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PrefaceThis thesis inspects the planning as model checking paradigm, bringing to-gether several contributions in the �elds of formalization and e�ciency.This planning paradigm has been recently proposed and seems to be verypromising to develop formally clear and e�cient planners dealing with expres-sive planning problems, that is, dealing with nondeterministic actions, partialobservability of world states, and temporally extended goals.Joining formal clearness, e�ciency, and expressiveness becomes possibleby exploiting the large amount of research carried out in the �eld of modelchecking, a very successful formal veri�cation technique able to automaticallycheck �nite-state systems with respect to temporal speci�cations.More in detail, a planning domain is looked at as a semantic structure,properties of planning domains are expressed in some temporal logic, andplanning amounts to checking whether temporal formulas are true in the se-mantic structures, that is, amounts to model checking.Previous work in this �eld uses model checking techniques for addressingnondeterministic planning domains, but does not cast them as model checkingproblems, loosing the formal clearness. Other work exploits the model check-ing framework in order to deal with temporally extended goals and partialobservability.In this thesis, we show how the former approach can be enhanced andformalized as a model checking problem, and improve the model checkingtechniques required by the latter.
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IntroductionPlanning [38, 34, 62, 5, 43, 15] the course of actions to achieve a goal hasbeen one of the �rst and most challenging interests of Arti�cial Intelligence,motivated and since then strictly related to robotic applications. So far, theresearch in planning has mainly followed two divergent directions. From oneend, it has heavily limited the expressiveness to yield e�cient planners and,from the other end, has developed very expressive frameworks in which plan-ning is a very hard task. Several practical planners [62, 5, 41] are available forthe so called classical planning, which makes some fundamental assumptions:the planner has complete information about the initial state of the world,complete observability of the world states, the goals are goals of attainment,and the e�ects of execution of actions are deterministic. These assumptionsare unrealistic in several practical domains. For instance, in a realistic roboticapplication, the action \pick-up a block" can not be simply described throughthe deterministic e�ect \the block is at hand". \Pick-up a block" might resulteither in a success or a failure, and the result can not be known a priori of theexecution. On the other hand, expressiveness has been targeted in deductiveplanning [38, 77, 78], where planning amounts to prove a theorem, or in theoryof actions [56, 52, 53]. Unfortunately, while the automatic generation of plansin deductive planning is still an open problem, the framework based on theoryof action does not even deal with the problem of plan generation.Temporal logic [67, 30] was introduced by philosophers for providing a for-mal system for qualitatively describing and reasoning about how the truth val-ues of assertions change over time. In temporal logic, time is not mentionedexplicitly. Instead, a formula might specify that eventually some designateproperty is satis�ed, or that another property is never satis�ed. Temporallogics come in two ways, according to the time structure: in linear time tem-poral logic [30], each instant of time has a unique successor, while in branchingtime temporal logic [30] each instant of time can have many successors.Model checking [22, 69, 51, 9, 84] is a formal technique used for checkingthat a �nite-state system satis�es its speci�cations. Model checking has raiseda lot of attention during the last ten years, since it succeeded in making for-mal veri�cation applicable in practice, allowing for early discovery of subtle1



2 CONTENTSlogical errors in real designs. In this approach the system to verify is modeledas state-transition systems, while its speci�cations are expressed in temporallogic. An e�cient search procedure is then used to check whether the state-transition system is a model of the speci�cations. Most important, such checkis completely automatic and, when failing, provides a counterexample show-ing why the system does not satis�es its speci�cations. On the other hand,the algorithmic nature of model checking makes it very sensitive to the sizeof the system. This problem|known as state-space explosion problem|isthe major limitation of the approach. The most important discovery to facesuch a problem has been symbolic model checking [9, 60], which exploits a newdata structure, namely, the ordered binary decision diagrams [6], to conciselyrepresent state-transition systems and to e�ciently manipulate them. An al-ternative approach relies on automata on in�nite words [8, 81, 82], and exploitsthe close relationship existing between them and temporal logics [84, 85, 35].Planning as model checking [15, 37, 2, 19, 18, 26, 16, 27] is a new planningparadigm that seems to be very promising in re-setting the focus of the re-search on planning towards more balanced objectives, that is, towards buildingplanners that deal with more realistic planning problems and have good per-formances. This approach has been proposed by Cimatti et al. [15], who �rstused symbolic techniques to solve planning problems. The main idea underly-ing this paradigm is that, as in model checking, planning problems are facedmodel-theoretically. That is, planning domains are formalized as semanticmodels, properties of planning domains are formalized as temporal formulas,and planning is carried out by verifying whether semantic models satisfy tem-poral formulas. Looking at planning from this perspective introduces manynew important features:� The approach is well-founded: Planning problems are given a clear andintuitive formalization.� The approach is general: The same framework can be used to naturallytackle many di�erent aspects of planning, e.g., many initial states, partialobservability, nondeterministic domains, and extended goal, that is, notonly goals of attainment.� The approach is practical: By exploiting the large amount of techniquesdeveloped for model checking, it is possible to devise e�cient algorithmsthat generate plans automatically and that can deal with large size prob-lems.Beyond [15], many other works have then extended the approach to deal withnonclassical planning in several ways [19, 18, 26, 16]. More in detail, [15] in-troduces weak plans, that is, plans that may achieve the goal but, because of



CONTENTS 3nondeterminism and because plans are sequences of actions, are not guaran-teed to do so. Indeed, nondeterminism has to be tackled by planning con-ditional behaviors, which depend on the information that can be gathered atexecution time, e.g., try to pick up the block again if the execution of \pick-upa block" has failed. [19] then introduces strong plans, namely, plans that areguaranteed to achieve the goal in spite of nondeterminism. However, mostoften, a conditional plan is not enough: plans encoding iterative trial-and-error strategies like \pick up the block until succeed" are the only acceptablesolutions. Indeed, in several realistic domains, a certain e�ect, say action suc-cess, can never be guaranteed a priori of execution and, in principle, iterativeplans might loop forever, under an in�nite sequence of failure. The planner,however, should generate iterative plans whose executions always have a pos-sibility of terminating and, if they do, they achieve the goal. [18, 26] dealswith strong cyclic plans, whose aim is to encode such iterative trial-and-errorstrategies. On the other hand, Vardi and DeGiacomo [27] have shown how tocope with temporally extended goals and partial observability in deterministicdomains by exploiting the automata-based approach. Here, both the planningdomain and the goal are looked at as automata on in�nite words, and are thensuitably combined in order to select the paths in the planning domain that arecompatible with the goal. The close relationship between the Linear TemporalLogic LTL [30] and automata on in�nite words makes then more comfortableto express goals as LTL formulas, like \eventually G" for goals of attainmentor \always eventually G" for going in�nitely often through the goal.In this thesis, we inspect planning as model checking, dealing with ef-�ciency, formalization, and expressiveness aspects. In particular, the thesisbuilds on [15, 19, 18, 27, 35], bringing the following contributes:1. We provide a formal de�nition of strong cyclic plans based on the branch-ing time Computational Tree Logic CTL [30]. The idea is that a strongcyclic plan is a solution such that \for each possible execution, alwaysduring the execution, there exists the possibility of eventually achievingthe goal". The formalization is obtained by exploiting the universal andexistential path quanti�ers of CTL, as well as the \always" and \even-tually" temporal connectives.We de�ne a new algorithm for strong cyclic planning. Our algorithmis correct and complete, i.e., it generates strong cyclic plans accordingto the formal de�nition while, if no strong cyclic solutions exist, it ter-minates with failure. The algorithm in [18] did not satisfy the formalspeci�cations. Indeed, it could generate plans that could get stuck inloops with no possibility of terminating.We improve the quality of strong cyclic solutions by eliminating nonrel-evant actions.



4 CONTENTSWe show how to extend the above formalization to weak (there exists anexecution that eventually achieves the goal) and strong (all the execu-tions eventually achieve the goal) plans.2. We improve the algorithm for translating LTL formulas into automata.The algorithm is used to produced the goal automaton starting from theLTL formula representing the goal. Since this translation is PSPACE-complete [23] and since the goal automaton has to be composed with theusually huge automaton for the planning domain, it is highly desirableto keep the goal automaton as small as possible.We propose a test methodology to test the above translation. More-over, our methodology can be also used for evaluating LTL deciders andits underlying concepts, basically targeting a uniform coverage of theformula space, can be exported to other logics.Part of the material included in this thesis has already been published inthe following papers:� Daniele, M., Traverso, P., Vardi, M. Y., Strong Cyclic Planning Re-visited. In Proceeding of the 2nd European Conference on Planning(ECP99).� Cesta, A., Riccucci, P., Daniele, M., Traverso, P., Giunchiglia, E., Piag-gio, M., and Shaerf, M., Jerry: a system for the automatic generationand execution of plans for robotic devices - the case study of the Spiderarm. In Proceedings of the 5th International Symposium on Arti�cialIntelligence, Robotics and Automation in Space (ISAIRAS99).� Daniele, M., Giunchiglia, F., and Vardi, M. Y. Improved automata gen-eration for linear temporal logic. In Proceedings of the 11th InternationalConference on Computer-Aided Veri�cation (CAV99).The thesis consists of two parts. The �rst part (Chapters 1{4) deals withpreliminaries, while the second one (Chapter 5) introduces the new material.More in detail,� Chapter 1 introduces planning, discussing plan representation and plan-ning approaches.� Chapter 2 deals with temporal logics, presenting the logics LTL and CTLas sublogics of the more powerful logic CTL*.� Chapter 3 presents model checking algorithms for both CTL and LTLspeci�cations.



CONTENTS 5� Chapter 4 introduces the ordered binary decision diagrams and showshow to exploit them in order to yield symbolic model checking algorithmsfor both CTL and LTL speci�cations.� Chapter 5 is the core of the thesis. It presents a formal framework giv-ing semantics to weak, strong, and strong cyclic plans, and introducessymbolic algorithms for weak, strong, and strong cyclic planning. More-over, it discusses the automata-based approach to planning and presents,and describes experiments with, an algorithm for generating automatacorresponding to LTL goals.
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Chapter 1PlanningIn this chapter we present the fundamental concepts about planning. More indetail, we start by discussing classical planning in Section 1.1, introduce themost important representations of planning problems in Section 1.2, describethe most relevant approaches to classical planning in Section 1.3, and con-clude with Section 1.4 by surveying some solutions considered in nonclassicalplanning.1.1 Classical PlanningThe �eld of AI planning seeks to build control algorithms that enable an agentto synthesize a program of actions, whose execution from some initial statesatis�es the goal. More in detail, a planning domain is a �nite set of worldstates, and a �nite set of actions, which are responsible for transforming thestate of the world. A planning problem is a planning domain, plus a descriptionof the initial states and a description of the desired behavior, i.e., of the goal.A solution for a planning problem, i.e., a plan, is a program of actions whoseexecution starting from some initial state satis�es the goal.Note that the above formulation of planning is rather abstract, since theplan is a program with no further structure, actions can be nondeterministic,that is, the result of their executions cannot be known a priori, and the goalhas to be (somehow) satis�ed, rather than reached. However, most of theresearch in planning deals with classical planning, by making the followingassumptions:Deterministic e�ects: The e�ect of executing an action is a deterministicfunction of the action and the state of the world when the action isexecuted.Omniscience: The agent has complete knowledge about the initial state of7



8 CHAPTER 1. PLANNINGthe world, that is, the initial state is unique, and has complete observ-ability of each state of the world.Sole cause of change: The only way the worlds changes is by agent's ownactions. There are no other agents and the world is static by default.Goals of attainment: Goals are described by the state of the world theagent wants to achieve after the execution of the plan. No attention iskept to the way in which the goal state is reached.Note that, in classical planning, due to the deterministic nature of actions,the unique initial state, and the simple nature of the goals, plans have a verysimple structure, namely, a sequence of actions.1.2 Planning Problem RepresentationIn this section, we describe the two most popular languages for planning prob-lem representation, namely, STRIPS and ADL.1.2.1 STRIPSSTRIPS [34] is one of the earliest representation language for planning prob-lems1 and, due to its simplicity, one of the most popular. This representationmodels actions as operation on a database, which records the current state ofthe world.A STRIPS description is a pair hL;Oi where L is a subset of a �rst-orderlanguage for describing states and O is a set of actions.More in detail, the alphabet of L consists of a �nite set of constant symbolsci, a �nite set of variable symbols xi, a �nite set of predicate symbols pi witharity a(pi), and the negation :. A constant or a variable is also called a term.An atom is an expression of the form p(t1; : : : ; tn), where p is a n-ary predicateand the ti are terms. A literal is an atom or its negation and, as usual, ::Ais assumed to be A. A ground literal is a literal without variables. A groundatom is also referred to as uent.State descriptions and goals can be constructed from the above fragmentof the �rst-order logic. As an example, consider the robot hand and initialcon�guration of blocks shown in Figure 1.1 (left). This situation can be rep-resented by the set of literals fON(A; TABLE);ON(C;A);ON(B;TABLE);CLEAR(C);CLEAR(B);HANDEMPTYg. Here, the constant symbols are A,1Actually, STRIPS was a planner obtained by adapting a problem solver. Indeed, thename STRIPS stands for STanford Research Institute Problem Solver. Due to the successof the description language, the acronym STRIPS has been since then used to denote thelanguage.



1.2. PLANNING PROBLEM REPRESENTATION 9
A BC ACB

Figure 1.1: Initial and goal states for the \Sussman Anomaly" problem in theBlock World.B, and C, while the predicate symbols are CLEAR, HANDEMPTY, and ON.The literal CLEAR(B) means that block B has a clear top, that is, no otherblock is on it. The ON predicate is used to describe which block are directlyon other blocks. The predicate HANDEMPTY is true just when the robothand is empty, as in the situation depicted.Since we require the initial state to be unique, all literals not explicitlylisted in the description are assumed to be false. This is called the \ClosedWorld Assumption" [70]. This means that, for instance, :ON(A;C) and:CLEAR(A) are implicitly in the initial state description.Goal descriptions can be expressed as a set of literals too. For example,if we want the robot to construct a stack of blocks in which, as in Figure 1.1(right), the block B is on the block C and the block A is on the block B, wemight describe the goal as fON(B,C);ON(A,B);ON(C; TABLE)g. Figure 1.1yields a simple block-stacking challenge called the \Sussman Anomaly"2.For goal expressions, we allow set of literals, and any variables in goalexpressions are assumed to be existentially quanti�ed. For initial and inter-mediate state descriptions, we allows only set of ground literals.Action description consists of three sets of positive literals that are calledprecondition, delete list, and add list respectively. As an alternative represen-tation, actions can be seen as two sets, the precondition and the e�ect. Asbefore, the precondition is a set of positive literals, while the e�ect is simplya set of literals, where the negated ones represent the above delete list.To understand how the execution of an action changes the current state ofthe world, it is necessary to introduce the concept of uni�cation among literals.Given a set of literals, the target is to compute a substitution of terms for the2The problem was discovered at MIT in 1973 by Allen Brown who noticed that theHACKER problem solver, developed by Sussman, had problems dealing with it.



10 CHAPTER 1. PLANNINGvariables to make all the literals identical. Substitutions are represented as setof pairs fx1=t1; : : : ; xn=tng where each xi is a variable and each ti is a termin which xi does not occur. For example, the literals ON(x;C) and ON(A;C)are uni�ed by the substitution fx=Ag. A unifying substitution for the set Eof literals is called a uni�er of E. The composition of two substitutions s1 ands2, denoted as s1s2, is that substitution obtained by applying s2 to the termsof s1 and then adding those pairs of s2 having variables not occurring amongthe variables of s1. Thus, for example, fz=g(x; y)gfx=A; y=B;w=C; z=Dg isfz=g(A;B); x=A; y=B;w=Cg. A uni�er g of a set E of literal is called the mostgeneral uni�er of E if, for every other uni�er s of E, there exists a substitutions0 such that s can be obtained by composing g and s0.An action is executable in a state if there exists a most general uni�erunifying each one of the literals in the preconditions with some ground literalin the state description. We call such uni�er the match substitution. When anaction is executable and is executed in a state description, the �rst step is toapply the match substitution to both the add and the delete lists. We assumethat all the variables occurring in such lists also occur in the precondition.Second, the ground literals from the delete list are removed from the old statedescription, while the ground literals from the add list are added to this latterstate description to produce the new state description.As an example, we could model the action of moving a block x from thesource y to the target z as followsMOVE(x; y; z):Precondition: fON(x,y);CLEAR(x);CLEAR(z); x 6= y; x 6= z;z 6= TABLEgDelete list: fON(x; y);CLEAR(z)gAdd list: fON(x; z);CLEAR(y)gor, alternatively, asMOVE(x, y, z):Precondition: fON(x,y);CLEAR(x);CLEAR(z); x 6= y; x 6= z;z 6= TABLEgE�ect: f:ON(x; y);:CLEAR(z);ON(x; z);CLEAR(y)gThe above action is executable in the state depicted in Figure 1.1 when for ex-ample x is substituted with C, y with A, and z with B. When the action is exe-cuted, the new state description becomes fCLEAR(A);CLEAR(C);ON(C;B);ON(A; TABLE);ON(B;TABLE)g.



