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Abstract. A well-known problemin programgenerationis scoping. Wheniden-
tifiers (i.e., symbolicnames)areusedto refer to variables,types,or functions,
programgeneratorsmust ensurethat generatedidentifiers are bound to their
intendeddeclarations. This is the standardscopingissuein programminglan-
guages,only automaticallygeneratedprogramscan quickly becometoo com-
plex and maintaining bindings manually is hard. In this paper we present
generation scoping: a languagemechanismto facilitatethehandlingof scoping
concerns.Generationscopingoffers control over identifier scopingbeyond the
scopingmechanismof the target programminglanguage(i.e., the languagein
which the generatoroutput is expressed).Generationscopingwas originally
implementedasan extensionof the codetemplateoperatorsin the Intentional
Programmingplatform, under development by Microsoft Research.Subse-
quently, generationscopinghasalsobeenintegratedin theJTSlanguageexten-
sibility tools. The capabilitiesof generationscoping were invaluable in the
implementationof two actualsoftwaregenerators:DiSTiL (implementedusing
the Intentional Programming system), and P3 (implemented using JTS).
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1  Introduction

Program generation is theprocessof generatingcodein ahigh-level programming
language.A well-known problemwith programgenerationhasto do with the resolu-
tion of namesusedto refer to variousentities(e.g.,variables,types,andfunctions)in
thegeneratedprogram.This is thestandardscopingissueof programminglanguages
but scopingproblemsareexacerbatedwhenprogramsaregeneratedautomatically. For
instance,often thesamemacroor templateis usedto createmultiple codefragments,
whichall exist in thesamescopeof thegeneratedprogram.In thatcase,careshouldbe
taken so that the generatedfragmentsdo not containdeclarationsthat conflict (e.g.,
variables with the same name in the same lexical scope).

Avoidingscopingproblemsin programgenerationcanbedonemanually:Lisp pro-
grammersare familiar with the gensym function for creatingnew symbols.Using
gensym to createuniquenamesfor generatedvariabledeclarationsis oneof thecom-
monly recommendedpracticesfor Lisp programmers.Unfortunately, this practiceis
tedious;it complicatesprogramgenerationand makes the generatorcodeharderto
readandmaintain.Mechanismshave beeninventedto relieve the programmerof the
obligation to keep track of declaredvariablesand generatenew symbolsfor their
names.Thesemechanismsfall underthegeneralheadingof hygienic macro-expansion
(e.g.,[7], [8], [10]) andaddressthescopingproblemfor macros:self-containedtrans-



formationsthatarebothspecifiedandappliedin thesame program.A desirableprop-
erty in this setting is referential transparency: identifiers introduced by a
transformationrefer to declarationslexically visible at the site wherethe transforma-
tion is defined—notwhereit is applied.In this paperwe adaptthe ideasof hygienic
macro-expansionto a more generalprogram generationsetting, where referential
transparency is not meaningful.Our mechanismcanbeusedfor software generators,
which areessentiallystand-alonecompilers.Thedefinitionof transformationsin soft-
waregeneratorshasno lexical connectionto theprogramgeneratedby thesetransfor-
mations(for instance,the generatorprogramand the generatedprogrammay be in
differentprogramminglanguages).Our mechanismis calledgeneration scoping and
givesthegeneratorprogrammerexplicit andconvenientcontrolover thescopingof the
generatedcode.(In fact, the generationscopingideawas inventedindependentlyof
hygienicmacro-expansiontechniques,but in theprocessweessentiallyre-inventedthe
principlesthatarecommonto bothgenerationscopingandhygienicmacroexpansion.)

Generationscopinghas been implementedon two languageextensibility plat-
forms: Microsoft Research’s Intentional Programmingsystem[13] and the Jakarta
Tool Suite(JTS)[1]. Two component-basedsoftwaregenerators,DiSTiL [14] andP3
[1], were built using generationscoping.In both cases,generationscopingproved
invaluable,asit simplifiedthegeneratorcodeandaccentuatedthedistinctionbetween
executed and generated code.

