
RICE UNIVERSITY

Experimental Evaluation of Explicit and Symbolic Automata-Theoretic

Algorithms

by

Deian Tabakov

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Master of Science

Approved, Thesis Committee:

Professor Moshe Y. Vardi, Chair
Karen Ostrum George Professor
Department of Computer Science

Professor Devika Subramanian
Department of Computer Science

Assistant Professor Luay K. Nakhleh
Department of Computer Science

Houston, Texas

December 2005

Abstract

Experimental Evaluation of Explicit and Symbolic Automata-Theoretic Algorithms

by

Deian Tabakov

The automata-theoretic approach to the problem of program verification requires

efficient minimization and complementation of nondeterministic finite automata. This

work presents a direct empirical comparison of well-known automata minimization

algorithms, and also of a symbolic and an explicit approach to complementing au-

tomata. I propose a probabilistic framework for testing the performance of automata-

theoretic algorithms, and use it to compare empirically Brzozowski’s and Hopcroft’s

minimization algorithms. While Hopcroft’s algorithm has better overall performance,

the experimental results show that Brzozowski’s algorithm performs better for “high-

density” automata. In this work I also analyze complementation by considering au-

tomaton universality as a model-checking problem. A novel encoding presented here

allows this problem to be solved symbolically via a model-checker. I compare the per-

formance of this approach to that of the standard explicit algorithm which is based on

the subset construction, and show that the explicit approach unexpectedly performs

an order of magnitude better.

Acknowledgments

I would like to extend my sincere gratitude to my advisor Professor Moshe Y. Vardi.

Dr. Vardi is one of those people who can encourage you and motivate you with a

single word, a gesture or even a single glance. Without his guidance and support this

work would not have existed. I would like to thank Dr. Devika Subramanian and Dr.

Luay K. Nakhleh for being members on my thesis committee. I am also thankful to

Dr. Kousha Etessami and to the Laboratory for Foundations of Computer Science

where I spent one summer as a visiting student.

I owe a lot to Guoqiang Pan and Dr. Doron Bustan who have helped me times

and again understand a difficult theorem, algorithm or concept. Special thanks to

all past and present students in the Verification and Algorithms groups who helped

me find my bearings in the department and made me feel at home. Last but not

least, I would like to thank my parents, Evelina and Todor, for their support and

encouragement.

This work was supported in part by NSF grants CCR-9988322, CCR-0124077,

CCR-0311326, IIS-9908435, IIS-9978135, EIA-0086264, and ANI-0216467, by BSF

grant 9800096, by Texas ATP grant 003604-0058-2003, and by a grant from the Intel

Corporation.

Contents

1 Introduction 1
1.1 Approach of the Thesis . 3

1.1.1 Probabilistic Framework for Testing Automata-Theoretic Algo-
rithms . 4

1.1.2 Universality Checking as Model Checking 5
1.1.3 Monitor Construction . 7

2 The Random Model 10
2.1 Motivation . 10
2.2 Definition . 12
2.3 Random Models with Locality . 14

2.3.1 Random Model with Grid Structure 14
2.3.2 Random Model with Linear Structure 15

2.4 Evaluation of the Random Model . 15
2.4.1 Probability of universality . 15
2.4.2 Size of the canonical automaton 19
2.4.3 Scaling of the size of the canonical automaton 19

2.5 Conclusion . 20

3 Universality 23
3.1 Explicit Approach . 23

3.1.1 Automaton.brics.dk–based method 24
3.1.2 SPIN–based method . 24

3.2 Symbolic Approach . 27
3.2.1 Binary Decision Diagrams . 27
3.2.2 SMV Encoding of the Universality Problem 29
3.2.3 Optimizations . 29

3.3 Conclusions . 45

4 Canonization 47
4.1 Safety Properties . 47
4.2 Canonization Algorithms . 48
4.3 Evaluating the Minimization Algorithms 52

5 Conclusions 58

A Encoding the Universality Problem into Promela: an Example 60

i

List of Figures

2.1 Probability of universal automata as a function of transition density
r and final state density f , for fixed size (|S| = 100) unstructured
automata. 16

2.2 Probability of universal automata as a function of transition density
r and final state density f , for fixed size (|S| = 100) automata with
matrix structure. 17

2.3 Probability of universal automata as a function of transition density
r and final state density f , for fixed size (|S| = 100) automata with
linear structure. 18

2.4 Median number of states in the canonical DFA, as a function of tran-
sition density r and final state density f , for fixed size (|S| = 50)
automata. 20

2.5 Average number of states in the canonical DFA, as a function of tran-
sition density r and final state density f , for fixed size (|S| = 50)
automata. 21

2.6 Scaling of canonical size at different transition densities (log scale) . . 22

3.1 Promela representation of the process that “drives” the automaton by
selecting the transition letter. 26

3.2 Partial Promela encoding of the transitions of the automaton. 27
3.3 OBDD encoding of the function ((x1 ⇐⇒ x2) ∨ x3) 28
3.4 A simple automaton and its encoding in SMV 30
3.5 Sloppy encoding of the same automaton as in Figure 3.4 33
3.6 Optimal order of the BDD variables for (a1 ∧ b1) ∨ (a2 ∧ b2) ∨ (a3 ∧ b3) 35
3.7 Bad order of the BDD variables for (a1 ∧ b1) ∨ (a2 ∧ b2) ∨ (a3 ∧ b3) . . 35
3.8 Forward and backward traversal of the model 37
3.9 NuSMV . 38
3.10 Cadence SMV . 39
3.11 Optimizing NuSMV and Cadence SMV (scaling) 40
3.12 Median time to check for universality with the explicit algorithm (using

Automaton) . 41
3.13 Scaling comparison of the symbolic (SMV) and explicit (Automaton)

algorithms: Logarithmic plot . 42
3.14 Scaling comparison of the symbolic (Cadence SMV) and the explicit

(Automaton, SPIN) algorithms: Logarithmic plot 43
3.15 Scaling comparison of the symbolic (Cadence SMV) and the explicit

(Automaton, SPIN) algorithms: Log-log plot 43

i

3.16 Scaling comparison of the symbolic (Cadence SMV) and the explicit
(Automaton,SPIN) algorithms: Matrix model 45

3.17 Scaling comparison of the symbolic (Cadence SMV) and the explicit
(Automaton,spin) algorithms: Linear model 46

4.1 Canonization using Hopcroft . 52
4.2 Canonization using Brzozowski . 53
4.3 Comparison between Hopcroft’s and Brzozowski’s algorithms for fixed

f = 0.5, using automata with size 30 55
4.4 Comparison between Hopcroft’s and Brzozowski’s algorithms for fixed

f = 0.5, using automata with size 40 56
4.5 Scaling comparison of Hopcroft and Brzozowski’s algorithms: low density 57
4.6 Scaling comparison of Hopcroft and Brzozowski’s algorithms: high

density . 57

A.1 Example Automaton . 60

Chapter 1

Introduction

On November 2, 1988, a first-year Cornell graduate student named Robert Morris

unleashed a computer program that crippled the Internet and caused damages worth

millions of dollars in lost productivity. Morris’ program exploited a bug in the fingerd

daemon which allowed it to mount a buffer-overflow attack. The program queried

finger with a string that was carefully chosen to overwrite the buffer allocated for

input and to modify the stack frame. Instead of returning normally, fingerd was routed

to a procedure within the invading string. The new procedure executed /bin/sh,

which gave the attacker a remote shell on the machine, from which the attack was

repeated.

While Morris’ program was the first well-known exploit of a buffer-overflow error,

it was certainly not the last. The sad experience from the last twenty years is that

software (and hardware) bugs can be both very expensive and extremely difficult

to find. The usual testing techniques involve running the program (or a model of

the hardware) on carefully chosen inputs. The problems with this approach are

threefold. First, as designs get more complicated, coming up with tests that provide

1

good coverage becomes extremely hard. Second, the number of required tests tends

to grow very quickly as the design evolves, thus driving up the cost of testing. Finally,

testing can give us only confidence in the implementation, but cannot prove that all

bugs have been found. Thus, there has been a tremendous push for efficient algorithms

and techniques that allow one to prove that a program satisfies certain properties.

The process of stating and proving properties about programs is known as program

verification and it is the broad field within which this work is developed.

The two main types of program verification are proof-based and model-based ver-

ification. This work follows the latter approach, so I give only a brief overview of

the proof-based approach. The proof-based approach is used primarily for programs

that are expected to terminate and produce a result. We start with a set of known

mathematical axioms and facts that have already been proven in some proof system

and then try to produce a derivation that leads to the property. While the bulk of the

work can be automated, it still requires an experienced user to help guide the proof.

A well-known tool that exemplifies the proof-based approach is the ACL2 theorem

prover designed by Moore [KMM00a, KMM00b]. One of the early success stories

of this theorem prover dates back to 1998, when Moore, Lynch and Kaufmann suc-

cessfully used ACL2 to verify the floating-point division instructions of the AMD-K7

processor [MLK98]. ACL2 has since been used to verify the register-transfer level

specification of AMD-K7’s multiplication and square-root instructions [Rus98], and

properties of Java code [Moo03].

2

One of the advantages of the model-based approach to verification is that it is

more amenable to automatic execution. Given a program P and a property ϕ, we

check whether the program satisfies (is a model of) the property [CGP99]. This

high-level description does not specify how the check should be done and indeed the

last twenty years have witnessed the development of multiple techniques. One of the

leading techniques has been the automata-theoretic approach, originally proposed by

Vardi and Wolper [VW86]. Intuitively, Vardi and Wolper suggest that we view the

program P as a finite-state generator of words, and the specification ϕ as a finite-

state acceptor. Then the model-checking problem is reduced to an automata-theoretic

question: whether the automaton AP ∩Aϕ empty [VW86]. My thesis follows this line

of research by investigating the complementation of the property automaton Aϕ, that

is, deriving Aϕ from Aϕ.

1.1 Approach of the Thesis

In this section I present briefly the contributions of the thesis. First I propose a

general-purpose probabilistic framework for evaluating automata-theoretic algorithms

and use it for the analysis of the algorithms in the subsequent chapters. Second, I

analyze the complementation step of the automata-theoretic approach (deriving Aϕ

from Aϕ) by reducing the problem to universality checking, and compare the classical

approach to a novel approach for solving this problem. Finally, I consider the special

case when ϕ is a monitor for a safety property. I compare two classical algorithms for

3

automata canonization, which allow us to construct efficient monitors from the same

property that we use for model checking.

