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ABSTRACT

With few exceptions, macros have traditionally been viewed
as operations on syntax trees or even on plain strings. This
view makes macros seem ad hoc, and is at odds with two de-
sirable features of contemporary typed functional languages:
static typing and static scoping. At a deeper level, there
is a need for a simple, usable semantics for macros. This
paper argues that these problems can be addressed by for-
mally viewing macros as multi-stage computations. This
view eliminates the need for freshness conditions and tests
on variable names, and provides a compositional interpre-
tation that can serve as a basis for designing a sound type
system for languages supporting macros, or even for compi-
lation.

To illustrate our approach, we develop and present Macro-
ML, an extension of ML that supports inlining, recursive
macros, and the definition of new binding constructs. The
latter is subtle, and is the most novel addition in a statically
typed setting. The semantics of a core subset of MacroML is
given by an interpretation into MetaML, a statically-typed
multi-stage programming language. It is then easy to show
that MacroML is stage- and type-safe: macro expansion
does not depend on runtime evaluation, and both stages
do not “go wrong”.

1. INTRODUCTION

Most real programming language implementations pro-
vide a macro facility that can be used to improve either
performance or expressiveness, or both. In the first case,
macros are usually used for inlining (or unfolding) partic-
ular function calls. In the second case, macros are usually
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used to define new language constructs or shorthands. Many
tasks can be achieved using such macro systems, includ-
ing conditional compilation, configuration of applications to
particular environments, templates for parameterized com-
putations, and even the implementation of domain-specific
languages. Yet macros are not part of the standards for
the mainstream statically-typed functional languages such
as ML and Haskell, even though they are supported by the
implementations in various forms. For example, Ocaml in-
cludes a set of macro-processing tools called Camlp4, and
GHC provides some support for inlining.

So, why are they ignored?

Often, macros are considered to be either an implemen-
tation detail (and therefore not interesting) or, a form of
black magic (and therefore should be discouraged). Both
these stands are unfounded. First, it is a mistake to give
macros (or even inlining pragmas) the status of a compiler
directive that the implementation may or may not take into
account: macros affect the semantics of programs (see Sec-
tion 2). Second, the absence of a macro facility almost in-
variably forces programmers to resort to ad hoc solutions to
achieve the same functionality.

There are also technical difficulties: macros are hard to
specify from first principles. Macro designers (as for exam-
ple is the case for Camlp4) often find themselves forced to
describe macros at the level of program text or syntax trees.
Working at this lower level means that macros can generate
programs that might not be well-typed, or even syntactically
well-formed. In addition, the inevitable hygiene and scoping
problems must be addressed using gensym (or freshness con-
ditions) and using many unintuitive equality and inequality
tests on variables names [21]. Not only are such low-level
specifications hard to communicate (making macros acquire
the appearance of being unsystematic), they are also at odds
with static typing: if variable names and their binding re-
lationships are not known until after macro expansion, it
becomes hard (if not impossible) to type-check macros be-
fore expansion.

This paper argues that macro systems can be viewed for-
mally and usefully as multi-stage computations. Multi-stage
programming languages (including two-level languages [32,
16], multi-level languages [13, 14, 15, 8, 7], and MetaML [48,
45, 4]) have been developed to provide precise and usable
models of such computations that occur in multiple distinct
stages. Over the last few years, the study of MetaML and
related systems has resulted in a good understanding of the
types and semantics of multi-stage systems.



Formalizing macros as multi-stage computations also em-
phasizes that the technical problems associated with macros
are genuine: specifying the denotational semantics of macros
involves the same advanced tools as the denotational se-
mantics for two-level, multi-level, and multi-stage languages
(such as functor-categories or topoi [27, 28, 3]). A denota-
tional semantics has particular relevance to realistic compil-
ers, which invariably involve a translation phase. A com-
positional (denotational) semantics is generally one of the
most helpful kinds of semantics in developing and verifying
such compilers [34].

In addition to dictating and controlling inlining, macros
are often used to abstract common syntactic patterns in
programs. In a language with higher-order procedures, es-
pecially a lazy language, some of these abstractions can be
expressed (maybe with a loss of efficiency) using functions.
But many of the syntactic patterns over which one wants
to abstract would need to bind variables. Constructs that
bind variables are not directly expressible using functions.
For example, overloading an existing binding construct such
as the do-notation of Haskell to allow recursive bindings can-
not be expressed using functions, and requires a change to
the compiler [10].

1.1 MacroML

While this paper demonstrates that MetaML is a good
meta-language for defining macros, MetaML is not the ideal
language for writing macros: it does not have support for
defining new binding constructs. This paper presents an ex-
pressive, typed language that supports generative macros.
This language, called MacroML, is defined by an interpreta-
tion into MetaML, and can express (both simple and recur-
sive) inlining and the definition of new binding constructs.
A key design goal for MacroML is that it be a conserva-
tive extension [11] of ML. This implies that its type system
should include all well-typed ML programs and that it not
break the reasoning principles for ML programs, such as a-
and f,-conversion. We also want the language to remain
statically typable. Given that our goal is a conservative ex-
tension of ML, there are some notable points about what
MacroML is designed not to do:

e MacroML does not blur the distinction between pro-
grams and data. Although many applications natu-
rally view programs as data, there is a fundamental
distinction between the two. While both programs
and data can be represented (using, e.g., natural num-
bers, S-expressions), the notions of equality associated
with each one (syntactic and semantic equality, respec-
tively) cannot and should not be mized. Furthermore,
internalizing syntactic equality into a language, while
still maintaining an interesting semantic equality is
nontrivial [25, 51, 45]. For better or worse, it is rel-
atively easy to pick one or the other, that is, to ei-
ther have syntactic equality or semantic quality every-
where. In MacroML; we choose to allow only semantic
equality in the language and we avoid introducing syn-
tactic equality (on programs) by not introducing any
reflective or code-inspection capabilities into the lan-
guage. This is achieved mainly through the next point:

e MacroML does not allow macros that inspect or take
apart code (i.e., analytic macros). This restriction
seems necessary to maintain static typing. Instead all

macros in MacroML are limited to constructing new
code and combining code fragments (i.e., generative
macros). This paper presents a number of examples
that suggest that many useful tasks can be accom-
plished using such statically typed generative macros.

e MacroML does not introduce accidental dynamic scop-
ing and/or variable capture. These problems gener-
ally arise from an overly simplistic view of programs
as data, such as in early LISP systems or in C. The
Scheme community has had a substantial role in rec-
ognizing and addressing this problem and promoting
the notion of hygienic macro expansion [21, 9]. More
recently, there have been more sophisticated propos-
als, like higher-order abstract syntax (HOAS) [37, 24,
19, 12], and FreshML [38]. The key contribution of all
these proposals is to provide a means to express the
fact that “programs are not just data.”

