
RICE UNIVERSITY

Complexity and Structural Heuristics for

Propositional and Quantified Satisfiability

by

Guoqiang Pan

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Approved, Thesis Committee:

Dr. Moshe Y. Vardi (Chair),
Karen Ostrum George Professor,
Computer Science

Dr. Devika S. Subramanian,
Professor,
Computer Science

Dr. Walid Taha,
Assistant Professor,
Computer Science

Dr. Kartik Mohanram,
Assistant Professor,
Electric and Computer Engineering

Houston, Texas

August, 2006



Complexity and Structural Heuristics for

Propositional and Quantified Satisfiability

Guoqiang Pan

Abstract

Decision procedures for various logics are used as general-purpose solvers in computer

science. A particularly popular choice is propositional logic, which is simultaneously

powerful enough to model problems in many application domains, including formal

verification and planning, while at the same time simple enough to be efficiently solved

for many practical cases. Similarly, there are also recent interests in using QBF, an

extension of propositional logic, as a modeling language to be used in a similar fashion.

The hope is that QBF, being a more powerful language, can compactly encode, and

in turn, be used to solve, a larger range of applications. Still, propositional logic and

QBF are respectively complete for the complexity classes NP and PSPACE, thus,

both can be theoretically considered intractable. A popular hypothesis is that real-

world problems contain underlying structure that can be exploited by the decision

procedures. In this dissertation, we study the impact of structural constraints (in the

form of bounded width) and heuristics on the performance of propositional and QBF

decision procedures.

The results presented in this dissertation can be seen as a contrast on how

bounded-width impacts propositional and quantified problems differently. Starting

with a size bound on BDDs under bounded width, we proceed to compare symbolic

decision procedures against the standard DPLL search-based approach for propo-

sitional logic, as well as compare different width-based heuristics for the symbolic

approaches. In general, symbolic approaches for propositional satisfiability are only



competitive for a small range of problems, and the theoretical tractability for the

bounded-width case rarely applies in practice. However, the picture is very differ-

ent for quantified satisfiability. To that end, we start with a series of “intractability

in tractability” results which shows that although the complexity of QBF with con-

stant width and alternation is tractable, there is an inherent non-elementary blowup

in the width and alternation depth such that a width-bound that is slightly above

constant leads to intractability. To contrast the theoretical intractability, we apply

structural heuristics to a symbolic decision procedure of QBF and show that symbolic

approaches complement search-based approaches quite well for QBF.



iv

Acknowledgement

First of all, I would like to thank my advisor Prof. Moshe Y. Vardi for the support and

guidance provided through out my six years at Rice. You have advised me on not just

the technical developments and approaches, but also the methodology, presentation,

and insight needed to do research. And of course, the financial support too.

Also, I would like to thank the other members of my defense committee, Professors

Devika Subramanian, Walid Taha, and Kartik Mohanram for their help. I have taken

classes under all of you and I learned much, especially on looking at the area of

computer science at a wider angle than what I would originally do.

I would also thank the people at NEC research labs, Pranav Ashar, Aarti Gupta,

Malay Ganai, Chao Wang, Franjo Ivancic, Zijiang Yang, and others. I learned a lot in

my two internships done at NEC research labs, and the experience helped me broaden

my views to

Next, I would also like to thank my fellow students and visitors to our group,

including Andrew Ladd, Brian Chen, Ben McMahan, Algys Rudys, Deian Tabakov,

Armando Tacchella, Kristin Rozier, Kostas Bekris, Davis Schwarz, Ning Song, Chris-

tian Coarfa, Hernan Stamati, Andrea Ferrara, Kostantinos Tsavadis, Sumit Nain,

Seth Fogarty, and others. All the discussions in the corridors, no matter how side-

tracking they seemed, have been thought-provoking.

Last but certainly not least, I would also like to thank my parents for their emo-

tional support in all these years.



Contents

Abstract ii

List of Illustrations viii

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7

2.1 Decision Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Parameterized Complexity . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Propositional Logic and QBF . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Structural Heuristics and Width . . . . . . . . . . . . . . . . . . . . . 18

3 Bounded Treewidth and BDD size 21

4 Search vs. Symbolic decision procedures for proposi-

tional logic 34

4.1 An algorithm for BDD-based propositional satisfiability . . . . . . . . 35

4.2 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Search vs. symbolic results . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Optimizing the BDD-based approach . . . . . . . . . . . . . . . . . . 44

4.4.1 Cluster Ordering . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.2 Variable Ordering . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4.3 Quantifier Elimination . . . . . . . . . . . . . . . . . . . . . . 52



4.5 Comparison with other approaches . . . . . . . . . . . . . . . . . . . 53

4.5.1 BDDs vs. ZDDs . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5.2 Structure-Guided Variable Order for Search . . . . . . . . . . 58

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Parametrized Complexity of Bounded-Width QBF 62

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.1 QPTL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.1.2 Tiling Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.3 Non-elementary growth and some properties of the tower

function g(k, n) . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Complexity of finite model-checking problem for QPTL . . . . . . . . 71

5.2.1 Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2.2 Lower Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Parametric complexity of bounded-width QBF . . . . . . . . . . . . . 89

5.3.1 Translating QPTL finite model checking to QBF . . . . . . . . 90

6 Hardness of Small-width QBF 94

6.1 Model-checking games and their relationship to QBF . . . . . . . . . 96

6.2 Reducing tiling games to model-checking games . . . . . . . . . . . . 98

7 A Symbolic Decision Procedure for QBF 101

7.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.2 Symbolic Quantifier Elimination for QBF . . . . . . . . . . . . . . . . 103

7.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3.1 Symbolic vs. Search . . . . . . . . . . . . . . . . . . . . . . . 110

7.3.2 QMRES vs QBDD . . . . . . . . . . . . . . . . . . . . . . . . 114

8 Conclusion 116



Bibliography 120



Illustrations

2.1 Node elimination rule for BDDs . . . . . . . . . . . . . . . . . . . . . 8

2.2 Different variable orders for BDDs . . . . . . . . . . . . . . . . . . . . 9

2.3 BDD elimination rule vs. ZDD elimination rule . . . . . . . . . . . . 10

2.4 ZDD representation of a clause set . . . . . . . . . . . . . . . . . . . 11

2.5 A propositional formula and its interaction graph . . . . . . . . . . . 19

2.6 A graph and its tree decomposition . . . . . . . . . . . . . . . . . . . 20

3.1 Distinct nodes in a BDD . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 The Hidden Bit Value Function . . . . . . . . . . . . . . . . . . . . . 25

4.1 Random 3-CNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Random 3-Affine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 A) Random Biconditionals B) Random Chains . . . . . . . . . . . . . 42

4.4 A) n-Rooks B) n-Queens . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5 A) Pigeon Hole B) Mutilated Checkerboard . . . . . . . . . . . . . . 43

4.6 Clustering Algorithms - Random 3-CNF . . . . . . . . . . . . . . . . 45

4.7 Clustering Algorithms - Random Affine . . . . . . . . . . . . . . . . . 46

4.8 Clustering Algorithms - A) Random Biconditionals B) Random Chains 46

4.9 Clustering Algorithms - A) n-Rooks B) n-Queens . . . . . . . . . . . 46

4.10 Clustering Algorithms - A) Pigeon Hole B) Mutilated Checkerboard . 47

4.11 Clustering Algorithms A) Density=1.5 B) Density=6.0 . . . . . . . . 48

4.12 A) Variable Ordering Tie-breakers B) Initial Variable Choice . . . . . 50



4.13 Vertex Order Heuristics - Random 3-CNF A) Density=1.5 B)

Density=6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.14 Vertex Order Heuristics - A) Pigeon Hole B) Mutilated Checkerboard 51

4.15 Quantifier Elimination-Random 3-CNF . . . . . . . . . . . . . . . . . 52

4.16 Quantifier Elimination - A) Pigeon Hole B) Mutilated Checkerboard . 53

4.17 Random 3-CNF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.18 Random 3-Affine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.19 A) Random Biconditionals B) Random Chains . . . . . . . . . . . . . 57

4.20 A) n-Rooks B) n-Queens . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.21 A) Pigeon Hole B) Mutilated Checkerboard . . . . . . . . . . . . . . 57

4.22 Variable Order - Random 3-CNF (1) . . . . . . . . . . . . . . . . . . 59

4.23 Variable Order - Random 3-CNF (2) . . . . . . . . . . . . . . . . . . 59

4.24 Variable Order - Random Affine . . . . . . . . . . . . . . . . . . . . . 59

4.25 Variable Order - A) Random Biconditional B) Random Chains . . . . 60

4.26 Variable Order - A) n-Rooks B) n-Queens . . . . . . . . . . . . . . . 60

4.27 Variable Order - A) Pigeon Hole B) Mutilated Checkerboard . . . . . 60

5.1 Visualization of a tag . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Legend for visualization of ϕk,n(p, p
′, q, q′) . . . . . . . . . . . . . . . . 83

5.3 Order check for the markers . . . . . . . . . . . . . . . . . . . . . . . 83

5.4 Equality check for level 1 . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Wellformedness check . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.6 Equality check for level above 1 . . . . . . . . . . . . . . . . . . . . . 85

5.7 Check for horizontal constraints . . . . . . . . . . . . . . . . . . . . . 87

5.8 Check for vertical constraints . . . . . . . . . . . . . . . . . . . . . . 88

7.1 Satisfiability searching part of Algorithm in Fig.1, [ZM02b] . . . . . . 108

7.2 Rintanen’s Benchmarks (Non-random) . . . . . . . . . . . . . . . . . 111



7.3 Ayari’s Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4 Modal Logic Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.5 Study of overhead on ML benchmarks . . . . . . . . . . . . . . . . . 114



1

Chapter 1

Introduction

The study of decision procedures for various logics has always been a central theme

in the development of computer science. While there are many motivations, one of

the most important reasons is that logic is the natural language of computer science.

It is of no surprise that the canonical (and often, the first) problems shown to be

complete for a complexity class are usually the decision problems for some classes

of logic [Coo71, Sto76, BAHP82]. There are typically two problems that decision

procedures for a class of logic needs to solve. The first is the model-checking problem,

where the procedure decides whether the formula is true on some given model; the

second is the satisfiability problem, where the procedure decides whether the formula

is true on at least one model1. A decision procedure for satisfiability can often be

used as the universal decision procedure for the complexity class by using the logic

as a modeling language, where problem instances in that complexity class are mod-

eled with a polynomially-sized formula. Practically, we have seen many examples of

such applications, where many NP-complete problems (for example, planning [KS92],

bounded reachability [BAC+99, BCCZ99], and scheduling [CB94]) are solved using a

decision procedure for the satisfiability of propositional logic (usually called a SAT

solver). Model checking, while often an easier problem than satisfiability, is actually

quite expressive (and in turn, quite complex) on many logics, for example, temporal

logics, where many problems in formal verification are decided using model-checkers,

in which the desired properties are presented as formulas in one of the temporal logics

1For logics that admit quantification, these two problems are typically inter-reducible from each

other.



2

(CTL [CEA86, BCM+92, McM93], LTL[GPVW95], Forspec [AFF+02], and others),

and the system to be verified as the model. Checking that the model satisfies the

formula will verify that the system would exhibit the desired properties.

Still, using logic solvers as universal decision procedures is of no advantage in

improving tractability, since the model-checking or satisfiability problems are just as

hard as the problems we reduced from. Instead, the improvement is in the practical

realm of solver development. Without using the logic solver as a universal decision

procedure, each decision procedure for individual applications have to be optimized

separately. In contrast, by using a logic solver, much of the optimization only need

to take part inside the logic solver and not individual applications. In turn, the

development of decision procedures for a large range of application domains is sped

up. This is seen in the recent synergistic co-development of propositional satisfiability

solvers (for example, SATO [Zha97], ZChaff [MMZ+01, ZM02a], BerkMin [GN02],

etc.) along with the prosperity of SAT-solver-driven applications.

While there has been no final verdict on either the bridging or classifying the

gap between deterministic and non-deterministic polynomial time (the “P vs. NP”

problem), for most practical purposes it is believed that the containment P⊂NP

is strict, i.e., that we cannot solve NP-complete problems in polynomial time, and

theorems that can be proved using the assumption P6=NP are very likely to hold

in the real world. In fact, no sub-exponential algorithm2 is known for NP-complete

problems. However, actual implementations of algorithms do not always consume the

worst-case time for all problem instances. In many cases, heuristics allows shortcuts

to be taken in the execution of the algorithm. Since it is unlikely that P=NP, for an

intractable class, heuristics are expected to only solve only a subset of the instances

in polynomial time.

Classical complexity theory provides a tool to separate the complexity classes into

the tractable and the intractable, but the development of heuristical solvers showed

2On a reasonable size metric.



3

that there is much more to the practical solvability of a problem than its classical

complexity class. Parameterized complexity [DF99], on the other hand, is based on

the insight that problems in a class are not uniform, instead, they have a parameter,

controlling some aspect of the problem. Since the choice of the parameter can be

essential to the difficulty of the problem, the complexity of the problem is described

as a function on two variables, that of the size of the problem n, and the parameter

k. One way to distinguish k and n is that each value of the parameter corresponds

to a specialized algorithm which solves the problem for the particular parameter

value. This can also be seen as a stratification of the original complexity class into

a family of classes based on the parameter. One parameterized complexity class of

particular interest if that of fixed-parameter tractable (FPT) class, in which the time

complexity is in O(f(k)poly(n)), where f can be an arbitrary computable function. In

other words, in an FPT class for every parameter k, there is a polynomial algorithm

whose power does not depend in k. Surprisingly many problems that are classically

intractable are FPT on naturally-occurring parameters. In particular, many problems

on graphs can be solved efficiently if the graph is tree-like. This leads to the area of

structural heuristics, where the structure of the problem is analyzed to reduce the

effort needed to solve the problem. Beside many other interpretations, the distinct

classes induced by distinct parameters on an FPT problem can be seen as a way to

formalize the effects of heuristics, where the heuristics takes advantage of the feature

defined by the parameter in the problem.

In this dissertation, we concern ourselves with symbolic algorithms (where the

representation used is based on decision diagrams (DDs) [Bry86]) that attempt to

exploit the structural properties of the problem instance, and compare them against

classical search-based algorithms. Instead of restricting our attention to propositional

satisfiability, we also study quantified satisfiability [CKS81], the canonical PSPACE-

complete problem, for two reasons. First, quantified satisfiability is more useful than

propositional satisfiability in encoding many problems because of highly compact



4

encoding allowed by quantified satisfiability. Second, it is a more natural match to

the semantics of DD-based approaches, since decision diagrams, but not propositional

satisfiability, can handle both existential and universal quantification symmetrically.

A bonus on studying both classes of problems is that we can gain insights on why

PSPACE-complete problems are usually much harder than NP-complete problems

to solve in practice, even though the best-known run-time upper-bound for both

complexity classes are exponential.

The contrast between propositional satisfiability and quantified satisfiability is also

exhibited in recent developments into new model-checking techniques. Much research

into propositional satisfiability solvers is done for the purpose of improving bounded

model checking (BMC) tools based on propositional satisfiability [BCCZ99]. While

BMC tools based on propositional satisfiability solvers have been quite successful in

practice, they still suffers from the fact that BMC has to tackle problem instances

that are linear in the number of time steps unrolled; for some properties, this can lead

to a serious strain on the resources consumed. On the other hand, classical BDD-

based (unbounded) model checking algorithms often suffers from the size-explosion

problem. Attempts to bridge the unbounded nature of model checking and the BMC-

based approach took many directions, including k-induction, abstraction-refinement,

SAT-based image computation, etc. (For a survey of these approaches, see [PBG05].)

One of the directions uses QBF because many of the optimizations developed for

SAT can be applied to a QBF solver, while at the same time QBF can represent

unbounded model checking compactly. Still, in spite of the growing sophistication of

QBF solvers, it is fair to say that they have shown no where near the effectiveness

of SAT solvers [LST03]. We hope the theoretical and experimental developments we

present in this dissertation can provide some insights on future development of QBF

solvers.



5

1.1 Contributions

The contributions of this dissertation can be summarized in three aspects. First, we

studied the effect of bounded pathwidth and bounded treewidth on the size of BDDs

for CNF and existentially quantified CNF formulas. While these bounds have been

studied for weaker representations (for example, Boolean circuits in [McM93], which

can be seen as quantified formulas in a specific quantification scheme) in previous

works, our investigation showed that the fixed-parameter tractability (for bounded

pathwidth) or polynomial-ness (for bounded treewidth) of the size of the BDD can be

maintained even when the formula is existentially quantified. With quantification, the

effect from the width takes an exponential blowup compared to the non-quantified

version. Second, we studied the application of structural heuristics on DD-based

propositional and quantified decision procedures. We applied a number of previ-

ously developed heuristic schemes for clustering schemes [DP87, SV01], variable order

[KBv01, Dec03], and symbolic representation [Bry86, Min96], first for propositional

satisfiability, then for quantified satisfiability. While applying the heuristics men-

tioned for propositional satisfiability does not develop competitive symbolic solvers

(vs. DPLL-based solvers), we learned that the performance of a BDD-based decision

procedure is dependent on many factors in addition to the bounds induced by the

structural heuristics. In contrast, applying the same heuristics for quantified sat-

isfiability does lead to a competitive solver. Third, we develop a fixed-paremeter

hierarchy in PSPACE based on studying powerful second-order model-checking prob-

lems on words in the spirit of [FG02]. The techinque used is called “telescoping”,

which allows very small formulas to be used to check complex properties on word

models. Our improvement compared to [FG02] is three-fold. By replacing the logic

used form monadic second-order logic as in [FG02] to quantified propositional tempo-

ral logic, we developed a tight lower-bound for each alternation-bounded fragment of

the logic. Using temporal logic also allows us to use an unrolling approach to connect

the complexity of model-checking problems with the complexity of bounded-width



6

QBF problems, and develop lower bounds that is tight against the upper bound of

[Che04]. We also study the problem of small-width quantified satisfiability back in

a classical complexity setting, and proved the NP-hardness (and through extend-

ing model checking to model-checking games, PSPACE-hardness) of log∗-width QBF

problems.

1.2 Outline

The dissertation starts with the formal definitions of the problems and logics in Chap-

ter 2 (background). In Chapter 3 (bounded treewidth and BDD size), we investigate

the impact of structural bounds on the size of BDDs, and also consider the complex-

ity of quantification, and study the impact on BDD size from quantifying structural-

bounded formulas. In Chapter 4 (search vs. symbolic decision procedures for propo-

sitional logic), we compare a range of heuristics for a symbolic solver of propositional

logic. In Chapter 5 (parameterized complexity of bounded-width QBF), we gener-

alize the lower bound from Chapter 3 and show a non-elementary lower bound on

the parametric blowup of width and alternation depth parameter QBF. In Chapter

6 (hardness of small-width QBF), we use the techniques developed in Chapter 5 to

prove the complexity of log∗-width QBF. In Chapter 7 (a symbolic decision procedure

for QBF), we return to a practical setting, and present a symbolic QBF decision pro-

cedure. Finally, in Chapter 8 (conclusion), we would conclude the dissertation and

discuss possible future works.

Portions of this dissertation have been presented in conferences. A preliminary

version of Chapter 3 have appeared in LPAR’2005 as [FPV05], Chapter 4 in SAT’2004

as [PV04a], Chapter 5 and 6 in LICS’2006 as [PV06], and Chapter 7 in CP’2004 as

[PV04b].



7

Chapter 2

Background

2.1 Decision Diagrams

Binary decision diagrams (BDDs) [Bry86], also called function graphs, is a graph

representation used to encode models of Boolean functions (which can be equivalently

viewed as set of assignments to a set of binary variables, or set of bit vectors of a

specific length) symbolically. As a restricted form of branching programs [Mei89],

BDDs are rooted directed acyclic graphs (DAGs) with two terminal nodes labeled 0

and 1. Each node in the graph is labeled with a variable and has two distinguished

outgoing edges labeled 0 and 1, indicating respectively the variable to check at this

decision node and the successors (children) for each case. In other words, BDDs

represent the Shannon decomposition of a Boolean function, where a node b labeled

with variable i and with successors b′, b′′ represents the function fb =ite(vi, fb′ , fb′′),

where fb′ and fb′′ are functions represented by the nodes b′ and b′′. Here, ite(a, b, c)

is the if-then-else function, where ite(1, b, c) = b and ite(0, b, c) = c. Compared

against regular branching programs, BDDs also have the read-once property, where

each variable can occur at most once in each path from the root to a terminal. Usually,

we use the term BDDs to mean reduced-ordered BDDs (ROBDDs). In ordered BDDs,

the set of variables is ordered and every path from the root to a terminal checks

the variables in ascending order; in reduced BDDs, each node represents a distinct

function. In turn, given an order of variables, the BDD for every Boolean function is

canonical, i.e., the functions represented by two BDDs are equal iff the two BDDs are

identical. As long as nodes can be shared between BDDs, equal functions would use

the same BDD node. This allowed a range of properties on Boolean functions to be



8

v

w w

BDD

Figure 2.1 : Node elimination rule for BDDs

checked easily if they are in BDD representation, for example, a function is satisfiable

iff its BDD is not the terminal node 0. We define the support set of a BDD as the set

of variables that label its internal nodes.

The node elimination rule needed to ensure canonicity is easy: Any node whose

both children are the same node is redundant and can be removed, since ite(vi, f, f) =

f . An illustration of this rule is shown in Figure 2.1.

Most Boolean operations on BDDs (including conjunction, disjunction, and com-

plementation) can be performed in time quadratic in the size of both input BDDs, as

long as both BDDs have the same variable order. This is because the Boolean oper-

ations on the Shannon decompositions can be recursively distributed. For example:

ite(vi, b, b
′)∧ite(vi, c, c

′) =ite(vi, b ∧ c, b′ ∧ c′)

One important thing to note is since BDD is a compressed data structure, there

might be an exponential number of paths from the root to terminals in a single BDD,

so a naive implementation of the above distribution routine is not going to finish in

quadratic time in the size of the BDD. Practical implementations of BDD algorithms

use memorization, where a “computed” table is kept for results of operations on



9

v1

v2 v2

v3 v3 v3 v3

w3 w3 w3 w3

1 0

w2 w2

w1

w2 w2

w1

w3 w3 w3 w3

v1↔w1∧v2↔w2∧v3↔w3

v1

w1 w1

v2

w2 w2

1 0

w3

v3

w3

v1↔w1∧v2↔w2∧v3↔w3

Figure 2.2 : Different variable orders for BDDs

nodes, so operations on internal nodes are not repeated, to maintain the quadratic

time bound.

The main factor in the performance of BDD-based algorithms is the choice of the

variable order. Different variable orders can cause a possible exponential difference in

the size of BDDs, as demonstrated in Figure 2.2. A good variable order for a formula

would need to put variables that are closely-related close together in the order.

In the experiments done in this dissertation, we used the BDD library from Uni-

versity of Colorado (CUDD) developed by Fabio Somenzi [Som98].

People have also studied a family of representations similar to BDDs, often only

differing in the node elimination rule. One approach that has been particularly suc-

cessful is that of zero-suppressed decision diagrams (ZDDs) [Min96], whose elimina-

tion rule is optimized towards representing sparse sets. Instead of eliminating nodes



10

v

w w

v

w w0

BDD ZDD

Figure 2.3 : BDD elimination rule vs. ZDD elimination rule

where both successors go to the same node, as for BDDs, ZDDs eliminate nodes where

the 1 edge goes to the 0 terminal, i.e., each path to the 1 terminal represents a single

distinct subset (unlike BDDs, where a single path can include many subsets) where

only the 1 edges on the path represent occurring elements. See Figure 2.3 for an

illustration on how BDDs are different from ZDDs.

While both BDDs and ZDDs can be used to represent similar objects, the fact

that BDDs are more efficient on non-sparse sets and ZDD are more efficient on sparse

sets means they are usually used for very different applications. Instead of being used

to represent Boolean functions as a set of assignments, ZDDs are most often used

to represent Boolean functions in CNF [CS00] or DNF [Min96] representations. A

common ZDD-based representation uses two variables for the ZDD per variable of

the Boolean function, representing respectively the positive and the negative literal.

When ZDDs are used to represent CNF formulas, it is also advantageous to perform

subsumption-removal, where subsumed clauses are not represented in the ZDD. For

an example of using ZDDs to represent a CNF formula, see Figure 2.4. Note that the

clause ¬x1 ∨ ¬x2 is subsumed and does not occur in the ZDD.



11

x1

-x1

0

x2

1

(x1 ∨ x2) ∧ x1 ∧ (x1 ∨ x2)

Figure 2.4 : ZDD representation of a clause set

In addition to the usual Boolean operations on decision diagrams, it is also pos-

sible to implement operations that are semantically quite complicated, for example,

Davis-Putnam style resolution on ZDDs representing CNF formulas. An optimized

version called multi-resolution is developed by Chatalic and Simon [CS00], which gen-

erates all possible resolvents on a variable while eliminating subsumed clauses. While

multi-resolution is quite efficient most of the time, unlike the BDD conjunction and

disjunction operators, there is no proof of polynomial time bounds on the operations.

2.2 Parameterized Complexity

Complexity theory studies the relationship between the amount of resources needed

to decide a problem with respect to the size of the problem. Since the reduction

between complete problems of a class is polynomial, many decision procedures for logic

can be used as universal decision procedures for all problems of their characteristic



12

complexity class.

Still, not all commonly studied logic decision problems are well-adapted to be used

as a universal decision procedure. Most importantly, they may be are too complex.

For example, the satisfiability problem of first-order logic is undecidable. One curious

fact about such undecidability is that the logics themselves may not be that powerful

in describing properties of models; their undecidability is due to the possible exis-

tence of unboundedly large models. This leads to a chain of research in finite model

theory, where the size of the model is restricted to be finite. Many logics exhibit very

different complexity behaviour under finite model assumption compared to the usual,

unrestricted model case. One of the most important developments in finite model

theory is that of descriptive complexity, where the question under consideration is

that of the descriptive power of a logic, i.e., the complexity class for the set of finite

models of arbitrary formulas. For example, Fagin [Fag74] showed that the descriptive

power of existential second-order logic is NP-complete. In other words, for every NP-

complete language, there is an existential second-order (ESO) formula that accepts

exactly all strings in the language, and model checking ESO formulas on finite strings

is NP-complete.

One important concept that is developed from the application of descriptive com-

plexity theory in the area of databases is the distinction of program complexity, data

complexity, and combined complexity [Var82]. The program complexity represents the

complexity of model checking where the model is fixed, and the size of the formula

is variable. The data complexity represents the opposite case, where the formula is

fixed, and the model is variable. The combined complexity concerns the case where

both are variable (i.e., the classical complexity). For the area of databases, the dis-

tinct complexities study how the cost scales with either the size of the query or the

size of the database.

The fact that problems usually have many aspects contained in the input, and

limiting the focus to the size of the input does not capture all aspects of the complex-



13

ity of the problem is widely accepted in the general complexity community. In order

to generalize the impact of multiple aspects on the complexity of a problem, parame-

terized complexity is developed [DF99]. In parameterized complexity, the complexity

of a problem is analyzed in terms of both the problem-instance size n and a parameter

k that relates to some property of the problem. Typically, this approach is used to

capture the intuition that problems hard in the classical sense might have tractable

classes, here represented as problems with a small k. The class of fixed-parameter

tractable (FPT) problems are those that can be solved in time f(k)poly(n), where f

is any computable function.

One interesting aspect of FPT classes is that many problems in classes harder than

NP (for example, PSPACE, or even undecidable problems on an appropriate choice of

parameter) can be stratified as a FPT class. Still, so far none of the research in FPT-

based algorithms have improved the known lower bounds for intractable classes. Since

we typically use parameterized complexity to study problems that are intractable in

the classical setting, as long as the parameter k is no bigger than the size of the

problem instance, f(k) is at least exponential for known algorithms. Also, because

we don’t know whether P 6=NP, little is known for actual lower bounds for f(k).

In some cases, the FPT algorithms can actually be used as heuristics, by first

attempting to classify the parameter the problem instance is in, then performing

the FPT algorithm. In other cases, the FPT bound are used as a rationale on why

the problem is tractable for practical cases, by showing that most practical cases do

exhibit small k. Most research on parameterized complexity is in turn concentrated

on parametrically intractable problems, and studies such intractability hierarchies.