1.2. PLANNING PROBLEM REPRESENTATION 11Note that our de�nition is restricted so that a block can not be moved tothe table. This is necessary because the action's e�ects are di�erent when thedestination is the table. Speci�cally, the intuition for the table is that it isalways clear, and this clashes with the e�ect making the destination not clear.1.2.2 ADLAnother interesting language for planning problem representation is the ActionDescription Language (ADL) [62], which introduces conditional e�ects anduniversal quanti�cation.Conditional e�ects are useful to relax the annoying aspect of the MOVEoperator de�ned above, that is, the restriction that the destination can not bethe table. Due to this restriction, to describe the possible movement actions, itis necessary to augment MOVE with an additional MOVE-TO-TABLE. Thisis irritating for both the user, software engineering, and e�ciency. Indeed, forexample, a planner has to commit whether the destination is the table or someother block, even if the movement action is required to deal with part of thegoal that has nothing to do with the destination. This problem is solved byallowing action de�nitions to use conditional e�ects. The basic idea is simple:we allow a special when clause in the syntax of action e�ect. when takestwo arguments, an antecedent and a consequent. Both the antecedent andthe consequent are a set of literals, but their interpretation is very di�erent.The antecedent refers to the state before the action is executed, while theconsequent refers to the state after the execution. The interpretation is thatthe execution of the action will have the consequent's e�ect just in the casethat the antecedent is true immediately before the execution. For example,we can extend the MOVE de�nition in order to release the constraint on thedestination as followsMOVE(x; y; z):Precondition: fON(x,y);CLEAR(x);CLEAR(z); x 6= y; x 6= z;z 6= TABLEgE�ect: f:ON(x; y);ON(x; z);CLEAR(y);(f:CLEAR(z)g when fz 6= TABLEg)Universal quanti�cation is very handy to express actions in a concise andclear way. For example, one could implement the CLEAR predicate by uni-versally quantifying over the ON predicate. Another interesting case is mixinguniversal quanti�cation with conditional e�ects that, for example, allows forthe speci�cation of objects like briefcases where moving the briefcase causesall objects inside to move as well:MOVE(x, y, z):



12 CHAPTER 1. PLANNING

A B
BA C

ACBAC BC ABCFigure 1.2: A fragment of the state space in the block world.Precondition: fBRIEFCASE(x);AT(y); y 6= zgE�ect: fAT(x; z);:AT(x; y);(8k)(fAT(k; z);:AT(k; y)g when fIN(k; x)g)gFinally, note that, while universal quanti�cation is basically syntactic sugar,conditional e�ects strictly increase the expressive power of STRIPS.1.3 Approaches to Classical PlanningIn this section we try to classify the solutions adopted by some of the mostrelevant classical planning systems. More in detail, we consider state-spacesearch in Subsection 1.3.1, and plan-space search in Subsection 1.3.2. In Sub-section 1.3.3 we introduce deductive planning. Finally, we consider the lastadvances in classical planning, namely, planning as graph analysis in Subsec-tion 1.3.4 and as satis�ability in Subsection 1.3.5. Such a classi�cation is nota partition since, for example, searching in the state-space is a particular caseof searching in the plan-space, and deductive planning, due to its generality,can encode all the other approaches.1.3.1 Planning as State-Space SearchThe simplest way to build a planner is to cast the planning problem as searchthrough the space of world states. Figure 1.2 shows a fragment of such aspace for the world of blocks. Each node in the graph denotes a state of theworld, and edges connect worlds that can be reached by executing a singleaction. In general, arcs are directed, but in our model of the block world all



1.3. APPROACHES TO CLASSICAL PLANNING 13Algorithm Regression(initial-state, current-goal, actions, path)1. Termination: If initial-state satis�es the current-goal then return path.2. Action selection: Let act = choose from actions an action whosee�ects matches at least one literal in current-goal.3. Goal regression: Let new-current-goal be the result of regressingcurrent-goal through act, and new-path be the result of concatenatingact and path.4. Failure: If no choice for act is possible or new-current-goal is unde�nedor contains current-goal then return failure.5. Recursive invocation: Return Regression(init-state, new-current-goal, actions, new-path)Figure 1.3: A regressive, state-based planner. The initial call should set pathto the null sequence.the actions are reversible, so that we have replaced two directed edges witha single undirected one to increase readability. Note that the initial and thegoal states of the Sussman anomaly are highlighted in grey. When phrased inthis manner, the solution to a planning problem is a path through the statespace.The advantage of casting planning as a simple search problem is the im-mediate applicability of all the familiar brute force and heuristic search algo-rithms [47]. For example, one could use depth-�rst, breadth-�rst, or iterativedeepening A* search starting from the initial state until the goal is located.Alternatively, more sophisticated memory bounded algorithms could be used[71, 48].A handy way to describe search algorithms is to specify them nondeter-ministically by using a nondeterministic choose primitive. choose takes aset of possible options and \magically" selects the right one. In real plan-ners, choose can be implemented through any exhaustive search method orapproximated with some aggressive search strategy.In Figure 1.3, we describe a nondeterministic regressive planning algorithmthat operates by searching backwards from the goal until the initial state isfound.When Regression is called on the Sussman anomaly, current-goal is ini-tially set to fON(A,B);ON(B,C)g, and path is set to the null sequence ofactions and, since this situation does not satisfy the initial state, choose de-mands an action whose e�ect contains a literal in current-goal. Magically, the



14 CHAPTER 1. PLANNINGaction MOVE-A-FROM-TABLE-TO-B is returned.The next step, that is, goal regression, forms the core of the algorithm. new-current-goal is assigned the result of regressing the set current-goal through theaction act. The result of this regression is another set of literals that encodesthe weakest precondition that must be true before act is executed in orderto assure that current-goal will be true after act is executed. This is simplythe union of act's precondition with all the literals in the current goal, exceptthose provided by the e�ects of act, that is,new-current-goal = precondition(act) [ (current-goal n add-list(act))In our example, suppose that MOVE-A-FROM-TABLE-TO-B is de�nedas Precondition: fON(A; TABLE);CLEAR(A);CLEAR(B)gDelete-list: fON(A; TABLE);CLEAR(B)gAdd-list: fON(A;B)gthe e�ect of regressing fON(A;B), ON(B;C)g is the set fON(A; TABLE),CLEAR(A), CLEAR(B), ON(B;C)g. Since act does not a�ect ON(B,C), itremains part of the weakest preconditions.If the selection of the action is not possible, or the regression step fails, thealgorithm returns failure. More in detail:� If no action has an e�ect containing a literal matching one of the literalin current-goal, then no action if pro�table.� If the e�ect of act conicts with current-goal, the result of regressingcurrent-goal through act is unde�ned. Indeed, no matter what is truebefore act is executed, its execution will ruin things.� If current-goal is contained in its regression, each state satisfying theregression satis�es current-goal as well. Thus, there is no point in con-sidering such an act because any successful plan that might result couldbe improved by eliminating act from path.Otherwise, if both the selection and the regression steps are successful, theselected action is appended to the current partially-speci�ed path, and thealgorithm is invoked recursively.STRIPS is a classic planner searching the state space through a regressivealgorithm. Moreover, it uses the means-ends strategy to direct the searchprocess, that is, actions are selected in order to minimize the di�erence betweenthe current state and the initial one. Due to this strategy, STRIPS producesstraightforward solutions to many problems, but there are problems for whichit produces nonoptimal solutions, that is, solutions longer than necessary, andproblems for which it cannot �nd any solution at all.
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Figure 1.4: A fragment of the plan space in the block world.1.3.2 Planning as Plan-Space SearchIn 1974, Earl Sacerdoti built a planner, called NOAH [72], with many novelfeatures among which the most innovative was the reformulation of planning.Instead of searching the space of states, in which edges denote action execution,Sacerdoti phrased planning as search through the space of plans. In this space,nodes represent partially-speci�ed plans and edges denote plan re�nements.A plan re�nement is obtained by adding an action and de�ning its executionorder with respect to the actions already present in the plan. Figure 1.4illustrates a fragment of such a space in the block world. In such case, theordering among actions is given by the arrows relating them. Note that theordering among actions de�ning the partial plans labeling the nodes is a partialordering, rather than the total order one obtains by searching the state space.For this reasons, planner working in this environment are also called partialorder planners. This means that the resulting plan is indeed a set of totallyordered set of actions, namely, the ones compatible with the partial order plan.Partial order planners are also called least commitment planners, since theyallow for deferring decisions about action ordering until this is really required.While visiting the state space has been seen being (conceptually) simple,searching the plan space is much more complex and requires introducing somebackground work. A partial plan is a 3-tuple hA;O;Li where A is a set ofactions, O is a set of partial ordering constraints over A, and L is the set ofcausal links, which we are about to explain below. As a partial order plannerre�nes a plan, it must do constraint satisfaction to ensure the consistency ofO, that is, to ensure that from O can be extracted at least one sequence of



16 CHAPTER 1. PLANNINGactions whose order is compatible with the one stated in O.A key aspect that partial order plans have to take into account is keepingtrack of past decisions and the reasons for those decisions. For example, ifone purchases plane tickets to satisfy the goal of boarding the plane, then oneshould be sure to take them at the airport. If another goal, say having one'shands free to open the taxi door, causes one to drop the tickets, one shouldbe sure to pick them up again. A good way of ensuring that the di�erentactions introduced for di�erent goals will not interfere each other is to recordthe dependencies among actions. To record these dependencies, we use causallinks. A causal link consists of three parts: two actions, namely the link'sproducer Ap and its consumer Ac, and a literal Q, which is an e�ect of the�rst action and a precondition of the second one. We write such a causal linkas Ap Q! Ac, and say that Q is supported by Ap in Ac.Causal links are used to detect whether a newly introduced action interfereswith past decisions. We call such an action a threat. More precisely, supposethat hA;O;Li is a partial plan, Ap Q! Ac is a causal link in L, and let At be adi�erent action in A. We say that At threatens Ap Q! Ac if the followings aresatis�ed:� O [ fAp < At < Acg is consistent,� At has :Q as e�ect.For example, if Ap asserts Q =ON(A,B), which is a precondition for Ac, andthe plan contains Ap Q! Ac, then At would be considered a threat if it movedA o� B and the ordering constraints did not prevent At from being executedbetween Ap and Ac.When a plan contains a threat, there is a danger that the plan will notwork as anticipated. To prevent this from happening, the planning algorithmmust check for threats and take evasive countermeasures. For example, thealgorithm could add an additional ordering constraint to ensure that At is exe-cuted before Ap. This particular threat protection method is called demotion.adding a symmetric constraint Ac < At is called promotion.The totally unde�ned plan, or null plan, can be represented as the tuplehA = fA0; A1g; O = fA0 < A1g; fgi, where A0 is a new \start" action withno precondition and add-list de�ning the initial state, and A1 is a new \end"action with no e�ects and precondition de�ning the goal. For example, thenull plan corresponding to the Sussman anomaly isA0: Preconditions:E�ect: fON(A; TABLE);ON(C;A);ON(B;TABLE);CLEAR(C);CLEAR(B)g



1.3. APPROACHES TO CLASSICAL PLANNING 17A1: Preconditions: fON(B;C);ON(A;B);ON(C; TABLE);CLEAR(A)gIn Figure 1.5 we describe a simple regressive, partial order plan algorithm.POP maintains the set of currently unsupported literals in agenda as set oftuples hQij ; Aii. Thus, agenda is initially set to the goal, that is, to fhQi; A1i :Qi is a literal of the goalg. POP starts with the null plan for the planningproblem at hand, and makes nondeterministic choices until all literals of everyaction's precondition have been supported by causal links and all threatenedlinks have been protected from possible interferences.The most important results in planning as plan-space search is UCPOP[62], a sound and complete partial order planner for ADL.1.3.3 Deductive PlanningDeductive planning [38, 77, 78] consists of formulating the planning problemas a problem of deduction in such a way that a theorem prover can solve itand, by solving it, exhibits a proof from which a plan can be extracted.For example, the Green's formulation [38], which is considered to be one ofthe �rst attempts to solve planning problems, is based on a resolution theoremprover, involves one set of assertions that describe the initial state and anotherset that describe the e�ects of the various actions. To keep track of which factsare true in which state, a \state" or \situation" variable is included in eachpredicate. This idea, often referred to as the situation calculus, goes back toMcCarthy [58, 59]. The goal condition is then described by a formula withan existentially quanti�ed state variable. That is, the system would attemptto prove that there exists a state in which certain condition are true. Aconstructive proof method can then be used to produce the set of actions thatgenerate the desired state.Suppose that we have the initial situation depicted in Figure 1.1 (left).Suppose we name this initial state SO. Then we denote the fact that blockx is on some other block y (or on the table) in situation SO by the literalON(x; y; SO) (ON(x; TABLE;SO)). The state name is made an explicit ar-gument of the predicates. The complete con�guration of blocks in the initialstate is then given byON(C;A; SO)ON(A; TABLE;SO)ON(B;TABLE;SO)CLEAR(C;SO)CLEAR(B;SO)



18 CHAPTER 1. PLANNINGAlgorithm POP(hA;O;Li, agenda, actions)1. Termination: If agenda is empty return hA;O;Li.2. Goal selection: Let hQ;Aneedi = choose a pair from the agenda.3. Action selection: Let Aadd = choose an action that adds Q. Aaddcan be a newly instantiated action or an action already in A, which canbe consistently ordered prior to Aneed. If Aadd is newly instantiated thenlet� A0 = A [ fAaddg.� L0 = L [ fAadd Q! Aneedg� O0 = O [ fA0 < Aadd < Aneed < A1g.else let� A0 = A� L0 = L [ fAadd Q! Aneedg� O0 = O [ fAadd < Aneedg4. Failure: If no action can be chosen then return failure.5. Update goal set: Let agenda0 = agendanfhQ;Aneedig. If Aadd is newlyinstantiated, then for each literal Qi of its preconditions, add hQ;Aneedito agenda0.6. Causal link protection: For every action At that might threaten acausal link Ap Q! Ac 2 L0, choose a consistent ordering constraintbetween:(a) Demotion: Add At < Ap to O0(b) Promotion: Add Ac < At to O0If neither constraint is consistent, then return failure.7. Recursive invocation: POP(hA0; O0; L0i,agenda0, actions)Figure 1.5: A regressive partial order planner. The initial call must sethA;O;Li to the null plan for the planning problem, and agenda to the goal.



1.3. APPROACHES TO CLASSICAL PLANNING 19Now we need a way to express the e�ects that various actions mighthave on the states. The natural way of doing this is through implications.Moreover, when an action is executed in one state, we use the special term\do(action; state)" to denote the new state. Thus, if the action MOVE(x; y; z)moving the block x from the position y to the position z is executed in SO,the new state is represented by the term do(MOVE(x; y; z); SO). A possibleformulation of MOVE(x; y; z) follows:MOVE(x; y; z):(CLEAR(x; S)^CLEAR(z; S)^ON(x; y; S)^(x 6= z)))(ON(x; z; do(MOVE(x; y; z); S))^CLEAR(x; do(MOVE(x; y; z); S))^ CLEAR(y; do(MOVE(x; y; z); S)))However, the above formulation does not completely specify the e�ects ofthe action. We must also state through further assertions that certain featuresare una�ected by the action. Such assertions are called the frame assertions[59]. For example, the following assertion expresses that the blocks that arenot moved stay in the same position:ON(v; w; S) ^ (v 6= x))ON(v; w; do(MOVE(x; y; Z); S))Finally, suppose that we want to achieve the simple goal depicted in Fig-ure 1.1 (right). This goal would be expressed as(9S)ON(A;B; S)^ON(B;C; S)^ON(C; TABLE;S)^CLEAR(A;S)The problem can now be solved by �nding a constructive proof of the goalformula, where the existential witness of the formdo(a1; (: : : ; do(an; SO) : : :)represents the plan a1 : : : sn.1.3.4 Planning Graph AnalysisThis approach [5, 46, 54] is based on constructing and analyzing a compactstructure called the planning graph. The approach combines aspects of bothstate-space search and partial-order planners. Indeed, it makes strong commit-ments while constructing the planning graph, but generates partially orderedplans. The approach alternates between two phases: graph expansion andsolution extraction. The graph expansion phase extends the planning graphforward in \time" until it has achieved a necessary, but possibly insu�cient,condition for plan existence. The solution extraction phase then performsa backward-chaining search on the graph, looking for a plan that solves theproblem. If no solution is found, the cycle repeats by further expanding theplanning graph.



20 CHAPTER 1. PLANNING......... ..................0 i-1 i i+1
Figure 1.6: A fragment of a planning graph.Expanding the Planning GraphThe planning graph contains two types of nodes, proposition nodes and ac-tion nodes, arranged into levels as shown in Figure 1.6. The planning graphalternates proposition (circle) and action (square) layers. Horizontal dashedlines between propositions layers represent \maintenance actions", which en-code the possibility that una�ected propositions will persist until the nextlayer. Even-numbered levels contain proposition nodes, that is, ground liter-als, and the zeroth level consists precisely of the propositions that are truein the initial state of the planning problem at hand. Nodes in odd-numberedlevels correspond to action instances. There is one such node for each actioninstance whose preconditions are present and are mutually consistent at theprevious level. Edges connect proposition nodes to the action instances atthe next level whose preconditions mention those propositions, and additionaledges connect from action nodes to subsequent propositions made true by theaction's e�ects.Note that the planning graph represents \parallel" actions at each actionlevel. However, just because two actions are included in the planning graph atsome level does not mean that it is possible to execute both at once. Central tothe e�ciency of this approach is inference regarding a binary mutual exclusionrelation (from now on mutex) among nodes at the same level. We de�ne thisrelation recursively as follows� Two action instances at level i are mutex if either{ Inconsistent e�ects: The e�ect of one action is the negation ofanother action's e�ect, or{ Interference: One action deletes the precondition of another, or{ Competing Needs: The actions have preconditions that are mutuallyexclusive at level i� 1.
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Inconsistent support

InterferenceInconsistent e�ects

Competing needsFigure 1.7: Graphical depiction of mutex de�nition. Curved lines representmutex relations, curved lines with arrows represent mutex causes.� Two propositions at level i are mutex if either{ Inconsistency: One is the negation of the other, or{ Inconsistent support: All the ways of achieving the propositions,that is, actions at level i� 1, are pairwise mutex.In Figure 1.7, a graphical representation of the above conditions is given.While expanding the plan, one has also to take into account to propagate themutex relationship from one layer to the next one.Solution extractionThe second phase starts when the planning graph has been extended to an evenlevel i in which all the goal literals are present and none are pairwise mutex.This is a necessary condition for plan existence, but it does not ensure that a
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Figure 1.8: Mutex is not a su�cient condition for planning existence.plan does exist, as shown in Figure 1.8. The point is that the propagation ofthe mutex conditions �nds many incompatibilities, but not all.Solution extraction searches for a plan by considering each of the literalsin turn. For each such literal at level i, again magically, choose selects anaction a at level i � 1 that achieves the literal and is nonmutex with thosealready gathered. If no such choice is possible, then failure is returned.Once a consistent set of actions for level i has been found, we have toconsider their preconditions. Therefore, if i = 1 one has to check that the pre-conditions hold in the initial state, otherwise such preconditions are recursivelyanalyzed.1.3.5 Planning as Satis�abilityPlanning as propositional satis�ability [43, 44, 42, 41] has gained a lot of atten-tion during the last years, due to recent advances in propositional satis�abilitymethods [75, 4, 57, 88]. Indeed, the �rst attempt of facing planning in such amanner were rather unremarkable [43].Figure 1.9 shows the typical architecture of a planning system based on apropositional decider. The compiler takes a planning problem as input, guessesa plan length, and generates a propositional formula, usually in conjunctivenormal form, that is satis�able if and only if a plan of such a length exists.During this step, a symbol table records the correspondence between proposi-tional variables and the planning instance. The simpli�er shrinks the formularemoving possible redundancies, and the solver uses systematic or stochasticmethods to �nd a satisfying assignment that the decoder translates, by usingthe symbol table, into a solution plan. Similarly to the graph-based approach,



1.3. APPROACHES TO CLASSICAL PLANNING 23Compiler DecoderSimpli�er SolverPlanningProblem Formula SatisfyingAssignmentFormulaPropositional Propositional PlanIncrement time bound if unsatis�ableSymbol tableFigure 1.9: The structure of a typical planner via satis�ability.if the solver fails in �nding a satisfying assignment, the compiler generates anew encoding reecting a longer length.Beside the solver, a critical component of the above architecture is thecompiler, which should produce quickly a \good" formula. However, thistranslation is complicated by the fact that a propositional formula can bemeasured in terms of the number of variables, the number of clauses, or thetotal number of literals summed over all clauses. Moreover, often a decreaseof one parameter will increase another. In what follows, we present a param-eterized space of possibilities, developed in [33], with two dimensions: actionrepresentation and frame axioms.Each of the encodings we are about to introduce resembles the structureof a plan in the graph-based approach: uents occur at even-numbered timesand actions at odd-numbered times. Moreover, all such encodings use thefollowing set of universal axioms� init: The initial state is completely speci�ed at time zero, including allproperties presumed false by the closed-world assumption.� goal: In order to test for a plan of length n, all desired goal propertiesare asserted to be true at time 2n.� precondition-e�ect implication: Actions imply their preconditions ande�ects. For each odd time t between 1 and 2n�1 and for each consistentground action, an axiom asserts that execution of the action at time timplies its e�ects hold at time t + 1 and its preconditions hold at timet� 1.Action RepresentationThe �rst major encoding choice is how to represent actions. This choice spec-i�es the correspondence between propositional variables and ground actionsand works out a tradeo� between the number of propositional variables andthe number of clauses.



