
Title Page

Modeling Protein Conformational Ensembles:

From Missing Loops to Equilibrium Fluctuations

Research Article

Authors

Amarda Shehu1, Cecilia Clementi2,3, Lydia E. Kavraki1,3,4

1Department of Computer Science, Rice University, Houston, Texas, 77005

2Department of Chemistry, Rice University, Houston, Texas, 77005

3Structural and Computational Biology and Molecular Biophysics,

Baylor College of Medicine, Houston, Texas, 77030

4Department of Bioengineering, Rice University, Houston, Texas, 77005

Corresponding Authors

Cecilia Clementi Lydia E. Kavraki
Email: cecilia@rice.edu Email: kavraki@rice.edu
Phone: +1-713-348-3485 Phone: +1-713-348-5737
Fax: +1-713-348-5155 Fax: +1-713-348-5930

Short Title: Modeling Protein Conformational Ensembles

Keywords: Protein flexibility; equilibrium mobility; loop modeling; inverse kinematics; robotics;

Boltzmann statistics.



Modeling Protein Conformational Ensembles:

From Missing Loops to Equilibrium Fluctuations

Amarda Shehu1, Cecilia Clementi2,3 ∗, Lydia E. Kavraki1,3,4 †

1Department of Computer Science, Rice University, Houston, Texas, 77005

2Department of Chemistry, Rice University, Houston, Texas, 77005

3Structural and Computational Biology and Molecular Biophysics,

Baylor College of Medicine, Houston, Texas, 77030

4Department of Bioengineering, Rice University, Houston, Texas, 77005

Abstract

Characterizing protein flexibility is an important goal for understanding the physical-chemical prin-

ciples governing biological function. This paper presents a Fragment Ensemble Method to capture

the mobility of a protein fragment such as a missing loop and its extension into a Protein Ensemble

Method to characterize the mobility of an entire protein at equilibrium. The underlying approach

in both methods is to combine a geometric exploration of conformational space with a statistical

mechanics formulation to generate an ensemble of physical conformations on which thermodynamic

quantities can be measured as ensemble averages. The Fragment Ensemble Method is validated

by applying it to characterize loop mobility in both instances of strongly stable and disordered

loop fragments. In each instance, fluctuations measured over generated ensembles are consistent

with data from experiment and simulation. The Protein Ensemble Method captures the mobil-

ity of an entire protein by generating and combining ensembles of conformations for consecutive

overlapping fragments defined over the protein sequence. This method is validated by applying

it to characterize flexibility in ubiquitin and protein G. Thermodynamic quantities measured over

the ensembles generated for both proteins are fully consistent with available experimental data.

On these proteins, the method recovers non-trivial data such as order parameters, residual dipolar

couplings, and scalar couplings. Results presented in this work suggest that the proposed methods

can provide insight into the interplay between protein flexibility and function.

∗Electronic mail: cecilia@rice.edu, Phone: +1-713-348-3485, Fax: +1-713-348-5155
†Electronic mail: kavraki@rice.edu, Phone: +1-713-348-5737, Fax: +1-713-348-5930
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1 Introduction

Experimental and simulation studies have established that proteins are not rigid molecular

objects1,2 but instead exhibit internal motions that are often essential for their function3–5. As

a flexible molecule, a protein may populate a large ensemble of different structures. In particular,

loop fragments are oftentimes highly mobile even in generally stable proteins. Such mobile loops

are not easily characterized by X-ray crystallography as they may introduce significant disorder in

a protein crystal. In fact, partially resolved protein structures are reported in these cases, with the

loop fragment missing.

Finding a physically relevant conformation for a missing loop fragment in a given protein structure is

an important problem (known as “loop modeling”‡) in automated crystallographic protein structure

determination, homology modeling6,7, and ab initio structure prediction8,9. The problem involves

generating a peptide conformation whose N- and C- terminal residues attach to the fixed anchor

residues of the two protein segments at either end of the loop. However, proposing a single peptide

conformation fails to address the mobility of the missing loop. In light of the high variation of loop

structures in proteins, one or few conformations may not adequately represent the diversity in the

ensemble of conformations assumed by a mobile missing loop.

Loops are not the only flexible fragments in a protein. An entire protein can undergo conforma-

tional changes that may be essential to its biological function2,10. Compounding evidence from

experiment, simulation, and theory indicates that the characterization of protein functions, such as

enzymatic reactions, ligand binding, and protein/protein interactions, requires considering a protein

native state as a dynamical ensemble of conformations rather than one single structure2–5,10.

In this work we address both the problem of modeling mobile loops and the characterization

of flexibility of an entire protein at equilibrium conditions. Motivated by recent computational

techniques for studying protein flexibility11–13, the presented work aims to provide a complete

characterization of equilibrium fluctuations in proteins.

We propose the Fragment Ensemble Method (FEM) to address equilibrium mobility in the loop

modeling problem. Given an incomplete protein structure and the amino acid sequence of the

‡Alternative names include loop/fragment completion, gap completion, loop closure, or fragment fitting
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missing loop, the proposed method generates an ensemble of low-energy loop conformations that

complete the given protein structure. The method combines a statistical mechanics formulation

with an efficient exploration of conformational space14–17, exploiting analogies between proteins and

robots18,19 to model a loop fragment as an open kinematic chain. FEM is based on a multi-scale

approach. Many backbone-resolution loop conformations are first generated to satisfy the geometric

and energetic constraints imposed by the given protein structure. These conformations are then

structurally and energetically refined to obtain an ensemble of low-energy atomistic-resolution loop

conformations. We validate the proposed method by using it to characterize loop structure and

mobility in both instances of strongly stable and completely disordered loops. In each instance,

fluctuations measured over a generated ensemble fully agree with experimental and simulation data.

FEM is not limited to applications on missing loops but can generate an ensemble of physical

conformations for any fragment in a protein. We exploit this capability and extend this method

into the Protein Ensemble Method (PEM) to characterize mobility over an entire protein. PEM

generates ensembles of conformations for consecutive overlapping fragments defined over a protein

sequence and combines results from ensembles of neighboring fragments. We validate this method

by applying it to obtain a complete characterization of the structural flexibility of two proteins

(ubiquitin and protein G) under equilibrium conditions. We show that for both proteins ther-

modynamic quantities measured over the generated ensembles are fully consistent with available

experimental data.

Presented applications of the proposed methods indicate the potential of this work in obtaining

valuable information on the interplay between protein flexibility and function. By characterizing

fluctuations around a protein structure at an atomistic level of detail, the presented work can help

design targeted wet-lab experiments and simulations to further improve our understanding of the

physical-chemical principles governing biological function.

This article is organized as follows. We first provide more context for the loop modeling problem

through a brief review of related work in section 2. The proposed methods are described in section 3.

In section 4 we analyze ensembles generated by FEM for loops in chymotrypsin inhibitor 2 (CI2), the

variable surface antigen (VlsE), and α-lactalbumin (α-Lac) (loops of length 12, 20, and 26 residue,
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respectively). We show that there is good agreement between thermodynamic quantities measured

over each ensemble and corresponding data from experiment and simulation. In section 4 we also

validate the proposed PEM by analyzing protein ensembles generated for ubiquitin and protein

G. We show that thermodynamic quantities measured over each ensemble correlate remarkably

well with Nuclear Magnetic Resonance (NMR) data such as order parameters, residual dipolar

couplings, and 3-bond scalar couplings. We conclude in section 5 with a summary and discussion

of future work.