Still, simply because a problem is FPT does not always imply tractability. In [FG02],

Frick and Grohe showed an FPT class where f(k) is non-elementary (under a P 6=NP

assumption). In turn, given almost every k beyond a very small constant, the coeffient

f(k) is astronomical.



14

2.3 Propositional Logic and QBF

The satisfiability problem of propositional logic, being the canonical NP-complete

problem, is a very popular tool to model and solve problems for a wide range of

application domains. Problem instances in propositional logic are usually given in

conjunctive normal form (CNF), which is a conjunction of disjunctions of literals. A

satisfying solution A to a CNF formula ϕ is an assignment to the set of variables

of ϕ, where every clause in ϕ contains a literal that is true under the assignment.

This is written as A |= ϕ. All formulas in propositional logic can be translated to an

equi-satisfiable formula in CNF through the Tseitin translation [Tse81].

Since satisfiability of propositional logic is NP-complete, it can be easily verified

by presenting such an assignment A. On the other hand, unless NP=co-NP, verifying

unsatisfiability would not be as easy. Currently, for powerful propositional proof sys-

tems, for example Frege or extended-Frege systems, there is no known upper bound

for sizes of the proofs. Still, most automated decision procedures use a much simpler

proof system called resolution, where two clauses a ∨ v1 and ¬v1 ∨ b imply the con-

sequent (also called resolvent) a ∨ b. The first decision procedure for propositional

logic, that of Davis and Putnam [DP60], uses resolution to generate all possible re-

solvents on a proposition before eliminating all clauses that contain that proposition.

Thus, one proposition is eliminated from the support of the clause set at each step,

while preserving the satisfiability (or unsatisfiability) of the problem. Repeated ap-

plications of this procedure will eventually eliminate all propositions until either an

empty set (satisfiable case) or an empty clause (unsatisfiable case) is reached. This

is, essentially, a quantifier elimination-based scheme.

Since the Davis and Putnam algorithm may take exponential space, in practice,

most solvers for propositional logic are based on the Davis-Logemann-Loveland al-

gorithm [DLL62] (usually called the DPLL algorithm), which attempts to search for

a satisfying solution to the instance through extending partial assignments. At each

step, if some literal needs to be added to the partial solution to satisfy some clause,



15

the current partial assignment is extended onto the literal, otherwise, a currently

unassigned literal is chosen. Backtracking is performed if contradicting assignments

to a proposition occur.

For unsatisfiable instances, DPLL needs to cover the whole search space. To reduce

the amount of backtracking needed, modern solvers use conflict-driven learning, where

resolution is applied when a conflict is found to deduce the reason of the conflict. Since

the search procedure essentially generates a resolution proof, problems that are proven

to be hard for resolution (ones that require exponential-sized resolution proofs) have

to consume exponential running time under DPLL. Other optimizations that are used

in modern solvers include heuristically driven decision proposition choice and highly

optimized Boolean constraint propagation [MMZ+01].

An interesting characterization of the power of DPLL with conflict driven learning

and restarts is by [BKS03], in which DPLL is shown to be as powerful as resolution.

More precisely, for any unsatisfiable instance, given a resolution proof, there is a

sequence of decisions, learning resolution choices, as well as restarts so the DPLL

procedure simulates the resolution proof where the number of steps is polynomial

in the size of the resolution proof. Of course, for satisfiable instances, the optimized

decision heuristic used in modern DPLL solvers can guide the solver towards a solution

very quickly, while resolution-based solvers have to generate all possible resolvents

before concluding refutation is impossible.

Quantified Boolean formula (QBF) extends propositional logic by introducing

quantifiers ∃ and ∀ on the propositions which range over the Boolean domain

{0, 1}. We also call the propositions in QBF variables since their meaning is no

longer fixed in the formula. We write formulas in QBF in prenex normal form

ψ = (Q1p1)(Q2p2) . . . (Qkpk)ψ
′, where the Qs are quantifiers, the ps are proposi-

tions, and ψ′ is a propositional formula, which we call the matrix. The sequence of

quantifiers with their associated variables, are in turn, called the prefix. Usually, ψ′

is written in CNF. The semantics of QBF is closely based on that of propositional



16

logic, i.e., for a quantifier free formula ϕ, A |= ϕ is defined as for propositional logic,

and A |= ∃piϕ iff either A[pi 7→ 0] |= ϕ or A[pi 7→ 1] |= ϕ, and A |= ∀piϕ iff both

A[pi 7→ 0] |= ϕ and A[pi 7→ 1] |= ϕ.

Since QBF formulas contain quantifiers, decision procedures for QBF need to do

more than just search for a model, since unless NP=PSPACE, such a model cannot be

verified in polynomial time. Instead, a QBF decision procedure typically searches for a

strategy (also called a semantic tree), which maps every assignment to the universally

quantified variables to at least one assignment to the existentially quantified variables.

Based on the prefix, the assignment to any existentially quantified variable can only

depend on the assignments to universally quantified variables outside it. For the

worst case, the strategy is of size exponential in the number of universally quantified

variables.

Since the actual “solution” to the decision problem of QBF can be exponentially

big, modern QBF solvers also apply a learning procedure called solution-driven learn-

ing [ZM02b], in which Zhang and Malik claimed it to be symmetrical to conflict-driven

learning. Solution-driven learning performs term resolution on satisfying assignments

of the matrix to block out search spaces (partial assignments to universally quan-

tified variables) that are guaranteed to contain solutions (matching assignments to

existentially quantified variables).

Resolution for QBF is very similar to resolution for propositional logic, where

two clauses that contains opposing literals are combined to develop a resolvent. One

major difference is that we need to take the prefix into consideration when handling

resolution for QBF. In particular, if two clauses a ∨ v1 and ¬v1 ∨ b are resolved, the

result is a′ ∨ b′ where a′ (respectively, b′) contains the set of literals in a (respectively,

b) except that literals corresponding to universally quantified variables that occur

after v1 no longer occur. This is called Q-resolution and was developed by Buning,

et. al. [BKF95].

By bounding the number of alternations, QBF can be stratified into classes ΣQBF
k



17

and ΠQBF
k , where k is the number of alternations, and a formula is in ΣQBF

k if its

outermost quantifier is ∃ and contains k alternations and in ΠQBF
k if its outermost

quantifier is ∀ and contains k alternations. The complexity hierarchy of deciding these

formula classes corresponds to the polynomial hierarchy [Sto76]. In this dissertation,

we consider the case where the matrix ψ′ is restricted to CNF, so the innermost

universal quantifier block introduces no additional complexity. In other words, we

only consider QBF formulas in the classes ΣQBF
k where k is odd and ΠQBF

k where k

is even.

The additional descriptive power of QBF compared to propositional satisfiability

is possibly useful in compressing the representation needed to describe real-world

problems. Here, we show an example for bounded model checking.

In bounded model checking, variable substitutions are used to create distinct

copies of the system. As an example, we present a simple case of bounded reachability,

where the initial state set is represented using a formula I, and the goal state set is rep-

resented using a formula B. Given a formula f with support set V = {v1, v2, . . . vn},

and a substitution variable set V ′ = {v′1, v′2, . . . v′n}, we write f [V/V ′] to represent a

copy of f where each vi in f is replaced with v′i. To unroll a system to k iterations

under propositional logic, we create k+1 copies of the state variable set V , which we

call V 0, V 1, . . . V k. The transition relation is a formula over V ∪ V ′, where V is the

set of current state variables and V ′ is the set of next state variables. The BMC un-

rolling would contain reachk,I,B := I[V/V 0]∧B[V/V k]∧
∧

0≤i≤k−1 TR[V/V i, V ′/V i+1].

If each iteration uses a formula of size n, then k iterations would need a formula of

size O(kn).

Now, we see what we can do to unroll a system to k = 2j iterations under QBF.

Instead of needing k + 1 copies of the state variable set V as in propositional logic,

QBF allows an iterative-squaring-like [BCM+92] technique, where the midpoint of

the path is guessed and two halves of the path are checked recursively as a path of

length k/2 = 2j−1. The idea behind this construction is also found in much earlier



18

results relating alternation and space bounds, for example, [Sav70].

reach2j ,I,B := ∃W 0∀Y 1∀Z1∃W 1∀Y 2∀Z2 . . . ∃W j−1∀Y j∀ZjI(V/Y 0) ∧ B(V/Z0) ∧

(
∧

0≤i<j(Y
i+1 = Y i ∧ Zi+1 = W i) ∨ (Y i+1 = W i ∧ Zi+1 = Zi)) → TR[V/Y j, V ′/Zj]

This construction uses an O(j+n)-sized formula to encode 2j step reachability. In

a finite state system, for example, a symbolically encoded system with d bits, paths

in the system cannot exceed 2d in length, so QBF can be used to encode essentially

unbounded reachability. There is also research in using similar QBF representations

since QBF representations use only a single copy of the transition relation, in hope

of reducing the number of learned clauses [DHK05].

2.4 Structural Heuristics and Width

Many decision problem on graphs are tractable when the structure of the graph

satisfies certain constraints. A popular parameter for structural problems is that of

treewidth, which measures how close a structure is to being a tree (trees have treewidth

1) [RS86]. We use the definition of treewidth as follows:

Definition 2.1. (Robertson and Seymour [RS86]) Let G = (V,E) be a graph. A tree

(path)-decomposition of G is a pair (T,X ) where T = (I, F ) is a tree (path) with

node set I and edge set F , and X = {Xi | i ∈ I} is a family of subsets of V , one for

each node of T , such that

•
⋃
i∈I Xi = V ,

• for every edge (v, w) ∈ E, there is an i ∈ I with {v, w} ⊆ Xi, and

• for all i, j, k ∈ I, if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj.

The width of a tree (path)-decomposition is maxi∈I |Xi| − 1. The treewidth (respec-

tively, pathwidth) of a graph G, denoted by tw(G) (respectively pw(G)), is the min-

imum width over all possible tree decompositions (respectively, path decompositions)

of G.



19

(v1∨v2∨¬v3)∧(v2∨v3)∧
(¬v1∨v2∨v4)

v1 v2

v3 v4

Figure 2.5 : A propositional formula and its interaction graph

When we want to use the label set as a function from nodes to vertex sets, we

also write X (i) for Xi. For some cases, we also consider the pathwidth of a graph.

Bounded pathwidth is clearly a more restrictive concept than bounded treewidth,

since a path-decomposition can be used without change as a tree-decomposition. In

other words, for all graphs G, tw(G) ≤ pw(G). Thus, any lower-bound result proved

for bounded pathwidth also applies to bounded treewidth. Usually, we use w to

denote treewidth of graphs and q to denote pathwidth.

The width of a formula is defined as the width of the interaction graph of its CNF

form. The interaction graph is defined with the set of propositions as vertices, and

the co-occurrence (in the same clause) relation between propositions as edges. An

example is shown in Figure 2.5. For QBF, the interaction graph is built solely from

the matrix, ignoring the prefix.

Many NP-complete problems, for example, Boolean satisfiability, are FPT with

respect to the treewidth w on their structure, specifically 2wn [DP89, Fre]. One way

to rationalize the impact of treewidth of a system with its complexity is through the

theory of communication complexity, which considers the amount of communication

needed to solve a partitioned problem. For the case of bounded treewidth, if the

communication needed between two halves of the tree is bounded by a function on



20

Tree-
Decomposition

Figure 2.6 : A graph and its tree decomposition

the size of the label set of the tree node, then there exists a FPT algorithm if the

problem restricted to each node can be solved polynomially.



21

Chapter 3

Bounded Treewidth and BDD size

Building the BDD of a propositional formula is a fundamental operation in BDD-

based symbolic model checking. For applications using BDDs, the biggest challenge

is to avoid a space blowup, where a very large number of nodes are generated to

represent a certain function. This is hardly a suprising fact, since satisfiability is easy

on the BDD representation, while NP-complete on a CNF representation. Thus, going

from a CNF representation to a BDD representation can incur a possible exponential

blow-up [BBG+94]. We now show that this is not the case when the CNF formula

has bounded treewidth through a detour of pathwidth. In this chapter, we will prove

both upper and lower bounds for the BDD size of bounded pathwidth CNF formulas,

as well as upper bounds for the BDD size of bounded treewidth CNF formula. For the

bounded pathwidth case, the size of the BDD is linear in the number of propositions,

while the coefficient is coefficient is exponential in the pathwidth for unquantified

CNF formulas, and is double exponential in the pathwidth for existentially quantified

CNF formulas. The double exponential blowup for the quantified case is tight. For

the bounded treewidth case, the size of the BDD is polynomial in the number of

propositions, where the power of the polynomial is the treewidth for the unquantified

case, and exponential in the treewidth for the existentially quantified case. In this

chapter, we will also point out how our results relate to previous results on the size

of BDDs for bounded-width circuits.

We bound the number of nodes needed for a certain BDD through bounding the

number of nodes at each level, i.e., labelled with a certain variable. Since BDDs are

canonical representations of Boolean functions, the number of BDD nodes needed at



22

1 0

f f'

g g

Figure 3.1 : Distinct nodes in a BDD

each level is the number of distinct Boolean functions needed to cofactor the Boolean

function onto partial assignments on visited propositions. For two paths f and f ′

from the root of the BDD to lead to different nodes, there needs to be a witness for

the fact. As shown in Figure 3.1, the nodes are on some level i with variable vi. Both

f and f ′ are (possibly partial) assignments to variables v1 to vi−1. For the two nodes

to be distinct, the witness is an assignment g to the variables vi to vn where the path

f ◦ g leads to a different terminal from f ′ ◦ g.

Theorem 3.1. A CNF formula C with n variables and pathwidth q has a BDD of

size O(n2q).

Proof. Let the path decomposition of C be (P,L). Assume without loss of generality

that P = {1, . . . , k}. We construct a variable order from the path decomposition as

follows: Define First(x) = min({p ∈ P | x ∈ L(p)}) and Last(x) = max({p ∈ P |

x ∈ L(p)}). Now sort the variables in increasing lexicographic order according to



23

(First(x), Last(x)); that is, define the variable order so that if x < y, then either

First(x) < First(y) or First(x) = First(y) and Last(x) < Last(y). We show that,

using this variable order, there are at most 2q nodes per level. The claim then follows.

For each clause c, we define min(c) as the index of the lowest ordered variable

in c and correspondingly for max(c). Consider level i of the BDD, corresponding to

the variable xi. The clause set C can be partitioned into three classes with respect

to level i, Cended = {c | max(c) < i}, Ccur = {c | min(c) ≤ i < max(c)}, and

Cuntouched = {c | i < min(c)}.

A node u at level i corresponds to a set Au of partial assignments to variables,

where each partial assignment a ∈ Au is an element in 2{x1...xi−1}. For a partial

assignment a and a clause set D, we write a |= D if a is a model of D, i.e, for each

clause c ∈ D, a satisfies some literal in c. From the semantics of BDDs, we know that

all partial assignments a in Au are equivalent with respect to extensions, i.e., given

a′ ∈ 2{xi,...,xn} and a ∈ Au, we have that a∪ a′ |= C iff for every a′′ ∈ Au, a′′ ∪ a′ |= C.

If for a ∈ Au, a 6|= Cended, then we know that for every extension a ∪ a′ of a we have

that a ∪ a′ 6|= Cended, so a ∪ a′ 6|= C. Thus, the node u is identical to Boolean 0 and

should not exist at level i. It follows that for every a ∈ Au, a |= Cended. We also know

that all clauses in Cuntouched have none of their variables assigned by a ∈ Au.

Each partial assignment a at level i can be associated with a subset Ma ⊆ Ccur

where Ma = {c | c ∈ Ccur, a |= c}, i.e., the clauses in Ccur that are already satisfied

by a before reading the variable xi. We know that none of the clauses in Ccur have

failed (all literals assigned to false) so far, since by definition of Ccur all such clauses

have literals with variables beyond xi−1. Suppose that for two distinct nodes u and v

at level i there exists au ∈ Au and av ∈ Av such that Mau = Mav . Since u and v are

distinct, there is a partial assignment a ∈ 2{xi,...,xn} that distinguishes between u and

v; say, au ∪ a |= C and av ∪ a 6|= C. Since au and av, however, both satisfy Cended,

both are undefined on the variables of Cuntouched, and we also have, by assumption,

that Mau = Mav , we must have that au ∪ a |= C iff av ∪ a |= C – a contradiction. It



24

follows that Mau 6= Mav .

Let j = First(xi). We know that L(j) contains at most q+ 1 variables, including

xi. Let V ari = L(j)∩{x1, . . . , xi−1}, then V ari has at most q variables. Suppose that

u and v are two nodes at level i such that there exists au ∈ Au and av ∈ Av where

au and av agree on V ari. We show then Mau = Mav . Consider a clause c ∈ Ccur. We

know that all the variables of c occur in L(k) for some k. We cannot have k < j,

since then we would have c ∈ Cended, so k ≥ j. If xh occurs in c for some h < i, then

by construction xh ∈ L(j′) for some j′ ≤ j. By the property of path decompositions

it follows that xh ∈ L(j). Since au and av agree on V ari, it follows that they agree

on c. We showed that if u and v are distinct, then for every au ∈ Au and av ∈ Av,

Mau 6= Mav . It follows that au and av cannot agree on V ari. Since V ari has at most

q variables, there can be at most 2q nodes at level i. The claim follows since the BDD

has n levels.

The relationship described in Theorem 3.1 between pathwidth and BDD size was

first shown in [HD04]. The proof there goes via a variant of a DPLL-based satisfiabil-

ity algorithm. Our argument here is direct and show how to obtain a BDD variable

order from a path decomposition.

We know that for a graph G that contains n vertices we have that pw(G) =

O(tw(G) · log n) (For example, through the algorithm presented in [BK96]).

Corollary 3.2. A CNF formula C with n variables and treewidth width q has a BDD

of size polynomial in n and exponential in q.

While Theorem 3.1 suggests that BDD-based algorithms are tractable on bounded

width problems, typical model-checking algorithms need to do more than just build

BDDs that correspond to CNF formulas. BDDs are often used to perform sym-

bolic image operations, which requires applying existential quantification to BDDs

[McM93]. While the theory of fixed-parameter tractability is built upon the premise

that when the parameter is bounded, the problem becomes tractable, the constant

coefficient that comes from the f(k) needs to be considered on a case-by-case basis.



25

MUX

A[0]
A[1]
A[2]
A[3]
A[4]
A[5]
A[6]
A[7]

Σ

Output=A[∑A[i]]

∑A[i]

Figure 3.2 : The Hidden Bit Value Function

Often, super-exponential blowups in the parameter result in astronomical coefficients

that greatly overshadow the polynomial nature of the algorithm, and makes most

instances practically unsolvable. The following theorem shows that Theorem 3.1 is

not likely to be useful in model checking, since using quantification on bounded-width

formulas leads to such a super-exponential blowup from the parameter to the constant

coefficient of the cost of the algorithm.

Theorem 3.3. There exists a formula C in CNF with n variables and pathwidth q,

and a subset of variables X of C such that (∃X)C under every variable order does



26

not have a BDD of size n2f(q), such that f is a sub-exponential function.

Proof. We consider the hidden-weighted bit (HWB) function, which is shown by

Bryant in [Bry91] to have a BDD size of Ω(1.14m) under arbitrary variable order,

where m is the number of input bits. The HWB function (see Figure 3.2) is a Boolean

function 2m → {0, 1}, where for an m-bit input vector A, the output is the wth bit

of A, w being the number of 1s in A (the bit count of A). The BDD is defined on the

set of variables A[0] to A[m− 1].

We consider the case where m = 2k, k > 3, and construct a CNF formula to

represent the HWB function. Clearly, from the upper bounds shown in Corollary 3.2,

a direct translation cannot result in bounded pathwidth, that would imply a polyno-

mial BDD size; we use (m + 1)k + 1 additional existentially quantified variables to

facilitate the CNF encoding. In the additional variables, there are m+1 counters (at

k bits each), which we call X0, . . . Xm, and a single bit witness w. Each Xi is used

to guess the number of 1s occurring after A[i]. The bit witness w guesses the value

of A[X0]. We use CNF constraints to check the correctness of our guesses. The CNF

formula C is the conjunction of all the following constraints. (= and + are short hand

of the usual meaning defined on bit vectors of size k representing natural numbers up

to 2k − 1):

• For each 0 ≤ i < m, we define C1
i := (A[i] → Xi = Xi+1 + 1) ∧ (¬A[i] → Xi =

Xi+1). This asserts that if Xi is a correct guess iff Xi+1 is a correct guess.

• For each 0 ≤ i < m, we define C2
i := (X0 = i) → (A[i] ↔ w). This asserts that

w is a correct guess if X0 is a correct guess.

• Cg := w. Since we are building the BDD representing inputs where the HWB

function returns 1, w is asserted to true.

• The well-formedness constraint is Cwf := Xm = 0. This asserts the guessed Xm

is correct. Combined with the C1
i s, they assert that all Xis are correct guesses.



27

The only shorthand we use above is = and + on bit vectors of length k, both

of which can be written out in CNF with no additional variables and O(k2) clauses.

Now, (∃X0) . . . (∃Xm)(∃w)C characterizes the HWB function.

Next we show that there is a path decomposition of C of width 3k + 1. There

is one node per bit in A, ordered from 0 to m − 1. Each node contains the support

variables for the constraints C1
i and C2

i (the last node also contains Cg and Cwf with

no additional variables). In turn, each node i contains the variables A[i], w, X0, Xi,

and Xi+1, which gives a pathwidth upper bound of 3k + 1.

Consider the relationship between the size of the BDD and the pathwidth. Assume

we have a BDD of size n2f(q), where the pathwidth is q, the number of variables is n,

and f is a sub-exponential function. Here, q ≤ 3k + 1 and n = (m + 1)k + 1 +m =

(2k + 1)(k + 1). The size of the BDD S is then |S| ≤ ((2k + 1)(k + 1))2f(3k+1) <

2(k+3)2f(3k+1) = 2f(3k+1)+k+3 = 2g(k). Since f is sub-exponential, g is sub-exponential

as well. But from [Bry91], the lower bound for the size of such BDDs is Ω(1.14m) =

Ω(22k×log 1.14), which contradicts with g being sub-exponential. So such small BDDs

cannot exist.

The use of HWB to prove blowups in bounded-width problems have been done

in [McM93], where BDDs for bounded-treewidth circuit graphs are shown to incur a

double-exponential blowup on backward width. It is quite easy to see the result here

is a consequence of McMillan’s lower bounds construction, because a bounded-width

circuit can be easily written as a quantified bounded-width formula by introducing

a new variable for each gate and quantifying all variables that corresponds to gates,

only keeping those that correspond to input wires.

Next we show that our construction is almost worst case, i.e., there is a closely

related upper-bound. While the theorem below is also analogous to McMillan’s result

on bounded pathwidth circuits, the construction we used is new, because quantified

CNF is a more powerful representation model than circuits.



28

Theorem 3.4. For a CNF formula C on n variables with pathwidth q and a subset

of variables X, the formula (∃X)C has a BDD of size O((n− |X|)22q
).

Proof. To get the upper bound, we use the same approach as the Theorem 3.1, i.e.,

we show an upper bound of 22q
nodes for nodes at each level i by counting the number

of equivalence classes.

We use supp(C) to denote the support of C, and define Y = supp(C)−X as the

set of free variables in (∃X)C. We use the same variable order as Theorem 3.1, and

name the variables in Y as y1, y2. . . ym according to the variable order. While the

variables in X does not appear in the BDD, for the purpose of the variable order,

we pretend they are interspersed with the Y variables. For a set Z ⊆ supp(C), we

use Z<i to denote the subset that appears before yi in the variable order. Also, Zj

is used to denote the subset of Z that occurs in path-decomposition node j. Each

node u corresponding to a variable yi represents a set of assignments Au to Y<i,

which is encoded by the paths to the node from the root of the BDD. Consider

an assignment a ∈ Au. For each assignment b ∈ 2X<i to the quantified variables

occurring before yi, we have a corresponding set of clauses in C that are satisfied

by a ∪ b. Assume that yi occurs in node k of the path decomposition of C. Recall

that C can be partitioned into Cended, Ccur, and Cuntouched based on the variable yi.

Define the function Fa : 2Xk,<i → {⊥} ∪ 2Ccur such that for each assignment b to

Xk,<i, Fa(b) = ⊥ if there is no extension b′ (on X<i) of b such that a ∪ b′ |= Cended;

otherwise, Fa(b) = S where S ⊆ Ccur is the clauses in Ccur satisfied by a∪ b. Now, we

show that two distinct nodes u and v corresponding to yi do not contain assignments

au in Au and av in Av such that Fau = Fav . Assume the contrary. Since u and v

are distinct, w.l.o.g., there is an assignment a to Y≥i such that au ∪ a |= (∃X)C and

av ∪ a 6|= (∃X)C. Take an assignment b on X where au ∪ a ∪ b |= C. Let b′ be the

restriction of b to the variables in Xk ∪X≥i, and let b′′ be the restriction of b to the

variables in Xk,<i. It is clear that a∪b′ |= Cuntouched. We know that Fau(b′′) 6= ⊥, since

b restricted to X<i, which we call bau , satisfies au ∪ bau |= Cended. Since Fau = Fav ,



29

Fav(b
′′) = Fau(b′′) 6= ⊥. Again, we have an extension bav (from the definition of Fav)

of b′′ to X<i where av ∪ bav |= Cended. For a clause c ∈ Ccur, if c ∈ Fau(b′′), then

c ∈ Fav(b
′′), so av∪bav |= c. Otherwise, a∪b′ |= c, since au∪a∪b |= c and au∪b′′ 6|= c.

So, av ∪ bav ∪ a∪ b′ |= Ccur. In summary, av ∪ a∪ bav ∪ b′ |= C, which contradicts with

av ∪ a 6|= (∃X)C.

Now we count the number of possible functions for Fa. For each b ∈ 2Xk,<i , the

number of possible choices of Fa(b) is 1 + 2|Yk,<i| since the satisfaction of clauses

in Ccur depends only on b and assignments to Yk,<i. Thus, the number of possible

such Fas is (1 + 2|Yk,<i|)2
|Xk,<i| ≤ (2|Yk,<i|+1)2

|Xk,<i|
= 2(|Yk,<i|+1)2

|Xk,<i| ≤ 22q
since

q ≥ |Xk,<i|+ |Yk,<i|.

The combination of the possible numbers of Fas and the fact that distinct nodes

induce distinct Fas gives us a bound of 22q
nodes at each level, i.e., a size bound of

(n− |X|)22q
for the whole BDD.

The double exponential blowup for the BDD size of quantified bounded path-

width formulas on the pathwidth prevents us from using the property pw(G) =

O(tw(G)log n) to achieve a polynomial size BDD for quantified bounded treewidth

formulas. Still, it is possible to prove a similar bound as in [McM93] based on Theo-

rem 3.4.

Theorem 3.5. For a CNF formula C =
∧
c on n variables with treewidth w and a

subset of variables X, the formula (∃X)C has a BDD of size O((n− |X|)n2w+1
).

Proof. In this proof, we use T to denote the tree decomposition for C that have width

w. |T | is used to denote the number of nodes in T . Based on the concept of nice tree

decomposition in [Klo94], |T | can always be bounded to O(n).

We follow the outline of the previous proof, where the only difference is in the

analysis of the number of possible choices for Fas under the bounded treewidth as-

sumption.



30

In the previous proof, we count the number of possible choices of a function F :

D → R whereD is the domain and R is the range as RD. Because the variable support

of the clause set Ccur is limited to the label set of one single path decomposition node,

The number of possible choices of Fa is bounded by 22q
where q is the pathwidth.

Given a tree decomposition of width w and size |T |, we can “flatten” it into a path

decomposition of width w log |T | through the procedure described in [McM93] that

flattens tree decompositions to path decompositions. One point to note about the

resulting path decomposition is that the label set for each path decomposition node

contains labels from at most log |T | tree decomposition nodes, and if we define a

direction on the path decomposition (the direction we will process variables in), we

can construct the flattening in a way that for each pair of each tree decomposition

nodes in same path decomposition node their common parent can only appear in that

path decomposition node or later.

After observing that there are q = w log |T | variables that contribute to the num-

ber of choices for Fa, we now show because the variables came from log |T | tree

decomposition nodes, the number of possible choices can be reduced. To that end, we

define the concept of decomposability for functions on the same domain and range:

Definition 3.6. A function f(~v′ ∪ ~v′′) is decomposible into two functions f ′(~v′) and

f ′′(~v′′) iff for all assignments a to ~v′ ∪ ~v′′, f(a) = f ′(a|~v′) ◦ f ′′(a|~v′′).

