
Generating Product-Lines of Product-Families

Don Batory, Roberto E. Lopez-Herrejon, Jean-Philippe Martin
Department of Computer Sciences

University of Texas at Austin
Austin, Texas 78712

{batory, rlopez, jpmartin}@cs.utexas.edu

Abstract

GenVoca is a methodology and technology for generating
product-lines, i.e. building variants of a program. The
primitive components from which applications are con-
structed are refinements or layers, which are modules that
implement a feature that many programs of a product-line
can share. Unlike conventional components (e.g., COM,
CORBA, EJB), a layer encapsulates fragments of multiple
classes. Sets of fully-formed classes can be produced by
composing layers. Layers are modular, albeit unconven-
tional, building blocks of programs.

But what are the building blocks of layers? We argue that
facets is an answer. A facet encapsulates fragments of
multiple layers, and compositions of facets yields sets of
fully-formed layers. Facets arise when refinements scale
from producing variants of individual programs to produc-
ing variants of multiple integrated programs, as typified
by product families (e.g., MS Office).

We present a mathematical model that explains relation-
ships between layers and facets. We use the model to
develop a generator for tools (i.e., product-family) that are
used in language-extensible Integrated Development
Environments (IDEs).

1. Introduction

Over the last thirty years, program modularity has been
dominated by object-orientation (OO): method, class, and
package encapsulations are standard concepts. Over this
same period, another form of program modularity has
arisen. The concept is feature refinement — that is, a mod-
ule that encapsulates the implementation of a feature,
which is a product characteristic that customers view as
important in describing and distinguishing programs
within a family of related programs (e.g., a product-line)
[15].

Feature refinement is a very general concept and many
different implementations of it have been proposed, each
with different names, capabilities, and limitations: layers
[2], features [18], collaborations [25, 35, 21], subjects

[16], aspects [19], and concerns [33]. Unlike traditional
component technologies (such as COM, CORBA, and
EJB), a feature refinement encapsulates not an entire
method or class, but rather fragments of methods and
classes. Figure 1 depicts a package of three classes, c1—
c3. Refinement r1 cross-cuts these classes, i.e., it encap-
sulates fragments of c1—c3. The same holds for refine-
ments r2 and r3. Composing refinements r1—r3 yields a
package of fully-formed classes c1—c3. Because refine-
ments reify levels of abstraction, feature refinements are
often called layers — a name that is visually reinforced by
their vertical stratification of c1—c3 in Figure 1. As
refinements, layers, and features are so closely related,
their terms are often used interchangably. In general, lay-
ers are modular, albeit unconventional, building blocks of
programs.

This raises an interesting question: if layers (features) are
the building blocks of programs, what are the building
blocks of layers (features)? We argue that an answer is a
facet. The idea is simple: Figure 2 depicts a set of three
layers, r1—r3. Facet f1 cross-cuts these layers, i.e., it
encapsulates fragments of r1—r3. The same for facets f2
and f3. Composing facets f1—f3 yields fully-formed
layers r1—r3. Although it appears that Figure 2 is just
Figure 1 turned on its side, where classes and facets are
indistinguishable, this is not the case. Facets are not
classes.

c1 c2 c3

r1

r2

r3

classes

Figure 1. Classes and Refinements (Layers)

layers

r1 r2 r3

f1

f2

f3

layers

facets

Figure 2. Facets

dsb
Presented at the 2002 Automated Software Engineering Conference in Edinburgh, Scotland, pp 81-92.

A year ago, we would not have believed facets to exist or,
if they did, to have any utility. To our surprise, we now
believe that they are very common. Facets arise when fea-
ture refinements scale beyond the confines of an individ-
ual program or package. As a perspective, contemporary
models of feature refinements allow clients to customize
individual programs; the set of all program variants that
can be produced is a product-line. In contrast, a product-
family is an integrated suite of programs, each program
having different capabilities [9]. Microsoft Office is an
example; it includes the Excel (spreadsheet), Word (text
processor), and Access (database) programs. Given how
common product-families are, an interesting question is:
can feature refinements scale to define a product-line of
product-families?

In this paper, we present new results on feature refinement
modularity. We show that refinements do scale to product-
families and there are interesting twists in doing so. Previ-
ously considered “atomic” refinements are revealed to be
composed of more elementary refinements called gluons.
Gluons are arranged in regular ways to form both
“atomic” refinements and facets. We present a model of
gluons, called Origami, that reveals software to have an
elegant mathematical structure that leads to simpler
designs and more powerful models of code generation.

We base our work on GenVoca, a methodology and tech-
nology for generating product-lines using feature refine-
ments. This paper shows how GenVoca ideas scale to
product-families, something that has not been demon-
strated previously. Further, we argue that our results are
directly applicable to other models, such as Aspect-Ori-
ented Programming (AOP) [20] and Multi-Dimensional
Separation of Concerns (MDSC) [33, 23, 24], and thus are
not GenVoca-specific. We explore this connection further
in Related Work. We begin with a motivating example that
illustrates the phenomenon of facets.

2. A Motivating Problem

An Integrated Development Environment (IDE) is a suite
of applications (i.e., a product-family) that allow users to
write, debug, visualize, and document programs. Among
the programs, here called tools, of an IDE are a compiler,
debugger, editor, formatter, and document generator (e.g,
Javadoc). Figure 3a depicts some of these tools, each of
which is implemented in a different package.

The problem we consider is generating IDE tools that all
work on the same language dialect or Domain-Specific
Language (DSL). The use of DSLs have shown benefits in
terms of understandability, maintainability, and extensibil-
ity in software design and development processes [11].
Providing IDE tools to support DSL program compilation,
editing, debugging, and document generation is essential

for the successful adoption of DSL technology. In particu-
lar, our work focuses on dialects of Java.