2 Current Methods for Modeling Missing Loops

FEM explores the equilibrium mobility of a missing protein fragment by dealing with the core

problem of fitting a generated fragment conformation with a given protein structure. Driven by ap-

plications in X-ray crystallography, homology modeling, and ab initio structure prediction, existing

work14,20–34 focuses on fitting a generated loop conformation to model an unknown loop.

Database methods21,26,29,30 search for candidate loops that satisfy constraints on length and ge-

ometry in homologous proteins available in structural databases such as the Protein Data Bank

(PDB)35. Recently, the limited loop diversity in the PDB is addressed through a divide and conquer

approach29 or by constructing missing loops from short protein fragments sampled from structural

libraries34. Database methods can model loops of up to 15 residues long30.

Ab initio methods either sample from a discrete set of conformational parameters or adapt efficient

robotics-inspired sampling algorithms to model loops of arbitrary length. Loop conformations can

first be sampled from a discretized solution space through an exploration that is biased toward more

populated regions of the (φ, ψ) map27 and then refined through molecular dynamics simulations20,

Monte Carlo searches with simulated annealing28, genetic algorithms23, dynamic programming22,

bond scaling with relaxation24, or multi-copy searches25. Robotics-inspired ab initio methods em-

ploy a probabilistic sampling framework36. Loop conformations are first sampled ignoring the

constraints and later enforcing them through gradient descent37, or the satisfaction of constraints

is integrated in the sampling process38. In the latter case, a loop conformation that satisfies the

constraints on its termini is found by solving an inverse kinematics (IK)39 problem.

Methods that solve an IK problem to model missing loops exploit the fact that steering a terminal
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residue of the loop so that it assumes the pose of the corresponding fixed anchor is very similar

to controlling motions of a robot arm so that the robot hand/gripper assumes a specified target

position and orientation. By modeling the polypeptide chain of a missing loop as an open kinematic

chain18, the problem of attaching the terminal residues of a loop to their corresponding fixed anchors

can be posed as an IK problem: Solve for the degrees of freedom (DOFs) of the kinematic chain so

that a terminal anchor of the loop assumes its target pose.

Robotics-inspired techniques38,40 that employ exact IK solvers to enumerate all solutions18,41–44

can do so on sub-chains of no more than 6 DOFs. More recently, this limitation has been pushed

to 9 DOFs45. Currently, only optimization-based IK solvers46,47 can deal with an arbitrary number

of DOFs. Two such methods, random tweak46 and cyclic coordinate descent47, iteratively solve a

system of equations until the constraints on the loop termini are satisfied. Due to a linear time

complexity in the number of DOFs, numerical stability, and the ability to allow external constraints

on the DOFs with predictable behavior, cyclic coordinate descent has become the method of choice

in modeling missing loops of arbitrary length31–33.

3 Materials and Methods

We first provide in section 3.1 a brief overview of the main ingredients of FEM and PEM. These

methods are detailed in sections 3.2 and 3.3, respectively. An analysis of their robustness is pre-

sented in section 3.4. Finally, useful implementation details are provided in section 3.5.

3.1 Overview of Proposed Methods

Since the proposed FEM is generally applicable to any protein fragment and not just a loop, we

describe it hereafter in terms of generating an ensemble of physical conformations for a protein

fragment. Given an incomplete protein structure and the amino acid sequence of the missing

fragment, FEM generates an ensemble of physical fragment conformations that fit with the given

protein structure through essentially a three-step multi-scale approach:

(i) Backbone Geometric Exploration: The conformational space available to the backbone of a

missing fragment is explored to generate fragment conformations that fit with a given protein

structure without introducing steric clashes (details are found in section 3.2.1). The obtained

conformations are passed on to step (ii).
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(ii) Side-chain Exploration for a Fixed Backbone: The configurational space available to the side

chains of a fragment is explored to add all-atom detail to each fitted fragment conformation

without introducing collisions (details are found in section 3.2.2). The obtained conformations

are passed on to step (iii) for energetic refinement.

(iii) All-atom Energy Refinement: The conformations obtained are subjected to an extensive

energy minimization that seeks stabilizing interactions between atoms of the fitted fragment

and the rest of the protein (details are found in section 3.2.3). Each fragment conformation

is retained in the ensemble if the corresponding completed protein conformation has energy

lower than a given cutoff value.

Steps (i) through (iii) of FEM allow us to efficiently generate a large ensemble of fragment confor-

mations whose corresponding completed protein conformations are physically relevant. A statistical

mechanics formulation is employed to weight each generated conformation according to its Boltz-

mann probability. Such statistical weighting, detailed in section 3.2.4, leads to the definition of a

statistical ensemble which allows us to measure thermodynamic quantities as ensemble averages for

direct validation with data from experiment and simulation studies.

Additionally, we extend the proposed FEM into PEM, which allows us to study the flexibility of

an entire protein. PEM, detailed in section 3.3, consists of three steps:

(i) A window is slided over a protein sequence to define consecutive overlapping fragments.

(ii) FEM is applied to obtain an ensemble of low-energy conformations for each fragment.

(iii) Ensembles of consecutive overlapping fragments are combined to define a statistical ensemble

of physically relevant conformations for the entire protein. Protein fluctuations measured

over this ensemble are tested against available experimental data.

We now describe both methods in detail.

3.2 A Method for Addressing the Equilibrium Mobility of a Missing Fragment

FEM generates and fits fragment conformations to obtain an ensemble that represents the equilib-

rium conformational diversity of a missing fragment. A generated fragment conformation is fitted

with a given protein structure by solving an inverse kinematics39 problem. The formulation of this

problem requires that we first define a missing fragment.
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Let the residues of a protein from the N- to C- terminus be numbered 1 to n. We say that a

fragment [n1, n2] of the protein is missing if atomic coordinates are available only for residues from

1 to n1 and residues from n2 to n. We define the missing fragment [n1, n2] as the polypeptide chain

consisting of residues from n1 to n2, including n1 and n2. Finding a conformation for the missing

fragment involves generating coordinates for all atoms of its polypeptide chain. Doing so in a way

that fits the fragment with the given protein structure requires that the coordinates of residues

n1 and n2 in the fragment conformation be as those of residues n1 and n2 in the given protein

structure. In this sense, residues n1 and n2 are “duplicated”: those in the given protein structure

are fixed and so referred to as stationary or fixed anchors; those in the fragment move as one tries

to find new coordinates for the fragment’s atoms and are referred to as mobile anchors.

Hence, modeling an unknown fragment involves finding coordinates for its residues so that its mobile

anchors attach to the stationary anchors in the given protein structure. Attaching a mobile anchor

to its stationary counterpart means translating the mobile anchor so that one of its backbone atoms

assumes its target position in the stationary anchor and orienting the anchor so that all its N, Cα,

and C backbone atoms properly align with their counterparts in the stationary anchor residue.

A mobile anchor is said to have reached its target pose when it assumes its target position and

orientation in space.