24 CHAPTER 1. PLANNINGIn the regular representation, each ground action is represented by a dif-ferent propositional variable, for a total of n � jActj � jDomjAAct , where n isthe number of odd-time steps in plan, jActj is the number of action schemata,jDomj is the number of constants in the domain, and AAct is the maximumarity of actions schemata. Therefore, the factor jActj � jDomjAAct representsthe number of ground actions. Since systematic solvers take time exponentialin the number of variables, and large number of variables also slow stochasticsolvers down, we would like to reduce this number.In order to do this, in [44] was introduced the simple operator splitting,which replaces each n-ary action with n unary uents throughout the en-coding. For example, MOVE(A;B;C; t)3 is replaced with the conjunction ofMOVE-ARG1(A; t), MOVE-ARG2(B; t), and MOVE-ARG3(C; t). Doing thisfor all fully-instantiated actions reduces the number of variables needed torepresent all actions to n � jActj � jDomj � AAct.In simple splitting, only instances of the same action share propositionalvariables. An alternative is overloaded splitting. Overloaded splitting replacesMOVE(A;B;C; t) by conjuncting ACT(MOV E; t), ARG1(A; t), ARG2(B; t),and ARG3(C; t), while a di�erent action PAINT(A;RED; t) is replaced by theconjunction ACT(PAINT; t), ARG1(A; t), ARG2(RED; t). This techniquefurther reduces the number of variables to n(jActj+ jDomjAAct).Finally, the bitwise representation shrinks the number of variables evenmore, by representing the actions with only n log2d(jActj � jDomjAAct)e vari-ables. More in detail, this is carried out by numbering the ground actions from0 to jActj � jDomjAAct�1. The number encoded by the bit symbols determinesthe ground action that executes at each odd time step. For example, if therewere 4 ground actions, :bit1t ^ :bit2t replaces the �rst action, :bit1t ^ bit2treplaces the second one, and so on.Frame AxiomsThe other important encoding choice is related to the frame axioms, that is,how to constrain una�ected uents when an action occurs.Classical frame axioms [59] state which uents are left unchanged by agiven action. For example, a classical frame axiom for the MOVE action,stating that moving a block A from B to C leaves D's clearness unchanged,can be encoded as CLEAR(D; t�1)^MOVE(A;B;C; t) ) CLEAR(D; t+1).Adding classical frame axioms for each action and each odd time to theuniversal axioms almost produces a valid encoding of the planning problem.However, if no action occurs at time t, the axioms of the encoding can infer3Note that we are using nonstandard notation here in order to emphasize the combina-torics. Indeed, when writing MOVE(A;B;C; t) we denote a propositional variable. A moreclear but heavier notation would have been MOVE-A-FROM-B-TO-C-AT-TIME-t.



1.3. APPROACHES TO CLASSICAL PLANNING 25nothing about the truth value of uents at time t+1, which can therefore takearbitrary values. The solution is to add an at-least-one axiom for each timestep, that is, a disjunction of every possible ground action ensuring that someaction occurs at each odd time step. However, as shown in [33], this approachhas a huge e�ect on the size of these axioms. The resulting plan consists thenof a totally-ordered sequence of actions. Indeed, classical frame and at-least-one axioms do not force that exactly one action occurs at each odd time step.However, when combined with the precondition-e�ect implication axioms andconsidering that the initial state is completely de�ned they ensure that anytwo actions occurring at odd time t lead to an identical state at time t + 1.Therefore, the linear ordering can be obtained by randomly selecting, for eachodd time t, an action among those occurring at time t.Explanatory frame axioms [39] enumerate the set of actions that could haveoccurred in order to account for a state change. For example, an explanatoryaxiom would say which actions could have caused D's clearness status tochange from true to false asCLEAR(D; t� 1) ^ :CLEAR(D; t+ 1)) (MOVE(A;B;D; t) _MOVE(A;C;D; t) _ : : :As a supplement to the universal axioms, explanatory frame axioms mustbe added for each ground uent and each odd time t to produce a correctencoding. With explanatory frame axioms, a change in a uent's truth valueimplies that some action occurs, so (contrapositively) if no action occur at anodd time step, this will be correctly treated as a no-operation. Therefore, noat-least-one axioms are required.Explanatory frame axioms brings an important bene�t. Since they do notexplicitly force the uents una�ected by action execution to remain unchanged,they permit parallelism. Speci�cally, any actions whose preconditions are sat-is�ed at time t and whose e�ects do not contradict each other might be ex-ecuted in parallel. This kind of parallelism is, however, problematic, since itmight give rise to valid plans from which no totally-ordered sequence of actionscan be extracted. For example, suppose that the action a1 has preconditionX and e�ect Y , while the action a2 as precondition :Y and e�ect :X, andsuppose that X ^ :Y and :X ^ Y are satis�able. While these actions mightbe executed in parallel since neither their preconditions nor their e�ects areinconsistent, there is no legal total ordering of the two actions. Hence, onemust explicitly rule out this type of pathological behavior with the exclusionaxioms. Complete exclusion ensures that only one action can occur at eachodd-time step and, for each ground action a1 and a2 and odd-time t, addsclauses encoding that either a1 or a2 cannot occur at time t. Conict exclu-sion results in partially-ordered plans from which totally-ordered plans can beextracted by introducing new clauses only for the conicting actions.



26 CHAPTER 1. PLANNINGFinally, experience [33, 44] shows that explanatory frame axioms are clearlysuperior to classical frame axioms in almost every case.1.4 Nonclassical PlanningClassical planning makes some fundamental assumptions: the planner hascomplete information about the initial state of the world, complete observ-ability on the world states, e�ects of the execution of actions are determinis-tic, and therefore the solution to the planning problem can be expressed asa sequence of actions. These assumptions are unrealistic in several practicaldomains, like robotics, scheduling, and control. The initial state of a planningproblem may be not unique, some features of the world may be not observ-able, and the e�ect of actions may have several e�ects. Moreover, in case ofnondeterminism, plans as sequences of actions are bound to failure. Indeed,nondeterminism must be tackled by planning conditional behaviors, which de-pend on the information that can be gathered at execution time. For instance,in a realistic robotic application, the action \pick-up a block" cannot be sim-ply described as a STRIPS operator whose e�ect is \the block is at hand".\Pick-up a block" might result either in a success or a failure, and the resultcannot be known a priori of execution. A useful plan, depending on the actionoutcome, should execute di�erent actions, e.g., try to pick-up the block againif the action execution has failed.Most often, a conditional plan is not enough: plans encoding iterativetrial-and-error strategies, like \pick up a block until succeed", are the onlyacceptable solutions. In several realistic domains, a certain e�ect (e.g., actionsuccess) might never be guaranteed a priori of execution and, in principle,iterative plans might loop forever, under an in�nite sequence of failures. Theplanner, however, should generate iterative plans whose executions alwayshave a possibility of terminating and, when they do, they are guaranteed toachieve the goal.However, even though classical planning su�ers from the lacks we havedescribed, most of the work in planning is focused on it. Only in the lastcouple of years, some works have extended classical planners to contingentplanners [87, 86, 63, 68, 19], which generate plans with conditionals, or toconformant planners [76, 17, 16], which unrealistically try to �nd solutionsto nondeterministic planning problem as sequences of actions. Note that the�rst problem one has to solve when dealing with nondeterministic planningdomains is that neither STRIPS nor ADL are expressive enough. Indeed, inorder to express nondeterminism one needs languages that allows us to expressthe fact that an action has multiple outcomes or, in other words, disjunctivee�ects.



1.4. NONCLASSICAL PLANNING 27Deductive planning frameworks [77, 78] can be used to specify desiredplans in nonclassical frameworks. Nevertheless, the automatic generation ofplans in these deductive frameworks is still an open problem. [13] proposesa framework based on process algebra and mu-calculus for reasoning aboutnondeterministic and concurrent actions. The framework is rather expressive,but it does not deal with the problem of plan generation. In planning basedon Markov Decision Processes [28, 11, 40], nondeterministic environments aredealt with through stochastic automata, where actions induce transitions withan associated probability, and states have an associated reward. The planningtask is then reduced to look for optimal executions with respect to rewardsand probability distributions. Planning as model checking [15, 37, 19, 2, 18,26, 16, 27], which is the subject of this thesis, joins expressiveness with thepossibility of devising automatic practical planners. In particular, [18, 26] dealwith iterative plans, while [27] handles incomplete information and temporallyextended goals in deterministic domains.
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Chapter 2Temporal LogicsTemporal logics [67, 30] were introduced by philosophers for providing a for-mal system for qualitatively describing and reasoning about how the truthvalues of assertions change over time. Later, in a landmark paper [64], Pnueliargued that temporal logic could be a useful formalism for specifying and ver-ifying correctness of �nite-state computer programs. More generally, lookingat �nite-state systems as temporal logic semantic structures, temporal logicscan be used to describe properties of such systems.A �nite-state system such a planning domain, a hardware controller, or acommunication protocol can be described abstractly by a structure consist-ing of a �nite set of the possible states of the system and a set of the legaltransitions between states. For example, in a planning problem in the blockworld, states may di�er on the location of blocks, while in a communicationprotocol some states might represent situations in which some input bu�er isfull, and some other states might represent situations in which the bu�er isonly partially �lled. In addition, we also need a way to describe propertiesof such states. To this end, we label states with symbols from some set torepresent such properties. These symbols are called atomic propositions. Atuple consisting of a set of states, a transition relation, and a labeling of statesby atomic propositions is called a state transition graph, or a Kripke structure[30].In temporal logic, time is not mentioned explicitly. Instead, a formulamight specify that eventually some designate property is satis�ed, or thatanother property is never satis�ed. These operators can also be combinedwith Boolean connectives or nested arbitrarily.The temporal logics we are going to consider can be uniformly introducedas fragments of the more powerful logic called CTL* [30].29
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Figure 2.1: Computation trees.2.1 The Computational Tree Logic CTL*Conceptually, CTL* formulas describe properties of computation trees. Thetree is formed by designating a state in a Kripke structure as the initial stateand then unwinding the structure into an in�nite tree with the designatedstate as the root, as illustrated in Figure 2.1. The computation tree shows allthe possible executions starting from the initial state.In CTL*, formulas are composed of path quanti�ers and temporal opera-tors. The path quanti�ers are used to describe the branching structure in thecomputation tree. There are two such quanti�ers: A (\for all the computationpaths") and E (\for some computation path"). These quanti�ers are used ina particular state to specify that all of the paths or some of the paths startingat that state have some property. The temporal operators describe propertiesof a path through the tree. There are �ve such operators:� X (\next time") requires that a property hold in the second state of thepath.



2.1. THE COMPUTATIONAL TREE LOGIC CTL* 31� The F (\eventually" or \in the future") operator is used to assert thata property holds at some state on the path.� G (\always" or \globally") speci�es that a property holds at every stateon the path.� The U (\until") operator is a bit more complicated, since it is used tocombine two properties. It holds if there is a state on the path wherethe second property holds and, at every preceding state on the path, the�rst property holds.� V (\releases") also combines two properties, and is the logical dual ofthe U operator. It requires that the second property holds along thepath up to and including the �rst state where the �rst property holds.The remainder of this section contains a precise description of the syntaxand semantics of CTL*. There are two types of formulas in CTL*: stateformulas, which are true in a speci�c state, and path formulas, which are truealong a speci�c path. Let P be the set of atomic proposition names. Thesyntax of state formulas is given by the following rules:� If p 2 P, then p is a state formula.� If f and g are state formulas, then :f , f_g, and f^g are state formulas.� If f is a path formula, then E(f) and A(f) are state formulas.Two additional rules are needed to specify the syntax of path formulas:� If f is a state formulas, then f is also a path formula.� If f and g are path formulas, then :f , f _ g, f ^ g, Xf , Ff , Gf , fUg,and fVg are path formulas.The length of a path or state formula f , denoted as jf j, is de�ned induc-tively as follows:� If f 2 P, then jf j = 0.� If f is :f1, then jf j = jf1j+ 1.� If f is f1 ^ f2 or f1 ^ f2, then jf j = jf1j+ jf2j+ 1.� If f is Ef1 or Af1, then jf j = jf1j+ 1.� If f is Xf1, then jf j = jf1j+ 1.� If f is Ff1, then jf j = jf1j+ 1.



32 CHAPTER 2. TEMPORAL LOGICS� If f is Gf1, then jf j = jf1j+ 1.� If f is f1Uf2, then jf j = jf1j+ jf2j+ 1.� If f is f1Vf2, then jf j = jf1j+ jf2j+ 1.We de�ne the semantics of CTL* with respect to a Kripke structure M =hS;R;Li, where S is the set of states; R � S�S is the total transition relation,i.e., for all states s 2 S there exists a state s0 2 S such that (s; s0) 2 R;and L : S ! 2P is a function that labels each state with the set of atomicpropositions true in that state. Unless otherwise stated, all of our results applyonly to �nite Kripke structures.A path � inM is an in�nite sequence of states s0s1 : : : such that, for everyi � 0, we have that (si; si+1) 2 R. We use �i to denote the su�x of � startingat si. The state labeling can be extended to paths, that is, the labeling ofa path s0s1 : : : is the sequence L(s0)L(s1) : : :. If f is a state formula, thenotation M; s j= f means that f holds at state s in the Kripke structure M .Similarly, if f is a path formula, M;� j= f means that f holds along the path� in the Kripke structure M . When the Kripke structure M is clear fromthe context, we will usually omit it. The relation j= is de�ned inductively asfollows (assuming that f1 and f2 are state formulas and g1 and g2 are pathformulas):� M; s j= p i� p 2 L(s), for p 2 P.� M; s j= :f1 i� M; s 6j= f1.� M; s j= f1 _ f2 i� M; s j= f1 or M; s j= f2.� M; s j= f1 ^ f2 i� M; s j= f1 and M; s j= f2.� M; s j= E(g1) i� there is a path � from s such that M;� j= g1.� M; s j= A(g1) i� for all path � from s we have that M;� j= g1.� M;� j= f1 i� s is the �rst state of � and M; s j= f1.� M;� j= :g1 i� M;� 6j= g1.� M;� j= g1 _ g2 i� M;� j= g1 or M;� j= g2.� M;� j= g1 ^ g2 i� M;� j= g1 and M;� j= g2.� M;� j= Xg1 i� M;�1 j= g1.� M;� j= Fg1 i� there exists k � 0 such that M;�k j= g1.� M;� j= Gg1 i� for all k � 0 we have that M;�k j= g1.



2.2. CTL AND LTL 33� M;� j= g1Ug2 i� there exist k � 0 such that M;�k j= g2 and, for all0 � j < k, we have M;�j j= g1.� M;� j= g1Vg2 i� for all k � 0, either M;�k j= g2 or for some 0 � j < kwe have that M;�j j= g1.It is easy to see that the operators _, :, X, U, and E are su�cient toexpress any other CTL* formula:� f ^ g � :(:f _ :g)� fVg � :(:fU:g)� Ff � (trueUf)� Gf � :F:f� A(f) � :E(:f)2.2 CTL and LTLIn this section, we consider two useful sublogics of CTL*: one is a branching-time logic and one is a linear-time logic. The distinction between the two is howthey handle branching in the underlying computation tree. In branching-timetemporal logic the temporal operators quantify over the paths that are possiblefrom a given state. In linear-time temporal logic, operators are provided fordescribing events along a single computation path.Computation Tree Logic (CTL) [30] is a restricted subset of CTL* thatpermits only branching-time operators: each of the temporal operators X,F, G, U, and V must be immediately preceded by a path quanti�er. Moreprecisely, CTL is the subset of CTL* that is obtained if the following rule isused to specify the syntax of path formulas.� If f and g are state formulas, then Xf , Ff , Gf , fUg, and fVg are pathformulas.Linear Temporal Logic (LTL) [30], on the other hand, consists of formulasthat have the form Af where f is a restricted path formula, i.e., one in whichthe only state formulas permitted are atomic propositions. More precisely, apath formulas is now de�ned as� If p 2 P, then p is a path formula� If f and g are path formulas, then :f , f _ g, f ^ g, Xf , Ff , Gf , fUg,and fVg are path formulas.



34 CHAPTER 2. TEMPORAL LOGICSIt can be shown [29, 31, 50] that the three logics that we have discussedso far have di�erent expressive powers. For example, there is no CTL formulathat is equivalent to the LTL formula A(FGp). Likewise, there is no LTLformulas that is equivalent to the CTL formula AG(EFp). The disjunctionof these two formulas A(FGp) _ AG(EFp) is a CTL* formula that is notexpressible in either CTL or LTL.Because of its structure, CTL is often proposed starting by the followingten operators:� AX and EX.� AF and EF.� AG and EG.� AU and EU.� AV and EV.that, in turn, can be expressed in terms of the three operators EX, EG, andEU:� AXf � :EX(:f)� EFf � E(trueUf)� AGf � :EF(:f)� AFf � :EG(:f)� A(fUg) � :E(:gU(:f ^ :g)) ^ :EG(:g)� A(fVg) � :E(:fU:g)� E(fVg) � E(:(:fU:g))The four operators that are used most widely are illustrated in Figure 2.2.Each computation tree has the state s0 as its root.In turn, LTL is often proposed by omitting the leading path quanti�er A,that is, dealing only with restricted path formulas. As a consequence, LTLformulas are now assigned semantics with respect to paths, highlighting timelinearity, and not with respect to Kripke structures anymore.
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Figure 2.2: Basic CTL operators.



