Report on study of research tools for embedded
software development at Schlumberger

Kedar Swadi
March 14, 2006

1 Introduction

Embedded software is often executed on platforms that are safety-critical and
where errors are difficult to detect and recover from in real time. It is therefore
necessary to have a software development methodology that allows the detection
and prevention of errors before it is deployed.

Errors in software can either arise from the incorrectness and incompleteness
of requirement specifications, or due to the software violating some predefined
safety policies that it must adhere to. For example, safety policies might prevent
accessing null pointers or arrays at out-of-bounds indices, or casting pointers
to incompatible types. Verifying that software correctly implements specifica-
tions is tedious for humans, and is automated verification techniques can be
intractable (e.g. theorem proving). On the other hand, ensuring that software
is safe can generally be performed statically (before software is executed). A
safety-driven software development process would therefore allow the detection
and prevention of as many errors as is practically possible.

This report describes my experience studying and using research tools for
safety-driven software development in an industrial setting at Schlumberger
Product Center, working with the Software Metier. The aims of this study
were to 1. Determine the effectiveness and benefits of research tools in the
Schlumberger setting, 2. Recommend tools and practices appropriate for the
Schlumberger software development environment, and 3. Give a presentation
to the software community on the findings.

2 Study Description

The study was carried out in a four-week period, and consisted of using four
tools on a software project that involved the control of a motor. This software
was chosen primarily because it was both small enough to be studied and worked
with (given the short time period), and because it was real software that was
being used in embedded settings in Schlumberger tools. The software had the
following characteristics:

e It was written in Analog Devices C — a dialect of C that has a few
nonstandard (non ANSI C) constructs and types

e It consisted of roughly 7000 lines of code

e It had no dynamic memory management, in line with the policy of the
software group to avoid it because it is error prone, expensive, and requires
OS support which is not always available in embedded environments

e It handled only one interrupt, and had no multi-threading

e It had low-level memory access code to interface with an external memory
subsystem

e A majority of the code (and also the runtime) involved mathematical
computations to determine a new state for the motor.

Using this software as the case study, four tools were considered for their
benefits to the software development process. These are

e Devil : An interface definition language designed to specify a high-level
interface for communication with memory-mapped devices.

e CCured : A memory safety analysis tool for C programs.
e Cyclone : A safe dialect of C.
e Blast : A model checker for C programs.

I describe below my experience using each of these tools in detail. These ex-
periences are undoubtedly influenced by the choice of the case study software,
and might have differed to if other software projects had been considered.

2.1 Devil

Tool description Programs that perform I/O communication must often rely
on documentation provided by hardware manufacturers to determine the exact
interface to I/O devices. Unfortunately, such documentations are often incom-
plete, ambiguous, and sometime, even incorrect. Devil [?, ?] is an Interface
Description Language designed to allow programmers specify a high-level inter-
face for communication with hardware devices such that it is statically possible
to verify critical safety properties of the device interface code. Thus, in addi-
tion to allowing the programmer to write a more maintainable code and ensuring
that a hardware interface is semantically consistent, it also serves as a valuable
documentation tool that can be reused in other applications.

Devil has three levels of abstractions at which communication with a hard-
ware device can be viewed.

figure=devil.eps,height=>5.5cm

1. Ports are the lowest level of interaction with a device, and represents the
physical memory address which is read from or written to for interaction
with a device. A device typically has several points of communication (or
several memory addresses that it uses), and each of these is termed as a
port.

2. Registers are the level at which interaction with a hardware device takes
place, and allow related ports to be grouped. In particular, some devices
assign different ports for reading and writing values, while other devices
use only one port. A register allows a programmer to get a unified view so
she can read from and write to the same register without having to know
the port-level implementation.

3. Variable To minimize the amount of ports for communication with a de-
vice, registers often group multiple independent values into one data unit
(byte or word). For example, a mouse might interact with a computer
by setting three different bits in a single byte depending on which mouse
button has been pressed. At the high-level, the programmer interacts with
the device by accessing or modifying these values. In a Devil specifica-
tion, a wvariables is used to represents each of these high-level values. A
programmer using Devil only needs to refer to variables, while the code
for all the low-level implementation details is generated by Devil from a
given device specification.

The following example illustrates the levels of abstractions described above.