2  Background: Scoping for Generated Programs

For a quick illustration of someof the scopingissuesin programgeneration,we

will usean (imaginary1) extensionof the C languagewith code template operators.
We introducetwo suchoperators:quote (abbreviatedas‘ ) andunquote (abbreviated
as$). quote designatesthebeginningof a codetemplateandunquote escapesfrom

it to evaluatea codegeneratingexpression.2 Considergeneratingcodeto iterateover a
text file andperformsomeactionson its data.A possibleimplementationin ourexam-
ple language is shown below, with the quoted code appearing in bold:

CODE CreateForAllInFile (CODE filename, CODE actions)
{ return ‘ { FILE * fp ;

if ((fp = fopen( $filename , “r”)) == NULL)
FatalError(FILE_OPEN_ERROR);

while ( feof(fp) == FALSE) {
int byte  = fgetc(fp);
$actions ;

}
}

} (1)

1 Actually, this extensionof C with meta-programmingconstructscorrespondscloselyto the
stateof the IntentionalProgrammingsystemin 1995,whengenerationscopingwasimple-
mented.

2 Theseoperatorsare analogousto the LISP “backquote”and “comma” macropair or the
Schemequasiquote  andunquote  primitives [6].



Thefirst scopingissuein theabove codehasto do with thescopeusedto bind the
referencesin thegeneratedcodefragment.That is, thegeneratedcodefragmentonly
hasmeaningin a lexical environmentwhereFILE, FatalError, fopen, etc., are
defined.Wewill disregardthis issuefor now andconcentrateonthescopeof generated
declarations.

In the above example,two declarationsaregenerated(theseareunderlinedin the
code).Thescopeof thesedeclarationsshouldbequitedifferent.Thefirst is thedecla-
rationof file pointerfp. This variableshouldbeinvisible to usercode—thecodefrag-
ment representedby actions shouldnot be able to refer to fp. This is the rule of
hygienic programgenerationandit ensuresthatnoaccidentalcaptureof referencescan
occur: the codefragmentrepresentedby actions may containa referenceto some
fp, but this will never be confusedwith the fp generatedby the codeabove. Obvi-
ously, this is a goodpropertyto guarantee.Thefp variableis just an implementation
detailandits nameshouldbeprotectedfrom accidentalclasheswith othernamesthat
may be in use.

The generateddeclarationof variablebyte, on the otherhand,demonstratesthe
needfor breaking the hygiene. Variablebyte representsthe currentcharacterbeing
readfrom the text file. The coderepresentedby actions shouldbe able to access
byte—in fact,byte is theonly interfacefor exploiting thefunctionalityof traversing
the text file.

To illustratetheabove points,consideranexampleuseof theCreateForAllIn-
File function.A programcanhaveafile pointer, fp, thatpointsto a text file. Wemay
wantto generatecodethatdetermineswhetherafile is aprefixof thefile pointedto by
fp:

CreateForAllInFile(‘(“prefix.txt”) ,
‘{if (byte != fgetc(fp)) return -1;}  );

The fp identifier above is not the sameasthe fp introducedaccidentallyby the
CreateForAllInFile function in (1). Nevertheless,a naive generationprocesswill
resultinto fp (above) accidentallyreferringto theinternalvariableof CreateForAl-
lInFile. This is a scopingproblemthatwe want to avoid, so that theclient of Cre-
ateForAllInFile canbe oblivious to the choiceof nameusedfor the internalfile
pointervariable.On theotherhand,thereferenceto byte should refer to thevariable
whosedeclarationis generatedin (1). Clearly, it is hardto satisfyboth requirements
with codefragment(1), asthe two declarationsarenever differentiated.We now dis-
cusstwo existing approachesto scopingandwhy they arenot sufficient for our pur-
poses.

First Approach: Generating Unique Symbols Manually. The simplestway to sat-
isfy this dualrequirementis manually. We cangeneratea uniquesymbolfor all decla-
rationsthatshouldbehiddenfrom othercode.This is, for instance,acommonpractice
for Lisp programmers,who can usethe gensym function to createunused,unique
namesin generatedcode.With ourexamplelanguageandthecodefragmentin (1), we
get:



CODE CreateForAllInFile (CODE filename, CODE actions)
{ CODE mfp = gensym();

return ‘ {
FILE * $mfp ;
if (( $mfp  = fopen( $filename , “r”)) == NULL)

FatalError(FILE_OPEN_ERROR);
while ( feof( $mfp ) == FALSE) {

int byte  = fgetc( $mfp );
$actions ;

}
}

} (2)

For typical softwaregenerators,wheremany codefragmentsarecreatedandcom-
posed,this solutionis clearlyunsatisfactory. Thecodebecomesimmediatelyharderto
readandmaintain,with many alternationsbetweengenerated(quoted)andevaluated
(unquoted)code.Theintentionthatthemfp (for meta-file-pointer)variableholdsasin-
gle variablename(andnot anentireexpression)is not enforcedat the languagelevel.
Furthermore,understandingthe codegeneratedby codefragment(2) requiresunder-
standing the control flow of (2) (e.g., to ensure that the value ofmfp  never changes).