The problem of modeling an unknown fragment typically consists of two steps: (i) obtain initial

coordinates for the atoms of the polypeptide chain of the fragment; and (ii) modify the fragment

conformation so the mobile anchors finally assume their target poses in the stationary anchors.

The first step can be addressed in different ways. In this work, a biologically relevant polypep-

tide chain for an unknown fragment such as a missing loop is initially obtained from a sequence-

homologous protein structure selected from the PDB35. Any missing atom information§ is com-

pleted through the PSFGEN48 package. A large set of different conformations of the polypeptide

chain of the fragment are then obtained by modifying the chain’s dihedral angles, as described

in section 3.2.1. Conformations obtained in this way do not generally fit with the given protein

structure, as illustrated in Figure 1(a) for a loop, since the mobile anchors n1 and n2 may not be

§Structures reported in the PDB commonly miss hydrogen or side-chain atoms.
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attached to their stationary counterparts. Indeed, fragment conformations depend in a non-trivial

way on the amino acid sequence of the fragment and the environment provided by the rest of the

protein.

The second step is the core of the problem. One mobile anchor of the fragment, such as n1 in

Figure 1(b), is easily attached to its stationary counterpart through rigid body transformations, a

translation and two rotations to align the backbone atoms of the mobile anchor to their stationary

counterparts in the fixed anchor. As illustrated in Figure 1(c), the resulting fragment conformation

needs to be modified so as to attach the remaining mobile anchor n2 to its stationary anchor. This

problem is often referred to as “closing the fragment” or “closing the loop” in the context of loop

modeling. It is solved in the Backbone Geometric Exploration step, which takes as inputs the given

protein structure and the polypeptide chain of the missing fragment already attached to one fixed

anchor and outputs fragment conformations that fit with the given protein structure.

3.2.1 Step (i): Backbone Geometric Exploration

We start by stripping away all but backbone atoms off the polypeptide chain obtained for the miss-

ing fragment. Working with a coarse resolution allows us to make direct use of analogies between

proteins and robots18,19 that are often exploited to adapt powerful robotic space exploration meth-

ods to the study of protein systems14–17. In keeping with these analogies, we model the backbone

chain of a fragment as an open kinematic chain, where a protein’s atoms are equivalent to robotic

links and rotatable bonds connecting atoms to joints connecting links. We employ the idealized

geometry, where the bond lengths and bond angles are kept fixed in their equilibrium values. The

only DOFs employed at this stage are the φ, ψ backbone dihedral angles starting at residue n1 + 1

and ending at residue n2 − 1.

Many different initial conformations for the backbone of the fragment are generated by sampling

values for these DOFs uniformly at random in [−π, π]. Considering only the backbone reduces the

dimensionality of the sampled conformational space and allows for an efficient exploration. Each

sampled initial conformation is closed through the cyclic coordinate descent (CCD) algorithm47

already employed in loop modeling31–33. Our implementation of CCD follows closely that in ref.31

The CCD algorithm closes each generated fragment conformation by solving the following IK
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problem: Given the positions of the backbone atoms of the stationary anchor n2, assign values to

the DOFs of the kinematic chain modeling the fragment so that the backbone atoms of the mobile

anchor n2 assume their target positions in the stationary anchor. CCD recasts this problem as a

minimization problem. Given one particular DOF (i.e., backbone dihedral angle) of the kinematic

chain, the algorithm analytically finds the value yielding the minimum distance between residue

n2 of the fragment and its target pose in the given protein structure. CCD proceeds in cycles. At

each cycle it iterates over all DOFs according to a prespecified order, updating each DOF one at

a time, until the resulting pose of the mobile anchor is within a cutoff distance ε from the target

pose. Details can be found in ref.31

Each conformation closed with CCD depends on the initial fragment conformation sampled. The

dependence of CCD on an initial conformation is a useful feature that we exploit to generate many

different fragment conformations that complete a given protein structure without introducing steric

clashes (see the Supplementary Material for pseudocode-level details of the Backbone Geometric

Exploration). The completed structure is deemed collision-free if its energy is below a maximum

energy value Emax
¶.

We also investigate the potential dependence of CCD on the order the DOFs are updated in

each CCD cycle. We explore two CCD implementations corresponding to two different orders:

one where the DOFs are sequentially ordered from the N- to the C- terminus (as employed in

loop modeling31–33) and another where the DOFs are randomly permuted in each CCD cycle. A

comparison of two sets of closed fragment conformations, each generated with a particular CCD

implementation, allows us to conclude that the order in which CCD modifies the DOFs does not

significantly affect the properties of the final ensemble of conformations generated (see section 4

for the analysis and the Supplementary Material for details).

3.2.2 Step (ii): Side-chain Exploration for a Fixed Backbone

The Backbone Geometric Exploration step generates many different backbone-resolution conforma-

tions for a missing fragment. Since it only modifies the backbone of a fragment, the side chains

of the polypeptide chain of the fragment are not in their optimal configurations in each generated

¶Parameters are introduced to keep the description of the methods general. Values to these parameters are

empirically determined and listed in section 3.5.
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backbone conformation. Therefore, values for the dihedral angles of these side chains are sampled

uniformly at random in [−π, π] to explore multiple side-chain configurations. For each backbone

conformation, the side-chain dihedral space is explored until an all-atom fragment conformation is

found whose corresponding completed protein conformation C is collision-free.

3.2.3 Step (iii): Energetic Refinement of a Modeled Fragment

To render interactions between atoms of a fragment conformation and the rest of the protein

favorable, each completed protein conformation C is subjected to extensive energy minimization.

Energy is measured by physical force fields such as CHARMM49 or AMBER50. We design the

energetic refinement of C to attribute unfavorable interactions mainly to a fragment’s atoms, since

the conformation corresponding to the given protein structure is considered feasible.

To achieve this goal, we interleave two strategies that mainly explore fluctuations of a closed

fragment to minimize the energy of C while maintaining the given protein structure. The first,

closure-constrained backbone refinement, inspired by ref.32,33, modifies the backbone dihedrals of a

fragment during minimization. The second, closure-constrained conjugate gradient descent, relaxes

the idealized geometry model and allows all atoms’ coordinates to change as dictated by the force

field for crucial interactions of the fragment with the rest of the protein. While exploring small

fluctuations of the given protein structure, this strategy attributes most of the mobility to the

fragment’s atoms.

Since both minimization strategies are local searches that may converge to local minima, they serve

as relaxation steps for each other. If after N steps of the closure-constrained conjugate gradient

descent, the improvement in energy is less than a cutoff value η, this indicates failure to escape

from a local minimum of the energy landscape. Therefore, the minimization switches to the closure-

constrained backbone refinement which can further minimize energy. The two strategies interleave

with each other for a maximum of Nmax minimization steps, testing after every N steps whether

to terminate the minimization (if the improvement in energy is less than a convergence value µ).

Closure-constrained Backbone Refinement: Since the Backbone Geometric Exploration uses

m = 2(n2 −n1 − 1) dihedral DOFs to satisfy three positional and three orientational constraints of

the mobile anchor n2, the subspace defined by the remainingm−6 redundant DOFs, the self-motion
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manifold51, is explored as in ref.32,33 to minimize the energy of a completed protein conformation

while keeping the fragment anchored. The self-motion manifold is explored through a steepest

descent which at each step updates the backbone dihedral angles of the fragment so as to minimize

the energy of the completed conformation C (details provided in the Supplementary Material).

