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ABSTRACTProbabilisti Phenomena in Random CombinatorialProblemsbyDemetrios D. Demopoulos
This is an experimental investigation of three ombinatorial problems. I examinedthe average-ase omplexity of random 3-SAT and of 3-Colorability of random graphs,and the satis�ability of random 1-3-HornSAT. All these problems, not only are in-teresting for their own sake, but also are of great pratial importane sine manyother problems in omputer siene, engineering and other �elds an be redued tothese. We systematially explored a large part of the problems' spae, varying thesize and the onstrainedness of the instanes, as well as the tools we used to solvethem. We observed new phase transitions from polynomial to exponential omplexityfor random 3-SAT. A similar piture emerged for 3-Colorability. These experimentalobservations are important for understanding the inherent omputational omplexityof the problems. In the ase of random 1-3-HornSAT, our �ndings suggest that thereis a threshold at whih the satis�ability hanges from 1 to 0.



AknowledgmentsI would like to thank my advisor, Moshe Y. Vardi, for his onstant assistaneand support, and his wise advising. But even more, I would like to thank him foro�ering me a great teaher-student relationship. The lessons I learned from him aboutprofessionalism, ollaboration, and ethis are at least as valuable as the training I gotas a researher while working on my thesis.I also want to thank the other two members of my ommittee for their support;Devika Subramanian for o�ering me her onstant enouragement and all the resouresthat she holds in her brains and Nate Dean for always being more than happy todisuss with me about researh and throw at me questions that reminded me thatthere are always many ways to look at a subjet.I have really enjoyed working with Alfonso San Miguel Aguirre, Cristian Coarfa,and Gerrik Green, towards the ompletion of parts of the researh presented in thisthesis.I feel the need to say a big thank you to all the sta� of the Computer SieneDepartment at Rie for doing their best for all of us to have a smooth, produtiveday everyday at shool; espeially to Iva Jean Jorgensen and Darnell Prie, for beingthere for me all these years as mentors and friends.It was a great experiene to be in the same researh group with Armando Ta-



ivhella, Aniello Murano, and Guoqiang Pan. Disussing with them about researhrelated issues and having their feedbak was very helpful for me; disussing withthem about all other issues of life was lots of fun.Finally, I am very grateful to Maria for being there for me from the beginning ofthis journey, and for being \my Greee" all this time that I have been thousands ofmiles away from Greee.



ContentsAbstrat iiAknowledgments iiiList of Figures viiList of Tables xi1 Introdution 11.1 De�nitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Random 3-SAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.3 3-Colorability of random graphs . . . . . . . . . . . . . . . . . . . . . 101.4 Random 1-3-HornSAT . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Random 3-SAT 202.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252.3 Random 3-SAT and GRASP . . . . . . . . . . . . . . . . . . . . . . . 272.4 Random 3-SAT and CPLEX . . . . . . . . . . . . . . . . . . . . . . . 342.5 Random 3-SAT and CUDD . . . . . . . . . . . . . . . . . . . . . . . 383 3-Colorability of random graphs 433.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



vi3.2 3-Colorability of random graphs: experimental results . . . . . . . . . 444 Random 1-3-HornSAT 484.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484.2 On the 1-2-HornSAT . . . . . . . . . . . . . . . . . . . . . . . . . . . 524.3 On the 1-3-HornSAT . . . . . . . . . . . . . . . . . . . . . . . . . . . 575 Conlusions 74Referenes 80



List of Figures2.1 GRASP { (left) 3-D Plot of median running time, and (right) medianrunning time for density 0.9 as a funtion of the order of the instanes.A quadrati funtion �ts these points better (with an r2 > 0:98) thanan exponential funtion. . . . . . . . . . . . . . . . . . . . . . . . . . 282.2 GRASP { median running time for density 3.5 (left) and density 3.8(right) as a funtion of the order of the instanes. At density 3.5, thebest �t urve is quadrati in the order, while at 3.8, the best �t urveis exponential in the order. . . . . . . . . . . . . . . . . . . . . . . . . 292.3 GRASP { (left) Ratio of mean to median running time and the pro-portion of outliers, and (right) the exponent 1=� of median runningtime as a funtion of density. . . . . . . . . . . . . . . . . . . . . . . . 312.4 Mean log deviation vs. mean over median ratio for running time ofGRASP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332.5 CPLEX { 3-D Plot of median running time . . . . . . . . . . . . . . . 352.6 CPLEX { median running time for density 1 (left) and density 2 (right)as a funtion of the order of the instanes. . . . . . . . . . . . . . . . 36



viii2.7 CPLEX { median running time for density 2.5 (left) and density 4(right) as a ubi and exponential respetively funtion of the order ofthe instanes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362.8 CPLEX { (left) Ratio of mean to median running time and proportionof outliers, and (right) the exponent 1=� of median running time as afuntion of density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382.9 CUDD { 3-D Plot of median running time . . . . . . . . . . . . . . . 402.10 CUDD { median running time for density 0.1 (left) and for density 1(right) as a ubi and an exponential respetively funtion of the orderof the instanes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412.11 CUDD { (left) Ratio of mean to median running time and (right)median ROBDD size as a funtion of density . . . . . . . . . . . . . . 423.1 3-D plot of the perentage of the olorable instanes aross the  � nquadrant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453.2 3-D plot of the median (left), and mean (right) running time of SMALLK. 463.3 Median running time of SMALLK for onnetivity 4.2 (left) and 4.4(right). At onnetivity 4.2 the best �t urve is quadrati in the order,while at onnetivity 4.4 the best �t urve is exponential in the order. 46



ix4.1 Average satis�ability plot of a random 1-2-Horn formula of order=20000(left) and the orresponding ontour plot (right). . . . . . . . . . . . 534.2 Satis�ability plot of random 1-2-Horn formulae when d1 = 0:1 . . . . 544.3 Satis�ability plot of random 1-2-Horn formulae when d1 = 10=n fororders 100(blak), 1000 (green), 10000(blue), and 50000(red). . . . . . 574.4 Average satis�ability plot of a random 1-3-Horn formula of order=20000(left) and the orresponding ontour plot (right). . . . . . . . . . . . 584.5 Average satis�ability plot of a random 1-3-Horn formula along thed1 = 0:1 ut (left) and the satis�ability plot with resaled parameterusing �nite-size saling (right). . . . . . . . . . . . . . . . . . . . . . . 604.6 Average satis�ability plot of a random 1-3-Horn formula along thediagonal ut (left) and the satis�ability plot with resaled parameterusing �nite-size saling (right). . . . . . . . . . . . . . . . . . . . . . . 624.7 Windows of probability of satis�ability of random 1-3-Horn formulaealong the d1 = 0:1 ut . . . . . . . . . . . . . . . . . . . . . . . . . . 634.8 Plot of the 10%-90% probability of satis�ability window as a funtionof the order n (left) and of the 20%-80% probability of satis�abilitywindow (right) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



x4.9 Probability of satis�ability plot of a random 1-3-Horn formula aord-ing to the vertex-identi�ability model(left) and the orresponding on-tour plot (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 704.10 50% satis�ability line { Aording to the model derived through hy-pergraphs (line with jumps) and aording to our experimental data(smoother line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 714.11 Probability of satis�ability plot of a random 1-3-Horn formula aord-ing to the vertex-identi�ability model, along the d1 = 0:1 ut (left) andthe diagonal ut (right). . . . . . . . . . . . . . . . . . . . . . . . . . 72



List of Tables3.1 Heavy-tail phenomenon at the phase transition. . . . . . . . . . . . . 474.1 Data for the prob. of satis�ability of random 1-3-Horn formula a-ording to the vertex-identi�ability model, along the d1 = 0:1 and thediagonal ut. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



Chapter 1IntrodutionIn the last deade phase transitions in randomly generated ombinatorial problemshave been studied intensively. Although the idea of phase transition in ombinatorialproblems has been introdued as early as 1960 [37℄, in reent years it has been amain subjet of researh in the ommunities of theoretial omputer siene, arti�ialintelligene and statistial physis. This interest was stimulated by the disovery ofa fasinating onnetion between the density of ombinatorial problems and theiromputational omplexity, see [16, 68℄.Combinatorial phase transitions are also known as threshold phenomena. Phasetransitions have been observed both on the probability that an instane of a problemhas a solution and on the omputational ost of solving an instane. In few asesthese phase transitions have been also proved[17, 31, 43℄. Families of problems thathas been the fous of this researh are propositional satis�ability, the olorability ofgraphs, and onstraint satisfation. For the purposes of this thesis we are onernedabout problems of the �rst two families. More spei�ally, we will present resultsonerning the following three problems: random 3-SAT, 3-Colorability of randomgraphs, and a variation of HornSAT alled 1-3-HornSAT.In what follows in this hapter, we will de�ne eah of these problems, we will state



2the questions we are trying to answer, and we will shortly disuss our experiments andour �ndings. In Chapter 2, we will analytially present our researh on the average-ase omplexity of random 3-SAT. In Chapter 3 we present a similar analysis onthe omplexity of the 3-Colorability of random graphs. In the ase of 1-3-HornSAT,disussed in Chapter 4, we are interested in the probability that a random instaneis satis�able. Finally, in Chapter 5, we draw our onlusions and present some futurework as an extension to this thesis.1.1 De�nitionsLet us review some de�nitions� related to ombinatorial phase transitions. LetX be a �nite set and jXj = n. Let A be a random subset of X onstruted by arandom proedure aording to the probability spae 
(n;m) D= (2X ; 22X ;Pr), wherePr is de�ned as :
Pr
(n;m)(A) = 8>>>>>>>><>>>>>>>>: 1=( nm� ) if jAj = m�0 otherwise ;where m an be an integer and�The de�nitions found in this paper as well as more de�nitions and results an be found in[28℄



3
m� = 8>>>>>>>><>>>>>>>>: 0 if m < 0m if 0 � m � nn if m > nThe random proedure onsists of seletingm� elements ofX without replaement.An property Q of X is a subset of 2X . Q is inreasing if A 2 Q and A � B � Ximplies B 2 Q. Q is non-trivial if ; 62 Q and X 2 Q. A property Q onsists of asequene of sets fXn : n � 1g suh that jXnj < jXn+1j and a family fQn : n � 1gwhere eah Qn is a property of Xn. Q is inreasing (non-trivial) if Qn is inreasing(resp. non-trivial) for every n � 1.Let Q be an inreasing non-trivial property and � : N ! R+ be a stritly positivefuntion. We say that � is a threshold for Q if for every f : N ! N :1. If limn!1 f(n)=�(n) = 0 then limn!1Pr
(n;f(n))(Qn) = 02. If limn!1 f(n)=�(n) =1 then limn!1Pr
(n;f(n))(Qn) = 1� is a sharp threshold Q if for every f : N ! N+ :1. If supn!1 f(n)=�(n) < 1 then limn!1 Pr
(n;f(n))(Qn) = 02. If infn!1 f(n)=�(n) > 1 then limn!1 Pr
(n;f(n))(Qn) = 1We will say that a problem exhibits a phase transition if there is a sharp threshold.