Here, ◦ is any binary (combining) function. If a function is decomposed into k

functions, then we would need to use a k-ary function. One important thing to note

is that given a domain, range, and a fixed combining function, the possible number

of functions that have a specific decomposition is much smaller than the number of

all functions:

Claim 3.7. If a function f : D → R can be decomposed into k functions f1 : D1 → R1,

. . . , fk : Dk → Rk, then the possible choices of such decomposible fs is less than

Π1≤i≤k|Ri||Di|.



31

Now we show that the Fa we need is decomposible into log |T | functions, one for

each tree decomposition node that is relevant. Here, instead of viewing Fa as a unary

function on assignments (bit vectors) of some length i, we treat it equivalently as

an i-ary function on Booleans solely for the purpose of allowing each decomposed

function to only use a subset of the variables in its domain.

Claim 3.8. Fa can be decomposed into log |T | functions, where each of the functions

have up to 22w+1
possibilities.

Proof. Recall from the definition of Fa, the function maps each assignment from

the visited quantified variables in the current path decomposition node either to a

subset of clauses in Ccur, or ⊥, which denote some clause in Cended is not satisfi-

able on the current assignment a and the given assignment of the visited quantified

variables. Each of the clauses in Ccur is supported by one or more of the relevent

tree decomposition nodes t1, . . . tlog |T | (that is part of the current path decomposition

node). Now, we define the decomposed functions F 1
a , . . . F

log |T |
a as follows: For each

1 ≤ j ≤ log |T |, F j
a is a function from assignments on Xk,<i∩X (tj) the subset C

tj
cur of

Ccur whose variable support is entirely contained in X (tj). Each of the F j
a is defined

to have the same semantics as Fa. We also define the log |T |-ary combining function

◦(r1, . . . rlog |T |) as: ◦(r1, . . . rlog |T |) = ⊥ iff any rj is ⊥, otherwise for a clause c ∈ Ccur,

c ∈ ◦(r1, . . . rlog |T |) iff there exists 1 ≤ j ≤ log |T | such that c ∈ rj.

We now show that the decomposition is correct, i.e. Fa(b) =

◦(F 1
a (b|X (t1)), . . . , F

log |T |
a (b|X (tlog |T |))).

First, consider the case Fa(b) = ⊥. Assume the decomposition is incorrect, i.e.,

◦(F 1
a (b|X (t1)), . . . , F

log |T |
a (b|X (tlog |T |))) 6= ⊥. This means for all j, F j

a (b|X (tj)) 6= ⊥.

From the definition of Fa, Fa(b) = ⊥ means that there are no extensions b′ of b onto

X<i where a∪ b′ |= Cended, but for every j, since F j
a (b|X (tj)) 6= ⊥, there are extensions

b|′X (tj)
of b|X (tj) where a ∪ b|′X (tj)

|= Cended. Next, we partition Cended into log |T |

subsets based on the tree decomposition T . First, for each tree decomposition node

tj that occurs in the current path decomposition node, we consider the sub-tree Tj



32

of the tree decomposition T rooted at tj (toward the direction of “processed” tree

decomposition nodes). The set Cj
ended of clauses is the subset of Cended where every

clause in Cj
ended have all its variables contained in the union of all the label set of

nodes in Tj. Since T is a tree decomposition, we know that (1) each of the clauses

in Cended must occur in at least one of the Cj
endeds. Also, we have that (2) if any

variable x that is in the support set of Cended occurs in the support set of more than

one of the Cj
endeds, that variable must occur in

⋂
{j|x∈supp(Cj

ended)}X (tj) because each of

the sub-tree Tjs are disjoint. Now, we consider the restriction b|′′X (tj)
of b|′X (tj)

to the

variables that occurs in the label set of nodes in Tj. Clearly, a∪b|′′X (tj)
|= Cj

ended. Next,

we show that the b|′′X (tj)
s can be combined to give a b′ such that b′ is an extension

of b and a ∪ b′ |= Cended. This is done by the simple union of the assignments in

each of b|′′X (tj)
s since from (1), all the clauses in Cended would be witnessed by such

an union. What is left is to show that such an union is consistent, i.e., that the

different b|′′X (tj)
s do not contain contradictory assignment on variables. From (2), we

know that a contradiction cannot occur, since a variable assigned in b|′′X (tj)
but not

b|X (tj) is not assigned any other b|′′X (t′j)
s because of the support set needed in each

case. Thus, Fa(b) 6= ⊥, and through contradiction, we know that there exists some j

in 1 ≤ j ≤ log |T | where F j
a (b|X (t1)) = ⊥.

Now, consider the case where Fa(b) 6= ⊥. In this case, there exists an extension

b′ of b on quantified variables such that a ∪ b′ |= Cended. Clearly, such a b′ is also

an extension of b|′X (tj)
, so for all j, F j

a (b|′X (tj)
) 6= ⊥. Next we consider the clause set

that is Fa(b). For each clauses c ∈ Ccur where c ∈ Fa(b), we know a ∪ b |= c. From

the property of the tree decomposition, we know that the support set of c is in some

X (tj) for some node tj. Thus, a ∪ b|X (tj) |= c, which means c ∈ F j
a (b|X (tj)). For each

clause c ∈ Ccur where c 6∈ Fa(b), we know a ∪ b 6|= c. Thus, for any restriction b|X (tj),

a ∪ b|X (tj) 6|= c, i.e., c 6∈ F j
a (b|X (tj)).

The number of choices for each of the F j
a s is (1 + 2|Yk,<i∩X (tj)|)2

|Xk,<i∩X (tj)|
≤

2(|Yk,<i∩X (tj)|+1)2
|Xk,<i∩X (tj)|

≤ 22w+1
since w + 1 ≥ |Xk,<i ∩ X (tj)|+ |Yk,<i ∩ X (tj)|.



33

From the above decomposition result, and the size bound of 22w+1
for the number of

choices of each decomposed function (as shown in the proof for the previous theorem),

we get a (22w+1
)log |T | bound on the number of choices of Fa, which is = |T |2w+1

. Since

|T | in O(n), the bound for the number of choices for Fa is in O(n2w+1
), i.e., polynomial

in n for constant treewidth. In turn, the size of the BDD is in O((n−|X|)n2w+1
).



34

Chapter 4

Search vs. Symbolic decision procedures for

propositional logic

In the previous chapter, we studied how one class of structural constraints, namely

bounded pathwidth or bounded treewidth on the interaction graph of propositional

formulas, relates to the size of BDDs that represents those formulas. Still, building the

BDD of a formula is a problem of enumeration instead of satisfiability solving. Recent

work has shown how to use BDDs for satisfiability solving rather than enumeration

[SV01]. The idea of this approach, which we call symbolic quantifier elimination, is

to view an instance of propositional satisfiability as an existentially quantified propo-

sitional formula. Satisfiability solving then amounts to quantifier elimination; once

all quantifiers have been eliminated we are left with either 1 or 0. This enables us to

apply ideas about existential quantifier elimination from model checking [RAB+95]

and constraint satisfaction [DP87]. The focus in [SV01] is on studying the relation

between running time with the density and size of random 3-SAT instances. Only a

minimal effort is made there to optimize the approach and no comparison to search

methods is reported. Nevertheless, the results in [SV01] show that BDD-based algo-

rithms behave quite differently than search-based algorithms. While both BDD-based

and search-based algorithms exhibit an easy-hard-less-hard running time pattern as

density scales, they peak at different densities. More study is in turn needed to

understand the performance patterns of BDD-based satisfiability algorithms.

The goal in this chapter is to study the complexity and practical performance

of symbolic quantifier elimination as an approach to satisfiability solving. To this

end, we conduct a direct comparison with the DPLL-based ZChaff. In comparing



35

the symbolic approach to ZChaff we use a variety of classes of formulas. Unlike the

standard practice of comparing solver performance on benchmark suites [LS03], we

focus here on scalability. That is, we evaluate how performance scales with formula

size and limit us to benchmarks where we can generate successively bigger formulas.

Similar to the comparison of BDD and search on solution enumeration done by Uribe

and Stickel [US94], we also find that no approach dominates across all classes. While

ZChaff dominates for many classes of formulas, the symbolic approach is superior for

other classes of formulas. We also apply a number of optimizations and variants of

the BDD-based solver to investigate the effects of the optimizations.

4.1 An algorithm for BDD-based propositional satisfiability

In [CDS+03, US94], BDDs are used to construct a compact representation of the set

of all satisfying truth assignments of CNF formulas. The input formula ϕ is a con-

junction c1∧. . .∧cm of clauses. The algorithm constructs a BDD Ai for each clause ci.

The BDDs Ai have size linear in the size of the clause since only one cube is excluded.

A BDD for the set of satisfying truth assignment is then constructed incrementally;

B1 is A1, while Bi+1 is the result of apply(Bi, Ai,∧), where apply(A,B, ◦) is the

result of applying a Boolean operator ◦ to two BDDs A and B. Finally, the resulting

BDD Bm represents all satisfying assignments of the input formula.

The satisfiability problem is to determine whether a given formula c1 ∧ . . . ∧ cm
is satisfiable. In other words, the problem is to determine whether the existential

formula (∃x1) . . . (∃xn)(c1 ∧ . . . ∧ cm) is true. We can apply existential quantification

to a BDD B by performing:

(∃x)B = apply(B|x←1, B|x←0,∨),

where B|x←c restricts B to truth assignments that assign the value c to the variable

x. Note that quantifying x existentially eliminates it from the support set of B. Since

checking whether the final BDD Bm is equal to 0 can already be done in constant



36

time (by checking whether it is the same node as 0), it makes little sense to apply

existential quantification to Bm. Suppose, however, that a variable xj does not occur

in the clauses ci+1, . . . , cm. Then the existential formula can be rewritten as

(∃x1) . . . (∃xj−1)(∃xj+1) . . . (∃xn)((∃xj)(c1 ∧ . . . ∧ ci) ∧ (ci+1 ∧ . . . ∧ cm)).

Pursuing this rewriting strategy as aggressively as possible, we process the clauses in

the order c1, . . . , cn, quantifing variables existentially as soon as possible (that is, a

variable is quantified as soon as it does not occur anymore in the unprocesses clauses).

We refer to this as early quantification of variables. Note that different clause orders

may induce different orders of variable quantification. Finding a good clause order is

a major focus of this chapter.

This motivates the following change in the earlier BDD-based satisfiability-solving

algorithm [SV01]: after constructing the BDD Bi, we existentially quantify variables

that do not occur in the clauses ci+1, . . . , cm. In this case we say the quantifier ∃x has

been eliminated. The computational advantage of quantifier elimination stems from

the fact that reducing the size of the support set of a BDD typically (though not nec-

essarily) results in a reduction of its size; that is, the size of (∃x)B is typically smaller

than that of B. In a nutshell, this method, which we describe as symbolic quantifier

elimination, eliminates all quantifiers until we are left with the constant BDD 1 or

0. Symbolic quantifier elimination was first applied to SAT solving in [Gro96] (under

the name of hiding functions) and tried on random 3-SAT instances. The work in

[SV01] studied this method further, and considered various optimizations. The main

interest there, however, is in the behavior of the method on random 3-SAT instances,

rather in its comparison to search-based methods based on the DPLL algorithm.1

So far we processed the clauses of the input formula in a linear fashion. Since

the main point of quantifier elimination is to eliminate variables as early as possible,

1Note that symbolic quantifier elimination provides pure satisfiability solving; the algorithm

returns 0 or 1. To find a satisfying truth assignment when the formula is satisfiable, the technique

of self-reducibility can be used, cf. [Bal90].



37

reordering the clauses may enable us to do more aggressive quantification. That is,

instead of processing the clauses in the order c1, . . . , cm, we can apply a permutation π

and process the clauses in the order cπ(1), . . . , cπ(m). The permutation π should be cho-

sen so as to minimize the number of variables in the support sets of the intermediates

BDDs. This observation was first made in the context of symbolic model checking, cf.

[BCL91, BGP+97, GB94, HKB96]. Unfortunately, finding an optimal permutation π

is by itself a difficult optimization problem, motivating heuristic approaches.

A particular heuristic that was proposed in the context of symbolic model checking

is that of clustering [RAB+95]. In this approach, the clauses are not processed one

at a time, but the clauses are first partitioned into several clusters. For each cluster

C we first apply conjunction to all the BDDs of the clauses in the C to obtain a

BDD BC . The clusters are then combined, together with quantifier elimination, as

described earlier. Heuristics are required both for clustering the clauses and ordering

the clusters. Bouquet [Bou99] proposed the following heuristic (the focus there is

on enumerating prime implicants). Consider some order of the variables. Let the

rank (from 1 to n) of a variable x be rank(x), let the rank rank(`) of a literal `

be the rank of its underlying variable, and let the rank rank(c) of a clause c be the

maximum rank of its literals. The clusters are the equivalence classes on clauses

of equal rank. The rank of a cluster is the rank of its clauses. The clusters are

then ordered according to increasing rank. For example, given the set of clauses

{x1∨¬x2, x1∨x3,¬x2∨x3, x3∨x4} with the propositions ordered by their subscript,

the clusters are C1 = {}, C2 = {x1 ∨ ¬x2}, C3 = {x1 ∨ x3,¬x2 ∨ x3}, C4 = {x3 ∨ x4}.

Satisfiability solving using symbolic quantifier elimination is a combination of

clustering and early quantification. We keep a set of active variables as we conjoin

clusters, in the order C1, . . . , Cn. Starting from an empty set, after each cluster Ci is

processed, we add all the variables that occur in Ci to the active set. Then, a variable

that does not occur in all Cjs where j > i can be removed from the active set and

eliminated via early quantification. So, we are computing ∃Xn . . . (∃X2(((∃X1)C1) ∧



38

C2) . . . ∧ Cn), where the quantified variable set Xi consists of the active variables

that can be quantified early after Ci is processes. (The BDD package we are using

(CUDD) allows quantifying several variables in function call.) When we use Bouquet’s

clustering, the method is referred to as Bouquet’s Method, which we abbreviate here is

as BM. For the example above, the BM quantification schedule is ∃x3x4((∃x1x2((C1∧

C2) ∧ C3)) ∧ C4).

We still have to chose a variable order. An order that is often used in constraint

satisfaction [Dec03] is the “maximum cardinality search” (MCS) order [TY84], which

is based on the graph-theoretic structure of the formula. We use the interaction

graph for the formula as defined in Chapter 2.4. MCS ranks the vertices from 1 to

n in the following way: as the next vertex to rank, select the vertex adjacent to the

largest number of previously ranked vertices (ties can be broken in various ways).

The variable order used for the BDDs in the comparisons unless otherwise mentioned

is the inverse of the MCS order2.

4.2 Experimental setup

We compare symbolic quantifier elimination to search (with the DPLL-based solver

ZChaff [ZM02a]) across a variety of classes of formulas. Unlike the standard practice

of comparing solver performance on benchmark suites [LS03], our focus here is not on

simple time comparison, but rather on scalability. That is, we focus on scalable classes

of formulas and evaluate how performance scales with formula size. We are interested

in seeing which method scales better, i.e., polynomial vs. exponential scalability, or

different degrees of exponential or polynomial scalability. Our test suite includes

both random and nonrandom formulas (for random formulas we took 60 samples per

case and reported median time, since median is less sensitive to outliers than mean).

2Using the MCS order or its inverse as the BDD variable order exhibits little performance dif-

ference, so the inverse is preferred because the BE approach presented in Section 4.4.1 is easier to

implement on the inverse order.



39

Experiments were performed using x86 emulation on the Rice Terascale Cluster3,

which is a large Linux cluster of Itanium II processors with 4GB of memory each.

Our test suite includes the following classes of formulas:

• Random 3-CNF: We chose uniformly k 3-clauses over n variables. The density of

an instance is defined as k/n. We generate instances at densities 1.5, 6, 10, and

15, with up to 200 variables, to allow comparison for both under-constrained

and over-constrained cases. (It is known that the satisfiability threshold of such

formulas is around 4.25 [SML96]).

• Random affine 3-CNF: Affine 3-CNF formulas belongs to a polynomial class as

classified by Schaefer [Sch78]. Here, they are generated in the same way as

random 3-CNF formulas, except that the constraints are not 3-clauses, but

parity equations in the form of l1 ⊕ l2 ⊕ l3 = 1, where ⊕ is the exclusive-or

operator4. Each constraint is then converted into four clauses l1 ∨ l2 ∨ l3,¬l1 ∨

¬l2 ∨ l3,¬l1 ∨ l2 ∨ ¬l3, l1 ∨ ¬l2 ∨ ¬l3, yielding CNF formulas. The satisfiability

threshold of such formula is found empirically to be around density (number

of equations divided by number of variables) 0.95. We generate instances of

density 0.5 and 1.5, with up to 400 variables.

• Random biconditionals: Biconditional formulas, also known as Urquhart formu-

las, form a class of affine formulas that have resolution proofs that are proven

to have an exponential lower bound on size. A biconditional formula has the

form l1 ↔ (l2 ↔ (. . . (lk−1 ↔ lk) . . .)), where each li is a positive literal. Such

a formula is valid if either all variables occur an even number of times or all

variables occur an odd number of times [Urq95]. Their negation, in turn, is

unsatisfiable and have exponential lower bound on the size of resolution proofs.

3http://www.citi.rice.edu/rtc/

4This is equivalent to just choosing three variables and generate x1⊕ x2⊕ x3 = p where p = 0 or

p = 1 with equal probability.



40

We generate such unsatisfiable formulas with up to 100 variables, where each

variable occurs 3 times on average.

• Random chains: The classes described so far all have an essentially uniform ran-

dom interaction graph, with no underlying structure. To extend our comparison

to structured formulas, we generate random chains [DR94]. In a random chain,

we form a long chain of random 3-CNF formulas, called subtheories. (The chain

structure is reminiscent to the structure typically seen in satisfiability instances

obtained from bounded model checking [BAC+99] and planning [KS92].) We

use a similar generation parameters as in [DR94], where there are 5 variables

per sub-theory and 5-23 clauses per sub-theory, but that we generate instances

with a much bigger number of sub-theories, scaling up to > 20000 variables and

> 4000 sub-theories.

• Nonrandom formulas: As in [US94], we considered a variety of formulas with

very specific scalable structure:

– The n-Rooks problem (satisfiable).

– The n-Queens problem (satisfiable for n > 3).

– The pigeon-hole problem with n+ 1 pigeons and n holes (unsatisfiable).

– The mutilated-checkerboard problem, where an n × n board with two di-

agonal corner tiles removed is to be tiled with 1× 2 tiles (unsatisfiable).

4.3 Search vs. symbolic results

Our goal in this section is to address the viability of symbolic quantifier elimination.

To this end we compare the performance of BM against ZChaff5, a leading DPLL-

based solver across the classes of formulas described above, with a focus on scalability.

For now, we use the MCS variable order.

5ZChaff version 2004.5.13



41

0 50 100 150 200
2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BM,density=1.5
BM,density=6.0
ZChaff,density=1.5
ZChaff,density=6.0

A.
0 50 100 150 200

2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BM,density=10
BM,density=15
ZChaff,density=10
ZChaff,density=15

B.

Figure 4.1 : Random 3-CNF

0 50 100 150 200 250 300 350 400
2

4

6

8

10

12

14

16

18

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BM,density=0.5
BM,density=1.5
ZChaff,density=0.5
ZChaff,density=1.5

Figure 4.2 : Random 3-Affine

In Figure 4.1A and 4.1B, we can see that BM is not very competitive for random

3-CNF formulas. At density 1.5, ZChaff scales polynomially, while BM scales expo-

nentially. At density 6.0 and at higher densities, both methods scale exponentially,

but ZChaff scales exponentially better. (Note that above density 6.0 both meth-

ods scale better as the density increases. This is consistent with the experimental

results in [CDS+03] and [SV01].) A similar pattern emerges for random affine formu-

las, see Figure 4.2. Again, ZChaff scales exponentially better than BM. (Note that

both methods scale exponentially at the higher density, while it is known that affine

satisfiability can be determined in polytime using Gaussian elimination [Sch78].)



42

10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BM
ZChaff

A.
10

2
10

3
10

4
7

8

9

10

11

12

13

14

15

16

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BM
ZChaff

B.

Figure 4.3 : A) Random Biconditionals B) Random Chains

The picture changes for biconditional formulas, as shown in Figure 4.3A. Again,

both methods are exponential, but BM scales exponentially better than ZChaff. (This

result is consistent with the finding in [CS00], which compares search-based methods

to ZDD-based multi-resolution.)

For random chains, see Figure 4.3B, which uses a log-log scale. Both methods

scale polynomially on random chains. (Because density for the most difficult problems

change as the size of the chains scales, we selected here the hardest density for each

problem size.) Here BM scales polynomially better than ZChaff. Note that for smaller

instances ZChaff outperforms BM, but the performance gap closes near the end, which

justifies our focus on scalability rather than on straightforward benchmarking.

Finally, we compare BM with ZChaff on the non-random formulas of [US94].

The n-Rooks problem is a simpler version of n-Queens problem, where the diagonal

constraints are not used. For n-Rooks, the results are as in Figure 4.4A. This problem

has the property of being globally consistent, i.e., any consistent partial solution can

be extended to a solution [Dec03]. Thus, the problem is trivial for search-based

solvers, as no backtracking is need. In contrast BM scales exponentially on this

problem. This shows that quantification alone does not eliminate all the overhead

of enumeration, even when it is only able to perform pure satisfiability solving. For



43

2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20

N

lo
g 2 R

un
ni

ng
 T

im
e

BM
ZChaff

A.
0 50 100 150 200 250 300 350 400

2

4

6

8

10

12

14

16

18

20

N2

lo
g 2 R

un
ni

ng
 T

im
e

BM
ZChaff

B.

Figure 4.4 : A) n-Rooks B) n-Queens

2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20

N

lo
g 2 R

un
ni

ng
 T

im
e

BM
ZChaff

A.
2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

N

lo
g 2 R

un
ni

ng
 T

im
e

BM
ZChaff

B.

Figure 4.5 : A) Pigeon Hole B) Mutilated Checkerboard



44

n-Queens, see Figure 4.4B, BM scale exponentially in n2, while ZChaff seems to

have better scalability. Again, this should be contrasted against the results for the

pigeon-hole problem and the mutilated-checkerboard problem, see Figure 4.5A and

Figure 4.5B. On both problems both BM and ZChaff scale exponentially, but BM

scales exponentially better than ZChaff.

4.4 Optimizing the BDD-based approach

BM is only one approach to symbolic quantifier elimination. There are, however,

many choices one needs to make to guide an implementation. The order of variables

is used both to guide clustering and to perform quantifier elimination, as well as to

order the variables in the underlying BDDs. Both clustering and cluster processing

can be performed in several ways. In this section, we investigate the impact of

choices in clustering, representation, variable order, and quantifier elimination in the

implementation of symbolic algorithms. Our focus here is on measuring the impact

of variable order on BDD-based SAT solving; thus, the running time for variable

ordering, which is polynomial for all algorithms, is not counted in our figures.

4.4.1 Cluster Ordering

As argued earlier, the purpose of quantifier elimination is to reduce support-set size of

intermediate BDDs. What is the best reduction one can hope for? This question has

been studied in the context of constraint satisfaction. It turns out that the optimal

schedule of conjunctions and quantifier eliminations reduces the support-set size to

one plus the treewidth of the interaction graph of the input formula [DKV02]. Com-

puting the treewidth of a graph is known to be NP-hard, which is why heuristic ap-

proaches are employed [KBv01]. It turns out that by processing clusters in a different

order we can attain the optimal support-set size. Recall that BM processes the clusters

in order of increasing ranks. Bucket elimination (BE), on the other hand, processes

clusters in order of decreasing ranks [DP87]. Maximal support-size set of BE with



45

0 50 100 150 200
2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BM,density=1.5
BM,density=6.0
BE,density=1.5
BE,density=6.0

A.
0 50 100 150 200

2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BM,density=10
BM,density=15
BE,density=10
BE,density=15

B.

Figure 4.6 : Clustering Algorithms - Random 3-CNF

respect to optimal variable order is defined as the induced width of the input instance,

and the induced width is known to be equal to the treewidth [DP87, Fre]. Thus, BE

with respect to optimal variable order is guaranteed to have polynomial running time

for input instances of logarithmic treewidth, since this guarantees a polynomial upper

bound on BDD size. For BE, since the maximum-ranked variable in each cluster can

not occur in any lower-ranked clusters, computing a quantification schedule from the

contents of the clusters is not necessary. As each cluster is processed, the maximum-

ranked variable is eliminated. For example, for the formula presented in Section 4.1,

the quantification schedule would be ∃x1((∃x2((∃x3((∃x4C4)∧C3))∧C2))∧C1), with

one variable eliminated per cluster processed. As shown, using the inverse of variable

rank as the BDD variable order allows us to always eliminate the top variable in the

BDD.

We now compare BM and BE with respect to variable order built through the

MCS heuristic (MCS is the preferred variable order also for BE).

The results for the comparison on random 3-CNF formulas is plotted in Fig-

ure 4.6A and 4.6B. We see that the difference between BM and BE is density de-

pendent, where BE excels in the low-density case, which have low treewidth, and

BM excels in the high-density cases, which has high treewidth. A similar density



46

0 50 100 150 200 250 300 350 400
2

4

6

8

10

12

14

16

18

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BM,density=0.5
BM,density=1.5
BE,density=0.5
BE,density=1.5

Figure 4.7 : Clustering Algorithms - Random Affine

10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BM
BE

A.
10

2
10

3
10

4
8

9

10

11

12

13

14

15

16

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BM
BE

B.

Figure 4.8 : Clustering Algorithms - A) Random Biconditionals B) Random Chains

2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20

N

lo
g 2 R

un
ni

ng
 T

im
e

BM
BE

A.
0 50 100 150 200 250 300 350 400

2

4

6

8

10

12

14

16

18

20

N2

lo
g 2 R

un
ni

ng
 T

im
e

BM
BE

B.

Figure 4.9 : Clustering Algorithms - A) n-Rooks B) n-Queens



47

4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20

N

lo
g 2 R

un
ni

ng
 T

im
e

BM
BE

A.
2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

N

lo
g 2 R

un
ni

ng
 T

im
e

BM
BE

B.

Figure 4.10 : Clustering Algorithms - A) Pigeon Hole B) Mutilated Checkerboard

dependent behavior is shown for the affine case in Figure 4.7. The difference of the

two schemes on biconditional formulas is quite small as shown in Figure 4.8A. For

chains, see Figure 4.8B. Because the number of variables for these formulas are large,

the cost of computing the quantification schedule gives BE an edge over BM.

On most constructed formulas, the picture is similar to the high-density random

cases, where BM dominates, except for mutilated-checkerboard formulas, where BE

has a slight edge. (Note that treewidth for mutilated checkerboard problems grows

only at O(n) compared to O(n2) for other constructed problems.) We plot the per-

formance comparison for n-rook formulas in Figure 4.9A, n-queens formulas in Fig-

ure 4.9B, pigeon-hole formulas in Figure 4.10A, and mutilated checkerboard problems

in Figure 4.10B.

To understand the difference in performance between BM and BE, we study their

effect on intermediate BDD size. BDD size for a random 3-CNF instance depends

crucially on both the number of variables and the density of the instance. Thus, we

compare the effect of BM and BE in terms of these measures for the intermediate

BDDs. We apply BM and BE to random 3-CNF formulas with 50 variables and

densities 1.5 and 6.0. We then plot the density vs. the number of variables for the

intermediate BDDs generated by the two cluster-processing schemes. The results are



48

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Variables

D
en

si
ty

BE
BM

A.
0 10 20 30 40 50

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Variables

D
en

si
ty

BE
BM

B.

Figure 4.11 : Clustering Algorithms A) Density=1.5 B) Density=6.0

plotted in in Figure 4.11A and Figure 4.11B. Each plotted point corresponds to an

intermediate BDD, which reflects the clusters processed so far.

As can be noted from the figures, BM increases the density of intermediate results

much faster than BE. This difference is quite dramatic for high-density formulas. The

relation between density of random 3-CNF instance and BDD size has been studied

in [CDS+03], where it is shown that BDD size peaks at around density 2.0, and is

lowest when the density is close to 0 or the satisfiability threshold. This enables

us to offer a possible explanation to the superiority of BE for low-density instances

and the superiority of BM for high-density instances. For formulas of density 1.5,

the density of intermediate results is smaller than 2.0 and BM’s increased density

results in larger BDDs. For formulas of density 6.0, BM crosses the threshold density

2.0 using a smaller number of variables, and then BM’s increased density results in

smaller BDDs.