Closure-constrained Conjugate Gradient Descent: A conjugate gradient descent is per-

formed on the energy landscape defined by the pseudo-energy function E = Eforcefield +

∑
atom i 6∈fragmentKdi

· |~xi(C) − ~xi(Crest)|
2, where ~xi indicates the 3D position of atom i during

minimization and Crest refers to the conformation corresponding to the rest of the protein struc-

ture. Minimizing the second term as well as the energy (measured in the first term) ensures that

more mobility is asked of the fragment’s atoms for stable interactions with the given protein struc-

ture. The extent to which an atom i outside the fragment moves away from its position in Crest

depends on the strength of interactions between atoms of the fragment and Crest and is modeled

through the damping constant Kdi
. This constant is empirically determined for each protein in

this study.

3.2.4 Obtaining an Ensemble of Physical Fragment Conformations

Steps (i) through (iii) of FEM yield many all-atom closed fragment conformations of low energy.

Closed fragment conformations whose corresponding completed protein conformations are of en-

ergy no higher than a cutoff value of 20 kcal/mol from a reference energy‖ are deemed physically

relevant and are added to an ensemble Ω[n1,n2] of physical fragment conformations. We point

out that fragment conformations can be generated independently from one another and so their

computation is easily distributed. The issue of ensemble convergence, i.e., how many fragment

conformations need to be generated to obtain a reliable equilibrium ensemble, is discussed in detail

in the Supplementary Material.

Probability of a Local Fluctuation: A statistical mechanics formulation is employed to weight

each conformation C ∈ Ω[n1,n2] with energy EC according to its Boltzmann probability P (C) =

Prefe
−

E(C)−Eref
RT0 , where Pref and Eref are the probability and the energy of Cref , T0 is the room

temperature (300 K), and R is the gas constant. The reference probability Pref can be arbitrarily

‖When a reference energy is not available, the minimum-energy completed conformation is used instead.
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set equal to 1 as the calculation of average quantities is independent of the actual value of Pref . A

cutoff value of 20 kcal/mol for E(C) −Eref allows to discard generated conformations that do not

contribute to thermodynamic averages measured over the ensemble of completed conformations

(conformations where this cutoff is higher than 20 kcal/mol have an extremely low Boltzmann

probability (. 10−15) at room temperature T0). The Boltzmann average 〈Xi〉[n1,n2] of a measurable

quantity Xi at a given position i (such as, for instance, the value of the root-mean-square deviation

- RMSD - for a given residue) is computed over all conformations {C} of the ensemble Ω [n1,n2]

associated with fragment [n1, n2] as:

〈Xi〉[n1,n2] =

∑
C∈Ω[n1,n2]

e
−

E(C)−Eref
RT0 Xi(C)

Z

where Z =
∑

C∈Ω[n1,n2]
e
−

E(C)−Eref
RT0 is the partition function associated with the ensemble Ω[n1,n2].

3.3 From Local to Global: A Method for Combining Local Fluctuations to Explore

Protein Equilibrium Ensembles

Since FEM, described in section 3.2, generates an ensemble of physical conformations for any

protein fragment, we employ it as a component in PEM to capture equilibrium fluctuations over

an entire protein. We describe here the steps of this method in detail.

3.3.1 Step(i): Defining Consecutive Overlapping Fragments

Fragments are first defined by sliding a window of l residues along the polypeptide chain of the

protein, with significant overlap of δl ' l residues between two consecutive fragments. By using a

significant overlap δl between two consecutive windows (i.e., δl ' l) it is possible to characterize the

flexibility of an entire protein self-consistently. Let us assume an initial window size of l0 residues

is selected. If significant discrepancies arise on the fluctuations at a given position as obtained

from different overlapping windows∗∗, then it means that the finite size of the window significantly

distorts the fluctuations of the fragment of interest; therefore, the size of the sliding window must

be increased by a finite number of residues dl to become l = l0 + dl. Window size and overlap

between neighboring windows are incremented by 5 residues until full consistency is reached in the

fluctuations obtained from the analysis of overlapping windows enclosing each residue. The final

∗∗The comparison of the fluctuations at a given position as obtained from different windows is performed after

discarding the first few and last residues in each windows, as they are clearly constrained to be fixed in our algorithm.
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window size and overlap are chosen so that no artificial constraints are introduced by the finite

size of the window and so that fluctuations of neighboring overlapping fragments can be combined

together to characterize the flexibility of the whole protein (see Figures 3(a2) and (b2) in section 4).

3.3.2 Steps (ii)-(iii): Obtaining and Combining Fragment Ensembles

An ensemble of relevant conformations for each of the defined fragments is generated as described in

section 3.2.4. Obtained fragment ensembles are combined to provide information on the flexibility

of the whole protein. Any measurable quantity Xi, for a given residue i, is obtained as a weighted

average over the equilibrium ensembles of fragments overlapping in residue i. For example, if a win-

dow of size 30 and overlap of 25 is used, residue 19 is contained in fragments [1, 30], [5, 35], [10, 40],

and [15, 45]. Therefore, any averaged quantity for this residue can be obtained independently over

these four fragment ensembles as 〈X19〉[1,30], 〈X19〉[5,35], 〈X19〉[10,40], and 〈X19〉[15,45]. When frag-

ment length and extent of overlap are large enough to cover the size of a typical fluctuation for the

protein under study, averages computed over different overlapping ensembles yield self-consistent

results (as it is in our case, see Figures 3(a2) and (b2)). The average value 〈Xi〉 is then defined by

averaging over all the different fragment ensembles embracing residue i, { [n1, n2] | i ∈ [n1, n2]},

as follows:

〈Xi〉 =
∑

{ [n1,n2] | i∈[n1,n2]}

〈Xi〉[n1,n2]w(i, [n1, n2])

N

where N =
∑

{ [n1,n2] | i∈[n1,n2]}
w(i, [n1, n2]) is the normalization factor. The purpose for the weight-

ing function w(i, [n1, n2]) is to downplay the finite-size effects introduced by the finite length of

each fragment. Since the terminal residues of each fragment are attached to the reference protein

structure through the CCD algorithm, the motion of these and a few neighboring residues is arti-

ficially restricted, and hence their contribution to the total average needs to be either discarded or

strongly reduced. Two different weighting schemes are used to correct for this effect: (i) 5 residues

from either end of each fragment are discarded in the calculation of the ensemble averages, that

is w(i, [n1, n2]) = 0 if min{|i − n1|, |i − n2|} < 5, and w(i, [n1, n2]) = 1 otherwise; (ii) a Gaussian

distribution is used to progressively decrease the contribution of the residues closer to the fragments

ends, that is w(i, [n1, n2]) = e−
1
2(

∆i
σ )

2

, where ∆i = |i−(n1 +n2)/2| measures the distance of residue

i ∈ [n1, n2] from the central residue (n1 +n2)/2 in fragment [n1, n2]. The parameter σ is set to l/2.
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3.4 Measuring Robustness to Different Approximations

The weighting scheme is one approximation made by PEM. Here is a comprehensive list of all

approximations we identify to measure their effects on the equilibrium mobility captured:

(i) The order in which the DOFs are progressively updated in the CCD routine. The associated

error is estimated by computing differences between averages obtained from two indepen-

dently generated ensembles: one where the DOFs are ordered sequentially from the N- to

the C- terminus, the other by selecting the DOFs in random order (discussed in detail in the

Supplementary Material).

