
Little Languages and their Programming Environments
Rice University Technical Report TR99-350

John Clements, Shriram Krishnamurthi, and Matthias Felleisen
Department of Computer Science

Rice University
Houston, TX 77005-1892

Contact: <clements@cs.rice.edu>

December 1, 1999

Summary

Programmers constantly design, implement, and program in little languages. Two differ-
ent approaches to the implementation of little languages have evolved. One emphasizes
the design of little languages from scratch, using conventional technology to implement
interpreters and compilers. The other advances the idea of extending a general-purpose
host language; that is, the little language shares the host language’s features (variables,
data, loops, functions) where possible; its interpreters and compilers; and even its type
soundness theorem. The second approach is often called a language embedding.

This paper directs the attention of little language designers to a badly neglected area:
the programming environments of little languages. We argue that an embedded little lan-
guage should inherit not only the host language’s syntactic and semantic structure, but
also its programming environment.

We illustrate the idea with our DrScheme programming environment and S-XML, a lit-
tle transformation language for XML trees. DrScheme provides a host of tools for Scheme:
a syntax analysis tool, a static debugger, an algebraic stepper, and an interactive evaluator.
S-XML supports the definition of XML languages using schemas, the convenient creation
of XML data, and the definition of XML transformations.

The S-XML embedding consists of two parts: a library of functions and a set of syn-
tactic extensions. The elaboration of a syntactic extension into core Scheme preserves the
information necessary to report the results of an analysis or of a program evaluation at the
source level. As a result, all of DrScheme’s tools are naturally extended to the embedded
language. The process of embedding the S-XML language into Scheme directly creates a
full-fledged S-XML environment.

We believe that this method of language implementation may be generalized to other
languages and other environments, and represents a substantial improvement upon cur-
rent practice.

2

1 Reusing Language Technology

Programmers constantly design little programming languages. Many of these languages
die a quick death or disappear under many layers of software; network protocols, GUI
layout declarations, and scripting tools are examples. Others evolve and survive to fill a
niche; AWK, make, Perl, and Tcl come to mind.

Once a programmer understands that some problem is best solved by designing a new
little language, he must make an implementation choice. One possibility is to build the lit-
tle language from scratch. This option involves the tasks of specifying a (typically formal)
syntax, a (semi-formal) system of context-sensitive constraints, and an (informal) seman-
tics; and of implementing the required software: a lexer, a parser, a type checker, a code
generator and/or an evaluator.

The other option is to extend an existing general-purpose language with just those
constructs that the task requires. In this case, the little language shares the host language’s
syntax (variables, data, loops, functions) where possible; its interpreters and compilers;
and even its type soundness theorem. The second approach is often called a language
embedding.

The following table summarizes the strong differences between strategy of implement-
ing a language “from scratch” in a language A and the strategy of embedding a little lan-
guage into a language B.

designing a little language “from scratch” embedding a little language
variables, loops, etc. are designed explicitly variables, loops, etc. are those of B
safety/type-soundness may not exist safety/type-soundness is that of B

lexer is implemented in A the lexer is an extension of B’s
parser is implemented in A the parser is an extension of B’s
validity checker is implemented in A the validity checker is B’s
interpreter is implemented in A the interpreter is B’s

Succinctly put, the “implement from scratch” strategy uses technologies; an embedding
shares, and thus truly reuses, technology for the construction of a little language.

This paper argues that, and illustrates how, a language embedding can reuse more of
the host’s technology than just the evaluator. Specifically, we argue that if a programming
environment for a host language is properly constructed and if we use a well-designed
embedding technology, the mere act of constructing the embedding also creates a full-
fledged programming environment for the little languages.

In support of our argument we construct an embedded little language, called S-XML,
and derive its environment from DrScheme, our Scheme programming environment [6].
S-XML permits programmers to create and manipulate XML-like data. More precisely,
they can use a set of constructs to specify XML trees in a natural manner, and they can
define tree transformations on the data with an easy-to-use pattern-matching construct.
DrScheme provides a host of tools for Scheme: a syntax analysis tool that includes a vari-
able binding display and a variable renaming mechanism; a static debugger; an algebraic
stepper; and an evaluator that correlates run-time exceptions with the program source.