The first point is certainly inspired by multi-stage languages,
but to an extent, so are the other two.

A key issue that arises in the presence of macros that de-
fine new binding constructs is the handling of a-conversion.
‘While it is not clear how this problem can be addressed in
the untyped setting, it is addressed in MacroML by using
a type system. As such MacroML tries to achieve a bal-
ance between being an expressive macro system and being
a macro system that we can reason about.

1.2 Organization

Section 2 introduces MacroML by a series of motivating
examples, and discusses the issue of a-equivalence in the
presence of macros that can define new binding constructs.
Section 3 reviews the MetaML syntax, type system, and
semantics. Section 4 presents the main technical contri-
bution: a compositional interpretation of Core MacroML
into MetaML that provides a semantics that is both exe-
cutable and reasonably easy to communicate. Neither the
MacroML language nor the translation use any operations
nor side-conditions to generate fresh names. Instead this
is relegated to the semantics of the target language of the
translation. The target language itself, MetaML, has an op-
erational semantics defined using nothing but the standard
notion of substitution. The translation is shown to produce
only well-typed MetaML terms thus providing a type safety
result for MacroML. Section 5 considers several extensions
to Core MacroML and discusses implementation issues. Sec-
tions 6 and 7 discuss related work and conclude.

2. MACROML BY EXAMPLE

In this section, we use a sequence of examples to intro-
duce the basic issues motivating and governing our design
of MacroML. Each example is followed by a summary of the
basic semantic concerns that it raises.

2.1 Simplelnlining: A First Attempt

Consider the following code excerpt, where the functions
iterate and shift_left have the expected meaning:

let val word_size = 8
in ... iterate shift_left word_size ... end.

Here, word_size is used purely for reasons of clarity and
maintainability in the source code, and most implementa-
tions are likely to inline it producing:



. iterate shift_left 8 ...

But in a general situation where word_size is bound to a
more complicated expression like x+4 or an expression whose
evaluation might have side-effects like 1/x, the situation is
more delicate. Some compilers might inline x+4 and some
might not. And no compiler is at liberty to inline expressions
with effects: this is clear in a call-by-value (CBV) language
like ML, but it is also the case in “pure” languages like
Haskell where compilers must restrict inlining when dealing
with built-in monadic effects [40, 1]. Compilers also cannot
be left to inline or not inline at will when we care about
resource behavior [31].

Since inlining affects not only the performance but also the
semantics of ML programs, we elevate it to a full language
construct with concrete syntax, typing rules, and formal se-
mantics. In MacroML, programmers can require inlining of
an expression using a new variant of let-expressions called
let-mac. For example, the fragment:

let mac word_size = raise Unknown_size
in ... iterate shift_left word_size ... end

dictates that, even though raise Unknown_size is not an
ML value, we want it inlined, producing:

. iterate shift_left (raise Unknown_size)

Semantics: The semantics of this kind of inlining is simply
the standard capture-avoiding substitution of a variable by
an expression [6, 2].

Problem: Unfortunately, while this is a good example of
the “essence of inlining,” introducing inlining in this fash-
ion (through the mere occurrence of a variable) can in-
terfere with established reasoning principles for CBV lan-
guages. For example, in a standard CBV calculus [39],
(fn y => 5) x is observationally equivalent to 5 since vari-
ables are values. But in a term:

let mac x = raise Error in ...(fn y => 5) x... end

these two terms behave differently. In particular, the tradi-
tion of treating variables as values in CBV no longer holds,
because we sometimes replace variables by non-values.

, because, contrary to the usual assumption about CBV
variables, x is replaced by a non-value.

2.2 Functional Inlining

To retain the established reasoning principles of CBV lan-
guages, we restrict all definitions and uses of macros in
MacroML to be syntactically non-values (e.g., non-values,
let-expressions, etc). Thus, we will allow only macros that
take arguments. Their form (as non-values) ensures that
they do not interfere with a common reasoning principle for
CBYV languages, namely that variables are values.

To illustrate functional inlining, consider the following ex-
ample:

mac $ e = fn x => e
mac 7 e = e ()

The declared operators $ and 7, read “delay” and “force,”
respectively, implement a simple variant of Okasaki’s pro-
posal for suspensions [33]. Under the above macro decla-
rations, the expression fn x => $ (t1 x) expands to the
expression fn x => fn x’ => tl x, where x’ is a freshly

generated name (with a base name x only to hint to its
source).

There are two notable features about this example. First,

we cannot define $ as a CBV function since the evaluation
of $ e’ should not allow the premature evaluation of e’.
Thus, this is a genuinely useful application of a macro sys-
tem. Second, macro expansion should not allow the binding
occurrence of x in the macro definition to accidently capture
free occurrences of x in macro arguments.
Semantics: The semantics of functional inlining involves two
substitutions. First, the argument of the macro application
is substituted into the body. Given that we are using the
standard notion of substitution, the variable x in the above
example cannot occur in the expression bound to the vari-
able e. Second, the resulting macro body is substituted back
into the context of application, again using the standard no-
tion of substitution.

