59–60, 83, 86, 88–91, 107, 109–110

F
FIR filter 65–72
Index
H
Host processor 43

I
Imagine media processor 7–8, 27–52, 66–

82, 108–109
InfiniteReality 11–12
iscd 31

K
Kernel 2, 16, 29, 44, 108
KernelC 31, 47

L
Local register files 4–5, 27, 49, 54, 67, 110

M
MAX-2 12
119

Index
Memory access scheduling 9, 83–105, 109
algorithms

col/closed 99, 103
col/open 99
first-ready 87, 98, 103
in-order 87–88, 97, 103
row/closed 99
row/open 88, 99

architecture 92–94
policies

closed 95
column-first 95
fewest-pending 95
in-order 94
most-pending 95
open 94
precharge-first 95
priority 94
row-first 95

Memory address register file 41
Memory demands 100–101
Microcontroller 8, 39
MMX 12, 66–72
Mpact 12
MPEG2 encoder 2, 20, 30–34, 72–82, 84–

86, 101–104
MSHR 42

N
Network interface 8, 42–43
Network route register file 42
NVIDIA GeForce 12

P
Parallel Vector Access unit 15
Parallel-subword instructions 37
Polygon renderer 21, 76–82, 101–104
Precharge manager 93–94

Q
QR decomposition 21, 76–82, 101–104

R
Record 29, 41
Register file scaling 58, 61–63
Reorder buffers 40
Row arbiter 93–94
120 Stream Processor Architectu
S
SIMD 6, 13, 27, 37, 47, 63
Space-time adaptive processing 21, 76–82,

101–104
SSE 12
Stereo depth extraction 20, 76–82, 101–104
Stream 3, 16, 29, 44, 108
Stream architecture 2–7, 34–44
Stream buffers

for the memory system 15
for the SRF 35–36, 62

Stream controller 8, 43
Stream instructions

barrier 46
clustop 46
load 46
move 45
read 45
receive 46
send 46
store 46
synch 46
write_imm 45

Stream Memory Controller 15
Stream programming model 2–3, 29–30,

44–48, 55, 68, 107, 111
Stream recirculation 64, 72, 75, 82
Stream register file (SRF) 4–5, 8, 27–28,

35–36, 49, 52, 54, 62, 67, 86, 110
Stream scheduler 32
StreamC 32–33, 44
Streaming memory system 4, 6, 8, 17, 27,

40–42, 49, 54, 84
SYDAMA 13

T
TMS320C6000 4, 14, 58, 66–72
TriMedia 12

V
Vector processors 13
VIS 12
VLIW 6, 31, 37, 39
VRAM 14
VSP 12
re

	CHAPTER 4 The Imagine Stream Processor
	4.1 Stream Processing
	4.2 Architecture
	4.3 Programming Model
	4.4 Implementation
	4.5 Scalability and Extensibility

	CHAPTER 5 Data Bandwidth Hierarchy
	5.1 Overview
	5.2 Communication Bottlenecks
	5.3 Register Organization
	5.4 Evaluation
	5.5 Summary

	CHAPTER 6 Memory Access Scheduling
	6.1 Overview
	6.2 Modern DRAM
	6.3 Memory Access Scheduling
	6.4 Evaluation
	6.5 Summary

	CHAPTER 7 Conclusions
	7.1 Imagine Summary
	7.2 Future Architectures

	References
	Index