The greater range of applicability of BM over BE suggests that minimizing

support-set size ought not to be the dominant concern. BDD size is correlated with,

but not dependent on, support-set size. More work is required in order to understand

the good performance of BM. Our explanation argues that, as in [AM01], BM deals

first with the most constrained subproblems, therefore reducing BDD-size of interme-



49

diate results. While the performance of BE can be understood in terms of treewidth,

we still lack, however, a fundamental theory to explain the performance of BM.

4.4.2 Variable Ordering

In this section, we study the effects of the variable order on the performance of sym-

bolic algorithms. We only present results for BM; the relative performance between

the different variable orders are the same for BE. The variable order for the BDD

representation is again the inverse of the variable order for clustering. As mentioned

earlier, when selecting variables, MCS has to break ties, which happens quite often.

One can break ties by choosing (from those variables that have the maximum car-

dinality to ranked variables as MCS requires) the variable with minimal degree to

unselected variables [SV01] or the variable with the maximal degree to unselected

variables [BB94]. (Another choice to break ties uniformly at random, but this choice

is expensive to implement, since it is difficult to choose an element uniformly at ran-

dom from a heap.) We compare these two heuristics with an arbitrary tie-breaking

heuristic, in which we simply select the top variable in the heap. The results are

shown in Figure 4.12A for random 3-CNF formulas. For high density formulas, tie

breaking made no significant difference, but least-degree tie breaking is markedly bet-

ter for the low density formulas. This seems to be applicable across a variety of class

of formulas and even for different orders and algorithms.

MCS typically has many choices for the lowest-rank variable. Koster et. al.

[KBv01] recommended starting from every vertex in the graph and choosing the

variable order that leads to the lowest treewidth. This is easily done for instances of

small size, i.e. random 3-CNF or affine problems; but for structured problems, which

could be much larger, the overhead is too expensive. Since min-degree tie-breaking

worked quite well, we used the same idea for initial variable choice. In Figure 4.12B,

we see that our assumption is well-founded, that is, the benefit of choosing the best

initial variable compared to choosing a min-degree variable is negligible. For larger



50

0 50 100 150 200
2

4

6

8

10

12

14

16

18

20

Order

lo
g 2 R

un
ni

ng
 T

im
e(

m
s)

density=1.5, max tie−breaker
density=1.5, min tie−breaker
density=1.5, arbitary tie−breaker
density=6, max tie−breaker
density=6, min tie−breaker
density=6, arbitary tie−breaker

A.
0 50 100 150 200

2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

Best width seed,density = 1.5
Best width seed,density=6.0
Lowest degree seed,density = 1.5
Lowest degree seed,density=6.0

B.

Figure 4.12 : A) Variable Ordering Tie-breakers B) Initial Variable Choice

problems like the chains or the bigger constructed problems, the additional overhead

of trying every initial variable would be prohibitive, so we used the low-degree seed

in all cases.

Algorithms for BDD variable ordering in the model-checking systems are often

based on circuit structures, for example, some form of circuit traversal [FFK88,

MWBSV88] or graph evaluation [CHP93]. These techniques are not applicable here,

since the formulas are provided in CNF and the original circuit structure is lost.

MCS is just one possible vertex-ordering heuristics. Other heuristics have been

studied in the context of treewidth approximation. Koster et. al. [KBv01] studied

two other vertex-ordering heuristics that are based on local search: LEXP and LEXM.

Both LEXP and LEXM are based on lexicographic breadth-first search, where candi-

date variables are lexicographically ordered with a set of labels, and the labels are

either the set of already chosen neighbors (LEXP), or the set of already chosen vertices

reachable through lower-ordered vertices (LEXM). Both algorithms try to generate

vertex orders where a triangulation would add a small amount of edges, thus reducing

treewidth. In [Dec03], Dechter also studied heuristics like Min-Induced-Width (MIW)

or Min-Fill (MF), which are greedy, non-local heuristics based on choosing the vertex

that have the least number of induced neighbors (MIW) or the vertex that would add



51

0 50 100 150 200
2

4

6

8

10

12

14

16

18

20

Order

lo
g 2 R

un
ni

ng
 T

im
e(

m
s)

density=1.5, MCS
density=1.5, MIW
density=1.5, MF
density=1.5, LEXP
density=1.5, LEXM

A.
0 50 100 150 200

2

4

6

8

10

12

14

16

18

20

Order

lo
g 2 R

un
ni

ng
 T

im
e(

m
s)

density=6, MCS
density=6, MIW
density=6, MF
density=6, LEXP
density=6, LEXM

B.

Figure 4.13 : Vertex Order Heuristics - Random 3-CNF A) Density=1.5 B) Density=6

2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20

2

MCS
MIW
MF
LEXP
LEXM

A.
2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

2

MCS
MIW
MF
LEXP
LEXM

B.

Figure 4.14 : Vertex Order Heuristics - A) Pigeon Hole B) Mutilated Checkerboard

the least number of induced edges (MF).

In Figure 4.13A and 4.13B, we compare variable orders constructed from MCS,

LEXP, LEXM, MIW, and MF for random 3-CNF formulas. For high-density cases,

MCS is clearly superior. For low-density formulas, LEXP has a small edge, although

the difference is quite minimal. Across the other problem classes (for example, pigeon-

hole formulas as in Figure 4.14A and mutilated checkerboard as in Figure 4.14B),

MCS uniformly appears to be the best order, being the most consistent and gen-

erally the top performer. Interestingly, while other heuristics like MF often yield

better treewidth, MCS still yields better runtime performance. This indicates that



52

0 50 100 150 200
2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BM−EQ,density=1.5
BM−EQ,density=6.0
BM−no EQ,density=1.5
BM−no EQ,density=6.0

A.
0 50 100 150 200

2

4

6

8

10

12

14

16

18

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BE−EQ,density=1.5
BE−EQ,density=6.0
BE−no EQ,density=1.5
BE−no EQ,density=6.0

B.

Figure 4.15 : Quantifier Elimination-Random 3-CNF

minimizing treewidth need not be the dominant concern; the dominant concern is

minimizing BDD size. BDD size are more closely related to pathwidth instead of

treewidth, and local search heuristics, like MCS, produces tree decompositions that

are more path-like than greedy heuristics like MF.

4.4.3 Quantifier Elimination

So far we argued that quantifier elimination is the key to the performance of the sym-

bolic approach. In general, reducing support-set size does result in smaller BDDs.

It is known, however, that quantifier elimination may incur non-negligible overhead

and may not always reduce BDD size [Bry86]. To understand the role of quantifier

elimination in the symbolic approach, we reimplemented BM and BE without quan-

tifier elimination. Thus, we do construct a BDD that represent all satisfying truth

assignments, but we do that according to the clustering and cluster processing order

of BM and BE.

In Figure 4.15A and 4.15B, we plotted the running time of both BM and BE,

with and without quantifier elimination on random 3-CNF formulas. We see that

there is a trade-off between the cost and benefit of quantifier elimination. For low-

density instances, where there are many solutions, the improvement from quantifier



53

2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20

N

lo
g 2 R

un
ni

ng
 T

im
e

BM−EQ
BM−no EQ

A.
2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

N

2

BM−EQ
BM−no EQ

B.

Figure 4.16 : Quantifier Elimination - A) Pigeon Hole B) Mutilated Checkerboard

elimination is clear, but for high-density instances, quantifier elimination results in no

improvement (while not reducing BDD size). For BE, where the overhead of quantifier

elimination is lower, quantifier elimination improves performance very significantly at

low density, although at high density there is a slight slow down. On the other hand,

quantifier elimination is important for the constructed formulas, for example, for the

pigeon-hole formulas in Figure 4.16A and the mutilated checkerboard formulas in

Figure 4.16B.

4.5 Comparison with other approaches

In the previous section, we conducted a comprehensive comparison of the impact of

different parameters on the BDD-based symbolic approach. Next, we expand our

focus to alternate approaches, first by comparing the BDD-based symbolic quantifier

elimination with ZDD-based multi-resolution, then compare the structural variable

order we used with the default dynamic variable order in the context of ZChaff.

4.5.1 BDDs vs. ZDDs

So far we used symbolically represented sets of truth assignments. An alternate

approach is to use decision diagrams to represent sets of clauses instead of sets of



54

assignments. ZRes [CS00] is a symbolic implementation of the directional resolution

algorithm in [DP60, DR94]. The approach is also referred to as multi-resolution, since

the algorithm carries out all resolutions over a variable in one symbolic step. Since

individual clauses are usually sparse with respect to the set of variables, ZRes [CS00]

used ZDDs [Min96], which typically offer a higher compression ratio then BDDs for

the sparse spaces. Each propositional literal ` is represented by a ZDD variable v`

(thus a propositional variable can be represented by two ZDD variables), and clause

sets are represented as follows:

• The empty clause ε is represented by the terminal node 1.

• The empty set ∅ is represented by the terminal node 0.

• Given a set C of clauses and a literal ` whose ZDD variable v` is lowest in a

given variable order, we split C into two subsets: C` = {c | c ∈ C, ` ∈ c} and

C ′ = C − C`. Given ZDDs representing C ′′ = {c | c ∨ ` ∈ C`} and C ′, a ZDD

representing C would be rooted at v` and have ZDDs for C ′′ and C ′ as its left

and right children.

This representation is the dual of using ZDDs to represent Irredundant Sum of Prod-

ucts (ISOPs) of Boolean functions [Min96].

We use two set operations on sets of clauses: (1) × is the crossproduct operator,

where for two clause sets C and D, C × D = {c | ∃c′ ∈ C,∃c′′ ∈ D, c = c′ ∪ c′′},

and (2) + is subsumption-free union, so if both C and D are subsumption free, and

c ∈ C+D, then there is no c′ ∈ C+D where c′ ⊂ c. Multi-resolution is implemented

using × on cofactors: given a ZDD f , fx+ (resp. fx−) is the ZDDs corresponding to

the positive cofactor on the ZDD variable vx (resp., v¬x, so fx+ = {a | a ∨ x ∈ f}

and fx− = {a | a ∨ ¬x ∈ f}. Now fx+ × fx− (after removing tautologies) represents

the set of all resolvents of f on x, which has to be combined using + with fx′ ,

which is the ZDD for the clauses not containing x. ZRes eliminates variables using

multi-resolution one by one until either the empty clause is generated, in which case



55

0 50 100 150 200
2

4

6

8

10

12

14

16

18

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BE,density=1.5
BE,density=6.0
MRes,density=1.5
MRes,density=6.0

A.
0 50 100 150 200

2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BE,density=10
BE,density=15
MRes,density=10
MRes,density=15

B.

Figure 4.17 : Random 3-CNF

the formula is unsatisfiable, or all variables have been eliminated, in which case the

formula is satisfiable.

To facilitate a fair comparison between ZRes and our BDD-based solver, we used

the multi-resolution code used in [CS00] under our bucket-elimination framework and

used the same variable and elimination order as the BDD-based algorithms. This

can be seen as a comparison of the compression capability of ZDD-based clause sets

versus BDD-based solutions sets representations, since at comparable stages of the

two algorithms (say, before variable xi is eliminated), the data structures represents

the same Boolean function. As an optimization, a simple form of unit preference

is implemented for the ZDD-based multi-resolution, since unit clauses can be easily

detected in the ZDD-based clause set representation and resolved out-of-order.

The results for the 3-CNF and affine satisfiability cases are plotted in Fig-

ures 4.17A, 4.17B, and 4.18. We see that the differences between the two approaches

are again density dependent. Just like the differences between BE and BM, ZDD-

based multi-resolution is more efficient at low density and less efficient at high density.

This can be related to the compression ratio achieved by the two representations at

different densities, where the clause set representation is far more efficient at low

densities. For the high-density case, the clause set representation starts to show its



56

0 50 100 150 200 250 300 350 400
2

4

6

8

10

12

14

16

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BE,density=0.5
BE,density=1.5
MRes,density=0.5
MRes,density=1.5

Figure 4.18 : Random 3-Affine

shortcomings. High-density problems typically have a large number of clauses and

few solutions, clause-set representation is less efficient in this case. This is especially

evident for the unsatisfiable case, where if BDDs are used, unsatisfiability can be

detected immediately, but if clause sets are used, detection is delayed until an empty

clause is generated.

Next we examine the other classes of formulas in Figure 4.19A, 4.19B, 4.20A,

4.20B, 4.21A, and 4.21B. In all cases, the BDD-based approach is superior to the

ZDD-based approach.6

An explanation for the superiority of the BDD-based approach can be provided

in terms of the cost of the quantifier-elimination operation. Complexity of decision-

diagram algorithms can be measured in the number of cache look-ups that the al-

gorithm performs. Quantifying out a single variable uses the BDD “or” operation,

which has a proven O(n2) upper bound on the number of cache look-ups [Bry86]. The

same cannot be said for the ZDD multi-resolution operation used to quantify out a

single variable, where the number of cache look-ups can be exponential in the width

6There exists other ZDD-based approaches for hard-for-resolution problems, for example, CAS-

SAT [MM02a], which exhibits polynomial running time on pigeon-hole formulas [MM02b]. A com-

parison against these approaches would be a future direction of this research.



57

10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BE
MRes

A.
10

2
10

3
10

4
8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

BE
MRes

B.

Figure 4.19 : A) Random Biconditionals B) Random Chains

5 6 7 8 9 10 11 12 13
2

4

6

8

10

12

14

16

18

20

N

lo
g 2 R

un
ni

ng
 T

im
e

BE
MRes

A.
0 50 100 150 200 250 300 350 400

2

4

6

8

10

12

14

16

18

20

N2

lo
g 2 R

un
ni

ng
 T

im
e

BE
MRes

B.

Figure 4.20 : A) n-Rooks B) n-Queens

2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20

N

lo
g 2 R

un
ni

ng
 T

im
e

BE
MRes

A.
2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

N

lo
g 2 R

un
ni

ng
 T

im
e

BE
MRes

B.

Figure 4.21 : A) Pigeon Hole B) Mutilated Checkerboard



58

of the input ZDDs. Empirically, the number of cache lookups can be 1-2 orders of

magnitude larger than the size of the output ZDD. This is the main contribution to

the performance hit taken by the ZDD-based algorithm.

Still, the ZDD-based approach should not be entirely discredited. Since the ZDD-

based approach is superior for problems that are heavily under-constrained, we will

show in Chapter 7 that is matches naturally with quantified satisfiability solving,

whose matrix is under-constrained. Otherwise they would be easily unsatisfiable

due to the universal quantifiers. The extra compression of the ZDD-based clause-set

representation would apply, explaining the superiority of the ZDD-based approach.

4.5.2 Structure-Guided Variable Order for Search

In Section 4.4, we showed that the choice of variable order is important to the perfor-

mance of BDD-based satisfiability solvers. We showed that MCS variable order offers

good algorithmic performance across a variety of input formulas. In contrast, most

search-based algorithm use a dynamic variable order, based on the clauses visited

or generated during the search procedure, for example, the VSIDS heuristic used in

ZChaff [MMZ+01]. To offer a more direct comparison between search-based and sym-

bolic methods, we re-implemented ZChaff with the MCS variable order and compared

its performance with ZChaff and with the symbolic solvers. (See [AMS01, HD03] for

earlier work on structure-guided variable order for search-based methods.) We com-

pared here the performance of ZChaff with the default (VSIDS) variable order, ZChaff

with MCS variable order, and the BDD-based solvers (for each formula class we chose

the best solver between BM and BE).

The results for random formulas are shown in Figures 4.22A, 4.22B, 4.23A, 4.23B,

4.24A, 4.24B, 4.25A, and 4.25B, and the results for constructed formulas are shown

in Figures 4.26A, 4.26B, 4.27A, and 4.27B. In general, the structure-guided variable

order is inferior in terms of performance to dynamic variable order (VSIDS). For

easy problems, the overhead of pre-computing the variable order is quite significant.



59

0 50 100 150 200
2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

 

 
ZChaff,density=1.5
ZChaff−MCS,density=1.5
BE,density=1.5

A.
0 50 100 150 200

2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

 

 
ZChaff,density=6.0
ZChaff−MCS,density=6.0
BM,density=6.0

B.

Figure 4.22 : Variable Order - Random 3-CNF (1)

0 50 100 150 200
2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

 

 
ZChaff,density=10
ZChaff−MCS,density=10
BM,density=10

A.
0 50 100 150 200

2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

 

 
ZChaff,density=15
ZChaff−MCS,density=15
BM,density=15

B.

Figure 4.23 : Variable Order - Random 3-CNF (2)

0 50 100 150 200 250 300 350 400
2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

 

 
ZChaff,density=0.5
ZChaff−MCS,density=0.5
BM,density=0.5

A.
0 50 100 150 200 250 300 350 400

2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

 

 
ZChaff,density=1.5
ZChaff−MCS,density=1.5
BM,density=1.5

B.

Figure 4.24 : Variable Order - Random Affine



60

10 20 30 40 50 60 70 80 90 100
2

4

6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

ZChaff
ZChaff−MCS
BE

A.
10

2
10

3
10

4
6

8

10

12

14

16

18

20

Variables

lo
g 2 r

un
ni

ng
 ti

m
e(

m
s)

ZChaff
ZChaff−MCS
BE

B.

Figure 4.25 : Variable Order - A) Random Biconditional B) Random Chains

2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20

N

lo
g 2 R

un
ni

ng
 T

im
e

ZChaff
ZChaff−MCS
BM

A.
0 50 100 150 200 250 300 350 400

2

4

6

8

10

12

14

16

N2

lo
g 2 R

un
ni

ng
 T

im
e

ZChaff
ZChaff−MCS
BM

B.

Figure 4.26 : Variable Order - A) n-Rooks B) n-Queens

2 4 6 8 10 12 14 16 18 20
2

4

6

8

10

12

14

16

18

20

N

lo
g 2 R

un
ni

ng
 T

im
e

ZChaff
ZChaff−MCS
BM

A.
2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

N

lo
g 2 R

un
ni

ng
 T

im
e

ZChaff
ZChaff−MCS
BE

B.

Figure 4.27 : Variable Order - A) Pigeon Hole B) Mutilated Checkerboard



61

The performance loss should not be entirely attributed to the overhead though, since

we also observed an increase in the number of implications performed. Thus, dy-

namic variable order is, in general, a better algorithmic choice.7 Nevertheless, for

most formulas, there is no exponential gap in scaling between the two variable-order

heuristics.

Also, replacing VSIDS by MCS did not change the relationship between ZChaff

and the BDD-based solvers. The difference in performance between search-based and

symbolic approaches is larger than the difference between static and dynamic decision

order for ZChaff. In none of the cases did the static variable order change the relative

picture between search and symbolic approaches. This shows the general superiority

of search-based vs. symbolic techniques cannot be attributed to the use of dynamic

variable order.

4.6 Summary

In this chapter, we investigated a large number of possible optimizations to the BDD-

based symbolic approach to satisfiability, we did not manage to develop a symbolic

solver that is competitive with search on a large range of problem classes. Still, as we

will see later in this dissertation, this is more of a mismatch between the tool (BDD

is naturally a solution enumerator) and the problem (propositional logic satisfiability

solving), and not a fundamental lacking of BDD-based approaches. Similar heuristics

as studied in this chapter will be successfully applied quantified satisfiability later.

Some of the heuristics, for example the use of ZDDs and bucket elimination, while

poor for propositional satisfiability, fares much better for quantified satisfiability. In

the rest of the dissertation, we will investigate the impact of quantification on the

complexity of the problems and the performance of the approaches.

7Except for formulas with very specific structure, for example, Figure 4.25B.



62

Chapter 5

Parametrized Complexity of Bounded-Width QBF

In Chapter 3, we developed BDD size bounds for both bounded-width CNF formu-

las and bounded-width existentially-quantified CNF formulas. The size bounds are,

in turn, lower bounds for the time needed to construct BDDs for such formulas.

When using pathwidth as the measure of width, the quantified version of the prob-

lem is superficially similar to the unquantified case; both can be built in space that

is f(w)poly(n) where n is the number of variables and w is the width. But when we

look more carefully on the f(w) for each case, we can see the actual impact of the

width on practical performance would be very different. For the unquantified case,

f(w) is singly exponential, while for the quantified case, f(w) is doubly exponential.

We would like to know whether such an impact applies not just to a single implemen-

tation, but instead, to all algorithms. In other words, whether the use of quantifiers

make bounded width problems harder. We would like to draw some insights from the

classical complexity case. The polynomial hierarchy is characterized by using alter-

nating quantifiers to stratify the complexity between P and PSPACE. There are no

formal non-collapsing results for the polynomial hierarchy, and most people believe

the hierarchy is strict. And in turn, increasing the alternation depth do, in some way,

make a problem “harder” to solve. In the parameterized complexity setting, we want

to know whether there is a analogous hierarchy that scales with the alternation depth

while the width is bounded with a parameter. In other words, whether increasing the

alternation depth of a problem while keeping all other parameters the same makes it

harder to solve. To show non-collapsing results for such a fixed-parameter hierarchy,

we must not be able to trade complexity between f(w) part and the poly(n) part.



63

In other words, if some problem is hard for f(w)h(n) with some polynomial h, we

should not be able to solve it by using some larger polynomial h′ in time f ′(w)h′(n)

where f ′ is smaller than f . Unfortunately, since our hardness results would need to

come from the reduction of a classically intractable problem in NP, and there are no

known proofs for either P 6=NP, we would need to base our hierarchy on the assump-

tion P 6=NP, as under the case where P=NP, we cannot prevent the problem being

solved (with a classical algorithm) in time h(n) with a polynomial h.

An alternative to building such a hierarchy despite the P vs. NP difficulty is

based on Frick and Grohe’s technique of telescoping [FG02], where they generated

intractable word model-checking problems with a very small monadic second-order

formulas. In order to understand telescoping, it is useful to compare the case of

monadic second-order logic model checking on words with other second-order frag-

ments and other model types. For most syntactical restrictions of second order logic

under an unrestricted vocabulary (usually represented as labelled graphs or hyper-

graphs), model checking even with a fixed formula size is still intractable in a classical

sense. For different second-order fragments, the study of the classes of structures they

can capture, and in turn, the study of the complexity classes of their model checking

problem with a fixed formula size formed the area of Descriptive Complexity. For

example, existential second-order logic on graph models is NP-complete for model

checking [Fag74]. Model checking for the general case of second-order logic in turn

characterizes the polynomial hierarchy [Imm99]. With a graph model, second-order

logic allows one to construct through alternation (for the case of ESO, guess) an

accepting run of a Turing machine and check its correctness, thus, its complexity is

complete for the same complexity class as the type of the Turing machine. A run

for a Turing machine is the concatenation of a sequence of instantaneous descriptions

(state, symbols on tape, and head position) of the Turing machine, each representing

a time step in the run. Each position on the tape is a cell. There are, however, two

key relations between cells in a run of the Turing machine. The first is the neighbor



64

relation on the tape i.e., the two cells are neighboring cells in the same time step. The

second is the time successor relation, i.e., the two cells are the same position on the

tape and represents successive time steps. Checking the correctness of a run need to

use both of these relations. Of course, if the vocabulary of the model contains “user-

definable” binary relations, then we can represent both relations explicitly. But, for

many second-order logic fragments, the power of second order quantifiers allows us

to restrict the model to a very restrictive case, that of words, where the only binary

relation defined on the model is the successor relation in the word. The idea used

is that of embedding, which is a mapping from arbitrary models to word models. It

is far from inconceivable that we can write any model into a word. For example, a

graph can be written into a word as the concatenation of a list of vertices followed

by a list of edges (written as pairs of vertices). All vertices, of course, would need

to have a distinct string representation in the word in order to distinguish between

them. The difficulty would be to recover the original structure when needed, say,

to check whether there is an edge between two vertices. When we have quantifiers

on binary predicates, this is easily done, where [EGG] showed that ESO on words

remains NP-complete when restricted to a single binary quantifier by using simple

binary-encoded tags. In general, such restriction in frame types are possible because

we can use a formula which characterizes the relation that we are implicitly encod-

ing using tags, i.e., the formula is true iff the free variable assignments satisfies the

relation we are defining (i.e., the formula interprets the relation [Leu02]). A formula

(characterizing some property) on the arbitrary model can be translated to a formula

on a word model where all occurrences of the relation are substituted with the inter-

preting formula wherever the relation occurred (Some quantifier relativization is also

needed to preserve the semantics of monadic quantifiers).

When we restrict ourselves to monadic second-order logics on word models, using

a fixed formula to interpret relations no longer work. The main reason of this is

the tractability gap, since a fixed MSO formula can only define regular languages on



65

words. [FG02] performs a limited kind of interpretation, where the domain size of

the graph-like models are held under a bound. Telescoping is in turn a technique

to maximize the size of model that can be encoded (or conversely, reduce the size

of the formula needed to interpret) by exploiting the relation between satisfiability

and model checking. For second-order logics, there is a very distinct difference in

complexity of satisfiability and finite model checking. For monadic second-order logic

on finite words, satisfiability is non-elementary, while model checking is in PSPACE.

This necessitates that some formula have non-elementarily large models. While the

idea of embedding graphs into word models are the same, the design of tags used in

telescoping is much more elaborate. By tapping the power of alternation, the edge

relation on the graph can be interpreted using a formula in MSO with O(log∗ n) size.

In this dissertation, we improve upon the approach in [FG02] and apply it to the

parameterized complexity of bounded-width QBF. The main difference is that our

result is alternation-tight. Tightness in measured as the relation between the upper

bound and the lower bound for function relating the width and alternation depth with

the coefficient on running time. To get a tight characterization of the exact blowup, we

use QPTL, a quantified temporal logic instead of using monadic second-order logic on

words. QPTL has a tight bound on its classical complexity for satisfiability [SVW87].

We will show parametrically, under reasonable assumptions about intractability, there

is a similar right bound on the parametric blowup. Also, we present a translation

from QPTL model checking to QBF satisfiability in that is parameter preserving,

where the width of the QBF is linearly related to the size of the QPTL formula to be

model checked. The combination of the telescoping technique and translation allows

us to characterize the parameterized complexity of QBF problems of bounded width

and alternation, culminating in a hierarchy of fixed-parameter tractable classes. In

this chapter and the following chapter, the constructions we use allow us to bound

the pathwidth of the QBF formula. In turn, all lower bounds can be trivially applied

to bounded-treewidth case. In contrast, the upper bound for bounded width QBF



66

developed by Chen [Che04] is already based on treewidth.

5.1 Background

5.1.1 QPTL

Definition 5.1. Given a set P of propositions, the set of formulas in QPTL is the

smallest set satisfying the following:

• Every proposition in P is a formula in QPTL.

• If ϕ and ψ are formulas in QPTL, then (ϕ ∧ ψ) and (¬ϕ) are formulas in

QPTL. (ϕ ∨ ψ) is shorthand for (¬((¬ϕ) ∧ (¬ψ))), and (ϕ → ψ) is shorthand

for (¬(ϕ ∨ ψ))1.

• If ϕ is a formula in QPTL, then Xϕ and Fϕ are formulas in QPTL. We use

Xn as shorthand for a sequence of n X operators. Gϕ is shorthand for ¬F¬ϕ.

• If ϕ is a formula in QPTL, then for p ∈ P , (∃p)ϕ is a formula in QPTL. (∀p)ϕ

is shorthand for ¬(∃p)¬ϕ.

We interpret QPTL formulas on finite words. A finite word model π for QPTL

is a word of length n over 2P , that is, a mapping π : [0 . . . n − 1] → 2P , where n is

the size of the model, and P is a set of propositions (which needs to contain the free

propositions in the formula we are interpreting). We write π[q 7→ Q] to indicate the

overiding of the meaning of a proposition q in the model by a subset Q of positions

(i.e., Q ⊆ [0 . . . n − 1]), and p ∈ π[q 7→ Q] iff either p 6= q and p ∈ π(i), or p = q

and i ∈ Q. All propositional connectives have their standard meaning. Since we are

considering semantics for finite-word models, the temporal operators X and F need

to consider the finiteness of the model, and so do the quantifiers. We use π, i |= ϕ to

mean the word model π at position i satisfies the formula ϕ. (The standard notation

1We often omit parentheses, when the standard precedence order ¬ > ∧ > ∨ >→ is used.