The example demonstrates another key feature of macro
systems: because macro calls can occur under binders, the
semantics requires evaluation under binders. This generally
involves manipulating open terms which can be significantly
more complicated [48, 29, 44] than dealing only with closed
terms, which is possible for most traditional programming
languages (whether CBV, CBN, or call-by-need).

2.3 Recursive Macros

What if we wish to perform more computations during
macro expansion? Consider the classic power function pow:

let fun pow n x =
if n = 0 then 1 else x * (pow (n-1) x)
in pow (2#3) (5+6) end.

If we replace the fun keyword by mac, macro expansion
goes into an infinite loop, which is probably not the de-
sired behavior. What happens? Intuitively, the macro call
pow (2%3) (5+6) expands into :

if 2#3 = 0 then 1 else (5+6) * (pow (2%3-1) (5+6))
which itself expands into :

if 2%3 = 0 then 1
else (5+6) * (if (2%3-1) = 0 then 1
else (5+6) * (pow ((2%3-1)-1) (5+6)))

and the expansion goes on indefinitely. Macro expansion
can only terminate if the if-expression is evaluated dur-
ing expansion, and not reconstructed as part of the result.
To require the execution of the if expression during macro
expansion, we must explicitly indicate that n is an early pa-
rameter, rather than a regular macro parameter (which we
call late), and annotate the term to distinguish early and
late computations. The intended pow macro can now be
written as:

let mac pow "n x =
“(if n = 0 then <1> else <x * (pow ~(n-1) x)>)
in pow “(2%3) (5+6) end.

The two constructs “e and {e) (read “escape” and “brack-
ets”, respectively) are borrowed directly from MetaML. Es-
cape interrupts the default macro expansion mode and ini-
tiates regular ML evaluation. Brackets stops regular evalu-
ation to return to the default macro expansion mode. The
expansion of the macro call above now yields:



(5+6) * (5+6) * (5+6) * (5+6) * (5+6) * (5+6) * 1.

Semantics: The need for introducing the brackets and es-
cape constructs is directly related to the need to have a
well-specified order for evaluating various sub-expressions.
In particular, with recursion, it becomes clear that there
are two different kinds of computations: early ones and late
ones. The need to intermix these two kinds of computation
is what requires a more substantial type system than usual.
We must enforce what is called congruence in the partial
evaluation literature: a well-formed multi-stage computa-
tion should not contain an early computation that depends
on the result of a late computation [20]. A simple example
of a program that the type system should reject is:

let mac £ b n = “(if b=0 then <n> else <n+1>)
in fn a => fn m => f a m end.

The macro application £ a m needs to be expanded before
the lambda abstraction fn a => ... is ever applied. But
the conditional in the if statement requires that the first
argument of £ be known at that time, which it is not.

2.4 Defining New Binding Constructs

We now come to a novel feature of MacroML: the ability
to define new binding constructs in the typed setting. Let
us say that we are using the macros $ and 7 for suspensions
to implement a notion of a computation [26]. We define a
suitable monadic-let for this setting as follows:

mac (let seq x = el in e2 end) =
$(let val x = 7el in 7e2 end).

The definition introduces a new binding construct let seq
which expands to the core binding construct let val. For
example,

let seq y = f $7 in g y end
expands to:
$(let val x = ?(f $7) in ?(g x) end).

Semantics: A key insight behind this aspect of our proposal
is to allow the user to only define new binding constructs
that follow the patterns of existing binding constructs, such
as lambda abstractions, value declarations, and recursive
declarations. In these binding constructs every occurrence of
a variable can be immediately identified as either a binding
occurrence or a bound occurrence. The semantics of our
proposal is designed to reflect this distinction. But even
when this distinction is taken into account, a-equivalence
is still subtle. For example, the definition above cannot be
rewritten into:

mac (let eeq x = el in e2 end) =
$(let val y = 7el in 7e2 end).

The problem is that in the seq declaration there are two
different binding occurrences of the variable x, and each is
of a different nature. The first one (in the parameter of the
macro) says that “there is a variable, let’s call it x, which
can occur free in the expression bound to e2.” This means
that the use of the variable name x in the second declaration
now has special meaning. The second declaration now says
“use x locally as a normal variable name, but make sure
that it is treated in the output of the macro as the binding
occurrence for the x in e2.”

The type system for MacroML addresses this issue by
means of two mechanisms: first, special type environments
are used to keep track of the declarations of macro param-
eters, and most importantly, the body parameters like e2.
Second the type of these body parameters will explicitly
carry around the name of the bindee parameter x, which
comes from the first occurrences of x. The second declara-
tion of x is in fact a completely normal declaration. With
this typing information, it is possible to reject the local re-
placement of x into y as above. It is important to note the
difference between this mechanism and the classic “acciden-
tal dynamic scoping:” the dependency on a “free” variable
is reflected explicitly in the type. Essentially the same prin-
ciple underlies the recent proposal for implicit parameters
[22]. We know that the type system provides an adequate
solution to the problem of a-conversion in the source pro-
gram because the type system guarantees that well-typed
MacroML programs can be translated to MetaML programs,
and in the latter, a-renaming is completely standard, even
in the untyped setting.

At this point, the reader may wonder how are variables
passed around in MacroML? We return shortly to this ques-
tion in Section 4.

3. MULTI-STAGE LANGUAGES

Macro systems introduce a stage of computation before
the traditional stage of program execution. Early computa-
tions during this new stage include macro expansion as well
as various other traditional computations (e.g., conditionals,
applications, etc).

Multi-level languages have been developed to model such
kinds of staged computation. The offer constructs for build-
ing and combining code, often in a typed setting. Multi-
stage languages are multi-level languages that provide the
user with a means of executing the generated code. The
notion of “code” described here is an abstract one. For ex-
ample, it has been proven that beta-reductions are sound
inside this notion of code [45]. This means that code in
such systems is never inspected syntactically. An alterna-
tive, equally valid way of thinking about these languages,
therefore, is that they provide fine control over the evalua-
tion order [48, 46, 42].