1

� article �
� header �

� title � Pokemon Rekindle WWII Sentiments � /title �
� author � Bobbi Bland � /author �

� /header �
� text �

Responding to an armed incursion of the
feared Japanese "Pocket Monsters," President
Clinton today declared a state of war in our
nation’s "schools, playgrounds and young minds."

� /text �
� /article �

Header

Article

Text

Title Author

chars chars

chars

Figure 1: Correspondence between concrete and abstract syntaxes

The S-XML embedding consists of two parts: a function library and a set of constructs
that cannot be defined as functions. The implementation of the latter exploits DrScheme’s
syntax definition mechanism, which, in turn, is based on Scheme’s macro technology.
DrScheme’s syntax extensions are completely transparent to DrScheme’s tools. The elab-
oration of a syntactic extension into core Scheme preserves all necessary information to
report the results of an analysis or of a program evaluation at the source level. By adding
two small extensions that undo the elaboration at certain strategic places, we thus ensure
that DrScheme’s syntax checker checks the syntax and context-sensitive properties of S-
XML transformations; the static debugger turns into an XML validity checker; the stepper
shows how the transformations rewrite XML trees at the level of XML data constructors;
and the interpreter prints XML results and reports errors in terms of S-XML transforma-
tions. In short, the process of embedding the S-XML language into Scheme directly creates
a full-fledged S-XML environment.

The following section introduces XML and S-XML; the third section discusses the S-
XML embedding in Scheme. The fourth and fifth section present DrScheme and the little
language environment created with the embedding. The underlying technology is ex-
plained in the sixth section. The seventh section relates our work to the relevant areas. The
last section summarizes our ideas and suggest topics for future extensions.

2 A Running Example: S-XML

To Illustrate our ideas, we develop a little language—and an accompanying programming
environment—for operating on XML documents.

2.1 XML

XML (for “eXtensible Markup Language”), is a proposed standard for a family of lan-
guages. It was designed to provide a middle ground between the universally accepted but
inconsistent and semantically rigid HTML language and the extensible but overly complex

2

� schema �
� element name � "header" �

� sequence � � element-ref name � "title"/ �
� element-ref name � "author"/ �

� /sequence �
� /element �
� element name � "body" �

� mixed � � pcdata/ � � mixed/ �
� /element �
� element name � "article" �

� sequence � � element-ref name � "header"/ �
� element-ref name � "body"/ �

� /sequence �
� /element �

� /schema �

Figure 2: A simple schema for newspaper articles

SGML family of languages. An XML element may be either character data or a tag pair
annotated with an optional attribute association list and enclosing a list of zero or more
XML elements[2]. In this regard, HTML and XML are similar.

On a deeper level, XML consists of two related parts: a concrete syntax and an abstract
syntax. Figure 1 shows an example of the concrete syntax and a corresponding abstract
syntax tree.1

Specific languages within the XML domain are specified using “schemas”. A schema
defines the set of valid tags, their possible attributes, and constraints upon the XML el-
ements appearing between a pair of tags. A schema for the newspaper article language
from figure 1 appears in figure 2.2 This schema specifies, among other things, that the
header field must contain a title and an author. The ability to specify XML languages explic-
itly using schemas is what most clearly separates XML and HTML.

XML documents are data; in order to use this data, programmers must write programs
that accept and manipulate this data. Walsh[23], a member of the XML design team, states:

. . . [I]t ought to take about two weeks for a competent computer science
graduate student to build a program that can process XML documents.

The implication is that processing XML data is a tedious and time-consuming process,
involving the design and implementation of a project-specific package of I/O routines.

Below the surface syntax, XML expressions are purely trees. Each node is either char-
acter data or a tagged node containing a set of attributes and a set of subtrees. A program
that processes XML data will be a tree-processing program. Given the complexity of the
defined syntax, it makes sense to abstract away from that concrete syntax into a purely
tree-based paradigm.

1This example is taken from an assignment in a Rice University undergraduate class.
2The W3C has not yet settled on a schema standard. The schema shown here is written in a simple illustra-

tive schema language designed to be read easily. Also, the trivial schemas for author and title are omitted.

3

� html �
� head � � title � Pokemon Rekindle WWII Sentiments � /title � � /head �
� body �

� center �
� h1 � Pokemon Rekindle WWII Sentiments � /h1 �
by Bobbi Bland

� /center �
� spacer type � "vertical" size � "20" �
� p �

Responding to an armed incursion of the
feared Japanese "Pocket Monsters," President
Clinton today declared a state of war in our
nation’s "schools, playgrounds and young minds."