The most importantdisadvantageof the “manual” creationof uniqueidentifiers,
however, is that the generatorprogrammerhas to anticipate which identifiersmay
causenameclashesandneedto be hidden.The most likely problemwith codefrag-
ment (2) is that the generatedcodewill be usedin a lexical environmentwherean
identifier like FILE , FatalError , etc., doesnot have the meaningintendedby the
authorof (2). Theonly way to avoid this problemis to useuniquesymbolnamesfor
all definitions.Then the new nameswill have to be passedaroundin the generator
codeso that only their legitimateclientshave accessto them.For instance,onecan
imaginethattheactualnamefor procedureFatalError will needto beanew, unique
symbol(to avoid accidentalcapture),which is thenpassedasa parameterto Create-

ForAllInFile , resulting in a more complicated code fragment:

CODE CreateForAllInFile (CODE mFatalError, CODE filename, CODE
actions)
{ CODE mfp = gensym();

return ‘ {
FILE * $mfp ;
if (( $mfp  = fopen( $filename , “r”)) == NULL)

$mFatalError (FILE_OPEN_ERROR);
while ( feof( $mfp ) == FALSE) {

int byte  = fgetc( $mfp );
$actions ;

}
}

} (3)

If we take this approach to an extreme (e.g., doing the same for
FILE_OPEN_ERROR, FALSE, andall othergeneratedvariables),thecodewill become
completelyunreadableandtheprogrammerwill haveanobligationto keepclosetrack
of all generated declarations as well as their clients.



Second Approach: Hygienic Macros. Another way to satisfy the scoping require-
mentsfor thetwo generatedvariables,is througha hygienicmechanism,suchasthose
proposedin the work on hygienic macroexpansion(e.g., [5], [7], [8], [10], [11]).
Hygienicmechanismswork by makinggenerateddeclarationsby default invisible out-
sidethepatternor template(e.g.,macro)that introducedthem.In theexampleof (1),
this would meanthat both the declarationof fp andthat of byte will be invisible to
codein actions . Sincethis is not desirablein thecaseof byte , thehygienemustbe
explicitly broken. In the hygienic macroswork, this caseis consideredto be a rare

exception.3 Carl’s hygienicmechanism[5] evenattemptsto automaticallydetectcom-
mon patterns that require breaking the hygiene. Additionally, lexically-scoped
hygienicmacros[7][8] usethelexical environmentof thegenerationsiteasthelexical
environment of the generated code (a property calledreferential transparency).

Theproblemwith usingthis approachin softwaregeneratorsis that it is not possi-
ble to reliably deducethescopeof a variablefrom thelexical locationof thecodethat
generatesits declaration.In particular thereare two importantdifferencesbetween
macros and software generators:

1. Macrosare(moreor less)self-containedunits.Thereis a cleardistinctionbetween
themacrocodeandthecodethatis passedasa parameterto themacro.This is not the
casewith softwaregenerators.Thecodegeneratinga declarationis not, in general,in
close lexical proximity of the code generating a reference to that declaration.

2. The lexical environmentof a program-generatingcodefragmentcannotbe identi-
fied with the lexical environmentof the generatedcode in software generators.(In
hygienicmacroterminology:referentialtransparency is not meaningful.)For instance,
we could even have the generatorbe in a different languagethanthe generatedcode
(e.g.,unquotedcodecouldbein Java, quotedcodein C). In contrast,lexically scoped
macrosusethelexical environmentof themacrodefinitionto determinethebindingof
all references generated by the macro.

Thefirst point is a resultof observation.Thetransformationsin mostsoftwaregen-
eratorsinterleave generatingcodewith arbitrarycomputationmoreoftenthanmacros.
In this way, it is hardto identify a self-containedprogramfragmentin the generator
that will be identified with a scope in the generated program.