A premier example of a statically-typed, functional, multi-
stage language is MetaML. In addition to the normal con-
structs of a functional language, MetaML also has three
constructs for building, efficiently combining, and execut-
ing code. These three constructs are {e),”e, and run e. For
the purposes of our study, we use the following small subset
MetaML:

e € Eyetamr. = x| Aze|ee
| letrec f z1 x2 z3 =e1 ines
|

(e) | e | run e.

Restricting the number of arguments of recursive function
declarations to exactly three is sufficient for our purposes,
and simplifies the presentation.

We present a type system for this language with the fol-
lowing types:

t € Thretarmr, = nat | t—t | (t)

Here nat is the type for natural numbers. Function types
as usual have the form ¢ — ¢. The MetaML code type is
denoted by (t). In this section we present a sound type
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Figure 1: MetaML Type System

system for MetaML. The soundness of this type system is
studied and established elsewhere [46, 29, 44]. While this
type system is not the most expressive type system available
for MetaML (see for example [29, 44, 4]), it is simple and
sufficient for our purposes here.

The type system is defined a judgment I' ™ e : ¢t where n
is a natural number called the level of a term. The role of
the notion of level is explained below where we consider the
type rules and the semantics for brackets and escape. The
context I' is a map from identifiers to types and levels, and
is represented by the following term language:

r == [|lz:t"
In any valid T'; there should be no repeating occurrences of
the same variable name. We write z : t* € ' when z : t" is
a sub-term of a valid T'.

The rules of the type system are presented in Figure 1.
The first four rules of the type system are standard, except
that the level n of each term is passed around everywhere.
Note that in the rule for lambda (and recursive functions),
we take the current level and use it as the level of the bound
variable when we add it to the environment.

The rule for brackets says (e) can have type (t) when e
has type ¢t. In addition, e must be typed at level n + 1,
where n is the level for (e). The level parameter is therefore
counting the number of “surrounding” brackets. The rule
for escape does basically the converse. Note, therefore, that
escapes can only occur at level 1 and higher. Escapes are
supposed to “undo” the effect of brackets.

Finally, the rule for run e is rather subtle: we can run a
term of type (t) to get a value of type ¢t. However, we must
be careful to note that the term being run must be typed
under the environment I'*, rather than simply I'. We define
I'" as having the same variables and corresponding types
as I', but with each level incremented by 1. Without this
adjustment the type system is unsafe [46, 29, 44].

Figure 2 defines the big-step semantics for MetaML. There
are a number of reasons why the big-step semantics for
MetaML [29, 46] is an instructive model for the formal study
of multi-stage computation: first, by making evaluation un-
der lambda explicit, this semantics makes it easy to illustrate
how a multi-stage computation often violates one of the ba-
sic assumptions of many works on programming language
semantics, namely, the restriction to closed terms. Second,
by using just the standard notion of substitution [2], this se-
mantics captures the essence of static scoping, and there is
no need for using additional machinery to handle renaming
at runtime.

The big-step semantics for MetaML is a family of partial
functions _ <5 _ : Erretamr, — Eetanr, from expressions to
answers, indexed by a level n. Taking n to be 0, we can see
that the first two rules correspond to the rules of a CBV

lambda calculus. The rule for run at level 0 says that an
expression is run by first evaluating it to get an expression
in brackets, and then evaluating that expression. The rule
for brackets at level 0 says that they are evaluated by re-
building the expression they surround at level 1. Rebuilding,
or “evaluating at levels higher than 0,” is intended to elimi-
nate level 1 escapes. Rebuilding is performed by traversing
the expression while correctly keeping track of levels. Thus
it simply traverses a term until a level 1 escape is encoun-
tered, at which point the normal (level 0) evaluation function
is invoked. The escaped expression must yield a bracketed
expression, and then the expression itself is returned.
Interesting examples of MetaML programs can be found in
the literature [48, 44, 42]. For the purposes of this paper, we
focus on illustrating how three relevant kinds of computation
can be achieved using MetaML:
Evaluation Under Lambda: Consider the term Azy.(\z.z) ©
and let us say that we are interested in eliminating the inner
application. In both CBV and CBN, evaluation only works
on closed terms, and therefore, never goes under lambda.
With MetaML it is possible to force the inner computation
by rewriting the expression as run (Azy.”((Az.z) {(z))), and
then evaluating it. The result is the desired term: Azy.z.
‘We use such a pattern of run, brackets, and escape in our
interpretation of the macro language to ensure that compu-
tations are performed in the desired order.
Substitution: Consider the term (Az.f = z) (g y). Can
we force the outer application to be done first, producing
f (g v) (g y)? This operation is not expressible in CBV
evaluation semantics, but is expressible in MetaML by an-
notating the term as follows: run ((Az.(f "z “z}) (g v)).
Renaming: It seems not widely known that simply using the
standard notion of substitution in defining the semantics of
a language like MetaML is sufficient for providing the cor-
rect treatment of free and bound variables everywhere. In
MetaML, there is never any accidental variable capture, and
there is never any need to express any freshness conditions or
to use a gensym-like operation. Our semantics for MacroML
is simple, because we build on the fact that using the stan-
dard notion of substitution in the MetaML semantics really
means that renaming is taken care of.