� /p �
� /body �

� /html �

Figure 3: The result of a simple XML transformation

Once the work of parsing concrete syntax is moved out of the programmer’s domain,
processing XML trees becomes a more manageable task. Many if not most XML programs
will consist of a small set of tree transformations, taking the data from one XML language
into another. For instance, a newspaper’s web site might be designed to transform an
article stored in an XML-structured database (as shown in figure 1) into a web page shown
to a reader. The result of this transformation is illustrated in figure 3.

2.2 S-XML

The simple and specialized nature of XML transformations makes them an ideal candidate
for an embedded language solution. The language should include special forms for cre-
ating and validating XML elements, and a mechanism for expressing tree transformations
easily. On the other hand, a language for XML processing should not preclude the produc-
tion of more complex programs. Rather, it should allow programmers to work with the
full power of the general-purpose host language, if they so choose.

We call this language S-XML. It uses S-expressions to match the tree-based structure
of XML elements. It provides the xml and lmx forms for creating XML elements and
embedding computation; the xml-match form to state pattern-based transformations on
these elements; and a language of schemas to express language restrictions. We explain
these constructs below.

2.2.1 xml

The little language must provide language forms for constructing XML elements conve-
niently, because any program that transforms XML data needs to construct XML elements.
To take a simple example, a HTML footer might contain a horizontal line and a page num-
ber. In XML’s concrete syntax, such a footer might be expressed as a string:

4

(define (format-article xml-article)
(xml-match xml-article (title-string author-string body-text T) ; keywords

[(article (header (title title-string) (author author-string)) ; pattern
(text body-text . . .))

(xml (html (head (title title-string)) ; result
(body (center (h1 title-string) "by " author-string)

(spacer ((type "vertical") (size "20")))
body-text . . .)))]

[(page T)
(error ’format-page "badly formatted xml-article")]))

Figure 4: A simple transformer

"
� center � this is page number � em � 3 � /em � � /center � "

The obvious shortcoming of the string representation is its lack of structure; every proce-
dure which operates on this data must parse the string all over again. This is wasteful and
time-consuming. A better way is to transform this text into structured data. Our language
should provide a straightforward way to create such “parsed” structures, independent of
the representation of these data. Ideally, the program text that creates an XML element
should closely resemble the XML text itself, less the end tag.3 In the S-XML language, this
data is therefore represented with the following program text:

(xml (center "this is page number " (em 3)))

Within the form (xml . . .), each nested subexpression is taken to describe an XML element.
Just as double-quotes and backslashes are used in many languages to denote literal data,
xml is used to denote XML literals.

XML elements may also contain attributes. The xml form permits the addition of at-
tributes to elements. These attributes appear as an optional list immediately following the
tag name. So, an HTML body tag with the bgcolor attribute might be written as:

(xml (body ((bgcolor "BLUE")) . . .))

2.2.2 lmx

With the xml construct, programmers can conveniently specify large XML constants. But
programmers may also wish to abstract such tree constructions over certain parameters.
For example, a programmer may wish to specify the footer of a page relative to a page
number. To allow these parameterizations, we add the lmx construct to S-XML:

(lmx expression)

An lmx expression is always a sub-expression of some xml expression. It evaluates its
subexpression; the result is spliced into the XML tree in place of the lmx-expression. Using
a combination of lmx and xml forms, a programmer can now easily define a function that
produces a page footer:

3In an S-expression, there is no need for an end tag; such a tag is unnecessary and may be mistyped.

5

(schema
(element ((name "header"))

(sequence (element-ref ((name "title")))
(element-ref ((name "author")))))

(element ((name "body"))
(mixed (pcdata)))

(element ((name "article"))
(sequence (element-ref ((name "header")))

(element-ref ((name "body"))))))

Figure 5: A S-XML Schema for an Article Language

(define (make-footer page-number)
(xml (center "this is page number: " (em (lmx page-number)))))

2.2.3 xml-match

The programmer now has the tools needed to build elements of the desired XML language.
Next, he needs a mechanism to manipulate these elements in a simple way. The most
convenient method is to use pattern-matching; our S-XML language provides the xml-
match form, to perform pattern-matching and tree-processing on xml elements.

To evaluate an xml-match expression, each pattern is matched against the input. Once
a match is found, the result expression is evaluated, with the bindings introduced by the
pattern-match.