An example of a Java dialect is the one we are using to
write fire-support simulators for the U.S. Army [6]. As a
brief summary, fire support programs are a set of collabo-
rating state machines. Figure 4a depicts a state machine of
three states (s1, s2, s3) and three edges (e1, e2, e3),
where an edge denotes a transition from one state to
another. For example, edge e3 begins at state s1 and ends
at state s3. Wide spectrum languages, like Java, are typi-
cally used to implement state machines. The resulting
code, even when using the state machine design pattern
[14], is often ugly, involving nested switch statements,
large numbers of methods or classes. This places a burden
on maintenance engineers because they must re-engineer
the simple abstractions of state machines (e.g., Figure 4a)
from the code in order to understand and modify it. In con-
trast, Figure 4b shows the specification of Figure 4a in our
extended Java language. Highlighted are state declarations
and edge declarations. We have found that state-machine-
extended Java programs are about half the size of their
pure-Java counterparts, and this in turn simplifies the writ-
ing, maintenance, and understanding of domain-specific
programs. Similar benefits accrue when other extensions,
such as templates, are added to Java.

In the future, we expect to work in other domains, each
requiring their own specific extensions to Java. This
means that we need to be able to construct IDE tools tar-
geted for a particular Java dialect, or more generally, we
need to define a product-line for a product-family of IDE
tools. The novelty of our work is that we are using refine-
ments (layers) as the unit of modularity.

Figure 3b revisits our IDE tools, but this time we expose
the layers from which they were constructed. One layer,
Java, encapsulates a cross-cut of the compiler, debugger,
and document generation packages that is specific to the
Java language. A second layer, Sm, encapsulates another
cross-cut of these tools; the encapsulated code fragments

compiler debugger document

Java

Sm

(a)

(b)

Figure 3. IDE Tools and Cross-Cutting
Language Features

Tmpl

compiler debugger document

implement our state machine extension to Java. (That is,
Sm extends the compiler tool to compile state machine
specifications, it also extends the debugger so that it can
debug state machine programs, etc.) A third layer, Tmpl,
encapsulates the code fragments that implement our tem-
plate extension to Java.

In principle, this is encouraging: layers (features) scale to
product-families. That is, refinements scale to the encap-
sulation of fragments of multiple tools. Further, it appears
that an IDE tool generator has a simple, declarative GUI
front-end. Figure 5 suggests its basic outline: a client
selects a set of optional language features and a set of tools
(as not all might be needed), and by pressing the Gener-
ate button, the generator produces the requested set of
IDE tools to work on the specified dialect of Java.

While the GUI is simple, the technology that underlies this
generator is sophisticated. To understand how it works, we
first review the GenVoca model and the Jakarta Tool Suite.

3. GenVoca

GenVoca is a design methodology for creating product-
lines and building architecturally-extensible software —

i.e., software that is extensible via component additions
and removals. GenVoca is an outgrowth of an old and
practitioner-ignored methodology called step-wise refine-
ment [12], which asserts that efficient programs can be
created by revealing implementation details in a progres-
sive manner. Traditional work on step-wise refinement has
focussed on microscopic program refinements (e.g., x+0
⇒ x), for which one had to apply hundreds or thousands
of refinements to yield admittedly small programs. While
the approach is fundamental and industrial infrastructures
are on the horizon [7, 27], GenVoca extends step-wise
refinement by scaling refinements to a multi-class-cross-
cut granularity, so that each refinement adds a feature to a
program, and composing a few refinements yields an
entire application.

3.1. Model Concepts

The central idea is programs are values and that refine-
ments are functions that add features to programs. Con-
sider the following constants that represent programs with
different features:

f // program with feature f
g // program with feature g

A refinement is a function that takes a program as input
and produces a refined (or feature-augmented) program as
output:

i(x) // adds feature i to program x
j(x) // adds feature j to program x

A multi-featured application is specified by an equation,
i.e., a named composition of functions. Different equa-
tions define a family of applications, such as:

app1 = i(f) // app1 has features i & f
app2 = j(g) // app2 has features j & g
app3 = i(j(f)) // app3 has features i, j, & f

Thus, by casually inspecting an equation, one can deter-
mine features of an application.

Note that there is a subtle but important confluence of
ideas: a function represents both a feature and its imple-
mentation — there can be different functions that offer dif-
ferent implementations of the same feature:

state_machine example {
 event_delivery receive_message(M m);

no_transition { error(-1, m); }
 otherwise_default { ignore_msg(m); }

 states s1, s2, s3;

 edge e1 : s1 -> s2
 conditions !booltest() do

{ /* e1 action */ }

 edge e2 : s2 -> s3
 conditions booltest() do

{ /* e2 action */ }

 edge e3 : s1 -> s3
 conditions true do

{ /* e3 action */ }

 // Java class data members and
// methods from here

 boolean booltest() { ... }
 example() { current_state = start; }
}

states

edges

(b)

(a) s1 s2

s3

e1

e2
e3

Figure 4. State Machines in Extended Java

Figure 5. A GUI for an IDE-Tool Generator

k1(x) // adds feature k with
// implementation1 to x

k2(x) // adds feature k with
// implementation2 to x

When an application requires feature k, it is a problem of
equation optimization to determine which implementation
of k would be the best (e.g., provide the best perfor-
mance)1. It is possible to automatically design software
(i.e., produce an equation that optimizes some quantitative
criteria) given a set of declarative constraints for a target
application. An example of this kind of automated reason-
ing is in [5].

Although GenVoca constants and functions appear to be
untyped, typing constraints do exist in the form of design
rules. Design rules capture syntactic and semantic con-
straints that govern the legal composition of features [3]. It
is not unusual that the selection of a feature will disable
(or enable) the selection of other features. For this paper,
design rules constrain the order in which features are com-
posed. Details of their specification are beyond the scope
of this paper and can be found in [3].

3.2. Model Implementation

Feature refinements are intimately related to collabora-
tion-based designs [25, 30, 28]. A collaboration is a
generic relationship among multiple classes. An individual
class represents a particular role in a collaboration, and is
a set of data members, methods, and method overrides that
are needed to carry out this role. Because collaborations
are defined largely in isolation of each other, they define
features that are reusable, i.e., that can be used in the con-
struction of many applications. A particular application is
a composition of collaborations. Each class of an applica-
tion plays one or more roles, where each role originates
from a different collaboration.