36 CHAPTER 2. TEMPORAL LOGICS2.3 FairnessA very important issue is the one of fairness. Indeed, in many cases we are onlyinterested in stating properties along fair computation paths. For example,consider a communication protocol that operates over reliable channels hav-ing the property that no message is ever continuously transmitted but neverreceived. Such property, which can be expressed in LTL as G(msg snd) !F(msg rcv), cannot be directly expressed in CTL [29, 31]. In order to dealwith fairness, it is necessary to modify CTL semantics. Such a semantics iscalled fair semantics. A fairness constraint is an arbitrary set of sets of states.A path is said to be fair with respect to a set of fairness constraints if eachconstraint holds in�nitely often along the path. The fair semantics is thenobtained by restricting the path quanti�ers to fair paths.Formally, a fair Kripke structure is a tuple M = hS;L;R; F i where S, L,and R are de�ned as before and F � 2S is the set of fairness constraints. Apath is fair if for every fairness constraint set there exists a state that occurs inthe path in�nitely often. The fair CTL* semantics is then de�ned by replacingthe semantic de�nitions of the path quanti�ers. In what follows, M; s j=F fand M;� j=F g denote the fair semantics with respect to the fair constraintsF . � M; s j=F Eg1 i� there exists a fair path � from s such that M;� j=F g1.� M; s j=F Ag1 i� for all the fair paths � from s we have thatM;� j=F g1.



Chapter 3Model CheckingModel checking [22, 69, 51, 9, 84] is a formal technique for verifying �nite-state systems with respect to their speci�cations. Speci�cations are expressedin some temporal logic, while the system to be checked is looked at as asemantic structure in such logic. The veri�cation process is then carried outby checking that the system induces indeed a model of the speci�cations, or byproducing a counter-example. In particular, in CTL and LTL model checking,the �nite-state systems are represented as Kripke structures and often comesalong with a set of initial states. Model checking can then be reformulated aschecking that each initial state satis�es the speci�cations. In the rest of thechapter, we introduce the model checking algorithm for CTL and LTL.3.1 CTL Model CheckingCTL model checking [22, 69] has been the �rst experience with this formalveri�cation technique. Let M = hS;R;Li be a Kripke structure and f be aCTL formula. In order to check whether some designated initial states satisfyf , we �rst compute the set of states that satisfy f and then check that theinitial states are there contained.The algorithm is depicted in Figure 3.1 and works by labeling the statesof M with the set of f 's subformulas they satisfy. Being s a state, the abovelabeling will be denoted as label(s). Subformulas are analyzed according toan order making g1 preceding g2 whenever g1 is a subformula of g2. As wehave seen before, we can restrict to formulas containing only the followingoperators: :, _, EX, EG, and EU.The basic case are propositions, which are solved by looking at M 's label-ing, i.e., for each s 2 S we will have label(s) = L(s).When dealing with formulas of the form g = :f1, we label with g thosestates that are not labeled with f1. To handle formulas of the type g = f1_f2,37



38 CHAPTER 3. MODEL CHECKING
procedure Check(f)begincase f ofproposition:for each s 2 S such that f 2 L(s) dolabel(s) = label(s) [ ffg:f1:Check(f1)for each s 2 S such that f1 62 label(s) dolabel(s) = label(s) [ ffgf1 _ f2:Check(f1)Check(f2)for each s 2 S such that f1 2 label(s) or f2 2 label(s) dolabel(s) = label(s) [ ffgEXf1:Check(f1)for each s 2 S such that 9s0 2 S;R(s; s0); and f1 2 label(s0) dolabel(s) = label(s) [ ffgE(f1Uf2):Check(f1)Check(f2)CheckEU(f1; f2)EG(f1):Check(f1)CheckEG(f1)endendFigure 3.1: Procedure for CTL model checking. Before calling the procedure,the label sets have to be assigned the empty set.



3.1. CTL MODEL CHECKING 39procedure CheckEU(f1; f2)beginT := fs : f2 2 label(s)gfor every s 2 T do label(s) := label(s) [ fE(f1Uf2)gwhile T 6= ; doselect s 2 TT := T n fsgfor every t such that R(t; s) dobeginif E(f1Uf2) 62 label(t) and f1 2 label(t) thenbeginlabel(t) := label(t) [ fE(f1Uf2)gT := T [ ftgendendendend Figure 3.2: Procedure for labeling the states satisfying E(f1Uf2).we label with g states that are labeled either with f1 or with f2.The case g = EXf1 is handled by labeling with g states that are connectedthrough R to some state labeled with f1.For formulas of the form g = E(f1Uf2), we �rst label with g states thatare labeled with f2. Then we work backwards, labeling with g those statesthat are labeled with f1 and are connected through R to some state labeledwith g. The algorithm implementing this backward labeling is depicted inFigure 3.2, and takes time O(jSj+ jRj).The case in which g = EGf1 is slightly more complicated. First, we restrictour attention on the graph G = hS0; R0i obtained by deleting from S the statesthat are not labeled with f1 and restricting R accordingly, i.e., R0 = f(s1; s2) :s1; s2 2 S0 and R(s1; s2)g. Second, G is decomposed in nontrivial maximalstrongly connected components. A strongly connected component (SCC) C isa subgraph such that each node in C can be reached from each other nodein C through paths entirely contained in C. C is nontrivial if it contains atleast one edge. C is maximal if there does not exist a strictly larger SCCC 0 containing C. All states belonging to some SCC are then labeled with g.Finally, we work backward, as we have done for E(f1Uf2), and label with gall the states in G from which some SCC can be reached. The algorithm forlabeling states with EGf1 is depicted in Figure 3.3. This algorithm also takestime O(jSj+ jRj) and, therefore, the overall complexity is O(jf j � (jSj+ jRj)).



40 CHAPTER 3. MODEL CHECKINGprocedure CheckEG(f1)beginS0 := fs 2 S : f1 2 label(s)gR0 := f(s1; s2) 2 R : s1; s2 2 S0gSCC := fC : C is a maximal non trivial SCC in hS0; R0igT := [C2SCCfs : s 2 Cgfor every s 2 T do label(s) := label(s) [ fEGf1gwhile T 6= ; dobeginT := T n fsgfor every t such that t 2 S0, R0(t; s), and EG(f1) 62 label(t) dobeginlabel(t) := label(t) [EGf1T := T [ ftgendendend Figure 3.3: Procedure for labeling states satisfying EGf1.
pp p p ppFigure 3.4: A Kripke structure.As an example, consider to compute EGp in the Kripke structure shownin Figure 3.4. After the �rst step, only the nodes already labeled with p arekept. These nodes are shown in Figure 3.5. The next step is then to decomposeinto maximal nontrivial SCCs the graph obtained in the previous step. Theonly SCC is greyed in Figure 3.6. All these nodes have to be labeled withEGp. Finally, we work backward to label with EGp all the nodes, actuallyjust one, from which the SCC is reachable. The result of this computation isthen depicted in Figure 3.7.
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pp p p ppFigure 3.5: Computing EGp, pruning nodes not satisfying p.
pp p p ppFigure 3.6: Computing EGp, decomposition in SCCs.
pp p p ppFigure 3.7: Computing EGp, backward traversal from the SCCs.



42 CHAPTER 3. MODEL CHECKING3.1.1 Fair CTL Model CheckingIn this section we show how the CTL model checking algorithm can be ex-tended to deal with fair Kripke structures M = hS;R;L; F i, where F =fF1; : : : ; Fng.The key point of this extension is being able to deal with formulas of theform EGf1, which is carried out through the procedure FairCheckEG. Thealgorithm resembles the one given for regular Kripke structures, from whichit di�ers only in the partitioning into SCCs, which are now are also requiredto be fair. An SCC C is fair if, for each Fi 2 F , we have that C \ Fi 6= ;. Allthe states belonging to such SCCs are then labeled with EGf1 and, �nally, allthe states that are labeled with f1 and from which there exists a path leadingto some fair maximal non trivial SCC are labeled with EGf1. The complexityof the above step is O((jSj+ jRj) � jF j), since it is necessary to check whetherthe SCCs are fair or not.Leaning on the above algorithm, one can handle the remaining cases. Firstof all, the new proposition ExistsFairPath is introduced and all the statessatisfying EG(true) according to the fair semantics, that is, those from whicha fair path departs, are labeled with ExistsFairPath. Then, when dealing witha proposition p, one has to label with p all the states s such that p 2 L(s)and ExistsFairPath 2 label(s). The cases for dealing with the propositionaloperators : and _ are the same as before. The remaining temporal operatorsare computed as� FairCheckEX(f1) = CheckEX(f1 ^ ExistsFairPath)� FairCheckEU(f1) = CheckEU(f1; f2 ^ ExistsFairPath)All of the previous computations have complexity O((jSj + jRj) � jF j) and,therefore, the overall complexity is O((jSj+ jRj) � jF j � jf j).3.2 LTL Model CheckingLTL model checking [51, 84] requires a completely di�erent approach withrespect to the one we have just described for CTL. First, it requires the con-struction of a graph, called the tableau, whose paths encode all the models ofthe negation of the LTL speci�cations. The tableau and the Kripke structureare then searched for compatible paths: �nding one means that the Kripkestructure does not satisfy the speci�cations. In what follows, we describe twoinstances of the above approach. In the �rst one, the tableau is exactly agraph, while in the second one it is an automaton on in�nite words.



3.2. LTL MODEL CHECKING 433.2.1 Graph-based LTL Model CheckingLetM = hS;R;Li be a Kripke structure and f be the LTL speci�cations, thatis, a restricted path formula. Unless otherwise stated, in this chapter we dealwith restricted path formulas built starting from atomic propositions and theoperators :;_;X; and U. Below we describe the approach considered in [55].The de�nition of the tableau requires some background work. The closureof a formula g, denoted as g, is the smallest set of formulas such that� g 2 g.� For every g1 2 g, then :g1 2 g.� For every g1 _ g2 2 g, then g1; g2 2 g.� For every g1Ug2 2 g, then g1; g2;X(g1Ug2) 2 g.In the above, to keep the closure �nite, we identify ::g1 with g1. An atomfor g is a subset A � g such that� For every g1 2 g, g1 2 A i� :g1 62 A.� For every g1 _ g2 2 g, g1 _ g2 2 A i� either g1 2 A or g2 2 A.� For every g1Ug2 2 g, g1Ug2 2 A i� either g2 2 A or g1;X(g1Ug2) 2 A.The direct graph representing the tableau for a formula g is then constructedas follows� The nodes of the graph are the atoms of g.� There is an edge from the atom A to the atom B i� for every Xg1 2 gwe have that Xg1 2 A i� g1 2 B.As an example, in Figure 3.8 the tableau for g = pUq is depicted. To sim-plify the presentation only positive formulas, i.e., those not starting with :,are mentioned in the states. The idea underlying such construction is thatin�nite paths starting from some node s induce, by removing the nonpropo-sitional formulas, models of the formulas contained in s. Unfortunately, theconstruction achieves only part of this aim. In fact, the graph takes care oflocal consistency, i.e., propositional and next state consistency, but has noway of controlling the ful�llment of until formulas. This means that it canbe possible for some paths to have a node containing a until formula f1Uf2without any one of the subsequent nodes contain f2. We will see later howthis can be dealt with. A node is said to be ful�lling with respect to a untilformula f1Uf2 2 g if either f1Uf2 does not belong to the node or f2 belongs toit. A path is called ful�lling if, for every until formula f1Uf2 2 g, it containsin�nitely many nodes ful�lling f1Uf2. Ful�lling paths do induce models.
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Figure 3.8: Graph-based tableau for g = pUq.Theorem 3.2.1 Let Tf be the tableau for the LTL formula f , and � = s0s1 : : :be a ful�lling path in it. Moreover, let �0 = r0r1 : : : be the restriction of � toP, i.e., for every i � 0, let ri = si \ P. Then �0 j= s0.Moreover, all the models are encoded through some ful�lling path.Theorem 3.2.2 Let Tf be the tableau for the LTL formula f , and � j= f .Then, in Tf , there exists a ful�lling path � = s0s1 : : : such that f 2 s0 and �is the restriction of � to P.Through the above construction, one can build the tableau for the negationof the speci�cations. The next step is producing the behavior graph thatencodes the \wrong" paths, i.e., paths that are both in the Kripke structureand in the tableau for the negation of the speci�cations. The behavior graphis built as follows� The nodes of the behavior graph are the pairs (s;A), where s 2 S andA is an atom consistent with s, i.e., such that the A \ P = L(s).� There is a direct edge from (s;A) to (s0; A0) i� R(s; s0) and there is anedge connecting A to A0.
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Figure 3.9: A system.For example, let us consider the system shown in Figure 3.9, where s1 is theinitial state. If one wants to verify this system with respect to the speci�ca-tions :pV:q, the behavior graph one obtains is the one shown in Figure 3.10,combining the system with the tableau for pUq = :(:pV:q) shown in Fig-ure 3.8Finally, according to Theorem 3.2.1 and Theorem 3.2.2, the behavior graphhas to be searched for in�nite paths related to ful�lling paths in the tableauand starting with a node (s;A) such that the negation of the speci�cation :fis in A. However, since the ful�llment of the until formulas is not guaranteedby the tableau construction, this step is rather expensive for it involves com-puting ful�lling maximal nontrivial SCCs. An SCC C of the behavior graphis ful�lling if every f1Uf2 2 :f is ful�lled by an atom A such that (s;A) 2 Cfor some state s. Note that a ful�lling SCC, due to its connectivity and beingful�lling, allows for extracting ful�lling paths by allowing for the ful�llmentof until formulas whenever this is required. This means that \wrong" pathsdepart from states s such that there exists a node (s;A) with :f 2 A thatis connected to a ful�lling SCC. With respect to the example shown in Fig-ure 3.10, a ful�lling SCC is fhs1; A7i; hs2; A5i; hs3; A4i; hs4; A8ig. Moreover, itis reachable from hs1; A1i and g 2 A1. This means that the system does notsatisfy its speci�cations.The algorithm we have just depicted has time complexity proportional to(jSj+ jRj) � 2O(jf j), where the exponential factor is introduced by the tableauconstruction for the speci�cations. In general, it can be shown that the LTLmodel checking problem is PSPACE-complete [23]. Finally, it has to be men-tioned that the above tableau construction is easy to present but immediatelyrealizes the worst case exponential complexity. However, more e�cient incre-
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s s AA1 11 7
ss AA2 25 8
ss AA3 32 4
ss AA4 45 8Figure 3.10: Behavior graph.



3.2. LTL MODEL CHECKING 47mental algorithms are available [55, 25].3.2.2 Automata-based LTL Model CheckingAn alternative tableau construction has been given by Vardi and Wolper [84,85] by exploiting the close relationship existing between linear temporal logicand automata on in�nite words [81]. In this approach, both the system andthe speci�cation are turned into automata. The system automaton recognizesall the executions of the system, while the speci�cation one recognizes all themodels of the negation of the speci�cations. Veri�cation then amounts tocheck that the two automata do not recognize any common words.The automata they use for representing the tableau are B�uchi automata[8]. A B�uchi automaton is a tuple A = h�; S; S0; �; F i where� � is the �nite alphabet.� S is a �nite set of states.� S0 � S is a set of initial states.� � : S � �! 2S is the transition function.� F � S is a set of accepting states.An execution � of A on an in�nite word w = a0a1 : : : 2 �! is an in�nitesequence of states s0s1 : : : such that� s0 2 S0.� For all i � 0, we have si+1 2 �(si; ai).An execution � is said to be accepting if it contains an accepting statein�nitely often. We say that a word w is accepted by A if there is an acceptingexecution of A over w. The language of A, denoted by L(A), is the set of thewords accepted by A.A useful generalization of B�uchi automata, which does not increase theirexpressive power, is given by generalized B�uchi automata, that is, B�uchi au-tomata with a, possibly empty, set of accepting sets F = fF1; F2; : : : ; Fng. Inthis case, an execution � = s0s1 : : : is accepting if it contains in�nitely oftena state from each accepting set. As opposed to generalized B�uchi automata,those with one accepting states are now called simple B�uchi automata.Even though more e�ective constructions to turn LTL formulas into B�uchiautomata have been given [35, 25], a very simple way to present this translationis to exploit the graph-based tableau construction depicted in the previoussection. Indeed, a generalized B�uchi automaton Ag recognizing all the models



48 CHAPTER 3. MODEL CHECKINGof the LTL formula g can be obtained by the graph-based tableau for g bylabeling the edges with the propositional information contained in the nodesand by making the accepting states play the role of the ful�lling SCCs, in thesense that ful�lling paths are now seen as accepting executions. Formally, wehave that� The alphabet is 2P� The states of the automaton are the node of the graph.� The initial states are those containing g.� The transition function of the automaton corresponds to the edges ofthe graph labeled with the propositional information contained in thenodes edges depart from, i.e., �(s; s\P) = fs0 such that there is an edgeconnecting s to s0g.� For each formula of the form f1Uf2 occurring in g, an accepting setFf1Uf2 of states containing either :(f1Uf2) or f2 is de�ned.As an example, in Figure 3.11 the automaton-based tableau for pUq corre-spondent to the graph-based tableau shown in Figure 3.8 is depicted. Initialstates are denoted through arrows that do not depart from any state, whileaccepting states (we have only one accepting set) are denoted as double circles.Once we build the automaton A:f for the negation of the LTL speci�cationf , we also need to turn the Kripke structureM = hS;R;Li into a simple B�uchiautomaton AM = h�M ; QM ; QM0; �M ; FM i, whose language is the set of the(labels of the) paths of M . This is done as follows:� The alphabet �M is 2P .� The set QM of states is the set S of states of the Kripke structure.� The initial states QM 0 are the whole set of states QM .� The transition function of the automaton is induced by the transitionrelation of the Kripke structure, i.e., �M (s; L(s)) = fs0 2 S : R(s; s0)g.� There is one accepting set containing all the states, i.e., FM = QM .In Figure 3.12 the automaton corresponding to the Kripke structure depictedin Figure 3.9 is shown.The next step is to compute the synchronous product A:f �AM , that is,the analogous of the behavior graph, in order to accept the intersection of therelated languages. Let us start by translating the generalized B�uchi automatonA:f = h�:f ; Q:f ; Q:f 0; �:f ; F:f = fF0; : : : ; Fk�1gi into an equivalent simpleone A0:f = h�0:f ; Q0:f ; Q0:f 0; �0:f ; F 0:f i. This is done as follows:
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50 CHAPTER 3. MODEL CHECKING� The alphabet �0:f is 2P .� The set Q0:f of states is Q:f � f0; : : : ; k � 1g.� The set Q0:f 0 of initial states is Q:f 0 � f0g.� The transition function, for i = 0; : : : ; k � 1, is�0:f ((s; i); a) = ( f(s0; (i+ 1)modk) : s0 2 �:f (s; a)g if s 2 Fif(s0; i) : s0 2 �:f (s; a)g if s 62 Fi� The set F 0 of accepting states is F0 � f0g.The tricky part is to ensure that every Fi is visited in�nitely often. In orderto achieve this, k copies of the automaton are considered. We move from thecopy i to the copy (i+1)modk when we hit a state s 2 Fi. Otherwise, we keepmoving in the ith copy. In this way, visiting in�nitely often F0�f0g amountsto visiting in�nitely often every Fi.The synchronous product between A0:f and AM is then de�ned as follows� The alphabet is 2P .� The set of states is the product Q0:f �QM of the two sets of states.� The set of initial states is the product Q0:f 0 � QM 0 of the two sets ofinitial states.� The transition function maps each ((s1; q1); a) 2 (Q:f �QM )� 2P intothe set f(s2; q2) : s2 2 �0:f (s1; a) and q2 2 �M (q1; a)g.� The set of accepting states is induced by the accepting states of A0:f ,and is de�ned as F 0:f �QM .In Figure 3.13, the automaton corresponding to the composition of the systemautomaton of Figure 3.12 and the speci�cation automaton of Figure 3.11 isshown.The last step is to check the emptiness of L(A0:f�AM): each word belong-ing to the above language is indeed a witness of the violation of f by M . Thischeck can be carried out in time linear in the size of the product automaton[24] by looking for some accepting state reachable from itself and from someinitial state.Finally, let us note that rather than expressing the speci�cations as LTLformulas, one can express them directly as B�uchi automata. In this way, iffrom one end one looses the simplicity and conciseness of LTL speci�cations,from the other end one gains in expressive power. Indeed, for example, LTL
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Figure 3.13: Synchronous product.
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Figure 3.14: B�uchi automaton recognizing the set of sequences in which pholds at the even places.