Figure 4 shows the definition of the transformer illustrated earlier. Note that both input
and output patterns are specified in the same way that xml elements are.

2.2.4 schema

One of the most important features of xml is the ability to restrict xml languages, using
schemas. A schema describes the set of valid XML elements for a specific XML language.
A schema is also itself an xml element, and may therefore be described using the same S-
XML conventions. Figure 5 shows the S-XML representation of the schema shown earlier.
A comparison with the XML specification of this schema (in figure 2) reveals the trivial
similarity between the two.

3 Building a Little Language

Much of the functionality of a little language may be established by building a library
of functions and constants. In fact, for some tasks a domain-specific library serves as a
complete solution to the embedding problem.

There are, however, several kinds of language form that cannot be implemented as
ordinary functions. Among these are shortcuts for creating structured data (e.g. xml and
lmx), language forms that introduce variable bindings (e.g. xml-match), and language
forms that affect the flow of control in non-standard ways (xml-match again).

6

These new language forms may be added using macros. Macros are tree-rewriting
rules that are applied to syntax trees during compilation. They elaborate the language
forms of the little language into the forms of the host language. In our case, this language
is Scheme.

3.1 Scheme Macros

The notion of syntactic abstraction is not a new one. Nearly every general-purpose pro-
gramming language has some facility for declaring and invoking macros. However, the
vast majority of these are deeply flawed. Macro systems like C’s gained a well-deserved
reputation as dangerous and inelegant. Their ill-considered use often leads to problems
for novices and experts alike. Embedding a little language in C using these macros would
be difficult at best.

Fortunately, languages like Scheme offer more controlled and useful macro mecha-
nisms. These systems operate on expressions, rather than tokens, and they have a well-
defined semantics as tree rewriting systems. As a simple example, consider the let form
of Scheme. The let form binds values to variable names. In many languages, this type
of operation is built into the language. In Scheme, it need not be. Instead, Scheme may
implement let with a macro that elaborates each use of the form into the application of a
procedure.

Here is the rewriting rule for let:

(let ((� var � � exp �) . . .) � body � . . .)) �� ((lambda (� var � . . .) � body � . . .) � exp � . . .)

The ellipses are not a notational shorthand but are an integral part of the macro language
described in the Revised

�

Report on Scheme[11]. On the left-hand-side of the macro, they
indicate that the previous pattern is to be repeated zero or more times, as in a BNF gram-
mar. This input pattern is matched against the input, and where ellipses occur, bindings
of lists are created. The right-hand-side pattern uses ellipses to generate sequences of out-
put patterns drawn from these bindings. The components of the matched patterns may be
split from each other, as illustrated by the let macro shown here.

3.2 Building S-XML

S-XML is implemented as an embedding within Scheme. The embedding (comprising the
forms enumerated in section 2.2) is constructed as a combination of a small functional
library and a set of macros.

The xml form is implemented as a single macro. This macro transforms uses of the xml
form into expressions that construct Scheme data. The form also permits the omission of
empty attribute fields; it is this kind of syntactic shorthand that gives the little language
one of its true advantages over the unmodified general-purpose language. The action of
the xml macro is shown in this example, where an xml form is translated into Scheme code
which creates a structure:

(xml (center "Text: " (lmx (get-text)))) �� (make-center (list) (list "Text: " (get-text)))

7

Each use of the schema form elaborates into a structure declaration and a MrSpidey
type declaration. An example of this macro’s translation is shown here:

(schema
(element ((name "elt"))

(sequence
(element-ref ((name "other"))))))

��
(begin

(define-struct elt (attrs elements))
(define-type elt (cons other null)))

Note that adopting a richer schema language is simply a matter of building a single macro;
no other code needs to change.

The xml-match form is implemented using a macro in conjunction with a library func-
tion. The macro delays the evaluation of the patterns and their matching expressions. It
also provides bindings for any pattern variables that occur in the expressions. The func-
tion accepts a value and these pattern-expression pairs, and evaluates the first expression
whose pattern matches the input value.