(ii) The inaccuracy of the energy force field employed. The associated error is estimated by

repeating the ensemble generation with two different force fields, CHARMM49 and AMBER50,

and measuring the differences between corresponding thermodynamic averages measured over

each ensemble.

(iii) The finite-size effects introduced by the definition of fragments and the nature of the CCD

algorithm. Differences between averages obtained from the two different weighting schemes

described above provide an estimate for the associated error.

(iv) The interleaving procedure used in the minimization of obtained conformations. The as-

sociated error is estimated by computing differences between averages obtained from two

generated ensembles: one employing the interleaving minimization and the other employing

the closure-constrained conjugate gradient descent only.

The errors associated with these approximations are incorporated in the error bars for ensemble

averages of NMR data such as order parameters, residual dipolar couplings, and 3-bond scalar

couplings. The small error bars (as shown in Figures 3 and 5 in section 4) allow us to conclude

these approximations do not significantly affect the equilibrium mobility captured for the proteins

employed in this work. In particular, the small size of the error bars indicates that the developed

PEM is robust against these approximations. Thus, the results obtained in different fragments can

be combined to produce a global picture of fluctuations over an entire protein.

14



3.5 Implementation Details

Backbone Geometric Exploration: In our implementation of the CCD algorithm, the maximum

number nmax of CCD cycles is 500. The closure criterion ε = 0.001Å. The Emax employed is

empirically valued at 5000kcal/mol.

All-atom Energy Refinement: The maximum number of minimization steps, the frequency of

testing whether the convergence criterion has been met, and the actual definition of convergence

are all empirically determined quantities that work well for all the proteins used in this work:

Nmax = 1000, N = 300, η = 2 kcal/mol, and µ = 20 kcal/mol. Due to the complexity of

approximating the self-motion manifold and our numerical computation of the CHARMM gradient,

the steepest descent employed in the closure-constrained backbone refinement to explore motions

on the self-motion manifold is limited to 50 steps. In the closure-constrained conjugate gradient

descent, in CI2, α-Lac, ubiquitin, and protein G, where interactions between atoms of a fragment

and of Cref are strong, Kdi
= 10. In other systems such as VlsE Kdi

= 100.

Conjugate Gradient Descent: This algorithm is implemented through the OPTCG procedure

in the OPT++ nonlinear optimization package52. The pseudo-energy function employed in the

closure-constrained conjugate gradient descent and the CHARMM energy function employed in

the equilibration of PDB structures are objective nonlinear functions whose first derivatives can be

computed analytically. Therefore, they are modeled as NLF152 objects in the OPTCG procedure.

Window size and overlap: The window size and overlap employed on applications of PEM to

proteins in this work are 30 and 25 residues, respectively. This window size and overlap suffice to

obtain full consistency in fluctuations obtained from the analysis of different overlapping windows

enclosing each residue (shown in Figures 3(a2) and (b2)).

Employed Packages: Missing atoms of a polypeptide chain are filled in with the PSFGEN48

package. Given a file that specifies types and charges of atoms in amino acids and a PDB file with

the coordinates of the existing atoms of the polypeptide chain, PSFGEN creates a new PDB file

where coordinates of the missing atoms are guessed and incorporated in the respective amino acids

of the polypeptide chain. The OPT++52 package is employed for the efficient implementation of the

conjugate gradient descent algorithm. The algorithms implemented in OPT++ provide robust and
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efficient solutions to nonlinear optimization problems that require expensive function evaluations.

Hardware and Software Setup: The implementation was carried out in ANSI C/C++ using the

Intel
r©8.0 compilers and libraries. The experiments were run on the Rice Terascale Cluster, a

1 TeraFLOP Linux cluster based on Intel
r© Itanium

r©2 processors. Each node has two 64-bit

processors running at 900MHz with 1.5MB of L2 data cache and 2GB memory per processor. On

such architecture, it takes on average 67 minutes to obtain 1, 000 conformations for a fragment of

30 residues.

4 Results

We present the following results: we first demonstrate how to incorporate loop mobility in the loop

modeling problem by applying FEM to the generation of ensembles of relevant loop conformations.

Then we present the application of PEM to proteins where equilibrium mobility is due to local

fluctuations and validate the obtained fluctuations with available experimental data.

4.1 Generating Equilibrium Ensembles of Missing Loops

Due to their high mobility and low structural conservation, modeling long loops in partially resolved

protein structures remains a challenge for structural biology34. To first test the accuracy of FEM,

we reproduce the native loops in stable proteins, such as CI2, PDB code 1COA53, and α-Lac, PDB

code 1HML54, respectively††. We consider the 12-residue loop between VAL53 and ASP64 in CI2

and the 26-residue loop between LYS51 and THR76 in α-Lac. We use FEM to generate an ensemble

of conformations for the considered loop in each protein.

Figure 2(a1) shows the ensemble of generated conformations for the VAL53-ASP64 loop in CI2.

Qualitatively, the obtained loop conformations are clustered around the native loop as found in the

equilibrated crystal structure of CI2. We quantify the equilibrium mobility of the loop by plotting

in Figure 2(a2) the energy profile of the generated ensemble versus the RMSD of the generated

loop conformations from the equilibrated native loop conformation. The obtained energy profile is

clearly funnel-like, in full agreement with the known role and stability of this loop for the activity

of CI255,56.

We validate residue fluctuations obtained on the generated ensemble against B factors53 available

††The PDB structures are equilibrated through an energy minimization detailed in the Supplementary Material.
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for CI2. Fluctuations of each residue are obtained by averaging through the Boltzmann statistics

the residue RMSD measured in each loop conformation relative to the native loop conformation

as found in the equilibrated crystal structure of CI2. Since fluctuations derived from B factors

are different in magnitude from fluctuations obtained over the ensemble generated in this work,

we normalize both sets of fluctuations. As shown in Figure 2(a3), the obtained fluctuations are

consistent with those derived from the available B factors; the data agree with a Pearson correlation

of 96% and q-factor of 28%. This agreement indicates that fluctuations of this loop are mainly local

and can be obtained in isolation, even when immobilizing the rest of the protein structure.

The generated ensemble for α-Lac is shown in Figure 2(b1). As expected, the obtained loop con-

formations are clustered around the native loop of the equilibrated crystal structure. Figure 2(b2)

reveals a funneled energy landscape with a global minimum around the native conformation found

in the equilibrated crystal structure of α-Lac, similarly to the energy landscape associated with the

ensemble of loop conformations generated for CI2.

The fluctuations observed over the generated ensemble for α-Lac are fully consistent with what

is obtained from a Monte Carlo simulation guided to agree with hydrogen exchange protection

factors57. In Figure 2(a3) we compare residue fluctuations measured over the ensemble generated

in this work with the fluctuations reported in ref.57 (data courtesy of M. Vendruscolo). Due to

their different magnitudes, fluctuations are normalized in the comparison. A Pearson correlation of

86% and a q-factor of 24% are obtained. Interestingly, the Pearson correlation of the fluctuations

obtained from our ensemble with fluctuations derived from B factor data for α-Lac54 is 63% (data

not shown), comparable to the 61% Pearson correlation obtained when comparing fluctuations

derived from the B factor data to fluctuations reported in ref.57

An additional application of FEM to characterize the mobility of an internal loop at equilibrium is

provided in section Application of FEM to Model Conformational Ensembles of Internal Loops in

the Supplementary Material.