In figure 7?7, 8-bit memory addresses 100 and 101 are the points of com-
munication, or ports for a device. The device uses address 100 to read data
(get input) and address 101 to write data (send output). A register abstracts
away from this detail, and therefore, reading from the register would fetch the
contents of memory at 100, and writing to the register would write into the
memory location 101. This register however contains three independent values,
with the first value taking up three bits, the second taking up two, and the last
taking up three bits. The abstraction of a wvariable allows the programmer re-
ally must interact with the device without having to manually perform bit-level
operations to get and set the values.

How did Dewil affect the software development process?

In the absence of Devil, the writing software to interact with a hardware
device was as follows

e Read and understand documentation from hardware manufacturer
e Express interface constants such as addresses and bit masks in header files

e Write interfacing code interspersed in C files on a by-need basis

In this process, maintenance of software is made difficult because understanding
the device interface involves inspecting all the code. It also involves extensive
testing to ensure that hardware interface is properly coded to be semantically
consistent. This might not always catch all errors. Finally this process would
have to be repeated for every new project (even if it used a similar hardware
device), and this reduced the opportunity for code reuse.

On the other hand, software development process using Devil involves these
steps:

e Derive hardware interface specifications from documentation provided by
the manufacturer

e Encode the derived specification in Devil

e Use the Devil compiler to generate a header file that has macros to interact
with device variables

e Write application code using macros in the header file generated in the
previous step

How was Devil used? Devil was used in the project to reduce the program-
ming overhead of bit manipulation involved in communicating with an external
memory subsystem via memory-mapped registers.

In this project, the communication with the memory subsystem is through a
set of registers that are memory-mapped onto a set of locations starting at two
base addresses (0x3fe0-0x3fe6, and 0x3fef-0x3fff). Many registers have sets of
bits assigned for different values or flags. For example, one 16-bit register (for
the program flag data) has the following layout:

bits 15-8 unused

bit 7 ADC flag
bit 6 tp3 flag
bit 5 tp2 flag
bit 4 tpl flag

bits 3-0 mux channel selector bits
In the original C header files, these flags are written using carefully com-
puted constants for performing masking operations as shown below for set-
ting/resetting the bit for the ADC flag

#define SET_PF7_ADC_CONVST 0x0080
#define RESET_PF7_ADC_CONVST OxFF7F

The Devil specification for the device was obtained by inspecting the defini-
tions of such constants, and their uses in the .c files. The above two lines are
expressed in Devil code as

variable flag_data_adc =
REG_PROG_FLAG_DATA[7] : {SET_ad <=> ’1’, RESET_ad <=> ’0’};

Based on this Devil specification, two C macros (get_flag data_adc and
set_flag data_adc) which read and write the value of this bit are generated by
the Devil compiler. The original C code that involved communication with the
external memory was then rewritten to use these macros. The resultant code
was undoubtedly easier to read and is expected to be easier to maintain.

We now describe our experience using Devil.

How easy was writing Devil specifications? Using Devil-generated code and
retrofitting it onto existing code in this project presented the following practical
problems: The C code has one common header file that consists of the constants
used for this device. However, the uses of registers used to communicate with
the external memory subsystem are spread over many .c and other .h files.
The specification for this subsystem had to be be inferred by carefully reading
and documenting the exact use of each of the registers (and their bits) in all
these files. Furthermore, it was necessary for me to talk to the original code
author to ensure that the Devil specifications that I had derived from studying
the code were correct.

How easily was Devil integrated with existing code? Rewriting the C files
to use Devil-generated macros was fairly simple. However, some of the Devil-
generated macros could not be used, and gave errors. I had to manually fix
these macros to be usable, in particular the macro to set a whole structure is
generated with a different name than that given in the documentation. Since
Devil assumes the Unix environment, it used the inw and outw functions which
are not available in the Analog Devices C compiler used at Schlumberger. I
had to manually write macros to define inw and outw. Devil generated .h files
also use the types ul6 and u32. These are not defined in the Analog Devices
C compiler either and I had to redefine them too. After these small changes,
the new code compiled and ran in the Visual DSP++ software development
environment without any problems.