1.1.1 Probabilistic Framework for Testing Automata-Theoretic Algorithms

For many algorithms the asymptotic complexity does not tell the whole story

because it hides constant factors. Especially in the case when two algorithms have the

same asymptotic complexity, it is important to know how they compare in practice.

Making this comparison for automata-theoretic algorithms is complicated by the fact

that there are no good benchmarks and it is not even clear what types of automata

should be included in such benchmarks.

In this work I propose evaluating automata-theoretic algorithms based on their

performance on randomly generated non-deterministic finite automata (NFA). This

contribution is inspired by recent work on randomly generated problem instances

[CKT91], for example, random 3-SAT [SML96]. The hardness of the instances can

be varied by controlling their density. In the case of NFA, there are two densities

to control: the density of the accepting states (i.e., ratio of accepting states to total

states) and the density of transitions (i.e., density of transitions per input letter to

total states). For both densities I propose using constant ratios, which yield linear

densities. For simplicity, this work assumes a unique initial state.

In addition to automata with uniform distribution of transitions, I also consider

automata with locality. I introduce two models of locality–linear and matrix struc-

tured automata. These models restrict the transitions to a neighborhood of states,

4

thereby providing a “structure” for the automaton. The linear and the matrix mod-

els are designed to allow a more comprehensive comparison of symbolic automata-

theoretic algorithms.

It is not a priori clear that the linear-density model is an interesting model for

studying automata-theoretic algorithms. I show empirically that this probability

model does yield an interesting problem space. On one hand, the probability of

universality does increase from 0 to 1 with both acceptance density and transition

density. (Unlike the situation with random 3-SAT, the probability here changes in a

smooth way and no sharp transition is observed.) On the other hand, the size of the

canonical deterministic finite automata (DFA) does exhibit a (coarse) phase transi-

tion with respect to the transition density of the initial NFA, peaking at density 1.25.

(It is interesting to note that random directed graphs with linear density are known

to have a sharp phase transition with respect to connectivity at density 1.00 [Kar90].)

The scaling of the size of the canonical DFA depends on the transition density, show-

ing polynomial behavior for high densities, but super-polynomial but subexponential

behavior for low densities.

1.1.2 Universality Checking as Model Checking

Suppose that the property ϕ is given as a non-deterministic finite automaton Aϕ.

In this case most of the time spent constructing AP ∩Aϕ is dedicated to constructing

Aϕ. In order to analyze this step of the construction, I consider a simplified setting: let

P , when viewed as a generator of words, be the universal automaton. In this instance

5

the model-checking problem is reduced to checking whether Aϕ is also universal.

This is know as the “universality problem” and has been proved to be PSPACE-

complete [MS72].

This work uses two approaches, explicit and symbolic, for solving the universality

problem. The standard way to check for universality is to determinize the automaton

explicitly using the subset construction and then to check if a rejecting set is reachable

from the initial state. This is referred to as the explicit approach. This work studies

the explicit approach by using the Java tool Automaton.brics.dk [Mø04] and the

model-checker SPIN [Hol97, Hol04]. When evaluating the explicit approach, I present

data for both SPIN and Automaton.

In addition to the explicit approach, this work studies a symbolic approach to

the universality problem. I introduce a novel method, which reduces the universality

problem to model checking of a safety property (defined in Chapter 4), enabling

us to apply symbolic model checking algorithms [BCM+92]. These algorithms use

Binary Decision Diagrams (BDDs) [Bry86], which offer compact encoding of Boolean

functions. To solve universality symbolically, I view the determinized automaton as

a synchronous sequential circuit. The reachability-of-a-rejecting-set condition can

be expressed as a temporal property of this digital system. Thus, the universality

problem can be reduced to a model-checking problem and solved by a symbolic model

checker; I used two versions of SMV–Cadence SMV [Cad] and NuSMV [CCG+02]. To get

the best possible performance from the model checker, several optimization techniques

6

were considered, including the encoding of the determinized automata as a digital

system, the representation of the transition relation, the order of traversal of the

model, and the order of the BDD variables. The experiments presented here used the

configuration that led to the best performance of each tool.

The conventional wisdom in the field of model checking is that symbolic algorithms

typically outperform explicit algorithms on synchronous systems, while the latter out-

perform on asynchronous systems. In view of that, I expected the optimized symbolic

approach to outperforms the explicit, rather straightforward approach. Surprisingly,

the empirical results show that the conventional wisdom does not apply to the uni-

versality problem, as the explicit algorithm dramatically outperformed the symbolic

one.

1.1.3 Monitor Construction

While model-checking is essentially a proof that the program satisfies the property,

such confidence does come at a price. Sometimes one does not have the resources to

perform a complete model-checking and has to resort to running a simulation of the

model on test cases. In some instances it is possible to reuse a specification of the

program during the testing phase. This work focuses on one special type of properties–

those asserting that something “bad” does not happens during the execution of the

program. Such properties are known as safety properties. For example, the property

“the length of every string is smaller than the size of the allocated buffer” is a safety

property. This property is violated in programs with a buffer-overrun bug like the

7

version of fingerd that Robert Morris exploited in 1988.

Intuitively, ϕ is a safety property if every violation of ϕ happens after a finite

execution of the program. Thus, for each violation there is a finite word, also referred

to as a bad prefix, that witnesses the violation. A monitor is a finite state automaton

that recognizes bad prefixes.

Monitors have been studied extensively and there are several implementations that

use them for model-checking. In [KV01a] Kupferman and Vardi show a methodology

for checking safety properties in the case when ϕ is given as a formula. In [SRA03]

Sen, Roşu and Agha show a c2O(2m) algorithm for constructing the optimal monitor

for a safety formula ϕ, where m is the length of the formula. In contrast to these two

approaches, this thesis focuses on the case when the property ϕ is given as an NFA

and we would like to construct the minimal deterministic finite automaton (DFA)

that corresponds to ϕ (recall that this is the canonical DFA). The results of the

work presented here can be immediately applied to model-checking tools like FoCs

[ABG+00]. FoCs converts the property that we want to verify into an NFA, from

which the minimal DFA is derived, which in turn is translated into a VHDL1 process.

The canonization problem is interesting not only from a model-checking point

of view, but also from a purely automata-theoretical perspective [HU79, Wat93].

The two leading algorithms for its solutions are by Hopcroft [Hop71], which has the

best asymptotic worst-case complexity for the minimization step, and by Brzozow-

ski [Brz62], which is fundamentally different than most other canonization algorithms.

1Very high speed integrated circuit Hardware Description Language

8

While the complexities of Brzozowski’s and Hopcroft’s algorithms are known [Wat93],

there has not been a systematic empirical comparison between them. (A superficial

evaluation in [GG97] claims superiority of Hopcroft’s algorithm.) In this work I

present a direct comparison of the two algorithms and show that none dominates the

other for all types of automata.

9

Chapter 2

The Random Model

2.1 Motivation

The asymptotic complexity of an algorithm does not tell the whole story about

its performance. On one hand the asymptotic complexity hides information about

the constant factors, and on the other it typically gives the worst-case complexity

which may be different from the expected, “in practice” performance. One of the

most stunning examples of the discrepancy between theoretical and average case

complexity is probably SAT, a decision problem about satisfiability of propositional

formulas. SAT is an NP-Complete problem that we can solve in EXPTIME, but by

choosing good heuristics one can achieve exponentially better performance. It is a

long established tradition to compare the performance of different SAT-solvers on a

set of benchmarks.

However, currently there are no existing benchmarks for automata-theoretic al-

gorithms. One possible source could be automata that are used in the industry to

perform model-checking. Unfortunately, in the industry the program automaton AP

and the property automaton Aϕ are both carefully guarded secrets. Furthermore, one

10

wants to be sure that the automata are general enough, otherwise the performance of

one algorithm may be contingent on properties of a particular type of benchmarks.

Finally, industrial benchmarks typically have a fixed size, and thus it is very hard to

obtain automata with increasing size but similar structural properties, e.g. the same

density of accepting states.

For these reasons here I propose a probabilistic model for testing automata-

theoretic algorithms. Using such a model gives us several advantages:

� Generable: we can generate as many automata as needed.

� Scalable: we can generate automata with increasing number of states, while

maintaining their structural properties.

� Generic: randomly generated automata are not biased toward a particular al-

gorithm.

One question for any probabilistic model is “How realistic is it?”. It is impossible

to answer it neither positively nor negatively without access to proprietary informa-

tion. However, in this chapter I will show that the random model allows for a range

of “interesting” behaviors for fixed-size and scalability benchmarking. Based on this,

I argue that the random model gives us a way of generating different types of au-

tomata. In the subsequent chapters I use this model to analyze the performance of

the canonization and universality checking algorithm presented in this work.

11

2.2 Definition

Let A = (Σ, S, S0, ρ, F) be a finite non-deterministic automaton (NFA), where

Σ is a finite nonempty alphabet, S is a finite nonempty set of states, S0 ⊆ S is a

non-empty set of initial states, F ⊆ S is the set of accepting states, and ρ ⊆ S×Σ×S

is a transition relation. Recall that A has a canonical, minimal deterministic finite

automaton (DFA) that accepts the same language [HU79]. The canonization problem

is to generate this DFA. A is said to be universal if it accepts Σ∗. The universality

problem is to check if A is universal.

This work proposes a model for building random automata with certain structural

properties. In this model the set of initial states S0 is the singleton {s0} and the

alphabet Σ is the set {0, 1}. For each letter σ ∈ Σ, a random directed graph Dσ =

(S, Eσ) is generated. The set of vertices of the graph corresponds to the set of states

of the automaton, and the set of edges corresponds to the transitions on letter σ in

the automaton. More formally, ρ(s, σ, s′) if and only if Eσ(s, s′).

Hereafter, the ratio rσ = |E|
|S|

is referred to as the transition density for σ (in-

tuitively, rσ represents the expected outdegree of each node for σ). In the model

presented here the transition density of D0 and D1 is the same, and is referred to

as the transition density of A. The idea of using a linear density of some structural

parameter to induce different behaviors has been quite popular lately, most notably

in the context of random 3-SAT [SML96].