To seethe secondpoint, consideragain codefragment(1), reproducedbelow for
easy reference.

CODE CreateForAllInFile (CODE filename, CODE actions)
{ return ‘ {

FILE * fp ;
if ((fp = fopen( $filename , “r”)) == NULL)

FatalError(FILE_OPEN_ERROR);
while ( feof(fp) == FALSE) {

3 For instance, we read in [7]: “We here ignore the occasional need to escape from hygiene.”



int byte = fgetc(fp);
$actions;

}
}

}

CreateForAllInFile hasseveraldependenciesto othergeneratedcode(e.g.,the
FILE type identifier, theFatalError function,theFALSE constant,etc.).In thecase
of lexically-scopedmacrossuchdependenciesareresolvedat thesiteof themacrodef-
inition. This would be equivalent to trying to find bindingsfor FILE, FatalError,
etc.,in theprogramsitewhereCreateForAllInFile is defined.Thisapproachis not
valid for software generators.For instance, the FatalError routine may not be
declared as a routine in the generator or a standard library, but instead exist only in
the generated program. Hence,thedeclarationof FatalError mustbenon-hygienic
so that the code fragment generated byCreateForAllInFile can access it.

3  Generation Scoping

3.1  Generation Environments

Becauseof the differencesbetweenmacrosand software generators,we cannot
hope to achieve the samedegree of automationfor software generatorsas with
hygienic lexically-scopedmacros.Nevertheless,we canstill do betterthanmanually
generatingnew symbols,asin example(3) of Section2. This is thepurposeof genera-
tion scoping.Generationscopingis a mechanismthat representslexical environments
in thegeneratedprogramasfirst-classentities.In thisway, thegeneratorhascontrolof
thescopingof thegeneratedprogram,beyondthatofferedby thetargetprogramming
language.

To supportlexical environmentsasfirst-classentities,generationscopingaddsa
new keyword,environment, to thelanguagein which theprogramgeneratoris writ-
ten. Its syntax is:

environment (<generation-environment>) <statement>;

wherestatement containsoneor morequotedexpressions.The generation-
environment is anexpressionthat yields a valueof typeENV. ENV is a typeusedto
representenvironmentsandonly hasa constructorandequalityfunctiondefined(i.e.,
wecanonly createnew valuesof typeENV andcomparethemwith existingones).The
constructorfor environments,new_env, can take an arbitrary numberof arguments
whosevaluesareotherenvironments.Theseenvironmentsbecomethe parents of the
newly createdenvironment(the child). All variabledeclarationsin a parentbecome
visible to the child environment.Like traditionalscopingmechanisms,variablebind-
ings of the child eclipse bindings with the same name in the parent.

An exampleuseof environment in codeimplementingour exampletext file tra-
versal follows below:



CODE CreateForAllInFile (ENV p, CODE mtbyte, CODE filename,
CODE actions)

{
environment(new_env(p))

return ‘ {
FILE *fp;
if ((fp = fopen( $filename , “r”)) == NULL)

FatalError(FILE_OPEN_ERROR);
while ( feof(fp) == FALSE) {

int $mtbyte  = fgetc(fp);
$actions ;

}
}

} (4)

To generatecodeusingthequote operator, anenvironmentneedsto bespecified.
In this way, the coderepresentedby actions cannever accessvariablefp (as fp is
generatedin a new environment—whichbecomesa child of an environmentpassed
into the function).At the sametime, if the variablerepresentedby mtbyte is gener-
atedin the sameenvironmentasactions , they arevisible to eachother. This is the
case with most straightforward uses of this function. For instance:

environment(e)
result =

CreateForAllInFile(global_env, ‘byte , ‘(“file.txt”) ,
‘putchar(byte)  ); (5)

Comparingcode fragments(4) and (3), we can seewhy using environmentsis
moreconvenientthanmanuallyhandlingvariablesby creatingnew symbols.In partic-
ular, there are several important advantages:

1. The generatorprogrammerdoesnot needto explicitly statewhich variablesget
“closed” in the right lexical environment.All declarationsgeneratedunderan envi-

ronment statementwill be automaticallyaddedto the correspondingenvironment.
Additionally, thegeneratorprogrammerdoesnotneedto explicitly retrieve thebinding
for a certain identifier. All references(e.g., to fp , but also to FILE , FatalError ,
fopen , etc.,above) areinterpretedrelative to that environment.This meansthat, if a
codefragmentis generatedin the intendedenvironment,it can later be usedwithout
problemsin a local context, evenif thelocal context containsdifferentbindingsfor the
sameidentifiers. For example,in codefragment(5), above, if global_env hasthe
intendeddeclarationfor, e.g.,FILE , it will not subsequentlymatterif the generated
codefragmentis outputin themiddleof a functionwhereFILE meanssomethingdif-
ferent.Thereferencewill alwaysbeto theFILE typevariabledefinedin theenviron-
ment represented byglobal_env .

2. Thealternationbetweenexecutedandgeneratedcodeis avoided.Thereis no need
to unquote code just to supply a unique symbol name.

3. Declarationsaretreatedasa group,insteadof individually. In the above example



thereis only onevariabledeclared,so this is not really an advantage.In quotedcode
with several generateddeclarations,however, handling environmentsis easierthan
handlingall new symbolsindividually. Of course,the samegroupingeffect could be
achieved by usinga mappingdatastructurein the generatorcode.The advantageof
generationscopingis that the datastructureis now integratedin the languageand
insertionsandlookupsareimplicit (i.e., theprogrammernever hasto specifythem—
see the first point above).

3.2  Implementation Issues

It is perhapsworthstressingagain thatthemainadvantageof generationscopingis
that thegeneratorprogrammeris relieved of the responsibilityof addingdeclarations
to environmentsandlooking up identifierbindingsin thoseenvironments.That is, the
implementationof quote will determinewhethera generatedidentifier is actuallya
declaration(of avariable,function,type,etc.)or a referenceto anexistingentity. Each
environmenthasa symbol table and a collection of pointersto the parentenviron-
ments.In caseanidentifierrepresentsa declaredentity, it is addedto thecurrentenvi-
ronment’s symboltabletogetherwith a correspondinggenerateduniquenamefor the
declaredentity. Whena generatedidentifier is a reference,it will be lookedup in the
appropriateenvironment’s tableand,if it is not there,in theparentenvironmentsrecur-

sively.4 Theresultof theidentifierlookupis theuniquegeneratednamefor thematch-
ing declaration.In this way, no accidentalreferenceto the wrong variable, type,
function, etc., can occur, as long as the environments are set up properly.

As is well-documentedin the work on hygienic macros[7][10], determiningthe
syntacticrole of an identifier (i.e., whetherit is a declarationor a reference)is hard
whenthe entireprogramhasnot yet beengenerated.For instance,considerthe pro-
gram-generating function:

CODE CreateDclOrRef (CODE type) {
return ‘{ $type newvar = 10 } ;

}

In mostprogrammingenvironments,5 it is impossibleto tell beforethecodeis gen-
eratedwhetherthegeneratedcodedeclaresnewvar or refersto anexisting variableof
the samename.If the parametertype holdsthe type specifier‘int , thennewvar is
beingdeclared.If, on theotherhand,it holdstheoperator‘* , it is not. This problem
has been studied extensively in the hygienic macro community and the common
approachis to employ a “painting” algorithmthatmarkseachidentifierwith theenvi-
ronmentwhereit wascreated.It is easyto adaptthis approachto generationscoping:

4 In casea matchingdeclarationis found in multiple parentenvironments,the uniquename
returnedis determinedby a depth-firstsearchof the parenttree,basedon the orderparents
werespecifiedin thenew_env constructor. This is, however, anarbitrarydefaultandnot fun-
damental to the system’s operation.

5 This is not true for the IntentionalProgrammingsystem,wherethe mostmatureversionof
generationscopingwasimplemented.Thesystemfundamentallydistinguishes(at theeditor
level, even) betweendeclarationsandreferences,so that a singlecodefragmentcannotbe
used to create both.



After all the codehas beengenerated,the marked declarationscan be matchedto
markedreferences(assumingthey camefrom thesameenvironment).Remainingref-
erencescanthenbejustunmarked,sothatthey becomefreereferencesandcanreferto
externally declaredsymbols.A morethoroughdiscussionon implementinga “paint-
ing” algorithm for program generation can be found in [11].