52 CHAPTER 3. MODEL CHECKINGhas not counting capabilities: no LTL formula can express the set of sequencesin which the proposition p is true in every even state [80], while this set canbe simply described by the B�uchi automaton shown in Figure 3.14. Note thatthe upper arrow labeled with p denotes a set of transitions departing from s1,namely, those related to subsets of P containing p. In turn, the lower arrowdenotes all the transitions departing from s2.



Chapter 4Symbolic Model CheckingThe algorithmic nature of model checking makes it fully automatic, convenientto use and very attractive to practitioners. On the other hand, model checkingis very sensitive to the size of the system. This problem|known as state-spaceexplosion problem|is the major limitation of model checking. One of themost important developments in this area is the discovery of symbolic model-checking methods [60, 9]. In particular, the use of ordered binary decisiondiagrams [6] for model representation has yielded model-checking tools thatcan handle systems with 10120 states and beyond [21]. In this chapter we startby introducing the ordered binary decision diagrams and show how to exploitthem in order to devise symbolic model checking algorithms for both CTL andLTL.4.1 Ordered Binary Decision DiagramsOrdered binary decision diagrams (OBDDs) are an economic and e�cient wayof representing Boolean functions. Thus, through suitable encodings, OBDDscan represent any sets by representing their characteristic functions. Unlikeother representations for Boolean functions, OBDDs have the advantage of acanonical form, that is, two equivalent Boolean functions are represented bythe same OBDD. This canonical form can be obtained by imposing a totalorder on the set of Boolean variables. This means that for checking whethertwo Boolean functions are equivalent, or two sets are equal, we have to computethe related OBDDs and check, in constant time, whether they are the same.According to the same logic, we can check whether a formula is unsatis�ableby computing its OBDD and comparing it with the OBDD for false.OBDDs are an evolution of ordered binary decision trees. An orderedbinary decision tree for a set of Boolean variables fv1; : : : ; vmg is a completelabeled binary tree of height m+1, where the root has height 1. Each nonleaf53
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b cd d d

a b c ddddd c
0 0 0 0 0 0 0 0 01 1 1 1 1 11

c* * *
Figure 4.1: A binary decision tree.node n of height i is labeled with vi and has two children, low(n) correspondingto the case when vi is assigned to false (often denoted as 0), and high(n)corresponding to the case when vi is assigned to true (often denoted as 1).Each leaf node is labeled either with 0 or 1. In Figure 4.1, it is shown theordered binary decision tree for the function f(a; b; c; d) = a ^ b _ c ^ d. Theleft children are the low ones, while the right children are the high ones. Givena truth assignment for fv1; : : : ; vng, one can compute the truth value of thefunction represented by a binary decision tree by traversing it from the roottowards the leaves. At each nonleaf node n labeled with vi, one descends tohigh(n) if vi is assigned to true, or to low(n) otherwise.Ordered binary decision trees are not a very concise representation forBoolean functions. Indeed, they usually contain a lot of redundancy, i.e.,distinct but isomorphic subtrees. Two subtrees are isomorphic is there existsa bijective function h mapping nonleaf nodes into nonleaf nodes and leaf nodesinto leaf nodes such that for each node n of the tree, the label of n is thesame of the label of h(n) and, for nonleaf nodes, h(low(n)) = low((h(n)), andh(high(n)) = high((h(n)). For example, in Figure 4.1, the nodes marked withan asterisk are isomorphic. Thus, we can obtain a more concise representationby merging together isomorphic subtrees. The result is not a tree anymore,but a ordered binary decision graph. More precisely, a ordered binary decisiongraph is a rooted labeled directed acyclic graph with two types of nodes,terminal nodes and nonterminal nodes. As in the case of the binary decisiontrees, each nonterminal node n labeled with the variable vi has two successors,
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Figure 4.2: A binary decision diagram.namely low(n) and high(n), while each terminal node is labeled either withtrue or false. Each node n in a binary decision diagram de�nes a Booleanfunction fn(v1; : : : ; vn) as follows:� If n is a terminal node:{ If n is labeled with true, fn(v1; : : : ; vn) = true{ If n is labeled with false, fn(v1; : : : ; vn) = false� If n is a nonterminal node labeled with vi, we have fn(v1; : : : ; vn) =(:vi ^ flow(n)(v1; : : : ; vn)) _ (vi ^ fhigh(n)(v1; : : : ; vn))In Figure 4.2 The binary decision diagram related to the binary decision treeof Figure 4.1 is depicted.Beside the redundancy introduced by isomorphic subtree, there is redun-dancy introduced by redundant nodes, that is, those such that their low andhigh nodes are identical. A redundant node n may be removed, and each arcleading to it can be replaced by one leading to low(n)(= high(n)). This laststep leads to the OBDD shown in Figure 4.3.To summarize, the canonical OBDD form is a labeled directed acyclic graphthat can be obtained from the ordered binary decision tree by the followingtwo steps:� Merge isomorphic subtrees into a single subtree.� Eliminate any nodes whose left and right children are isomorphic.
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d
a b

0 1
c
Figure 4.3: An ordered binary decision diagram.Bryant [6] described an algorithm, called Reduce, to compute the above stepsin a bottom up fashion in time linear with respect to the size of the initialordered binary decision tree.Unfortunately, OBDDs are very sensitive to the variable ordering, whichis the key point to obtain the canonical form. For example, while the OBDDin Figure 4.3 has 4 nonterminal nodes, by choosing the order a; c; b; d oneobtains the 7-nonterminal-node OBDD of Figure 4.4. Moreover, it can beproved that some functions have exponential size OBDDs, no matter what thevariable ordering is. One classic example is the function encoding the integermultiplication between two bit vectors [7].Beside the reduction of an ordered binary decision tree, Bryant also de-scribed an algorithm calledApply that applies an arbitrary Boolean operationf : f0; 1g2 ! f0; 1g to two OBDDs. The operation f can be any Boolean func-tion of two variables.The algorithm works by recursive descent on the two OBDDs and usesan hash table to store the result returned for each pair of nodes, so that theresult for a given pair only has to be computed once. As a result, Apply hasquadratic complexity. Moreover, note that the negation of an OBDD o can beperformed in linear complexity, being :o = Apply(XOR; o; 1).To see how Apply works when given a pair of nodes p and q, let us breakthe problem of computing f(p; q) into cases. First, if both p and q are termi-nals, then we simply return f(p; q).If p and q are not terminal and are labeled with the same variable vi,
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cc b b bd

a

0 1Figure 4.4: Changing the variable ordering.then we call Apply recursively to compute l0 = f(low(p); low(q)) and h0 =f(high(p); high(q)). If l0 = h0 then we return l0, otherwise we return a node nlabeled with vi such that low(n) = l0 and high(n) = h0.If p and q are not terminal and are labeled with di�erent variables vi andvj we have two symmetric cases. Let us consider that vi < vj . Then q doesnot depend on vi and it can be shown that f(p; q) correspond to a node nlabeled with vi such that low(n) = f(low(p); q) and high(n) = f(high(n); q).Bryant also gave the algorithm Compose that can be used for composingtwo Boolean functions p : f0; 1gn ! f0; 1g and q : f0; 1gm ! f0; 1gn. Since9v:p = p(false) _ p(true), the function Compose could be easily adaptedin order to compute 9~v:p, for a vector ~v of Boolean variables. Therefore, theCompose algorithm could be used to symbolically evaluate EXg as 9~v:R^g,where R is the Boolean function representing the transition relation and gis the function representing the states labeled with g. However, since theperformances of the model checker heavily rely on computing EXg, the adhoc function AndExist has been developed.The AndExists function takes in input a vector ~v of Boolean variablesand two OBDDs p and q, and computes 9~v:p^ q. It is basically a modi�cationof the Apply function, where f(p; q) = p ^ q. Indeed, rather that computingthe entire OBDD for p^q before applying the existential quanti�er, one appliesthe existential quanti�er to the partial results. More in detail, before we returna result, say r = hv; l; hi, we test the variable v to see if it occurs in the vector



58 CHAPTER 4. SYMBOLIC MODEL CHECKING~v. If it does, we call Apply to compute l _ h, which is exactly 9v:fr.4.2 Symbolic Kripke structuresIn this section, we show how Kripke structures can be thought of as Booleanfunctions, that is symbolically, and therefore e�ciently represented and han-dled through OBDDS.The �rst step is the representation of a �nite set D of cardinality jDj � 2n.By using a suitable encoding  : f0; 1gn ! D, D can be represented throughits characteristic function over the Boolean variables fv1 : : : ; vng asfD(v1; : : : ; vn) i�  (v1; : : : ; vn) 2 DFor example, assuming the encoding  (0; 0) = a,  (0; 1) = b,  (1; 0) = c, (1; 1) = d, the subset fa; b; dg of fa; b; c; dg can be represented as the function:v0 ^ :v1 _ :v0 ^ v1 ^ v0 ^ v1.A relation R on the domains D1; : : : ;Dn can be similarly represented asfR(~v1; : : : ; ~vn) i� R( 1(~v1); : : : ;  n(~vn))where the  i's are the encodings of the domainsDi's. For example, the relation(a + 1) �4 b between 2-bit numbers, that is, f(0; 1); (1; 2); (2; 3); (3; 0)g, canbe encoded as f(00; 01), (01; 10), (10; 11), (11; 00)g by exploiting the previousencoding. Therefore, it can be represented through a function of the variablesfv0; v1; v2; v3g as :v0 ^ :v1 ^ :v2 ^ v3 _ :v0 ^ v1 ^ v2 ^ :v3 _ v0 ^ :v1 ^ v2 ^v3 _ v0 ^ v1 ^ :v2 ^ :v3.Because of this strong relationship among sets, relations, Boolean func-tions, and OBDDs, we often use the same name for denoting the di�erentobjects belonging to the above classes. That is, as the context requires, theset A becomes an OBDD, a relation, or a Boolean function.Consider now the fair Kripke structure M = hS;R;L; F = fF1; : : : ; Fngi.To represent this structure, we have to describe the set S, the relation R,the labeling L, and the fair sets F1; : : : ; Fn. For the sets S and F1; : : : ; Fn,assuming they contain at most 2n elements, we consider a Boolean encoding S : f0; 1gn ! S and represent them through their characteristic functions.For the relation R, we use the same encoding twice, once for the currentstate and one for next state. It is customary to denote the variables encodingthe next states as primed version of the ones used for the current state, i.e.,representing R as fR(~v; ~v0), which holds if and only if R( (~v);  (~v0)) does.Finally, the labeling L maps each state into the propositions true that hold inthat state. A representation that better �ts the approach already describedconsists in representing L by representing, for each proposition p, the set ofstates Lp in which p holds. Again, each Lp is represented by using the sameencoding used for representing the set of states.



4.3. FIX POINT CHARACTERIZATION OF CTL OPERATORS 594.3 Fix point characterization of CTL operatorsLetM = hS;R;Li be a �nite Kripke structure and let us consider the completelattice (PowerSet(S);�) obtained by partially ordering through the inclusionthe set of the subsets of S. The least element of such power set is the emptyset, while the greatest element of such power set is S. A functional F in(PowerSet(S);�) is a function from PowerSet(S) to PowerSet(S). F is calledmonotonic if it is order preserving, that is, if A � B implies F(A) � F(B),for each A;B � S. So, for example, for A � S, F(X) = X \A is monotonic,since X � X 0 implies X \ A � X 0 \ A. On the other hand, for ; 6= A � S,F(X) = A n X is not monotonic, since for example, ; � A does not implyF(;) = A � ; = F(A). A functional F is union-continuous when for anynon-decreasing in�nite sequence of S's subsets A1 � A2 � : : :, we have that[iF(Ai) = F([iAi). In turn, a functional F is intersection-continuous whenfor any non-increasing in�nite sequence of S's subsets A1 � A2 � : : :, we havethat \iF(Ai) = F(\iAi). Note that if F is union or intersection continuous itis also monotonic. A �xed point of F is any A � S such that F(A) = A. Forexample, A is a �xed point of F(X) = X\A, since F(A) = A\A = A. Tarski[79] showed that monotonic functionals on complete lattices have a least �xedpoint �F de�ned as �F = \X:F(X)=XXand a greatest �xed point �F de�ned as�F = [X:F(X)=XXMoreover, if the functional is union-continuous its least �x point can be char-acterized as �F = [iF i(;)where F i means iterating F i times, that is, F1(X) = F(X) and Fn+1(X) =F(Fn(X)). On the other hand, if the functional is intersection-continuous itsgreatest �x point can be characterized as�F = \iF i(S)We note that if the set S if �nite, then any monotonic functional F is alsounion- and intersection-continuous. This is because any in�nite sequence ofS's subsets A1 � A2 � : : : has eventually to stabilize with an element Am,possibly the whole S, such that Am = [iAi while, in turn, any in�nite sequenceof S's subsets A1 � A2 � : : : has eventually to stabilize with an element Am,possibly the empty set, such that Am = \iAi.Now let us identify every CTL formula f with the set fs : s j= fg ofstates in which the formula holds. We note that EFp is logically equivalent



60 CHAPTER 4. SYMBOLIC MODEL CHECKINGto p _EXEFp. That is, EFp holds in the current state s when p is true in sor EFp is true in some successor of s. Two logically equivalent formulas aresatis�ed by the same set of states. Thus, EFp = p _ EXEFp. This makesEFp a �xed point of the functional F(Z) = p_EXEF(Z). This functional ismonotonic, since if Z � Z 0 and there exists a path from a state s to a statesatisfying Z then there is also a path form s to a state satisfying Z 0. Thus, thefunctional F has a least �xed point that it can be shown being exactly EFp.Clarke and Emerson [20] showed that similar �xed point characterizations canbe obtained for the other CTL operators:� EFp = �(�Z:p _EX(Z))� EGp = �(�Z:p ^EX(Z))� E(pUq) = �(�Z:q _ (p ^EX(Z)))� AFp = �(�Z:(p _AX(Z)))� AGp = �(�Z:(p ^AX(Z)))� A(pUq) = �(�Z:(q _ (p ^AX(Z))))Since we deal with �nite Kripke structures, each of the above �xed points canbe characterized as the limit of a series obtained by iterating the correspondingfunctionals, that is� EFp = [i(�Z:(p _EX(Z)))i(;)� EGp = \i(�Z:(p ^EX(Z)))i(S)� E(pUq) = [i(�Z:(q _ (p ^EX(Z))))i(;)� AFp = [i(�Z:(p _AX(Z)))i(;)� AGp = \i(�Z:(p ^AX(Z)))i(S)� A(pUq) = [i(�Z:(q _ (p ^AX(Z))))i(;)Indeed, being S �nite, we have that eventually, at most when reaching thewhole set S for least �x points or when reaching the empty set for greatest�x points, the above sequences stabilized on the �x points. Thus, the abovecharacterizations give us an e�ective procedure for computing the basic CTLoperators.



4.4. CTL SYMBOLIC MODEL CHECKING 614.4 CTL symbolic Model checkingIn this section, we show how the �x point characterization of the CTL oper-ators given in Section 4.3 can be exploited in order to de�ne a CTL modelchecking algorithm implementable through OBDDS. OBDDs will be used torepresent the set of states in which a CTL formula holds, while the requiredcomputations are carried out through the standard OBDD operations. Thefunction SymbolicCheck, which is depicted in Figure 4.5, when given a CTLformula f returns the set of states where f holds, and is de�ned on the struc-ture of f .When f is an atomic proposition, SymbolicCheck(f) simply returns theOBDD for f , while the _ and : connective are implemented through theApply function.If f isEXf1, SymbolicCheck returns the OBDD for 9~v0:(R(~v; ~v0)^f1(~v0))that can be e�ciently computed through the function AndExist and Com-pose. This latter one is used for renaming the variables of f1 from the currentstate variable ~v into the next state variable ~v0.Finally, if f is E(f1Uf2) or EGf1, SymbolicCheck exploits the �x pointcharacterizations of Section 4.3. Indeed, least �x points can be computedthrough the function shown in Figure 4.6. The function gfp for computinggreatest �x points is obtained from the above by replacing the initialization ofA with Z := S. Such functions can be implemented through OBDDs. Indeed,both the sets Z and Z 0 can be represented as OBDDs and the transformationsinduced by the functional F can be realized through the standard OBDDoperations by means of the Apply, AndExist, or Compose functions.As an example, let us compute AFp in the Kripke structure shown inFigure 4.7. The labels of a node de�ne the propositions holding in that node.Note that, having the Kripke structure 5 states, the functions for computingleast and greatest �x points iterate at most 6 times. The situation after the�rst iteration, that is, F1(;) = p _AX; = p, is depicted in Figure 4.8. Thesituation after the second iteration, that is, F2(;) = p _AXp, is depicted inFigure 4.9. This is the �x point, since performing another iteration does notresult in adding any new states.As another example, consider the computation of EGp over the Kripkestructure shown in Figure 4.10. The situation after the �rst iteration, thatis, F1(S) = p ^ EX(S) = p, is depicted in Figure 4.11. The situation afterthe second iteration, that is, F2(S) = p ^ EXp, is depicted in Figure 4.12.The situation after the third iteration, that is, F3(S) = p ^ EX(p ^ EXp),is depicted in Figure 4.13. This is also the �x point, since the next iterationdoes not remove any further states.
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function SymbolicCheck(f)begincase f ofproposition:return the OBDD for Lf of the states satisfying f:f1:return :(SymbolicCheck(f1))f1 _ f2:return SymbolicCheck(f1) _ SymbolicCheck(f2)EXf1:return SymbolicCheckEX(SymbolicCheck(f1))E(f1Uf2):return SymbolicCheckEU(SymbolicCheck(f1);SymbolicCheck(f2))EG(f1):return SymbolicCheckEG(SymbolicCheck(f1))endendfunction SymbolicCheckEX(f1)beginreturn 9~v0:(R(~v; ~v0) ^ (f1(~v0)))endfunction SymbolicCheckEU(f1; f2)beginreturn lfp(�Z:f2 _ (SymbolicCheckEX(Z) ^ f1))endfunction SymbolicCheckEG(f1)beginreturn gfp(�Z:f1 ^ SymbolicCheckEX(Z))end Figure 4.5: Function for CTL symbolic model checking.