A GenVoca constant is a set of classes. Figure 6 depicts a
constant i with four classes (ai—di). A GenVoca function
is a set of classes and class refinements. A class extension
is a subclass2: it encapsulates new data members, meth-
ods, and method overrides of its parent class. Figure 6
shows the result of applying function j to i: three classes
are extended and another class is added. (That is, j encap-
sulates a cross-cut that includes classes aj, cj, and dj that
extend ai, ci and di respectively, and adds class ej).
Figure 6 also shows the application of function k to j(i),

resulting in two classes being extended. In general, a for-
est of inheritance hierarchies is created as layers are com-
posed, and this forest grows progressively broader and
deeper as the number of layers increase [4].

Linear inheritance chains, called refinement chains, are
common in this implementation method. The general rule
is that only the bottom-most class of a refinement chain is
instantiated, because this class implements all roles that
were assigned to it. These classes are shaded in Figure 6.

For example, the bottom-most class of the c refinement
chain plays the roles ci, cj, and ck in the collaborations i,
j, and k respectively.

Because GenVoca functions may be composed in arbitrary
orders, class extensions can be implemented as mixins
(modulo footnote 2). A mixin is a template: it is a class
whose superclass is specified via a parameter. Mixins
enable the order in which subclasses appear in a refine-
ment chain to be permuted. More details on mixins and
implementing collaborations as mixins are discussed else-
where [30, 28, 13].

4. The Jakarta Tool Suite (JTS)

The Jakarta Tool Suite (JTS) is a suite of compiler-com-
piler tools for building families of language translators [4]
that we used to implement our IDE tools. A language fam-
ily is defined by a GenVoca model, which consists of a
single constant — the base language — and functions that
define optional extensions to the base. The family of Java
dialects that can be synthesized by JTS is a GenVoca
model, named J, consisting of the Java constant (repre-
senting the Java 1.4 language) and functions that add to
Java embedded domain-specific languages for state
machines (Sm(x)), container data structures (P3(x)),
code fragments a la Lisp quote and unquote (Ast(x)),
hygienic macros (Gscope(x)), and templates
(Tmpl(x)), among others [4, 5, 29]:

J = { Java, Sm(x), P3(x), Ast(x), Gscope(x),
 Tmpl(x), ...} (1)

A particular dialect of Java is defined by an equation. The
current dialect is called Jak (short for Jakarta), which is
Java extended with state machines and templates:

1. Different equations represent different programs and equation optimi-
zation is over the space of semantically equivalent programs. This is
identical to relational query optimization: a query is initially represented
by a relational algebra expression, and this expression is optimized. Each
expression represents a different, but semantically equivalent, query-
evaluation program as the original expression.
2. More accurately, a class extension is a subclass that assumes the
name of its parent class. This is different than typical subclassing, but is a
simple way in which the contents of a class can be refined.

ai bi ci dii

aj cj dj ej

ck dk

j

k

Figure 6. Implementing Refinements as Collaborations

Jak = Sm(Tmpl(Java)) (2)

The state machine and template features are independent
of each other. As a consequence, the order in which Sm
and Tmpl are composed doesn’t matter. Thus, an equation
equivalent to (2) is:

Jak = Tmpl(Sm(Java)) (3)

JTS converts such equations directly into a Java package
using the ideas of Section 3 to implement a translator (pre-
processor) for that language. The Jak preprocessor, like
other JTS-produced preprocessors, translates an extended-
Java program (with state machines and templates) into a
program that represents its pure-Java counterpart. Figure 7
depicts its organization. An extended-Java program is
parsed into an extended-Java parse tree. A reducer walks
the tree, replacing each non-Java node or subtree with its
pure-Java counterpart. The result is a pure-Java parse tree,
which is then printed. The printed program is the Java
translation of the extended-Java program. No matter what
language extensions are added to Java, the organization of
Figure 7 remains the same. This organization was inspired
by Microsoft’s IP [27].

Jak is only one of a number of IDE tools that must be cus-
tomized to a particular language dialect. Another is a Java-
doc-like tool that harvests comments from specific
program constructs and displays them neatly on HTML
pages. Obviously, Sun Microsystem’s Javadoc [17] can’t
be used directly, as it only understands pure-Java pro-
grams (and documenting generated pure-Java programs
typically isn’t all that useful). So we created a language
extensible version of Javadoc called Jedi (Java Extensible
DocumentatIon). Jedi, like Jak, is produced by JTS
using a GenVoca model, called D. The lone constant is
JavaDoc, which encapsulates the code that parsers, har-
vests, and documents comments in pure-Java programs.
Functions of this model extend JavaDoc with the capabil-

ities of producing HTML documentation for state
machines (SmDoc(x)), templates (TmplDoc(x)), etc. In
principle, the elements of models J and D are in one-to-
one correspondence: each language extension in J has a
corresponding documentation extension in D.3

D = { JavaDoc, SmDoc(x), TmplDoc(x), ... } (4)

A particular version of Jedi is specified as an equation:
Jedi = SmDoc(TmplDoc(JavaDoc)) (5)

As before, the template and state machine layers of Jedi
are independent, and thus can be composed in any order.
Thus, an equation equivalent to (5) is:

Jedi = TmplDoc(SmDoc(JavaDoc)) (6)

Figure 8 depicts the internal organization of Jedi. An
extended-Java program is parsed into an extended-Java
parse tree. A harvester walks the tree, harvesting com-
ments prefacing particular language constructs (e.g., class,
method, state machine declarations, etc.) and stores them
in a comment repository. Finally, a doclet reads the con-
tents of the comment repository, and formats harvested
comments neatly on an HTML page, which users recog-
nize as Javadoc-like output.