A transformer which takes centered text to italicized text is elaborated like this:

(xml-match (xml (center 3))
(text)
((xml (center text))
(xml (italic text))))

��

(xml-match-fn (xml (center 3))
(list ‘text)
(list

(list ‘(center text)
(lambda (text)

(xml (italic text))))))

The xml-match-fn procedure is a part of S-XML’s runtime library.
Through these three forms, Scheme becomes S-XML, a little language ideal for con-

structing and manipulating XML-like data, along with the full gamut of Scheme values.
Variables and functions are inherited from Scheme. As a result, first-semester undergrad-
uates can program using XML in a matter of days, rather than the weeks of work that
might otherwise be required.

4 DrScheme

Building an S-XML evaluator using macros and functions is not enough. This is the lesson
that programmers have learned in the course of implementing many little languages. In
fact, for many little languages, the execution framework is a small fraction of the total work
required to make the language usable. To use a language productively, programmers need
a host of related tools: editors, checkers (syntax and semantic), debuggers, and the like.

We demonstrate these ideas with DrScheme. This section describes the tools it pro-
vides.

DrScheme is a programming environment for the Scheme language. It is a graphical,
cross-platform environment for developing programs. It includes a syntax-sensitive editor,
a read-eval-print loop or “REPL”, a syntax checker, a stepper, and a static type checker.
The challenge is to reuse these tools in the design and execution of an embedded language.

Scheme programs are composed entirely of S-expressions, and DrScheme’s editor takes
advantage of this in many ways. It provides a set of S-expression-directed movement and

8

editing functions. It supports dynamic parenthesis-matching, as well as static highlight-
ing of S-expressions adjacent to the cursor. DrScheme automatically indents lines, and
unmatched parentheses are highlighted in red.

Another of the tools DrScheme provides is a syntax-checker. This tool performs a num-
ber of tasks:

1. it identifies and highlights syntax errors;

2. it highlights unbound identifiers;

3. it draws arrows from bound identifiers to their binding occurrences; and

4. it permits alpha-renaming, whereby all occurrences of an identifier in a given decla-
ration scope may be renamed.

The syntax checker is useful for beginners, as it helps them to understand the syntax
of the source language. The checker is also useful for experts, who write large programs
with nested scopes and re-used variable names.

Next, DrScheme features among its tools a symbolic algebraic stepper, which can dis-
play a program’s execution as an algebraic calculation, according to a standard reduction
semantics for Scheme. The stepper displays the program in three pieces:

1. the evaluated definitions;

2. the expression prior to the current step; and

3. the expression following the current step.

The stepper is useful both in debugging and in understanding the details of the language
semantics.

Finally, DrScheme provides static type-checking through MrSpidey analyzer[7]. Mr-
Spidey seeks to prove for a given program that no type errors occur, where a type error is
defined as the calling of a primitive procedure with an improper type. When MrSpidey
cannot offer such a guarantee, it flags the location where the mis-application of a primitive
may occur.

MrSpidey also has an explicit assertion mechanism, of the form (: expression type). Using
this form, the user may force MrSpidey to check whether an expression is guaranteed to
evaluate to a given type. So, for instance, the assertion (: (�

3 5) str) fails, because the result
of evaluating (�

3 5) is a number rather than a string.
Furthermore, MrSpidey provides useful information to the user in the form of graph-

ical inference chains. If an inappropriate argument might reach a primitive, MrSpidey
visually depicts the execution path whereby this argument arrives at the erroneous appli-
cation.

5 Building a Little Language Environment

In order to deliver a useful programming environment to the little-language programmer,
DrScheme’s tools must work seamlessly with the new forms of S-XML. In the following
sections, we examine several of DrScheme’s tools and how their behavior must change to
accommodate the embedded language.

9

Figure 6: Check Syntax works through macros

5.1 Editing

Designing the little language as a tree-structured expression guarantees that these features
are inherited immediately; editing programs in the little language is as convenient as edit-
ing Scheme. The only modification required to the programming environment is the addi-
tion of the xml-match keyword to the list of specially indented keywords in DrScheme’s
preference panel.

5.2 Check Syntax

The Check Syntax tool is designed to work transparently through macros. No modification
whatsoever is required to extend the syntax checker for an embedded language.

The syntax checker is particularly useful for embedded languages, where the language’s
syntax is often described informally. For instance, even an experienced programmer might
be surprised when using an embedded language to discover that certain identifiers are un-
bound, or are bound to locations other than expected.