4.4. CTL SYMBOLIC MODEL CHECKING 63function lfp(F)let Z := ;dolet Z 0 := Zlet Z := F(Z)until Z = Z 0return ZendFigure 4.6: Algorithm for computing the least �x point of a monotonic func-tional F .
pp

Figure 4.7: A Kripke structure.
pp

Figure 4.8: Computing AFp, �rst iteration.
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pp

Figure 4.9: Computing AFp, second iteration and �x point.p p p pFigure 4.10: A Kripke structure.p p p pFigure 4.11: Computing EGp, �rst iteration.p p p pFigure 4.12: Computing EGp, second iteration.p p p pFigure 4.13: Computing EGp, third iteration and �x point.



4.4. CTL SYMBOLIC MODEL CHECKING 654.4.1 Symbolic Fair CTL Model CheckingIn this section, we show how to extend the algorithm we have given in theprevious section, in order to take into account fairness F = fF1; : : : ; Fng. Theway we extend the algorithm is the same of the explicit state case, since westart by rede�ning the computation of EGf along fair paths and exploit suchcomputation for de�ning the remaining ones. However, the way in which EGfis computed is di�erent, in order to make it possible through the standardOBDD operations.EGf is fairly satis�ed along a path if f invariantly holds in such a pathand, for each Fi 2 F there exists si 2 Fi holding in�nitely often along thepath. It can be shown that the set of the states in which EGf holds is thelargest set Z such that� Each state in Z satis�es f .� For each state s in Z and fair set Fi 2 F , there exists a path in Z ofpositive length from s to some state in Z satisfying Fi.Intuitively, from each state contained in such set, it is possible to reach, goingthrough states satisfying f , another state in which F1 holds. Since this latterstate belongs to the set, the reasoning can be iterated reaching all the Fialways satisfying f . Moreover, since the state satisfying Fn is in the set, thereis a path satisfying f from this state back to a state satisfying F1. Therefore,an in�nite path always satisfying f and going in�nitely often through everyFi can be constructed. Formally, EGf can expressed asEGf = �(�Z:f ^ ^Fi2F EX(E(fU(Z ^ Fi))))and, therefore, can be computed through standard symbolic techniques. Morein detail, let fairi be the OBDD for Fi, we haveSymbolicFairCheck(EGf) =SymbolicFairCheckEU(SymbolicFairCheck(f))whereSymbolicFairCheck(f1) =gfp(�Z:f1^Vi=1;:::;n SymbolicCheckEX(SymbolicCheckEU(f1; Z ^ fairi))) :Similarly to the explicit state algorithm discussed in Section 3.1.1, theother cases are dealt with by relying on the set ExistsFairPath of statesfrom which a fair path departs. This set is computed as ExistsFairPath =SymbolicFairCheckEU(S). The function SymbolicFairCheck is depictedin Figure 4.14.
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function SymbolicFairCheck(f)begincase f ofproposition:return the conjunction of ExistsFairPath with the OBDD for Lf:f1:return :(SymbolicFairCheck(f1))f1 _ f2:return SymbolicFairCheck(f1) _ SymbolicFairCheck(f2)EXf1:return SymbolicCheckEX(SymbolicFairCheck(f1)^ ExistsFairPath)E(f1Uf2):return SymbolicCheckEU(SymbolicFairCheck(f1);SymbolicFairCheck(f2)^ ExistsFairPath)EG(f1):return SymbolicFairCheckEG(SymbolicFairCheck(f1))endendfunction SymbolicFairCheckEG(f1)beginreturn gfp(�Z:f1 ^Vi=1;:::;n SymbolicCheckEX(SymbolicCheckEU(f1; Z ^ fairi)))end Figure 4.14: Function for fair CTL symbolic model checking.



4.5. LTL SYMBOLIC MODEL CHECKING 674.5 LTL symbolic model checkingIn this section we show how the fair CTL model checking procedure can beextended in order to deal with LTL speci�cations. The basic idea is to sym-bolically encode the graph-based approach to LTL model checking throughfair CTL model checking. This is carried out by looking at the behavior graphas a symbolic Kripke structure and by exploiting fairness in order to detectful�lling paths.Let us start by symbolically encoding the tableau for the negation :f ofthe speci�cation. To this end, recall that the nodes of the tableau are atomsbuilt on the closure :f , that is, subsets A of :f such that� For every g1 2 :f , g1 2 A i� :g1 62 A� For every g1 _ g2 2 :f , g1 _ g2 2 A i� either g1 2 A or g2 2 A� For every g1Ug2 2 :f , g1Ug2 2 A i� either g2 2 A or g1;X(g1Ug2) 2 AThe nodes of the tableau can then be symbolically represented by setting asuitable ordering f1; f2; : : : ; fn among the formulas in :f , by introducing theset NT = fVg : g 2 :fg of variables, and by de�ningTableauNode(Vf1 ; : : : ; Vfn) =(VV:g2NT V:g $ :Vg)^ (VVg1_g22NT Vg1_g2 $ Vg1 _ Vg2)^ (VVg1Ug22NT Vg1Ug2 $ Vg2 _ (Vg1 ^X(Vg1Ug2)))Therefore, the edges of the tableau can be symbolically represented asTableauEdge(Vf1 ; : : : ; Vfn ; V 0f1 ; : : : ; V 0fn) =TableauNode(Vf1 ; : : : ; Vfn)^TableauNode(V 0f1 ; : : : ; V 0fn)^VVXf12NT VXf1 $ V 0f1Let now fw1; : : : ; wmg be the set of new variables required to symbolicallyrepresent the Kripke structure M = hS;R;Li, let  : fw1; : : : ; wmg ! S bethe Boolean encoding of the states of M , and let State, TransitionRelation,and Labeling be the symbolic representations of the states, of the transitionrelation, and of the labeling of M , respectively. More in detail, let Labeling bea vector of Boolean functions, one for every atomic propositions p, such thatLabelingp(w1; : : : ; wm) holds if and only if p 2 L( (w1; : : : ; wm)).The behavior graph can then be looked at as the fair Kripke structureB = hSB ; RB ; LB ; FBi, which can be symbolically represented starting from



68 CHAPTER 4. SYMBOLIC MODEL CHECKINGthe variables w1; : : : ; wm; Vf1 ; : : : ; Vfn as follows. The set SB of states is sym-bolically represented asBehaviorState(w1; : : : ; wm; Vf1 ; : : : ; Vfn) =State(w1; : : : ; wm)^ TableauNode(Vf1 ; : : : ; Vfn)^Vp2P Labelingp(w1; : : : ; wm)$ VpThe relation RB is symbolically represented asBehaviorRelation(w1; : : : ; wm; Vf1 ; : : : ; Vfn ; w01; : : : ; w0m; V 0f1 ; : : : ; V 0fn) =BehaviorState(w1; : : : ; wm; Vf1 ; : : : ; Vfn)^ BehaviorState(w01; : : : ; w0m; V 0f1 ; : : : ; V 0fn)^ TransitionRelation(w1; : : : ; wm; w01; : : : ; w0m)^ TableauEdge(Vf1 ; : : : ; Vfn ; V 0f1 ; : : : ; V 0fn)The labeling LB is represented, for each p 2 P, asBehaviorLabelingp(w1; : : : ; wm; Vf1 ; : : : ; Vfn) =BehaviorState(w1; : : : ; wm; Vf1 ; : : : ; Vfn) ^ VpFinally, for each g1Ug2 2 :f , a fairness set Fg1Ug2 is de�ned and representedas BehaviorFairnessg1Ug2(w1; : : : ; wm; Vf1 ; : : : ; Vfn) =BehaviorState(w1; : : : ; wm; Vf1 ; : : : ; Vfn) ^ (:Vg1Ug2 _ Vg2)A \wrong" path then exists if the following conditions holds:� The path starts from a state in which V:f holds.� The path goes through each fair set in�nitely often.and, therefore, can be encoded by means of the CTL formulaV:f ^EG(true)that has to be evaluated according to the fair CTL semantics.



Chapter 5Planning as Model CheckingPlanning as model checking [15, 37, 19, 2, 18, 26, 16, 27] is a new planningparadigm that seems to be very promising in order to produce automatic good-performance planners for nonclassical planning. The main idea underlying thisparadigm is that, as in model checking, planning problems are faced model-theoretically. That is, planning domains are formalized as semantic models,properties of planning domains are described through temporal formulas, andplanning is carried out by verifying whether semantic models satisfy temporalformulas. Looking at planning from this perspective introduces many newimportant features:� The approach is well-founded: Planning problems are given a clear andintuitive formalization in temporal logic.� The approach is general: The same framework can be used to naturallytackle many di�erent aspects of planning, e.g., many initial states, partialobservability, nondeterministic domains, and extended goals, that is, notonly goals of attainment.� The approach is practical: By exploiting the large amount of techniquesdeveloped in the �eld of model checking, it is possible to devise e�cientalgorithms that generate plans automatically and that can deal withlarge size problems.In this chapter, we describe two di�erent approaches to planning as modelchecking, one based on symbolic techniques and another relying on automataon in�nite words.5.1 Symbolic Approach to PlanningCimatti et al. introduced in [15] the idea to use symbolic model checking tech-niques for facing planning problems. Such idea has since then been extended69



70 CHAPTER 5. PLANNING AS MODEL CHECKINGfor dealing with nondeterministic domains in several ways. More in detail,[15] proposes an algorithm for generating weak plans, that is, plans that mayachieve the goal but are not guaranteed to do so; [19] proposes an algorithm togenerate strong plans, that is, plans that are guaranteed to achieve a desiredgoal in spite of nondeterminism; and [18, 26] extends [19] to generate strongcyclic plans, whose aim is to encode iterative trial-and-error strategies like\pick-up the block until succeed", as described in Section 1.4. Finally, [16]shows how to perform conformant planning symbolically.In this section, we provide a formal de�nition of weak, strong, and strongcyclic plans based on the branching time temporal logic CTL and present therelated planning algorithms. The formalization is obtained by exploiting theuniversal and existential path quanti�ers of CTL, as well as the \always" and\eventually" temporal connectives. Indeed, the idea is that a weak plan is suchthat there exists an execution that eventually achieves the goal, a strong planis such that all the executions eventually achieve the goal, and a strong cyclicplan is such that for each possible execution, always during the execution,there exists the possibility of eventually achieving the goal.5.1.1 Planning ProblemsIn this framework a nondeterministic planning domain can be described interms of uents, which may assume di�erent values in di�erent states, actionsand a transition function describing how (the execution of) an action leadsfrom one state to possibly many di�erent states.De�nition 5.1.1 (Planning Domain) A planning domain D is a 4-tuplehF; S;A;Ri where F is the �nite set of uents, S � 2F is the set of states, Ais the �nite set of actions, and R : S �A 7! 2S is the transition function.Fluents belonging (not belonging) to some state s are assigned to true (false)in s. Our de�nitions deal with Boolean uents while examples are easier todescribe through uents ranging over generic �nite domains. For non-Booleanvariables, we use a Boolean encoding similarly to [32]. R(s; a) returns allthe states the execution of a from s can lead to. The action a is said to beexecutable in the state s if R(s; a) 6= ;.A nondeterministic planning problem is a planning domain, a set of initialstates and a set of goal states.De�nition 5.1.2 (Planning Problem) A planning problem P is a 3-tuplehD; I;Gi where D is the planning domain, I � S is the set of initial statesand G � S is the set of goal states.
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Figure 5.1: An example (left) and its formalization (right).Both I and G can be represented through two Boolean functions I and G overF , which de�ne the sets of states in which they hold. From now on, we switchbetween the two representations, as sets or functions, as the context requires.Nondeterminism occurs twice in the above de�nitions. First, we have aset of initial states, and not a single initial state. Second, the execution of anaction from a state is a set of states, and not a single state.As an explanatory example, let us consider the situation depicted in Fig-ure 5.1 (left). A tray (T) provides two positions in which two containers (C1and C2) for solutions may be hosted. In addition, a kettle (K) may host onecontainer for boiling its solution. The kettle is provided with a switch (S)that can operate only if the container is well positioned on the kettle. Thissituation can be formalized as shown in Figure 5.1 (right). The set F of(non-Boolean) uents is fC1; C2; Sg. C1 and C2 represent the positions of thecontainers, and can be on-T (on tray), on-K-ok (on kettle, steady), or on-K-ko(on kettle, not steady). S represents the status of the kettle's switch (on oroff). The set of states is represented by the nodes of the graph, which de�neuents' values. The set of actions is represented by the edges' labels. Theactions move(C1,T), move(C2,T), switch-on, and switch-off, are determin-istic; while move(C1,K), move(C2,K), and fix-position, are not. Indeed,when moving containers from the tray to the kettle, it can happen the con-tainers are not correctly positioned. Moreover, it can be possible the wrongcontainer is picked up and moved upon the kettle. Thus, R(S4; move(C1; K)) =R(S4; move(C2; K)) = fS2; S3; S6; S7g. Still, when trying to settle a container,it is possible getting no e�ect. Thus, R(S3; fix-position) = fS2; S3g andR(S7; fix-position) = fS6; S7g. The planning problem is to boil the solu-tion contained in C1 starting from a situation where C1 is on the tray andthe kettle's switch is o�, that is, I is C1 = on-T ^ S = off (grey nodes, inFigure 5.1), and G is C1 = on-K-ok^ S = on (black node, in Figure 5.1).



72 CHAPTER 5. PLANNING AS MODEL CHECKINGState ActionS1 switch-offS3 fix-positionS2 move(C2,T)S4 move(C1,K)S4 move(C2,K)S7 fix-positionS6 switch-onFigure 5.2: A state-action table.5.1.2 Plans as State-Action TablesWhen dealing with nondeterminism, plans have to be able to represent con-ditional and iterative behaviors. In this framework plans are de�ned as state-action tables (resembling universal plans [73]) that associate actions to states.The execution of a state-action table can result in conditional and iterativebehaviors. Intuitively, a state-action table execution can be explained in termsof a reactive loop that senses the state of the world and chooses one amongthe corresponding actions, if any, for the execution until the goal is reached.Therefore, a state-action table results in a memoryless plan.De�nition 5.1.3 (State-Action Table) A state-action table SA for a plan-ning problem P is a set of pairs fhs; ai : s 2 S nG; a 2 A; and a is executablein sg.The states of a state-action table may be any state, except for those in theset of goal states. Intuitively, this corresponds to the fact that when the planachieves the goal no further action needs to be executed. Hereafter, we writeStates(SA) for denoting the set of states in the state-action table SA, i.e.,States(SA)= fs : 9a 2 A such that hs; ai 2 SAg, and Closure(SA) todenote the states that are not in the SA but that are reachable by executingpairs in SA or are goal states, i.e., Closure(SA) = fs 62 States(SA) :hs0; a0i 2 SA; s 2 R(s0; a0)g [ G. The following particular case occurs whenClosure(SA) = G.De�nition 5.1.4 (Total State-Action Table) A state-action table SA fora planning problem P is total if, for all hs; ai 2 SA, R(s; a) � States(SA)[G.Intuitively, in a total state-action table, each state that can be reached byexecuting an action either is a goal state or has a corresponding action inthe state-action table. The notion of total state-action table is important in



5.1. SYMBOLIC APPROACH TO PLANNING 73order to capture strong (cyclic) plans, i.e., plans that must be speci�ed for allpossible outcomes of actions. In Figure 5.2, a total state-action table relatedto our example is shown.Given a notion of plan as a state-action table, weak, strong, and strongcyclic plans can be formalized in terms of CTL speci�cations on the possibleexecutions of state-action tables. A preliminary step is to formalize the notionof execution of a state-action tableDe�nition 5.1.5 (Execution) Let SA be a state-action table for the plan-ning problem P . An execution of SA starting from the state s0 2 States(SA)[Closure(SA) is an in�nite sequence s0s1 : : : of states in S such that, forall i � 0, either si 2 Closure(SA) and si = si+1, or si 62 Closure(SA)and, for some a 2 A, hsi; ai 2 SA and si+1 2 R(si; a).Executions are in�nite sequences of states. Depending on nondeterminism, wemay have many possible executions corresponding to a state-action table. Eachnongoal state si has as successor a state si+1 reachable from si by executing anaction corresponding to si in the state-action table; when the sequence reachesa goal state, the execution is extended with an in�nite sequence of the samegoal state. Of course, nontotal state-action tables may induce also executionsdangling at nongoal states, i.e., executions reaching a nongoal state for whichno action is provided.The executions of a state-action table SA for the planning problem P canbe encoded as paths of the Kripke structure KPSA induced by SA.De�nition 5.1.6 (Induced Kripke Structure) Let SA be a state-actiontable for the planning problem P . The Kripke structure KPSA induced by SAis de�ned as� WPSA = States(SA) [Closure(SA);� TPSA(s; s0) i� s 2 Closure(SA) and s = s0, or hs; ai 2 SA and s0 2R(s; a);� LPSA(s) = s.Note that having introduced the closure guarantees the totality of the inducedKripke structure.5.1.3 Weak PlanningWeak plans are such that, for all the initial states, there exists at least oneexecution that eventually achieves the goal. Formally, we have the following