The model for Dσ presented here is closely related to Karp’s model of random

12

directed graphs [Kar90]: for each positive integer n and each p with 0 < p < 1,

the sample space consists of all labeled directed graphs Dn,p with n vertices and

edge probability p. Karp shows that when n is large and np is equal to a constant

greater than 1, it is very likely that the graph contains one large strongly connected

component and several very small components. When np < 1, the expected size of

the set of reachable nodes is very small.

It is known that random graphs defined as in [Kar90] in terms of their edge prob-

ability or defined as here in terms of the number of edges display essentially the

same behavior [Bol01]. Thus, Karp’s np = 1 corresponds to density 1 in the model

presented here. While Karp’s considers reachability, which would correspond to non-

emptiness [HU79], this work considers canonization and universality. Karp’s phase

transition at density 1 seems to have no effect on either canonization or universal-

ity. The density of the directed graphs underlying the automata here is 2r, but no

interesting phenomenon can be seen at r = 0.5.

In the random model the number of final states m is also a linear function of the

total number of states, and it is given by a final state density f = m
|S|

. The final

states themselves are selected randomly, except for the initial state, which is always

chosen to be an accepting state1. This additional restriction avoids the cases when an

automaton is trivially non-universal because the initial state is not accepting. (One

may also consider a model with a fixed number of accepting states rather than with

a linear density; we found that such a model behaves similarly to the one we consider

1I thank Ken McMillan, the author of Cadence SMV, for this suggestion.

13

here).

2.3 Random Models with Locality

One of the contributions of this work is a comparison of a symbolic and an ex-

plicit approach to universality checking. Symbolic algorithms are usually very well

suited for discovering and exploiting the underlying structure of a model, but in the

random model presented in the previous section there is no structure. This raises the

question whether the random model gives unfair advantage to the explicit algorithms.

I address this issue by considering two structured random models, described below.

Both models restrict the transition relation by localizing the communication between

nodes.

2.3.1 Random Model with Grid Structure

On an actual chip the latches are laid out in a rectangular structure where each

latch is connected only to a small number of latches in its neighborhood. The random

model with grid structure, or grid model for short, is an abstraction of this configura-

tion. Intuitively, we imagine that the nodes of the automaton are arranged in a square

grid and there can only be transitions between nearby nodes. The distance metric is

defined using the L1 distance (also known as the Manhattan distance) between the

nodes.

More formally, the size of the model is restricted to a perfect square, that is,

14

|S| = l2 for some natural number l. For each node si (where 0 ≤ i ≤ (l2 − 1) we

define two coordinate labels six = bi/lc and siy = i (mod l). The neighborhood is

defined using a distance parameter d: a node si can make a transitions to sj only if

|six − sjx
|+ |siy − sjy

| ≤ d|S|. The accepting states are chosen, as before, at random.

2.3.2 Random Model with Linear Structure

The random model with linear structure, or linear model for short, assumes that

the latches are arranged on a line. As in the grid model, communication is allowed

only between nearby nodes. The automaton corresponding to this model is built by

restricting the transition relation as follows: a node si can make a transition to node

sj, where 0 ≤ i, j ≤ |S| − 1, only if |i − j| ≤ d|S|, where d is the distance parameter.

Once again, the accepting states are chosen at random.

2.4 Evaluation of the Random Model

2.4.1 Probability of universality

Figure 2.1 presents the probability of universality as a function of r and f . For each

data point 200 (unstructured) random automata with size |S| = 100 were generated

and checked for universality. The behavior here is quite intuitive. As transition and

acceptance densities increase, the automaton has more accepting runs and is therefore

more likely to be universal. Note that even if all states are accepting (f = 1), the

automaton is still not guaranteed to be universal. This follows from the fact that the

15

0.2
0.4

0.6
0.8

1

0.5

1

1.5

2

2.5
0

0.2

0.4

0.6

0.8

Density of final states (f)

Unstructured model (|S| = 100)

Transition density (r)

P
ro

ba
bi

lit
y

of
 u

ni
ve

rs
al

 a
ut

om
at

a

Figure 2.1: Probability of universal automata as a function of transition density r and
final state density f , for fixed size (|S| = 100) unstructured automata.

transition relation is not necessarily total and the missing transitions are replaced by

an implicit transition to a rejecting sink state.

Adding locality does not change the behavior of the model. However, due to

the additional restrictions on the transition relation, universal automata appear with

lower probability. The effect is more pronounced for automata with matrix structure,

shown on Figure 2.2. Figure 2.3 shows the probability distribution for automata with

linear structure.

16

0
0.2

0.4
0.6

0.8
1

0
0.5

1
1.5

2
2.5

0

0.1

0.2

0.3

0.4

Density of final states (f)

Matrix model (|S| = 100)

Transition density (r)

P
ro

ba
bi

lit
y

of
 u

ni
ve

rs
al

 a
ut

om
at

a

Figure 2.2: Probability of universal automata as a function of transition density r and
final state density f , for fixed size (|S| = 100) automata with matrix structure.

17

0
0.2

0.4
0.6

0.8
1

0
0.5

1
1.5

2
2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

Density of final states (f)

Linear model (|S| = 100)

Transition density (r)

P
ro

ba
bi

lit
y

of
 u

ni
ve

rs
al

 a
ut

om
at

a

Figure 2.3: Probability of universal automata as a function of transition density r and
final state density f , for fixed size (|S| = 100) automata with linear structure.

18

2.4.2 Size of the canonical automaton

A completely different pattern emerges when we look at the size of canonical

minimized DFA AC corresponding to the input NFA A (Figure 2.4). For each data

point on the graph, 200 random automata were determinized and minimized and

then the median of the size of the minimized DFA was taken. I refer to the latter

as the canonical size. (The motivation for reporting the median rather than the

mean is that the median is less affected by outlying points). While the effect of the

acceptance density on the canonical size is not too dramatic, transition density does

have a dramatic effect on the canonical size. The latter rises and then falls with

tradition density, peaking at r = 1.25. We see that the canonical size has a coarse

phase transition at that density.

2.4.3 Scaling of the size of the canonical automaton

Finally, I show how the canonical size scales with respect to the size of the input

NFA A. Since the values of f do not have a large effect on the canonical size, for this

experiment the density of accepting states was fixed at f = 0.5. Figure 2.6 shows that

canonical size scales differently at different transition densities. The scaling curves

exhibit a range of behaviors. For r ≤ 1.25 they grow super-polynomially but sub-

exponentially (in fact, a function of type ab
√

|S| provides a very good approximation),

for r = 1.5 the growth is polynomial, and for higher transition densities they remain

almost constant. Interestingly, though in the worst case the canonical size may scale

19

0
0.2

0.4
0.6

0.8
1

0
0.5

1
1.5

2
2.5
0

300

600

900

1200

1500

1800

Density of final states (f)

Size of canonical DFA (|S| = 50)

Transition density (r)

N
u
m

b
er

of
st

at
es

Figure 2.4: Median number of states in the canonical DFA, as a function of transition
density r and final state density f , for fixed size (|S| = 50) automata.

exponentially [MF71], such exponential scaling is not observed in this probabilistic

model.

2.5 Conclusion

The model proposed in this work allows for a range of behaviors as we vary r,

f , and the size of the input NFA. It allows one to investigate sets of NFAs which

range from almost surely non-universal to almost surely universal. The size of the

corresponding canonical DFAs exhibits a phase transition, thereby suggesting that

we look for interesting behavior around the transition density of the peak. The size

20

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2

2.5
0

1000

2000

3000

4000

5000

Final State Density (f)Transition Density (r)

A
ve

ra
ge

 C
an

on
ic

al
 S

iz
e

Figure 2.5: Average number of states in the canonical DFA, as a function of transition
density r and final state density f , for fixed size (|S| = 50) automata.

of the canonical DFAs shows different scaling behavior depending on the transition

density, ranging from linear to super-polynomial but sub-exponential. Finally, adding

structure to the automata changes the probability of universality, but not the general

behavior of the model.

Based on this observation I argue that the random model is a good model to

study the performance of automata-theoretic algorithms in practice. The following

two chapters present an analysis of the canonization and minimization algorithms

using this model.

21

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

10
3

10
4

10
5

Number of states in the initial automaton

S
ta

te
s

in
 th

e
m

D
F

A
 (

lo
g

sc
al

e)

Number of states in the mDFA at fixed f = 0.5

r = 1.0
r = 1.25
r = 1.5
r = 1.75
r = 2.0
r = 2.25
r = 2.5

Figure 2.6: Scaling of canonical size at different transition densities (log scale)

22

Chapter 3

Universality

3.1 Explicit Approach

The straightforward way to check for universality of an NFA A = (Σ, S, S0, ρ, F)

is to determinize it, using the subset construction, and then to verify that every

reachable state is accepting and that the transition relation is total. Recall that

the subset construction returns a deterministic automaton Ad = (Σ, 2S, {s0}, ρd, F d)

where

� ρd(T1, a, T2) ⇐⇒ T2 = {t2 ∈ S : ρ(t1, a, t2) for some t1 ∈ T1}, and

� F d = {T ∈ 2S : T ∩ F 6= ∅}.

Notice that in this approach the sets of states (T1 and T2 in the above definition)

have to be maintained explicitly, hence it is referred to as the explicit approach. In this

work I use two distinct methods for solving the universality problem explicitly. One

of them is using a Java tool called Automaton.brics.dk [Mø04], and the other–using

the model-checker SPIN [Hol97, Hol04].

23

Although both Automaton and SPIN can check for universality explicitly, there are

key differences between them. Automaton is optimized for manipulating automata and

this gives it an advantage over SPIN which is a general purpose model-checker. More

importantly, the symbolic approach is implemented via SMV, another model-checker,

and we would like to compare the performance of tools with similar expressive power.

3.1.1 Automaton.brics.dk–based method

Automaton.brics.dk (hereafter referred to as Automaton) is a Java tool for ma-

nipulating automata. It implements the subset construction by creating the subsets

(states of Ad) on-the-fly, as they are reached. Notice that for the universality problem

one does not need to generate the whole automaton Ad a priory and then check for

universality.