The examples described above provide a good testbed for the accuracy of FEM in producing en-

sembles of native-like loop conformations with associated steep funnel-like energy landscapes for

strongly stable proteins. The most interesting application of FEM, however, is the generation of
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a large ensemble of loop conformations for proteins with highly flexible loops. In this context, we

present here the results obtained when applying this method to generate an ensemble of confor-

mations for the LYS93-GLY112 loop in the crystal structure of VlsE, PDB code 1L8W58. This

20-residue loop is missing in the crystal structure due to its high flexibility58. Our analysis reveals

that there are many geometrically variable conformations relevant for this loop at room temper-

ature. The high conformational heterogeneity of the closed loop conformations can be seen in

Figure 2(c1). The heterogeneity of these loop conformations is quantified in Figure 2(c2), where

the energy landscape associated with the generated ensemble is plotted as a function of the RMSD

from the most stable complete protein conformation obtained through FEM. Figure 2(c2) shows a

plateau-like energy landscape, which is very different from the funnel-like landscapes obtained for

the loops in CI2 and α-Lac.

To validate the ensemble generated for the missing loop of VlsE, we compare the magnitudes of the

structural fluctuations per residue (measured relative to the lowest energy structure obtained) with

disorder scores computed from the amino acid sequence of VlsE through the PONDR package59,60.

We should note that the disorder scores predicted by the PONDR package59,60 for the loop are all

well above 0.5 (the boundary between disorder and order), consistent with the fact that the LYS93-

GLY112 loop in VlsE is highly disordered. Since the comparison between fluctuations and disorder

scores is between two different quantities of different magnitudes, we normalize both quantities. As

shown in Figure 2(c3), the agreement between the residue fluctuations and the PONDR-predicted

disorder scores is with a Pearson correlation of 79% and q-factor of 31%. We should note that this

comparison is qualitative since the residue fluctuations and the disorder scores represent different

quantities. Interestingly, both quantities, as shown in Figure 2(c3), indicate that ILE98 is the most

mobile and disordered residue in the missing loop of VlsE.

4.2 Capturing Equilibrium Fluctuations in Ubiquitin and Protein G

We present here results of the application of PEM to characterize the equilibrium ensemble of two

proteins: streptococcal protein G61 (PDB code 1IGD) and human ubiquitin62 (PDB code 1UBQ).

Because of their relatively small sizes (61 residues in protein G and 76 residues in ubiquitin) and
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their biological importance‡‡, these proteins represent an ideal application for PEM. The availability

of NMR data for protein G65–67 and ubiquitin68–70 makes it possible for us to quantitatively validate

the ensembles characterized through PEM.

On both protein G and ubiquitin, windows of length 30 residues with 25-residue overlap suffice

to reveal consistent fluctuations measured over ensembles of neighboring overlapping fragments.

Figures 3(a1) and (b1) qualitatively show the structural variability of the generated structures for

protein G and ubiquitin. The consistency of fluctuations measured over ensembles of neighboring

overlapping fragments can be seen in Figures 3(a2) and (b2) where we plot the average RMSD of

each residue measured over ensembles of the fragments that encompass that residue.

We validate the ensembles generated for each protein by comparing thermodynamic quantities

measured over each ensemble with NMR data that probe the dynamics of each protein. We com-

pare to order parameters (S2) and residual dipolar couplings (RDCs) for both protein G65–67 and

ubiquitin68–70. For ubiquitin, 3-bond scalar couplings (3J)69 are also used in our comparison.

Order parameters are measured over the conformational ensembles generated with PEM as out-

lined in ref.71. The magnitudes of the RDCs measured over each ensemble are normalized with

respect to those for an amide NH in the same orientation by scaling according to bond lengths and

gyromagnetic ratios72. 3-bond scalar couplings are measured over the population of rotamers as

detailed in ref.68

Order parameters provide information on the reorientational averaging of the NH bond. Residual

dipolar couplings quantify the fluctuations on the direction of different bond vectors. The 3-bond

scalar couplings measure the side-chain population of rotameric states. The difficulty of classic MD

simulations in reproducing these data is related to the timescales captured by these parameters:

Order parameters extracted from 15N relaxation experiments capture from the picosecond to the

nanosecond timescale1. RDCs report on averages over longer timescales of up to millisecond range

and so can reveal slower protein motions over a very broad timescale1. Characterizing side-chain

‡‡protein G, a cell surface streptococcal protein, binds immunoglobulin with high affinity and potentially enhances

microbial virulence. It is important in labeling and purification of antibodies and the study of protein-protein

interactions63. Ubiquitin regulates multiple intracellular pathways in eukaryotic cells64 and is involved in labeling

proteins for proteolysis. Its involvement in protein degradation makes it important for anticancer drug discovery.
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order parameters and 3-bond scalar couplings can be highly nontrivial since the time scale for the

slowest side-chain rotations may be in the millisecond range73. In particular, scalar couplings report

on rotameric averaging on timescales from few hundredths of a second to picoseconds74.

4.2.1 Validation of protein G Fluctuations with NMR Measurements

The experimentally available S2 data for protein G are derived from 15N NMR relaxation

experiments65 and capture the fast dynamics of this protein in the picosecond to nanosecond

timescale. For brevity, we will refer to them as fast S2. Figure 4(a) shows the agreement be-

tween the ensemble measured backbone (amide) S2 and the fast S2 data of protein G. The Pearson

correlation between the two quantities is 73%. We should note that no scaling has been applied

to the measured S2 order parameters to match to the fast S2 data (no scaling is applied in the

comparisons with the experimental data for protein G and ubiquitin). The agreement is better

on α-helix and the β2- and β3-helix loops (residues 22 − 48), indicating that most of the mobility

captured by our ensemble for these residues happens on the picosecond to nanosecond timescale.

However, the agreement drops on the N- and C- terminal chains and on residues 14 − 22 due to

a higher heterogeneity reported for these regions from our ensemble. The region between residues

14 − 22 incidentally includes the “melting hot spot ”75 loop of residues 14 − 17 and the beginning

of the β2-strand, residues 18 − 22. The order parameters calculated over our ensemble for residues

14 − 17 point to a slower timescale mobility for this region.

To validate the high heterogeneity in this region, we compare our ensemble-averaged S 2 data with

order parameters for the NH bond derived in ref.66 as they provide information on reorientational

averaging of the NH bond up to the millisecond timescale. For brevity, we refer to these as slow S 2.