74 CHAPTER 5. PLANNING AS MODEL CHECKING1. function WeakPlan(P )2. WP:= ;; OldWP:=?3. while (I 6� States(WP)[G and OldWP6=WP) do4. OldWP:=WP5. WP:=WP [WeakPreImage(P ,WP)6. endwhile7. if (I � States(WP) [G)8. then return WP9. else return FailFigure 5.3: An algorithm for weak planning.De�nition 5.1.7 (Weak Plan) A weak plan for a planning problem P is astate-action table SA for P such that I � WPSA and, for all s 2 I, we haveKPSA; s j= EFG.In Figure 5.3 a simple regressive algorithm for computing weak plans isshown. The idea underlying this and the following algorithms is that sets ofstates (instead of single states) are manipulated during the search. This allowsthe algorithm to be e�ciently implemented through OBDDs and, therefore,to target domains involving large state spaces as shown by the experimentalresults in [18].The algorithm starts with the empty state-action table in WP (line 2)and works backward gathering in WP state-action pairs whose execution maylead to G (lines 3{6). This is realized through the function WeakPreIm-age (line 5) that, given a planning problem P and a state-action table WP,returns the pairs that are related to states that are neither in WP nor inG and through which states of WP or G can be reached in one step. For-mally, WeakPreImage(P;WP) = fhs; ai : s 2 S; a 2 A; s 62 States(WP) [G; and R(s; a) \ (States(WP) [ G) 6= ;g. The algorithm keeps expandingWP until either it contains I nG or it can not be expanded anymore (line 3).In the former case, the algorithm returns WP (line 8), while in the latter oneit returns failure (line 9).For example, Figure 5.3 is a weak plan for the planning problem shownin Figure 5.1. After one iteration of the while statement at line 3, the lastrow of the table is gathered, while after two iterations the last four rows arecollected. After another iteration, the third row is introduced in the table.Note that, due to the de�nition ofWeakPreImage, in this iteration the pairhs6; move(C1,T)i is not inserted in the state-action table, since it is related toa state that has already been inserted. Finally, after four iterations, the �rsttwo rows are collected. The algorithm then stops since all the initial states



5.1. SYMBOLIC APPROACH TO PLANNING 75have been gathered.The above algorithm always terminates, is correct and complete.Theorem 5.1.1 Let P be a planning problem, then1. WeakPlan(P ) terminates.2. WeakPlan(P ) returns a weak plan for P if and only if one exists.Proof: (1) The termination follows from the fact that the while statementat line 3 implements a monotonic functional over a �nite domain. Indeed, itkeeps adding state-action pairs to WP and therefore it eventually terminates,possibly when all the pairs have been introduced.(2) (only if) By de�nition of induced Kripke structure, we have that thegoal states satisfy EFG. Thus, let us focus on nongoal states. By induc-tion on the number n of iterations of the while statement at line 3, anddenoting as WPn the state-action table WP after the nth iteration, let usprove that KPWPn ; s j= EF(G), for all s 2 States(WPn). If n = 0, thenStates(WP0) = ; and the claim trivially holds. If n > 0, either no pairs havebeen added, and we conclude by inductive hypothesis, or WPn is obtainedfrom WPn�1 by adding some pairs for which at least one of their outcomesis in States(WPn�1). We conclude by de�nition of KPWPn and by inductivehypothesis.(if) Let us suppose that a weak plan dWP for P exists. Then, in KPdWP,each initial state s is either a goal state or is connected to a goal state throughsome minimal length path s1 : : : sn+1, where s = s1, s1; : : : ; sn 62 G, andsn+1 2 G. By de�nition of KPdWP, the path s1 : : : sn+1 corresponds to somestate-action pairs hs1; a1i; : : : ; hsn; ani such that, for i = 1; 2; : : : ; n, we havesi+1 2 R(si; ai).Let us now show that after k iterations of the while statement at line 3,k = 1; : : : ; n, we have that sn�k+1 2 States(WPk) and that all the states inWPh are connected to G in KPWPk through a path of length k. If k = 1 thenWeakPreImage introduces the pair hsn; ani in WP1. If k > 1, let us notethat s�k+1 cannot belong toWPk�1 since otherwise the inductive hypothesiswould contrast the choice of minimal length path. By inductive hypothesissn�(k�1)+1 2 States(WPk�1) and therefore the pair hsn�k+1; as�k+1i is in-serted in WPk. Since WPk�1 �WPk, sn�(k�1)+1 is connected to G by a pathof length k� 1 in KPWPk too. Being sn�k+1 connected to sn�(k�1)+1, we havethat sn�k+1 is connected to G by a path of length k in KPWPk .Since for each i we have that WPi � WPi+1, all the states of dWP areeventually gathered in some WPk̂ and, therefore, the algorithm terminateswith success.



76 CHAPTER 5. PLANNING AS MODEL CHECKING1. function StrongPlan(P )2. SP:= ;; OldSP:=?3. while (I 6� States(SP) [G and OldSP6=SP) do4. OldSP:=SP5. SP:=SP [ StrongPreImage(P ,SP)6. endwhile7. if (I � States(SP) [G)8. then return SP9. else return FailFigure 5.4: An algorithm for strong planning.5.1.4 Strong PlanningStrong plans are such that all executions eventually achieve the goal. Formally,we have the followingDe�nition 5.1.8 (Strong Plan) A strong plan for a planning problem P isa total state-action table SA for P such that I � WPSA and, for all s 2 I, wehave KPSA; s j= AFG.In Figure 5.4 a simple regressive algorithm for computing strong plans isshown. Again, sets of states (rather than single states) are manipulated dur-ing the search, allowing the algorithm to be e�ciently implemented throughOBDDs.The algorithm resembles the one given for computing weak plans, butfor the function WeakPreImage that is replaced by StrongPreImage.StrongPreImage introduces a state-action pair if it is not related to an al-ready present state or to a goal state, and if all its nondeterministic outcomesare contained in the so far computed state-action table or in the goal. Formally,when given a problem set P and a state-action table SP , StrongPreImage isde�ned as StrongPreImage(P;SP) = fhs; ai : s 2 S; a is executable in s; s 62(States(SP) [G); and R(s; a) � States(SP) [Gg.For example, no strong plan exists for the planning problem shown inFigure 5.1. Indeed, after one iteration, the last row of the state-action tablein Figure 5.2 is gathered, but the second iteration results in the �x point sinceno other state-action pairs can be introduced.The above algorithm always terminates, is correct and complete.Theorem 5.1.2 Let P be a planning problem, then1. StrongPlan(P ) terminates.2. StrongPlan(P ) returns a strong plan for P if and only if one exists.



5.1. SYMBOLIC APPROACH TO PLANNING 77Proof: (1) The termination follows from the fact that the while statementat line 3 implements a monotonic functional over a �nite domain. Indeed, itkeeps adding state-action pairs to SP and therefore it eventually terminates,possibly when all the pairs have been introduced.(2) (only if) By de�nition of induced Kripke structure, we have that thegoal states satisfy AFG. Thus, let us focus on nongoal states. By inductionon the number n of iterations of the while statement at line 3, and denotingas SPn the state-action table SP after the nth iteration, let us prove thatSPn is total and KPSPn ; s j= AFG, for all s 2 States(SPn). If n = 0, thenStates(SP0) = ; and the claim trivially holds. If n > 0, either no pairshave been added, and we conclude by inductive hypothesis, or SPn is ob-tained from SPn�1 by adding some pairs through StrongPreImage. Thetotality of SPn follows by inductive hypothesis and by de�nition of Strong-PreImage. Moreover, let s0s1 : : : be an in�nite path in KPSPn starting froms0 2 States(KPSPn). Since KPSPn�1 is total and, by de�nition of Strong-PreImage, none of the states related to the new pairs is in States(KPSPn�1),either s0s1 : : : is a path inKPSPn�1 or s1s2 : : : is path inKPSPn�1 and s0 is one ofthe new states. Thus, since by inductive hypothesis KPSPn�1 ; s j= AFG for alls 2 States(SP n�1), we have that KPSPn ; s j= AFG, for all s 2 States(SP n).(if) Let us suppose that a strong plan cSP for P exist and restrict cSP tothe states reachable from the initial ones. More in detail, let us de�ne SP00 =fhs; ai 2 cSP : s 2 Ig and SP0n+1 = SP0n [ fhs; ai 2 cSP : hs0; a0i 2 SP0n and s 2R(s0; a0)g. Since for all n we have that SP0n � SP0n+1 and the number of state-action pairs is �nite, we can set SP0 = SP0m such that SP0m+1 = SP0m. Byinduction on k = 1; : : : ;m, it is then trivial to show that for all s 2 SP0k thereexists s0 2 I such that s0 is connected to s in KPSP0 .SP0 is total and KPSP0 ; s j= AGG for all s 2 States(SP0). Indeed, leths; ai 2 SP0 and let it have been introduced in SP0l, for some 0 � l � m.Since cSP is total and by de�nition of SP0l+1, all the state-action pairs relatedto states that are outcomes of hs; ai are then present in SP0l+1. This, recallingthat for all n we have that SP0n � SP0n+1, means that SP0 is total. Let nowr0r1 : : : be a path in KPSP0 starting from the state r0 2 States(SP0). If r0 62 I,since r0 is reachable from some initial state s0, the above path can be extendedto a path s0s1 : : : r0r1 : : :. Let q0q1 : : : be r0r1 : : : if r0 2 I or s0s1 : : : r0r1 : : :otherwise. q0q1 : : : eventually hits a goal state. Indeed, if this was not the case,since SP0 is total, we would have that for each i � 0 there exists hqi; aii 2 SP0such that qi+1 2 R(qi; ai). Since SP0 � cSP, q0q1 : : : would be a path in KPcSPas well, and this is not possible, since SP0 is a strong plan for P . Therefore,KPSP0 ; s j= AFG for all s 2 SP0.As a consequence, there are no cycles in KPSP0 involving states contained



78 CHAPTER 5. PLANNING AS MODEL CHECKINGin States(SP0). SP0 can then be strati�ed by de�ning SP000 = ; and SP00n+1 =SP00n [ fhs; ai 2 SP0 : s 62 States(SP00n) and R(s; a) � States(SP00n) [ Gg,and setting SP00 = SP00l such that SP00l = SP00l+1. Note that States(SP00) =States(SP0). Indeed, if this was not the case, one could consider all the pairsrelated to the states that are in SP0 but not in SP00. Since none of them can beadded to SP00l , by totality of SP0, they would induce a cycle in KPSP0 . Indeed,let hs1; a1i 2 SP0 nSP00. Since it can not be added to SP00, it means that it hasan outcome towards a state s2 2 States(SP0) n States(SP00), related to thepair hs2; a2i. The claim then follows from the fact that the reasoning can beiterated and the set from which the pairs are taken is �nite.Finally, denoted as SPk the state-action pairs gathered by the algorithm inSP after the kth iteration of the while statement at line 3, we show that thewhile statement terminates because I � States(SPk)[G, for some k. Indeed,if this was not the case, the above while statement would terminate because,for some k, we would have that SPk = SPk+1 but I n G 6� States(SPk).Therefore, the set fhs; a; ei : s is a nongoal state not belonging to States(SPk)and hs; ai has been inserted in SP00eg is not empty. Let us select from the aboveset one of the tuples related to the minimum e, say hs; a; ei. Because of thischoice, hs; ai should be introduced in SPk+1 by StrongPreImage, and thisis absurd.5.1.5 Strong Cyclic PlanningStrong cyclic plans are such that for all the executions, always during theexecution, there exists the possibility of eventually reaching the goal. Thismeans that executions might eventually loop forever on a set of states, but ifthey terminate they are guaranteed to achieve the goal. Formally, we have thefollowingDe�nition 5.1.9 (Strong Cyclic Plan) A strong cyclic plan for a planningproblem P is a total state-action table SA for P such that I � WPSA and, forall s 2 I, we have KPSA; s j= AGEFG.The algorithm for computing strong cyclic plans is presented in two steps:�rst, algorithms computing basic strong cyclic plans are introduced (Fig-ures 5.5 and 5.8), and then an algorithm for improving such basic solutions isgiven (Figure 5.10).Given a planning problem P , StrongCyclicPlan(P ) (Figure 5.5) gen-erates strong cyclic plans. The algorithm starts with the largest state-actiontable in SCP (line 2), and repeatedly removes pairs that either spoil SCP to-tality or are related to states from which the goal cannot be reached (line 5). Ifthe resulting SCP contains all the initial states (line 7), the algorithm returnsit (line 8), otherwise Fail is returned (line 9).



5.1. SYMBOLIC APPROACH TO PLANNING 791. function StrongCyclicPlan(P )2. SCP:= fhs; ai : s 2 S nG and a is executable in sg; OldSCP:=?3. while (OldSCP6=SCP) do4. OldSCP:=SCP5. SCP:=PruneUnconnected(P , PruneOutgoing(P , SCP))6. endwhile7. if (I � States(SCP) [G)8. then return SCP9. else return Fail14. function PruneOutgoing(P , SA)15. Outgoing := ComputeOutgoing(P , SA)16. while (Outgoing 6= ;) do17. SA:=SAnOutgoing18. Outgoing := ComputeOutgoing(P , SA)19. endwhile20. return SA21. function PruneUnconnected(P , SA)22. ConnectedToG := ;; OldConnectedToG := ?23. while ConnectedToG 6= OldConnectedToG do24. OldConnectedToG:=ConnectedToG25. ConnectedToG:=SA \OneStepBack(P , ConnectedToG)26. endwhile27. return ConnectedToGFigure 5.5: The algorithm.Pairs spoiling SCP totality are pruned by function PruneOutgoing(lines 14{20), which iteratively removes state-action pairs that can lead tonongoal states for which no action is considered. Its core is the function Com-puteOutgoing that, for a planning problem P and a state-action table SA,is de�ned as fhs; ai 2 SA : R(s; a) 6� (States(SA)[G)g. With respect to theexample shown in Figure 5.6 (left), during the �rst iteration, PruneOutgo-ing removes hS4; ei and, during the second one, it removes hS3; bi, giving riseto the situation shown in Figure 5.6 (middle).Having removed the dangling executions results in disconnecting S2 andS3 from the goal, and give rise to a cycle in which executions may get stuckwith no hope of terminating. This point, however, was not clear in the workpresented in [18]. States from which the goal cannot be reached have tobe pruned away. This task is accomplished by the function PruneUncon-



80 CHAPTER 5. PLANNING AS MODEL CHECKING
a cdS2 S3S1

G b eS4 a cdS2 S3S1
G aS1

GFigure 5.6: Pruning the state-action table.nected (lines 21{27) that, when given with a planning problem P and astate-action table SA, loops backwards inside the state-action table from thegoal (line 25) to return the state-action pairs related to states from whichthe goal is reachable. Looping backward is realized through the functionOneStepBack that, when given with a planning problem P and a state-action table SA0, returns all the state-action pairs possibly leading to statesof SA0 or G. Formally, OneStepBack(P; SA0) = fhs; ai : s 2 S n G; a 2A;R(s; a)\ (States(SA0)[G) 6= ;g. Note the similarity with WeakPreIm-age, from which OneStepBack di�ers because it does not care whethera state have been already inserted. With respect to the example shown inFigure 5.6 (middle), PruneUnconnected removes both hS2; di and hS3; ci,producing the situation shown in Figure 5.6 (right). Having removed the abovepairs re-introduces dangling executions and, therefore, requires to apply thepruning phase once more, leading to the empty set. In general, the pruningphase has to be repeated until the putative strong plan SCP is not changedeither by PruneOutgoing or by PruneUnconnected (line 3).As an alternative (see Figure 5.8), rather than starting with the largeststate-action table, one could start with an empty state-action table in AccSA(line 2) and incrementally extend it (line 4) until either a strong cyclic plancontaining all the initial states is found, or AccSA is not extendible anymore(line 3).For example, Figure 5.7 is a strong cyclic plan for the planning problemshown in Figure 5.1. Considering the algorithm in Figure 5.8, after one itera-tion of thewhile statement at line 3, the last row of the table is gathered, whileafter two iterations the last four rows are collected. After another iteration,the third and the fourth rows are introduced in the table. Note that dur-ing this iteration, unlike WeakPreImage, OneStepBack inserts the pairhs6; move(C1,T)i in the state-action table. Finally, after four iterations, the�rst two rows are collected. The algorithm then stops since all the initial stateshave been gathered, the state-action table is total and each state is somehow



5.1. SYMBOLIC APPROACH TO PLANNING 81State ActionS1 switch-offS3 fix-positionS2 move(C2,T)S6 move(C1,T)S4 move(C1,K)S4 move(C2,K)S7 fix-positionS6 switch-onFigure 5.7: A state-action table.1. function StrongCyclicPlan(P )2. SCP:= ;; AccSA:= ;; OldAccSA:= ?3. while (I 6� States(SCP) [G and AccSA 6= OldAccSA) do4. OldAccSA:=AccSA; AccSA:=OneStepBack(P; AccSA)5. SCP:=AccSA; OldSCP:=?6. while (OldSCP6=SCP) do7. OldSCP:=SCP8. SCP:=PruneUnconnected(P , PruneOutgoing(P , SCP))9. endwhile10. endwhile11. if (I � States(SCP) [G)12. then return SCP13. else return FailFigure 5.8: The incremental algorithm.connected to the goal set.The strong cyclic plans returned by StrongCyclicPlan can be improvedin two directions. Consider the example in Figure 5.9, where S3 is the initialstate. The strong cyclic plan returned by StrongCyclicPlan for such ex-ample comprises all the possible state-action pairs of the planning problem.Note, however, that the pair hS1; ai is absolutely useless, since it is unreach-able from the initial state. Furthermore, the pair hS4; di is useless as well,because it moves the execution away from the goal. Indeed, when reaching S4from S3, one does not want to go back to S3 through d. The algorithm forgetting rid of the above situations is shown in Figure 5.10.Function PruneUnreachable loops forward, inside the state-action ta-ble returned by the basic algorithm, collecting state-action pairs related to



82 CHAPTER 5. PLANNING AS MODEL CHECKINGstates that can be reached from the initial ones. Its core is the function On-eStepForth (line 7) that, when given with a planning problem P and astate-action table Reachable, returns the set of pairs related to states reach-able by executing actions in Reachable. Formally, OneStepForth(P , Reach-able) = fhs; ai : s 2 S; a 2 A; a is executable in s and there exists hs0; a0i 2Reachable such that s 2 R(s0; a0)g. Reachable is initialized with the pairs re-lated to initial states by GetInit (line 4), de�ned as GetInit(P; SCP ) =fhs; ai 2 SCP : s 2 Ig. With respect to Figure 5.9, this �rst optimizationphase chops out the pair hS1; ai while, with respect to the state-action tableof Figure 5.2, hS1; switch-offi is removed.Function ShortestExecutions chops out all the pairs hs; ai that do notstart one of the shortest executions leading from s to the goal. Indeed, exe-cutions passing through s can still reach the goal through one of the shortestones. Shortest executions are gathered in Shortest as a set of state-actionpairs by looping backward (line 14) inside the (optimized through Prune-Unreachable) state-action table returned by the basic algorithm, and byintroducing new pairs only when related to states that have not been visitedyet. Indeed, note that this time the function WeakPreImage is used inplace of OneStepBack. With respect to Figure 5.9, this second optimiza-tion phase chops out the pair hS4; di while, with respect to the state-actiontable of Figure 5.2, hS6; move(C1,T)i is removed.The algorithms for generating and optimizing strong cyclic plans are guar-anteed to terminate, are correct and complete. The results rely on the follow-ing Lemmas.Lemma 5.1.1 Let K = hS;R;Li be a Kripke structure, and G � S. Then,for all s 2 S we have that K; s j= AGEFG if and only if for all s 2 S we havethat K; s j= EFG.Proof: (only if) Each state s can be thought of as the starting point of a pathin K. Since K; s j= AGEFG, it follows that K; s j= EFG.(if) Let us consider a generic path s0s1 : : : in K. Since for each i � 0 we
G

S1 S3S2 S4a be d c
Figure 5.9: Problems of the basic algorithm.