67

of π |= ϕ now becomes a shorthand for π, 0 |= ϕ.) Of course, |= is only defined when

0 ≤ i < |π|. The formal semantics of QPTL on a finite word model follows:

• π, i |= p iff p ∈ π(i),

• π, i |= ¬ϕ iff π, i 6|= ϕ,

• π, i |= ϕ ∧ ψ iff π, i |= ϕ and π, i |= ψ,

• π, i |= Xϕ iff i < |π| − 1 and π, i+ 1 |= ϕ,

• π, i |= Fϕ iff there exists some j where i ≤ j < |π|, and π, j |= ϕ,

• π, i |= (∃q)ϕ iff there is a set Q ⊆ [0 . . . |π| − 1] of positions, such that π[q 7→

Q], i |= ϕ.

Each QPTL formula ϕ defines a language which is the set of all πs where π, 0 |= ϕ.

Definition 5.2. The finite model-checking problem for QPTL is defined as: given a

model π and a formula ϕ, where π is defined on a vocabulary that includes the free

variables of ϕ, does π |= ϕ hold?

Here, we only consider QPTL formulas in prenex normal form, where a formula

can be written as (Q1p1)(Q2p2) . . . (Qkpk)ϕ, each Qi is ∃ or ∀, and ϕ is quantifier free.

The logic can be stratified into bounded-alternation layers as follows:

1. The set ΣQPTL
0 = ΠQPTL

0 includes the quantifier-free formulas in QPTL.

2. If ϕ is in ΣQPTL
k or ΠQPTL

k−1 , then (∃p)ϕ is in ΣQPTL
k .

3. If ϕ is in ΠQPTL
k or ΣQPTL

k−1 , then (∀p)ϕ is in ΠQPTL
k .

The sets ΣQPTL
k and ΠQPTL

k split QPTL into fragments where ΣQPTL
k (ΠQPTL

k ) repre-

sents the existential (universal) formulas with alternation depth k.

While all the QPTL formulas constructed in this dissertation should be in prenex

normal form, we do, for simplicity of presentation, apply quantifiers to sub-formulas



68

and later compose them with other sub-formulas. Still, we never put quantified

sub-formulas under temporal operators, which allows all formulas we build to be

convertable to prenex normal form with a simple renaming and lifting of quantifiers

without increase in either size or alternation depth.

5.1.2 Tiling Systems

Definition 5.3. A tiling system is a tuple T = (D,H, V ), where D is a finite set

of tiles types, H ⊆ D × D and V ⊆ D × D are, respectively, the horizontal and

vertical adjacency relations. A tiling problem is the tuple (T,w, h, I), where w and

h are natural numbers, and I is an initial constraint (see below). The tiling problem

(T,w, h, I) has a solution iff there exists a mapping F : [1 . . . w]× [1 . . . h] → D, where

the following requirements are satisfied:

• For all 1 ≤ i < w and 1 ≤ j ≤ h, (F (i, j), F (i + 1, j)) ∈ H, and for all

1 ≤ i ≤ w and 1 ≤ j < h, (F (i, j), F (i, j + 1)) ∈ V .

• F satisfies the initial constraint I. The nature of the constraint I depends on

the particular variant of tiling problem used.

Each position (i, j), where i ∈ [1..w], j ∈ [1..h], is called a cell with row i and column

j.

The tiling problem is useful in representing a number of natural complexity classes.

The most well known of which is the case where h = w (square tiling), w is written

in unary (note the impact on the size of the input), and the initial condition I is

empty. This version has been shown to be NP-complete by Lewis [Lew78]. Here, we

consider a fixed tiling system T . This is possible because tiling systems encode runs

of Turing machines, so a T that corresponds to a universal Turing machine can be

used. Still, to maintain NP-completeness where we use a fixed T , we need to use

a different initial condition, namely, the first row needs to be fixed to a particular

sequence of tiles I given as part of the input, where F (1, j) = I(j) for 1 ≤ j ≤ w



69

(which encodes the initial tape of the Turing machine). This allows polynomial-sized

computations of Turing machines to be encoded with the tiling problem.

Theorem 5.4. [Lew78] There is a tiling system T (corresponding to universal Turing

machines) such that The tiling-problem (T,w, h, I), where h = w, and I defines the

first row of the tiling, is NP-complete.

In the following, we concern ourselves only with this NP-complete variant, which

we denote as (T,w, I). Given a tiling F , we name the corresponding solution checking

problem, in absence of the initial condition, as the tiling check problem, where we

check whether F satisfies the horizontal and vertical relations. We also assume we

can separate the tile set into two parts D′ and D′′, where D′ does not appear on the

first row, and D′′ only appears on the first row. Only tiles in D′′ can appear in I.

In the usual manner of exploiting non-determinism, once we have a formula that can

perform tiling check, we can use existential quantifiers to guess the non-initial part of

the tiling in order to solve the tiling problem. Since w = |I|, and T is fixed, the size

of the tiling problem is defined as |I|, which is the same as the size of w in unary.

5.1.3 Non-elementary growth and some properties of the tower function

g(k, n)

In the following, we use the terms polynomial, sub-polynomial, exponential, sub-

exponential, etc. to classify functions. A function f(·) is polynomially bounded (usu-

ally just called polynomial) if there is some constant k > 0 such that f(n) is in O(nk).

Here, we write f(·) is in poly(·). A function is sub-polynomial if for all constant k > 0,

we have f(n) in o(nk). Notice here all sub-polynomial functions are also considered

to be polynomial, i.e., the set poly(·) contains more functions than those that are

strictly polynomial (i.e., polynomial, but not sub-polynomial). A function f(·) is

sub-exponential if for all strictly polynomial functions h(·), h(n) is in o(2h(n)). Here,

we denote the set of sub-exponential functions as subexp(·). Note that our defini-



70

tion of sub-exponential function is more restrictive than the usual definition (where

a function f(·) is sub-exponential if for every c > 1, f(x) is o(cx)).

In this section, we work with the growth speed of the non-elementary tower func-

tion g(·, ·) defined as: g(0, n) = n, g(k + 1, n) = 2g(k,n). The inverse of g is the logk

(repeated log) function: log1(n) = log n, logk+1(n) = log(logk(n))2. Finally, the log∗

(iterated log) function is defined by: k = log∗(n) iff k is the least natural number

such that g(k, 1) ≥ n (or, analogously, the least k such that 1 ≥ logk n).

The function g(k, n) and logk(n) are defineable as inverses of each other. In other

words, g(k, logk(n)) = n. In this chapter, much of our results depend on compressing

some aspect of the input through the logk function, which is later re-expended using

the g function. So, we would like to study the impact of the compression-re-expansion

loop. Unfortunately, because of the extreme blowup of the function g, extremely small

changes in the second parameter of g causes extremely big changes in the output.

Consider the function hf,k(n) = g(k, f(logk(n)) where k is an integer and f is a

function:

Lemma 5.5. Given a function f(m), if there exists constants c < 1 and mf such

that for all m > mf , f(m) ≤ cṁ, then for all k ≥ 2, hf,k(n) is sub-polynomial in n.

Proof. When k = 2, consider all n > nf = g(2,mf ), hf,2(n) ≤ g(2, c log2(n)) =

2log(n)c
. Assume we have a strictly polynomial function p(n) such that for all large

enough n, hf,2(n) ≥ p(n). We know there exists c′ and a constant nc′ where for all

n > nc′ , p(n) ≥ nc
′
= 2c

′ log(n). But we know for any c < 1, there exists nc,c′ such that

for all n > nc,c′ , log(n)c < c′ log(n). So for all n > max(nf , nc′ , nc,c′), hf,2(n) < p(n),

contradicting our assumption. Thus, hf,k(n) is sub-polynomial in n.

For k > 2, assume inductively this lemma is proved for k − 1. Now hf,k(n) =

2hf,k−1(log(n)). From the induction hypothesis, we know that hf,k−1 is sub-polynomial,

so we can take p(n) = n1/2 and we know for large enough n, p(n) > hf,k−1(n). But

2All log functions we use in this dissertation use base 2.



71

here, 2(log(n))1/2
= hf ′,2(n) where f ′(m) = m/2. So hf,k(n) ≤ hf ′,2(n) where hf ′,2(n) is

sub-polynomial from the base case of the proof. In turn, hf,k(n) is sub-polynomial.

One direct consequence is that such a 2hf,k(n) is sub-exponential, which we use

later.

5.2 Complexity of finite model-checking problem for QPTL

In this section, we study the complexity of the finite model-checking problem for

QPTL. While we start with classical complexity results that are essentially “re-

hashing” of well-known techniques, the development of the parameterized complexity

results requires careful constructions and leads to the first tight characterization of a

hierarchy inside fixed-parameter tractability.

5.2.1 Upper Bounds

Sistla, Vardi, and Wolper [SVW87] studied the satisfiability problem of QPTL, where

a given QPTL formula ϕ, determines whether there exists a model π such that π |= ϕ.

While their analysis of QPTL is over infinite words, the automata-theoretic approach

can be used to analyze QPTL also over finite words (in fact, automata on infinite

words was developed as an extension to automata on finite words, cf. [Büc60]). The

following lemma characterizes QPTL over finite words.

Lemma 5.6. Given a QPTL formula ϕ in ΣQPTL
k , there exists a non-deterministic

finite automaton of size g(k, |ϕ|) that accepts the same language as ϕ.

Proof. We use the standard automata-theoretic technique [Büc60, SVW87, VW94],

applied to nondeterminsitic automata on finite words. The induction is on the struc-

ture of the formula.

For the base case, where ψ is in ΣQPTL
1 , we build a finite automaton with size

g(1, |ψ|) as follows. For the quantifier-free part of ψ, which we call ψ′, we can build

a (non-deterministic) finite automaton of size 2|ψ
′| ≤ g(1, |ψ|) that accepts the same



72

language as ψ′ [SVW87]. Note that transitions in the NFA are labeled with assign-

ments on the variables. We can now eliminate the quantified variables of ψ from the

labeling of the transitions; in other words, the quantified variables have been projected

out. This does not increase the size of the automaton.

For the inductive case, given a formula ψ in ΣQPTL
k , it is in the form

(∃p1) . . . (∃pn)¬ψ′, where ψ′ is a formula in ΣQPTL
k−1 . The induction hypothesis states

that the language accepted by ψ′ can be accepted by an automaton A′ of size

g(k − 1, |ψ′|). We build an automaton A that accepts the same language as ψ by

complementing A′ and projecting the result onto the free variables of ψ. Comple-

menting A′ requires an exponential blowup in the size of A′, and projection can be

applied with no additional size increase. Thus, the size of A is in 2g(k−1,|ψ′|) ≤ g(k, |ψ|).

One point to note about the construction used is that the automata transforma-

tions can be performed in time linear in their size, which we will use later.

Theorem 5.7. (Analogous to Theorem 4.1, [SVW87]) The satisfiability problem for

ΣQPTL
k , where k ≥ 1, is complete for NSPACE(g(k − 1, |ϕ|)).

Proof. The automaton in Lemma 5.6 can be built “on-the-fly”, and emptiness can be

checked in non-deterministic logspace in the size of the automaton. The lower bound

can be proved as in [SVW87], as the proof there uses only finite prefixes of infinite

words to describe Turing-machine computations.

In contrast to the satisfiability problem, under a finite semantics, the model-

checking problem has elementary complexity.

Theorem 5.8. The finite model-checking problem for QPTL is PSPACE-complete.

Proof. The PSPACE upper-bound is a direct corollary of the PSPACE-completeness

of monadic second-order logic (MSO) model checking on words [FG02], since the

temporal operators of QPTL can be syntactically interpreted in MSO. PSPACE-

hardness comes from the fact that the QBF decision problem is a special case of

QPTL finite model-checking problem on a model with only one state.



73

Having established the classical complexity of QPTL finite model-checking prob-

lem, we investigate its parameterized complexity, where the size and alternation depth

of the formula are taken as the parameters, and the size of the model is taken as the

size of the problem.

Theorem 5.9. The finite model-checking problem for a formula ϕ in ΣQPTL
k on a

finite word model of size n has time complexity O(g(k, |ϕ|)n).

Proof. Remember that all automaton transformations used in Lemma 5.6 can be

performed in the same time bound as their corresponding space bound. As a result,

the automaton that accepts the same language as ϕ have size g(k, |ϕ|) and can be

built in time O(g(k, |ϕ|)). Checking whether an NFA of size m accepts a word of

length n can be performed in time O(m · n). Thus, model checking of QPTL can be

performed in time O(g(k, |ϕ|)n).

5.2.2 Lower Bounds

For the lower bound, we proceed by connecting the complexity of QPTL model check-

ing on finite word models to the NP-completeness of the tiling problem.

Theorem 5.10. Assuming P 6= NP , there exists a constant c > 0 such that model

checking for ΣQPTL
k on models of size |π|, where k > 2, cannot be done in time

g(k − 1, c|ϕ|)h(|π|) where h(·) is in poly(·)3.

The rest of this section is dedicated to the proof of Theorem 5.10. We start with

an overview of the proof.

For a tiling problem (T,w, I), if we are given a tiling f satisfying I, we can reduce

the tiling-check problem to QPTL model checking as follows: The tiling F is converted

to a word Fw, and the tiling problem (T,w, I) is converted to a QPTL formula ϕ′T,w.

3In the proof of Theorem 5.23, we need to refer to the actual value of this constant, and call it

cQPTL



74

Note that the initial condition I is not checked by the formula, but instead, encoded

in the model. In the following, when our concern is the formula, we use (T,w) to

denote the relevent part of the tiling problem. We want Fw |= ϕ′T,w iff F is a solution

for (T,w). Writing F in word form requires concatenating the rows of F into a word of

length w2. We order the rows from w to 1 for technical reasons. To convert (T,w) to

ϕ′T,w, we need to state row and column constraints using small QPTL formulas. Once

we reduced the tiling-check problem to the finite model-checking problem for QPTL,

going to the tiling (decision) problem is just a small step, using existential quantifiers

to state the existence of a tiling. We add an additional existential quantifier block

on the outside of ϕ′T,w for all the propositions that actually represent non-initial tiles,

and call the resulting formula ϕT,w. Since now the actual tiling is quantified out in

the formula, the interpretation of the propositions that correspond to non-initial tiles

in the word model no longer affect the decision procedure, so the word model can

contain an arbitrary mapping from cells after the first row to non-initial tiles, and

the mapping from cells in the first row to initial tiles is based on I. We call such

a model πw,I . Thus, πw,I |= ϕT,w iff (T,w, I) has a solution. Through developing

a polynomial reduction, the particular model-checking problem would be NP-hard,

while at the same time fixed-parameter tractable. Assuming P 6= NP , a lower-bound

can be shown for the function in the parameter. The quality of the lower-bound

would depend on how small we can make the formula to be.

We give here the proof for Theorem 5.10, under the following assumptions on the

reduction. Later, we describe in detail each step in the construction of πw,I and ϕT,w

and show that the assumptions hold.

1. πw,I |= ϕT,w holds iff (T,w, I) have a solution.

2. The word πw,I has size polynomial in w.

3. The formula ϕT,w is in ΣQPTL
k and is small enough that g(k − 1, c|ϕT,w|) is in

poly(w) for some c > 0.



75

4. The construction of πw,I and ϕT,w from (T,w, I) can be performed in time

polynomial in w.

Proof. Choose h(·) in poly(·). Assume that we have a model-checking algorithm with

time complexity g(k − 1, c|ϕ|)h(|π|) for ΣQPTL
k with a constant c > 0 that is small

enough for Assumption 3. We use this algorithm to give a polynomial algorithm for

tiling, which by Theorem 5.4, is NP-complete. We are given I in the input, and we

know w = |I|. Based on Assumptions 2 and 4, we can construct πw,I in time and space

polynomial in w. Based on Assumption 3, we can construct a formula ϕT,w ∈ ΣQPTL
k ,

where g(k − 1, c|ϕT,w|) is in poly(w), and by Assumption 4, the time taken for the

construction is in poly(w). Then, by Assumption 1, the model-checking algorithm can

be applied, which takes time g(k − 1, c|ϕT,w|)h(|πw,I |), which by Assumptions 2 and

3, is in poly(w). So, if we have an algorithm for the finite model-checking problem

that does better than the lower-bound, then there exists a polytime algorithm for an

NP-complete problem.

There is a gap of a little higher than an exponential between our upper and lower

bounds. A major contributor to this gap is that NP might require strict exponential

time to solve. In other words, the assumption P 6= NP is an exponential too strong.

That exponential gap can in fact be closed by using a stronger assumption.

Corollary 5.11. Assuming NP cannot be solved in sub-exponential time, (i.e., there

does not exist a sub-polynomial function f(n) where NP can be solved in time 2f(n)),

then there exists a constant c > 0 such that model checking for ΣQPTL
k on models of

size |π|, where k > 2, cannot be done in time g(k, c|ϕ|)h(|π|) where h(·) is in poly(·).

Proof. The proof is analogous to Theorem 5.10, except our bounds are one exponential

looser. Choose h(·) in poly(·). Assume that we have a model-checking algorithm with

time complexity g(k, c|ϕ|)h(|π|) for ΣQPTL
k with a constant c > 0 that is as small as

we need. (Obviously, c < 1 from our upper bound.) We use this algorithm to give

a sub-exponential algorithm for tiling, which by Theorem 5.4, is NP-complete. We



76

are given inputs w and I (where w = |I|). Based on Assumptions 2 and 4, we can

construct πw,I in time and space polynomial in w. If we are proceeding as the last

theorem above, based on Assumption 3, there is some c such that we can construct a

formula ϕT,w ∈ ΣQPTL
k , where g(k− 1, c|ϕT,w|) is in poly(w). But, in order to improve

our bounds, we need to look at the proof of Lemma 5.21. We know that |ϕT,w| is in

O(logk−1(w)), so by Lemma 5.5, there exists some c > 0 such that g(k− 1, c|ϕT,w|) is

sub-polynomial in w. In turn, g(k, c|ϕT,w|) is sub-exponential in w by definition. By

Assumption 4, the time taken for the construction is in poly(w). By Assumption 1,

the model-checking algorithm can be applied, and it takes time g(k, c|ϕT,w|)h(|πw,I |).

By all the above arguments, the time needed to solve tiling would be sub-exponential

in w.

5.2.2.1 Constructing the Tagged Model πw,I

In this section, we detail the construction of the model πw,I . Naively, constructing

the model shall not take much effort, since all we need is a row-by-row concatnation

of the cells. Still, we need to keep in mind that we need to check certain properties

on the resulting word. In particular, we need to check the tiles satisfy both the

horizontal and vertical constraint. When we use a row-major concatnation, checking

the horizontal constraint is not difficult; the neighboring tiles are adjacent to each

other in the word. Checking the vertical constraint is a little more involved. Naively,

we need to measure distances of exactly w on the word. On the surface, this look

amendable to the use of “yardsticks” (Originally from [Sto74], and the QPTL version

from [SVW87]). Still, when the distance w to be measured is not an exact exponential,

attempting to bound the size of the yardstick formulas becomes impossible. Since we

are performing model checking instead of satisfiability, we can build the yardstick

into the model instead of entirely depending on the formula to measure distances.

To that end, we add annotation in the form of tags marking the column index of

each cell. Our technique is essentially a hybrid between the yardsticks of [SVW87]



77

and the telescoping of [FG02]. The approach in [SVW87] used counters that are

implicitly encoded using alternating yardstick formulas; in contrast, the approach in

[FG02] used explicit tags4. The combination of the two approaches allows us to both

measure arbitrary distances as well as keep the alternation depth low.

The tags we use are a form of annotated binary numbers, where each bit is an-

notated by its offset. This allows the use of smaller formulas to compare such binary

numbers, since inspection that are more “local” would be sufficient. Since the anno-

tated offset have to be themselves written as binary numbers, the annotation process

is repeated to construct nested tags. First, we give a formal definition of the syntax

and semantics of the tags we are using:

Definition 5.12. A tag of level h is defined with the alphabet Σ =

{0, 1, 〈1〉, 〈/1〉, . . . , 〈h〉, 〈/h〉}. We denote the set of tags of level h with parameter

n by tagsh(n). Each tag represents a mapping that can be inductively defined as fol-

lows: A tag t ∈ tags1(n) is a mapping {0 . . . n−1} → {0, 1}. A tag t ∈ tagsh+1(n) is a

mapping tagsh(n) → {0, 1}. Tags are written as words on Σ. For t ∈ tags1(n), t is a

bracketed n-bit sequence, i.e., a word of form 〈1〉{0|1}n〈/1〉, where t(i) is the (i+1)-th

bit after 〈1〉. For t ∈ tagsh+1(n), t is a bracketed sequence of tags in tagsh(n) and a

corresponding bit for each tag, i.e., 〈h + 1〉(t′{0|1})∗〈/h + 1〉, where each t′ is a tag

in tagsh(n). Since t is a total function, every possible tag of level h appears exactly

once in a tag of level h + 1. Every tag t′ ∈ tagsh(n) that appears inside t is called

a sub-tag of t. For every sub-tag t′ ∈ tagsh(n) in a tag t ∈ tagsh+1(n), the bit that

appears directly after the t′ is the mapped value of the t′. Equality on tags is defined

as the (unordered) equality on the underlying mappings.

For example, a tag in tags2(1) is 〈2〉〈1〉0〈/1〉0〈1〉1〈/1〉1〈/2〉, which maps the sub-tag

〈1〉0〈/1〉 ∈ tags1(1) to 0 and the sub-tag 〈1〉1〈/1〉 ∈ tags1(1) to 1. For an overview of

the structure of tags, see Figure 5.1.

4Tags can be seen as a form of unique indices.



78

tagd,x(y)

d dtagd-1,x(0) 1 tagd-1,x(1) 1

tagd-2,x(0)d-1 d-11 tagd-2,x(1) 0

tag1,x(z)

1 11 10

02 2

k elements

Figure 5.1 : Visualization of a tag

We now consider the number and size of tags.

Lemma 5.13. There are g(h, n) different tags in tagsh(n).

Proof. We proceed by induction on the level h. For the base case, tags of level 1

are bit strings of length n, so there are 2n = g(1, n) different tags in tags1(n). For

the inductive case, tagsi+1(n) is isomorphic to the power set P(tagsi(n)), so by the

inductive hypothesis, the number of tags is 2g(i,n) = g(i+ 1, n).

The construction we use for tags is similar to that used in [FG02]. One important

difference is that our construction requires each tag in tagsh(n) to be a complete

mapping, where the one in [FG02] allowed partial maps. Our approach trades a

larger tag size for better alternation efficiency.

First, we consider the size blowup in tags for our construction. The following

relaxed bound is sufficient for our final result:

Lemma 5.14. The size sh(n) of a tag in tagsh(n), for n > 2, is at most g(h− 1, 2n).



79

Proof. We proceed by induction on the level h. For the base case of h = 1, we

know the size of the tag s1(n) is n + 2 ≤ 2n = g(0, 2n). For the inductive case, we

use the properties of g where for h ≥ 1, g(h, n)2 ≤ g(h, 2n), and for each c > 0,

g(h, n) + c ≤ g(h, n + c). Both can be proved by a simple induction on h. Now

sh(n) = g(h−1, n)(sh−1(n)+1)+2 ≤ g(h−1, n)(g(h−2, 2n)+1)+2 ≤ g(h−1, n)(g(h−

2, 2n) + 2). Since h ≥ 2 and n > 2, we have g(h − 2, 2n) + 2 ≤ g(h − 2, 2n + 2) ≤

g(h− 2, 2n) ≤ g(h− 1, n). Thus, sh(n) ≤ g(h− 1, n)2 ≤ g(h− 1, 2n).

Our goal is to use tags to mark the column index for each tile. This introduces

a blowup in the size of πw,I and we want to maintain polynomial size in w. Thus,

the size of the tags need to be polynomial in w. We need to show there is at least w

distinct tags in size polynomial in w:

Lemma 5.15. For a given w and h ≤ log∗(w)− 2, there exists n > 2 such that:

• There are at least w distinct tags in tagsh(n).

• The size of each individual tag in tagsh(n) is at most w.

Proof. We choose n such that g(h, n− 1) < w ≤ g(h, n), so, by Lemma 5.13, we have

at least w distinct tags. Since h < log∗(w)− 1, we have g(h, 2) ≤ g(log∗(w)− 2, 2) =

g(log∗(w) − 1, 1) ≤ w, so n > 2. By Lemma 5.14, each tag in tagsh(n) is of size at

most g(h− 1, 2n) ≤ g(h− 1, 2n−1) = g(h, n− 1) < w.

In addition to having enough tags, we also need to show the tags can be efficiently

generated:

Definition 5.16. We define a mapping tagh,n : N → tagh(n) by induction. For

the base case, tag1,n(x) := 〈1〉bitn−1(x) . . . bit0(x)〈/1〉, where biti(x) extracts the value

of the ith bit of x. For the inductive case, tagh,n(x) := 〈h〉tagh−1,n(g(h − 1, n) −

1)bitg(h−1,n)−1(x) . . . tagh−1,n(0)bit0(x)〈/h〉. In other words, tagh,n(x) is a tagged bi-

nary number, which maps every tagh−1,n(y) to the yth bit of x.

Next, we describe the tagged word model πw,I . The construction is with respect

to a parameter k > 2 (which is the k of Theorem 5.10). We build the word using



80

tags of level h = k − 1. The vocabulary of the word model is Σ = Σh ∪ D ∪ {r},

where D is the set of tiles of T . We use r as a row marker. The purpose of the row

marker is to ensure we don’t mistake the cell at the end of one row to be horizontally

consecutive to the cell at the beginning of the next row. Given a tiling problem of

size w, choose n where g(h, n − 1) < w ≤ g(h, n). Now πw,I is the concatenation of

w−1 blank rows and one initial row. The blank rows use an arbitrary non-initial tile

d0 ∈ D as a placeholder (The actually tiling will be generated through quantification

in the formula we will be model checking on this model.):

rowblank := tagh,n(0)d0tagh,n(1)d0 . . . tagh,n(w − 1)d0r

The initial row is the same as defined by I:

rowinit := tagh,n(0)I(1)tagh,n(1)I(2) . . . tagh,n(w − 1)I(w)r

Finally πw,I := (rowblank)
w−1rowinit.

For ease of the construction we use in Chapter 6, we concatenate the rows in

inverted order, where the first row is at the end of the word.

Lemma 5.17. For every k, the length of the word πw,I is polynomial in w, and πw,I

can be generated in time polynomial in w. In addition, the polynomial functions do

not depend on k.

Proof. We look at instance sizes w > g(k, 1). Since h = k − 1 ≤ log∗(w)− 2, we can

apply Lemma 5.15 to show that every tag has size less than w. So, |πw,I | ≤ (w(w +

1) + 1)w, which is in O(w3), and the coefficient is independent from k. Intuitively,

the tagged word πw,I is obtained by tagging each position in a tiling with its column

address in binary, tagging each address bit with its address in binary, and so on,

iterated up to h levels. Each level adds a logarithmic term of overhead (i.e., log(w),

log(log(w)), and so on) in the time needed to construct the label. Since πw,I is of

length O(w3), we can generate it in time O(w4).

Lemma 5.17 shows that Assumption 2 and 4 for Theorem 5.10 above hold.



81

5.2.2.2 Tag Comparison Using QPTL

Next we describe how to use QPTL formulas to check equality of tags, which we use

in order to check the vertical constraints of tilings. The formula we build uses a set

P of propositions described below. For any letter d ∈ Σ, we have a corresponding

proposition pd, where in the word model π, we have π, i |= pd iff d is the ith letter

in π. Other propositions in P are used to mark sets of locations in the word model;

we call them markers. Often, instead of concerning ourselves with sets of positions,

we want to denote individual positions instead. This can be easily done by asserting

the sets of positions to be singleton sets5; marker propositions that are restricted to

singleton sets are called singleton markers. A pair of such singleton markers outline

a subword by pointing to the beginning and ending positions of the subword. Given

two markers p and q, the subword is denoted by π[p,q].

In the following construction, we use formula templates as follows: ψ(p) := ψ′

defines a template ψ with parameter p based on ψ′, which is a QPTL formula. An

instantiation ψ(q) is a copy of ψ′, where all free occurrences of p are replaced with q.