Figure 4(b) shows a better agreement between the S2 data measured over our ensemble and the

slow S2 data derived in ref.66 as the Pearson correlation improves up to 83%. As Figure 4(b) shows,

the agreement between the S2 data for the residues on the N- and C- terminal chains improves,

indicating that the motions in these residues happen in a slower timescale. In addition, while the

magnitudes of the calculated S2 data for residues 14−22 are higher than those derived in ref.66, the

two profiles for this region of the protein are comparable. This further confirms that the mobility

of this important region in protein G happens in a slower timescale.
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To further validate slower timescale fluctuations captured by our ensemble for protein G, we com-

pare RDCs measured over our ensemble with five sets of experimental RDC data used in refining

the crystal structure61 to obtain the NMR structure67 of protein G. In Figure 4(c) we show that

the RDCs measured over our ensemble and those experimentally measured in bicelle medium67

agree with a Pearson correlation of 97% and q-factor of 21%. Naturally, a lower q-factor of 6% is

obtained when comparing this experimental RDC data to the RDC-refined NMR structure67 itself.

Comparison of our ensemble-averaged RDC data with experimental RDCs measured over the other

four media67 reveals agreement with Pearson correlation varying from 94% to 98% and q-factor

varying from 18% to 24% (data not shown). A complete comparison of the RDC-refined NMR

structure reported in ref.67 with each of the five experimentally measured RDCs reveals a q-factor

varying from 5% to 7%, with an average of 6%.

4.2.2 Validation of Ubiquitin Fluctuations with NMR Measurements

In Figure 5(a) we show the agreement between the ensemble measured and the experimentally

available backbone (amide S2) and side-chain (methyl S2) order parameter data68,70. The side-

chain S2 order parameters quantify the contribution of side-chain disorder. They provide indication

on the heterogeneity of the population of different rotamer states for a given torsion angle: an

extreme value of S2 = 1 indicates no variability, while S2 = 0 indicates a uniform distribution

over all allowed rotamers. Figure 5(a) shows a Pearson correlation of 96% and indicates that low

S2 order parameters are found not only for residues in the carboxy-terminal region of ubiquitin,

residues from 72 − 76, but also in residues that form the core of this protein. Fluctuations of each

residue can also be seen as residue RMSDs measured over the generated ensemble in Figure 3(b2).

Figure 5(b) shows the agreement between the ensemble averaged RDCs and the experimentally

available ones69. The RDC parameters measured over the generated ensemble agree with the

experimental RDC parameters with a Pearson correlation of 97% and q-factor of 23%. The only

better agreement with the experimental RDC parameters comes from the NMR ensemble itself,

a Pearson correlation of 99% and q-factor 14%, which is not a surprise since the NMR ensemble

reported in ref.69 is derived from the experimental RDC parameters69.

Due to the availability of experimental scalar couplings for ubiquitin69, we also compare measured
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ensemble averages of 3J with experimental data69. Figure 5(c) shows the agreement between the

experimental and the ensemble measured 3JNCγ and 3JCCγ , which are the 3-bond scalar couplings

between the side-chain gamma carbon and the backbone amide nitrogen and carbonyl carbon,

respectively. The 3J parameters quantify the side-chain population of rotameric states and are

related through the Karplus equation to the probability of occupation of different rotamer states for

torsion angles of specific side chains68. As outlined in ref.68, the ensemble of rotameric states can be

used to parameterize the Karplus equation. Optimal values to the Karplus parameters A,B,C, δ can

be defined to improve the agreement between observed and calculated scalar coupling data. Rather

than optimize such parameters, we choose to perform a golden test and use the Karplus equation

empirically parameterized for the X-ray structure of human ubiquitin reported in ref.68 (PEM

generates conformations starting from the equilibrated X-ray structure of ubiquitin). Comparing

the so measured ensemble averaged scalar coupling data with the ones available from NMR reveals

a Pearson correlation of 97%, which indicates that the side chains in the conformations generated

by PEM populate the right rotameric states. Such a correlation is higher than the 84% and

89% Pearson correlation obtained when comparing the scalar couplings measured on the ubiquitin

crystal structure62 and NMR ensemble69, respectively, with experimental scalar coupling data. Such

a result indicates that the ensemble averaging of the side-chain dihedrals improves the agreement

with experimental scalar coupling data.

4.3 Significance of Agreement with NMR Data

All results presented here have been obtained by using two different force fields: CHARMM2249

and AMBER9450. These force fields have similar functional form but different parameterization

strategies. It has been recently shown that MD simulations with these force fields allow to obtain

similar structural and dynamical properties of proteins (see ref.76). The results obtained in this

work are also found to be essentially independent of the choice of CHARMM22 vs. AMBER94.

The small differences observed in the results obtained with the two force fields are incorporated in

the error bars in Figures 4(a)-(c) and Figures 5(a)-(c). The effect of other approximations used by

PEM besides the choice of the force field is also measured as outlined in section 3 and incorporated

in the error bars.
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It is worth stressing the importance of the recovery of RDCs in both ensembles, (shown in Fig-

ure 4(c) for protein G and Figure 5(b) for ubiquitin). While NMR1 and molecular dynamics2

simulations can characterize local backbone fluctuations in the picosecond-nanosecond timescale,

slower motions in the millisecond-second range, of crucial interest to many functionally impor-

tant biological processes77,78, are not well understood. Recovering RDC data that report on slow

timescale motions, up to the millisecond range, is an important result and confirms the validity of

PEM in capturing equilibrium mobility in proteins.

In addition, the correct prediction of NMR data related to side-chain motion, such as the methyl S 2

order parameters (Figure 5(a)), and 3-bond scalar couplings 3J (Figure 5(c)), is a significant result.

The NMR ensemble available for ubiquitin69 correlates with a Pearson correlation of 62% with the

experimentally available S2 order parameters, significantly lower than the Pearson correlation of

96% obtained with PEM. In addition, it has been previously reported that a 6ns MD simulations

on ubiquitin performed in explicit solvent and reported in ref.79 cannot capture the heterogeneity

of the native state of the protein as given in the experimental S2 order parameters68 (the Pearson

correlation with the experimental S2 order parameters is 62%). The only other effort we know

of that is successful in recovering the NMR data for human ubiquitin, presented in ref.79, guides

replica exchange MD simulations to generate ubiquitin conformations that correlate well with NOE

derived distances69 and S2 order parameters68 and reports Pearson correlations of no lower than

96% with experimental S2, RDCs, and scalar couplings.

Finally, the recovery in this work of NMR data related to side-chain dynamics, scalar couplings and

S2 order parameters, is an important result since it has been estimated that the time scale for the

slowest side-chain rotations may be about milliseconds73. As a consequence, the equilibrium distri-

bution of side-chain conformers cannot be observed directly in MD simulations76. Since different

conformations are generated independently in our ensembles, different low energy conformers for a

given side chain can be sampled even if they are separated by a large barrier, which would hinder

the transition from one to the other in MD simulations. Indeed, a closer look at our ensemble of

ubiquitin structures reveals that 88% of the allowed side-chain rotamers are populated, although

some are found with much smaller frequency than others (as expected in the human ubiquitin na-

tive ensemble - see ref.68,79). The successful recovery of these side-chain NMR data in our ensemble
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(Figures 5(a)-(c)) further corroborates the validity of the proposed PEM in properly characterizing

equilibrium local fluctuations.

5 Discussion and Conclusion

Capturing equilibrium mobility in proteins is important for understanding biological function. We

propose a method to address the mobility of missing loops in protein structures. The method

generates an ensemble of physical loop conformations on which thermodynamic quantities can be

measured for validation with corresponding data from experiment and simulation. Furthermore,

we extend this method to capture the equilibrium mobility of an entire protein.