4  Generation Scoping in DiSTiL

Generationscopingwasimplementedaspartof IP (IntentionalProgramming)[13],
ageneral-purposetransformationsystemunderdevelopmentby MicrosoftResearch.It
wassubsequentlyusedto build the DiSTiL softwaregenerator[14] asa domain-spe-
cific extensionto IP. DiSTiL is a generatorthat follows theGenVoca[3] designpara-
digm. GenVoca generatorsare a class of sophisticatedsoftware generatorsthat
synthesizehigh-performance,customizedprogramsby composingpre-writtencompo-
nentscalledlayers. Eachlayerencapsulatesthe implementationof a primitive feature
in a target domain.The DiSTiL generatoris essentiallya compilerfor the domainof
containerdatastructures.Complex containerdatastructuresaresynthesizedby com-
posingprimitive layers,whereeachlayer implementseithera primitive datastructure
(e.g.,orderedlinked lists, binary trees,etc.)or feature(sequentialor randomstorage,
logicalelementdeletion,elementencryption,etc.).Codefor eachdatastructureopera-
tion is generatedby having eachlayermanufacturea codefragment(that is specificto
theoperationwhosecodeis beinggenerated)andby assemblingthesefragmentsinto a
coherent algorithm.

Generationscopingwasindispensablein theimplementationof DiSTiL. Evenrela-
tively short DiSTiL specifications(around10-20 lines) could generatethousandsof
lines of optimizedcode.Due to the complexity of the generatedcode,aswell asthe
flexibility of parameterization(a layercouldbecomposedwith a wide varietyof other
layers),maintainingcorrectscopingfor generatedcodewould have beena nightmare
without generationscoping.In fact, initially we hadattemptedto implementDiSTiL
with manualresolutionof generatedreferences(by generatinguniquesymbols,asin
codefragment(3)). The sheerdifficulty of this task was what motivatedgeneration
scoping in the first place.

Generationscopingis usedin DiSTiL not only to ensurethe correctnessof refer-
encesto globaldeclarations(e.g.,library functions)but alsoto overcomethescoping
limitations of the target language(C). With generationscoping,DiSTiL effectively
managesdifferentnamespacesfor every layer in a composition.In this way, thereare
no clashesbetweenidenticallynamedvariablesintroducedby differentlayers(or dif-
ferentinstancesof thesamelayer).At thesametime, thecodeis simplifiedby having
namespacesconnectedappropriatelysothatgeneratedcodecanaccessall therequired
declarations without explicit qualification.

DiSTiL datastructuresconsistof threedistinctentities:a container, elements,and
iterators(called cursors). Generatedvariablesare groupedtogetherinto a common
environmentaccordingto theentity to which they arerelated.For instance,all declara-
tionsrelatedto thecursorpartof adoublylinkedlist will belongin asinglegeneration
environment.Thesevariablesneednotbelongto asinglelexical context. For example,
variablesin an environmentmay be global,or local, or fields of a recordtype.Thus,



variablesof anenvironmentcouldbelongto slicesof many differentlexical contexts in
the generatedprogram.In this way, the environment acts as a generator-managed
namespace mechanism for the target language.

Considerthe following organizationusedin DiSTiL (and,in fact, also in P3). In
general,thereis a many-to-onerelationshipbetweencursorsandcontainers(i.e., there
can be many cursors—eachwith a different retrieval predicate—percontainer).So
usinga singlegenerationenvironmentto encapsulateboth cursorand containerdata
membersis not possible.Instead,separateenvironmentsaredefinedfor every cursor
and container. The ContGeneric environmentencapsulateselementdatamembers
(becauseelementtypesare in one-to-onecorrespondencewith containertypes)and
genericcontainer-relatedvariables(including thecontainer identifier).TheCurs-
Generic environment encapsulatesgenericcursor-relatedvariables(including the
cursor identifier). By making ContGeneric a parentof CursGeneric, codefor
operationson containers(which do not needcursors)can be generatedusing the
ContGeneric environment,while codefor operationson cursors(which alsorefer-
encecontainerfields) is generatedusingtheCursGeneric environment.Figure1(a)
depicts this relationship.