Lemma 5.18. Given h ≥ 1 and n ≥ 1, one can construct a formula ϕh,n(p, p
′, q, q′) ∈

ΣQPTL
h of length linear in h+ n such that if π |= ϕh,n(p, p

′, q, q′), then

1. p, p′, q, and q′ are each true at exactly one position in the model;

2. The subwords π[p,p′] and π[q,q′] are equal tags in tagsh(n);

3. The subword π[p,p′] appears before the subword π[q,q′].

Proof. In the following, we first construct the formula ϕh,n, and then show that it

satisfies the requirements in the lemma. The construction is inductive on the tag

depth h. Before we go into the construction itself, we present some basic templates

to state some commonly used relationships on propositions. First, we define sing(p)

5When we have asserted such a set to be a singleton, we ignore the difference between such

singleton sets and their sole member.



82

to assert that the proposition p is a singleton where sing(p) := Fp ∧G(p→ XG¬p).

We also need to state that a proposition r is never true strictly inside a subword π[p,q]

where notbetween(p, q, r) := G(p → XG(XFq → ¬r)). We also need to state that

two positions, both i letters away from singleton markers p and q, assert a proposition

r where samei(p, q, r) := G(p→ X ir) ∧G(q → X ir).

Now we construct the base case, where π[p,p′] and π[q,q′] mark tags in tags1(n). In

order to check equality, we need to state the following:

• The markers only appear once: sing(p) ∧ sing(p′) ∧ sing(q) ∧ sing(q′).

• The ranges defined by the markers do not contain multiple tags at level 1:

notbetween(p, p′, p〈1〉) ∧ notbetween(q, q′, p〈1〉).

• The markers point to the correct symbols: G(p→ p〈1〉)∧G(p′ → p〈/1〉)∧G(q →

p〈1〉) ∧G(q → p〈/1〉).

• The markers appear in the correct order: G(p→ XFp′)∧G(p′ → XFq)∧G(q →

XFq′) (Figure 5.3).

• The bit strings are the same:
∧

1≤i≤n(samei(p, q, p1) ∨ samei(p, q, p0)) (Fig-

ure 5.4).

• ϕ1,n(p, p
′, q, q′) is the conjunction of all the formulas above.

By construction, ϕ1,n(p, p
′, q, q′) is a formula in ΣQPTL

1 with size linear in n. To

ease the understanding the nature of the formulas, please also see the figures 5.2 to

5.4.

For the inductive case, we need to check whether two tags π[p,p′] and π[q,q′] in

tagsh(n) are equal. To that end, we need to check that the pair of tags maps all

enclosing tags to matching values. In other words, for every pair of tags in tagsh−1(n),

if the first one is inside π[p,p′] and the second one is inside π[q,q′], and the two tags are

equal, their mapped values must be equal. We state the following:



83

1

1

1

p

Left bracket of tags, i.e.<1>

The symbol 1

Right bracket of tags, i.e.</1>

A string of symbols

The position marked using the predicate p

Figure 5.2 : Legend for visualization of ϕk,n(p, p
′, q, q′)

tag1,3(y1)

1 11 10

tag1,3(y2)

1 11 10

p p' q q'

Figure 5.3 : Order check for the markers

tag1,3(y1)

1 11 10

tag1,3(y2)

1 11 10

p p' q q'

Figure 5.4 : Equality check for level 1



84

• The markers only appear once: sing(p) ∧ sing(p′) ∧ sing(q) ∧ sing(q′).

• The ranges defined by the markers do not contain multiple tags at level h:

notbetween(p, p′, p〈h〉) ∧ notbetween(q, q′, p〈h〉) (Figure 5.5).

• The markers point to the correct symbols: G(p→ p〈h〉)∧G(p′ → p〈/h〉)∧G(q →

p〈h〉) ∧G(q → p〈/h〉) (Figure 5.5).

• The markers appear in the correct order: G(p→ XFp′)∧G(p′ → XFq)∧G(q →

XFq′) (Figure 5.5).

• We call the conjunction of above formath(p, p
′, q, q′).

• We use a proposition b to mark all starting positions of sub-tags in tagsh−1(n)

that appear in π[t,t′]. insidemarkerh(t, t
′, b) := G(Ft → ¬b) ∧ G(t′ → G¬b) ∧

G(¬p〈h−1〉 → ¬b) ∧G(t→ G((Ft′ ∧ p〈h−1〉) → b))

• Given (singleton) markers r, r′, s, s′, we can state that the pair of tags they

point to map to the same value: idmaph(r, r′, s, s′) := ϕh−1,n(r, r
′, s, s′) →

(same1(r′, s′, p0) ∨ same1(r′, s′, p1)).

• We now define a formula to assert the equivalence of tags π[p,p′] and

π[q,q′]. For the meaning of the formula defined as checktags, see proof

below. checktagsh(p, p
′, q, q′) := (∃b, b′)(∀r, r′, s, s′)(insidemarkerh(p, p

′, b) ∧

insidemarkerh(q, q
′, b′) ∧ ((G(r → b) ∧ G(s → b′)) → idmaph(r, r

′, s, s′))). Note

idmaph(r, r
′, s, s′) is true whenever r′ or s′ does not point to the end of a tag in

tagsh(n). Also, see Figure 5.6 for a visual guide.

• ϕh,n(p, p
′, q′q′) := formath(p, p

′, q, q′) ∧ checktagsh(p, p
′, q, q′).

Since in ϕh,n the iterative part ϕh−1,n appears under negation, and the quantifier

prefix for the ϕh,n outside ϕh−1,n is ∃∀, ϕh,n in ΣQPTL
h and of size linear in h+ n.

Now we proceed to show that the construction is correct:



85

tag2,3(x2)tag2,3(x1)

tag1,3(y1)

1 11 10

tag1,3(y2)

1 11 10

p p' q q'2 2

12 2 212
√ √ √ √

1 1

Figure 5.5 : Wellformedness check

tag2,3(x2)tag2,3(x1)

tag1,3(y1)

1 11 10

tag1,3(y2)

1 11 10

p p' q q'

12 2 2121 1

b b b b' b' b'

r r' s s'

φ1,3(_,_,_,_)

Figure 5.6 : Equality check for level above 1

Claim 5.19. π[p,p′] and π[q,q′] are identical tags iff ϕh,n(p, p
′, q, q′).

Proof. Again, we proceed by induction. The base case for ϕ1,n is quite simple. The

fact that the singletons p, p′, q, q′ point to the correct position and are in the correct

order is asserted by the formula. For well-formedness, we also need to check that

the subwords π[p,p′] and π[q,q′] form actual tags, instead of being fragments that only

mark part of a tag or fragments that cross multiple tags. Since the input word is

constructed such that all tag boundary pairs must contain complete tags, π[p,p′] or

π[q,q′] cannot be too short. And for π[p,p′] or π[q,q′] to be too long, they have to contain

multiple tags, but we have asserted that tag markers 〈1〉 does not appear inside the

subword. The equality of the subwords π[p,p′] and π[q,q′] is also directly asserted by

the formula.

The inductive case is slightly more involved. Assuming that the construction is

correct for level h− 1, we show that it is correct for level h. formath asserts that both



86

tags are well formed exactly like the base case. In checktagsh, we use the quantifier

on b and b′ to choose a set of positions that marks tags in tagsh−1(n), which we need

to compare equality on. The set of positions b marks all starting positions of tags

in tagsh−1(n) inside the subword π[p,p′] (which is a tag in tagsh(n)), and b′ marks all

starting positions of tags in tagsh−1(n) inside the subword π[q,q′]. The variables r, r′,

s, and s′ are universally quantified. If any of them are not a singleton, or does not

outline tags in tagsh−1(n), or are in the wrong order, idmaph(r, r
′, s, s′) returns true.

If π[r,r′] and π[s,s′] do point to tags of the right type, but they are not tags we are

actively checking (as marked by b and b′), the antecedent (G(r → b)∧G(s→ b′)) part

fails, skipping the check. Otherwise, idmaph is used to check that for all pair of tags

in tagsh−1(n) between π[p,p′] and π[q,q′], if they are the same, they map to the same

value. Since the tags π[p,p′] and π[q,q′] are well formed by construction, this proves

π[p,p′] and π[q,q′] are the same tag in tagsh(n) iff ϕh,n(p, p
′, q, q′).

5.2.2.3 Constructing ϕT,w

Next, by using ϕk−1,n(p, p
′, q, q′) we construct a formula ϕ′T,w in ΣQPTL

k to check that

an annotated model is a tiling for the tiling problem (T,w) with size w ≤ g(k− 1, n).

• Every position in the word has exactly one symbol: ϕD := G(
∧
s∈Σ(ps →∧

t6=s ¬pt)) ∧G(
∨
s∈Σ ps).

• Horizontal constraints are observed: Define ϕH := (∀s, s′, t, t′)((sing(s) ∧

sing(s′) ∧ sing(t) ∧ sing(t′) ∧ G(s → p〈k−1〉) ∧ G(s′ → p〈/k−1〉) ∧ G(t →

p〈k−1〉) ∧ G(t′ → p〈/k−1〉) ∧ G(s → Fs′) ∧ G(s′ → Ft) ∧ G(t →

Ft′) ∧ notbetween(s, s′, p〈k−1〉) ∧ notbetween(s′, t, p〈k−1〉) ∧ notbetween(s′, t, pr) ∧

notbetween(t, t′, p〈k−1〉)) →
∨
〈d,d′〉∈H(G(s′ → Xpd) ∧ G(t′ → Xpd′))). This

checks for every pair of tags π[s,s′] and π[t,t′], if π[s,s′] appears before π[t,t′], and

there is no row marker or other tag markers that appear between π[s,s′] and

π[t,t′], then the symbol that appears after π[s,s′] and the symbol that appears



87

(_,i)

tagd,x(i)

p p'

d d (_,j)

tagd,x(j)

dd

q q'
d

r

Horizontal
Constraint

Figure 5.7 : Check for horizontal constraints

after π[t,t′] are consecutive symbols on the same row, and need to satisfy the

horizontal constraint. For a visualization, see Figure 5.7.

• Vertical constraints are observed: Define ϕV := (∀s, s′, t, t′)((ϕk−1,n(s, s
′, t, t′) ∧

G(s′ → (F (pr∧Ft)∧¬F (pr∧XF (pr∧Ft))))) →
∨
〈d,d′〉∈V (G(s′ → Xpd′)∧G(t′ →

Xpd))). We know from Lemma 5.18 that ϕk−1,n(s, s
′, t, t′) checks whether π[s,s′]

and π[t,t′] are identical tags in tagsk−1(n). In ϕV , we first check that the pair

of tags are identical, i.e., they mark the same column; then we check that the

pair of tags has exactly one row marker appearing between them, i.e., they are

in consecutive rows; finally, we check that the tiles that appear after the pair of

tags satisfy the vertical constraint. For a visualization, see Figure 5.8.

• The formula for checking whether the model is a solution is ϕ′T,w := ϕD∧ϕH∧ϕV .

For k ≥ 2, ϕ′T,w is a formula in ΠQPTL
k−1 , since the occurrence of ϕk−1,n in ϕ′T,w is

negative, and the quantifier block of ϕ′T,w outside ϕk−1,n is universal.

Given a tiling problem T and a mapping F , F is a solution for (T,w) iff Fw |= ϕ′T,w.

To check whether (T,w, I) has a solution, we take ϕT,w = (∃pd0)(∃pd1) . . . (∃pdm)ϕ′T,w.

Lemma 5.20. Given a tiling instance (T,w, I), and an integer k ≥ 2, we can generate

in time O(k + logk−1(w)) a ΣQPTL
k formula ϕT,w of size O(k + logk−1(w)) such that



88

(_,i)

tagd,x(i)

p p'

d d (_,j)

tagd,x(j)

dd

q q'
d

r

Horizontal
Constraint

Figure 5.8 : Check for vertical constraints

πw,I |= ϕT,w iff (T,w, I) have a solution, and the coefficient in O(k + logk−1(w)) is

independent from k.

Proof. Since ϕT,w guesses a tiling non-deterministically and checks it through ϕ′T,w, we

have πw,I |= ϕT,w iff (T,w, I) has a solution, satisfying Assumption 1 of Theorem 5.10.

Our choice of n such that g(k − 1, n− 1) < w ≤ g(k − 1, n) means n = dlogk−1(w)e,

so |ϕ′T,w| and, in turn, |ϕT,w| are in O(k + n) = O(k + logk−1(w)). The coefficient in

O(k + logk−1(w)) is a constant based on our formula schemas. The formula can be

generated in time linear in its size.

Lemma 5.20 allows us to meet Assumption 1 needed for Theorem 5.10. We now

show that we can also satisfy Assumption 3 and 4 of Theorem 5.10.

Lemma 5.21. There exists a constant c > 0 such that for every k > 2, the formula

ϕT,w is small enough so that g(k−1, c|ϕT,w|) is in poly(w), and ϕT,w can be constructed

in time polynomial in w.

Proof. By Lemma 5.20, |ϕT,w| is in O(k + logk−1(w)). So, there is a constant c

and wc such that for all w > wc, c|ϕT,w| < logk−1(w). Thus, g(k − 1, c|ϕT,w|) <

g(k− 1, logk−1(w)) = w. We can construct ϕT,w in time O(logk−1(w)), which is much

smaller than O(w).



89

5.3 Parametric complexity of bounded-width QBF

We now come back to the decision problem of bounded-width QBF. A variant of this

problem is studied in [Che04] in the context of quantified constraint satisfaction and

an FPT algorithm is given, where both the width and the alternation depth are taken

as parameters. The function f given in the algorithm is non-elementary. We prove

here that, under complexity-theoretic assumptions, the function in the parameter is

indeed non-elementary.

Theorem 5.22. Satisfiability for ΣQBF
k formulas of treewidth at most w can be solved

in time O(g(k, w)|ϕ|).

Proof. The result follows by a careful analysis of the algorithm in [Che04], counting

the number of distinct trees (called choice constraints in [Che04]) generated by the

algorithm.

The algorithm presented in [Che04] is an extension of the decision procedure

for bounded-width propositional formulas, which can be decided in O(2w|ϕ|) time

[DP89, Fre]. Unfortunately, it is unlikely that bounded-width QBF enjoys the same

kind of tractability:

Theorem 5.23. Assuming P 6= NP , there exists a constant c > 0 such that for every

h(·) in poly(·), satisfiability for bounded-pathwidth formula ψ in ΣQBF
k , where k is an

odd number > 2, of pathwidth at most w cannot be solved in time g(k−1, c ·w)h(|ψ|).

Proof. We combine Theorem 5.10 above with a translation from QPTL finite model

checking to QBF satisfiability to show the lower bound. In Theorem 5.25 that follows,

we show that for every QPTL formula ϕ ∈ ΣQPTL
k , with odd k, and every word model

π, we can construct a QBF formula ψ = ϕQ,π of pathwidth at most 2|ϕ| − 1 and

alternation depth k such that |= ψ iff π |= ϕ. Also, ψ is of size O(|ϕ||π|), so there is a

constant c′ such that the construction takes time at most c′|ϕ||π| and |ψ| ≤ c′|ϕ||π|.

Consider c = cQPTL/2. For every k > 2 and for every polynomially bounded function

f ′(·), we have that g(k−1, c(2|ϕ|−1))f ′(|ϕ|) < g(k−1, cQPTL|ϕ|) for large enough |ϕ|.



90

This is because g(k−1, c(2|ϕ|−1)) = g(k−1, cQPTL|ϕ|−cQPTL/2), which is far smaller

than g(k−1, cQPTL|ϕ|). For example, for every positive constant d, g(2, x)/g(2, x−d)

is not polynomially bounded on x. Now, suppose we can decide the satisfiability of

ψ in time g(k − 1, c · w)h(|ψ|), we can use it to decide the truth of π |= ϕ through

deciding ψ in time g(k − 1, cQPTL|ϕ|)h′(|π|), with a polynomial h′(·). First, the

time taken to solve the model checking of ϕ on π through QBF is g(k − 1, c(2|ϕ| −

1))h(c′|ϕ||π|) + c′|ϕ||π| ≤ g(k − 1, c(2|ϕ| − 1))(h(c′|ϕ||π|) + c′|ϕ||π|). Because h(·) is

polynomial, there exist polynomial functions f ′(·) and h′(·) such that h(c′|ϕ||π|) +

c′|ϕ||π| ≤ f ′(|ϕ|)h′(|π|). Also, from our assumption, g(k−1, c(2|ϕ|−1))f ′(ϕ) ≤ g(k−

1, cQPTL(|ϕ|)) for large enough |ϕ|. Thus, g(k − 1, c(2|ϕ| − 1))h(c′|ϕ||π|) + c′|ϕ||π| ≤

g(k − 1, cQPTL|ϕ|)h′(|π|) for large enough |ϕ|. This contradicts with Theorem 5.10

under the same P 6= NP assumption.

A direct consequence is that bounded-width QBF can not be solved with an FPT

algorithm with an elementary blowup in the parameters k and w, where k is the

alternating depth and w is the width.

In the same way where the one exponential gap between the upper and lower

bound QPTL model checking can be closed by using a stronger assumption, the same

strengthening also works for bounded-width QBF:

Corollary 5.24. Assuming NP cannot be solved in sub-exponential time, there exists

a constant c > 0 such that for every h(·) in poly(·), satisfaibility for bounded-pathwidth

formula ψ in ΣQBF
k , where k is an odd number > 2, of pathwidth at most w cannot

be solved in time g(k, c · w)h(|ψ|).

5.3.1 Translating QPTL finite model checking to QBF

Theorem 5.25. Given a formula ϕ in ΣQPTL
k (for odd k), and a finite word model

π, we can generate in time O(|ϕ||π|) a formula ϕQ,π in ΣQBF
k of size O(|ϕ||π|) and

pathwidth at most 2|ϕ| − 1, such that π |= ϕ iff |= ϕQ,π.

Proof. We perform the following translation from QPTL to QBF. Consider the QPTL



91

formula ϕ = (∃x1,1) . . . (∀x2,1) . . . (∃xk,1) . . . ϕ′. We first construct a propositional

model πQ such that πQ |= ϕQ iff π |= ϕ. We can then eliminate the propositional

model by describing it as a conjunction of unit literals and conjoining with ϕQ (this

does not increase the width of the formula). We establish the correspondence between

π |= ϕ and πQ |= ϕQ inductively.

The base case is when ϕ is quantifier free. A propositional model πQ can capture

all information encoded in the word model π: For each free proposition q of ϕ we

create |π| Boolean propositions pq,i, 0 ≤ i < |π|, defined by πQ(pq,i) = 1 iff q ∈ π(i).

We refer to this set of Boolean propositions as PQ.

Next, given a formula in LTL(X,F) (the propositional part of QPTL), without loss

of generality, assume it to be in negation normal form, where negations only appear

before propositions. Formulas in LTL(X,F) can be converted to negation normal form

(by using also the temporal operator G) by pushing negations inward.

We write sub(ϕ) for the set of sub-formulas of ϕ, and sub′(ϕ) for the set of non-

atomic sub-formulas of ϕ, in other words, sub′(ϕ) = sub(ϕ)−{q,¬q|q is a proposition

defined in ϕ}. With each ψ in sub′(ϕ), we associate |π| new propositions pψ,i. Essen-

tially, we use a propositional encoding of accepting runs of the automaton constructed

in [VW94] (adapted to finite words). The formula ϕQ can be encoded in CNF form

by unrolling the formula onto the structure as follows. (For ease of understanding,

clause groups for closely related propositions are written using the ↔ operator, where

a↔ (b ∧ c) represents the three clauses ¬a ∨ b, ¬a ∨ c, a ∨ ¬b ∨ ¬c, and similarly for

a↔ (b ∨ c) and a↔ b.)

• In the following, whenever ψ = a or ψ = ¬a, substitute pa,i or ¬pa,i for pψ,i.

• ψ = Xψ′: Cψ := (¬pψ,|π|−1) ∧
∧

0≤i<|π|−1(pψ,i ↔ pψ′,i+1)

• ψ = Fψ′: Cψ := (pψ,|π|−1 ↔ pψ′,|π|−1) ∧
∧

0≤i<|π|−1(pψ,i ↔ (pψ,i+1 ∨ pψ′,i))

(because π, i |= Fψ iff π, i |= ψ or π, i+ 1 |= Fψ.)



92

• ψ = Gψ′: Cψ := (pψ,|π|−1 ↔ pψ′,|π|−1) ∧
∧

0≤i<|π|−1(pψ,i ↔ (pψ,i+1 ∧ pψ′,i))

(Because π, i |= Gψ iff π, i |= ψ and π, i+ 1 |= Gψ.)

• ψ = ψ′ ∧ ψ′′: Cψ :=
∧

0≤i<|π| pψ,i ↔ (pψ′,i ∧ pψ′′,i)

• ψ = ψ′ ∨ ψ′′: Cψ :=
∧

0≤i<|π| pψ,i ↔ (pψ′,i ∨ pψ′′,i)

Now, we have ϕ′Q := pϕ,0 ∧
∧
ψ∈sub′(ϕ)Cψ in CNF with O(|π||ϕ|) clauses. We

proceed to quantify out the propositions that correspond to valuations of subformulas

in sub′(ϕ) = {ψ1, ψ2 . . . ψm}. Thus, πQ define exactly the set of propositions we need

to interpret ϕQ := (∃pψ1,0) . . . (∃pψm,|π|−1)ϕ
′
Q. ϕQ is in turn the QBF translation of ϕ.

Claim 5.26. If ϕ is quantifier free, then π |= ϕ iff πQ |= ϕQ.

Proof.

• ⇒: We have π |= ϕ. We can extend πQ with an assignment A on the quantified

variables corresponding to subformulas in sub′(ϕ) such that πQ, A |= ϕ′Q (thus

πQ |= ϕQ) by annotating the model with satisfied subformulas as follows: For

every ψ ∈ sub′(ϕ), A(pψ,i) = 1 iff π, i |= ψ. Now we look at the clauses in

ϕ′Q. We have A(pϕ,0) = 1 since π, 0 |= ϕ. Every clause in
∧
ψ∈sub′(ϕ)Cψ holds

because they encode exactly the semantics of QPTL as defined in Section 5.1.

Thus, πQ, A |= ϕ′Q, and πQ |= (∃pψ1,0) . . . (∃pψm,|π|−1)ϕ
′
Q.

• ⇐: A similar construction can be performed as above. We have πQ |=

(∃pψ1,0) . . . (∃pψm,|π|−1)ϕ
′
Q. Thus, we have an assignment A on the quantified

variables such that πQ, A |= ϕ′Q. We use induction on the structure of ϕ to

show for any sub-formula ψ of ϕ, if pψ,i ∈ A ∪ πQ, then π, i |= ψ. For the base

case of atomic sub-formulas, we have from the construction of πQ that πQ |= pa,i

iff π, i |= a. For all inductive cases, there exist clauses in ϕ′Q to ensure the con-

nection between ψ and ψ′(ψ′′) for ψ = Xψ′, ψ = Fψ′, ψ = Gψ′, ψ = ψ′ ∧ ψ′′,

ψ = ψ′ ∨ψ′′. Since there is a unit clause in ϕ′Q to assert pϕ,0, we have A |= pϕ,0.

From the induction, we have π |= ϕ.



93

We use QBF quantifiers to simulate QPTL quantifiers inductively. Assume we

can translate ψ to ψQ in QBF. The inductive case is:

• ϕ = (∃x)ψ: Take ϕQ = (∃px,0) . . . (∃px,|π|−1)ψQ

• ϕ = (∀x)ψ: Take ϕQ = (∀px,0) . . . (∀px,|π|−1)ψQ

Clearly, ϕQ is in prenex normal form. The following claims are immediate.

Claim 5.27. π |= ϕ iff πQ |= ϕQ.

Claim 5.28. The matrix of ϕQ,π have pathwidth at most 2|ϕ| − 1.

Proof. The matrix of ϕQ,π have clauses connecting at most two neighboring un-

rolling of propositions, so there is the following path decomposition {{pψ,0, pψ,1 | ψ ∈

sub(ϕ)}, {pψ,1, pψ,2 | ψ ∈ sub(ϕ)}, . . . , {pψ,|π|−2, pψ,|π|−1 | ψ ∈ sub(ϕ)}}, where the

requirements of a path decomposition is met:

• The decomposition is a path.

• All constraints (clauses) occur in one path node.

• Every proposition only occurs in a sub-path (two consecutive nodes) of the

decomposition.

The width of the decomposition is 2|ϕ| − 1.

Not only is the translation width efficient, it is also alternation efficient as well,

in that

• For ϕ ∈ ΣQPTL
i where i is even, ϕQ,π ∈ ΣQBF

i+1 .

• For ϕ ∈ ΣQPTL
i where i is odd, ϕQ,π ∈ ΣQBF

i .

The construction of ϕQ,π can be performed in time linear to its size, i.e., O(|ϕ||π|).

In summary, the formula ϕQ,π we constructed meets all the requirements posed by

Theorem 5.25.



94

Chapter 6

Hardness of Small-width QBF

In the last chapter, we studied the parameterized complexity of bounded-width QBF,

where both the width and alternation depth of the instance is taken as parameters.

Through telescoping, we got an lower bound on the parameter blowup that closely

matched the upper bound. The next step, of course, is to consider the case where the

alternation depth is not bounded. Unfortunately, telescoping through interpretation

is no longer a useful technique for this case, since the formula we generate always have

alternation depth linear in the size of the formula. Still, through telescoping, we can

show something very close to the case of bounded-width and unbounded alternation,

which is that of very small width and unbounded alternation. Here, we consider very

small to be O(log∗ n). Since in the last chapter, our telescoping used an embedding of

a NP-complete problem, and generated a formula of O(k+ logk(n) size, the following

NP-hardness result should not be a surprise.

Definition 6.1. The class of log∗-pathwidth QBF is the set of QBF formulas ψ that

have pathwidth O(log∗(|ψ|)).

Theorem 6.2. The class of log∗-pathwidth QBF is NP-hard.

Proof. NP-hardness is by a reduction from the NP-hard tiling problem. For a tiling

instance (T,w, I), We first use the construction in Section 5.2 to encode it as a

QPTL model-checking instance, then use the translation presented for Theorem 5.25

below to translate it to a QBF instance. For the first step of the construction, take

the alternation depth k to be the least odd number ≥ log∗(w) − 2 (in other words,

k is either log∗(w) − 2 or log∗(w) − 1). Because k − 1 ≥ log∗(w) − 3, we have



95

that logk−1(w) ≤ 16. By Lemma 5.20, the size of the QPTL formula ϕT,w is O(k +

logk−1(w)) = O(k). By Lemma 5.17, the model πw,I has size h(w) for some polynomial

function h. Now we use Theorem 5.25 to translate the finite model-checking problem

πw,I |= ϕT,w to a QBF instance ψ = ϕQ,πw,I ,T,w that has size |ψ| = O(|ϕT,w||πw,I |) =

O(k × h(w)) and pathwidth at most 2|ϕT,w| − 1. Since k = O(log∗(w)), O(k × h(w))

is polynomial in w. Similarly, the pathwidth of ψ is at most 2|ϕT,w| − 1, which is in

O(k) = O(log∗(w)) and in turn, O(log∗(|ψ|)) (since |ψ| is polynomial in w). Thus,

the family of log∗-pathwidth QBF problems is NP − hard.

In contrast, propositional satisfiability problems that have O(log(|ψ|)) pathwidth

are still in P from the BDD size bound in Chapter 3.

The main result of this chapter would be on an extension of Theorem 6.2, where

we would show that restricting the width of QBF problems to log∗ have no impact of

its classical complexity. Telescoping from QPTL model checking is unlikely to help,

even through QPTL model checking is PSPACE-complete. The main reason is that

the PSPACE class depend heavily on unbounded alternation 1, while restricting the

formula to a small size effectively bounds the alternation on the same time.

To achieve PSPACE-hardness, we attempt to uncouple the alternation from the

formula. Remember in the formula we used, only the outermost existential quanti-

fier is used to guess part of the model, the rest of the quantifiers are only used for

interpret the equality relation on tags. Instead of guessing a model, we can have two

alternating players construct a model in hope of increasing the difficulty of the model

checking problem. We first give an outline of the approach in following theorem,

before presenting the details needed in the constriction:

Theorem 6.3. The decision problem for the class of log∗-pathwidth QBF is PSPACE-

complete.

1Unless the polynomial hierarchy collapses to some level, which would be a very unorthodox

belief.