41.2 Random 3-SATA problem that has reeived a lot of attention is the 3-satis�ability problem (3-SAT), a paradigmati ombinatorial problem that is important also for its own sake.An instane of 3-SAT onsists of a onjuntion of lauses, eah one a disjuntion ofthree literals. The goal is to �nd a truth assignment that satis�es all lauses. Thedensity of a 3-SAT instane is the ratio of the number of lauses to the number ofBoolean variables. We all the number of variables the order of the instane. Clearly,a low density suggests that the instane is under-onstrained, and therefore is likely tobe satis�able, while a high density suggests that the instane is over-onstrained andis unlikely to be satis�able. Experimental researh [23, 68℄ has shown that for ratiobelow (roughly) 4.26, the probability of satis�ability of a random 3-SAT instane goesto 1 as the order inreases, while for ratio above 4.26 the probability goes to 0. At4.26, the probability of satis�ability is near 0.5. This satis�ability threshold densityhas been alled the rossover point . Theoretially establishing the density at therossover point is diÆult, and is the subjet of ontinuing researh, f. [38, 33, 1℄.The experiments in [23, 68℄, whih applied algorithms based on the so-alledDavis-Longemann-Loveland method (abbr., DLL method) (a depth-�rst searh with unitpropagation [30℄), also show that the density of a 3-SAT instane is intimately relatedto its omputational omplexity. Intuitively, under-onstrained instanes are easy tosolve, as a satisfying assignment an be found fast, and over-onstrained instanes are



5also easy to solve, as all branhes of the searh terminate quikly. Indeed, the datadisplayed in [23, 68℄ demonstrate a peak in running time essentially at the rossoverpoint. Using �nite-size saling tehniques, [56℄ demonstrated a phase transition atthe rossover point, viz., a marked qualitative hange in the strutural properties ofthe problem. This pattern of omputational behavior with a peak at the rossoverpoint is alled the easy-hard-easy pattern in [67℄.This piture, however, is quite simplisti for various reasons. First, the terms\easy" and \hard" do not arry any rigorous meaning. The omputational omplexityof a problem is typially measured by its salability, that is, its growth as a funtion ofthe input size. Thus, one studies omputational omplexity on an in�nite olletionof instanes. The easy-hard-easy pattern, however, is observed when the order is�xed while the density varies, but one the order is �xed, there are only �nitely manypossible instanes. For that reason, theoretial analyses of the random 3-SAT problemfous on olletions of �xed-density instanes, rather than on olletions of �xed-orderinstanes, f. [4℄. Seond, in the ontext of a onrete appliation, e.g., boundedmodel heking [6℄, planning [53℄, or sheduling [24℄, it is typially the order thattends to grow while the density stays �xed, for example, as we searh for longer andlonger ounterexamples in bounded model heking. Thus, experimental results thatvary density while �xing the order tell us little about the omputational omplexityof 3-SAT in suh settings. Finally, it is not lear where the boundaries between the



6so-alled \easy", \hard", and \easy" regions are. A widely held belief [68, 67℄ isthat random 3-SAT problems are \hard" only for densities very lose to the rossoverpoint. Muh work has therefore foused on explaining the \jump" in omputationalomplexity around the rossover point using �nite-size saling [67℄ and bakbones[65℄. This alleged \jump", however, has not been doumented experimentally. Infat, there is almost no experimental work that studies how the running time of aSAT solver varies as a funtion of the order for �xed-density instanes (a few results ofthis nature, though not a systemati study, are reported in [22, 23, 67℄). Further, theexperiments reported in [68, 23℄ are based solely on DLL algorithms. While these areindeed the most popular algorithms for the satis�ability problem, one annot jumpto onlusions about the inherent and pratial omplexity of random 3-SAT basedsolely on experiments using these algorithms. We may observe di�erent phenomenaby experimenting with SAT solvers that embody di�erent algorithms.The goal of our experimental algorithmi researh reported here is to determinehow the average-ase omplexity of random 3-SAT, understood as a funtion of theorder for �xed density instanes, depends on the density. Is there a phase transitionin whih the omplexity shifts from polynomial to exponential? Is suh a transitiondependent or independent of the solver?To explore these questions, we set out to obtain a good overage of an ini-tial quadrangle of the two-dimensional d � n quadrant, where d is the density and



7n is the order. We explored the range 0 � d � 15. We attempted to maxi-mize the order of the sampled instanes, given our resoure onstraints. We usedthree di�erent SAT solvers, embodying di�erent underlying algorithms. GRASP(vini.ines.pt/�jpms/grasp/) is based on the DLL method, but it augments thesearh with a onit-analysis proedure that enables it to baktrak non-hronologiallyand reord the auses of onit. Experimental results [61℄ show that GRASP is veryeÆient for a large number of realisti SAT instanes, and it has proven to be avery e�etive SAT solver in the ontext of automated hardware design [66℄. TheCPLEX MIP Solver is a ommerial optimizer for linear-programming problems withinteger variables (www.plex.om). It employs a branh-and-bound tehnique us-ing linear-programming relaxations that an be omplemented with the dynamigeneration of utting planes. While branh-and-bound is related to depth-�rst-searh, the utting-planes tehnique is more powerful than resolution [48℄. CUDD(bessie.olorado.edu/�fabio/CUDD) implements funtions to manipulate ReduedOrdered Binary Deision Diagrams (ROBDDs), whih provide an eÆient representa-tion for Boolean funtions [13℄. Unlike GRASP and CPLEX, CUDD does not searhfor a single satisfying truth assignment. Rather, it onstruts a ompat symbolirepresentation of the set of satisfying truth assignments and then heks whether thisset is nonempty. Uribe and Stikel [76℄ ompared ROBDDs with the DLL methodfor SAT solving, onluding that the methods are inomparable, and that ROBDDs



8dominate the DLL method on many examples. Reent work by Groote and Zantemaproved the inomparability of ROBDDs and resolution [45℄. ROBDDs have provenin the 1990s to be very e�etive in the ontext of hardware veri�ation [14, 50℄.Our aim was not to diretly ompare the performane of the di�erent solvers inorder to see whih one has the \best" performane, but rather to understand theirbehavior in the d� n quadrant in order to make qualitative observations on how theomplexity of random 3-SAT is viewed from di�erent algorithmi perspetives. It isimportant to note that the algorithms used in GRASP, CPLEX, and CUDD do notexpliitly refer to the density of the input instanes. Thus, a qualitative hange inthe behavior of the algorithm, as a result of hanging the density, indiates a genuinestrutural hange in the SAT instanes from the perspetive of the algorithm.In analyzing our experimental results we fous on measuring the median runningtime as a funtion of the order for a set of instanes of �xed density.� This givesus a measure of the running time of the algorithm for that density. Our �ndingsshow that for GRASP and CPLEX the easy-hard-easy pattern is better desribedas an easy-hard-less-hard pattern, where, as is the standard usage in omputationalomplexity theory, \easy" means polynomial time and \hard" means exponential time.�It is easy to see that 3-SAT is NP-omplete for instanes of eah �xed density, as the generiredution of NP to 3-SAT [40℄ produes instanes of �xed density and eah density an beobtained by adding linearly many redundant variables or redundant lauses. Thus, we'dexpet the worst-ases running time to be exponential for all densities, and, onsequently, to�nd hard instanes in the \easy" region, f. [41℄. The issue of median vs. mean running timeis disussed later.



9When we start with low-density instanes and then inrease the density, we go froma region of polynomial running time, to a region of exponential running time, wherethe exponent �rst inreases and then dereases as a funtion of the density. Thus,we observe at least two phase transitions as the density is inreased: a transition ataround density 3.8 from polynomial to exponential running time and a transition ataround density 4.26 (the rossover point) from an inreasing exponent to a dereasingexponent. The region between 3.8 and 4.26 is also haraterized by the prevaleneof very hard instanes, the so alled \heavy-tail phenomenon", f. [41, 47, 62, 67℄.Our results indiate one or more phase transitions in this region, where the ratio ofthe mean to median running time peaks. For CPLEX we also observe another phasetransition at around density 1.7 from linear running time to quadrati running time.Note that we are using the term \phase transition" in a somewhat liberal sense. Thephase transitions that we observed involve various measures: a hange in the degreeof polynomial running time, a hange from polynomial to exponential running time,and a hange in the diretion of the heavy-tail phenomenon. All these suggest to usmarked qualitative hanges in strutural properties.A very di�erent piture emerges for CUDD. Here the algorithm is exponential(in both time and spae) for densities between 0.5 and 15. There is, however, nopeak around the rossover point and no heavy-tail phenomenon was observed. Weobserved, however, a peak in the size of the �nal BDDs onstruted by the algorithm



10at around density 2, indiating a phase transition at around this density. At a verylow density (0.1) we did observe polynomial (ubi) behavior, whih suggests thatanother phase transition is \lurking" between densities 0.1 and 0.5.There are two onlusions that an be drawn from our experiments. First, the\phase transition" in average ase omputational omplexity of random 3-SAT shouldnot be identi�ed with the \phase transition" in satis�ability. The sharp shift of aver-age ase omplexity from polynomial to exponential ours well before the rossoverpoint. This implies that explanations for shifts in omputational omplexity annotenter around phenomena observed at the rossover point [67, 65℄ Seond, unlike ear-lier preditions (f. [58, 21℄), phase transitions in average-ase omplexity (unlikethe one for satis�ability) are not solver-independent. This implies that any theoryattempting to explain the sharp shift in omputational omplexity must take theharateristis of the solver into aount, as in [2℄.1.3 3-Colorability of random graphsA onstraint satisfation problem that has been the enter of number of studies�is that of graph oloring. An instane of a k-oloring problem onsists of a graph,that is a set of verties and a set of edges, and a set of olors of size k. The goal is to�nd a oloring of the verties using the k olors, suh that eah vertex has exatly oneolor and there is no pair of adjaent verties (i.e. verties onneted with an edge)�For an extensive list of publiations on graph oloring see [25℄



11that has the same olor. In this study, we will fous on the problem of 3-olorability(i.e. there are three di�erent olors available) of random graphs.We all onnetivity the average degree of a graph, i.e. the average number ofedges inident to a vertex of the graph. The number of verties of the graph is alledthe order of the graph. As the density of the formula in the 3-SAT, the onnetivityof the graph in 3-olorability is a parameter that relates to the probability that theproblem has a solution. Graphs of low onnetivity, i.e. sparse graphs, are most likelyolorable, while graphs of high onnetivity are dense and unlikely to be olorable.Experimental results [47, 16℄ have shown that for onnetivity below 4.6 (roughly)the probability that a random graph is 3-olorable goes to 1 as the order inreases,while for onnetivity above 4.6 the probability goes to 0. The olorability thresholdis believed to be around onnetivity 4.6�, where the probability that a random graphis 3-olorable is roughly 0.5.In the previous setion, we desribe our researh on 3-SAT, where we observea polynomial to exponential omplexity phase transition loated to the left of thesatis�ability threshold. We are interested to see if this phenomenon an also beobserved in other ombinatorial problems, suh as the 3-olorability.Reall that in 3-SAT researh has shown that the density of a formula is loselyrelated to the ost of �nding a satisfying assignment. This is also the ase for 3-�The earlier experiments in [16℄ are on redued graphs and loate the threshold slightly above5. Later experiments [47℄ on random graphs show that the threshold is around 4.6



12olorability. The results in [16, 47℄ show that, when applying omplete depth-�rstbaktraking algorithms based on the Br�elaz heuristi [11, 75℄ to random graphs,sparse (low-onnetivity) graphs are relatively easy to olor, and dense (high-onnetivity)graphs are also relatively easy to prove non-olorable. The experiments demonstratethat the omputational ost peaks around the threshold (onnetivity 4.6).Hogg and Williams in [47℄ also observe a seond phase transition to the left ofthe olorability threshold. It is at a region, where although the majority of the in-stanes are relatively easy, there are a few instanes that are extremely hard to solve.Aording to the authors this region orresponds to a transition from polynomial toexponential saling of the average omputational ost. A model that relates the aver-age ost to the number of partial solutions of di�erent sizes [78℄ is used to approximatethe loation of this transition. By speializing their model to the onstraints of theolorability problem, the authors estimate that the transition is happening at aroundonnetivity 2.2 (while the original model gives an estimation of 2.9).Culberson and Gent in [26℄ suggest that the double phase transition onjeturedin [47℄ ours only in graphs of small order. Their analysis is based on the notion of a\frozen development" (that is an idea analogous to the bakbone for SAT). A pair ofverties in a olorability instane is alled frozen if the two verties have always thesame olor in every valid oloring of the graph. The authors study the developmentof frozen pairs on random graphs, whih is shown to be happening very lose to



13the olorability threshold. When frozen pairs are present it is likely that a searhalgorithm an make an early mistake by setting two nodes of a frozen pair to di�erentolors and then start thrashing. Sine the frozen pairs seem to appear only when weare very lose to the threshold, the authors suggest that the \double phase transition"an only be seen in small graphs, and that as the order of the instanes inreases itonverges to a single phase transition.Motivated by the seemingly opposite results in [47℄ and [26℄ and having alreadystudied a similar problem for 3-SAT we set out to investigate how the average-aseomplexity of the 3-olorability of random graphs depends on the onnetivity. Ourgoal is determine how does the average-ase omplexity of 3-olorability hanges withthe order, for a �xed onnetivity, if there is a phase transition from polynomial toexponential omplexity, and where is suh a transition loated.To answer these questions we systematially explored the two-dimensional  � nquadrant, where  is the onnetivity and n is the order of a random graph. We ov-ered the range 1 �  � 20, and we tried to maximize the order of the instanes, giventhe resoures we had available. To solve the problems we used Culberson's SMALLKprogram (http://www.s.ualberta.a/~joe/Coloring/Colorsr/smallk.tar.gz).SMALLK is a baktrak based program for oloring graphs. The underlying algo-rithm has two steps; �rstly, a reursive baktrak searh redues the graph by delet-ing verties, edges and available olors while eah of this redutions is reorded in a



14stak. Then, the information in the stak is used to reonstrut and olor the graph.SMALLK has been shown [27℄ to be perform very well when used to solve graphswith small hromati number, like in the ase of 3-olorability. Note, that this solveris also used in [26℄.Our goal here is to make qualitative observations about the omputational ostof the 3-olorability of random graphs. When analyzing our experimental data fromthe  � n quadrant, we fous on the median� running time. Our experimental �nd-ings show that the median running time of SMALLK sales polynomially with theorder for onnetivity up to 4.2, while it sales exponentially for onnetivity 4.4 andabove. We observe a phase transition at around onnetivity 4.3, where the medianrunning time shifts from being polynomial in the order to exponential. This transi-tion is also followed by a heavy-tail phenomenon, similar to the one we observed forrandom 3-SAT. Our �ndings agree with the double phase transition onjetured in[47℄, and refute the suggestion made in [26℄ that the previously onjetured doublephase transition is only an e�et of small graph order. The observed phase transitionmight be solver-dependent, but it is not an artifat of the solver sine the algorithmused is oblivious to the onnetivity, or any other strutural property, of the instane.These �ndings also suggest that when we look at a polynomial to exponential om-plexity phase transition, there is a robust behavior among problems suh as 3-SAT�In [47℄ the authors onjeture a seond phase transition from polynomial to exponentialaverage ost.