4. CORE MACROML

We are now at a point where we can precisely define
and interpret our macro language. We present the syntax,
type system, and semantics of Core MacroML. The language
has the usual expressions for a CBV language, augmented
with the previously motivated let-mac construct for defining



0

e1 > Azx.e
0

ey — ey

0
e[z :==e3] — e4

F= )\$1.A$2.)\$3.61[f =
es[f := F) ‘£> es

letrec f x1 22 3 = ey in f]

0 0
Az.e <= A\zx.e e1 ex ey

0 0
ey — (62) €2 — €3

n+1
e1 — é2

. 0
letrec f ©1 x2 T3 =e1 inex < e3

n+1 n+1
€1 “—> ez e2 — eq

0 n+1 n+1 n+1
run e1 < e3 T = T Az.e1 <= Ar.es e] ea < e3 eq
n+1 n+1 n+1 n+1 n+1 0
e1 <> e3 ez2 — e4 e1 — ea e1 — e e1 < e (e (62)
— n, ntl . nt2. 1
letrec f 21 @2 x3 = e1 in ey (e1) <= (e2) run e; < run es e1 < ey e1 <> e

n+1 .
< letrec f x1 T2 x3 =e3 in eq

Figure 2: MetaML Big-Step Semantics

z:t"erT z:tell z2: [T1

‘tilta € Aand w1 : ¢} €T

S A LTz ot F™ e

YA IGT R ot

A ILT H 2ot 8o

;A ILT ™ Axee st — to

f: (tl,tz,[tg]t4)=>t5€z]
I"=T,f:(t1 > to > ts > 1)™ DIANY 1 £ NI
SN IGT F™ e ity =t Sy A ILGT o st o 85 s it F e o t DA IGT H ey t2
A ILGT F™ et to AL T I—m 9t ta DALz t3; T es b
Z;A;H;Ff—m eies : t E;A,H,Fl—m Ietrecfml Ty T3 =e€1 iney:ts E,A,H rH! f(el,ez,)\weg) ts

Y =5, f: (t1, 0, [ts]ts) = t5

YA o [rtalta; T xy st Toxo it ey i ts

AL Hoey ot

AT H et AT H e (8)

O AT T H letmac f(Tzo, 21, Az.22) =erines:t

A TLT O (e) : (t) AT H et t

Figure 3: MacroML Type System

macros, and the “e and {e) used to control recursive inlining:

€ € Eyacromr = o | Ave|ee

| letrec f x1 2 w3 =e1 ines

| letmac f(Czo, 1, Ax2.23) =e1 in e2
|

f(61,62,/\.’13.6) | (6) |~6.

For clarity, all macros in Core MacroML have exactly three
parameters representative of the three kinds of possible pa-
rameters in MacroML. Restricting ourselves to macros with
exactly three parameters allows us to avoid substantial ad-
ministrative detail in Core MacroML. The three kinds of
macro arguments are as follows:

1. zo, as indicated by the preceding 7, is an early param-
eter, which can be used during macro expansion,

2. x1 is a late parameter, which might appear in the out-
put of the expansion, and

3. Aza.z3 defines a bindee/body pair of parameters, repre-
senting a late parameter x3 with a variable z;. The two
variables x2 and xs are bound variables in the scope
of the macro definition but they can only be used in
rather special ways enforced by the type system. The
variable z2 must be bound again using a regular bind-
ing construct before x3 can be used. The variable z3
can only be used in the scope of z2. A legal use of such

a bindee/body pair is:
letmac f(_,, Az.y) =Aa. r.a+z+yin ...

The z in the macro declaration binds the two occur-
rences of x in the macro definition! All three occur-
rences of z could be renamed to z without changing the
meaning. The semantics would, however, be changed if
we only change the body of the macro to Aa.A\z.a+z+y,
because we would be returning a result that could
have an unbound variable (that was bound to z) in
a subterm (that was bound to y). The bindee/body
parameter illustrates how defining new binding con-
structs works in MacroML. For Core MacroML we
have picked the simplest binding construct in the lan-
guage, namely lambda abstraction Az.e. The other
binding constructs follow naturally.

The application of a macro f(e1, e2, Az.€) also takes exactly
three arguments: the first is an early argument, the sec-
ond is a late argument, and the third is a bindee/body ar-
gument. The bindee/body argument explains the core of
our treatment of new binding constructs: it must be clear
what variables are free in what sub-expressions, and both
must always be passed together. Note that a bindee/body
argument must have the right form for the binding struc-
ture (in this case, lambda). For example, the application



f(0, (), Az.z + a) of the macro defined above expands to:
Aa' Az.a’' +z + (z +a).

4.1 Typing Core MacroML
The types of MacroML are the same as MetaML:

t € Triacromr = nat | t—t | (t)

The type system, however, is more involved. Typing judg-
ments have the form X; A;II; T F™ e : t where m is the level
of a term. We restrict the levels here to 0 (representing early
computations) and 1 (representing late computations). The
environments have the following roles (and definitions):

Y. the macro environment. It keeps track of the various
macros that have been declared. These bindings are
of the form (1,2, [t3]ta) = t5. In this binding, the tu-
ple provides information about the three standardized
parameters. Note that we write [t3]t4 to describe the
bindee/body argument. Intuitively, the bindee/body
argument is a pair of a bound variable declared to be
of type t3 and an expression of type t4, which could
contain a free occurrence of the bound variable. This
notation is inspired by types in FreshML [38].

A the body parameter environment. It carries bindings
of the form [z : t1]t2. This environment is needed
for type-checking the body of a macro that uses a
bindee/body parameter of the form Az.z1, so that we
know that we can only use z1 at type t2 in a context
where z is bound (with type t1).

II the late parameter environment. It carries bindings
of the form ¢. This environment is needed for type-
checking the body of a macro that uses a late param-
eter. It is also used to type-check a body argument
that references a bindee argument. It includes vari-
ables bound by regular binding constructs.

I" the regular environment. Because we are in a multi-
stage setting, it carries bindings of the form t™.

The domains of all the environments are required to be dis-
joint.

The rules of the MacroML type system are presented in
Figure 3. The first three rules deal with variable lookup.
The first rule is the variable (projection) rule from MetaML.
The next rule is similar, although it reflects the fact that late
macro parameters can only be used at level one. The third
rule is also similar but it checks that the body variable is
used in a context where its bindee variable has already been
bound.

The next three rules are standard for a multi-level lan-
guage. All the usual rules of SML would be lifted in the
same manner (although some care is required with effects.
See Section 7.)

The next four rules are specific to macros. The first rule is
for a macro definition. Because we allow macro definitions to
be recursive, the body of the macro declaration is checked
under the assumption that the macro being defined is al-
ready declared. We also add the appropriate assumptions
about the bindee/body parameters, the late parameter, and
the early parameter to the appropriate environments. The
rest of the rule is standard. Macro application is also anal-
ogous to application, although one should note that e: and
e2 are checked at different levels. The rules for brackets and
escape are special cases of the same rules in MetaML.