96

Proof. The problem is trivially in PSPACE. For PSPACE-hardness, we start from

a PSPACE-complete tiling-game problem and combine two translation results to

achieve a polynomial reduction. Given a tiling-game instance (T,w, I), we use The-

orem 6.7 to convert it into a QPTL model-checking game (πw,I , ϕT,w,G, G). The

model πw,I and the play order G have size polynomial in w, and ϕT,w,G has size

O(log∗(w)). Then, by applying Theorem 6.5, we convert the QPTL model-checking

game (πw,I , ϕT,w,G, G) to a QBF formula ψ = ϕQ,πw,I ,w,G that has size polynomial in

|πw,I |, |G|, and |ϕT,w,G|. In turn, |ψ| is polynomial in w. Also, ψ have pathwidth

at most 2|ϕT,w,G| − 1, which is in O(log∗(w)), and in turn, O(log∗(|ψ|)). Thus, the

family of log∗-pathwidth QBF problems is PSPACE-complete.

6.1 Model-checking games and their relationship to QBF

First, we extend finite model checking for QPTL to a two-player game. Instead of

being given a model to check, two players (the Constructor and the Spoiler) play a

game to update a model for a specific formula. The Constructor’s goal is to satisfy

the formula in the resulting model, under opposition by the Spoiler.

Definition 6.4. A finite model-checking game for QPTL is defined as follows: A

finite-word model is a map π : [0 . . . n− 1] → 2P . The input to the game is a formula

ϕ (which uses both the propositions in π as well as two distinguished propositions p∃

and p∀
2), a word model π, the number m of rounds, and a play order G. The play

order G labels each position 0 . . . n − 1 in the model π either with a round number,

which is an integer between 0 and m−1, or leaves it unlabelled. Thus, for each round

number i, we have a set Gi of positions in the model defined by Gi = {d|G(d) = i}.

We can omit m when the play order G is given. Two players, the Constructor and

the Spoiler, attempt to update π under the play order G. The play order is processed

2While it is possible to develop all the results here without the distinguished propositions, using

them simplifies the construction needed in the reduction.



97

in increasing round order i. If i is even, the Constructor updates πi to πi+1 (with

π0 = π) on every position d in Gi by choosing a new assignment xd ∈ 2P and

updating πi with xd. In summary, πi+1 = πi[d1 7→ xd1 ][d2 7→ xd2 ] . . . [dk 7→ xdk
], where

Gi = {d1, . . . , dk}. Here, π[d 7→ x](i) = π(i) if d 6= i and π[d 7→ x](d) = x. If i is odd,

the Spoiler performs the update instead of the Constructor. The model πm is extended

onto the distinguished propositions p∃ and p∀ to become π′, where p∃ ∈ π′(d) iff G(d)

is even, and p∀ ∈ π′(d) iff G(d) is odd. π′ is a winning model for the Constructor iff

π′ |= ϕ. The Constructor wins a model-checking game iff given π, G, m, and ϕ, he

has a strategy to make the resulting model π′ winning, and we write it as π |=G ϕ.

The finite model-checking game for QPTL is a conservative extension of the fi-

nite model-checking problem on QPTL, since given an empty G, it is exactly the

finite model-checking problem for QPTL. We can use a translation similar to that of

Section 5.3 to convert QPTL model-checking games to QBF.

Theorem 6.5. Given a QPTL model-checking game (π, ϕ,G), we can construct in

polynomial time a QBF formula ϕQ,π,G such that π |=G ϕ iff |= ϕQ,π,G. The size

of ϕQ,π,G is polynomial in |ϕ|, |π|, and |G|, and the pathwidth of ϕQ,π,G is at most

2|ϕ| − 1.

Proof. We use the QBF translation of QPTL finite model checking presented in

Theorem 5.25 as a tool. First, we construct ϕQ in QBF from ϕ and π. Next, we unroll

the quantifiers implicit in G onto ϕQ. For each round in G where Gi = {d1, . . . dk}, the

corresponding QBF prefix block Qi is (qpx1,d1) . . . (qpxj ,d1)(qpx1,d2) . . . (qpxj ,dk
), where

P = {x1, . . . xj} is the set of propositions in ϕ excluding p∃ and p∀, and q is ∃ if i is

even and ∀ if i is odd. I.e., for every round i in G, there has |P | × |Gi| additional

quantifiers in the prefix to represent the choices made by the player corresponding

to Gi. The formula ϕQ,G is in turn Q1 . . . QmϕQ. The propositional model πQ is

generated from π in the same manner as Theorem 5.25, except that the assignment

to p∃ and p∀ is defined by G instead of by π. πQ can be written as a quantifier-free



98

QBF formula of unit clauses (as usual, when lifting the quantifiers in ϕQ,G to the

overall formula, we only need to keep the unit clauses in πQ that correspond to the

free propositions of ϕQ,G) and conjoined with ϕQ,G to make ϕQ,π,G. Now we have

π |=G ϕ iff |= ϕQ,π,G. Since |ϕQ| is O(|π||ϕ|), |ϕQ,π,G| is in O(|π||ϕ| + |G|). And

because ϕQ,π,G have the same matrix as ϕQ,π except for unit clauses referring to p∃

and p∀, the same path decomposition can be used to show a pathwidth of at most

2|ϕ| − 1.

6.2 Reducing tiling games to model-checking games

In Section 5.2, we showed that we can reduce the tiling problem (T,w, I) to a

QPTL finite model-checking problem with model size in poly(w) and formula size in

O(k+ logk(w)). This result is combined with that of Theorem 6.2 to show that QBF

formulas of log∗(n) width is NP-hard. The ideal result would be to show PSPACE-

completeness, i.e., restricting QBF to log∗(n) width does not reduce its complexity.

To do that, we need a tiling problem that is PSPACE-complete and has a polynomial

number of cells. This requires inherent alternation in the problem in the form of a

game. We use the following model of the tiling game:

Definition 6.6. A tiling game uses a tiling system T and is played on a board with

h rows and w columns with an initial condition I. Two players, the Constructor,

and the Spoiler plays by tiling alternating rows, starting with the Constructor on row

1. After the whole board is tiled, the resulting tiling F is a winning tiling for the

Constructor if one of the following holds:

1. The tiling F is a solution for the tiling problem (T, h, w, I).

2. The smallest j such that (F (i, j − 1), F (i, j)) 6∈ V or (F (i− 1, j), F (i, j)) 6∈ H

is even.

The second condition states that the Spoiler is the first to produce a failing tile. The

Constructor wins the game (T, h, w, I) iff he has a strategy to force a winning tiling.



99

A unary, square version of the tiling game (T,w, I), where h = w and I specifies

the first row, like most variants of square tiling games [Chl86], is PSPACE-complete.

We use finite model-checking games for QPTL to encode tiling games. The construc-

tion of the model πw,I from w is the same as in section 5.2.2.1. The play order G

have w rounds, where each round Gi−1 for 1 ≤ i ≤ w contains the set of positions in

πw,I that corresponds to the cells (i, x) for 1 < x ≤ w. The formula is constructed as

follows. Condition 1 is encoded by the ϕ′T,w of section 5.2.2.3. To encode condition 2,

we guess the first position where the Spoiler made a failing play using a new variable e

(and auxiliary variables eD, eH , and eV ). The following checks need to be performed.

First, we check that e is a singleton and on a cell that is played by the Spoiler. Second,

we check the tiling against the constraints. But, now the requirement for a correct

tiling is reduced; the tiling is not necessarily a solution, as errors can occur on rows

after the error marker e. Since we use an inverted row-major order, the correctness

checks are not applied on positions before e in the word model, i.e., whenever Fe

holds. Third, we check that an actual error occurred on the error marker. There are

three types of errors, guessed by the variables eD, eH , and eV . 1) The player chooses

an assignment that does not correspond to a tile, i.e., more than one of pds or none of

the pds are assigned to true. 2) The horizontal constraint is violated. 3) The vertical

constraint is violated. We use the following formulas:

• ϕe := sing(e) ∧ G(e → p∀) ∧ G(e ↔ (eD ∨ eH ∨ eV )). This formula checks the

error is performed by the Spoiler and guesses the type of the error.

• ϕ′D := G((¬eD∧(p∀∨p∃)) → (Fe∨((
∨
d∈D pd)∧(

∧
d,d′∈D,d 6=d′ ¬(pd∧pd′))))∧(eD →

((
∧
d∈D ¬pd) ∨ (

∨
d,d′∈D,d 6=d′ pd ∧ pd′))))

• ϕ′H := (∀s, s′, t, t′)((sing(s)∧ sing(s′)∧ sing(t)∧ sing(t′)∧G(s→ p〈k−1〉)∧G(s′ →

p〈/k−1〉) ∧G(t→ p〈k−1〉) ∧G(t′ → p〈/k−1〉) ∧G(s→ Fs′) ∧G(s′ → Ft) ∧G(t→

Ft′) ∧ notbetween(s, s′, p〈k−1〉) ∧ notbetween(s′, t, p〈k−1〉) ∧ notbetween(s′, t, pr) ∧

notbetween(t, t′, p〈k−1〉)) → (((
∨
〈d,d′〉∈H(G(s′ → Xpd)∧G(t′ → Xpd′)))∨G(s′ →



100

Fe)) ∧ (G(s′ ∧XeH) → ¬(
∨
〈d,d′〉∈H(G(s′ → Xpd) ∧G(t′ → Xpd′))))))

• ϕ′V := (∀s, s′, t, t′)((ϕk−1,n(s, s
′, t, t′) ∧ G(s′ → (F (pr ∧ Ft) ∧ ¬F (pr ∧ XF (pr ∧

Ft))))) → ((
∨
〈d,d′〉∈V (G(s′ → Xpd′) ∧ G(t′ → Xpd)) ∨ (s′ → Fe)) ∧ (G(s′ ∧

XeV ) → ¬(
∨
〈d,d′〉∈V (G(s′ → Xpd) ∧G(t′ → Xpd′)))))

• Condition 2 is encoded by ϕ∀ := (∃e, eD, eH , eV )(ϕe ∧ ϕ′H ∧ ϕ′V ∧ ϕ′D).

• The formula for the model-checking game is ϕT,w,G := ϕ′T,w ∨ ϕ∀.

Theorem 6.7. Given a tiling game (T,w, I), we can construct in polynomial time

a QPTL model-checking game (πw,I , ϕT,w,G, G) such that the Constructor wins the

tiling game (T,w, I) iff πw,I |=G ϕT,w,G, the model πw,I and the play order G have size

polynomial in w, and the formula ϕT,w,G has size O(log∗(w)).

Proof. In the model-checking game, G encodes the same play order for the Con-

structor and the Spoiler as the tiling game. ϕ is a disjunction on the two winning

conditions. The ϕ′T,w portion of ϕT,w,G checks that the Constructor wins the tiling

game through producing an tiling that is a solution to (T,w, I). The ϕ∀ portion of

ϕT,w,G checks that the Constructor wins the tiling game by guessing the position of

the first failing play and checking that it is actually an error belonging to the Spoiler,

as well as checking that all plays before the error are correct. So πw,I |= ϕT,w,G iff the

Constructor wins (T,w, I). For the size bound, we use the same formula alternation

depth k as Theorem 6.2, where k is the least odd number ≥ log∗(w)− 2. πw,I has the

same polynomial O(w4) size as in Lemma 5.17, and G has size at most |πw,I |. By con-

struction, ϕT,w,G has size O(|ϕk−1,n|), which by Theorem 5.18, is O(k−1+logk−1(w)).

Since logk−1(w) is bounded by a constant from our choice of k, |ϕT,w,G| is in O(k),

which is O(log∗(w)).



101

Chapter 7

A Symbolic Decision Procedure for QBF

The previous two chapters tackled intractability results for QBF. Our goal in this

chapter is to go back to practical algorithms, by exploring an alternative approach

to QBF solving based on symbolic quantifier elimination. While in Chapter 4, the

symbolic quantifier elimination approach for propositional satisfiability is only shown

to be effective on a small set of cases, symbolic techniques based on BDDs have

been successful in various automated-reasoning applications, such as model checking

[BCM+92], planning [CR00], and modal satisfiability testing [PSV02, PV03]. More

recent efforts focused on SAT solving using quantifier elimination, which, in essence,

goes back to the original approach of [DP60], since resolution as used there can be

viewed as a variable-elimination technique, ala Fourier-Motzkin. (Resolution is typ-

ically thought of as a constraint-propagation technique [Dec03], but since a variable

can be eliminated once all resolutions on it have been performed [DP60], it can also

be thought as a quantifier-elimination technique.) In [CS00] it is shown how zero-

suppressed decision diagrams (ZDDs) [Min96] can offer a compact representation for

sets of clauses and can support symbolic resolution (called there multi-resolution).

While based on the results in Chapter 4, the case for symbolic techniques in SAT

solving cannot be said to be too strong, they are intriguing enough to justify investi-

gating their applicability to QBF. On one hand, even though extending search-based

technique to QBF resulted in the development of many highly-optimized solvers,

QBF is still a “well-solved” problem like QBF, and all these solvers only work on a

small subset of real-life problems. On the other hand, symbolic quantifier elimination

handles universal quantifiers just as easily (and sometimes more easily) as it han-



102

dles existential quantifiers, so extending symbolic techniques to QBF is quite natural.

(Symbolic techniques have already been used to address conformant-planning prob-

lems [CR00], which can be expressed as QBF instances of low alternation depth.) In

this chapter we investigate the two symbolic techniques to QBF. We extend the ZDD-

based multi-resolution approach of [CS00] and the BDD-based approach of symbolic

quantifier elimination of Chapter 4. We call the two approaches QMRES and QBDD.

We compare these two approaches with three leading search-based QBF solvers: Quaf-

fle and QuBE, which were mentioned earlier, and Semprop [Let02]. Unlike other

comparative works [LST03], we decided to split our benchmark suite according to the

provenance of the benchmarks, as our goal is to identify classes of problems for which

the symbolic approaches are suited. We use a benchmark suite generated by Rintanen

[Rin99], which consists of a variety of constructed formulas (we omitted the random

formulas), a second generated by Ayari [AB00], which consists of scalable formulas

converted from circuit descriptions and protocol descriptions, and those generated

by Pan [PV03], which consist of QBF formulas translated from modal logic formu-

las. Our experiments reveal that QMRES is significantly superior to QBDD. In fact,

QBDD does not seem to be a competitive solver. (Though we return to this point

at our concluding discussion.) In contrast, QMRES is quite competitive against the

search-based solvers. While it is comparable to search-based method on Rintanen’s

formulas, QMRES outperforms them on Ayari’s and Pan’s formulas. At the same

time, QMRES performs abysmally on random formulas. This suggests that symbolic

techniques ought to be considered as complementary to search-based techniques and

should belong in the standard tool kit of QBF solver implementers.

7.1 Background

If constraints are represented by clauses rather than by BDDs, then variables can be

eliminated via resolution. Given a set C of clauses and a variable x, the variable can

be eliminated by adding to C all resolvents on x and then eliminating all clauses where



103

x occurs. Formally (∃x)C is logically equivalent to Resolvex(C), where Resolvex(C)

is the set of clauses obtained from C by adding all resolvents on x and then deleting

all clauses containing x. In fact, completeness of resolution is shown by eliminating all

variables one by one, each time replacing a set C of clauses by Resolvex(C) [DP60].

(Eliminating variables in such a fashion is reminiscent of Fourier-Motzkin variable

elimination for systems of linear inequalities and of Gaussian variable elimination for

systems of linear equalities.) This approach is also referred to as directional resolu-

tion [DR94] (see report there on experimental comparison of directional resolution to

search-based techniques). Here, for the resolution-based approach, we use the ZDD

representation used by [CS00]. See Section 4.5.1 for more details.

Most SAT solvers are search-based, following the ideas of [DLL62]. QBF solvers

build upon search techniques developed for SAT, forcing backtracking on universal

variables and branching on variables according to alternation order [CSGG02]. A

decision procedure based on an extension of resolution to QBF (called Q-resolution)

is described in [BKF95], but, to the best of our knowledge has only been implemented

as a learning technique for DPLL. We comment later on the difference between Q-

resolution, DPLL, and our multi-resolution approach to QBF.

7.2 Symbolic Quantifier Elimination for QBF

The basic idea of our approach is to extend symbolic quantifier elimination from

SAT to QBF. Given a QBF formula ϕ = Q1X1Q2X2 . . . QnXnϕ
′, we eliminate the

quantifiers from inside out, that is, in order of decreasing alternating depth, starting

with the variables in Xn. At each stage, we maintain a set of constraints, represented

symbolically either as a ZDD (expressing a set of clauses) or as a set of BDDs. To

eliminate an existential variable from a set of clauses we perform multi-resolution,

while universal variables can be eliminated by simply deleting them [BKF95]. To

eliminate an existential variable x from a set of BDDs we conjoin the BDDs in whose

support set x occurs and then quantify it existentially, while to eliminate a universal



104

variable we quantify it universally. (We can apply universal quantification to an BDD

B: (∀x)B = apply(B|x←1, B|x←0,∧).) The variables within a quantifier block QiXi

are unordered and can be eliminated in any order. Here we apply the heuristics

described in Chapter 4. The BDD approach here can be seen as a QBF analogue

of BE in Chapter 4, and similarly, the ZDD approach here is a QBF analogue of

multi-resolution in Chapter 4.

We note that our resolution approach to QBF is different than that of [BKF95].

We require that quantifiers be eliminated from the inside out; thus, resolution can be

performed only on the existential variables in the innermost quantifier block. In con-

trast, Q-resolution [BKF95] allows resolution on non-innermost existential variables.

The difference stems from the fact that the focus in Q-resolution is on generating

resolvents, while the focus here is on quantifier elimination. For Q-resolution to be

complete, all resolvents need to be kept. In contrast, once we have performed multi-

resolution on a variable x, all clauses containing it are deleted.

First, we describe QMRES, a multi-resolution QBF solver. For the definition of

the ZDD-based representation and the semantics of the operators, please see Chap-

ter 4.5.1. We provide pseudocode in Algorithm 1:

Note that in addition to multi-resolution the algorithm applies a naive form of

unit propagation (weaker then what is described in [ZM02b]). When the clause set is

represented using ZDDs, clauses with only a single literal can be easily enumerated

without traversing the whole ZDD, since such clauses are represented by a path of

length 2 in the ZDD. Existential unit literals can then be resolved on without regard

to their alternation depth. (If a universal literal becomes unit, the formula is false.)

The overhead of such a check are negligible so we applied it in all cases.

We now describe QBDD, an BDD-based QBF solver. We provide pseudocode in

Algorithm 21:

1In the implementation, we use an approximation where choose bucket(Ri) = i+1, which avoided

the overhead of traversing the BDD Ri and finding the lowest ordered variable according to v.



105

Algorithm 1 Multi-resolution for QBF

Q-Multi-Res(ϕ, S, v)

Require: S is the set of clauses forming matrix of ϕ, and v = 〈v1 . . . vn〉 is an order

of variables where alt(vi) ≥ alt(vi+1)

Ensure: returns true if ϕ is valid and false otherwise

for i=1..n do

if vi is existential then

S ⇐ (Sv+i × Sv−i ) + Sv′i

else

S ⇐ Sv+i + Sv−i + Sv′i

end if

S ⇐ Unitprop(S){Apply unit propagation}

end for

return S 6= {φ}

In Chapter 2 we described the MCS heuristics for variable ordering. MCS is

only one of many variable-ordering heuristics that are used to approximate treewidth

[KBv01]. We explored several other variable-ordering heuristics in [PV04a]. MCS

came out as the overall best performers across a wide variety of benchmarks. It is

interesting to note that MCS is not necessarily the best performer in terms of induced

width. Other heuristics, such as min-fill [Dec03] yield better induced width. One has

to remember, however, that variable order impacts not only the induced width but

also decision-diagram size. In turns out that a variable that reduce the size of the

support set of decision diagram does not necessarily reduces its size. While these

effects may be less marked for ZDD-based clause representation, we chose to use

MCS for both of our algorithms.

As described earlier, however, MCS is computed from the matrix of the QBF for-

mula, ignoring completely the quantifier prefix. Since quantifier elimination proceed



106

Algorithm 2 Bucket Elimination for QBF

QBDD(ϕ, S, v)

Require: S, v as in Q-Multi-Res

Ensure: returns true if ϕ is valid and false otherwise

Build BDD clusters S1 . . . Sn, where a clause c ∈ S is in cluster Si if vi is the lowest

ordered variable in c

for i=1..n do

if vi is existential then

Ri = ∃xi
∧
c∈Si

c

else

Ri = ∀xi
∧
c∈Si

c

end if

if Ri = 0 then

return false

end if

j = choose bucket(Ri)

Sj = Sj ∪ {Ri}

end for

return true



107

from the inside out, we need to adapt MCS to take into account alternation depth.

We first perform MCS on the matrix only, ignoring alternation. Then, variable order

for quantifier elimination is generated, where at each step we choose a variable from

those with the highest alternation depth that has the lowest MCS rank.

Beside testing the impact of structural heuristics, we also hope that symbolic

approaches can solve problems that are otherwise intractable for search-based ap-

proaches because of their use of a compressed data structure. Such use of compression

can lead to a more powerful underlying reasoning system.

In order to analyze the difference between search and symbolic-based approaches

for QBF, we take an in-depth look at what modern search-based solvers do. The

following Figure 7.1 is an excerpt of the algorithm presented in Figure 1 of [ZM02b].

Here, we ignore the conflict-driven learning portion and concentrate on solution-driven

learning portion. In other words, we only consider the code path needed to determine

that a QBF instance is satisfiable. The function deduce() performs Boolean constraint

propagation on a representation they call ACNF, which is a disjunction of the original

CNF matrix with a DNF of learned solutions. The function analyze SAT() performs

term resolution, the dual of Q-resolution that operates on terms instead of clauses.

Consider the following CNF matrix:

∧
1≤i≤n

(ai ∨ bi) ∧ (¬ai ∨ ¬bi)

Here, every satisfying solution need to contain assignments to all variables. Con-

sider the quantifier prefix ∀a1 . . . ∀an∃b1 . . . ∃bn to the above matrix. Since learned

solutions ignore innermost existential literals (just like learned clauses ignore inner-

most universal literals), each learned solution is a term on the variables a1 to an. But

all the solutions needed to satisfy the matrix give rise to minterms in a1 to an, which

limits their ability to prune out search space.

Theorem 7.1. There are at least 2n calls to deduce() in the solving of the formula

above through solution-driven learning.



108

while(1) {

decide_next_branch();

while(true) {

status=deduce();

if(status == CONFLICT){

...

}

else if (status==SATISFIABLE) {

blevel= analyze_SAT()

if (blevel==0)

return SAT;

else backtrack(blevel);

}

else break;

}

}

Figure 7.1 : Satisfiability searching part of Algorithm in Fig.1, [ZM02b]



109

Proof. In order to terminate, since the formula is satisfiable, we need to ascertain

all 2n minterms on ais lead to satisfying assignments on the propositional matrix.

This is done through deducing the empty term during term resolution. We ignore

all the times when deduce() leads to conflicts, and only consider the times when

it returned with SATISFIABLE. There are only two possibilities. One is that the

SATISFIABLE result is because the original propositional matrix is satisfied. In

which case, because the assignment is a complete assignment on ais and bis, we can

cover at most 1 out of 2n possible minterms. The other case is that we went into

a pruned search space, i.e., one of the learned terms is satisfied. In this case, no

previously unvisited minterms are covered. In addition, in the learning procedure

analyze SAT(), properties of resolution asserts no previously unvisited minterms are

covered. So, in order to decude an empty term to assure satisfiability, we need to

visit 2n minterms through enumerating all 2n satisfiable assignments to the original

propositional matrix, leading to at least 2n calls to deduce().

One important thing to note is that for problems that are satisfiable, DPLL and

resolution are no longer inter-reducible, in contrast to the polynomial simulation

between DPLL and resolution for propositional logic in [BKS03]. For example, the

formula above is saturated with respect to resolution, in other words, there are no

possible clauses to be deduced through resolution. In turn, refuting the formula is not

possible and satisfiability can be immediately ascertained using resolution, as opposed

to the exponential number of steps we need when using DPLL where resolution is

only used as a learning technique.

One important distinction to note here is that although conflict-driven learning

and solution-driven learning seems to symmetric, since they are dual techniques,

they are really quite different in practice. While both learning techniques perform

resolution, conflict-driven learning generates local consequences, i.e., clauses that are

implied by a subset of the propositional matrix. On the other hand, solution-driven

learning generates global consequences, which are terms that are solutions to the



110

whole propositional matrix. This difference is determined by the choice of ACNF

representation, where clauses and terms are not symmetrically represented. In con-

trast, bottom-up symbolic algorithms that builds BDDs are truely symmetric, which

is a single consequence generation procedure for both conflicts and solutions.

7.3 Experimental Results

We compare the symbolic approaches with three search-based solvers: QuBE

[GNT01], Quaffle [ZM02b], and Semprop [Let02]. These search-based solvers use

sophisticted heuristics for branch-variable selection and lemma/conflict caching. For

both symbolic solvers, we used CUDD [Som98] as the underlying decision diagram en-

gine, and for QMRES, we used the multi-resolution engine implemented by Chatalic

and Simon [CS00].

We use three classes of benchmarks from the QBFLIB benchmark suites[Nar],

those generated by Rintanen [Rin99], from which we omitted the random formulas

but kept a variety of hand constructed formulas, those generated by Ayari [AB00],

which consist of scalable formulas converted from circuit descriptions and protocol

descriptions, and those generated by Pan [PV03], which consist of formulas translated

from modal logic.

7.3.1 Symbolic vs. Search

A first observation, consistent with propositional logic, is that symbolic approaches

typically performs very badly on random problems. For example, symbolic approaches

are orders of magnitude slower for uniform propositional 3-CNF problems [PV04a].

(In our QBF experiments, the symbolic approaches completed none of the uniform

random formulas in the Rintanen’s benchmarks within the 1000s timeout limit.) In

the following, we compare the symbolic and search approaches only on constructed

formulas, ignoring the results for random problems. (In general, QBF solvers typ-

ically behave quite differently on random vs. non-random formulas, which is why



111

10
1

10
2

10
3

10
4

10
5

10
6

0

5

10

15

20

25

30

35

40

45

Running Time(ms)

C
as

es
 c

om
pl

et
ed

QuBE
Quaffle
Semprop
QMRES
QBDD

Figure 7.2 : Rintanen’s Benchmarks (Non-random)

10
1

10
2

10
3

10
4

10
5

10
6

0

5

10

15

20

25

30

35

40

45

50

Running Time(ms)

C
as

es
 c

om
pl

et
ed

QuBE
Quaffle
Semprop
QMRES
QBDD

Figure 7.3 : Ayari’s Benchmarks

comparative studies separate the two cases [LST03].)

First we evaluated our solvers on Rintanen’s and Ayari’s benchmark suites

[Rin99, AB00]. Rintanen’s benchmark suite is one of the first benchmark suite for

QBF, including formulas constructed from planning problems, hand-constructed for-

mulas, and randomly generated formulas (which we omitted) covering a wide range

of difficulty and alternation depth. Ayari’s benchmark suite is one of the first to

encode bounded-model-construction problems in QBF through M2L-STR, a monadic

second-order logic on finite words [AB00], with typically quite low alternation depth.

The results for Rintanen’s benchmarks are plotted in Figure 7.2 and the results for



112

Ayari’s Benchmarks are plotted in Figure 7.3. We used the plotting style presented

in [GMTZ01, SS01], which plotted the number of completed cases against the time

taken to run each case. A solver with a higher line dominates (i.e., is considered to

be better than) one with a lower line since it solved more cases in the same amount

of time.

Our first observation is that QMRES clearly dominates QBDD. This is somewhat

surprising, since similar experiments we performed on propositional formulas showed

that with the same variable order, the BDD-based approach dominates the ZDD-

based in most cases, falling behind only for highly under-constrained problems, where

the compression of ZDD-based clause set representation is greater. In contrast, ZDD-

based clause sets seems to be getting better compression across the range of the QBF

problems, resulting in node usage that are orders of magnitude smaller then that of

QBDD

Comparing symbolic solvers against search-based solvers, the picture is some-

what mixed. For Rintanen’s benchmarks, there is no clear winner, but for Ayari’s

benchmarks, QMRES showed a clear edge. Some of the formulas in the Rintanen’s

benchmarks, for example, the formulas resulted from the encoding of the blocks prob-

lems in artificial intelligence, only have a low alternation depth and small number of

universal variables, allowing search to perform effectively. In essence, such problems

are closer to SAT, where search-based approach typically outperform symbolic solvers

[PV04a]. On the other hand, Ayari’s problems are derived from circuit and protocol

problems, whose symmetry favors the compression of the symbolic approach. It is

interesting to note that the advantage of QMRES shows only when more difficult

problems are considered. On easier problems search-based methods are faster.