15and 3-Colorability (and possibly more ombinatorial problems).1.4 Random 1-3-HornSATA problem similar to random SAT is that of the satis�ability of random Hornformulae. An instane of the random Horn-SAT in onjuntive normal form (CNF) isa onjuntion of Horn lauses; eah Horn lause is a disjuntion of literals� of whihat most one an be positive.Although random Horn-SAT is a problem very lose to random 3-SAT, it is atratable problem unlike 3-SAT. The omplexity of the Horn-SAT is linear in the sizeof the formula [32℄. The linear omplexity of Horn-SAT allow us to study experimen-tally the satis�ability of the problem for muh bigger input sizes than those used inour studies on 3-SAT and 3-Colorability and also in similar researh [47, 23, 68, 19℄.An additional motivation for studying random Horn-SAT omes from the fatthat Horn formulae are onneted to several other areas of Computer Siene andMathematis [60℄. Horn formulae are onneted to automata theory. The transitionrelation, the starting state, and the set of �nal states of an automaton an be desribedusing Horn lauses. For example, if we onsider a binary-tree automaton, then Hornlauses of length three an be used to desribe its transition relation while Hornlauses of length one an desribe the starting state and the set of the �nal states ofthe automaton. In the ase of a word automaton, Horn lauses of length two an be�A positive literal is a variable; a negative literal is a negated variable.



16used to desribe its transition relation, while lauses of length one an desribe thestarting state and the �nal states. Then, the question about the emptiness of thelanguage of the automaton an be translated to a question about the satis�ability ofthe formula. There is also a orrespondene between Horn formulae and hypergraphsthat we use to show how results on random hypergraphs relate to our researh onrandom Horn formulae.The probability of satis�ability of random Horn formulae generated aording toa variable-lause-length model has been studied by Istrate in [49℄. In this work it isshown that aording to this model random Horn formulae have a oarse satis�abilitythreshold, i.e. the problem does not have a phase transition. The variable-lause-length distribution model used by Istrate is better suited if we study Horn formulaein onnetion to knowledge-based systems [60℄.Motivated by the onnetion between the emptiness of automata language and theHorn satis�ability, we studied the satis�ability of two types of random Horn formulaein onjuntive normal form (CNF) that are generated aording to a variation of the�xed-lause-length distribution model. That is, formulae that onsist of lauses oflength one and three only, and formulae that onsist of lauses of length one andtwo only. We all these problems 1-3-HornSAT and 1-2-HornSAT respetively. Weare looking to identify regions in the problems' spae where instanes are almostsurely satis�able or almost surely unsatis�able. We are also interested in �nding if



17the problems exhibit a phase transition, i.e. a sharp threshold.Notie that the random 1-2-HornSAT problem is related to the random 1-3-HornSAT problem in the same way that random 2-SAT is related to random 3-SAT.That is, as some algorithm searhes for a satisfying truth assignment for a random 1-3-Horn formula by assigning truth values to the variables, a random 1-2-Horn formulais reated as a subformula of the original formula. This is a result of 3-lauses beingsimpli�ed to 2-lauses. The relation between random 2-SAT and random 3-SAT isexploited by Ahlioptas in [1℄ to improve on the lower bound for the threshold ofrandom 3-SAT. In this work, Ahlioptas uses di�erential equations to analyze theexeution of a broad family of SAT algorithms. The analysis is based on a Markovhain used to trae the number of 2-lauses and 3-lauses as the algorithm exeutes.Essential role for the suess of the analysis plays the already proven sharp satis�a-bility threshold for random 2-SAT [17, 31, 43℄. In our ase, there is no suh thresholdknown for the random 1-2-HornSAT that we ould possibly use. Not only that, butas we show later in this paper, random 1-2-HornSAT laks a phase transition. Be-ause of that, we believe that an analysis of the random 1-3-HornSAT based on thedi�erential equations method presented by Ahlioptas is not possible.The 1-2-HornSAT problem an be analyzed with the help of random digraphs [9℄.We will show how results on random digraph onnetivity, presented by Carp in [52℄,an be used to model the satis�ability of random 1-2-Horn formulae. These results



18an be used to show that there is no phase transition for the 1-2-HornSAT and aremathed by our experimental data.Our experimental investigation on 1-3-HornSAT shows that there are regionswhere a random 1-3-Horn formula is almost surely satis�able and regions where isalmost surely unsatis�able. Analysis of the satis�ability perentiles' window and�nite-size saling [71℄, suggest that there is a \sharp threshold line" between thesetwo regions. As 1-2-HornSAT an be analyzed using random digraphs, 1-3-HornSATan be analyzed using random hypergraphs. We show that some reent results onrandom hypergraphs [29℄ �t well our experimental data. Unlike the data analysis,the hypergraph-based model suggests that the transition from the satis�able to un-satis�able regions is a steep funtion rather than a step funtion. It is therefore,not lear if the problem exhibits a phase transition, even though we were able to getexperimental data for instanes of large order.Our work here also relates to this presented by Kolaitis and RaÆll in [57℄. There,the authors arried out a searh for a phase transition in another NP-omplete prob-lem, that of AC-mathing. The similarity between their work and ours is that theexperimental data provide evidene that both problems have a slowly emerging phasetransition. The di�erene is that in our ase, beause of the linear omplexity ofHorn satis�ability, we are able to test instanes of Horn satis�ability of muh biggersize, than the instanes of AC-mathing in [57℄ or atually most of the NP-omplete



19problems like 3-SAT, 3-olorability et.



Chapter 2Random 3-SAT2.1 Related WorkThe fat that the \easy-hard-easy" pattern is quite simplisti is known, thoughrather under-emphasized, f. [69, 2℄. For example, in the high-density region (abovedensity 5.2), an exponential lower bound on the length of resolution proofs is proved in[18℄. This entails an exponential lower bound on the running time of DLL algorithms,implying that the high-density region an, at best, be desribed as \less hard". (Notethat this lower bound does not apply to algorithms that are based on utting planesor ROBDDs [21, 48, 45℄.) It is also known that the probability rossover is notthe only phase transition involving random 3-SAT and that phase transitions anbe solver dependent. In [72℄, the authors demonstrated experimentally a hangefrom exponentially fast to power law relaxation at around density 3. In [12, 63℄, theauthors proved linear median running time of the pure-literal algorithm at the low-density region (below 1.63) and showed a phase transition at 1.63 for this algorithm.In [39℄, the authors proved a linear median running time for the GUC heuristi forlow-density instanes and showed a phase transition near density 3 for this algorithm.These latter results indiate that the low-density region is indeed in some sense\easy",but they do not establish that omplete SAT solvers have polynomial median runningtime in this region. The analytial results of Frano and his ollaborators suggest that



21in this region we might expet a polynomial median running time for ertain heuris-ti algorithms, f. [15℄, but they do not prove it de�nitively. In [22℄, the authorsreported linear median running time of Tableau, their SAT solver, for densities 1, 2,and 3, and an exponential median running time for densities 4.26 and 10. In [67℄, theauthors reported linear median running time of their DLL SAT solver for density 3,and an exponential median running time for density 4.26. Neither of these papers,however, systematially explores the dependene on the density of the running timeas a funtion of the order.The performane of integer-programming algorithms on random SAT instanes isstudied in [48℄, but the author did not systematially study how the running timedepends on the density of the instanes. Similarly, in [10, 44℄ the authors studied thebehavior of ROBDDs on random SAT instanes, but did not study how this behaviorvaries as a funtion of the density.While we fous in this paper on the study of olletions of �xed-density instanes,it would also be interesting to study the behavior of SAT solvers on instanes wherethe order and the density vary simultaneously; for example, the density may inreasetogether with the order. For DLL solvers, the results in [4℄ show that unless thedensity inreases linearly with the order we should still expet to see exponentialrunning time. Indeed, if one onsiders a logarithmi inrease of the density as afuntion of the order, then our data (e.g., using Figure 2.1) shows that the median



22running time for GRASP is still exponential.While the �nite-size saling studies in [42, 67℄ do aim to explore how both thedensity and the order a�et the running time of SAT solvers, they do not revealthe same detailed piture that emerges from our experiments on the density-orderquadrant. First, the �nite-size saling studies for SAT are limited to DLL solvers.Seond, �nite-size saling studies show a very good �t only around the rossoverpoint, but the �t gets worse as the sale value gets further from it. This makes itvery diÆult to draw onlusions on the dependene on the order for �xed-densityinstane in regions with density far below the rossover point. For example, it is notat all lear how one an obtain linear-time behavior at density 3 reported in [67℄ fromtheir normalized and resaled results. Finally, the fat that the running time of DLLis exponential in the high-density region and polynomial in the low-density regionmakes it rather unlikely that the sale fator observed in [67℄ applies anywhere butvery near the rossover point. We elaborate on this point below.Beame at al. [4℄ showed that in the high-density region, a ertain variant of DLLterminates with high probability within time 2an=d+blogn, where a and b are somepositive onstants, n is the order and d is the density of the instane. This mathesthe exponential lower bound of [18℄. Thus, the normalized running time (i.e., theratio of the running time to the running time at the rossover point) is 2an(1=d�1=t),where t is the rossover density. Thus, in the high-density region the �nite-size sale



23fator is n(1=d � 1=t). More generally, let the running time of a SAT solver in thehigh-density region be 2anb=d , where a, b, , and d are positive onstants. Then thesale fator will be nb(1=b � 1=t). Note that in the high-density region, order andthe density have opposing e�ets. Inreasing the order inreases the running time,but inreasing density dereases the running time. The sale fator of n�(d=t � 1)proposed in [67℄ does not reet this opposition, as it inreases with both n and d,whih explains why the study in [67℄ shows a very good �t only around the rossoverpoint.On the other hand, our experiments, as well as other experiments mentionedabove, provide evidene to the fat that in the low-density region the running time ofDLL solvers is polynomial, i.e., f(d)ne, where f is some funtion and e is a positiveonstant. Thus, the normalized running time is f(d)ne=2anb=t . Therefore, the salefator n�(d=t�1) of [67℄ does not appear to be a reasonable sale fator in this region.For the low-density region, it makes more sense to normalize the running time withrespet to some other threshold s in the low-density region. The normalized runningtime is then f(d)=f(s), whih implies that d is the appropriate sale fator in thisregion. The bottom line regarding �nite-size saling is that running times in the low-and high-density regions are very di�erent funtions of density and order. Expetingthe same sale fator to work in both regions is unrealisti.As noted above, sine the sharp shift of average-ase running time from polynomial