How applicable was this tool? While there are many lines of code that involve
bit-manipulation, the overall percentage of efforts spent in writing this code is
not significant in comparison to the whole project. Similarly, most of the debug
time was spent in removing errors in arithmetic calculations. There were also no
chances to try out the advanced features of Devil (such as register serialization,
automata-based addressing mode, block transfer) given the relative simplicity
of the device interface that this program used. I was told, however, that other
projects have very similar interfaces with external memory subsystems, and the
specifications for this project can be fruitfully reused in the other projects.

How did it affect performance? Performance was measured using the changes
to the size of the code. The code sizes compared thus:

Memory Segment | Original | Devil | Difference
mem_code 0xd92 OxeOb | 121
mem_datal 0x252 0x25e | 12

Devil thus came at a code size cost. In this particular project, however, most
of the communication with the external memory subsystem is done in an initial

setup phase, and not in the main program loop, and so it does not affect the
runtime significantly.

2.2 CCured

CCured [?, 7] is a tool for analysis and re-engineering of C programs to guarantee
runtime safety. It achieves this using a pointer-based analysis, which works by
classifying pointers by observing the context in which they are used, and then
ensuring that all the uses of pointers are safe. It optionally inserts code to ensure
the safety of potentially unsafe pointer operations, and offers better analysis and
smaller runtime overhead than some other current commercial tools.

The pointer analysis classifies pointers into three categories, safe, sequence,
and wild. Pointers in the safe category are those that are not subjected to
either arithmetic or casting. It is therefore sufficient to only ensure that such
pointers are non-null when they are dereferenced. Sequence pointers are those
that are used to iterate through arrays. In addition to requiring them to be
non-null, we must also ensure that they are restricted to the bounds of the
array. Sequence pointers that are used to traverse the array in only the forward
direction require an upper-bound check, while those used in a bidirectional
manner (either traverse forward or backward in the array) require both upper
and lower bound checks. Finally, the wild pointers include all other pointer uses
(e.g. casting), and in addition to nullity and bound checks, they also require
knowledge of the data that is being pointed to. This is necessary to ensure that
any casting that is performed will result in pointing to data that is compatible
with the type that it is cast to.

A small example illustrates the use of CCured. Consider a function addAll
(as shown below) that returns a sum of all elements of an array of length len
and starts at p.

int addAll(int * p, int len)q{
int sum = 0;
for(;len >= 0; len--, p++)
{sum += *p; }
return sum;

In this function, we must ensure (a) that the increment p++ in the for loop is
within array bounds , and (b) that the dereference operation *p is safe. This is
achieved by CCured by making a new structure to represent forward-traversing
pointers such as p, given by fseq_int shown below.

typedef struct fseqp_int {

int * _p ;
void * _e ;
} fseqp_int;

In this structure, _p is used to point into the array, and _e acts as a sentinel
to check that _p never points to a location beyond what _e points to. Using
this structure, CCured cures the function addA1l to give the function addAll_f
shown below. This function is guaranteed by the type system of CCured to be
safe and free from runtime memory errors.

int addAll_f(fseqp_int p, int len)
{
int sum;
sum = 0;
while (len >= 0) {
CHECK_FSEQ2SAFE
(p._e, p-_p,
sizeof (int) ,sizeof (int),1,0);
sum += (x(p._p));
len--;
CHECK_FSEQARITH
(p._p, sizeof(int), (p._p + 1));
P-_p = Pp._p + 1;
}
return sum;

3

Notice the insertion of two checks CHECK_FSEQ2SAFE and CHECK_FSEQARITH
that ensure that the pointer dereferencing is safe, and that the pointer arithmetic
is safe respectively.

How did CCured affect the development process?

In the absence of CCured, there was no compiler-supported technique to
guarantee safe uses of pointers. It was therefore the programmers responsibility
to ensure that all pointer uses and manipulations were safe. In this process,
errors that arise due to pointer misuse cannot be found statically, and debugging
them is difficult and time consuming. Commercially available tools such as
Purify are sometimes used to detect memory errors, but this is not a part of the
standard software development process.