It is interesting to note that Jak, Jedi, and other IDE tools
can be expressed directly by a single GenVoca model,
IDE_Model, where different equations correspond to dif-
ferent tools. The primitives of this model are tool features.
There is a lone constant Parse, which represents the
parser for the given language dialect, and there are func-
tions for reducing extended-Java constructs to pure-Java
(Reduce(x)), for printing parse trees (Print(x)), for
harvesting comments from parse trees (Harvest(x)), for

Extended-Java
Program

Pure-Java
Program

Parse
Extended-Java
Parse Tree Reduce Print

Pure-Java
Parse Tree

Jak

Figure 7. The Organization of the Jak Translator

3. In practice, J and D need not be in correspondence. That is, there
might be a language extension without a corresponding documentation
extension, simply because that extension has yet to be built.

Extended-Java
Program

HTML
Page

Parse
Extended-Java
Parse Tree Harvest Doclet

Jedi

Figure 8. The Organization of the Jedi Translator

Comment
Repository

producing HTML documents from harvested comments
(Doclet(x)), and so on.

IDE_Model = { Parse, Reduce(x), Print(x),
 Harvest(x), Doclet(x), ... } (7)

Each IDE tool has an equation. The equations for Jak and
Jedi are given below:

Jak = Print(Reduce(Parse)) (8)

Jedi = Doclet(Harvest(Parse)) (9)

Even though the above equations look suspiciously like
“functional” (e.g. Haskell) programs, they really do repre-
sent a composition of features that are implemented by the
usual cross-cuts. Figure 9a shows the Parse layer to
encapsulate a set of parser classes (only one class is
shown), a set of parse tree node classes (again, only one is
shown), and a Main class. The Reduce layer extends each
parse tree node type with a reduction method (specific to
that type), and extends the Main class with a call to reduce
an extended-Java parse tree to a pure-Java parse tree.
Finally, the Print layer extends each parse tree node type
with a print method (specific to that node type) and
extends the Main class with a call to print the reduced tree.
Again, the terminals of the resulting refinement chains are
the classes that are instantiated. Figure 9b shows the code
added by each layer to the Main class.

Note: the order in which tool features are composed is
important. Parse must be first, followed by Reduce
and then Print, or followed by Harvest and then
Doclet. The reason is Harvest extends classes in
Parse, and Doclet references methods in Harvest.
The same applies to Reduce and Print. These con-
straints are examples of design rules.

Language extensibility is not part of the IDE_Model. In
fact, astute readers may have noticed that our original
descriptions of Jak and Jedi were based on GenVoca
models of language features, and not tool features. Clearly
these models are related, but how? Further, we know the
Jak equations (2) and (8) must be equivalent, and so too
the Jedi equations (5) and (9). But how? An answer
requires a closer look at the internals of these tools, which
we do in the next section.

5. Gluons

Language features are orthogonal to tool features. This
means that we can understand the modularity of Jak and
Jedi in terms of matrices, where rows correspond to lan-
guage features and columns correspond to tool features.

The matrix for Jedi is shown in Figure 10. Each matrix
entry lists the name of a module that implements a partic-
ular tool feature for a particular language feature. For
example, Sharvest is a module that implements the har-
vesting of comments from state machine specifications.
Jharvest harvests comments from Java specifications.
Tdoclet formats comments from template declarations
on an HTML page. And so on. A composition of these
modules implements Jedi.

The matrix for Jak is shown in Figure 11, and has a similar
interpretation. There is a difference: there are no Sm and
Tmpl row entries for the Print column. The reason is
simple: consider the interpretation of Sreduce: it is a
module that transforms parse trees on state machines into
parse trees of pure Java. The Jprint module prints parse
trees of pure Java. So once the Sreduce module performs
its task, the Jprint module is invoked. Thus there is no
need for a module that prints state machine parse trees.
The same argument applies for templates. Once again, a
composition of these modules implements the Jak tool.

These matrices provide the first indication of facets. Let us
call matrix entries gluons and consider the Jedi matrix of

class Main { // Parse
main(String args) {

treeNode n;
n = parse(args[0]);

n.reduce();

n.print();

}
}

Reduce

Print

parser
classes

treeNode
classes Main

Parse

Reduce

Print

Jak = Print(Reduce(Parse))

Figure 9. Cross-Cuts of Tool Features

(a)
(b)

Doclet Harvest Parse

Java Jdoclet Jharvest Jparse

Sm Sdoclet Sharvest Sparse

Tmpl Tdoclet Tharvest Tparse

Figure 10. Jedi Matrix

Print Reduce Parse

Java Jprint Jreduce Jparse

Sm — Sreduce Sparse

Tmpl — Treduce Tparse

Figure 11. Jak Matrix

Figure 10. Each row represents a language feature; its
implementation is a composition of the gluons in that row.
The Java language feature, for example, is defined by a
composition of the Jparse, Jharvest, and Jdoclet
gluons. The same for other rows.

By the same reasoning, each tool feature is represented by
a column and is implemented by a composition of gluons
in that column. For example, the Harvest tool feature is a
composition of the Jharvest, Sharvest, and Tharvest
gluons. The same for other columns.

Thus, if layers are rows of gluons, then facets are columns
of gluons — columns cross-cut every row. Similarly, if
layers are columns of gluons, then facets are rows of glu-
ons — rows cross-cut every column. Thus, a facet is sim-
ply a feature along a dimension, and the implementation
of a facet cross-cuts features of other dimensions.

Two questions remain. First, what are gluons? Very sim-
ply, they are elementary layers (refinements) that imple-
ment the intersection of pair of orthogonal features. Or
more accurately, a gluon implements a feature of a feature
or a building block of both a language feature and tool fea-
ture. A gluon is a module that encapsulates any number of
classes and class extensions, and has straightforward
implementation as a set of classes and mixins. Thus, we
can represent each gluon as a GenVoca constant or func-
tion.

When we create the matrices of Figure 10 and Figure 11,
we are decomposing a composite language feature (layer)
or tool feature (layer) into more primitive layers — in
essence, separating their concerns. The theoretical justifi-
cation is simple: any function F can be the result of com-
posing more primitive functions F1…Fn, and any constant
C could be the result of composing a more primitive con-
stant C’ with one or more functions F1’…Fn’:

F(x) = F1(F2(... Fn(x) ...))
C = F1’(F2’(... Fn’(C’)...))