24to exponential is solver dependent and ours well before the rossover point for allthe solvers we tested, explanations for this shift annot be solver independent andannot enter around phenomena observed at the rossover point [67, 65℄. In aninteresting reent development, Ahlioptas, Beame, and Molloy [2℄ showed that formixtures of 2-lauses with density 1 � � and 3-lauses with density 2:28, whih areunsatis�able with high probability, DLL solvers take an exponential time to refute. If(1��; 2:28) 2-lause/3-lause mixtures our during the solution of a satis�able 3-SATinstane, then a DLL solver will take time exponential in the order of the instaneto solve it. Ahlioptas et al. used this to show that a ertain DLL solver behavesexponentially at density 3.81. This ould also provide an explanation for our observedexponential behavior of GRASP (whih is a modi�ed DLL solver) in the low-densityregion. Coo and Monasson [20℄ reently analyzed the omputational omplexity ofrandom 3-SAT using the 2+p SAT problem, in whih a lause in hosen to be 3-lausewith probability p and a 2-lause with probability 1� p. They identi�ed a region tothe left of the rossover point, where all instanes are almost surely satis�able, andthe omplexity of a DLL-based algorithm is exponential. As in [2℄, it is an appropriatemixture of 2-lauses and 3-lauses, that fores the algorithm to build an exponentiallylarge refutation subtree before �nding a solution. Coo and Monasson show that,depending on the starting density of the 3-SAT instane, a heuristi will or will notavoid building this exponentially large subtree. For low enough density the hard



25subtree an be avoided with high probability, but at some point it annot be avoidedand we see a transition from polynomial running time to exponential running time.For the GUC heuristi they show that the transition ours around density 3 (reallthat it is known that GUC is linear below 3.003 [15, 39℄). All these agree with ourobservations that the polynomial to exponential behavior ours in the satis�ableregion and is solver-dependent.2.2 Experimental SetupOur experimental setup is idential to that of [23, 68℄. We generate dn lauses,eah by piking three distint variables (out of n) at random and hoosing theirpolarity uniformly. For eah studied point in the d � n quadrant we generate atleast 100 random instanes and apply our solvers. Our experiments were run on SunUltra 1 mahines. As in [68℄, we hose to fous on median running time rather thanmean running time. The diÆulty of ompleting the runs on very hard instanesmakes it less pratial to measure the mean. Furthermore, the median and the meanare typially quite lose to eah other, exept for the regions that display heavy-tailphenomena, where the median and the mean diverge dramatially [67℄. It wouldbe interesting to analyze our data at perentiles other than the 50th perentile (themedian) (f. [67℄), though a meaningful analysis for high perentiles would requiremany more sample points than we have in our experiments.For the statistial analysis and plotting of data, we used MATLAB, whih is



26an integrated tehnial omputing environment that ombines numeri omputation,advaned graphis and visualization, and a high-level programming language. TheMATLAB (www.mathworks.om) funtions we used for statistial analysis were:� poly�t, for omputing the best linear, quadrati, or ubi �t to the data (or thelogarithm of the data) using polynomial regression, and� orroef, for omputing r2, the square of orrelation (r2 is the fration of thevariane of one variable that is explained by regression on the other variable)[54℄.For eah of our data sets we tried to �t:� a linear urve on the logarithm of both oordinates (notie that this orrespondsto a �t of the form y = ax to the data)� a polynomial urve of the form y = ax0 + b, where 0 is an integer lose to 0 ofthe previous �t, and� a linear urve on the logarithm of the y-oordinate, while keeping the x-oordinateas is (this orresponds to a �t of the form y = aex to the data)For eah �t we omputed the r2 as a measurement of the quality of the �t. Un-less stated otherwise, for the results reported in this paper, r2 exeeded 0.98. Thisestablishes high on�dene in the validity of the �t of the urve to the data points.



272.3 Random 3-SAT and GRASPGRASP [61℄ is a SAT solver that augments the basi baktraking searh witha onit-analysis proedure. In order to ut down on the searh spae, a dynami-learning mehanism based on diagnosing the auses of the onits is used. By analyz-ing onits and disovering their auses, GRASP an baktrak non-hronologiallyto earlier levels in the searh tree, potentially pruning large portions of the searhspae. Moreover, by reording the auses of onits, GRASP an avoid running intosimilar onits later during the searh.The experiments desribed in this setion were run on a Sun Ultra 1 with a167MHz UltraSPARC proessor and 128MB RAM. Some hanges were made to thedefault GRASP on�guration; we inreased the maximum number of baktraks al-lowed to 1,000,000 and the maximum number of onits allowed to 2,000,000. CPUtime limit was set to 10,800 seonds. These hanges were neessary in order to limitthe portion of SAT instanes on whih GRASP aborted. This arti�ially lowers ourmeasurements of mean running time, but does not a�et our measurements of medianrunning time.The goal of the experiments was to evaluate GRASP's performane on an initialquadrangle of the d� n quadrant. We explored densities from 0.9 to 15. The orderof the instanes explored depends on the density:� Density 0.9: 2000 variables (25 variables per step)



28� Densities 1, 2, 3, 3.4, and 3.5: 1000 variables (10 variables per step)� Density 3.6: 800 variables (10 variables per step)� Density 3.7: 480 (10 variables per step)� Density 3.8: 450 variables (10 variables per step)� Density: 4.26: 170 variables (10 variables per step)� Density 5: 210 variables (10 variables per step)� Densities 4, 6-15: 250 variables (10 variables per step)In Figure 2.1 the median running time is shown on a logarithmi (base 2) sale.(For densities 4.26 and 5 we extrapolated the data up to 250 variables).
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Figure 2.1 GRASP { (left) 3-D Plot of median running time, and (right) median runningtime for density 0.9 as a funtion of the order of the instanes. A quadrati funtion �tsthese points better (with an r2 > 0:98) than an exponential funtion.



29We analyzed the median running time as a funtion of the order for �xed densityinstanes. For low densities (at or below 3.5), our data indiate a quadrati runningtime. See Figures 2.1 and 2.2, where we plot the median running time as a funtionof the order for instanes of density 0.9 and 3.5, respetively. The quadrati behaviorof GRASP at low densities should be ontrasted with the linear running time atlow densities that was reported in [22, 67℄. It seems that GRASP's onit-analysisomponent has a quadrati overhead.At densities 3.8 and above, the median running time is exponential in the order,i.e., it behaves as 2�n, where the exponent � depends on d (see disussion below).See Figure 2.2 where we plot the median running time as a funtion of the order forinstanes of density 3.8�. Thus, a phase transition seems to our between densities
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Figure 2.2 GRASP { median running time for density 3.5 (left) and density 3.8 (right)as a funtion of the order of the instanes. At density 3.5, the best �t urve is quadrati inthe order, while at 3.8, the best �t urve is exponential in the order.�The r2 for this plot is 0.95, while the r2 for all of the polynomial �ts that we tried was � 0:9.That gives us on�dene that the running time is exponential in the order.



303.5 and 3.8, where the median running time shifts from polynomial to exponential. Asthe density is inreased beyond 3.8, the exponent � also inreases. It peaks at arounddensity 4.26, after whih it delines with inreased density. Thus, we observe twophase transitions. The seond one, in whih the exponent reahes its peak, essentiallyoinides with the rossover point, at whih the probability of satis�ability is 0.5. Thisis the phase transition that was reported at [68℄ and then studied extensively. Thistransition, however, is preeded by another one, in some sense a more signi�ant one,near density 3.8, where we observe a qualitative shift in the behavior of GRASP. Atransition from polynomial to exponential behavior in graph oloring was onjeturedin [47℄ and ounter-onjetured in [27℄. Suh a transition in random 3-SAT near therossover point is laimed in [22℄; this laim, however, was removed in a later paper[23℄. We believe that we are the �rst to demonstrate suh a transition in random3-SAT, and to show that it ours signi�antly below the rossover point. The morereent works of Ahlioptas et al. [2℄ and Coo and Monasson [20℄ provide us with anintuition (based on the 2+p-SAT analysis) why suh a transition happens to the leftof the rossover point for GRASP (see disussion in Setion 2.1). Comparing with theresults in [20℄, it seems that GRASP is more suessful than GUC in avoiding hardsubtrees, pushing the transition from polynomial to exponential to a higher density.The phase transition near 3.8 is aompanied by a \heavy-tail phenomenon",whih is a prevalene of outliers, i.e., instanes on whih the atual running time is



31at least an order of magnitude (10) larger than the median running time, as well asa divergene of the mean and the median. See Figure 2.3, where we plot the meanto median ratio and the proportion of outliers as a funtion of the density. The plots
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Figure 2.3 GRASP { (left) Ratio of mean to median running time and the proportionof outliers, and (right) the exponent 1=� of median running time as a funtion of density.show a drasti hange in the region between density 3.7 and density 4.3. Both plotsshow a quik rise and deline. The mean to median ratio peaks at around density 4.0and the proportion of outliers peaks at around density 4.2. For densities between 3.7and 4.0 we found it quite diÆult to analyze the median running time as a polynomial(of low degree) or exponential funtion of the order (note the lower r2 reported abovefor density 3.8).There are several ways to analyze inequality, asymmetry and outliers among data.One way to measure inequality within a sample set is to use the mean log deviationGE(0) [74℄, whih has been used extensively to measure inequality in the ontext of



32eonomi studies of populations and inome distributions. It is de�ned by GE(0) =1n�ni=1 log( �yyi ), where n is the number of individuals in the sample, yi is the inomeof individual i and �y the mean inome. See Figure 2.4 where we plot the mean logdeviation for the running time of GRASP against the mean over median runtime ratio,in the density region of 3.5 to 5. Mean log deviation shows a similar behavior withthe mean over median ratio, and also with the number of outliers (see Figure 2.3).It peaks at density 4 and it indiates a dramati inrease of inequality to the left ofthe rossover point. Also, kurtosis and skewness [54℄ an be used to show whetherthe data are peaked or at relative to a normal distribution and whether data aresymmetrial or skewed to the right or left. Calulations of kurtosis and skewness onthe running time data of GRASP show them both to rise quikly and then quiklydrop again; they both peak at around density 3.6. These indiates, as the rest of thestatistis reported in this paper, that a signi�ant number of outliers appears betweendensities 3.5 and 4.Our data suggest that as the density inreases from 3.7 to 4.3, random 3-SATformulas go through a series of hanges and perhaps more than one phase transition.The heavy-tail phenomenon for random 3-SAT deserves further study (with manymore samples per point in the d�n quadrant) to on�rm our �ndings. In partiular,the divergene of the two peaks in Figure 2.3 needs to be reon�rmed or refuted.
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Figure 2.4 Mean log deviation vs. mean over median ratio for running time of GRASP.As noted above, beyond density 4.26 the exponent � delines. A theoretialanalysis suggests that for DLL solvers � may deline inversely linearly, i.e., as d , forsome onstant , see [4℄. Our data, however, suggest a slower deline, even thoughone may expet GRASP to be faster than DLL solvers. See Figure 2.3, where we plot1� as a funtion of d. Thus, GRASP is not as eÆient in the high-density region as itould be. (We should aution, however, that we only have 11 data points, and thesedata points themselves have been obtained by �tting a linear urve to the logarithmof the median running time. Thus, the �nding of a slower deline should be viewedas quite preliminary.)



342.4 Random 3-SAT and CPLEXThe CPLEX MIP Solver is a ommerial linear-programming solver for inte-ger variables. It employs a branh-and-bound tehnique starting from a linear-programming relaxation of the given integer-programming problem. This may beomplemented with the dynami generation of utting planes [7, 8℄.The experiments desribed in this setion were run on a Sun Ultra 1 with a167MHz UltraSPARC proessor and 64 MB RAM. SAT problems were enoded as0-1 integer-programming problems. Values true and false are represented as 1 and 0.For a lause to be true the sum of the representations of the literals has to be greateror equal to 1. For example, the lause :x1 _x2 _:x3 is represented by the inequality(1� x1) + x2 + (1� x3) � 1.We used CPLEX to solve problems for densities from 0.9 to 15. The order of theinstanes was hosen aording to the density:� Densities 0.9, 1.5, 1.6, 1.7 and 1.8: 2000 variables (25 variables per step)� Density 1: 10000 variables (50 variables per step)� Density 2: 1800 variables (25 variables per step)� Density 2.5: 460 variables (10 variables per step)� Density 3: 250 variables (10 variables per step)



35� Density 3.5: 150 variables (10 variables per step)� Densities 4, 4.26, and 5-15: 120 variables (10 variables per step)In Figure 2.5, the median running time is shown on a logarithmi (base 2) sale.Note that the peak at the rossover point is muh less pronouned than the one inFigure 2.1.
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Figure 2.5 CPLEX { 3-D Plot of median running timeThe median running time was analyzed as a funtion of the order for �xed density-instanes. For low densities (below 1.7) our data indiate a linear running time. SeeFigure 2.6 for median running times for instanes of density 1 with up to 10000variables. For density 2 the median running time is quadrati, while for density 2.5the running time is ubi. See Figure 2.6 for median running time for instanes ofdensity 2, where for order above 400 the behavior is quadrati. See Figure 2.7 (left)
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Plot of the running time of CPLEX as a function of the order n for d=2

Figure 2.6 CPLEX { median running time for density 1 (left) and density 2 (right) asa funtion of the order of the instanes.for median running time for instanes of density 2.5, where the behavior is ubi.Thus we seem to have two phase transitions, orresponding to a shift from a linear
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Plot of the running time of CPLEX as a (cubic) function of the order n for d=2.5
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Plot of the running time of the CPLEX as a (exponential) function of the order n for d=4

Figure 2.7 CPLEX { median running time for density 2.5 (left) and density 4 (right)as a ubi and exponential respetively funtion of the order of the instanes.to quadrati behavior between densities 1 and 2 and a subsequent shift to a ubibehavior between densities 2 and 2.5. The �rst shift may oinide with the phasetransition proved in [12, 63℄ around density 1.63, as desribed in Setion 2.1.