CCured was used to find any possible unsafe pointer uses in the project code.
The process of using CCured involved first preprocessing all the source files in
the code and merging them. CCured then uses its analysis to determine any
possibly unsafe pointer uses. If such uses are found, CCured instruments the
code to make these uses safe. The instrumented code is then compiled to produce
the final executable binary. CCured was used in the software development
process by simply replacing the Visual DSP++ compiler that was originally
used for this project by the CCured compiler. Output given by the CCured
compiler was inspected to determine if there were any erroneous or possibly
unsafe pointer uses. The original code was then changed to take into account
these uses.

We now present our experience using CCured.

How easy was it to use CCured? Using the CCured system is easy since it
requires no new language to be learnt. I started by writing a makefile manu-
ally. This step is not necessary in the Schlumberger environment, because the
Visual DSP++ build function performs dependency analysis and automatically
generates its makefile equivalent. Therefore, knowledge of writing makefiles is
necessary to use this tool. While there is some documentation on using CCured,
it does not explain in sufficient details the process of writing makefiles so that a
user can understand what exactly all the options do and how to correctly invoke
them. I had considerable problems being able to specify the options for browser
feature that allows an easier inspection of the CCured analysis output. On Unix,
CCured outputs a xxx.cured.c and xxx.cured.i from file xxx.c which shows the
cured output. On Windows (under Cygwin) these files are not generated (using
the same makefile options)

How easy was it to integrate CCured with existing code? The original C
code has some inlined assembly code. While CCured understands (to some
extent) asm directives, it assumes x86 assembly. I therefore commented out
this code (rather, wrote #define asm(x) /* nothing */). The Schlumberger
Visual DSP++ compiler also makes references to some non standard types. For
example, the type wint_t is not understood by CCured. I defined this type to
int. The system also makes some preprocessor definitions (e.g. __ADSP21XX__
to define the processor type) that are not made explicit in the .c or .h files.
This prevents the correct preprocessing of some of the system header files (e.g.
sysreg.h) It required a manual inspection of the code and I had to determining
all such variables that needed to be defined that would allow the system files to
be correctly processed.

How applicable was this tool? 1 noticed that pointers were used sparingly in
the code. There is no dynamic memory management (all arrays are fixed-sized
and statically declared). This works well for the Schlumberger applications
because the sizes of data to be processed are known before hand, and all sub-
systems only interact through fixed sized messages. Therefore, the code did not
present sufficient opportunities to investigate the full potential of the CCured
system. On the other hand, it was instructive to compare the warning mes-
sages given by CCured with those given by the Visual DSP++ system. In the
comparison, I found that CCured was able to infer safe uses of pointers that
Visual DSP++ was not (and therefore gave no warning messages for the same),
but also flagged some uses of constant values as pointers (for memory mapped
registers) as potentially unsafe. The fact that these assembly instructions were
not for x86 architecture meant that CCured could not be used to inspect the
assembly statements. CCured now also has the ability to work with C++ files.
For larger projects which might involve more dynamic memory management
uses, CCured will be of much more help.

How was the performance affected? Compiling with CCured as opposed to
Visual DSP++ takes similar amount of time. Since some code was instrumented
by CCured, the runtime performance will be slowed. This might be problematic
since many applications involve interrupt handlers that must finish execution
in some predetermined time period. CCured therefore is better used more as

a tool to point out potential problems than to fix them. This is also necessary
because of the fact that the programmer must inspect the generated assembly
code sometimes to ensure some conditions (such as the optimal assignment of
variables to registers for execution speed) and link it to the source code which
he can inspect.

2.3 Cyclone

Cyclone [?] is a general-purpose, C-based, statically typed, safe language. Cy-
clone is intended to be a safe substitute for C, and allows C programmers to use
many of the popular (though potentially unsafe) C idioms in a safe manner.

Cyclone’s type system ensures that programs are safe by imposes some re-
strictions on uses of pointers. For example, it ensures that pointers are never
null if they are dereferenced. Pointer usage must be disciplined in that it must
ensure that pointers are initialized, and that pointer arithmetic must be re-
stricted to obey array bounds. Casts must be performed in a manner that can
be shown to be safe. No goto into scopes is allowed, and the use of functions
setjmp and longjmp is not supported.

Some of the extensions in Cyclone include: “Fat” pointers that involve run-
time bounds checking for safe pointer arithmetic, tagged unions for type varying
arguments, polymorphism to replace uses of void * so that they are safe, im-
plementation of variable-argument functions using fat pointers instead of the
potentially unsafe vararg mechanism used in C, use of exceptions replace some
uses of setjmp and longjmp, and an optional automatic memory management
scheme for applications that can use garbage collection without any problems
arising due to the associated runtime overheads.