4.2 The Semanticsof Core MacroML

In this section, we present the definition of the semantics
of Core MacroML via an interpretation into MetaML. For
any well-typed Core MacroML program F' e : ¢ the inter-
pretation [F! e : t] is a MetaML term. To get the final result
of running the MacroML program, we simply evaluate the
MetaML term run {([-' e : t]). To get a more fine-grained
view of the evaluation of [-' e : t], we can view it as pro-
ceeding into two distinct steps:

e Macro expansion: the MacroML program e expands
to a MetaML program e if:

([F" e: t]) N el.

e Regular execution: The expansion ¢ of e then evalu-
ates to the answer e} if:

1 00
run ¢; < eés.

Note that the only new part in the above semantics is the
translation from MacroML to MetaML. The two stages of
MacroML evaluation are then just standard MetaML re-
building and evaluation, respectively. Whenever the original
term does not have any code types in its MacroML type, the
latter step should coincide with standard ML evaluation.

Figure 4 presents the translation, first defined on environ-
ments, and then defined on judgments. Although the trans-
lation can be made to map untyped terms to untyped terms,
it is context-sensitive, and it is therefore easier to define it
on judgments of well-typed Core MacroML programs. To
avoid the risk of potentially confusing notation, the trans-
lation maps judgments to terms (rather than judgments to
judgments), as the full MetaML judgments are easy to re-
construct.

Empty environments are mapped to empty environments.
The binding for a macro is translated into a MetaML type
that, in essence, reflects the semantics of the special notation
we have used:

t1 = (t2) = ((ta) = (t4)) = (ts)

corresponds to a function that takes three (curried) param-
eters. The first parameter is a “true” value of type ¢1 cor-
responding to the early parameter. The second parame-
ter, however, is a delayed (or code) value of type ty corre-
sponding to the late parameter. The third parameter (the
bindee/body parameter) is in fact translated to a function
from code to code. It is at this point that we can start to
explain how the interpretation of the bindee/body parame-
ters works. Recall that in the examples section we promised
to explain how variables are passed around. The answer
is, in fact, that variables are never passed around! During
macro-expansion time, the bindee/body parameter is passed
in what can be considered its Higher-order Abstract Syntax
(HOAS) representation. The type of a bindee/body param-
eter is also translated to a function type. Naturally, this
is consistent with the external type of this parameter. The
type of a late parameter is simply a delayed (or code) version
of the MacroML type of that parameter. No translation is
shown for regular environments, as the translation is simply
the identity embedding.

The translation on judgments proceeds as follows. Terms
that do not involve macros are translated homomorphically.
Late parameters are translated by putting an escape around
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Figure 4: Translating MacroML to MetaML

them. The intuition here is that late parameters only occur
inside the definition of a macro, and when they occur, they
are supposed to be spliced into the context where they are
used in order to appear in the output of macro expansion as
expected.

The key rule in the translations is the one for the body
parameters: when a body parameter x> is used in the body
of a macro definition, its translation corresponds to an ap-
plication of z2 to a piece of code carrying the corresponding
bindee parameter 1. All of this is escaped so that the appli-
cation is performed at macro expansion time. To understand
what is going on here, keep in mind the translation of the
environment A, and note that it introduces an arrow type
out of nowhere during the translation. Thus, in the target of
the interpretation, x> has an arrow type. This is because, as
we said earlier, the translation produces code that is passing
around a HOAS representation of the bindee/body pair.

Macro declarations are translated to escaped function dec-
larations, i.e., function declarations that are to be executed
during expansion. Note however that the body of the func-
tion being defined and the context where it is used are both
in brackets. This is because we want to treat both as code,
except in places where the translation has added other es-
capes.

A macro application is translated into an escaped appli-

cation. The first (early) argument to the application is not
bracketed, but the second (late) argument is. As hinted
earlier by the translation of the types, the bindee/body ar-
gument is translated into a function whose body is itself a
piece of code. Intuitively, making the body a piece of code
delays its evaluation. It is worth noting that the HOAS en-
tities only exist during the first stage (macro expansion),
and not during the execution of the program proper. The
translation of brackets and escape is straightforward.

4.3 Examples

We illustrate the effect of the translation on three simple
examples. The translation produces a few adminstrative
bracket-escape redices that can be easily eliminated, and so
we omit those for clarity.

The simplest macros use just late arguments, as in:

let mac $ e = fn x => e
in fn x => $ (tl x) end.

In this case, a macro is translated into a function that takes
a piece of code and return a piece of code. The application
of the macro is translated into an “escaped” (i.e.,level 0)
function application to a piece of code. The translation of
the above term results in the following code fragment:

“(letrec $ e = <fn x => “e>



in <fn x => “($ <tl x>)>) end.

When this expression is evaluated, it results in a piece of
code that is spliced into the context, which is ultimately the
program that results from macro expansion.

Recursive macros usually require early arguments to con-
trol the amount of inlining, as in:

let mac pow "n x =
“(if n=0 then <1> else <x * (pow ~“(n-1) x)>)
in pow “(2%3) (5+6) end.

This macro is translated to the MetaML term:

“(letrec pow n x =
(if n=0 then <1> else <"x * “(pow (n-1) x)>)
in (pow (2%3) <5+6>)) end.

Note that the early argument is not passed as a piece of
code: its value is needed during expansion.
Finally we look at macros that bind parameters, as in:

let mac (let seq x = el in e2 end)
= § (let val y = 7el in 7e2 end)
in (let seq y = (f $7) in g “y) end

which corresponds to passing both a late argument and a
bindee/body argument and can be translated to:

“(letrec seq el e2 = <§((fn x => 77 (e2 <x>)) 77el)>
in <"(seq <f $7> (fn y => <g y>))>) end.