As an optimization, each subset can be checked for universality at the time it

is first reached. If the subset is not accepting (that is, it does not contain a state

from F), then Ad is non-universal and the algorithm terminates early. Intuitively, this

corresponds to a on-the-fly search for a non-accepting state in Ad. In particular, since

Automaton maintains the reached states in a queue, this corresponds to a breadth-first

search.

3.1.2 SPIN–based method

SPIN is a model-checker implemented in C. SPIN allows the specification of concur-

rent systems using a high-level language called Promela. The state of the system is

24

maintained explicitly using a underlying automaton, and similar to Automaton, SPIN

works on-the-fly, without constructing the state-space a priori.

The key to encoding the automaton in a model-checker is the observation that

Ad could be viewed as a sequential circuit (SC). An SC [HS96] is a tuple (I, L, δ, α)

where I is a set of input signals, L is a set of registers, δ : 2L × 2I → 2L is the

next-state function, describing the next assignment of the of the registers given their

current assignment and an input assignment, and α ∈ 2L is an initial assignment

to the registers. (Usually we also have output signals and an output function, but

this is not needed here.) The alphabet Σ = {0, 1} corresponds here to a single input

signal. The state set S can be viewed as the register set L; a set in 2S can be viewed

as a Boolean assignment to the state in S, using the duality between sets and their

characteristic functions. The intuition is that every state in S can be viewed as a

register that is either “active” or “inactive”. The initial state s0 correspond to an

initial assignment, assigning 1 to s0 and 0 to all other registers, as only s0 is active,

initially. Finally, the transition relation ρd, which is really a function, correspond to

the next-state function, where δ(P, σ) = Q when ρd(P, a, Q) holds (note that we view

here subsets of S as Boolean assignments to S). Universality of A now correspond

to an invariance property of Ad saying that at each step at least one of the registers

corresponding to a final state is high.

Next I present the encoding of the universality problem into Promela. The model

consists of two concurrent processes. One process (the “driver”) non-deterministically

25

active proctype driver() {

do

:: letter = true;

:: letter = false;

od;

}

Figure 3.1: Promela representation of the process that “drives” the automaton by selecting
the transition letter.

selects the next transition letter (Figure 3.1). The other process (the “model”) defines

the transitions of the automaton. The model maintains two boolean vectors of size |S|,

one corresponding to the superstate (set of states of the automaton) that it is currently

visiting (state[]) and the other–to the next reachable superstate (nextstate[]). At

first only the initial state of the automaton is active, therefore the superstate vector

state[] is equal to 10|S|−1. For each state s ∈ S and for each letter σ ∈ Σ the

model checks if s is active in the current subset and if σ is the transition letter

selected by the driver. If this is the case and if A has an outgoing transition from

s on σ to a set of states {s1, s2, . . . , sn}, the Promela model activates the states

corresponding to {s1, s2, . . . , sn} in nextstate[]. Finally, the universality condition

is encoded as an assertion that at least one of the accepting states of A is active in

every reachable subset. Figure 3.2 illustrates the main parts of the encoding for a

particular automaton. The full encoding is presented in Appendix A.

26

1

0

1
0

0

1
0

1 2

3

active proctype model() {

bool state[4] = false;

bool nextstate[4] = false;

(...)

if

:: (state[0] && letter) -> skip;

:: (state[0] && ! letter) -> nextstate[3] = true;

:: else -> skip;

fi;

(...)

if

:: (state[2] && letter) -> skip;

:: (state[2] && ! letter) -> nextstate[0] = true;

nextstate[1] = true;

:: else -> skip;

fi;

(...)

assert (nextstate[0] || nextstate[3]);

}

Figure 3.2: Partial Promela encoding of the transitions of the automaton.

3.2 Symbolic Approach

As an alternative to the explicit approach this work also considers a symbolic

approach to solving the universality problem. At the heart of this approach lie binary

decision diagrams (BDDs). First I give a brief introduction to BDDs and then describe

the encoding of the problem into a model for two BDD-based model-checkers.

3.2.1 Binary Decision Diagrams

Binary decision diagrams, introduced by Bryant in [Bry86, Bry92], provide an

efficient way of representing and manipulating Boolean functions. A BDD (see Fig-

ure 3.3) is a rooted, directed acyclic graph with one or two terminal nodes labeled

0 or 1, and a set of variable nodes of out-degree two. An ordered binary decision

diagram (OBDD) is a BDD in which the variables respect a given linear order on all

27

X1

X2

X3

X2

1 0

Figure 3.3: OBDD encoding of the function ((x1 ⇐⇒ x2) ∨ x3)

paths from the root to a leaf. The order in which the variables appear can affect the

size of the OBDD, and in some cases can make the difference between a linear and

exponential representation. Choosing an optimal variable order is an NP-complete

problem, and one has to resort to various heuristics. For a given order of variables,

OBBDs provide a canonical representation.

Each path from root to leaf represents an assignment to each of the variables on

the path; traditionally, solid edges represent an assignment of true, and the dashed–

and assignment of false (Figure 3.3). Since there can be exponentially more paths

than vertices and edges, OBDDs are often substantially more compact explicit rep-

resentations, and have been used successfully in the verification of complex circuits

[BCM+92].

28

3.2.2 SMV Encoding of the Universality Problem

In order to analyze the performance of the symbolic approach I used two symbolic

model checkers, both referred to as SMV: Cadence SMV [McM93] and NuSMV [CCG+02].

The encoding of the problem is based again on the observation made in Section 3.1.2

that an automaton can be viewed as a sequential circuit (SC).

To encode the SC for Ad in SMV, we use the states in S as state variables, cor-

responding to the registers. The SC is defined via the init and next statements:

init(s)=1 iff s = s0, and next(s)=1 iff
∨

ρ(t,σ,s) t, when the input is σ (see Figure 3.4

for an example). A single Boolean vector encodes the registers, and a variable input

encodes the input symbol. Note that in contrast to the Promela encoding presented

in Section 3.1.2, here we don’t need a driver for the input symbol; leaving input

unconstrained forces SMV to assign values to the variable non-deterministically. Uni-

versality of A correspond to a safety property of Ad which states that at all times one

or more of the registers corresponding to the final states are set to 1. This property

is expressed in CTL as AG(
∨

s∈F s).

3.2.3 Optimizations

In order to improve the running time of NuSMV and Cadence SMV, several opti-

mization techniques were considered.

Sloppy vs. fussy encoding This optimization is based on the observation that to

check universality we need not determinize A. Instead of encoding Ad, we can encode

29

1

0

1
0

0

1
0

1 2

3

MODULE main

VAR

state: array 0..3 of boolean; input: boolean;

ASSIGN

init(state[0]) := 1; init(state[1]) := 0;

init(state[2]) := 0; init(state[3]) := 0;

next(state[0]) := ((state[1] & input) |

(state[2] & ! input) | (state[3] & input));

next(state[1]) := (state[2] & ! input);

next(state[2]) := (state[3] & input);

next(state[3]) := (state[0] & ! input);

SPEC

AG (state[0] | state[3]);

Figure 3.4: A simple automaton and its encoding in SMV

the non-deterministic automaton An = (Σ, 2S, {s0}, ρn, F d), where

� F d = {T ∈ 2S : T ∩ F 6= ∅}, (as before), and

� ρn(T1, a, T2) ⇐⇒ T2 ⊇ {t2 ∈ S : ρ(t1, a, t2) for some t1 ∈ T1}.

I will call this a sloppy encoding to distinguish it from the Ad-based encoding,

which will be referred to as fussy encoding. The sloppy encoding satisfies the SMV

specification exactly when the fussy encoding satisfies it. Intuitively, An allows more

superstates to be active in the subset construction. If a non-accepting superstate

(subset of S) is reachable in Ad, then the same superstate will be reachable in An.

Likewise, if all reachable superstates in Ad are accepting (i.e. contain an element of

F), then all reachable superstates in An will contain an element of F (recall that the

superstates in An are supersets of the superstates in Ad) and will also be accepting.

This argument is formalized below.

Theorem. Let An and Ad be defined as above. Then a non-accepting superstate is

30

reachable in An iff a non-accepting superstate is reachable in Ad.

Proof. Suppose that a non-accepting superstate qm ∈ 2S is reachable in Ad. Then

there exists a word a0a1 . . . am−1 and a set of superstates q0, q1, . . . , qm−1 ∈ 2S such

that q0 = {s0} and ρd(qi, ai, qi+1) for 0 ≤ i ≤ m − 1. By the definition of An, the

initial superstate is q0 and for each qi there is a transition from qi to qi+1 on ai. Thus,

q0, q1, . . . , qm−1, qm are reachable superstates in An, and in particular, qm is reachable.

Moreover, qm is not accepting in Ad so it cannot be accepting in An, therefore a

non-accepting state is reachable in An.

To prove the theorem in the other direction, suppose that a non-accepting su-

perstate is reachable in An, and we have to show that a non-accepting superstate is

reachable in Ad. Using the contrapositive, we have to show that if all reachable states

in Ad are accepting, then all reachable states in An are accepting.

Suppose that we run both Ad and An on the same word w ∈ Σ∗. Because Ad is

deterministic, it will reach a uniquely determined superstate q = {si1 , si2, . . . , sik}.

An, on the other hand, is non-deterministic, so it may potentially reach more than

one superstate. We will show that no matter what state q ′ = {sj1, sj2, . . . , sjp
} it

reaches, it is always the case that {si1 , si2, . . . , sik} ⊆ {sj1, sj2, . . . , sjp
}. Then the

theorem follows trivially: since every reachable superstate in Ad is accepting, at least

one of si1 , si2 , . . . , sik must be an element of F . Since q ⊆ q′, it follows that q′ also

contains an element of F , and is therefore also an accepting superstate.

Lemma. Let Ad and An be defined as above, and let w = a0a1 . . . am be a word.

31

Suppose that after consuming w Ad ends up in state q = {si1, si2, . . . , sik} and An in

state q′ = {sj1 , sj2, . . . , sjp
}. Then q ⊆ q′.

Proof. The proof is by induction on the length of w.

Base case: If |w| = 0 then both Ad and An will be in their initial superstates,

which are the same set {s0}, so the lemma trivially holds.