Cyclone allows a programmer to specify different kinds of pointer types with
its extended syntax. For example, to specify that a function getc takes a non-
null file pointer fp and returns an integer, we write int getc (FILE @ fp);
(in contrast to just int getc(FILE * fp); in C). This ensures that getc can
only be called for pointers that can be statically shown to be non-null. As a
result, fp itself can be guaranteed to be non-null in the body of getc. Array
pointers are written using fat pointers. For example, a function strlen that
takes a string implemented as a pointer to characters and returns its length
is written in Cyclone as int strlen (char ?7); (instead of just int strlen
(char *); in C). A fat pointer holds information about the length of the array,
and performs bounds check at each array access.

The following example illustrates how the strlen function would be written
in C and in Cyclone.

The C implementation shown below takes a pointer argument char *s, as-
signs it to a local pointer p, which is then used to iterate through the array in-
crementing i which holds the length, until the end-of-string character is found.
Since this character might lie outside array bounds, this code is not safe.

int strlen(const char *s){
const char *p = s;

int i = 0;
for (i=0;*p;i++,p++){
}

return i;

In contrast, the Cyclone implementation shown below takes a fat pointer
char 7s and ensures that p the local pointer is never accessed beyond the array
bounds (using its array-length information assigned to the variable n).

int strlen(const char 7s) {
const char *p = s;
int i, n;
n = numelts(s);
for (i=0; i<n && *p; i++,p++) {
}

return i;

The tagged unions in Cyclone allow us to ensure that the variants in the
union types are never used in an unsafe manner.
Consider the C code below:

struct arg {
union {
int i;
char * s;
} ot
int tag;
3
void pr (struct arg x) {
switch (x.tag) {
case O:
printf (“‘%d’’, x.t.i);
break;
case 1:
printf (“‘%s’’, x.t.s);
break;

In this code, the structure arg has a union t (of an integer and a char
pointer), and uses a tag to keep track of which variant it currently has. The
programmer must first implicitly make an assumption that a tag of 0 implies
that the union carries an integer value, and that a tag of 1 implies that the
union carries a char pointer value. Furthermore, while writing code such as the
function pr, which uses the union, the programmer must be careful to ensure

10

that (in the switch statement) the tag value is properly matched with the
variant that is used. It is easy to make a mistake such as

case 1:
printf (“‘%s’’, x.t.i);
break;

where the tag (= 1) and the variant (= i) do not agree. Instead, in Cyclone,
one would write

tunion t {
Int(int);
Str(char ?);
};

void pr(tunion t x) {
switch (x) {
case &Int(i):
printf ("%d",1i) ;break;
case &Str(s):
printf("%s",s); break;

Here, each variant in the union is explicitly tagged (using tags Int and
Str). The switch statement can then pattern match using these variants as
shown above which would make it impossible to make the error shown above.

How did Cyclone affect the process?

The existing development environment used C which did not ensure that
pointer usage was safe. Therefore, the programmer was burdened with the
responsibility to ensure that all pointer uses and manipulations were safe. This
is tedious, and any programmer errors cannot be found statically, and debugging
them is difficult and time consuming.

Using Cyclone would allow us to be able to have a safe version of the motor-
control software. This involved rewriting all the sources in Cyclone (and chang-
ing the pointer types as necessary) to ensure that the program is safe to run.
The Cyclone compiler has a command-line porting option (cyclone -port) which
was used to first convert the C files to Cyclone files, and then the Cyclone
compiler was invoked instead of the C compiler to compile these files.

How easy was it to use Cyclone? The Cyclone language is mostly easy to
learn and use. The difficult parts seem to involve the region annotations for
dynamic memory management. However, since there was no dynamic memory
management in this project, I had no opportunity to use regions. The porting
option did not output too many changes. In fact, the only change required
me to annotate some functions with an extra region polymorphism argument.
There were also some bugs with the Cyclone system that I managed to get fixed
by communicating with the author.