Next, we come to formulas obtained by translation to QBF from modal formulas

in the logic K [PV03]. The original modal formulas are scalable classes constructed by

Heuerding and Schwendimann [HS96], where modal properties are nested to construct

successively harder formulas. The resulting QBF formulas are grouped in the same



113

10
1

10
2

10
3

10
4

10
5

10
6

0

50

100

150

200

250

300

350

Running Time(ms)

C
as

es
 c

om
pl

et
ed

QuBE
Quaffle
Semprop
QMRES
QBDD

Figure 7.4 : Modal Logic Benchmarks

18 classes as the modal formulas, half satisfiable and half unsatisfiable, and each class

contains 21 cases of which alternation depth scales linearly. Using translation from

modal logic allowed construction of high alternation-depth problems that are non-

trivial and compact. The formulas span a large range of difficulty and sizes, from

hundreds to tens of thousands of variables. All the original modal formulas can be

solved using solvers specific for the modal logic K. We plotted time vs. cases solved

in Figure 7.4. We see that QMRES clearly dominates the search-based methods.

(This is consistent with the results described in [PV03], where symbolic modal solvers

dominate search-based solvers.)

A fundamental question is why a symbolic method outperforms search-based

method for QBF, while the situation is reversed for SAT [PV04a]. A possible ex-

planation is that propositional satisfiability is in essence a search for a satisfying

assignment. SAT solvers excel in quickly eliminating unsuccessful search branches,

combining backjumping and conflict-based learning. In contrast, search-based QBF

solvers have to deal with backtracking forced by the universal quantifers, which seems

to nullify many of the advanced search heuristics of SAT solvers. Since QBF solv-

ing requires dealing with the whole space of possible assignments, symbolic methods

benefit from the compression provided by decision diagrams.



114

10
1

10
2

10
3

10
4

10
5

10
6

0

50

100

150

200

250

300

350

Running Time(ms)

C
as

es
 c

om
pl

et
ed

QMRES
QBDD
KBDD−native
QBDD−non−CNF

Figure 7.5 : Study of overhead on ML benchmarks

7.3.2 QMRES vs QBDD

To better understand the disappointing performance of the BDD-based approach, we

take a deeper look at Pan’s formulas, which are generated from the modal formulas of

[HS96] through two different translation steps, first from ML to non-CNF QBF, then

from non-CNF QBF to QBF. In addition to running QMRES and QBDD on the final

QBF formulas, we run KBDD, an BDD-based modal solver [PV03], on the original

modal formulas. We also run an ad-hoc BDD-based solver on the intermediate non-

CNF QBF formulas, where we translate propositional formulas to BDDs without

going through the CNF step and then apply quantifier elimination.

In Figure 7.5, we plotted the performance of the corresponding solvers. We see

that the native solver KBDD performs best, with QMRES and QBDD-non-CNF very

close to each other and not far behind the native solver. There is a much larger gap

between these two and the performance of QBDD, resulting from the CNF translation.

The gap between the performance of KBDD and QBDD-non-CNF can be attributed

to the conversion of conjunction in modal formulas to universal quantification in the

QBF translation. The gap between the performance of QMRES and QBDD-non-

CNF to that of QBDD can be attributed to the the cost incurred by the BDD-based

solver in handling the additional variables generated in the conversion to CNF and



115

the difficulty in implementing certain optimizations under the BDD representation,

for example, unit propagation. This suggests that the BDD-based approach might

be more effective for problems whose natural encoding is not in CNF.



116

Chapter 8

Conclusion

In this dissertation, we looked at both practical and theoretical impacts of structural

heuristics on symbolic decision procedures. In particular, we concerned ourselves with

the structural property of width, which are measured on the interaction graph of a

problem instance. The contrast between how bounded-width impacts theoretical com-

plexity and how width-based heuristics perform in practice is quite remarkable. For

propositional logic, bounding the width of the interaction graph induced a tractable

subclass, but practical instances rarely exhibit the small-width needed. For relatively

high-width problems, optimizing other factors on BDD size become as important

as optimizing width. So optimizing through structural heuristics alone shall not be

the primary goal. In contrast, for QBF, while bounded width of the matrix do not

induce tractability for most cases beyond a small, constant width and constant alter-

nation, applying structural heuristics to a symbolic decision procedure does lead to a

competitive implementation.

There are a few reasons for this major disparity between theory and practice.

Primarily, while structural heuristics is a very important factor in the efficiency of

DD-based decision procedure implementations, it is not the sole factor in determining

the performance of a DD-based decision procedure. Often, the nature of the algorithm

used plays a bigger part. For example, the difference between search and symbolic

solvers are much bigger than the effect of different heuristics on each individual ap-

proach. Search-based solvers do a good job on propositional logic through leading

the search towards the solution quickly if the instance is satisfiable. This effect is

particularly marked for instances that are quite under-constrained, for example, for



117

random 3-CNF instances where the density is below 3.8, DPLL-based search proce-

dures are polynomial [CDS+00]. On the unsatisfiable side, while random unsatisfiable

instances may be hard (exponential time on DPLL [CDS+00]), many industrial un-

satisfiable instances still have small resolution proofs, allowing search-based solvers

to tackle them efficiently. In contrast, pure, symbolic decision procedures are model-

building in nature, and performs a bottom-up construction. In turn, at each step it

only looks at a portion of the whole instance. Such an algorithm is in turn not able

to use the whole instance to simplify the construction process. Thus, even though

the compression allowed by the BDD-based representation is significant, a signifi-

cantly larger portion of solution-space need to be covered for a symbolic decision

procedure in comparison to the search-based approach. Still, the symbolic solvers

exhibited better performance on problems that are provably hard for resolution, and

there are research in the development of hybrid solvers for propositional satisfiability

[JS04, DK03], where search and DD-based compressed representations are combined

to develop a solver with broader applicability.

Our comparison of different clustering and quantification scheduling for DD-based

symbolic proposition decision procedures further reinforced the view that structural

constraints, especially width, are not the sole indicator of performance. While BE

is optimal with respect to an optimal variable order, for many over constrained in-

stances, BM exhibited better performance. The reason is that constrainedness, an

important factor in the size of BDDs, also played an important role. Balancing the

different factors that impact the size of BDDs would be a major challenge in the

development of symbolic and hybrid solvers.

The experimental study of symbolic decision procedures for QBF gave more

promising results. For QBF, search-based solvers perform markedly worse compared

to their counter-parts on propositional logic. In addition, such reduced performance

for search compared to propositional logic are also seen in other PSPACE-complete

logics, for example, the modal logic K. One of the most important reasons is that QBF



118

(and PSPACE-complete problems) does not admit small solutions in general under

the usual complexity assumptions. Thus, search-based solvers would need to perform

an exponential number of search operations to demonstrate satisfiability. In contrast,

the compression provided by the DD-based representation allowed the model building

to be performed with no additional impact on the number of operations needed. This

is consistent with what us learned from comparing a BDD-based decision procedure

for modal logic K against search-based approaches, where the BDD-based decision

procedure is also quite competitive. The structural heuristics we studied for symbolic

propositional decision procedure are also successfully applied to symbolic QBF. One

of the active directions in QBF solving is to extend search with methods that can

reduce the amount of work needed to generate the complete strategy, either with a

hybrid approach, through resolution [Bie04], or model union [Let02].

In general, while search is marked better than symbolic algorithms for proposi-

tional logic, symbolic algorithms cannot be disregarded because of its wider applica-

bility in tackling harder logics like QBF here or modal logics [PSV02, PV03]. Some

kind of structural heuristics would always be a center part of symbolic algorithms,

since variable order and order of operations have a critical impact on the size of BDDs

during the algorithm. But, the concern should not solely on the measure of width, as

we showed that optimizing for width alone does not always give the best result.

Theoretically, we also developed a number of interesting results. The study on

the relation between the size of the BDD for a formula and the width of the formula

leads us to study the impact of quantification, where the impact from the width took

an exponential blowup. This leads us to investigate the impact of quantification on

problems under the parameterized complexity framework. Since most believe that

the containment NP⊂PSPACE is strict, and in addition, the polynomial hierarchy

does not collapse to any level, in classical complexity, quantification does make prob-

lems harder. In contrast, NP-complete problems have the same known worst-case

complexity as PSPACE-complete problems, where both take exponential time. So



119

the different complexity classes, let alone a whole hierarchy in between, do little

to explain practical worst-case complexity. We gave a possible explanation based

on parameterized complexity based on the width parameter, namely, a hierarchy of

fixed-parameter tractable classes inside PSPACE. As long as we assume P 6=NP, such

an hierarchy is strict, and each additional quantifier block induced an additional ex-

poential blowup on the coefficient. Based on the hierarchy construction, we are also

able to show applying an identical constraint, namely log∗ width, to propositional

logic and QBF resulted in drastically different behaviour. This partially contributes

to the practical performance difference between NP-class and PSPACE-class prob-

lems, and suggests that the alternations in PSPACE does make problems “harder”

to solve than problems in NP.



120

Bibliography

[AB00] A. Ayari and D. Basin. Bounded model construction for monadic

second-order logics. In Proceedings of CAV’00, 2000.

[AFF+02] Roy Armoni, Limor Fix, Alon Flaisher, Rob Gerth, Boris Ginsburg,

Tomer Kanza, Avner Landver, Sela Mador-Haim, Eli Singerman, An-

dreas Tiemeyer, Moshe Y. Vardi, and Yael Zbar. The forspec temporal

logic: A new temporal property-specification language. In Tools and

Algorithms for Construction and Analysis of Systems, pages 296–211,

2002.

[AM01] E. Amir and S. McIlraith. Solving satisfiability using decomposition

and the most constrained subproblem. In LICS Workshop on Theory

and Applications of Satisfiability Testing (SAT 2001), Electronic Notes

in Discrete Mathematics (Elsevier Science), June 2001.

[AMS01] F.A. Aloul, I.L. Markov, and K.A. Sakallah. MINCE: A static global

variable-ordering for SAT and BDD. In Proc. IEEE 10th International

Workshop on Logic and Synthesis, pages 281–286, June 2001.

[BAC+99] A. Biere, Cimatti A, E.M. Clarke, M. Fujita, and Y. Zhu. Symbolic

model checking using SAT procedures instead of BDD. In Proc. 36th

Conf. on Design Automation, pages 317–320, 1999.

[BAHP82] M. Ben-Ari, J.Y. Halpern, and A. Pnueli. Deterministic propositional

dynamic logic: Finite models, complexity, and completeness. J. Comp.

Sys. Sci., 25:402–417, 1982.



121

[Bal90] J. Balcazar. Self-reducibility. Journal of Computer and System Sci-

ences, 41(3):367–388, 1990.

[BB94] D. Beatty and R. Bryant. Formally verifying a microprocessor using a

simulation methodology. In Proc. 31st Design Automation Conference,

pages 596–602. IEEE Computer Society, 1994.

[BBG+94] I. Beer, S. Ben-David, D. Geist, R. Gewirtzman, and M. Yoeli. Method-

ology and system for practical formal verification of reactive hardware.

In Proc. 6th Conf. on CAV, volume 818 of LNCS, pages 182–193, Stan-

ford, June 1994.

[BCCZ99] A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic model check-

ing without BDDs. In TACAS, volume 1579 of LNCS. Springer-Verlag,

1999.

[BCL91] J.R. Burch, E.M. Clarke, and D.E. Long. Symbolic model checking with

partitioned transition relations. In VLSI 91, Proc. IFIP TC10/WG 10.5

International Conference on Very Large Scale Integration, Edinburgh,

Scotland, 20-22 August, 1991, pages 49–58, 1991.

[BCM+92] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic

model checking: 1020 states and beyond. Information and Computation,

98(2):142–170, 1992.

[BGP+97] M. Block, C. Gröpl, H. Preuß, H. L. Proömel, and A. Srivastav. Efficient

ordering of state variables and transition relation partitions in symbolic

model checking. Technical report, Institute of Informatics, Humboldt

University of Berlin, 1997.

[Bie04] A. Biere. Resolve and expand. In Proc. 7th Int. Conf. on Theory and

Applications of Satisfiability Testing (SAT 2004), pages 238–246, 2004.



122

[BK96] H.L. Bodlaender and T. Kloks. Efficient and constructive algorithms

for the pathwidth and treewidth of graphs. J. Algorithms, 21:358–402,

1996.

[BKF95] H.K. Buning, M. Karpinski, and A. Flogel. Resolution for quantified

Boolean formulas. Inf. and Comp., 117(1):12–18, 1995.

[BKS03] Paul Beame, Henry A. Kautz, and Ashish Sabharwal. Understanding

the power of clause learning. In IJCAI, pages 1194–1201, 2003.

[Bou99] F. Bouquet. Gestion de la dynamicite et enumeration d’implicants pre-

miers, une approche fondee sur les Diagrammes de Decision Binaire.

PhD thesis, Universite de Privence, France, 1999.

[Bry86] R.E. Bryant. Graph-based algorithms for Boolean function manipula-

tion. IEEE Trans. on Comp., Vol. C-35(8):677–691, August 1986.

[Bry91] R.E. Bryant. On the complexity of VLSI implementations and graph

representations of Boolean functions with application to integer mul-

tiplication. IEEE Transaction on Computers, 40(2):205–213, February

1991.

[Büc60] J.R. Büchi. Weak second-order arithmetic and finite automata. Zeit.

Math. Logik und Grundl. Math., 6:66–92, 1960.

[CB94] J.M. Crawford and A.B. Baker. Experimental results on the application

of satisfiability algorithms to scheduling problems. In Proc. 12th Nat.

Conf. on Artificial Intelligence, volume 2, pages 1092–1097, 1994.

[CDS+00] C. Coarfa, D. D. Demopoulos, A. San Miguel Aguirre, D. Subramanian,

and M.Y. Vardi. Random 3-SAT: The plot thickens. In Proc. 6th Int.

Conf. Constraint Programming (CP 2000), 2000.



123

[CDS+03] C. Coarfa, D. D. Demopoulos, A. San Miguel Aguirre, D. Subramanian,

and M.Y. Vardi. Random 3-SAT: The plot thickens. Constraints, pages

243–261, 2003.

[CEA86] E.M. Clarke, E.A. Emerson, and A.P.Sistla. Automatic verification

of finite-state concurrent systems using temporal logic specifications.

ACM Trans. on Prog. Lan. Sys., 8:244–263, 1986.

[Che04] H. Chen. Quantified constraint satisfaction and bounded treewidth. In

Ramon López de Mántaras and Lorenza Saitta, editors, ECAI, pages

161–165. IOS Press, 2004.

[Chl86] B. Chlebus. Domino-tiling games. J. Comp. Sys. Sci., 32:374–392, 1986.

[CHP93] P. Chung, I. Hajj, and J. Patel. Efficient variable ordering heuristics

for shared ROBDD. In Proc. 1993 IEEE Int. Symp. on Circuits and

Systems (ISCAS93), pages 1690–1693, 1993.

[CKS81] A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal

of the Association for Computing Machinery, 28(1):114–133, January

1981.

[Coo71] S. A. Cook. The complexity of theorem proving procedures. In Proc. 3rd

ACM Symp. on Theory of Computing, pages 151–158, 1971.

[CR00] A. Cimatti and M. Roveri. Conformant planning via symbolic model

checking. J. of AI Research, 13:305–338, 2000.

[CS00] P. Chatalic and L. Simon. Multi-Resolution on compressed sets of

clauses. In Twelfth International Conference on Tools with Artificial

Intelligence (ICTAI’00), pages 2–10, 2000.



124

[CSGG02] M. Cadoli, M. Schaerf, A. Giovanardi, and M. Giovanardi. An algorithm

to evaluate quantified Boolean formulae and its experimental evalua-

tion. J. of Automated Reasoning, 28(2):101–142, 2002.

[Dec03] R. Dechter. Constraint Processing. Morgan Kaufmman, 2003.

[DF99] R.G. Downey and M.R. Fellows. Parametrized Complexity. Springer-

Verlag, 1999.

[DHK05] N. Dershowitz, Z. Hanna, and J. Katz. Bounded model checking with

QBF. pages 408–414, 2005.

[DK03] Robert F. Damiano and James H. Kukula. Checking satisfiability of

a conjunction of BDDs. In Proc. 40th Design Automation Conference

(DAC 2003), pages 818–823, 2003.

[DKV02] V. Dalmau, P.G. Kolaitis, and M.Y. Vardi. Constraint satisfaction,

bounded treewidth, and finite-variable logics. In Proceedings of 8th

Int. Conf. on Principles and Practice of Constraint Programming (CP

2002), pages 310–326, 2002.

[DLL62] M. Davis, G. Logemann, and D. Loveland. A machine program for

theorem proving. J. ACM, 5:394–397, 1962.

[DP60] S. Davis and M. Putnam. A computing procedure for quantification

theory. J. ACM, 7:201–215, 1960.

[DP87] R. Dechter and J. Pearl. Network-based heuristics for constraint-

satisfaction problems. Artificial Intelligence, 34:1–38, 1987.

[DP89] R. Dechter and J. Pearl. Tree clustering for constraint networks. Arti-

ficial Intelligence, pages 353–366, 1989.



125

[DR94] R. Dechter and I. Rish. Directional resolution: The Davis-Putnam

procedure, revisited. In KR’94: Principles of Knowledge Representation

and Reasoning, pages 134–145. 1994.

[EGG] T. Eiter, G. Gottlob, and Y. Gurevich. Existential second-order logic

over strings.

[Fag74] R. Fagin. Generalized first-order spectra and polynomial-time recog-

nizable sets. SIAM-AMS Proceedings, 7:43–73, 1974.

[FFK88] M. Fujita, H. Fujisawa, and N. Kawato. Evaluation and improvements

of Boolean comparison method based on binary decision disgrams. In

Proc. IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD-88),

pages 2–5, 1988.

[FG02] M. Frick and M. Grohe. The complexity of first-order and monatic

second-order logic revisited. In LICS’02, pages 215–224, 2002.

[FPV05] A. Ferrara, G. Pan, and M.Y. Vardi. Treewidth in verification: Local

vs. global. In LPAR 2005, pages 489–503, 2005.

[Fre] E.C Freuder. Complexity of k-tree structured constraint satisfaction

problems.

[GB94] D. Geist and H. Beer. Efficient model checking by automated ordering

of transition relation partitions. In Proc. 6th Int. Conf. on Computer

Aided Verification (CAV 1994), pages 299–310, 1994.

[GMTZ01] E. Giunchiglia, M. Maratea, A. Tacchella, and D. Zambonin. Eval-

uating search heuristics and optimization techniques in propositional

satisfiability. Lecture Notes in Computer Science, 2083, 2001.



126

[GN02] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT solver.

In Proc. Design Automation and Test in Europe (DATE 2002), pages

142–149, 2002.

[GNT01] E. Giunchiglia, M. Narizzano, and A. Tacchella. QuBE, a system for

deciding quantified Boolean formulae satisfiability. In IJCAR’01, 2001.

[GPVW95] R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly

automatic verification of linear temporal logic. In Protocol Specification

Testing and Verification, pages 3–18, 1995.

[Gro96] J. F. Groote. Hiding propositional constants in BDDs. FMSD, 8:91–96,

1996.

[HD03] Jinbo Huang and Adnan Darwiche. A structure-based variable ordering

heuristic for SAT. In Proc. 18th Int. Joint Conf. on Artificial Intelli-

gence (IJCAI 2003), pages 1167–1172, 2003.

[HD04] J. Huang and A. Darwiche. Using DPLL for efficient OBDD construc-

tion. In Proc. 7th Int. Conf. on Theory and Applications of Satisfiability

Testing (SAT 2004), 2004.

[HKB96] R. Hojati, S. C. Krishnan, and R. K. Brayton. Early quantification and

partitioned transition relations. In Proc. 1996 Int. Conf. on Computer

Design (ICCD ’96), pages 12–19, 1996.

[HS96] A. Heuerding and S. Schwendimann. A benchmark method for the

propositional modal logics K, KT, S4. Technical report, Universität

Bern, Switzerland, 1996.

[Imm99] N. Immerman. Descriptive Complexity. Graduate Texts in Computer

Science. Springer, 1999.



127

[JS04] H.S. Jon and F. Somenzi. CirCUs : Hybrid satifiability solver. In Proc.

of the 7th Int. Conf. on Theory and Applications of Satisfiability Testing

(SAT 2004), pages 47–55, May 2004.

[KBv01] A.M.C.A. Koster, H.L. Bodlaender, and S.P.M. van Hoesel. Treewidth:

Computational experiments. Technical report, Konrad-Zuse-Zentrum

für Informationstechnik Berlin, 2001.

[Klo94] T. Kloks. Treewidth. In Computations and Approximations, 1994.

[KS92] H. Kautz and B. Selman. Planning as satisfiability. In Proc. 10th Eur.

Conf. on AI (ECAI 92), pages 359–363, 1992.

[Let02] R. Letz. Lemma and model caching in decision procedures for quantified

Boolean formulas. In TABLEAUX 2002, pages 160–175, 2002.

[Leu02] M. Leucker. Prefix-recognizable graphs and monadic logic. In E. Grädel,

W. Thomas, and T. Wilke, editors, Automata, Logics, and Infinite

Games. Springer-Verlag, 2002.

[Lew78] H.R. Lewis. Complexity of solvable cases of the decision problem for

the predicate calculus. In FOCS 1978, pages 35–47, 1978.

[LS03] D. Le Berre and L. Simon. The essentials of the SAT’03 competition. In

Proc. 6th Int. Conf. on Theory and Applications of Satisfiability Testing

(SAT 2003), pages 452–467, 2003.

[LST03] D. Le Berre, L. Simon, and A. Tacchella. Challenges in the QBF arena:

the SAT’03 evaluation of QBF solvers. In Proc. 6th International Con-

ference on Theory and Applications of Satisfiability Testing (SAT 2003),

pages 468–485, 2003.

[McM93] K.L. McMillan. Symbolic Model Checking. Kluwer Acad. Pub., 1993.



128

[Mei89] C. Meinel. Modified Branching Programs and Their Computational

Power. Springer-Verlag, 1989.

[Min96] S. Minato. Binary Decision Diagrams and Applications to VLSI CAD.

Kluwer, 1996.

[MM02a] D. B. Motter and I. L. Markov. A compressed breadth-first search

for satisfiability. In Proc. 4th Int. Workshop on Algorithm Engineering

and Experiments (ALENEX 2002), volume 2409 of Lecture Notes in

Computer Science, pages 29–42, 2002.

[MM02b] D. B. Motter and I. L. Markov. On proof systems behind efficient SAT

solvers. In Proc. of 5th Int. Symp. on the Theory and Applications of

Satisfiability Testing (SAT 2002), pages 206–213, May 2002.

[MMZ+01] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:

Engineering an efficient SAT solver. In Proc. of 39th Design Automation

Conference (DAC 2001), pages 530–535, June 2001.

[MWBSV88] S. Malik, A. Wang, R. Brayton, and A. Sangiovanni Vincentelli. Logic

verification using binary decision diagrams in a logic synthesis envi-

ronment. In Proc. IEEE/ACM Int. Conf. on Computer-Aided Design

(ICCAD-88), pages 6–9, 1988.

[Nar] M. Narizzano. QBFLIB, the quantified Boolean formulas satisfiability

library. http://www.qbflib.org.

[PBG05] M.R. Prasad, A. Biere, and A. Gupta. A survey of recent advances in

sat-based formal verification. STTT, 7:156–173, 2005.

[PSV02] G. Pan, U. Sattler, and M.Y. Vardi. BDD-based decision procedures

for K. In Proc. of CADE 2002, volume 2392 of LNAI, pages 16–30,

2002.



129

[PV03] G. Pan and M.Y. Vardi. Optimizing a symbolic modal solver. In Proc.

of CADE 2003, 2003.

[PV04a] G. Pan and M.Y. Vardi. Search vs. symbolic techniques in satisfia-

bility solving. In Proc. 7th Int. Conf. on Theory and Applications of

Satisfiability Testing (SAT 2004), pages 137–146, 2004.

[PV04b] Guoqiang Pan and Moshe Y. Vardi. Symbolic decision procedures for

QBF. In Proceedings of 10th Int. Conf. on Principles and Practice of

Constraint Programming (CP 2004), pages 453–467, 2004.

[PV06] G. Pan and M.Y. Vardi. Fixed-parameter hierarchies in PSPACE. In

LICS, 2006.

[RAB+95] R. Ranjan, A. Aziz, R. Brayton, B. Plessier, and C. Pixley. Effi-

cient BDD algorithms for FSM synthesis and verification. In Proc.

of IEEE/ACM Int. Workshop on Logic Synthesis, 1995.

[Rin99] J. Rintanen. Constructing conditional plans by a theorem-prover. J. of

A. I. Res., 10:323–352, 1999.

[RS86] N. Robertson and P.D. Seymour. Graph minors. ii. algorithmic aspects

of treewidth. J. of Algorithms, 7:309–322, 1986.

[Sav70] W.J. Savitch. Relationship between nondeterministic and deterministic

tape complexities. J. Comp. Sys. Sci., 4:177–192, 1970.

[Sch78] T. Schaefer. The complexity of satisfiability problems. In Proc. of

the 10th annual ACM symposium on Theory of computing(STOC’78),

pages 216–226, 1978.

[SML96] B. Selman, D. G. Mitchell, and H. J. Levesque. Generating hard satis-

fiability problems. Artificial Intelligence, 81(1-2):17–29, 1996.



130

[Som98] F. Somenzi. CUDD: CU decision diagram package.

http://vlsi.colorado.edu/˜fabio/CUDD/, 1998.

[SS01] G. Sutcliffe and C. Suttner. Evaluating general purpose automated

theorem proving systems. Artificial intelligence, 131:39–54, 2001.

[Sto74] L.J. Stockmeyer. The complexity of decision problems in automate the-

ory and logic. PhD thesis, Dept. of Elec. Eng., MIT, 1974.

[Sto76] L. Stockmeyer. The polynomial-time hierarchy. Theo. Comp. Sci., 3:1

– 22, 1976.

[SV01] A. San Miguel Aguirre and M. Y. Vardi. Random 3-SAT and BDDs:

The plot thickens further. In Proc. of the 7th Int. Conf. Principles and

Practice of Constraint Programming (CP 2001), pages 121–136, 2001.

[SVW87] A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem

for Büchi automana with applications to temporal logic. Theo. Comp.

Sci., 49:217–237, 1987.

[Tse81] G.S. Tseitin. On the complexity of derivation of propositional calculus,

pages 466–483. Springer, 1981.

[TY84] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to tests

chordality of graphs, tests acyclicity of hypergraphs, and selectively

reduce acyclic hypergraphs. SIAM Journal on Computing, 13(3):566–

579, 1984.

[Urq95] A. Urquhart. The complexity of propositional proofs. the Bulletin of

Symbolic Logic, 1:425–467, 1995.

[US94] T. E. Uribe and M. E. Stickel. Ordered binary decision diagrams and

the Davis-Putnam procedure. In 1st Int. Conf. on Constraints in Com-

putational Logics, pages 34–49, 1994.



131

[Var82] M.Y. Vardi. The complexity of relational query languages. In Proc.

Sym. Theory. of Comp., 1982.

[VW94] M.Y. Vardi and P. Wolper. Reasoning about infinite computations.

Information and Computation, 15:1 – 37, 1994.

[Zha97] H. Zhang. SATO: An efficient propositional prover. In Proc. of Interna-

tional Conference on Automated Deduction (CADE-97), pages 272–275,

1997.

[ZM02a] L. Zhang and S. Malik. The quest for efficient Boolean satisfiability

solvers. In Proc. 14th Int. Conf. on Computer Aided Verification (CAV

2002), pages 17–36, 2002.

[ZM02b] L. Zhang and S. Malik. Towards symmetric treatment of conflicts and

satisfaction in quantified Boolean satisfiability solver. In Proceedings of

8th Int. Conf. on Principles and Practice of Constraint Programming

(CP 2002), pages 200–215, 2002.