Inductive case: Suppose that the lemma holds for 0 ≤ |w| ≤ m. Let q0, q1, . . . , qm+1

and q′0, q
′
1, . . . , q

′
m+1 be subsets of 2S such that q0 = q′0 = {s0}, ρd(qi, ai, qi+1) and

ρn(q′i, ai, q
′
i+1) for 0 ≤ i ≤ m. By inductive hypothesis qm ⊆ q′m.

By definition,

q′m+1 ⊇ {t′2 ∈ S : ρ(t′1, a, t′2) for some t′1 ∈ q′m}

⊇ {t2 ∈ S : ρ(t1, a, t2) for some t1 ∈ qm}

= qm+1

This completes the proof.

Unlike Ad, we cannot view An as a sequential circuit, since it is not deterministic.

SMV, however, can also model non-deterministic systems. Rather than requiring that

next(s)=1 iff
∨

ρ(t,σ,s) t, when the input is σ, we requite that next(s)=1 if
∨

ρ(t,σ,s) t,

when the input is σ (the “iff” is replaced by “if”). In an explicit construction the

sloppy approach would generate more subsets, but in a symbolic approach the sloppy

approach uses “looser” logical constraints (trans, rather than assign), which might

32

1

0

1
0

0

1
0

1 2

3

MODULE main

VAR

state: array 0..3 of boolean; input: boolean;

ASSIGN

init(state[0]) := 1; init(state[1]) := 0;

init(state[2]) := 0; init(state[3]) := 0;

TRANS

(state[0] & (! input)) -> next(state[3]);

((state[1] & input) | (state[2] & (! input)) |

(state[3] & input)) -> next(state[0]);

(state[2] & (! input)) -> next(state[1]);

(state[3] & input) -> next(state[2]);

SPEC

AG (state[0] | state[3]);

Figure 3.5: Sloppy encoding of the same automaton as in Figure 3.4

result in smaller BDDs. See Figure 3.5 for a sloppy encoding of the automaton in

Figure 3.4.

Monolithic vs. conjunctive partitioning In [BCL91] Burch, Clarke and Long

suggest an optimization of the representation of the transition relation of a sequential

circuit. They note that the transition relation is the conjunction of several small

relations and the size of the BDD representing the entire transition relation may

grow as the product of the sizes of the individual parts. This encoding is called

monolithic. The method that Burch et al. suggest represents the transition relation

by a list of the parts, which are implicitly conjuncted. Burch et al. call their method

conjunctive partitioning, which has since then become the default encoding in NuSMV

and Cadence SMV.

Conjunctive partitioning introduces an overhead when calculating the set of states

33

reachable in the next step. The set of transitions has to be considered in some order,

and choosing a good order is non-trivial, because each individual transition may

depend on many variables. In large systems the overhead is negligible compared to

the advantage of using small BDDs [BCL91]. However, in our models the transitions

are fairly simple, and it is not immediately clear whether monolithic encoding is a

better choice.

Variable ordering When using BDDs, it is crucial to select a good order of the

variables (See Figures 3.6 and 3.7) because the order had a huge impact on the size

of the BDD. Finding an optimal order is itself a hard problem, so one has to resort to

different heuristics. The default order in NuSMV corresponds to the order in which

the variables are first declared; in Cadence SMV it is based on some internal heuristic.

The orders that were considered included the default order, and the orders given

by three heuristics that are studied with respect to tree decompositions: Maximum

Cardinality Search (MCS), LEXP and LEXM [KBvH01]. In the experiments MCS

proved to be better than LEXP and LEXM, so in this work I will only report the

results for MCS and for the default order.

In order to apply MCS we view the automaton as a graph whose nodes are the

states, and in which two nodes are connected iff there is a transition between them.

MCS [TY84] orders the vertices from 1 to |S| according to the following rule: The first

node is chosen arbitrarily. From this point on, a node that is adjacent to a maximal

number of already selected vertices is selected next, and so on. Ties can be broken

34

a1

b1

a2

b2

a3

b3

0 1

Figure 3.6: Optimal order of the BDD variables for (a1 ∧ b1) ∨ (a2 ∧ b2) ∨ (a3 ∧ b3)

a1

a2
a2

a3

b1

b2

b3

0 1

b2

b1b1b1

a3a3a3

Figure 3.7: Bad order of the BDD variables for (a1 ∧ b1) ∨ (a2 ∧ b2) ∨ (a3 ∧ b3)

35

in various ways (eg. minimize the degree to unselected nodes [AV01] or maximize

it [BB94], or select one at random), but none leads to a significant speedup. For the

experiments presented here, when MCS was used ties were broken by minimizing the

degree to the unselected nodes.

Traversal In the SMV model the safety condition is of the form AGα: i.e. α is a

property that we want to hold in all reachable states. CTL formulas are normally

evaluated backward in NuSMV [CCGR00], via the greatest fixpoint characterization:

AGα = gfpZ [α ∧ AXZ]

This approach (“backward traversal”) can be sometimes quite inefficient. As an

optimization (only for AGα formulas), NuSMV supports another strategy: calculate

the set of reachable states, and verify that they satisfy the property α (“forward

traversal”) (See Figure 3.8). In Cadence SMV, forward traversal is the default mode,

but backward traversal is also available. Both model-checkers were run with both

traversal modes.

Evaluating The Symbolic Approach Generally, the running times of the various

symbolic approaches increase with both transition density and acceptance density.

Figures 3.9 and 3.10 present the effect of the first three optimizations to the running

times of NuSMV and Cadence SMV for fixed size unstructured automata (in this

set of experiments forward traversal was used). No single configuration gives the

best performance throughout the range of transition density. Nevertheless, several

36

S0

Bad

(a) Backward traversal

S0

(b) Forward traversal

Figure 3.8: Forward and backward traversal of the model

conclusions can be made about the individual optimizations. Ordering the variables

with MCS is always better than using the default ordering. Monolithic encoding is

better than conjunctive partitioning for low transition density; the threshold varies

depending on the tool and the choices for the other optimizations. Sloppy encoding

is better than fussy when used together with monolithic encoding; the opposite is

true when using conjunctive partitioning. The only exception to the latter is sloppy

37

monolithic encoding in NuSMV, which gives the worst performance. Overall, for

both tools, the best performance is achieved by using monolithic-MCS-sloppy up to

r = 1.3, and conjunctive-MCS-? thereafter (the results for sloppy and fussy are too

close to call here).

0 0.5 1 1.5 2 2.5
10

1

10
2

10
3

10
4

10
5

10
6

10
7

Transition density (r)

T
im

e
to

 c
he

ck
 u

ni
ve

rs
al

ity
 (

m
s)

(lo
gs

ca
le

)
NuSMV (|S| = 30, f = 0.5)

Mono−Default−Sloppy
Mono−Default−Fussy
Mono−MCS−Sloppy
Mono−MCS−Fussy
Conj−Default−Sloppy
Conj−Default−Fussy
Conj−MCS−Sloppy
Conj−MCS−Fussy

Figure 3.9: NuSMV

In order to fine-tune the two tools I next looked at their scaling performance

(Figure 3.11). I first consider automata with f = 0.9 and r = 2.5 (the choice is

explained later). I fix the transition encoding to conjunctive and variable order to

MCS, and varied traversal direction and sloppy vs. fussy encoding. For both tools

backward traversal is the better choice, not surprisingly, since 90% of the states are

accepting and a fixed point is achieved very quickly. When using backward traversal,

38

0 0.5 1 1.5 2 2.5
10

1

10
2

10
3

10
4

10
5

Transition density (r)

T
im

e
to

 c
he

ck
 u

ni
ve

rs
al

ity
 (

m
s)

(lo
gs

ca
le

)

Cadence SMV (|S| = 30, f = 0.5)

Mono−Default−Sloppy
Mono−Default−Fussy
Mono−MCS−Sloppy
Mono−MCS−Fussy
Conj−Default−Sloppy
Conj−Default−Fussy
Conj−MCS−Sloppy
Conj−MCS−Fussy

Figure 3.10: Cadence SMV

sloppy encoding gives better performance, and the opposite is true when using forward

traversal. Overall, the best scaling is achieved by Cadence SMV with backward

traversal and sloppy encoding.

Comparing The Explicit and Symbolic Approaches I first compare the per-

formance of the explicit and the symbolic approaches on a set of random automata

with a fixed size. For each data point I took the median of all execution times

(200 sample points). All experiments were performed on the Rice Terascale Cluster1,

which is a large Linux cluster of Itanium II processors with 4 GB of memory each.

1http://support.rtc.rice.edu/

39

10 20 30 40 50 60 70 80 90 100

10
2

10
3

10
4

10
5

Initial size of the automaton (|S|)

T
im

e
to

 c
he

ck
 u

ni
ve

rs
al

ity
 (

m
s)

(lo
g

sc
al

e)

Comparing the scaling of NuSMV and Cadence SMV (f = 0.9, r = 2.5)

Cadence−Sloppy−Backwd
Cadence−Sloppy−Forward
Cadence−Fussy−Backwd
Cadence−Fussy−Forward
NuSMV−Sloppy−Backwd
NuSMV−Sloppy−Forward
NuSMV−Fussy−Backwd
NuSMV−Fussy−Forward

Figure 3.11: Optimizing NuSMV and Cadence SMV (scaling)

The explicit algorithm here is represented by Automaton.

The results indicate that for small automata the explicit algorithm is much faster

than the symbolic. In fact, even when using automata with initial size |S| = 100,

the median of the execution time is 0 almost everywhere on the landscape (see Fig-

ure 3.12). In contrast, even for automata with |S| = 30 the symbolic algorithm takes

non-negligible time (Figures 3.9 and 3.10).

As before, we are also interested which algorithm scales better as the initial size

of the automata increases. For this set of experiments, I used unstructured automata

with fixed densities of the final states (f = 0.9) and the transitions (r = 2.5), i.e. on

of the furthest edge of the landscape. I chose this point because almost everywhere

40

0.2
0.4

0.6
0.8

1

0.5
1

1.5
2

2.5
0

50

100

150
200

250

300
350

400

Density of final states (f)

Checking for universality with the explicit algorithm (|S| = 100)

Transition density (r)

T
im

e
to

 c
he

ck
 u

ni
ve

rs
al

ity
 (

m
s)

Figure 3.12: Median time to check for universality with the explicit algorithm (using
Automaton)

else the median execution time of the explicit algorithm implemented in Automaton

is 0 for small automata. I varied the initial size of the automata between 5 and 600.