Decomposing software is modeled by decomposing equa-
tions.

Second, we want to represent Jak and Jedi as equations
that are compositions of gluons. Equations for Jak and
Jedi are:

Jak = Jprint(Treduce(Sreduce(Jreduce(
Tparse(Sparse(Jparse)))))) (10)

Jedi = Tdoclet(Tharvest(Tparse(
Sdoclet(Jdoclet(Sharvest(
Jharvest(Sparse(Jparse))))))))) (11)

These equations are much more complex than those of
previous sections. Two questions immediately arise: (a)
are they correct — are they legal compositions of gluons?
and (b) are they consistent — do they represent tools that
work on the same language dialect? Existing design rule
checking algorithms can validate these equations [3], but
there are no algorithms to check for consistency. In fact,
without the techniques presented in the next section, it
would take some time to write such equations manually
and verify that they are consistent. We would expect the
consistency problem to be much more difficult for larger
sets of tools and more complex language dialects. Hence,
automated support is required to write these equations and
to ensure their consistency: we need a model of gluons.

6. Origami: A Model of Gluons

The notation that we have used prior to this section is con-
sistent with previous work on GenVoca. However, the
usual “functional” notation becomes cumbersome as equa-
tions become complicated. So we make a cosmetic switch
in notation to simplify our upcoming discussions. Without
loss of generality, instead of writing A = B(C(D)) we
write A = B o C o D, where o is the (function) composition
operator.

GenVoca models are inherently one-dimensional; they are
sets of constants and functions. In contrast, models of glu-
ons are 2-dimensional — and generally n-dimensional —
and need to be treated accordingly.4 Consider the matrix
of Figure 12, called an Origami matrix, where rows
denote language features and columns are tool features.
Elements of this matrix are gluons.

Adding new entries to this matrix is easy. When a new row
is added, a gluon must be supplied for every existing col-
umn. For example, to add the container data structure (Ds)

4. All examples of gluons that are known to us can be expressed in 2-
dimensions. We would expect examples yet to be discovered to have
higher dimensionality. A 3-dimensional example would expose “facets of
facets”, and so on. Thus our model scales.

Doclet Harvest Parse Reduce Print ...

Java Jdoclet Jharvest Jparse Jreduce Jprint ...

Sm Sdoclet Sharvest Sparse Sreduce - ...

Tmpl Tdoclet Tharvest Tparse Treduce - ...

Ds Ddoclet Dharvest Dparse Dreduce - ...

...

Figure 12. An Origami Matrix

language feature, we would have to add Dparse (a parser
for container DSL specifications), Dreduce (reduction
methods to transform container specification parse trees to
Java parse trees), Dharvest (a harvester of comments on
container specifications), and Ddoclet (a doclet that for-
mats container comments). Some entries (such as the entry
for the Print column) are “empty” because no code
needs to be written to implement that functionality. In such
cases, the identity function (denoted by “-”) is supplied.

Symmetrically, when a new column is added, a gluon must
be supplied for every existing row. To add a new doclet
that produces, say Word documents, we would add Jword
(a doclet that formats Java comments in Word), Sword (a
doclet that formats state machine comments in Word),
Tword (a doclet that formats template comments in
Word), and so on. Again, if no code needs to be written for
a particular entry, an identity function is supplied.

An application (expression) is created by folding an
Origami matrix (hence its name). Rows are folded
together by composing the corresponding gluons in each
column. Columns are folded together by composing the
corresponding gluons in each row. Folding continues until
a matrix is produced; the entry of this matrix is the
desired expression. (Unlike true Origami, rows and col-
umns to be folded need not be adjacent. For our examples,
we have arranged this matrix so that they are).

Rows and columns cannot be chosen at random for fold-
ing. Rows (columns) must be composed in design rule
order. That is, if we are folding tool features, we must
begin with the Parse column, and then fold/compose the
Harvest column, and finally the Doclet column, just as
design rules prescribe for the IDE_Model. Similarly, if we
are folding language features, we must begin with the

Java row, and then fold the Sm row and Tmpl rows in any
order, as prescribed by the language feature models J and
D. The reason for this is that language features and tool
features are orthogonal.5

As an illustration, suppose we want to create an equation
for current version of Jedi. We project this matrix of
unnecessary rows and columns, leaving the rows for
Java, Sm, and Tmpl, and the columns Parse, Harvest,
and Doclet yielding Figure 13a. (Note that there can be
different kinds of doclets — HTML, Word, etc. So part of
this projection is selecting the appropriate tool features).

Figure 13b shows the result of composing the Java row
with the Sm row. Figure 13c-d shows the result of compos-
ing the Harvest column with the Parse column, and this
result with the Doclet column. A matrix of two rows and
one column results. The final fold merges the remaining
two rows to yield the expression of equation (11). We
leave it as an exercise for readers to discover the folding of
equation (10).

Other constraints may preclude certain foldings, but this is
the essential idea. In the next section, we show how we
can use Origami to produce sets of language-dialect con-
sistent equations.

7. An Application of Origami

Recall the GUI for the IDE generator of Figure 5: users
select a set of optional language features and a set of tools,
and the generator produces this set of tools for the speci-

1 1×

5. In effect, gluons make our model more powerful without additional
complexity as the existing row and column rules can be used without
modification.

Doclet
Harvest o

Parse

Sm o
Java

Sdoclet o
Jdoclet

Sharvest o
Jharvest o

Sparse o
Jparse

Tmpl Tdoclet Tharvest o
Tparse

Doclet Harvest Parse

Java Jdoclet Jharvest Jparse

Sm Sdoclet Sharvest Sparse

Tmpl Tdoclet Tharvest Tparse

Doclet Harvest Parse

Sm o Java Sdoclet o
Jdoclet

Sharvest o
Jharvest

Sparse o
Jparse

Tmpl Tdoclet Tharvest Tparse

Doclet o
Harvest o

Parse

Sm o
Java

Sdoclet o
Jdoclet o
Sharvest o
Jharvest o
Sparse o
Jparse

Tmpl Tdoclet o
Tharvest o

Tparse

Doclet o
Harvest o

Parse

Tmpl o

Sm o

Java

Tdoclet o
Tharvest o
Tparse o

Sdoclet o
Jdoclet o
Sharvest o
Jharvest o
Sparse o
Jparse

 (a) (b)

 (c)
 (d) (e)

Figure 13. Folding an Origami Matrix

fied language dialect.6 To see how the generator works,
we begin with the Origami matrix of Figure 12 and elimi-
nated all language feature rows that were not selected.
Figure 14 shows this matrix for the current Jak/Jedi dia-
lect.