We have not expanded the macros $e and ?e to avoid clutter.
The translation shows that the term <g ~y> in the macro
call is parameterized over the variable y. In the output of
the macro the term is instantiated to use the variable x.
Hence the binding for x introduced by the macro captures
the variable x occurring in the output of the macro.

4.4 Type Safety

As mentioned in the introduction, defining the seman-
tics of Core MacroML by interpretation into MetaML makes
proving type safety fairly direct. In what follows, we state
and outline the proof of this result.

THEOREM 4.1 (TYPE SAFETY). If [|;[;[;[1 F™ e : t is
a valid MacroML judgment, then translating it to MetaML
yields a well-typed MetaML program, and executing that pro-
gram does not generate any MetaML runtime errors.

PRrROOF. The first part is by Lemma 4.2, and the second
part follows from the type safety property of the MetaML
type system presented in previous work [46, 29]. [

In the statement of the theorem, MetaML runtime errors
include both errors that might occur at macro expansion and
runtime errors (defined precisely in [46, 29, 44]). The nec-
essary auxiliary lemma states that our translation preserves
typing.

LEMMA 4.2 (TYPE PRESERVATION). If 3 A;ILT H™
e:t is a valid MacroML judgment, then [X], [A], [II],T F™
[Z; AIET F™ e t] : t is a valid MetaML judgment.

ProOF. Routine induction on the height of the derivation
of ;A I T F™e:t. O

5. PRACTICAL EXTENSIONS OF CORE

Core MacroML handles simple functional inlining, recur-
sive inlining, and the definition of simple binding constructs.
By design, Core MacroML is a minimal language whose pur-
pose is to demonstrate how the main semantic subtleties
of a typed macro system can be addressed. We have im-
plemented Core MacroML using a toy implementation of
MetaML. We have used the implementation to run a bench-
mark of simple programs in Core MacroML, and the results
have consistently been as expected. In this section, we de-
scribe extensions of Core MacroML with additional features
that would be desirable in a practical implementation. We
expect that all these extensions are not hard to implement.
Let Bindings: In the introduction, we have presented exam-
ples of let-expression macros with only one binding. How-
ever, the same macro definition can be used to expand let-
expressions with multiple bindings. For this purpose, we
propose the use of a comprehension-like notation to allow
the user to express such macros. For example, the expres-
sion:

let mac (let seq x{i} = el{i} in e2 end) =

$(let val x{i} = (print (Int.toString i);
7e1{i})
in 7e2 end)

in let seq y = f $7

seq z=hy
in g z end
end

would expand to:

$(let val x1 = (print (Int.toString 1); 7(f $7))
val x2 = (print (Int.toString 2); 7(h x1))
in 7(g x2) end)

where it becomes apparent that i is an implicit comprehen-
sion parameter that gets bound to the index of the binding
under consideration, and that x{i} and e{i}, are the pa-

rameters for this ith—binding.

Note that the number of declarations (the range of i) will

be known at translation time, as it is manifest from the ap-
plication of the macro. However, because vanilla MetaML
does not have support for constructing declarations of ar-
bitrary length, the most direct approach to interpret this
proposal would be to produce one MetaML function for
each macro application. This trick is similar to polyvari-
ant specialization in partial evaluation [20]. The obvious
disadvantage of this approach is that it inflates the size of
the generated MetaML program. We would like to explore
extensions to MetaML that would allow us to interpret this
new construct in a more natural fashion.
Recursive Bindings: A simple but still important issue is
how recursive binding constructs should be treated. In par-
ticular, when a macro is defining a new binding construct
in terms of an existing recursive binding construct, this in-
formation should be maintained in the type of the macro.
Consider the following declaration:

el{i} in e2 end)
el{i} in e2 end).

mac (let fin x{i} _
= (let fun x{i} _

This declaration may appear ambiguous because we can ei-
ther expand the fin comprehension into a sequence of fun
declarations or a sequence of mutually-recursive (“anded”)



fun declarations. However, this can be completely deter-
mined by how the fin construct is used: if it is used as
a disjoint sequence, then that is what should be produced.
If it is used as an anded sequences, then the result should
be like-wise. In the latter case, however, we need to check
that the parameters to the anded sequences of fins should
not have duplicate variables names. All these checks can be
done statically.

Dist-fiz Operators: Finally, we come to an extension that
is rather orthogonal to the rest of our proposal. However,
in practical macro systems, it is a valuable addition. In
particular, it is relatively easy to add dist-fix operators to
our language. The key idea is that each macro definition
should still be determined by the first symbol used in its
name. With such an extension, it is possible to define some
other basic constructs in a language:

mac {if, then, else} if c then t else f =
case c of
true =>t
| false => f.

The syntax simply extends what we have seen before by
a declaration of keywords that can be used in conjunction
with the macro if. Then, the rest of the argument list
dictates the “dist-fix arity” of this macro. The only com-
plication with the introduction of such macros is that they
make parsing context sensitive. However, this is already the
case in SML because of infix operators.

6. RELATED WORK

Our approach for deriving the type system for MacroML
was to first develop the translation in an essentially untyped
setting, and then to develop a type system that characterizes
when the result of the translation is a well-typed MetaML
program. The earliest instance of such a translation ap-
pears in a work by Wand [50]. Because we start with the
untyped setting, we expect that similar derivations are pos-
sible for richer MetaML type systems (including features
such as polymorphism and effects, for example).

“Syntactic abstraction” in Chez Scheme [9] promotes the
idea that macros should operate on an abstract datatype of
code (called a syntax-object) rather than strings or parse
trees. Our brackets are similar to syntax-objects but are
more abstract in that they do not allow the analysis (tak-
ing apart) of code. To deal with macros that bind vari-
ables, Chez Scheme includes runtime predicates that check
whether an identifier would be captured in the output of the
macro. Our proposal relies instead on distinguishing bind-
ing and usage occurrence of variables once and for all in the
source language, thereby avoiding the need to inspect vari-
ables at runtime. It remains an interesting question whether
or not a safe and expressive type system can be found for
the full macro system of Chez Scheme.