The results are presented on Figure 3.13. The symbolic algorithm (Cadence SMV)

is slower than the explicit (Automaton) throughout the whole range. All algorithms

scale sub-exponentially; however, the symbolic algorithm scales 2O(
√

|S|) worse than

the explicit one. I also present data for NuSMV, which scales the worst of the three

algorithms and is the slowest for |S| > 20. Note that at lower transition and/or

acceptance density, the advantage of the explicit approach over the symbolic approach

is much more pronounced.

One might object that Automaton performs better because it is a specialized tool.

41

0 100 200 300 400 500 600
10

0

10
1

10
2

10
3

10
4

10
5

Initial size of the automaton (|S|)

T
im

e
to

 c
he

ck
 u

ni
ve

rs
al

ity
 (

m
s)

(lo
g

sc
al

e)

Scaling of the symbolic and the explicit algorithms (f = 0.9, r = 2.5)

Explicit algorithm
NuSMV (optimized)
Cadence SMV (optimized)

Figure 3.13: Scaling comparison of the symbolic (SMV) and explicit (Automaton) algo-
rithms: Logarithmic plot

In order to present a full comparison between the symbolic and the explicit algorithms,

I also considered the performance of SPIN. On Figure 3.14 I present scaling comparison

of Cadence SMV, SPIN and Automaton. The direct comparison of the two model-

checkers shows that the explicit one (SPIN) is much faster than the symbolic one.

Plotting the same data in a log-log plot (Figure 3.15 further shows that both explicit

algorithms scale better than the symbolic one.)

Comparing The Explicit and Symbolic Approaches on structured automata

One may argue that the symbolic algorithm is performing so poorly because the au-

tomata did not have any structure. BDD-based algorithms are usually very successful

42

0 100 200 300 400 500 600 700 800 900 1000
10

1

10
2

10
3

10
4

10
5

Automaton size (|S|)T
im

e
to

ch
ec

k
un

iv
er

sa
li
ty

(m
s)

(l
og

sc
al

e)

Cadence SMV
SPIN
Automaton

Figure 3.14: Scaling comparison of the symbolic (Cadence SMV) and the explicit
(Automaton, SPIN) algorithms: Logarithmic plot

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

Automaton size (|S|)T
im

e
to

ch
ec

k
un

iv
er

sa
li
ty

(m
s)

(l
og

sc
al

e)

Cadence SMV
SPIN
Automaton

Figure 3.15: Scaling comparison of the symbolic (Cadence SMV) and the explicit
(Automaton, SPIN) algorithms: Log-log plot

43

at discovering and exploiting structures in the model. To gain a fuller understanding

of the performance of the symbolic and the explicit algorithm, and to address this is-

sue, I also performed experiments with structured models. I used Cadence SMV, SPIN

and Automaton as before, and considered the matrix and linear models of automata.

For each of the models I optimized the performance of Cadence SMV using the four op-

timizations presented above. The best execution time for Cadence SMV was achieved

using conjunctive partitioning, sloppy encoding, MCS order and backward traversal,

on both the matrix and the linear models.

Figure 3.16 presents the results for the matrix model, with r = 2.5, f = 0.9,

and distance parameter d = 0.05. (The data on this and the subsequent figure is

the average rather than the median because there is a bimodal distribution of the

execution time.) Each of the three tools showed a speed-up compared to their perfor-

mance on the unstructured model. This is not surprising given that the structured

models are more restrictive: since fewer automata are universal, a counterexample,

when it exists, is easier to discover. However, the symbolic algorithm (represented

by Cadence SMV) is still performing worse than the explicit algorithm (Automaton,

SPIN).

The results for the linear model are presented on Figure 3.17. Unlike the matrix

model, the linear model suggests a very nice linear order of the variables. The ordering

heuristic, MCS, easily discovers this order and allows for almost optimal size of the

BDDs in the symbolic algorithm. Thus, the symbolic algorithm scales better than the

44

0 100 200 300 400 500 600 700
10

1

10
2

10
3

10
4

10
5

Automaton size (|S|)T
im

e
to

 c
he

ck
 u

ni
ve

rs
al

ity
 (

m
s)

(a
ve

)(
lo

gs
ca

le
) Scaling comparison using the Matrix Model (d = 0.05)

Automaton
Cadence (optimized)
Spin

Figure 3.16: Scaling comparison of the symbolic (Cadence SMV) and the explicit
(Automaton,SPIN) algorithms: Matrix model

explicit one. Even though this result is encouraging, the linear model is too extreme

and less realistic than the matrix model in terms of laying out latches on a chip. Only

automata modeling very special circuits will contain a linear structure like the one

used here.

3.3 Conclusions

This section presents a comparison between a symbolic and an explicit algorithm

for checking universality. The discovery that the explicit approach scales better than

the symbolic one is rather surprising. The advantage of using an explicit algorithm

is seen even when we compare two model-checkers(SMV and SPIN). Adding “matrix”

45

50 100 150 200 250 300 350 400 450 500
10

1

10
2

10
3

10
4

10
5

Automaton size (|S|)T
im

e
to

 c
he

ck
 u

ni
ve

rs
al

ity
 (

m
s)

(a
ve

)(
lo

gs
ca

le
) Scaling comparison using the Linear Model (d = 0.05)

Automaton
Cadence (optimized)
Spin

Figure 3.17: Scaling comparison of the symbolic (Cadence SMV) and the explicit
(Automaton,spin) algorithms: Linear model

structure to the model does not change the results, and only after considering the

highly-restricted “linear” model can we see the symbolic tool dominating the explicit

ones. These results indicate that the reputation of the symbolic algorithms for better

handling asynchronous systems may need to be considered more carefully.

46

Chapter 4

Canonization

This chapter investigates algorithms for deriving the canonical (minimal) DFA

corresponding to a given NFA. In addition to its immediate applications in com-

piler construction and automata theory, the work is motivated by a special type of

properties called safety properties, that we might be asked to verify.

4.1 Safety Properties

Intuitively, a safety property asserts that the system always stays within some al-

lowed set of finite behaviors, and every violation occurs after a finite execution [KV99].

Formally, the computations of a non-terminating system can be viewed as an

infinite sequence of system states, where each state denotes the set of the atomic

propositions holding at that state. We call each of these sequences a trace. We use

traces to define a safety properties and bad prefixes.

Definition (Safety Property [SRA03]). A property is a safety property if for

every infinite trace ρ there exists a finite prefix α such that for all infinite traces ρ′,

α · ρ′ does not satisfy the property. The prefix α is called a bad prefix.

47

A monitor is a finite automaton (on finite words) that accepts the bad prefixes

of a safety property. In the context of model-checking, automata on finite words are

usually more helpful because upon a violation of the property they can return a finite

trace, while an automaton for a general property may return an infinite trace [KV99].

The canonization problem consists of constructing the minimal DFA that accepts

the same language as a given (possibly non-deterministic) finite automaton. The next

section presents three classical algorithms for producing the canonical automaton.

4.2 Canonization Algorithms

There are two different approaches to canonization. The first approach involves

a two-step process: first, determinize the NFA, and second, minimize the resulting

DFA. To complete the first step, we use the subset construction, which I present briefly

here. Let A = (Σ, S, S0, ρ, F) be an NFA. We construct Ad = (Σ, 2S, {S0}, ρd, Fd),

where Fd = {T ∈ 2S : T ∩ F 6= ∅} and ρd(T1, a, T2) ⇐⇒ T2 = {t2 ∈ S :

ρ(t1, a, t2) for some t1 ∈ T1}. The subset construction can be applied on the fly:

starting with the initial state S0, we determine the “next” state for each letter, and

then recur. The automaton Ad is deterministic and accepts exactly the same language

as A. For the second step, Watson [Wat93] presents 15 algorithms that can be used

to minimize a DFA, including one of the simplest (Huffman’s [Huf64]), and the one

with the best known worst-case complexity (Hopcroft’s [Hop71]). The second ap-

proach to canonization, due to Brzozowski [Brz62], avoids the minimization step, but

48

applies the determinization step twice. In our study I compare the two approaches by

evaluating the performance of Hopcroft’s and Brzozowski’s algorithms on randomly

generated automata.

I present briefly the idea of the two algorithms. Let L(A(p)) be the language

accepted by the automaton A starting from the state p. Given a DFA, Huffman’s and

Hopcroft’s algorithms construct an equivalence relation E ⊆ S×S with the following

property: (p, q) ∈ E ⇔ L(A(p)) = L(A(q)). The equivalence relation E is computed

as the greatest fixed point of the equation

(p, q) ∈ E ⇔ (p ∈ F ⇔ q ∈ F) ∧ (∀a ∈ Σ, (p, a, p′) ∈ ρ, (q, a, q′) ∈ ρ : (p′, q′) ∈ E).

In Huffman’s algorithm all states are assumed equivalent until proven otherwise.

Equivalence classes are split repeatedly until a fix-point is reached. The algorithm

runs in asymptotic time O(|S|2). Hopcroft made several clever optimizations in the

way equivalence classes are split, which allowed him to achieve the lowest known

running time O(|S| log |S|) [Gri73, Hop71]. Hopcroft’s algorithm also significantly

outperforms Huffman’s algorithm in practice, so I can ignore Huffman’s algorithm

from this point on. Strictly speaking, Hopcroft’s algorithm is just the DFA mini-

mization algorithm, but I take it here to refer to the canonization algorithm, with

determinization in the first step and minimization in the second step. Because the

subset construction is applied in the first step, the worst-case complexity of this ap-

proach is exponential.

49

Brzozowski’s algorithm is a direct canonization algorithm, and it does not use

minimization, but, rather, two determinization steps. To describe the algorithm, I

introduce some notation. If A is an automaton (Σ, S, S0, ρ, F), then reverse(A) is

the automaton AR = (Σ, S, F, ρR, S0), where ρR ⊆ S × Σ × S and (s2, a, s1) ∈ ρR ⇔

(s1, a, s2) ∈ ρ. Intuitively, reverse switches the accepting and the initial states, and

changes the direction of the transitions. Let determinize(A) be the deterministic

automaton obtained from A using the subset construction, and let reachable(A) be

the automaton A with all states not reachable from the initial states removed.