37At densities 4.0 and above, see Figure 2.7 (right), the median running time isexponential in the order, i.e., it behaves as 2�n, where the exponent � depends on d.As with GRASP, a phase transition seems to our between densities 2.5 and 4.0. Itorresponds to the shift from polynomial to exponential behavior. Again, we believethat as with GRASP, this shift is related to the 2+p-SAT results in [2, 20℄. Note thatthe polynomial to exponential running time shift for CPLEX is happening in the sameregion (near density 3.0) that the shift for GUC is happening. While CPLEX is abranh-and-bound tehnique (that an be related to DLL-like heuristis), it also usesutting-planes tehnique. Unfortunately, as CPLEX is a ommerial tool, we havelittle aess to its underlying algorithms and heuristis, whih makes it diÆulty too�er a preise analysis of its behavior.As with GRASP, the polynomial-to-exponential transition is aompanied byheavy-tail phenomena. See Figure 2.8, where we plot the mean to median ratio andthe proportion of outliers as a funtion of the density. Note that the heavy-tail phe-nomenon for CPLEX is not as marked as with GRASP; both peak mean-to-medianratio and peak proportion of outliers are lower for CPLEX than for GRASP. Notealso that the peak for CPLEX ours at lower densities (around 3.6) than for GRASP(around 4.0).As with GRASP, the exponent � peaks at density 4.26 and then delines. Again,our data show a slower deline than d , as suggested in [4℄ (though the analysis there
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Figure 2.8 CPLEX { (left) Ratio of mean to median running time and proportion ofoutliers, and (right) the exponent 1=� of median running time as a funtion of density.is for resolution-based proedures, whih are weaker than the utting-planes methodused in CPLEX.) See Figure 2.8, where we plot 1� as a funtion of d.2.5 Random 3-SAT and CUDDCUDD [70℄ is a pakage that provides funtions for the manipulation of Booleanfuntions, based on the redued, ordered, binary deision diagram (ROBDD) repre-sentation [13℄. A binary deision diagram (BDD) is a rooted direted ayli graphthat has only two terminal nodes labeled 0 and 1. Every non-terminal node is labeledwith a Boolean variable and has two outgoing edges labeled 0 and 1. An ordered bi-nary deision diagram (OBDD) is a BDD with the onstraint that the input variablesare ordered and every path in the OBDD visits the variables in asending order. AnROBDD is an OBDD where every node represents a distint logi funtion.Unlike GRASP and CPLEX, CUDD does not searh for a satisfying truth as-



39signment. Rather, it onstruts a ompat symboli representation of the set of allsatisfying truth assignments. Then, the resulting ROBDD is ompared against theprede�ned onstant 0 in order to �nd if an instane is (un)satis�able. It is importantto note that very large sets of truth assignments an have very ompat ROBDD rep-resentation [13℄, whih explains the e�etiveness of ROBDDs in hardware veri�ation[14, 50℄. As we see later, CUDD performs well in the very-low-density region, wherethe set of satisfying truth assignment is very large.The experiments desribed in this setion were run on a Sun Ultra 1 with a167MHZ UltraSPARC proessor and 64MB RAM. The CUDD pakage has been usedthrough the GLU C{interfae [73℄, a set of low-level utilities to aess BDD pakages.It is well known that the size of the ROBDD for a given funtion depends on thevariable order hosen for that funtion. We have used automati dynami reorderingduring the tests with the default method for automati reordering of CUDD.As in the preeding two setions, the goal of the experiments was to evaluateCUDD's performane on an initial quadrangle of the d � n quadrant. We exploreddensities 0.1, 0.5, and 1 to 15. The order of the instanes explored depends on thedensity:� Density 0.1: 1480 variables (10 variables per step)� Density 0.5: 136 variables (2 variables per step)



40� Density 0.9 and 1: 68 variables (2 variables per step)� Densities 1.5, 2-4, 4.26, 5-15: 46 variables (2 variables per step)In Figure 2.9 the median running time is shown on a logarithmi (base 2) sale.Note the absene of a peak (ontrast with Figures 2.1 and 2.5).
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Figure 2.9 CUDD { 3-D Plot of median running timeWe analyzed the median running time as a funtion of the order for �xed-densityinstanes. At densities 0.5 and above, the median running time is exponential in theorder, i.e., it behaves as 2�n. See Figure 2.10 (right) for median running time forinstanes of density 1, where the behavior is exponential. At density 2 and above theexponent � is independent of the density. In partiular, there seems to be nothingspeial about the rossover point at density 4.26. The explanation for this behavioris that the running time of ROBDD-based algorithms is determined mostly by the
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Figure 2.10 CUDD { median running time for density 0.1 (left) and for density 1 (right)as a ubi and an exponential respetively funtion of the order of the instanes.size of the manipulated ROBDDs. Our algorithm involves dn produt operationsbetween a possibly large ROBDD (representing all truth assignments of the lausesproessed so far) and a small ROBDD (representing seven truth assignments of theurrently proessed lause). Thus, the running time of our algorithm is determined bythe largest intermediate ROBDD onstruted. As is shown in Figure 2.11, the peakin ROBDD size is attained after proessing about 2n lauses, whih explains theattening of the running-time plot at density 2, and suggests that a phase transitionin terms of ROBDD size ours at about this density.As ROBDDs are symmetrial with respet to the set they represent and its omple-ment, both very small sets and very large sets an be represented by small ROBDDs[13℄. This suggests that we may see polynomial behavior for very low density in-stanes, whih have a large number of satisfying truth assignments. To hek thisonjeture we measured the median running time of CUDD for instanes of density
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Figure 2.11 CUDD { (left) Ratio of mean to median running time and (right) medianROBDD size as a funtion of density0.1. Our results indiate a ubi-time behavior, see Figure 2.10 This suggests the ex-istene of another phase transition between densities 0.1 and 0.5. This result shouldbe ontrasted with that of [69℄, in whih the running time for expliitly enumerat-ing all solutions of random onstraint-satisfation instanes inreases as the densitydereases.Unlike with GRASP and CUDD, we did not observe a heavy-tail phenomenonwith CUDD: there are no outliers and the mean to median ratio is independent ofthe density (see Figure 2.11).



Chapter 33-Colorability of random graphs3.1 Experimental SetupIn order to study the average-ase omplexity of the 3-olorability of randomgraphs, we used the G(n;m) random model. For eah instane of order n, we seletuniformly at random and with replaement m edges (out of all n(n�1)2 possible edges).This model is ommon when analyzing phase transitions [47, 26, 35℄. For eah pointwe study in the �n quadrant, we generate and solve 200 random instanes aordingto the G(n;m) model. We use SMALLK to solve those instanes. Our experimentswere run on Sun Ultra 1 mahines.For the statistial analysis and plotting of the data, we used MATLAB. As withthe 3-SAT experiments, we tried to �t a linear urve on the log-log data, a linear urveon the semi-log, and a polynomial urve on the plain data (see setion 2.2 for moredetails). The MATLAB funtions that were most useful for our purposes are poly�t(for omputing the best polynomial �t) and orroef (to estimate the orrelationbetween the atual data and the �t). For eah �t, we ompute the r2 and we reportit here. In most ases the r2 is at least 0.98; a sign that the we get a good �t.



443.2 3-Colorability of random graphs: experimental resultsFor the purposes of our study, we explored onnetivities from 1 to 20. Themaximum order of the instanes explored varies with the onnetivity. In details:� Densities 1-4: 580 verties� Densities 4.1, 4.2, 4.3, and 4.4: 1000 verties� Density 4.5: 580 verties� Density 4.6: 520 verties� Density 4.7: 480 verties� Densities 5-20: 580 vertiesThe inrement on the order of the instanes was 20 verties per step.In Figure 3.1 (left) the perentage of the olorable graphs aross the �n quadrantis shown. Below onnetivity 4 a random instane is almost surely olorable, whileabove onnetivity 5 an instane is almost surely non-olorable. When the onne-tivity is between 4 and 5, there is a steep transition on the olorability probability�.Although these observations are old news, we believe that this is the �rst time that theolorability probability (and the average-ase omplexity of 3-olorability that we will�The atual 3-olorability threshold for the G(n;m) random graph model is believed to be atonnetivity 4.6. In the plot in Figure 3.1 only the data for densities 1; 2; 3; 4; 4:5; 5; � � � ; 20are presented.



45disuss shortly) has been reported while systematially varying both the onnetivityand the order of the random instanes.
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Figure 3.1 3-D plot of the perentage of the olorable instanes aross the  � nquadrant.The median and mean running time of SMALLK on a logarithmi (base 10) saleis shown in Figure 3.2.We analyzed the median running time of SMALLK as a funtion of the order forinstanes of �xed density. Below onnetivity 4, we observe a polynomial (quadrati)median running time. We also know that above the olorability threshold, the om-plexity of the problem is exponential in the order. We then fous on the onnetivityrange of [4; 4:7℄. Our data indiate that the running time is quadrati up to onne-tivity 4.2, while from onnetivity 4.4 and above the running time is exponential. SeeFigure 3.3 where we plot the median running time of SMALLK for onnetivities 4.2
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Figure 3.2 3-D plot of the median (left), and mean (right) running time of SMALLK.and 4.4�. So, we observe a transition from polynomial to exponential median runningtime of SMALLK happening around onnetivity 4.3. This is the phase transitionthat was onjetured in [47℄ and ounter-onjetured in [26℄.
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Figure 3.3 Median running time of SMALLK for onnetivity 4.2 (left) and 4.4 (right).At onnetivity 4.2 the best �t urve is quadrati in the order, while at onnetivity 4.4 thebest �t urve is exponential in the order.�The r2 for this �t is 0.96, while the r2 for all the polynomials we tried was � 0:84. Thatgives us on�dene that the running time for the partiular onnetivity is exponential in theorder.



47In Chapter 2 we show a similar polynomial to exponential phase transition forthe 3-SAT average-ase omplexity. There we also show that, suh a phase transitionis aompanied by a \heavy-tail phenomenon". This is also the ase for the phasetransition observed for 3-olorability. See Table 3.1 where we present the mean overmedian ratio, and the perentage of outliers (reall that our de�nition of an outlier isan instane for whih the running time is at least an order of magnitude larger thanthe median) for onnetivity 4:1 �  � 4:7. Like in 3-SAT, both the ratio of meanover median running time, and the number of outliers, start inreasing around thepoint where the phase transition is happening (in our ase around onnetivity 4.3),they peak just below the threshold, and quikly derease after it. The region of theheavy-tail phenomenon for the 3-olorability is narrower than the one for 3-SAT (seeFigures 2.3 and 2.8). onnetivity  mean/median % outliers4.1 1.005 04.2 1.051 04.3 1.612 24.4 3.281 54.5 6.401 15.54.6 2.918 6.54.7 1.990 1.5Table 3.1 Heavy-tail phenomenon at the phase transition.