For an example of this, see figure 6, an example using the S-XML language. The xml
form declares an XML element. Within this element, the lmx form allows the user to insert
evaluated Scheme code — an “escape” into the parent language. This example shows the
definition of a simple web page. The binding arrows show how make-home-link and home-
link-text are bound, and the red highlighting on backgronud-color indicate that this identifier
is unbound (in this case, because of a simple typo). Finally, the ‘rename . . . to’ box shows
how users can rename all occurrences of a specific binding in an S-XML transformation.

5.3 Stepper Example

When a programmer embeds a little language within Scheme, the Foot should be trans-
parent with respect to the macros and libraries introduced by the embedded language. In

10

Figure 7: The stepper works through macros

other words, it must “step” in a manner that corresponds to the reductions of the embed-
ded language, rather than the host language.

S-XML embeds several forms within Scheme; each has a natural reduction sequence.
The xml form must simply be transparent; xml values are displayed as such, and com-
putation within these terms (using the lmx form) are properly embedded. The schema
form is trivial, as it contains no runtime computation. The xml-match form shows steps
corresponding to the location of the proper pattern, and those within the corresponding
pattern.

Figure 7, shows a step in the evaluation of a simple HTML construction. The stepper
highlights the reducible subexpression in green, and the resulting subexpression in purple.
The call to make-page-footer is replaced by the body of the procedure, and the value of the
argument is substituted in the bound location in the body.

5.4 Validity Checking

MrSpidey provides an assertion mechanism to enable programmers to check statically that
certain variables may only be bound to values of a given type. The natural extension of
this assertion ability in the S-XML language is to use the assertion operator for validity
checking. In S-XML, a schema expands into a MrSpidey type definition.

This type definition may then be used to implement S-XML validity checking, as shown

11

Figure 8: MrSpidey catches validity errors

in figure 8. Rather than a body, this article has simply a string. This is illegal, by the schema
that appears above. Therefore, MrSpidey highlights the offending assertion in red. The
path from the string to its use in the xml form is indicated by a series of arrows.

6 How It All Works

The extension of DrScheme’s programming tools to S-XML is largely automatic. The key
technologies required are source correlation and rectifiers.

In DrScheme, source elaboration of macros is performed by McMicMac[15]. McMic-
Mac transforms a source file (a character stream) into an abstract syntax tree. Each term in
the tree has a reference to some position of the source file. These references are preserved
by McMicMac’s subsequent macro elaboration, so that each term in the fully elaborated
program has a direct reference to a source location. This elaborated program goes to the
evaluator for execution.

As a consequence, the static tools (including the syntax-checker and MrSpidey) operate
transparently with respect to macros. These tools draw conclusions about the elaborated
program, and display the results using source-correlation indirection. Hence, they require
no modification whatsoever to accommodate the embedded language.

The interpreter and the stepper draw heavily on source correlation as well. However,

12

since these tools are not static, they must also display the runtime values and expres-
sions of the embedded language. DrScheme employs Rectifiers to perform these back-
translations. There are two types of rectifiers; value rectifiers, and expression rectifiers.

A little language that enriches the value set of the host language must include a way to
display its values to the user. Value rectifiers perform this translation. That is, if the little
language introduces new language forms for the creation of data, the programming tools
should display the resulting values using the same forms that the programmer employed
to create the data. In S-XML, the following REPL interaction illustrates this:

� (xml (center "this is page number " (em (lmx (�
1 2)))))

(xml (center "this is page number " (em 3)))

Since value rectifiers deal exclusively with runtime values, they have no need of source
correlation. A value rectifier provides a mapping from values to displayed information.

The second category of rectifier comprises the expression rectifiers. These arise in the
operation of the stepper, which must reconstruct each step within the host language’s eval-
uator as a step within the embedded language. In some cases, the elaborated forms may
have been partially evaluated. For instance, the evaluation of the xml-match form may
proceed through many reductions. Each of these must be displayed as an xml-match term.
Expression rectifiers make heavy use of source correlation information, as they must recon-
struct source terms based upon the history of macro elaboration imposed upon the source.

For the S-XML language, we have constructed these rectifiers explicitly. Future work
includes generating them automatically from the macros and libraries that make up the
language embedding.

7 Related Work

Our work relates to four distinct areas. They are, in descending order of relevance: the
construction of programming environments; the embedding of little languages in host
languages; the problem of debugging optimized code; and transformation languages for
XML. EMACS is by far the most prominent effort to produce an extensible and customiz-
able programming environment [19]. With a few hundred lines of EMACS code, a pro-
grammer can create an EMACS mode that assists with some syntactic problems (inden-
tation, syntax coloring) or with a read-eval-print loop (source correlation of run-time en-
vironment). But, the EMACS extensions have to be produced manually; they are not
connected or derived from the little language embedding.