As mentionedearlier, ahallmarkof GenVocalayersis thatthey encapsulaterefine-
mentsof multiple classes.EachDiSTiL layer refinescursor, container, and element
typesby addinglayer-specificdatamembers.Thedatamembersaddedto thecontainer
andelementtypesby layerLi areencapsulatedby environmentConti which is a child
of ContGeneric. Similarly, datamembersaddedby Li to thecursortypeareencapsu-
lated by environment Cursi which is a child of both CursGeneric and Conti

(becausecursorsof layerLi referencelayer-specificcontainer-datamembersaswell as
layer-specificcursordatamembers).Figure1(b) shows this hierarchicalorganization
of environments.

To illustrate theseideas,consideran ordereddoubly-linked list layer. This layer
wouldrefineelementsby addingnext andprev fields,andwouldrefinecontainersby
addingfirst andlast fields.This refinementcanbe accomplishedby a Refine-
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Figure 1: Hierarchical Organizations of Environments in DiSTiL
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Types() method:elem_type, cont_type, andcurs_type arecodefragmentsthat
respectively definethesetof variables(datamembers)in element,container, andcur-
sorclasses.WhenRefineTypes() is calledwith thesecodefragmentsasparameters,
thenext, prev, first, andlast fieldsareaddedto theelementandcontainertypes.
As thesefieldsarealwaysusedtogether, they aredeclaredwithin asingleenvironment
Cont (which is equal to someConti of Figure 1):

void RefineTypes( CODE *elem_type, CODE *cont_type, ENV Cont) {
environment(Cont) {

*elem_type = ‘{ $(*elem_type); element *next, *prev; } ;
*cont_type = ‘{ $(*cont_type); element *first, *last; } ;

}
}

It is commonin acompositionof GenVocalayersthatasinglelayerappearsmulti-
ple times.An examplein DiSTiL would be linking elementsof a containeronto two
(or more)distinctorderedlists, whereeachlist hasa uniquesort key. Every list layer
addsits own fields to the elementand containertypes.Maintaining the distinction
amongthesefields (so that the codefor the j-th list will only referenceits own fields
nextj, prevj, etc.) is simpleusinggenerationenvironmentsasorganizedin Figure1.
Eachcopy of thelist layerwill have its own generationenvironmentsContj andCursj,
and all code generated by that copy would always use these environment variables.

For an example, considerthe Remove method for ordereddoubly-linked lists,
appearingbelow. Let Remove_Code be thecodethat is to begeneratedfor removing
anelementfrom a container. TheRemove methodfor ordereddoubly-linkedlists adds
its code(to unlink theelement)whenit is called(thecodethatactuallydeletestheele-
mentis addedby anotherlayer).Thus,givenRemove_Code andtheenvironmentCurs
(equal to someCursi of Figure 1), Remove() addsthe unlinking code where the
next, prev, etc. identifiers are bound to their correct variable definitions.

void Remove( CODE *Remove_Code, ENV Curs ) {
environment(Curs) {

*Remove_Code =‘{ Element * next_el  = cursor->next;
Element * prev_el  = cursor->prev;
$(*Remove_Code);

 if (next_el != null)
next_el->prev = prev_el;

if (prev_el != null)
prev_el->next = next_el;

if (container->first == cursor.obj)
container->first = next_el;

 if (container->last == cursor.obj)
container->last = prev_el; } ;

}
}

Note that the bindingsof identifierscursor, container, andnext in this tem-
plate exist in threedifferent generationenvironments:container is in ContGen-

eric, cursor in CursGeneric, andnext in Conti. Nevertheless,all of themcanbe



accessedfrom environmentCurs (following its parentlinks), so this is theonly envi-
ronmentthat needsto be specified.Note alsothat therearetwo generatedtemporary
declarationsin thiscodefragment,whicharecompletelyprotectedfrom accidentalref-
erence.

This exampleis convenientfor demonstratingthe benefitsof generationscoping.
Weattemptto show thesebenefitsby speculatingon thealternatives.Clearlytheabove
codefragmenthasmany externalgeneratedreferences,sodefault hygieneis not really
anoption.Thegeneratorwriter hasto explicitly createnew symbols(asin codefrag-
ment (3)) for the declarationsof container, cursor, etc. (not shown). Insteadof
managingall the new symbolsindividually, the generatorwriter could setup a data
structurein the generator (unquoted) code to maintainthe mappingsof identifiersto
variables.Thenthewriter coulduseexplicit unquotesto introducetheright bindings.
Given that declarationsneedto be insertedin the datastructureexplicitly andrefer-
encesneedto belookedupexplicitly, thecodewouldbemuchmorecomplicated.One
canaddsomesyntacticsugar to make thecodemoreappealing.For instance,we can
use$$(ds, id) to mean“unquoteandlookupidentifierid in bindingsdatastructure
ds”. Similarly, we can use$%(ds, id) to mean“unquoteand add variableid in
bindings data structureds”. Even then, the code would be practically unreadable:

void Remove( CODE *Remove_Code, BindingDS ds ) {
*Remove_Code =

‘{ $$(ds, Element) * $%(ds, next_el) =
$$(ds, cursor)-> $$(ds, next);

$$(ds, Element) * $%(ds, prev_el) =
$$(ds, cursor)-> $$(ds, prev);

$(*Remove_Code);
 if ( $$(ds, next_el) != null)

$$(ds, next_el)-> $$(ds, prev) = $$(ds, prev_el);
if ( $$(ds, prev_el) != null)

$$(ds, prev_el)-> $$(ds, next) = $$(ds, next_el);
if ( $$(ds, container)-> $$(ds, first) ==

$$(ds, cursor). $$(ds, obj))
$$(ds, container)-> $$(ds, first) = $$(ds, next_el);

 if ( $$(ds, container)-> $$(ds, last) ==
$$(ds, cursor). $$(ds, obj))

$$(ds, container)-> $$(ds, last) = $$(ds, prev_el); } ;
}

As outlined earlier, generationscopingimproves over this code in three ways:
First,noexplicit datastructureinsertions/lookupsneedto beperformed(e.g.,thereare
no$$ and$% operators).Second,noexplicit escapesareintroduced—thereis noalter-
nation betweenquoted and unquotedcode. Third, the grouping of variables is
implicit—there is no need to repeatedly refer to a data structure likeds.

5  Related Work

Givenourprior discussionof hygienicmacros,herewewill only touchupona few
other pieces of related work.

Theenvironmentsusedin generationscopingaresimilar to syntacticenvironments



in thesyntactic closures work [4][9]. In syntacticclosures,environmentsarefirst-class
entitiesandcodefragmentscanbeexplicitly “closed” in a lexical environment.Never-
theless,thereare significantdifferencesbetweenthe two approaches:Syntacticclo-
suresenvironmentscanonly capturethesetof variablesthatarelexically visible at a

specificpoint in a program.6 In contrast,our environmentscanbearbitrarycollections
of bindings(i.e., smallersetsof lexically visible variables)andcanbeorganizedhier-
archically. More importantly, however, declarationsare addedto generationscoping
environmentsimplicitly by generating(quoting) code that declaresnew variables.
Thus, our approachis much more automatedthan syntacticclosuresand is ideally
suitedto softwaregenerators(wherethelexical environmentis beingbuilt while code
is generated).Also, generationscopingcanbe usedto implementthe hygienic, lexi-
cally-scopedmacrosof [7], unlike syntacticclosures,which cannotbeusedto imple-
ment hygienic macro expansion, as explained in [7].

Generationscopingis concernedonly with maintainingcorrectscopingfor gener-
atedcodefragments.Otherpiecesof work dealwith variousothercorrectnessproper-
tiesof composedcodefragments.Selectively, we mentionsomework on theproblem
of ensuringtypecorrectnessfor generatedprograms,bothfor two-stagecode[12] (i.e.,
generatorandgeneratedcode)andmulti-stagecode[15] (i.e., codegeneratingcode
that generates other code, etc.).

6  Conclusions

Programgenerationis a valuabletechniquefor software developmentthat will
becomeprogressively moreimportantin the future.In this paperwe have shown how
to addressthescopingissuesthatarisein softwaregenerators.We have presentedgen-
eration scoping:a general-purpose,domain-independentmechanismto addressall
scopingneedsof generatedprograms.Generationscopingcanmakewriting andmain-
taining softwaregeneratorseasier. Its capabilitieswereproven in the implementation
of the DiSTiL [14] and P3 [1] generators.

The future of software engineeringlies in the automateddevelopmentof well-
understoodsoftware.Programgeneratorswill play an increasinglyimportantrole in
future software development.We considergenerationscopingto be a valuablelan-
guagemechanismfor generatorwritersandhopethat it will beadoptedin evenmore
extensible languages and transformation systems in the future.
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