The earliest use of a binary type constructor to indicate
the type of a “piece of code with a free variable in it” such
as our [t1]t2 seems to have been in Miller’s proposal for “an
extension of ML to handle bound variables in data struc-
tures” [24]. Miller’s proposal is more ambitious than ours
in that it tries to deal with data types that have some bind-
ing structure, but it neither addresses the issue of defining
new binding constructs in a user-level language nor gives a
formal semantics for the proposed constructs. Indeed, work
by Pagali¢, Sheard and Taha suggests that Miller’s proposal

may need to be reformed before it can have a simple seman-
tics [36]. More recently, FreshML [38] has also used a similar
binary type constructor based on a denotational model. The
Twelf system uses a mixture of dependent types that seems
to be, at least intuitively, similar to our [z : t1]t2 construc-
tion. To our knowledge, our work seems to be the first to
investigate the application of such type systems directly to
the domain of macro systems, and to expose the connections
with multi-stage languages and higher-order syntax.

Griffin [17] shows how mathematical “notational defini-
tions” can be interpreted ¢ la Church into NuPRL, which
is a theorem-proving environment based on a strongly nor-
malizing lambda calculus. He formalizes the notion of a no-
tational definition as what he calls A-equations, and gives
a very clear and complete formal account of how definitions
of new binding constructs can be interpreted in a (normaliz-
ing) lambda calculus. Our work shows that multi-stage lan-
guages allow us to achieve a similar result in a typed lambda
calculus that is not necessarily strongly normalizing. Thus,
we are able to handle, for example, a kind of “recursive”
notational definition. Griffin’s work also gives a clear for-
mulation of the set of terms that can be treated as “binding
patterns” (in the arguments of macros, for example), and
giving us a clear interpretation of such patterns into plain
lambda calculus expressions. In our present work we opted
for conceptual clarity rather than generality, and used only
one binding pattern (Az.y) in our formal development.

Cardelli, Matthes, and Abadi [5] give one of the most
expressive systems for syntactically-extensible programming
languages. Their system allows the modification, extension,
and restriction of an existing grammar, all within a frame-
work that respects binding structure. Not only that, but
their system also pays careful attention to the issue of pars-
ing (concrete syntax) of the new constructs. Typing is not
addressed explicitly, but because parsing is decidable, typing
the extended language seems automatic.

Part of the inspiration for the present paper is Monnier
and Shao’s work on inlining as staged computation [30],
where they present a thorough investigation of the utility
of two-level intermediate languages for an inlining compiler.
This is the first work known to us that applies ideas from
multi-level languages to intermediate languages for compil-
ers. One difference between this work and ours is that we are
interested in design and semantics issues for user-level pro-
gramming languages, rather than an implementation tech-
nology. Thus, the issue of defining new binding constructs
does not arise in their setting. Nevertheless, the approach
presented here would also apply to their two-level languages.
Their work also address modules and separate compilation
in addition to the issue of code duplication, which we have
not considered. It will be very interesting in the future to
explore the possibility of combining the two works in a uni-
form framework.

The idea of inheriting the binding structure from existing
constructs to keep the declarations of new constructs concise
appears to be novel.

Not all type systems for MetaML require that the type
of the generated code be known at compilation-time. More
permissive type systems where typing the generated code
can be postponed until runtime have also been studied [43].
Care should be taken when using this approach, however,
as it can sometimes have an effect on the equational theory
[47].



A close relative of multi-stage computation is the work on
computing with contexts [18, 41, 23]. This is a connection
which we intend to investigate in more detail in future work.

7. CONCLUSION

We have presented a proposal for a typed macro system,
and have shown how it can be given a rigorous yet read-
able semantics via an interpretation into the multi-stage
programming language MetaML. The interpretation is es-
sentially a denotational semantics where MetaML is the in-
ternal language of the model. Such models have already
been studied elsewhere [3]. But because MetaML enjoys a
simple and intuitive operational semantics, our proposal is
easy to implement in a directly usable form.

The macro language that we have presented, MacroML,
has useful and novel features, combining both static typing
and allowing the user to define new binding constructs. In
trying to achieve this, we have used ideas from both HOAS
[37] (to implement our proposal in a multi-stage setting)
and FreshML (to provide the surface syntax and ideas in
the source language) [38]. It may well be that our language
provides some new insights on the link between the two ap-
proaches to treating binding constructs.

We have argued that macros are useful. But the moral of
the paper is of a more technical nature: multi-stage program-
ming languages are a good foundation for the semantics-
based design of macro systems. We have shown how a formal
multi-stage interpretation of macro systems provides an ele-
gant way of avoiding binding issues and defining new binding
constructs, and provides a sound basis for developing type
systems for macro languages.

In this paper, we have not considered type safety in the
presence of imperative features (references, exceptions) dur-
ing expansion time. In this setting, we expect the work on
imperative multi-stage languages to be of direct relevance
[49, 4]. We have also not considered a multi-level macro
system primarily for the reason of simplicity. We would like
to consider such an extension in future work. But there
are restrictions on out system that may be a bit more chal-
lenging to alleviate. For example, we have not considered
higher-order macros (macros that take other macros as pa-
rameters) and we have not considered macros that generate
other macros. For such expressiveness, however, we expect
that it may be simpler and more appropriate to move di-
rectly to a full-fledged multi-stage programming language.
Part of the appeal of macro systems, we believe, goes away
when we attempt to push them to the higher-order and re-
flective setting. On the other hand, given that we have de-
fined macros in terms of a multi-stage language, it should
be possible to merge macros and MetaML into the same
language without any surprising interactions.

To conclude, while this paper addresses key semantic con-
cerns in developing an expressive, type-safe macro system,
this is only a start. We have only built a simple prototype
during this work. The prototype involved a direct imple-
mentation of MetaML semantics and a direct implementa-
tion of the translation. We hope to integrate this work with
ongoing work on extensions of SML, Ocaml, and Haskell.
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