Most other work on the construction of programming environments focuses on the
creation of tools from language specifications. For example, Teitelbaum, Reps, and others
have created the Cornell Synthesizer Generator [17], which permits programmers to use
attribute grammar technology to define syntax-directed editors. The ASF+SDF research
effort [12] has similar, but more comprehensive goals. A programmer who specifies an
algebraic-denotational semantics for a little language can create several interesting tools in
this framework. In contrast, our work concentrates on the pragmatic problem of creating
or prototyping language tools rapidly. In particular, we accommodate an existing imple-
mentation without any modifications. Given that most implementations are not derived
formally, our work has greater potential to be applied to other environments.

13

Second, our most interesting technical problem concerns the relationship between the
execution of elaborated code and the source text. At first glance, this suggests a com-
monality between our work and the work on debugging optimized object code. More
specifically, code optimizations are problematic for debuggers and our algebraic stepper.
Both need to cope with code transformations when they interrupt the execution of a pro-
gram. Hennessy[8], Adl-Tabatabai and Gross[1], and Cooper, Kennedy and Torczon[3]
describe solutions to the problem of debugging optimized code. We believe, however, that
the two communities apply different techniques for the backwards translations due to the
radically different levels of languages. We are currently studying whether the techniques
carry over from the debugging to the stepping problem and whether the adaptation of
these techniques has any advantages.

Third, although our paper is not about techniques for language embeddings, it heav-
ily draws on ideas in that area. The history of language embeddings starts with LISP
[20] and McIlroy, who introduced the notion of macro transformations in 1962 [16]. Over
the past decade, the Scheme programming language introduced three important inno-
vations in macro systems. First, Kohlbecker, et al.[13] showed how to render macro ex-
panders hygienic, that is, make them compatible with the lexical structure of a host lan-
guage. Second, Kohlbecker and Wand introduced the macros-by-example specification
method[14]. Last, but not least, Dybvig, Hieb and Bruggeman [4] implemented the first
source-correlating macro system; our work is based on the more powerful McMicMac pro-
gram elaborator[15].

More recently, other language communities have rediscovered the idea of embedding
languages for reuse. Fairbairn[5], Hudak[9], Wallace and Runciman[22] use Haskell’s in-
fix operators and higher-order functions to embed little languages,4 including a little lan-
guage for XML; Kamin and Harrison [10] are working along similar lines, using SML. All
of these efforts focus on embedding techniques; none has paid attention to the program-
ming environments of little languages.

Fourth, our paper, like that of Wallace and Runciman [22] and Thiemann[21] address
the problem of transforming XML elements. Our solution solves a problem from which
both of the other approaches suffer. Specifically, using S-XML programmers can specify
XML trees in a generic manner yet they still get the benefits of XML validity checking.

8 Conclusion

We must learn to re-use all levels of language technology in the construction of little lan-
guages. The potential benefits are enormous. Shivers[18] reports that his version of AWK,
which is more powerful than the original, is one tenth of the original’s size. A small imple-
mentation is also easy to manage and to change. Hence, an embedded language is easier
to extend than a stand-alone language. An improvement to the host language generally
improves the embedded language(s) immediately. Finally, if one language plays host to
several embedded languages, programs in the latter can easily exchange structured forms

4These efforts use higher-order functions to express little language programs because the chosen host lan-
guages do not provide facilities for defining new language constructs that declare variables. A detailed dis-
cussion of this distinction is irrelevant to the topic of our paper.

14

of data, e.g., lists, trees, arrays. In contrast, stand-alone implementations must employ the
operating system’s tool box, which often means that “little language programmers” must
write parsers and unparsers.

With this paper we wish to contribute to the argument for language embeddings, and
we hope to direct the attention of researchers to the programming environments of little
languages. More centrally, we illustrate how an embedding also creates a powerful pro-
gramming environment for little languages. The construction hinges on three properties
of the host language and environment. First, the host language must have a mechanism
for defining new language constructs. Otherwise the user of a little language must imme-
diately know everything about the host language. Second, the mechanism must translate
instances of the new constructs in such a manner that the tools can report results in terms
of the surface syntax. Finally, the tools must not contain hard-wired assumptions about
the source language.