Theorem (Brzozowski). Let A be an NFA. Then

A′ = [reachable ◦ determinize ◦ reverse]2(A)

is the minimal DFA accepting the same language as A.

It is not immediately obvious what the complexity of Brzozowski’s algorithm is.

The key to the correctness of the algorithm is, however, the following lemma.

Lemma. Let A = (Σ, S, {s0}, ρ, F) be a DFA with the property that all states in S

are reachable from s0. Then reachable(determinize(reverse(A))) is a minimal-state

DFA.

Clearly the resulting automaton A′ is deterministic. Since we reverse twice, the

languages accepted by A and A′ are the same. The only thing that remains to be

shown is that A′ is minimal.

50

Theorem. Let A = (Σ, S, ρ, {s0}, F) be a DFA with the property that all states in S

are reachable from s0. Then A′′ = reachable(determinize(reverse(A))) is a minimal-

state DFA.

Proof. Define A(q) to be the automaton (Σ, S, ρ, {q}, F), that is, A(q) is the automaton

A with starting state q. Also define p ≈A q ⇔ L(A(q)) = L(A(p)). For brevity I use

AR to denote the automaton reverse(A).

Now, to show that A′′ = (Σ, S ′′, ρ′′, {s′′0}, F ′′) is minimal, we have to show that

∀p, q ∈ S ′′, p ≈A′′ q ⇔ p = q. By construction the states of A′′ are subsets of S, so in

particular p, q ⊆ S. I will show that p and q are the same set iff they define the same

language.

Let r ∈ p ⊆ S. Then there must be some word w ∈ Σ∗ such that ρ∗(s0, w) =

r, due to the assumption that every state in A is reachable from s0. But then

s0 ∈ (ρR)∗(r, wR) in A, which means that wR ∈ L
(

(AR)(r)
)

. By construction, A′′

is determinize(AR), therefore wR ∈ L(A′′(p)). Our assumption was that p ≈A′′ q, so

it must also hold that wR ∈ L(A′′(q)).

We take some state t ∈ q ⊆ S such that ρ∗(s0, w) = t. But ρ is deterministic,

therefore t = r and therefore r ∈ q. This proves that p ⊆ q. The proof that q ⊆ p is

analogous. Therefore p = q.

Since the canonical size is at most exponential in the size of the input automaton

and since reachable and determinize can be combined to generate only reachable sets

51

0
0.2

0.4
0.6

0.8
1

0
0.5

1
1.5

2
2.5

0

20

40

60

80

100

Density of final states (f)

Calculating the canonical mDFA with Hopcroft (|S| = 30)

Transition density (r)

T
im

e
to

 d
et

er
m

in
iz

e
+

 ti
m

e
to

 m
in

im
iz

e
(m

s)

Figure 4.1: Canonization using Hopcroft

(which is exactly what we do in Hopcroft’s algorithm), it follows that the worst-case

complexity of Brzozowski’s algorithm is also exponential.

4.3 Evaluating the Minimization Algorithms

For the experimental study I used the tool dk.brics.automaton [Mø04], developed

by Anders Møller. I first study the performance on fixed-size automata. Again, the

sample contains 200 random automata per (r, f) pair, and median time is reported

(median time is less affected by outlying points than the mean. These, and all subse-

quent timing data, refer to the median). To generate each data point in Figure 4.1,

52

0
0.2

0.4
0.6

0.8
1

0
0.5

1
1.5

2
2.5

0

200

400

600

800

Density of final states (f)

Calculating the canonical mDFA with Brzozowski (|S| = 30)

Transition density (r)

T
im

e
to

 m
in

im
iz

e
(m

s)

Figure 4.2: Canonization using Brzozowski

I determinized and then minimized with Hopcroft’s algorithm each automaton; I

measured combined running time for both steps. Note that Figure 4.1 is similar to

Figure 2.4, but the two peaks occur in different densities (r = 1.5 and r = 1.25, re-

spectively). As in Figure 2.4, for a fixed transition density, the impact of acceptance

density on running time is not large.

For Brzozowski’s algorithm, I measured the total time to perform the two reachable ◦

determinize ◦ reverse steps. The results are presented in Figure 4.2. The peak for

Brzozowski’s algorithm coincides with the peak of Figure 2.4 (r = 1.25). For a fixed

transition density, the impact of acceptance density on running time is much more

pronounced that in Hopcroft’s algorithm.

53

The experimental results indicate that neither Hopcroft’s nor Brzozowski’s algo-

rithm dominates the other across the whole density landscape. Figures 4.3 and 4.3

show the running times of both algorithms for fixed f = 0.5. In Figure 4.3 the areas

under both curves are 691 for Hopcroft and 995.5 for Brzozowski, and in Figure 4.3

the areas are 1900 for Hopcroft and 5866 for Brzozowski, so Hopcroft’s algorithm has

a better overall performance, but for r > 1.5 Brzozowski’s algorithm is consistently

faster. The conclusion is that Hopcroft’s algorithm is faster for low-density automata,

while Brzozowski’s algorithm is better for high-density automata. It remains to be

seen if this conclusion applies also for automata that arise in practical applications,

e.g, [ABG+00].

Similar to the approach of [PV04], I also investigated how Hopcroft’s and Brzozow-

ski’s algorithms scale with automaton size. I fixed the acceptance density at f = 0.5,

because its effect on the running time is less dramatic than that of the transition

density. The results (Figures 4.5 and 4.6) indicate that none of the algorithms scales

better than the other over the whole landscape. Brzozowski’s algorithm has an edge

over Hopcroft’s for r ≥ 1.5, and the opposite is true for the lower densities. At the

peak, Hopcroft’s algorithm scales exponentially, but generally the algorithms scale

subexponentially. Again we see that Hopcroft’s algorithm is better at low densities,

while Brzozowski’s algorithm is better at high densities.

The empirical measurements presented here suggest that none of the leading two

minimization algorithms dominates the other for all transition densities. If one does

54

0 0.5 1 1.5 2 2.5
0

50

100

150

200

250

300

350

400

Transition density (r)

T
im

e
to

 c
al

cu
la

te
 m

D
F

A
 (

m
s)

Hopcroft and Brzozowski‘s algorithms (|S| = 30, f = 0.5)

Brzozowski
Hopcroft

Figure 4.3: Comparison between Hopcroft’s and Brzozowski’s algorithms for fixed f = 0.5,
using automata with size 30

not know a priori the density of the automaton it is better to choose Hopcroft’s algo-

rithm because its performance shows less variance. On the other hand, if the density

is known and is above the cross-over threshold (which is found experimentally to be

around density r = 1.5) choosing Brzozowski’s algorithm might lead to performance

gain over Hopcroft’s algorithm.

55

0 0.5 1 1.5 2 2.5
0

500

1000

1500

2000

2500

3000

Transition density (r)

T
im

e
to

 c
al

cu
la

te
 m

D
F

A
 (

m
s)

Hopcroft and Brzozowski‘s algorithms (|S| = 40, f = 0.5)

Brzozowski
Hopcroft

Figure 4.4: Comparison between Hopcroft’s and Brzozowski’s algorithms for fixed f = 0.5,
using automata with size 40

56

5 10 15 20 25 30 35
10

0

10
1

10
2

10
3

10
4

Initial size of the automaton (|S|)

T
im

e
to

 c
an

on
iz

e
(m

s)
(lo

g
sc

al
e)

Comparison of Hopcroft and Brzozowski‘s algorithms (|S| = 30, f = 0.5)

Hopcroft, r = 1.0
Hopcroft, r = 1.25
Brzozowski, r = 1.0
Brzozowski, r = 1.25

Figure 4.5: Scaling comparison of Hopcroft and Brzozowski’s algorithms: low density

5 10 15 20 25 30 35
10

0

10
1

10
2

Initial size of the automaton (|S|)

T
im

e
to

 c
an

on
iz

e
(m

s)
(lo

g
sc

al
e)

Comparison of Hopcroft and Brzozowski‘s algorithms (|S| = 30, f = 0.5)

Hopcroft, r = 1.5
Hopcroft, r = 1.75
Hopcroft, r = 2.0
Brzozowski, r = 1.5
Brzozowski, r = 1.75
Brzozowski, r = 2.0

Figure 4.6: Scaling comparison of Hopcroft and Brzozowski’s algorithms: high density

57

Chapter 5

Conclusions

This work proposed a probabilistic benchmark for testing automata-theoretic al-

gorithms. I showed that in this model Hopcroft’s and Brzozowski’s canonization

algorithms are incomparable, each having an advantage in a certain region of the

model. In contrast, the advantage of the explicit approach to universality over the

symbolic approach is quite clear.

An obvious question to raise is how “realistic” our probabilistic model is. There

is no obvious answer to this question; partly because we lack realistic benchmarks of

finite automata. Since automata represent finite-state control, it is hard to see why

random directed graphs with linear density do not provide a realistic model. Hope-

fully, with the recent increase in popularity of finite-state formalisms in industrial

temporal property specification languages (c.f., [AFF+02, BBE+01]), such bench-

marks will become available in the not-too-far future, enabling me to evaluate the

findings in this work on such benchmarks. While the results presented here are purely

empirical, as the lack of success with fully analyzing related probabilistic models in-

dicates (cf. [Fri99, DBM00, Ach00]), providing rigorous proof for these qualitative

58

observations may be a very challenging task. At any rate, gaining a deeper under-

standing why one method is better than another method is an important challenge.

Another research direction is to consider minimization on the fly, as, for example, in

[LY92].

The most surprising result of this work is the superiority of the explicit approach to

universality over the symbolic approach. This runs against the conventional wisdom

in verification [BCM+92]. One may wonder whether the reason for this is the fact that

the sequential circuits derived from the random model can be viewed as consisting

of “pure control”, with no data component, unlike typical hardware designs, which

combine control and data. This suggests that perhaps in model checking such designs,

control and data ought to be handled by different techniques.

In future work I will extend the comparison between the explicit and symbolic

approaches to universality to automata on infinite words, a problem of very direct

relevance to computer-aided verification [KV01b]. It is known that complementation

of such automata is quite intricate [KV01b], challenging both explicit and symbolic

implementation.

59

Appendix A
Encoding the Universality Problem into Promela:

an Example

Here I present the full Promela encoding of the automaton on Figure A.1.