11

How easily did the C code to convert to Cyclone Not all the C code could
be translated to valid Cyclone code. The C code has some inlined assembly
code. Cyclone does not understand the asm directive, and therefore functions
containing inlined assembly could not be translated. Cyclone also cannot handle
some of the pointer uses in the C code. As a concrete example, the project
requires some absolute addresses to be written to and read from. Cyclone
deems this to be unsafe and therefore functions involving such code could not
be translated to Cyclone. Cyclone also uses its own header files and libraries.
This might prove to be a problem when trying to convert C code which relies
on preexisting libraries to Cyclone.

How applicable was this tool? As with CCured, the absence of dynamic
memory management and (relatively) sparse pointer usage means that the code
does not present any significant opportunities to investigate the full potential
and benefits of Cyclone. Furthermore, the fact that Cyclone does not allow
low-level absolute memory location access would be an impediment to writing
embedded software where such operations are routinely used. A balance might
be found by developing a part of the software in Cyclone, while the low-level
operations might be written in a (throughly tested and debugged) C library.
The absence of multi-threading in the test application also prevented the use of
Cyclone to statically check for safe locking for shared variables. I was informed
that other embedded software does use multi-threaded programs, and the use of
Cyclone in the development of such programs would significantly benefit from
the use of Cyclone.

How did it affect performance? It was not possible to compile the code
using Cyclone because some critical parts of the code are not allowed as legal
by Cyclone. It is not clear to me as to how this can be overcome (mainly the
low-level memory access). Even assuming that these parts could be made to
work, Cyclone would still slow down the performance since it inserts extra safety
checks into the code.

2.4 Blast

Blast[?] is a C-based model checking tool. A Blast user first specifies program
properties to be checked. The model checker ensures that program respects
these properties. If not, it shows where problems might lie. A small example
shows the basic idea behind model checking with Blast.

Consider the two implementations of foo shown below. They are identical
except for implementation (1) having x = x - y, while implementation (2) has
x = y - x. Assume that we would like the program to have property that x
should be greater than zero after the subtraction. In both of them, we check this
property using the statement assert(x > 0);. In model checking, the basic
idea is to statically check that assert statements do not fail for any execution
path taken by the program. In implementation (2), if the if branch is taken,
then we encounter a false assertion, and therefore this implementation would be
marked as erroneous by a model checker.

12

#include <assert.h>
int f1(int x, int y) {
if (x > y) {
X=X -7y;
assert(x > 0);

}

#include <assert.h>
int £2(int x, int y) {
if (x> y) o
X =y - X;
assert(x > 0);

3

In Blast, we use this same basic idea to check for much more complicated
properties of programs. Consider, for example, the following function £.

fract16 £ (void) {
Aiéable_intr();
enable_intr();
%ﬁile(cond2) {
é%itch (x) {
ééée (2):
disable_intr();
enable_intr ()
.; break;
}

disable_interrupts();

enable_interrupts();

We would like to to satisfy the property that it starts with interrupts being
enabled, and only has alternating calls to enable and disable. This ensures
that we do not enable (or disable) an already enabled (or disabled) interrupt.

13

This property can be captured using the state machine shown below: In
Blast, we encode this property using the following specification:

global int enabled = 1;

event {
pattern {enable_intr (); }
guard {enabled == 0 }
action { enabled = 1; }

}

event {
pattern {disable_intr (); }
guard {enabled == 1 }
action { enabled = 0; }

The variable enabled says which state we are in (0 or 1). The event con-
struct specifies the transitions. For example, if we are in state 0 (guard{enabled
== 0}), and we encounter the statement enable_intr();, then we transition
to state 1 (action{enabled = 1}). Using this specification Blast model checks
the function f to ensure that it satisfies the required property.

Blast can be used to specify and check for various properties including those
that concern thread safety, reachability, dead-code analysis, secure function call
sequences, and consistency of parameters in function calls.

How did Blast affect the software development process? The existing software
development process did not make use of model checkers to verify software;
C sources were compiled into binaries, and all verification was performed by
manually testing this binary. Using Blast, the software development proceeded
as follows: First, it was necessary to identify what properties or invariants
were desired at runtime. (In our case, the property ensured that the calls to
the enabling and disabling of interrupts were properly sequenced.) A Blast
specification file was then written to encode these properties. Then, a program
in the Blast software (spec.opt) was used to instrument the C code to facilitate
checking of the desired properties. Finally, the Blast model checker is run on
this instrumented code, and flags violations of the properties if any are found.
If Blast is unable to generate any errors, then the C source code is guaranteed
to comply with the properties. The uninstrumented C source code then can be
processed further using the existing tools.