For our example, we had to add two small functions to two environment tools: one for
translating Scheme values back into S-XML syntax, and another one for reconstructing an
S-XML construct that has a multi-step algebraic reduction semantics. Based on our expe-
rience, we conjecture that this effort can be automated and we plan to tackle the problem
in the future.

References

[1] Adl-Tabatabai, A.-R. and T. Gross. Source-level debugging of scalar optimized code.
In Programming Language Design and Implementation, May 1996.

[2] Bray, T., J. Paoli and C. Sperberg-McQueen. Extensible markup language XML. Tech-
nical report, World Wide Web Consortium, Feburary 1998. Version 1.0.

[3] Cooper, K. D., K. Kennedy, L. Torczon, A. Weingarten and M. Wolcott. Editing and
compiling whole programs. In Software Engineering Symposium on Practical Software
Development Environments, December 1986.

[4] Dybvig, R. K., R. Hieb and C. Bruggeman. Syntactic abstraction in Scheme. Lisp and
Symbolic Computation, 5(4):295–326, December 1993.

[5] Fairbairn, J. Making form follow function: An exercise in functional programming
style. Software—Practice and Experience, 17(6):379–386, June 1987.

[6] Findler, R. B., C. Flanagan, M. Flatt, S. Krishnamurthi and M. Felleisen. DrScheme:
A pedagogic programming environment for Scheme. In International Symposium on
Programming Languages: Implementations, Logics, and Programs, pages 369–388, 1997.

[7] Flanagan, C., M. Flatt, S. Krishnamurthi, S. Weirich and M. Felleisen. Catching bugs in
the web of program invariants. In ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 23–32, May 1996.

[8] Hennessy, J. Symbolic debugging of optimized code. Transactions on Programming
Languages and Systems, 4(3):323–344, 1982.

15

[9] Hudak, P. Modular domain specific languages and tools. In International Conference
on Software Reuse, 1998.

[10] Kamin, S. and D. Hyatt. A special-purpose language for picture-drawing. In USENIX
Conference on Domain-Specific Languages, 1997.

[11] Kelsey, R., W. Clinger and J. Rees. Revised
�

report on the algorithmic language
Scheme. ACM SIGPLAN Notices, 33(9), October 1998.

[12] Klint, P. A meta-environment for generating programming environments. ACM
Transactions on Software Engineering and Methodology, 2(2):176–201, 1993.

[13] Kohlbecker, E. E., D. P. Friedman, M. Felleisen and B. F. Duba. Hygienic macro expan-
sion. In ACM Symposium on Lisp and Functional Programming, pages 151–161, 1986.

[14] Kohlbecker, E. E. and M. Wand. Macros-by-example: Deriving syntactic transforma-
tions from their specifications. In Symposium on Principles of Programming Languages,
pages 77–84, 1987.

[15] Krishnamurthi, S., M. Felleisen and B. F. Duba. From macros to reusable genera-
tive programming. In Generative and Component-Based Software Engineering, September
1999.

[16] McIlroy, M. D. Macro instruction extensions of compiler languages. Communications
of the ACM, 3(4):214–220, 1960.

[17] Reps, T. W. and T. Teitelbaum. The Synthesizer Generator. Springer-Verlag, 1989.

[18] Shivers, O. A universal scripting framework or, Lambda: the ultimate “little lan-
guage”. In Jaffar, J. and R. H. C. Yap, editors, Concurrency and Parallelism: Program-
ming, Networking and Security, pages 254–265. Springer-Verlag, 1996. LNCS 1179.

[19] Stallman, R. EMACS: the extensible, customizable, self-documenting display editor.
In Symposium on Text Manipulation, pages 147–156, 1981.

[20] Steele, G. L., Jr. and R. P. Gabriel. The evolution of Lisp. In Bergin, T. J., Jr. and R. G.
Gibson, Jr., editors, History of Programming Languages—II, pages 233–308, 1996.

[21] Thiemann, P. Modeling HTML in Haskell. In Practical Applications of Declarative Lan-
guages, January 2000.

[22] Wallace, M. and C. Runciman. Haskell and XML: Generic document processing com-
binators vs. type-based translation. In International Conference on Functional Program-
ming, September 1999.

[23] Walsh, N. A technical introduction to XML. World Wide Web Journal, Winter 1997.

16