Chapter 4Random 1-3-HornSAT4.1 PreliminariesOur main motivation for studying the satis�ability of Horn formulae is that, unlike3-SAT, this problem is tratable. Therefore we will have data for instanes of muhlarger order to help us answer questions similar to those previously asked about 3-SAT.Apart from that, it is of interest to us that Horn formulae an be used to desribe�nite automata. A �nite automaton A is a 5-tuple A = (S;�; Æ; s; F ), where S is a�nite set of states, � is an alphabet, s is a starting state, F � S is the set of �nal(aepting) states and Æ is a transition relation.In a word automaton, Æ is a funtion from S � � to 2S. In a binary-tree au-tomaton Æ is a funtion from S � � to 2S�S. A run of an automaton on a worda = a1a2 � � �an is a sequene of states s0s1 � � � sn suh that s0 = s and (si�1; ai; si) 2 Æ.A run is suesful if sn 2 F ; in this ase we say that A aepts the word a. Arun of an automaton on a binary tree t labeled with letters from �, is a binarytree r labeled with states from S suh that root(r) = s and for a node i of t,(r(i); t(i); r(left-hild-of-i); r(right-hild-of-i)) 2 Æ. A run is suesfull if for all leavesl of r, r(l) 2 F ; in this ase we say that A aepts the tree t. The language L(A) of aword (resp. tree) automaton A, is the set of all words a (resp. trees t) for whih there



49is a suesful run of A on a (resp. t). An important question on automata theory thatalso is of great pratial importane in the �eld of formal veri�ation [77℄ is, given anautomaton A is L(A) non-empty ? We an show how the problem of non-emptinessof automata language translates to Horn satis�ability.Consider �rst a word automaton A = (S;�; Æ; s0; F ). Construt a Horn formula�A over the set S of variables as follows:� reate a lause ( �s0)� for eah si 2 F reate a lause (si)� for eah element (si; a; sj) of Æ reate a lause ( �sj; si),where (si; � � � ; sk) represents the lause si _ � � � _ sk and �sj is the negation of sj.
Theorem 1 Let A be a word automaton and �A the Horn formula onstruted asdesribed above. Then L(A) is non-empty if and only if �A is unsatis�able.Proof. ()) Assume that L(A) is non-empty, i.e. there is a path � = si0si1 � � � sim in Asuh that si0 = s0 and sim = sk where sk is a �nal state. Sine sk is a �nal state (sk)is a lause in �A. Also ( �sk; sim�1) is a lause in �A. For �A to be satis�able sk shouldbe true and onsequently, sim�1 must be true. By indution on the length of the path� we an show that for �A to be satis�able s0 must be true, whih is a ontradition.



50(() Assume that �A is unsatis�able. Beause of the way we onstruted �A, the onlyway for this to happen is if s0 is required to take the value true (and thus reate aontradition with the lause ( �s0)). If �A is unsatis�able, then it has a positive-unitresolution refutation [46℄, i.e. a proof by ontradition where in eah step one of theresolvents must be a positive literal. Let (si) be the �rst positive literal resolvent inthe proof. By onstrution, si is a �nal state of A. We an onstrut a path in Afrom s0 to si, using the resolution refutation of �A. Therefore, L(A) is non-empty. 2Similarly to the word automata ase, we an show how to onstrut a Horn formulafrom a binary tree automaton. Let A = (S;�; Æ; s0; F ) be a binary tree automaton.Then we an onstrut a Horn formula �A using the onstrution above with the onlydi�erene that sine Æ in this ase is a funtion from S � f�g to S � S, for eahelement (si; �; sj; sk) of Æ, we reate a lause ( �sj; �sk; si). It is not diÆult to see thatalso in this ase we have,Theorem 2 Let A be a binary tree automaton and �A the Horn formula onstrutedas desribed above. Then L(A) is non-empty if and only if �A is unsatis�able.Motivated by the onnetion between tree automata and Horn formulas desribedin Theorem 2 we studied the satis�ability of two types of random Horn formulae.More preisely:Let H1;2n;d1;d2 denote a random formula in CNF over a set of variables X = fx1; � � � ; xngthat ontains:



51� a single negative literal hosen uniformly among the n possible negative literals� d1n positive literals that are hosen uniformly, independently and without re-plaement among all n � 1 possible positive literals (the negation of the singlenegative literal already hosen is not allowed)� d2n lauses of length two that ontain one positive and one negative literalhosen uniformly, independently and without replaement among all n(n� 1)possible lauses of that type.We all the number of variables n the order of the instane. Let also H1;3n;d1;d3 denotea random formula in CNF over the set of variables X = fx1; � � � ; xng that ontains:� a single negative literal hosen uniformly among the n possible negative literals� d1n positive literals that are hosen uniformly, independently and without re-plaement among all n � 1 possible positive literals (the negation of the singlenegative literal already hosen is not allowed)The sampling spaes H1;3 and H1;2 are slightly di�erent; we sample with replaement in the�rst, and without replaement in the seond. We explain here why there is this di�erene.Assume that we sample dn lauses out of N uniformly at random with replaement. Let usonsider the (asymptoti) expeted number of distint lauses we get. Eah one of the Nlauses will be hosen with probability 1�(1� 1N )dn. The expeted number of distint hosenlauses is N(1� (1� 1N )dn). Notie that N(1� (1� 1N )dn) � N(1� exp �dnN ) = N(1� (1�dnN +O((dnN )2))) = dn�O( (dn)2N ). In the ase of a random H1;3n;d1;d3 formula N = n(n�1)(n�2)2and learly the expeted number of distint lauses we sample is asymptotially equivalent todn; thus we sample with replaement for pratial reasons. In the ase of a random H1;2n;d1;d2formula we sample without replaement to ensure that we do not have many repetitionsamong the hosen lauses.



52� d3n lauses of length three that ontain one positive and two negative literalshosen uniformly, independently and with replaement�among all n(n�1)(n�2)2possible lauses of that type.4.2 On the 1-2-HornSATIn this setion we present our results on the probability of satsi�ability of random1-2-Horn formulae. We �rst present an experimental investigation of the satis�abilityon the d1 � d2 quadrant. We then disuss the relation between random 1-2-Hornformulae and random digraphs and show that our data agree with analytial resultson graph reahability presented in [52℄.We studied the probability of satis�ability of H1;2n;d1;d2 random formulae in thed1 � d2 quadrant. We generated and solved 1200 random instanes of order 20000per data point. See Figure 4.1 where we plot the average probability of satis�abilityagainst the two input parameters d1 and d2 (left) and the orresponding ontour plot(right).The satis�ability plot shown in Figure 4.1 indiates that the problem does nothave a phase transition. This an also been observed if we �x the value of one of theinput parameters. See Figure 4.2, where we show the satis�ability plot for random 1-2-HornSAT for various order values ranging from 500 to 32000, and for �xed d1 = 0:1.We now explain why random 1-2-HornSAT does not have a phase transition, basedon known results on random digraphs.
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Figure 4.1 Average satis�ability plot of a random 1-2-Horn formula of order=20000(left) and the orresponding ontour plot (right).There are two most frequently used models of random digraphs. The �rst one,G(n;m) onsists of all digraphs on n verties having m edges; all digraphs have equalprobability. The seond model, G(n; p(edge) = p) with 0 < p < 1, onsists of alldigraphs on n verties in whih the edges are hosen independently with probability p.It is known that in most investigations the two models are interhangeable, providedertain onditions are met. In what follows, we will take advantage of this equivalenein order to show how our experimental results relate to analytial results on randomdigraphs [52℄.We will �rst show that there is a relation between the satis�ability of a randomH1;2n;d1;d2 formula and the vertex reahability of a random digraph G(n; d2n). Let� 2 H1;2n;d1;d2 , ( �x0) be the unique single negative literal in �, and F be the set of allvariables that appear as single positive literals in �. Obviously jF j = d1n. Construta graph G� suh that for every variable xi in � there is a orresponding node vi in
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satisfiability plot for random 1−2−HornSAT for several order values between 500 and 32000, where d
1
=0.1

Figure 4.2 Satis�ability plot of random 1-2-Horn formulae when d1 = 0:1G� and for eah lause ( �xi; xj) of � there is a direted edge in G� from vi to vj. G�is a random digraph from the G(n; d2n) model.It is not diÆult to see that � is unsatis�able if and only if the node v0 in G�is reahable from a node vi suh that xi 2 F . In other words, the probability ofunsatis�ability of a random H1;2n;d1;d2 formula �, is equal to the probability that avertex of the random digraph G(n; d2n) is reahable from a set� of verties of sized1n.As mentioned above the G(n;m) and G(n; p((edge) = p)) models an be usedinterhangeably, when m � �n2�p [9℄. Therefore, the relation we established betweenthe satis�ability of a random H1;2n;d1;d2 formula � and the vertex reahability of arandom digraph G(n; d2n), holds also between � and a random digraph G(n; p = d2n ).�A vertex is reahable from a set of verties if it is reahable by at least one of the verties ofthe set.



55The vertex reahability of random digraphs generated aording to the modelG(N; p) has been studied and analyzed by Karp in [52℄. We use his results to studythe satis�ability of random H1;2n;d1;d2 formulae. Karp showed that as n tends to in�nity,when np < 1 � h, where h is a �xed small positive onstant, the expeted size of aonneted omponent of the graph is bounded above by a onstant C(h). Whennp > 1 + h, as n tends to in�nity, the set of verties reahable from one vertex iseither \small" (expeted size bounded above by C(h)) or \large" (size lose to �n,where � is the unique root of the equation 1� x� e�(1+h)x = 0 in [0; 1℄). Moreover,a giant strongly omponent emerges of size approximately �2n.Let us now onsider the two ases; d2 = 1 � h and d2 = 1 + h, where h is apsoitive number. Remember that in our ase p = d2n . In the analysis below we use thenotation w.h.p. (with high probability) as shorthand for \with probability tendingto 1 at the limit".In the ase where d2 = 1 � h, that is np < 1 � h, the size of the set X(vi) ofverties reahable by a vertex vi is w.h.p. less than or equal to 3 lnnh�2, and theexpeted size of this set is bounded above by a onstant related to h. Thus we getthat the probability that v0 is reahable by vi w.h.p. lies in the interval [0; 3 lnnn(1�d2)2 ℄,and its expeted value is bounded above by a onstant. The expeted probabilitythat v0 is reahable by a set of d1n verties should inrease with the d1. See the plotsin Figures 4.1 and 4.2, where it shows that the probability of satis�ability of � (whih



56is 1 minus the probability that v0 is reahable by a set of d1n verties in G�), whiled2 < 1, is dereasing as we inrease d2 and/or d1.When d2 = 1 + h, that is np > 1 + h, we know that the set X(vi) of vertiesreahable by a vertex vi is w.h.p. either in the interval [0; 3 lnn(1�d2)2 ℄, or around �n.We also know that the probability that X(vi) is \small" tends to 1 � �. Therefore,w.h.p. at least one of the d1n verties will have a \large" reahable set. That is, theprobability that v0 is reahable by a set of d1n verties is bounded below from �.Notie that � inreases with d2. Again, see the plots in Figures 4.1 and 4.2 wherewe an see that the probability of satis�ability of � when d2 > 1 is dereasing as d2inreases. So the experimental observations are in agreement with the expetationsbased on the digraph reahability analysis.Going bak to digraphs' reahability, Karp's results show that for eah vertex theset of its reahable verties is very small up to the point where np = 1. We anobserve the same behaviour in 1-2-HornSAT if we hange our distribution model bysetting d1 = =n for some onstant . By doing that, we are adjusting our model to�t the reahability analysis done by Karp that is based on a single starting vertex inthe digraph. The result of this modi�ation is that d1 is no longer a fator on theprobability of satis�ability of �, that is solely now depends on d2. See Figure 4.3,where we show the satis�ability plot in that ase, and ontrast with the piture thatemerges when d1 is a onstant (shown in Figure 4.2). While before the satis�ability



57probability was steadily dereasing as we inreased d2, now the satis�ability probabil-ity is pratially 1, until d2 gets a value bigger than one. In both ases, however, thereahability analysis and the experimental data show that the satis�ability of random1-2-Horn formulae is a problem that laks a phase transition.
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satisfiability plot for orders 100(black),1K(green), 10K(blue) & 50k(red) and fixed #facts=10

Figure 4.3 Satis�ability plot of random 1-2-Horn formulae when d1 = 10=n for orders100(blak), 1000 (green), 10000(blue), and 50000(red).4.3 On the 1-3-HornSATIn this setion we present our results on the probability of satis�ability of random1-3-Horn formulae. We �rst present a thorough experimental investigation of thesatis�ability on the d1 � d3 quadrant. We then show that analyti results on vertexidenti�ability in random hypergraphs [29℄ �t well our results on the satis�ablity ofrandom 1-3-Horn formulae.We studied the probability of satis�ability of H1;3n;d1;d3 random formulae in the



58d1 � d3 quadrant. We generated and solved 3600 random instanes of order 20000per data point. See Figure 4.4 where we plot the average probability of satis�abilityagainst the two input parameters d1 and d3 (left) and the orresponding ontour�plot (right).
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Figure 4.4 Average satis�ability plot of a random 1-3-Horn formula of order=20000(left) and the orresponding ontour plot (right).From our experiments we see that there is a region where the formula is under-onstrained (small values of d1 and d3) and the probability of satis�ability is almost1. As the values of the two input parameters inrease, there is a rapid hange in thesatis�ability terrain, what we all the waterfall. As the values of d1 and d3 ross someboundaries (the projetion of the waterfall shown in the ontour plots) the probabilityof satis�ability beomes almost 0. In other words, we observe a transition similar tothese observed in other ombinatorial problems like 3-SAT, 3-oloring et.�In this plot there are 25 lines that separate onseutive perentages intervals, i.e. [0% �4%); [4%� 8%); � � � ; [96%� 100%℄.