Rows are folded in design rule order (i.e., Tmpl o Sm o
Java). In general, our generator simply uses design rules
to hard-code this ordering. The result is a matrix (i.e.
a row) in Figure 15. Note the row’s semantics. First, each
column defines an equation for a tool feature:

Doclet = Tdoclet o Sdoclet o Jdoclet
Harvest = Tharvest o Sharvest o Jharvest
Parse = Tparse o Sparse o Jparse
...

That is, the Doclet equation is a composition of gluons
that builds a doclet layer for the Java language that has
been extended by state machines and templates. The Har-
vest equation defines a harvest layer for the Java lan-
guage that has been extended by state machines and
templates, and so on. Thus, by folding rows in design-rule
order, we have produced a set of equations for tool fea-
tures that are consistent with respect to a particular lan-
guage dialect.

Second, the row itself is exactly the set of tool features
that comprise the IDE_Model. Since we know the
IDE_Model equations for each tool (e.g., (8),(9)), we
use these equations and plug in the generated definitions
for their tool features. Thus, for each GUI-selected tool,
we evaluate its equation, and send it to a generator to pro-
duce the Java package for that tool. In this way, our IDE
generator produces language-dialect-consistent tools from
a simple declarative specification.

8. Implementation

We currently have five tools that are language-dialect sen-
sitive: Jedi, Jak, Mixin and Jampack (two different

tools that compose Jak specifications), and UnMixin (a
tool that propagates changes made manually in composed
code back to their defining “gluon” layers). There are nine
language features and nine tool features that span these
tools. (We support several template features as well as
additional language features, such as hygienic macros).
Table 1 lists for each tool its size in Java LOC, and the
number of gluons that define its equation. Note that equa-
tions provide very compact specifications of these tools.

Just with this set of tools (for which we expect many
more), we are generating over 100K LOC. Without
Origami, our tool equations are seemingly randomly-
ordered compositions of gluons that are difficult to under-
stand and update. Origami imposes a regularity in equa-
tion organization and layer modularization that enables us
to generate product-families from simple specifications.
Just as important, it helps us control the complexity of fea-
ture-refinement-based representations of product-families.

9. Relevance to Other Technologies

There are many non-GenVoca examples of Origami. One
possibility is the internationalization of programs made
during Windows OS installations. By selecting a particular
language (or dialect), the GUIs of different Windows pro-
grams are modified to present commands in that language.
Origami also has relationships to component-based soft-
ware design.

Microsoft’s Component Object Model (COM), Sun’s
Enterprise Java Beans (EJB), and CORBA are conven-
tional component models [26] that deal with interface-
based programming — clients program to standardized

6. We assume the set of language features is consistent. Design rule
checking algorithms can be used to check consistency.

Doclet Harvest Parse Reduce Print ...

Java Jdoclet Jharvest Jparse Jreduce Jprint ...

Sm Sdoclet Sharvest Sparse Sreduce - ...

Tmpl Tdoclet Tharvest Tparse Treduce - ...

Figure 14. A Row-Projected Matrix

1 n×

Doclet Harvest Parse Reduce Print ...

Tmpl o
Sm o

Java

Tdoclet o
Sdoclet o

Jdoclet

Tharvest o

Sharvest o
Jharvest

Tparse o
Sparse o
Jparse

Treduce o
Sreduce o
Jreduce

Jprint ...

Figure 15. A Row-Folded Matrix

Tool # of Gluons Size in Java LOC

Jak 14 26K

Jedi 31 32K

Mixin 23 24K

JamPack 22 26K

UnMixin 20 23K

Table 1. Size of Generated IDE Tools

interfaces and components implement these interfaces
[32]. This makes it easy to swap out one interface imple-
mentation (component) with another, say, for purposes of
bug fixes, improved performance, or trying alternative
implementations. Variations of interface-based program-
ming are found in design patterns (e.g., OO decorators)
and in common OO designs (e.g., frameworks) [14].

Not long ago, GenVoca was presented as example of inter-
face-based programming.7 The key design issue was
choosing the methods of an interface. Those that were
included were fundamental to the abstraction of that inter-
face; those that were excluded were dismissed as not fun-
damental.

The problem that we and other engineers have noticed
with interface-based designs is that they are brittle. We
observed that the set of methods that we designated as fun-
damental was subjective — they were sufficient for our
current needs. Over time, we longed for other methods to
be included, and periodically we would indeed extend the
set of methods in our interfaces. However, when new
methods are added to a standardized interface, all compo-
nents that export that interface had to be (manually)
updated. After an extension, we would be happy for a
while until we discovered a new set of methods that
needed to be added, and the update cycle would repeat.

The problem with this, of course, is that we couldn’t sub-
sequently customize our interfaces or our components. It
was simply too much work to eliminate unneeded groups
of methods from interfaces and components. The impact
of interface extensions is negative: interfaces become fat
and components suffer code bloat. Other techniques have
been developed to address this problem, but they too have
limitations. COM, for example, requires that a new inter-
face be published rather than changing an existing inter-
face. While this works, it still requires a manually-
introduced extension to each component that is to imple-
ment that new interface. The visitor design pattern allows
almost arbitrary method extensions to existing compo-
nents [14]. Access to private data members and methods
of components is precluded to visitors, and this can be
problematic. Also, it is useful for extensions to add new
data members to components, and this too is problematic
using visitors.