1

0

1
0

0

1
0

1 2

3

Figure A.1: Example Automaton

bool letterA;

active proctype model() {

bool state[4] = false;

bool nextstate[4] = false;

state[0] = true;

int i;

do

::

atomic {

/* Reset everything in nextstate[] to false */

i = 0;

do

:: (i < 4) ->

60

nextstate[i] = false;

i++;

:: else -> break;

od;

if

:: (state[0] && letterA) ->

skip;

:: (state[0] && ! letterA) ->

nextstate[3] = true;

:: else -> skip;

fi;

if

:: (state[1] && letterA) ->

nextstate[0] = true;

:: (state[1] && ! letterA) ->

skip;

:: else -> skip;

fi;

if

:: (state[2] && letterA) ->

skip;

:: (state[2] && ! letterA) ->

nextstate[0] = true;

nextstate[1] = true;

:: else -> skip;

fi;

if

:: (state[3] && letterA) ->

nextstate[0] = true;

nextstate[2] = true;

:: (state[3] && ! letterA) ->

skip;

:: else -> skip;

fi;

/* Make the transition to the next state */

i=0;

do

61

:: (i < 4) ->

state[i] = nextstate[i];

i++;

:: else -> break;

od;

assert (state[0] || state[3]);

}

od;

}

active proctype driver() {

do

:: letterA = true;

:: letterA = false;

od;

}

62

Bibliography

[ABG+00] Y. Abarbanel, I. Beer, L. Gluhovsky, S. Keidar, and Y. Wolfstal. FoCs -
automatic generation of simulation checkers from formal specifications. In
CAV, Proc. 12th International Conference, volume 1855 of LNCS, pages
538–542. Springer-Verlag, 2000.

[Ach00] D. Achlioptas. Setting two variables at a time yields a new lower bound
for random 3-SAT. In Proc. of 32nd Annual ACM Symposium on Theory
of Computing, 2000.

[AFF+02] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza,
A. Landver, S. Mador-Haim, E. Singerman, A. Tiemeyer, M.Y. Vardi,
and Y. Zbar. The ForSpec temporal logic: A new temporal property-
specification logic. In Proc. 8th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, volume 2280 of
LNCS, pages 296–211, Grenoble, France, April 2002. Springer-Verlag.

[AV01] A. San Miguel Aguirre and M. Y. Vardi. Random 3-SAT and BDDs: The
plot thickens further. In Principles and Practice of Constraint Program-
ming, pages 121–136, 2001.

[BB94] D. Beatty and R. Bryant. Formally verifying a microprocessor using a
simulation methodology. In Proc. 31st Design Automation Conference,
pages 596–602. IEEE Computer Society, 1994.

[BBE+01] I. Beer, S. Ben-David, C. Eisner, D. Fisman, A. Gringauze, and Y. Rodeh.
The temporal logic sugar. In Proc. 13th International Conference on
Computer Aided Verification, volume 2102 of LNCS, pages 363–367,
Paris, France, July 2001. Springer-Verlag.

[BCL91] J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with
partitioned transition relations. In Proc. IFIP TC10/WG 10.5 Interna-
tional Conference on Very Large Scale Integration, pages 49–58, 1991.

[BCM+92] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang.
Symbolic model checking: 1020 states and beyond. Information and Com-
putation, 98(2):142–170, June 1992.

[Bol01] B. Bollobas. Random Graphs. Cambridge University Press, January 2001.

[Bry86] R.E. Bryant. Graph-based algorithms for boolean-function manipulation.
IEEE Trans. on Computers, C-35(8), 1986.

63

[Bry92] R.E. Bryant. Symbolic boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

[Brz62] J. A. Brzozowski. Canonical regular expressions and minimal state graphs
for definite events. In Mathematical theory of Automata, pages 529–561.
Polytechnic Press, Polytechnic Institute of Brooklyn, N.Y., 1962. Volume
12 of MRI Symposia Series.

[Cad] Cadence. SMV. http://www.cadence.com/company/cadence labs research.html.

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella. NuSMV Version 2: An
OpenSource Tool for Symbolic Model Checking. In Proc. International
Conference on Computer-Aided Verification (CAV 2002), volume 2404 of
LNCS, Copenhagen, Denmark, July 2002. Springer.

[CCGR00] A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: A
new symbolic model checker. International Journal on Software Tools for
Technology Transfer, 2(4):410–425, 2000.

[CGP99] E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
1999.

[CKT91] P. Cheeseman, B. Kanefsky, and W. M. Taylor. Where the really hard
problems are. In IJCAI ’91, pages 331–337, 1991.

[DBM00] Olivier Dubois, Yacine Boufkhad, and Jacques Mandler. Typical random
3-SAT formulae and the satisfiability threshold. In SODA, pages 126–127,
2000.

[Fri99] E. Friedgut. Necessary and sufficient conditions for sharp thresholds
of graph properties, and the k-SAT problem. Journal of the A.M.S.,
12:1017–1054, 1999.

[GG97] James Glenn and William I. Gasarch. Implementing WS1S via finite
automata: Performance issues. In Workshop on Implementing Automata,
pages 75–86, 1997.

[Gri73] D. Gries. Describing an algorithm by Hopcroft. Acta Informatica, 2:97–
109, 1973.

[Hol97] G.J. Holzmann. The model checker SPIN. IEEE Trans. on Software
Engineering, 23(5):279–295, May 1997. Special issue on Formal Methods
in Software Practice.

[Hol04] G. J. Holzmann. The SPIN model checker: Primer and reference manual.
Addison Wesley, 2004.

64

[Hop71] J. E. Hopcroft. An n log n algorithm for minimizing the states in a
finite automaton. In Z. Kohavi, editor, The Theory of Machines and
Computations, pages 189–196. Academic Press, 1971.

[HS96] G.D. Hachtel and F. Somenzi. Logic Synthesis and Verification Algo-
rithms. Kluwer Academic Publishers, Norwell, Massachusetts, 1996.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

[Huf64] D. A. Huffman. The synthesis of sequential switching circuits. In E. F.
Moore, editor, Sequential Machines: Selected Papers. Addison-Wesley,
1964.

[Kar90] R. M. Karp. The transitive closure of a random digraph. Random Struct.
Algorithms, 1(1):73–94, 1990.

[KBvH01] A. M. C. A. Koster, H. L. Bodlaender, and C. P. M. van Hoesel.
Treewidth: Computational experiments. ZIB-Report 01–38, Konrad-
Zuse-Zentrum für Informationstechnik Berlin, Berlin, Germany, 2001.
Also available as technical report UU-CS-2001-49 (Utrecht University)
and research memorandum 02/001 (Universiteit Maastricht).

[KMM00a] M. Kaufmann, P. Manolios, and J S. Moore, editors. Computer-Aided
Reasoning: ACL2 Case Studies. Kluwer Academic Press, Boston, MA.,
2000.

[KMM00b] M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning:
An Approach. Kluwer Academic Press, Boston, MA., 2000.

[KV99] O. Kupferman and M.Y. Vardi. Model checking of safety properties. In
Computer Aided Verification, Proc. 11th International Conference, vol-
ume 1633 of LNCS, pages 172–183. Springer-Verlag, 1999.

[KV01a] O. Kupferman and M.Y. Vardi. Model checking of safety properties.
Formal methods in System Design, 19(3):291–314, November 2001.

[KV01b] O. Kupferman and M.Y. Vardi. Weak alternating automata are not that
weak. ACM Trans. on Computational Logic, 2001(2):408–429, July 2001.

[LY92] D. Lee and M. Yannakakis. Online minimization of transition systems. In
Proc. 24th ACM Symp. on Theory of Computing, pages 264–274, Victoria,
May 1992.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

65

[MF71] A.R. Meyer and M.J. Fischer. Economy of description by automata,
grammars, and formal systems. In Proc. 12th IEEE Symp. on Switching
and Automata Theory, pages 188–191, 1971.

[MLK98] J S. Moore, T. Lynch, and M. Kaufmann. A mechanically checked proof
of the correctness of the kernel of the AMD5K86 floating point division
algorithm. IEEE Transactions on Computers, 47(9):913–926, September
1998.

[Mø04] A. Møller. dk.brics.automaton. http://www.brics.dk/automaton/, 2004.

[Moo03] J S. Moore. Proving theorems about Java and the JVM with ACL2.
In M. Broy and M. Pizka, editors, Models, Algebras and Logic of
Engineering Software, pages 227–290. IOS Press, Amsterdam, 2003.
http://www.cs.utexas.edu/users/moore/publications/marktoberdorf-03.

[MS72] A.R. Meyer and L.J. Stockmeyer. The equivalence problem for regular
expressions with squaring requires exponential time. In Proc. 13th IEEE
Symp. on Switching and Automata Theory, pages 125–129, 1972.

[PV04] G. Pan and M.Y. Vardi. Search vs. symbolic techniques in satisfiability
solving. In SAT 2004, LNCS, Aalborg, May 2004. Springer-Verlag.

[Rus98] D. Russinoff. A mechanically checked proof of IEEE compliance of a
register-transfer-level specification of the AMD-K7 floating-point multi-
plication, division, and square root instructions. London Mathematical
Society Journal of Computation and Mathematics, 1:148–200, December
1998. http://www.onr.com/user/russ/david/k7-div-sqrt.html.

[SML96] B. Selman, D. G. Mitchell, and H. J. Levesque. Generating hard satisfi-
ability problems. Artificial Intelligence, 81(1-2):17–29, 1996.

[SRA03] Koushik Sen, Grigore Ro̧su, and Gul Agha. Generating optimal linear
temporal logic monitors by coinduction. In Vijay A. Saraswat, editor,
ASIAN, volume 2896 of Lecture Notes in Computer Science, pages 260–
275. Springer, 2003.

[TY84] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to test
chordality of graphs, test acyclicity of hypergraphs, and selectively reduce
acyclic hypergraphs. SIAM J. Comput., 13(3):566–579, 1984.

[VW86] M.Y. Vardi and P. Wolper. An automata-theoretic approach to automatic
program verification. In Proc. 1st Symp. on Logic in Computer Science,
pages 332–344, Cambridge, June 1986.

66

[Wat93] B. W. Watson. A taxonomy of finite automata minimization algorithmes.
Computing Science Note 93/44, Eindhoven University of Technology, The
Netherlands, 1993.

67