59There is a signi�ant di�erene though, between these previously studied transi-tions and the one we observe in 1-3-HornSAT. In ases like 3-SAT or 3-olorabilitythere are two input parameters desribing a random instane; the order and the on-strainedness (also alled density in 3-SAT, and onnetivity in 3-olorability) of theinstane. The onstrainedness is de�ned as the ratio of lauses for 3-SAT (or edgesfor 3-olorability) over variables (resp. verties). In random 1-3-HornSAT, there arethree parameters: the order of the instane and the two densities, namely d1 and d3.By taking a ut along the three dimensional surfae shown in Figure 4.4 (left), wean study the problem as if it had only two input parameters.We took two straight line uts of the surfae. For the �rst ut, we �xed d1 tobe 0.1, we let d3 take values in the range [1; 5:5℄ with step 0.1, and we hose ordervalues 500, 1000, 2500, 5000, 10000, 20000 and 40000. See Figure 4.5(left), wherewe plot the probability of satis�ability along this ut. This plot reveals a quikhange on the probability of satis�ability as the input parameter d3 passes through aritial value (around 3). One tehnique that has been used to support experimentalevidene of a phase transition is �nite-size saling. It is a tehnique oming fromstatistial mehanis that has been used in studying the phase transitions of severalNP-omplete problems, as k-SAT and AC-mathing [56, 57℄. This tehnique uses datafrom �nite size instanes to extrapolate to in�nite size instanes. The transformationis based on a resaling aording to a power law of the form d0 = d�dd nr, where d is



60the density, d0 is the resaled parameter, d is the ritial value, n is the order of theinstane and r is a saling exponent. As a result, a funtion f(d; n) is transformed toa funtion f(d0). We applied �nite-size saling to our data to observe the sharpnessof the transition. We followed the proedure presented by Kolaitis et al. in [57℄. Ouranalysis yields the following �nite-size saling transformation:d0 = d3 � 3:03853:0385 n0:4859We then superimposed the urves shown in Figure 4.5(left) resaled aording to thistransformation. The result is shown in Figure ref01fats(right). The �t appears tobe very good around zero, where urves ollapse to a single universal urve, but aswe move away from it is getting weaker. In the plot, the universal urve seems tobe monotoni with limits limd0�>�1f(d0) = 1 and limd0�>1f(d0) = 0. This evidenesuggests that there is a phase transition near d3 = 3 for d1 = 0:1.
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Figure 4.5 Average satis�ability plot of a random 1-3-Horn formula along the d1 = 0:1ut (left) and the satis�ability plot with resaled parameter using �nite-size saling (right).



61We repeated the same experiment and analysis with the seond ut, a straightline ut along the diagonal of the d1�d3 quadrant. In this ase our formal parameteris an integer i. An instane with input paremeter value i, orresponds to an instanewith densities d1 = i200 and d3 = i10 + 1. In this ase, by making the two inputparameters d1 and d3 dependent, we e�etively redue the input parameters of theproblem from three, (d1; d3; n), to two, (i; n). We let i take values in the range [1; 40℄with step 1, and we hose order values 500, 1000, 2500, 5000, 10000, 20000 and 40000.See Figure 4.6(left) where we plot the probability of satis�ability along this ut. Thisplot, as the one for the previous ut, reveals a quik hange on the probability ofsatis�ability as the input parameter i passes through a ritial value (around 19). Weagain used �nite-size saling on these data, looking for further support of a phasetransition. For this ut, the analysis yields the following transformation:i0 = i� 19:190119:1901 n0:2889See Figure 4.6(right) where we superimpose the urves shown in the same �gure (left)using the above transformation. As with the previous ut, the �t seems quite good,espeially around zero, and the universal urve seems to have limits 1 and 0 in thein�nities.In our searh for more evidene of a phase transition, we performed the followingexperiment for the ut used to produe the data in Figure 4.5 (d1 = 0:1). For severalvalues of order between 500 and 200000 and for densitiy d3 taking values in the range
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Figure 4.6 Average satis�ability plot of a random 1-3-Horn formula along the diagonalut (left) and the satis�ability plot with resaled parameter using �nite-size saling (right).[2:7; 3:8℄ with step 0.02, we generated and solved 1200 instanes. We reorded foreah di�erent order value the values of density d3 for whih the average probability ofsatis�ability was 0.1, 0.2, 0.8 and 0.9 respetively�. The idea behind this experimentis that if the problem has a sharp threshold, i.e. a phase transition, then as the orderof the instanes inreases the window between 10th and 90th probability perentiles,as well that between 20th and 80th probability perentiles should shrink and at thelimit beome zero. In Figure 4.7 we plot these windows. Indeed, they get smaller asthe order inreases.Although Figure 4.7 shows that these windows indeed shrink as the order inreases,it is not lear at all if at the limit they would go to zero. A further urve �tting analysisis more revealing. See Figure 4.8 where we plot the size of the 10%-90% probability�We atually did linear regression on the two losest points to ompute the density for eahsatis�ability perentage
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Figure 4.7 Windows of probability of satis�ability of random 1-3-Horn formulae alongthe d1 = 0:1 utof satis�ability window (left) and the 20%-80% probability ofsatis�ability window (right) as a funtion of the order . Using MATLAB to dourve �tting on our data, we �nd that both windows derease almost as fast as 1pn .The orrelation oeÆient r2 is almost 0.999, whih gives a high on�dene for thevalidity of the �t. This analysis, suggests that indeed the two windows should be zeroat the limit. That is an evidene that supports the existene of a phase transition for1-3-HornSAT.Similar analysis has been done before for the k-SAT. The width of the satis�abilityphase transition, whih is the amount by whih the number of lauses of a randominstane needs to be inreased so that the probability of satis�ability drops from 1� �to �, is thought to grow as �(n1� 1� ). Notie that the window that we estimate is equalto the normalized width (divided by the order). The exponent � for 2 � k � 6 is



64estimated in [55, 56, 64, 65℄. It was also onjetured that as k gets large, � tends to1. Reently, Wilson in [79℄ proved that for all k � 3, � � 2, therefore the transitionwidth is at least �(n 12 ). Our experiments suggest that the window of the satis�abilitytransition for 1-3-HornSAT shrinks as fast as n� 12 , thus the transition width growsas n 12 . We believe that the analysis in [79℄ an be appliable in the ase of the1-3-HornSAT, and an omplement our experimental �ndings.
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Figure 4.8 Plot of the 10%-90% probability of satis�ability window as a funtion of theorder n (left) and of the 20%-80% probability of satis�ability window (right)In the rest of this setion we will disuss the onnetion between random Hornformulae and random hypergraphs. We will show how reent results on randomhypergraphs, provide a good �t for our experimental data on random 1-3-HornSATpresented so far. On the other hand, these results suggest that the transition is steep,but not a step funtion.There is a one to one orrespondene between random Horn formulae and random



65direted hypergraphs. Let � be a H1;3n;d1;d3 random formula. We an represent � withthe following hypergraph G��:� represent eah variable xi in � with a node vi in G�� represent eah unit lause fxkg as a hyperedge in G� over vk �� represent eah lause fxj; �xk; �xlg as a direted hyperedge in G� over the setfvj; vk; vlgIn some reent development, Darling and Norris [29℄ proved some results on thevertex identi�ability in random undireted hypergraphs. A vertex v of a hypergraphis identi�able in one step if there is a hyperedge over v. A vertex v is identi�able inn steps if there is a hyperedge over a set S, suh that v 2 S and all other elementsof S are identi�able in less than n steps. Finally, a vertex v is identi�able if it isidenti�able in n steps for some positive n.We now establish the equivalene between the satis�ability of � and the identi�-ability of vertex vk of G�, where  = fxkg is the unique single negative literal lauseof �. First, we introdue an algorithm for solving Horn satsi�ability.We use a simple algorithm for deiding wether a Horn formula is satis�able or not,presented by Dowling and Gallier in [32℄ (see also [5℄). This algorithm runs in timeO(n2) where n is the number of variables in the formula. Dowling and Gallier in their�This representation atually omitts the single negative literal that appears in �.�Hyperedges over verties are alled pathes in [29℄ or loops in [34℄.



66work atually desribe how to improve this algorithm to run in linear time. For ourpurposes and for the sake of simpliity we will be using the simple quadrati algorithm.Algorithm A.begin let � = f1; � � � ; mgonsistent:=true; hange:=true;set eah variable xi to be false;for eah variable xi suh that fxig is a lause in �set xi to trueendfor;while (hange and onsistent) dohange:=false;for eah lause j in � doif (j is of the form ( �x1; � � � ; �xq)and all x1; � � � ; xq are set to true) thenonsistent:=false;elseif j is of the form fx1; �x2; � � � ; �xqgand all x2; � � � ; xq are set to true



67and x1 is set to falsethen set x1 to true; hange:=true; � := �� jendifendifendforendwhileendIf algorithm A terminates with onsistent:=true then a satisfying truth assigne-ment has been found. Otherwise, the formula � is unsatis�able.Given a formula �, its orresponding direted hypergraph G�, and a variable xi,we will prove the following relation between the truth value that algorithm A assignsto xi and the identi�ability of vertex vi of G�:Lemma 1 Algorithm A running on � assigns the value true to xi if and only if thevertex vi of G� is identi�able.Proof. It is easy to show the equivalene by indution on the number of steps requiredto identify vk (equivalently the number of iterations of the while loop of algorithm Aneeded to set the value of xk to true).Basi Step: If vk is identi�able in one step, then fxkg is a lause in � and algorithm Awill immediately assign the value true to it, and vie versa.



68Indutive Hypothesis: A vertex is identi�able in n � 1 steps if and only if the orre-sponding variable is set to true by algorithm A in no more than n � 1 iterations ofthe while loop. Indutive Step: A vertex vj that is identi�able in n steps, orrespondsto a variable that appears in a lause of the form fvj; �vi1; � � � ; �viqg and sine all ofxi1 ; � � � ; xiq are already set to true, A will set xj to true in the nth iteration of thewhile loop. Conversely, if xj is set to true in the nth iteraton of the while loop ofalgorithm A, then we derive that it appears in a lause of the form fxj; �xi1 ; � � � ; �xiqg,where all of xi1 ; � � � ; xiq are already set to true. But this implies that all vi1 ; � � � ; viqare identi�able in n� 1 steps; therefore vj is identi�able in n steps.2 As an immediate result of this lemma we get:Corollary 1 Let � be a H1;3n;d1;d3 random formula and  = f �xkg be the unique singlenegative literal lause of �. Let G� be the direted hypergraph orresponding to �. Theformula � is satis�able if and only if the vertex vk of G� is not identi�able.Darling and Norris in [29℄ studied the vertex identi�ability in random undiretedhypergraphs. Although, Horn formulae orrespond to direted hypergraphs, we de-ided to use the results of Darling and Norris in an e�ort to approximate the satis�a-bility of Horn formulae. The authors use the notion of a Poisson random hypergraph.A Poisson random hypergraph on a set V of n verties with non-negative parametersf�kg1k=0 is a random hypergraph � suh that, if �(A) is hyperedges of � over the set



69of verties A 2 V , then f�(A)gA22V are independent Poisson random variables withE�(A) = n�jAj=� njAj�. Equivalently, the distribution of �jAj=k�(A), the total numberof k�hyperedges, is Poisson�(n�k), and they are distributed uniformly at randomamong all �nk� possible k� sets.One of the key results they proved is the following:Theorem 3 [Darling-Norris℄ Let � = (�j : j 2 N) be a sequene of non-negativeparameters. Let �(t) = �j�0�jtj and � 0(t) the derivative of �(t). Let z� = infft 2[0; 1) : � 0(t) + log(1 � t) < 0g ; if the in�mum is not well-de�ned then let z� = 1.Denote by � the number of zeros of � 0(t) + log(1� t) in [0; z�).Assume that z� < 1 and � = 0. For n 2 N , let V n be a set of n verties and letGn be a Poisson(�) hypergraph on V n. Then, as n ! 1 the number of identi�ableverties V n� satis�es the following limit w.h.p.: V n�=n! z�.If we ignore the diretion� of the hyperedges then the random hypergraph G�representing a H1;3n;d1;d3 random formula orresponds to a Poisson(�) hypergraph Gn.To see that, notie that the hyperedges in G� are distributed uniformly at randomamong all possible 1- and 3-sets of verties, just like in a Poisson random hypergraph�The Poisson Distribution is a disrete distribution whih takes on the values X = 0; 1; 2; 3; � � �. The distribution is determined by a single parameter �. The distribution funtion of thePoisson is f(x) = exp (��)�xx!�Ignoring the diretion of the hyperedges is equivalent to adding to the formula for eah lause(x_ �y_ �z) two more lauses: (�x_y_ �z) and �x_ �y_z. Therefore we expet that the probabilityof satis�ability we get from the hypergraph model should be lower than the atual probabilityas it is measured by our experiments. This is indeed the ase as we an see in Figure 4.10.