It is easy to recognize the concept of gluons and Origami
in this situation. Each row represents either a standardized
interface or a component that implements such an inter-
face. Columns represent semantically cohesive groups of
methods — features — where one column defines a
“core” set of methods and other columns represent
optional additional extensions to this set. Matrix (column)

folding corresponds to the construction of interfaces and
components that are customized for a desired set of inter-
face extensions with their implementing components.

The need for Origami arises because abstractions change
over time. Changes tend to be incremental and optional.
That is, abstractions change by incremental leaps in under-
standing, and these leaps are needed for building special-
ized classes of applications. The contribution of this paper
is a general model and a set of techniques that allow us to
evolve both conventional components and implementa-
tions of feature refinements statically in an automatic and
declaratively-specified way. Such flexibility is useful in
generating software. For situations dealing with third-
party components, where extensibility without recompila-
tion is a major goal, it might not work as well. However,
there is no requirement that feature refinements must be
composed statically; they can be composed dynamically
as well [31]. Unfortunately, dynamically-composable
refinements are not as well-understood as statically-com-
posable refinements.

10. Related Work

The idea that features have features is well-established in
the product-line community. Feature diagrams, which are
typically hierarchies of features, i.e., parent features are
defined to have aggregate sets of child features, was first
introduced in the FODA methodology [18] and has been
improved by others [10]. Our contribution shows how the
idea of features-of-features translates into product-family
models based on feature refinements.

As mentioned earlier, there are other models of program
development that are very similar to GenVoca, the most
prominent of which are AspectJ and Hyper/J. AspectJ
[1] offers two flavors of cross-cutting implementations:
static and dynamic. Static cross-cuts are almost identical
to GenVoca layers: they can add new data members and
new methods to existing classes. Dynamic cross-cuts,
where explicit pointcut-advice pairs are defined, can emu-
late the refinement (overriding) of methods offered by
inheritance. What aspects cannot currently represent is the
addition of new classes; in GenVoca terms, aspects only
extend existing classes. (At least, we have been unable to
add classes in aspect definitions that can be subsequently
refined). With simple work-arounds, we have imple-
mented GenVoca generators using AspectJ. These pre-
liminary results suggest that compositions of layers can be
modeled as compositions of aspects. Therefore, we
believe that the Origami example in this paper could be
implemented using AspectJ and thus our results are rele-
vant to AOP in that they show how aspects can scale to
product-families.

Admittedly, AspectJ can do more than just implement
layers (modulo our comments above), and in fact, we are

7. Which actually it still is. Layers have interfaces, although in recent
papers including this one, this “feature” of layer implementation has been
down-played. See [8, 22].

focussing on the least novel part of AspectJ. But it is also
the case that what we and others have been able to do with
GenVoca generators has never been done in AOP. Our
work provides an opportunity to enhance AOP’s appeal
from a novel direction.

Our work is more closely related to Multi-Dimensional
Separation of Concerns (MDSC). MDSC is the idea that
modularity relationships can be understood in terms of an
n-dimensional space, called a hyperspace, of units [33, 23,
24]. A unit can be primitive (such as an individual method
or variable) or compound (e.g., a class or package). Each
dimension is associated with a set of similar concerns,
such as a set of classes or a set of features; different values
along a dimension are different members of this set (e.g.,
class1…classn or feature1…featuren). A hyperslice is the
set of units that pertain to a concern; it is an (n-1)-dimen-
sional space where one coordinate value (e.g., a concern)
is fixed. A hypermodule is a set of hyperslices and a set of
integration relationships that dictate how the units of
hyperslices are to be integrated or composed to form a
program.

Hyper/J is the flagship tool for MDSC [34]. We have
used Hyper/J to implement GenVoca product-line mod-
els. GenVoca layers have direct implementations as hyper-
slices, and layer compositions are hyperslice
compositions. Again, we believe that the Origami model
and its results are directly applicable to Hyper/J. Origami
is a 2-dimensional example of MDSC, where both dimen-
sions are features and units are gluons. Further, the
strength of MDSC models is that they do not impose fixed
modularization hierarchies, and this flexibility is present
in Origami matrices. As with AspectJ, Hyper/J can do
more than just compose hyperslices. Our contribution is
that we can provide sophisticated examples of product-
lines and product-families to Hyper/J researchers.

In summary, GenVoca, Hyper/J (MDSC), and AspectJ
(AOP) have substantial overlaps. What distinguishes Gen-
Voca and Origami is an algebra for organizing features
into programs.

Other related work deals with tool integration [31]. Cross-
cuts are problematic when new features can impact every
product in a product-family. However, instead of design-
ing a system to easily handle features, [31] explored how a
product family can be designed in such a way that new
features can be added by modifying a single class — a
design that eliminates cross-cuts. The advantage is that it
can be applied to legacy software and that it ensures that
existing tools will be able to work with new additions to
the program family without recompilation. The authors
emphasize that in their design, the cost of evolutionary
change is proportional to its apparent size in specification.
The disadvantage is that this technique only applies to
some features, so in fact their approach is complimentary
to our own.

11. Conclusions

Features have proven their value in raising the level of
abstraction in modularity in building and customizing
individual programs. The question is: do features scale to
larger program organizations, such as program families?
We showed that they do in the context of GenVoca genera-
tors, which has not been done before. We discovered that
features themselves have internal structures — features of
features — which we called gluons. Gluons are arranged
and composed in very regular ways, so that compositions
of gluons yields both familiar and formerly “atomic” fea-
tures, as well as an interesting and what we now believe is
a common phenomena of facets. Facets cross-cut features
and compositions of them yield fully-formed features. In
essence, we have identified a new class of composition
relationships among features that were not previously
known.

There is anecdotal evidence that supports our work. Engi-
neers have repeated the observation that there is some-
thing about program scale that introduces complexity one
doesn’t find in small programs. Our work reveals one rea-
son: there are relationships and constraints that exist
among gluons when building program families. If there is
no way (or only ad hoc ways) of expressing and satisfying
these constraints, it is no wonder why scaling programs
introduces complexity. At least now we have a way to
express and reason about such constraints. Undoubtedly
there are even more relationships to be discovered.