How easy was it to use Blast? Using Blast involved many problems. Al-
though I was able to install Blast on Windows under Cygwin, it did not work
correctly. I was not able to reproduce the results for tutorial examples that
come as a part of the Blast distribution. Furthermore, attempts to contact the
authors to resolve this problem were futile. These examples did run on the
Linux installation as described in the manual. Since Blast considers undefined
(but declared) functions as black boxes that do not effect the property under

14

consideration, it was possible to verify only parts of the project. Blast did not
scale up when more files were added (into the instrumented code). Blast gives
an error message and then quits even when the new files do not at all affect the
property under consideration. The documentation did not have any detailed
descriptions of the error messages. My attempts to overcome this failure by us-
ing and changing Blast command-line options were futile. The options are not
well-documented, and many are not implemented. Furthermore, a large part
of the Blast query language does not seem to have been implemented in the
Blast-1.0 version that is available for download. It might also be difficult for
programmers not used to writing logical formulae that the Blast query language
uses to express property specifications. This may present a steep learning curve
for Blast, and any other model checkers, in general. Since the Blast graphical
user interface did not work for me, it was very difficult to parse the error traces
and link it to the erroneous parts in the source code. I see this as another
potential difficulty in using Blast.

How easy was it to integrate Blast with the project code? The Blast distribu-
tion contains a spec.opt binary which generates an instrumented C file from the
property specification and C sources does not work when nonstandard headers
are used. C compilers have a -I option to allow the specification of paths which
must be searched for header files. This option does not work with spec.opt,
and as a result, the user must manually copy all headers (not in the standard
include path to the current path). No other special effort was necessary while
integrating the existing C source code with the Blast framework.

How applicable is this tool? Since model checking can be used to ascertain
that the code respects a wide variety of properties, there are many applications
for Blast in the Schlumberger program development process. For example, prop-
erties such as function reachability, dead code elimination, (non) occurrence of
certain safety critical function call sequences, safe multi-threading, and correct
interrupt handling are all relevant to the embedded software programs being
developed at Schlumberger.

Does it affect performance? Since Blast does not involve modifying source
code, it does not affect the runtime performance.

3 Conclusions

The following two tables summarize the experience using each of the tools with
respect to a variety of concerns.

Purpose Applicability | Learning | Ease of Effect on
Curve Integration | Performance
Devil Device Interface | High Medium | Easy Slowed
CCured | Memory Safety | Low Low Medium Slowed
Cyclone | Memory Safety | Low Low Medium Slowed
Blast Model Checker | High Medium | Easy N/A

15

Level of | Level of | Level of User Environment

Support | Maturity | Automation | Expertise | Required
Devil N/A Medium | Low Medium | Cygwin
CCured | N/A Medium | High Low Cygwin
Cyclone | Good Medium | Low Low Cygwin
Blast Bad Low Low High Linux

We noticed that there were more opportunities to exploit the advantages that
Devil and Blast offer than CCured and Cyclone. This was primarily because the
embedded software developed at Schlumberger avoids the use of dynamic mem-
ory management (not so much because of the complications involved as much as
because of the fact that either the hardware is often not sophisticated enough
to support it, or because memory requirements can be determined statically).
On the other hand, CCured and Cyclone were easier to learn and required lower
user expertise, because Blast and Devil both required the user to be familiar-
ized with new languages and notations. CCured and Cyclone also proved to
be more difficult to integrate with the existing framework because they affected
the main C sources directly (Cyclone involved using another language while
CCured involved instrumenting the C source code). On the other hand, using
Devil required a preprocessing step (the generation of Devil macros) and using
Blast was a post-processing step, both of which did not interact with the main
C software development process. Other than Blast (which did not have any
effect on the final executable), all other tools involved the insertions of addi-
tional runtime checks to ensure safety. This impacted negatively on the runtime
performance.