70with only two non-zero parameters, �1 and �3. To �nd the values of these parameters,we set equal the probabilities that a hyperedge exists in the two graphs G� and Gn:d1 = 1 � (1 � 1(n1))n�1 = 1 � e��1, d3n(n3) = 6d3=(n � 1)(n � 2) = 1 � (1 � 1(n3))n�3 =1� e6�3=(n�1)(n�2). As n!1, �1 = � log(1� d3) and �3 = d3.We use MATLAB (www.mathworks.om) to ompute the z� for the hypergraph Gnon the quadrant d1�d3. From Corollary 1, we get that the probability of satis�abilityof � is 1 minus the probability that vk is identi�able in Gn, and that is 1 � z�. SeeFigure 4.9(left) where we plot the probability of satis�ability of � against the inputparameters d1 and d3. A ontour plot of the probability of satis�ability is given inFigure 4.9 (right).
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Figure 4.9 Probability of satis�ability plot of a random 1-3-Horn formula aording tothe vertex-identi�ability model(left) and the orresponding ontour plot (right).Comparing the results derived by this model (Figure 4.9) and the results obtainedby our experiments (Figure 4.4), we see that the model derived by the hypergraph



71analysis provides a very good �t of the experimental data. This is also obvious inFigure 4.10 where we plot the 50% satis�ability line aording the model above (therough urve) and aording to our experimental data (smoother urve).
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Figure 4.10 50% satis�ability line { Aording to the model derived through hyper-graphs (line with jumps) and aording to our experimental data (smoother line).Finally, we used our model to estimate the probability of satis�ability along thesame two uts that we presented earlier (the d1 = 0:1 and the diagonal ut). See Fig-ure 4.11 for the probability estimation along the two uts aording to the hypergraph-based model, and ompare with our experimental �dings shown in Figure 4.5 (left)and Figure 4.6 (left). For both uts, the estimated probability has a steep drop thatis happening at the exat same point that respetive drop is observed on the experi-mental data. In Table 4.1 we give the raw data that orrespond to the plots in Figure4.11. Notie that, despite the very quik transition, the estimated urve is not a step



72funtion, as we would expet by looking our data and the limit urve after the �nite-size saling analysis (Figures 4.5 and 4.6 (right)). Should this be an aurate modelfor the 1-3-HornSAT, the probability of satis�ability will not be a step funtion atthe limit�.
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Figure 4.11 Probability of satis�ability plot of a random 1-3-Horn formula aordingto the vertex-identi�ability model, along the d1 = 0:1 ut (left) and the diagonal ut (right).

�This an also be the ase for 3-SAT.



73d1 = 0:1 ut diagonal utd3 prob. of sat. input parameter i prob. of sat.1 0.98775 1 0.999971.1 0.98619 2 0.999881.2 0.98455 3 0.99971.3 0.98282 4 0.999411.4 0.98098 5 0.998991.5 0.97903 6 0.998411.6 0.97694 7 0.997641.7 0.9747 8 0.996641.8 0.9723 9 0.995371.9 0.96969 10 0.993762 0.96685 11 0.991752.1 0.96372 12 0.989242.2 0.96026 13 0.986112.3 0.95637 14 0.982172.4 0.95194 15 0.977172.5 0.94679 16 0.970692.6 0.94062 17 0.962022.7 0.9329 18 0.949682.8 0.92244 19 0.92942.9 0.90522 20 0.0728323 0.072832 21 0.0634113.1 0.063588 22 0.0554763.2 0.055745 23 0.0487273.3 0.049039 24 0.0429433.4 0.043267 25 0.0383.5 0.038272 26 0.03353.6 0.033928 27 0.0298563.7 0.030137 28 0.0265593.8 0.026815 29 0.0236653.9 0.023896 30 0.0211174 0.021324 31 0.0188684.1 0.019052 32 0.0168784.2 0.017041 33 0.0151144.3 0.015257 34 0.0135474.4 0.013672 35 0.0121534.5 0.012262 36 0.010914.6 0.011006 37 0.00980164.7 0.0098849 38 0.00881124.8 0.0088836 39 0.00792554.9 0.0079881 40 0.0071324Table 4.1 Data for the prob. of satis�ability of random 1-3-Horn formula aording tothe vertex-identi�ability model, along the d1 = 0:1 and the diagonal ut.



Chapter 5ConlusionsThe researh work presented in this thesis an be summarized as follows: westudied the 3-SAT problem and we observed a polynomial to exponential omplexityphase transition that is loated to the left of the satis�ability threshold; we madesimilar observations for the ase of the 3-Colorability problem, showing a robustnessof this phase transition phenomenon among di�erent ombinatorial problems; �nally,in an e�ort to avoid the limitations imposed to us by the intratability of the pre-vious two problems, we studied the 1-3-HornSAT problem, showing that even for atratable problem observing and analyzing a phase transition an be really hard. Inthe following paragraphs, we disuss the results of our work and draw onlusions.In the ase of the random 3-SAT we provide experimental evidene for the follow-ing hypotheses. First, the onnetion between the phase transition in omputationalomplexity and the phase transition in satis�ability is not as tight as has been laimed.It is not the ase that the shift from polynomial to exponential omplexity ours ator very lose to the rossover point, as has been widely believed [67, 68℄. Seond, notonly does the density at whih the shift from polynomial to exponential time om-plexity vary with the hoie of solver, but the very shape of the surfae of the medianrunning time (an experimental surrogate for average-time omplexity), as a funtion



75of the density d and the order n, hanges with the solver. Finally, the density-orderquadrant ontains several phase transitions; in fat, the region between density 0 anddensity 4.26 seems to be rife with phase transitions, whih are also solver depen-dent. In essene, eah solver provides us with a di�erent tool with whih to studythe omplexity of random 3-SAT. This is analogous to astronomers observing the skyusing telesopes that operate at di�erent wave lengths. We thus hope to alleviate the\�xation" with DLL solvers and the rossover point at 4.26.Our experiments reveal a marked di�erene between solvers like GRASP andCPLEX, whih are searh based and display interesting similarities in the shapesof the median running time surfae despite their di�erent underlying algorithmitehniques, and ROBDD-based solvers, like CUDD, whih are based on ompatlyrepresenting all satisfying truth assignments. While the interesting region for GRASPand CPLEX is between 2.5 and 4.3, the interesting region for CUDD ours belowdensity 2. This refutes earlier onjetures (f. [58℄) that the peak in median runningtime around the rossover point is essentially solver independent. For both GRASPand CPLEX, we observed a new phase transition where the median running time shiftsfrom being polynomial in the order to being exponential in the order. For GRASPthe transition is happening at around density 3.8, while for CPLEX the transition ishappening earlier, near density 3.0. >From the perspetive of average-time omplexitythis is a signi�ant phase transition beause it orresponds to a qualitative shift in the



76behavior of the solver. We also observed several other phase transitions for CPLEXand for CUDD. This suggests that it would be interesting to explore the behavior ofother SAT solvers, suh as RELSAT [51℄ or SATZ [59℄, on the d� n quadrant.With �ne grained sampling of the density parameter, and by exploring a greaterrange in the number of variables, we an start to doument for eah solver, phasetransitions that orrespond to signi�ant shifts in the shape of the running timeof the solver. These phase transitions are important to our understanding of theomputational omplexity of random 3-SAT, and an be used as a justi�ation todevelop density-based solvers for 3-SAT, i.e., solvers whih use information about thedensity of an instane, to hoose the most appropriate algorithmi tehnique.While our results are purely empirial, as the lak of suess with formally prov-ing a sharp omplexity threshold at the rossover point indiates (f. [38, 33, 1℄),providing rigorous proof for our qualitative observations may be a very diÆult task,espeially for sophistiated solvers like the ones studied in this paper.We also studied the average-ase omplexity of the 3-Colorability of randomgraphs. Our goal was to �nd how the omplexity of the problem sales as a funtionof the order of the instane, for instanes of �xed onnetivity, and see if a similarbehavior to that of 3-SAT an be observed for 3-Colorability. A polynomial omplex-ity to exponential omplexity phase transition was �rst onjetured in [47℄ and laterounter-onjetured in [26℄.



77Our experimental �ndings provide evidene that 3-olorability is a problem, like3-SAT, that has a double phase transition, as onjetured in [47℄. Using SMALLK tosolve the random instanes, we �nd that the running time shifts from polynomial inthe order to exponential in the order before the threshold and around onnetivity 4.3.In the region where this transition is happening, we observe a heavy tail phenomenon;a signi�ant number of instanes require muh more time than the median runningtime. Also the mean and median running time, that are in almost equal along theonnetivity range, in that narrow region di�er signi�antly, with the mean beenmuh larger than the median.The omplexity phase transition and the phenomena that are observed in the sameregion, ould be signaling some development in the struture of the problem, andrequire further study. A number of olorability solvers are based on the very e�etiveBr�elaz heuristi. A di�erent approah to solve olorability is to use evolutionaryalgorithms. In [36℄ it is shown that an adaptive evolutionary algorithm for hardinstanes of large order outperforms a powerful traditional graph oloring tehniquefrom Br�elaz. The algorithm is a geneti algorithm that uses exlusively mutation andhas population size 1. In [3℄, two di�erent formulations of the olorability problem areintrodued; one that is based on the onnetion between the hromati number of agraph and its ayli orientations and another one that aims to develop programs thatolor all graphs that belong to a same lass aording to their order and other ommon



78attributes. The heuristis developed in this study are tested on some olorabilitybenhmarks and shown to perform very well. It would be interesting to study howthese evolutionary algorithms sale with the order, and how does the average runningtime surfae look like over the  � n quadrant.Finally, we set out to investigate the existene of a phase transition on the sat-is�ability of the random 1-3-HornSAT problem. This is a problem that is similarto 3-SAT, but its polynomial omplexity allows us to ollet data for muh higherorder, unlike the other two problems we studied (3-SAT and 3-Colorability) were theexponential omplexity is limiting the order for whih we an experimentally studythese problems, espeially around the phase transition.We �rst showed, through our experimental �ndings and an analysis based onknown results from digraphs' reahability, that the 1-2-HornSAT is a problem thatlaks a phase transition.On the ontrary, our experiments provide evidenes that the 1-3-HornSAT hasa phase transition. By thoroughly sampling the d1 � d3 quadrant, solving a largenumber of random instanes of large order, we doument a waterfall-like probability ofsatis�ability surfae. In addition, by taking uts of this surfae, we are able to observea quik transition from a satis�able to an unsatis�able region. When �nite-size salingis applied on these uts, it suggests that there is a phase transition. Finally, analysisof the transition window provide further evidene for the phase transition.



79We then used some reent results on random hypergraphs to generate a model forour experimental data. By omparing the waterfall-like probability surfae againstthe estimated probability aording to this model, we see that the hypergraph-basedmodel �ts well our experimental data. This suggests that further analysis based onhypergraphs ould provide a rigorous analysis of the onjetured phase transition forthe 1-3-HornSAT. This would be very signi�ant sine there are very few phase tran-sitions that have been analytially proved (like that of 2-SAT [17, 31, 43℄). Althoughthis model �ts well our experimental data, when alulating the estimated probabilityalong the two uts, we see that the probability of satis�ability as the order goes to in-�nity is a very steep funtion, but not a step funtion. This last �nding, that suggeststhe opposite than the experimental �ndings, shows the diÆulty of experimentallyshowing a phase transition, even in tratable problem like 1-3-HornSAT.
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