The key to our success is how we represent and manipu-
late these relationships. Using GenVoca formulations
allows us to capture these regularity relationships as matri-
ces of functions and constants that can be folded into
equations. That is, we can reason about software designs
as equations. We explained that our results are not Gen-
Voca-specific, in particular, how Origami has direct rela-
tionships to AOP and MDSC models. We believe Origami
is important, because others will encounter it as feature
refinement models scale to produce more complex sys-
tems.

Acknowledgements. We thank Jack Sarvela for pointing
out the relationship of Origami to internationalization cus-
tomizations of Windows programs. We also thank anony-
mous referees for helping us to better clarify our
presentation.

12. References

[1] AspectJ. Programming Guide. http://aspectj.org/doc/
proguide

[2] D. Batory and S. O’Malley, “The Design and Implementation
of Hierarchical Software Systems with Reusable
Components”, ACM TOSEM, October 1992.

[3] D. Batory and B.J. Geraci, “Composition Validation and
Subjectivity in GenVoca Generators”, IEEE Transactions on
Software Engineering, Feb. 1997, 67-82.

[4] D. Batory, B. Lofaso, and Y. Smaragdakis, “JTS: Tools for
Implementing Domain-Specific Languages”, 5th Int. Conf.
on Software Reuse, Victoria, Canada, June 1998.

[5] D. Batory, G. Chen, E. Robertson, and T. Wang, “Design
Wizards and Visual Programming Environments for
GenVoca Generators”, IEEE Trans. Software Engineering,
May 2000.

[6] D. Batory, C. Johnson, R. MacDonald, and D. von Heeder,
“Achieving Extensibility Through Product-Lines and
Domain-Specific Languages: A Case Study”, to appear in
ACM TOSEM.

[7] I. Baxter, “Design Maintenance Systems”, CACM, April
1992.

[8] R. Cardone, A. Brown, S. McDirmid, and C. Lin, “Using
Mixins to Build Flexible Widgets”, AOSD 2002.

[9] K. Czarnecki and U.W Eisnecker. Generative Programming:
Methods, Tools, and Applications. Addison Wesley, 2000.

[10] K. Czarnecki, T. Bednasch, P. Unger, and U. Eisenecker,
“Generative Programming for Embedded Software: An
Industrial Experience Report”, GCSE/SAIG 2002.

[11] A. van Deursen and P. Klint, “Little Languages: Little
Maintenance?”, SIGPLAN Workshop on Domain-Specific
Languages, 1997.

[12] E.W.Dijkstra, A Discipline of Programming. Prentice-Hall,
1976.

[13] Flatt, M., Krishnamurthi, S., and Felleisen, M. “Classes and
Mixins”. ACM Principles of Programming Languages, San
Diego, California, 1998, 171-183.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison Wesley, 1994.

[15] M. Griss, “Implementing Product-Line Features by
Composing Component Aspects”, First International
Software Product-Line Conference, Denver, August 2000.

[16] W. Harrison and H. Ossher, “Subject-Oriented
Programming (A Critique of Pure Objects)”, OOPSLA 1993,
411-427.

[17] Javadoc — The Java API Documentation Generator. Sun
Microsystems, http://java.sun.com/j2se/1.3/docs/
tooldocs/solaris/javadoc.html

[18] K.C. Kang, et al., Feature-Oriented Domain Analysis
Feasibility Study, SEI 1990.

[19] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. Loingtier, and J. Irwin, “Aspect-Oriented
Programming”, ECOOP 97, 220-242.

[20] G Kiczales, E. Hilsdale, J. Hugunin, M. Kirsten, J. Palm,
and W.G. Griswold. “An overview of AspectJ”. ECOOP
2001.

[21] M. Mezini and K. Lieberherr, “Adaptive Plug-and-Play
Components for Evolutionary Software Development”,
OOPSLA 1998, 97-116.

[22] S. McDirmid, M. Flatt, and W.C. Hsieh, “Jiazzi: new-Age
Components for Old-Fashioned Java”, OOPSLA 2001.

[23] H. Ossher and P. Tarr. “Using Multi-Dimensional Separation
of Concerns to (Re)Shape Evolving Software.” CACM
October 2001.

[24] H. Ossher and P. Tarr, “Multi-dimensional separation of
concerns and the Hyperspace approach.” In Software
Architectures and Component Technology (M. Aksit, ed.),
293-323, Kluwer, 2002.

[25] T. Reenskaug, et al., “OORASS: Seamless Support for the
Creation and Maintenance of Object-Oriented Systems”,
Journal of Object-Oriented Programming, 5(6): October
1992, 27-41.

[26] R. Sessions, COM+ and the Battle for the Middle Tier,
Wiley Computer Publishing, 2000.

[27] C. Simonyi, “The Death of Computer Languages, the Birth
of Intentional Programming”, NATO Science Committee
Conference, 1995.

[28] Y. Smaragdakis and D. Batory, “Implementing Layered
Designs with Mixin Layers”. ECOOP, July 1998.

[29] Y. Smaragdakis and D. Batory, “Scoping Constructs for
Program Generators”. Generative and Component-Based
Software Engineering (GCSE), September 1999.

[30] Y. Smaragdakis and D. Batory, “Mixin Layers: An Object-
Oriented Implementation Technique for Refinements and
Collaboration-Based Designs”, to appear ACM TOSEM.

[31] K.J. Sullivan and Notkin, D., ``Reconciling Environment
Integration and Software Evolution,'' ACM TOSEM July
1992.

[32] C. Szyperski, Component Software: Beyond Object-
Oriented Programming, Addison-Wesley, 1997.

[33] P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton, Jr., “N
Degrees of Separation: Multi-Dimensional Separation of
Concerns”, ICSE 1999.

[34] P Tarr and H. Ossher. Hyper/J User and Installation
Manual. IBM Corporation, 2001. http://
www.research.ibm.com/hyperspace.

[35] M. Van Hilst and D. Notkin, “Using Role Components to
Implement Collaboration-Based Designs”, OOPSLA 1996,
359-369.