Designing methods to obtain an ensemble of conformations available to a protein at equilibrium is

a novel contribution of this work. The FEM proposed to model loop mobility at equilibrium makes

use of an efficient robotics-inspired exploration to sample the conformational space available to a

missing fragment that fits with a given protein structure. This exploration allows FEM to explore

the space of arbitrarily long fragments, an advantage over database and ab-initio methods20–30,34.

The multi-scale approach employed in this work allows to efficiently model protein fragments as

kinematic chains. In addition, the use of all-atom force fields allows to accurately estimate con-

formational energies. A statistical mechanics formulation then provides a natural way to associate

a weight to each obtained conformation and as a result allows to obtain an equilibrium confor-

mational ensemble. This is an obvious advantage over existing exploration methods applied to

proteins32,33,40. The extension of FEM into PEM is a novel approach to obtain equilibrium fluctu-

ations of an entire protein by combining equilibrium fluctuations of protein fragments.

When applied to stable proteins such as CI2 and α-Lac, the proposed FEM recovers the native

loops of these proteins. The generated ensembles are clustered around the native loops, and the

associated energy landscapes are funnel-like. Fluctuations measured over each ensemble are fully

consistent with experimental data and existing simulations. A novel application of our method on

VlsE with a missing loop of 20 residues generates an ensemble whose conformational heterogeneity

is consistent with the high disorder of the missing loop. These results point to an immediate future

application of the proposed FEM where consideration of the crystal environment as in ref.80 will

allow to model the effects of crystal packing on loop mobility.
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Applications of PEM on ubiquitin and protein G reveal fluctuations that correlate very well with

order parameter, residual dipolar coupling, and 3-bond scalar coupling NMR data. The proposed

PEM fully characterizes the equilibrium mobility in proteins such as ubiquitin and protein G,

where mobility is not due to concerted motions. Because this method explores the mobility of

a protein one fragment at a time, it is not immediately clear whether it can capture concerted

motions. We are currently investigating this issue and extending the proposed methods into a more

general approach. We are also investigating ways to improve the efficiency of the search for low-

energy conformations in the proposed methods by, for instance, searching for optimal side-chain

configurations in backbone-dependent rotamer libraries such as those provided in SCW3RL 3.081.

An additional consideration for future work is the inclusion of solvent effects on the modeled

equilibrium fluctuations. While we do not employ the ensembles obtained in this work to make

inferences about the relationship between structure and function, modeling water may allow us to

answer important questions on the role of water in functional motions82. Investigation of more

contemporary force fields is another obvious direction of future work. The agreement shown in

this work between the ensembles obtained when using CHARMM2249 vs. AMBER9450 is similar

to the one obtained in ref.76, where different force fields of similar functional form are shown to

behave comparably in MD simulations. Evidence of differences between force fields, however, on

other physical conditions, such as modeling of peptide unfolding83, indicates that protein modeling

with an exhaustive set of force fields is worth investigating.

Since the recovery of NMR data probing the dynamics of proteins is generally a challenge for

even long MD simulations, the successful prediction for protein G and ubiquitin in this work is

a particularly significant result. The nontrivial recovery of these NMR data suggests that the

methods we propose can provide detailed information on the equilibrium flexibility of proteins and

so help us better understand the interplay between flexibility and function.
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(a) (b) (c)

Figure 1: (a) The mobile anchors in two different polypeptide chains for the CI2 VAL53-ASP64 loop

fragment, drawn in grey, are not attached to the stationary anchors drawn in black. (b) Mobile anchor

n1 is attached to its corresponding stationary anchor through rigid body transformations. (c) Rotations

of the dihedral bonds of the fragment steer the other mobile anchor n2 towards its target pose in the

stationary anchor.
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(c1) (c2) (c3)

Figure 2: (a1), (b1), (c1) 5, 000 transparent loop conformations vs. opaque reference structure (equili-

brated native structure for CI2 and α-Lac and lowest energy structure for VlsE). Obtained conformations

are rendered with the VMD 1.8.3 software84. (a2), (b2), (c2) Energy landscapes associated with gen-

erated ensembles are shown by plotting the energetic difference vs. the RMSD of each conformation

relative to a reference structure. Energy landscapes are shown only for conformations with energy less

than 10 RT units away from the reference structure (each ensemble is reduced to 2499, 2022, and

2755 conformations). An average energy profile is computed by distributing conformations in bins every

0.001 Å away from reference structure and measuring the energy of each bin as an average over its

conformations. Average energy profiles obtained for CI2 and α-Lac are very steep compared to the flat

average energy profile of VlsE. (a3), (b3), (c3) Obtained fluctuations vs. B factor-derived fluctuations

for the CI2 loop, fluctuations in ref.57 for the α-Lac loop, and disorder scores for the VlsE loop.
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(b1) (b2)

Figure 3: (a1) and (b1) Obtained native ensembles for protein G and ubiquitin, respectively. (a2) and

(b2) Average RMSD per residue obtained by combining the local fluctuations of all the different regions.

Results for different regions are shown in different colors, from red to blue as a window of 30 residues

slides from the N- to the C- terminus of the protein. The black lines mark the highest and lowest rmsd

values recorded from all the different windows embracing each given residue, and provide an estimate for

the uncertainty of the procedure. Two consecutive 30-residues windows have an overlap of 25 residues.

The results corresponding to the first and last 5 residues of each fragment are discarded as they are

biased by the finite size of the window.
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(a) (b)

(c)

Figure 4: Comparison of NMR data with thermodynamics data measured over the generated ensemble

for protein G. (a) Comparison of S2 backbone (amide) order parameters measured over our ensemble

(S2
calc) with fast S2

NH data obtained from NMR relaxation measurements (S2
exp). (b) Comparison

of S2 backbone (amide) order parameters measured over our ensemble (S2
calc) with slow S2

NH data

obtained from NMR relaxation measurements (S2
exp). (c) Comparison of residual dipolar coupling

(RDC) parameters as obtained in our ensemble (RDCcalc, on the y-axis), and from NMR relaxation

measurements (RDCexp, on the x-axis). Results for different bond types are shown in different colors.

(a)-(c) The dashed black line indicates the linear least squares regression fit on the two sets of data,

while the continuous line represents the identity line.
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(a) (b)

(d)

Figure 5: Comparison of NMR data with thermodynamics data measured over the generated ensemble

for ubiquitin. (a) Comparison of S2 order parameters for backbone (amide S2) and side chains (methyl

S2), as obtained in our ensemble (S2
calc, on the y-axis), and from NMR relaxation measurements (S2

exp,

on the x-axis). (b) Comparison of residual dipolar coupling (RDC) parameters as obtained in our

ensemble (RDCcalc, on the y-axis), and from NMR relaxation measurements (RDCexp, on the x-axis).

Results for different bond types are shown in different colors. (c) Comparison of 3-bond scalar coupling

parameters 3JNCγ and 3JCCγ as obtained in our ensemble (3Jcalc, on the y-axis) and as extracted from

NMR relaxation experiments (3Jexp, on the x-axis). (a)-(c) The dashed black line indicates the linear

least squares regression fit on the two sets of data, while the continuous line represents the identity line.
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