From the software engineering point of view, since the tools were freely
available implementations of research ideas, they had a low level of support and
were not as mature as the commercially available tools. It would require some
time for these tools to mature (remove existing bugs and allow easier integration
with popular commercial tools) and be practically usable. Other than CCured,
all other tools necessitate significant changes to the software development cycle
that involve manual input, and therefore affect the level of automation of the
process.

3.1 Response to this study

I presented the results of this study to members of the embedded software devel-
opment group at Schlumberger. A brief discussion following this presentation,
where members voiced their opinions and concerns.

A primary concern was regarding the maturity of these tools and the level
of support that would be available. Since many of these tools had incomplete
documentation, and did not always behave as expected, there was a concern
that the current and future use of these tools could be hampered due to the
lack of support for them.

Another concern was how easily the tools could be used with the existing
systems at Schlumberger. As a concrete example, I was told that most software

16

projects have an automatic generation of makefiles which do not allow analysis
tools to be conveniently pipelined into the software development process. Sim-
ilarly, software is sometimes dependent on particular versions of development
tools (e.g. the VC++ compiler versions), and it is necessary for any newer tools
to conform to the requirements of these tools.

Several members also felt that memory safety was not an important enough
issue to justify either the use additional software or a different language in their
development process. I was informed that some of the compilers that are used
at Schlumberger already provide options to insert checks for null pointers and
array bounds, and that most applications are written to avoid dynamic memory
management, which reduced the opportunities to get much benefit from using
these tools. I was also informed that it is their practice to use the commercial
tool Purify to ensure the memory safety of their programs.

There was also a strong preference for analysis tools that do not modify the
code in any manner. Some members told me that they would not like to lose
control over their code by using tools that perform automatic instrumentation
of code, since this makes it harder to debug, analyze, and maintain the code.

In relation to Devil, I was informed that some companies such as Texas
Instruments already provide programmers the type of high-level C interfaces
that are generated by Devil. However, a large fraction of hardware that is used
comes with no such interfaces, and that Devil would certainly be of some interest
in projects using such hardware.

3.2 Future Collaboration

Based on the feedback I received on my presentation, I feel that the embedded
software group members were most excited about using tools such as Devil and
model checkers (though not Blast specifically). I have identified the following
next steps in our collaboration with Schlumberger.

e Study other software projects at Schlumberger that might involve more
opportunities for exploiting the benefits that these tools can yield. Since
other software developed at Schlumberger involves advanced features such
as dynamic memory management, multiple interrupt handling, and multi-
threading, they could provide an ideal test suite against which the research
tools considered could be evaluated to their full potential.

e Study other research and commercial tools to examine how they can aid
the software development process at Schlumberger. Research tools such
as NDL and Spin offer benefits similar to Devil, while other commercial
tools such as SVM could also be considered for their benefits in model
checking.

e Concentrate on interface definition languages and model checking tools
to come up with implementations of these tool that are specialized to
the software development process and environments at Schlumberger. In
addition to a research component, this will also involve an engineering

17

4

component that involves working out the details of a seamless integration
with the existing development environments.

Acknowledgments

I would like to acknowledge Thierry Simien and Shyam Mehta for their help in
initiating the collaboration and this study, to Maheswar Gattupalli and Sridhar
Sana for their help with many matters (technical or otherwise) throughout the
study, and Walid Taha for all his inputs and direction.

References

1]

J. Condit, M. Harren, S. McPeak, G. Necula, and W. Weimer. Ccured in
the real world. In ACM SIGPLAN Conf. on Programming Language Design
and Implementation, pages 232—-244, San Diego, CA, June 2003.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire Sutre.
Lazy abstraction. In Symposium on Principles of Programming Languages,
pages 5870, 2002.

T. Jim, G. Morrisett, D. Grossman, M. Hicks, J. Cheney, and Y. Wang.
Cyclone: A safe dialect of C, 2002.

F. Merillon, L. Reveillere, C. Consel, R. Marlet, and G. Muller. Devil: An
IDL for hardware programming, 2000.

George C. Necula, Scott McPeak, and Westley Weimer. CCured: type-safe
retrofitting of legacy code. In Symposium on Principles of Programming
Languages, pages 128-139, 2002.

L. Reveillere, F. Merillon, C. Consel, R. Marlet, and G. Muller. A DSL
approach to improve productivity and safety in device drivers development,
2000.

18