5.1. SYMBOLIC APPROACH TO PLANNING 831. function Optimize(P , SCP)2. return ShortestExecutions(P , PruneUnreachable(P , SCP))3. function PruneUnreachable(P , SCP)4. Reachable := GetInit(P; SCP ); OldReachable:= ?5. while (Reachable6=OldReachable) do6. OldReachable:=Reachable7. Reachable := Reachable [ SCP \OneStepForth(P , Reachable)8. endwhile9. return Reachable10. function ShortestExecutions(P , SCP)11. Shortest := ;; OldShortest := ?12. while (Shortest6=OldShortest)13. OldShortest:=Shortest14. Shortest := Shortest [ SCP \WeakPreImage(P;Shortest)15. endwhile16. return Shortest Figure 5.10: Optimization.have that K; si j= EFG, we conclude that K; s0 j= AGEFG.Lemma 5.1.2 Let P be a planning problem, SA be a state-action table for P ,and SA0 � SA be a total state-action table for P . Then, PruneOutgoing(P;SA) returns a total state-action table SA00 such that SA0 � SA00 � SA.Proof: First of all, let us note that PruneOutgoing(P; SA) terminates,since the while statement at line 16 implements a monotonic functional overa �nite domain. Indeed, it keeps removing state-action pairs from SA and,therefore, it eventually terminates, possibly producing the empty set. Thisalso means that the state-action table returned by the function is included inSA.Let us now denote as SAk the state-action table SA after the kth iterationof the while statement at line 16. Since PruneOutgoing terminates whenSAm = SAm+1, for some m, and this happens when no pairs have an outcomethat is neither a goal state or a state in SAm, then SAm is total.Finally, by induction on k, let us prove that SAk � SA0. If n = 0 thenthe claim trivially holds. If n > 0 we conclude by inductive hypothesis, byde�nition of ComputeOutgoing, and because SA0 is total.Lemma 5.1.3 Let P be a planning problem, SA be a state-action table for P ,and SA0 � SA be a total state-action table for P such that KPSA0 ; s j= EFG, for



84 CHAPTER 5. PLANNING AS MODEL CHECKINGall s 2 States(SA0). Then, PruneUnconnected(P; SA) returns a state-action table SA00 such that1. SA � SA00 � SA0.2. KPSA00 ; s j= EFG, for all s 2 States(SA00).Proof: First of all, let us note that PruneUnconnected(P; SA) terminates,since the while statement at line 23 implements a monotonic functional overa �nite domain. Indeed, it keeps adding pairs to ConnectedToG from SA and,therefore, it eventually terminates, possibly when having added the whole SA.This also means that SA � SA00.Let us now denote as ConnectedToGk the state-action table ConnetedToGafter the kth iteration of the while statement at line 23. Moreover, let s 2States(SA0) and s1 : : : sn+1 be a path inKPSA0 connecting s = s1 to sn+1 2 G,and s1; : : : ; sn 2 States(SA0). By de�nition of KPSA0 , that path correspondsto n pairs hs1; a1i; : : : ; hsn; ani 2 SA0 such that for i = 1; : : : ; n, we have si+1 2R(si; ai). By induction on k = 0; : : : ;m, we prove that KPConnectedToGk ; s j=EFG, for all s 2 States(ConnectedToGk); that ConnectedToGk � Connected-ToGk+1; and that sn+1�k 2 States(ConnectedToGk) [G. If k = 0 the claimholds because ConnectedToG0 = ; and sn+1 2 G. If k > 0, ConnectedToGkis either ConnectedToGk�1, and we conclude by inductive hypothesis and byde�nition of OneStepBack, or has been obtained from ConnectedToGk�1by adding some pairs, each of which has at least one outcome leading tothe goal or to ConnectedToGk�1. By de�nition of KPConnectedToGk andby inductive hypothesis, this means that KPConnectedToGk ; s j= EFG, forall s 2 States(ConnectedToGk). Moreover, since by inductive hypothesisConnectedToGk�1 � ConnectedToGk, all the pairs added by OneStepBackto ConnectedToGk�1 are added by the function to ConnectedToGk as well.This means that ConnectedToGk � ConnectedToGk+1. Finally, by induc-tive hypothesis and de�nition of OneStepBack, we have that sn+1�k 2States(ConnectedToGk).The claim we have already proved immediately implies (2) and allows us tostate that States(SA0) � States(SA00). This means that (1) holds, since SA0is total and by de�nition of OneStepBack, when a pair hs; ai is introduced inConnectedToGk, we have that all the pairs hs0; a0i having at least one outcomeleading to s or to a goal state are introduced in ConnectedToGk+1.Let us start by proving termination and soundness of the algorithm pre-sented in Figure 5.5.Theorem 5.1.3 Let P be a planning problem. Then1. StrongCyclicPlan(P ) terminates.



5.1. SYMBOLIC APPROACH TO PLANNING 852. StrongCyclicPlan(P ) returns a strong cyclic plan for P if and onlyif one exists.Proof: (1) The termination follows from the fact that, by Lemmas 5.1.2 and5.1.3, the while statement at line 3 implements a monotonic functional overa �nite domain. Indeed, it keeps removing state-action pairs from SCP andtherefore it eventually terminates, possibly when producing the empty set.(2) (only if) Since by Lemmas 5.1.3 and 5.1.2 SCP � PruneUnreach-able(P;PruneOutgoing(p; SCP )) � PruneOutgoing(p; SCP ) � SCP ,we have that the state-action table SCP returned by the algorithm is a�x point of both PruneOutgoing and PruneUnconnected. Its total-ity, guaranteed by Lemma 5.1.2, is preserved by PruneUnconnected thankto Lemma 5.1.3. Moreover, Lemmas 5.1.1 and 5.1.3 imply that, for all s 2 I,KPSCP ; s j= AGEFG.(if) Let us suppose that a strong cyclic plan dSCP for P exist. Let usdenote with SCPk the state-action table SCP after the kth iteration of thewhile statement at line 3. Then, it su�cies to show that for every k, SCPkcontains dSCP. By induction on k. If k = 0 the claim trivially holds. If k > 0we conclude by inductive hypothesis and Lemmas 5.1.2 and 5.1.3.Let us now consider the algorithm presented in Figure 5.8.Theorem 5.1.4 Let P be a planning problem. Then1. StrongCyclicPlan(P ) terminates.2. StrongCyclicPlan(P ) returns a strong cyclic plan for P if and onlyif one exists.Proof: (1) The termination follows from Lemmas 5.1.2 and 5.1.3 and from thefact that both the while statements at lines 3 and 6 implements monotonicfunctionals over a �nite domain. Indeed, the former one keeps adding state-action pairs to AccSA and therefore eventually terminates, possibly when hav-ing added the whole set of pairs. The latter one keeps removing state-actionpairs from SCP and therefore eventually terminates, possibly when producingthe empty set.(2) (only if) Since by Lemmas 5.1.3 and 5.1.2 SCP � PruneUnreach-able(P;PruneOutgoing(p; SCP )) � PruneOutgoing(p; SCP ) � SCP ,we have that the state-action table SCP returned by the algorithm is a�x point of both PruneOutgoing and PruneUnconnected. Its total-ity, guaranteed by Lemma 5.1.2, is preserved by PruneUnconnected thankto Lemma 5.1.3. Moreover, Lemmas 5.1.1 and 5.1.3 imply that, for all s 2 I,KPSCP ; s j= AGEFG.



86 CHAPTER 5. PLANNING AS MODEL CHECKING(if) Let us suppose that a strong ciclic plan dSCP for P exist and, as inTheorem 5.1.2, de�ne SCP0 as the restriction of dSCP to the states reachablefrom the initial ones. That is, let us de�ne SCP00 = fhs; ai 2 dSCP : s 2 Ig,SCP0n+1 = SCP0n [ fhs; ai 2 dSCP : hs0; a0i 2 SCP0n and s 2 R(s0; a0)g, and setSCP0 = SCP0m such that SCP0m = SCP0m+1. Again, SCP0 is total. Moreover,KPSCP0 ; s j= AGEFG for all s 2 States(SCP0). Indeed, since dSCP is strongcyclic plan for P and each s 2 States(SCP0) is an initial state or is reachablefrom some initial state in dSCP, it has to be that s is connected to somegoal state in KPdSCP by some path s1 : : : sn+1, where s = s1, and s1; : : : ; sn 2States(dSCP), and sn+1 2 G. By de�nition of KPdSCP, such path correspondsthen to n pairs hs1; a1i; : : : ; hsn; ani 2 dSCP such that for i = 1; : : : ; n, wehave that si+1 2 R(si; ai). Supposing that s has been introduced in SCP0k, byinduction on i = 1; : : : ; n, we can show that hsi; aii 2 SCP0i�1+k. If i = 1 theclaim follows from the fact that when introducing s all the related pairs areintroduced as well. If i > 1 the claim holds by inductive hypothesis and byde�nition of SCP0i�1+k. This means that s is connected to some goal state inKPSCP0 as well.Now, denoting as AccSAk the state-action table AccSA after the kth iter-ation of the while statement at line 3, the existence of the path s1 : : : sn+1connecting in KPSCP0 s = s1 to sn+1 2 G ensures that s 2 States(AccSAn).This can be showed by proving by induction on k = 1; : : : ; n that sn+1�k 2States(AccSAk). If k = 1 the claim holds because sn+1 2 R(sn; an) \G andby de�nition of OneStepBack. If k > 1 we conclude by inductive hypothesisand by de�nition ofOneStepBack. This means that AccSA can be expandedso that to include all the states of SCP0.Further, being SCP0 total, this amounts to the possibility of expandingAccSA, to obtain say AccSAm, so that to contain SCP0. Indeed, as a states 2 States(SCP0) is inserted in AccSAk, we have that all the pairs havings as outcome are inserted in AccSAk+1 by OneStepBack. Therefore, eithera positive answer is given by the algorithm in m0 < m steps, or AccSAm isaccumulated.Let us denote with SCPk the state-action table SCP after the kth iterationof the while statement at line 6 when dealing with AccSAm. By inductionon k we show that SCPk contains SCP0. If n = 0 the claim trivially holds. Ifk > 0 we conclude by inductive hypothesis and Lemmas 5.1.2 and 5.1.3.Finally, let us show that the optimization step does not spoil the computedstrong cyclic plan.Theorem 5.1.5 Let SCP be a strong cyclic plan for the planning problem P .Then Optimize(P;SCP) is a strong cyclic plan for P .



5.2. AUTOMATA-BASED APPROACH TO PLANNING 87Proof: PruneUnreachable simply implements the reduction of dSCP (cSP)to SCP0 (SP0) that we have already discussed in Theorem 5.1.4 (Theorem 5.1.2).Let us focus on ShortestExecutions. Since each state s occurring inSCP0 = PruneUnreachable(P;SCP) is connected to some goal state inKPSCP0 there is a minimal length path s1 : : : sn+1 connecting s = s1 to sn+1 2G, and s1; : : : ; sn 2 States(SCP0). Let us denote as Shortestk the state-action table gathered by the algorithm after the kth iteration of the whilestatement at line 12, and prove by induction on k = 1; : : : ; n that fsn+1�i :i = 1; : : : ; kg � States(Shortestk) and that each s 2 Shortestk is connect toG through a path of length k in KPShortestk . If k = 1 the claim holds byde�nition of WeakPreImage. If k > 1, sn+1�k 62 States(Shortestk), sinceotherwise the inductive hypothesis would contradict the choice of a minimallength path. Therefore, we conclude by inductive hypothesis and by de�nitionof WeakPreImage.As a consequence of the above claim, we have that States(SCP0) =States(ShortestExecutions(SCP0)) and, since SCP0 is total, that so isSCP00 = ShortestExecutions(SCP0). Moreover, the above claim and Lem-ma 5.1.1 also imply that KPSCP00 ; s j= AGEFG for all s 2 SCP00.5.2 Automata-based Approach to PlanningDe Giacomo and Vardi [27] have shown how to face planning in deterministicdomains through the automata-based approach, focusing on temporally ex-tended goals and partial observability. In this approach, both the planningdomain and the goal are looked at as automata on in�nite words, and are thensuitably combined in order to select the paths in the planning domain thatare compatible with the goal.5.2.1 Planning ProblemsA planning problem is formalized as a pair hT ;Gi where T is a deterministic�nite transition system modeling the planning domain and the initial states,and G is a B�uchi automaton modeling the goal. As a consequence of havingdescribed the goal as a B�uchi automaton, the interesting executions of T arethe in�nite ones.A �nite transition system T is a tuple hW;W0; Act;R;Obs; �i where� W is the �nite set of states.� W0 �W is the set of initial states.� Act is the �nite set of actions.



88 CHAPTER 5. PLANNING AS MODEL CHECKING� R : W �Act!W is the total deterministic transition function, that is,R is de�ned for each state and action.� Obs is the �nite set of observations, which model the observable part ofstates.� � : W ! Obs is the observability function, which returns the observablepart of the states.An execution of the transition system is an in�nite sequence of statesw0w1 : : : 2W! such that� w0 2W0� For all i � 0 there exists ai 2 Act such that wi+1 = R(wi; ai).A trace is what we can observe of an execution. For example, �(w0)�(w1) : : :is the trace corresponding to the execution w0w1 : : :. The observable behaviorof T is the set of all possible traces of T .The goal G is speci�ed through a B�uchi automaton hObs; S; S0; �; F i where:� Obs plays the role of the alphabet of the automaton.� S is the �nite set of states.� S0 � S is the set of initial states.� � : S �Obs! 2S is the nondeterministic transition function.� F � S is the set of accepting states.5.2.2 Planning with Complete InformationWe start to consider a simpli�ed case, by assuming complete information onthe initial states and full observability of states.In this case, the problem domain and the initial states are modeled througha transition system T = hW;W0; Act;R;Obs; �i where� W0 � W is a singleton set containing the initial state, which is uniquesince completely speci�ed.� Obs =W and � :W ! Obs is simply the identity function, since we areassuming full observability.A plan p for T is an in�nite sequence of actions a0a1 : : : 2 Act!. Theexecution of p from the initial state w0 2W0 is an in�nite sequence w0w1 : : : 2W! such that wi+1 = R(wi; ai), for all i � 0. The trace tr(p;w0) is the in�nite



5.2. AUTOMATA-BASED APPROACH TO PLANNING 89sequence �(w0)�(w1) : : : 2 Obs!. A plan p realizes a goal speci�cation G ifand only if tr(p;w0) 2 L(G).A plan that realizes a goal speci�cation can be synthesized by checking fornonemptiness the B�uchi automaton T G = hAct; ST G ; ST G0 ; �T G; FT Gi where� Act is the alphabet of the automaton.� ST G = S �W .� ST G0 = S0 �W0.� (sj ; wj) 2 �T G((si; wi); a) i� wj = R(wi; a) and sj 2 �(si; �(wi)).� FT G = F �W .Indeed, T G is the synchronous product of T and G, which encodes the tracesof T that are compatible with G. The emptiness check consists in looking foran accepting state sf reachable from itself and from some initial state. Fromsuch a path, say (s0; w0)(s1; w1) : : : (sf ; wf ) : : : (sf ; wf ) : : : we have that theplan can be extracted by chosing ai such that (si+1; wi+1) 2 �T G((si; wi); ai).Since T G can be built on-the-y while checking for its nonemptiness, onecan look for an accepting state reachable from the initial one and from itselfby using a nondeterministic algorithm that only needs O(log(jW j) + log(jSj))bits for storing the accepting, the current, and the next states. Moreover, ifwe adopt a compact, i.e., logarithmic, representation of the transition system,then planning in the above setting becomes PSPACE. However, it has tobe noted that only certain transition systems are compactly representable,since the number of transition functions is jW jjW j, while those distinguishablewith O(log jW j) bits are 2O(log(jW j)) = jW jO(1). The PSPACE complexity isthe complexity of planning in STRIPS [10], which can be seen as a specialcase of the setting considered here when the goal automaton encodes goals ofattainment. Moreover, since STRIPS is PSPACE-hard [10], we can concludethat planning in the setting above is NLOGSPACE-complete, or PSPACE-complete with respect to a compact representation of the transition system.5.2.3 Conformant Planning with Incomplete InformationWe now turn to consider a more general case dealing with partial informationabout the initial state and partial observability of states. However, we stillstick to generate plans as sequences of actions.In this case, the transition system is T = hW;W0; Act;R;Obs; �i whereW ,R, Act, and Obs are as before, but W0 = fw00; : : : ; w0k�1g, for some k > 1,to reect the uncertainty about the initial state, and � is not the identityfunction anymore.



90 CHAPTER 5. PLANNING AS MODEL CHECKINGA plan p for T is an in�nite sequence of actions a0a1 : : : 2 Act!. Theexecution of p starting from w0h 2 W0 is the in�nite sequence of statesw0hw1h : : : 2W! such that wi+1h = R(wih; ai). The trace tr(p;w0h) of p start-ing from w0h is the in�nite sequence �(w0h)�(w1h) : : :. A plan p realizes thegoal G = hObs; S; S0; �; F i if and only if tr(p;w0h) 2 L(G), for h = 0; : : : ; k�1.To synthesize such a plan we work as before by checking for the nonempti-ness of the product B�uchi automaton T G = hAct; ST G ; ST G0 ; �T G ; FT Gi, whoseconstruction is slightly more involved, since we have to keep trace of k con-current executions, and is given as generalized B�uchi automaton:� Act is the alphabet of the automaton.� ST G = Sk �W k.� ST G0 = Sk0 � f(w00; : : : ; w0k�1)g.� (~sj ; ~wj) 2 �T G((~si; ~wi); a) i�, for h = 0; : : : ; k � 1, we have that wjh =R(wih; a) and sjh 2 �(sih; �(wih)).� FT = fF � Sk�1 �W k; S � F � Sk�2 �W k; : : : ; Sk�1 � F �W kg.Again, the nonemptiness check can be solved by a nondeterministic algo-rithm. However, this time, the required space is O(k � (log(jW j) + log(jSj))).Moreover, the algorithm can be shown to be PSPACE-complete or, whenassuming a compact representation of the transition system, EXPSPACE-complete [27].It is interesting to note that the above results also holds when one has fullobservability of states and the goal automaton encodes goals of attainment. Onthe other hand, plan existence in STRIPS with incomplete information on theinitial situation is PSPACE-complete [3]. This means that, when generalizingthe problem domain through a transition system, one does pay a price withrespect to more traditional approaches but, for the same price, one has forfree temporally generalized goals and partial observability of states.5.2.4 Conditional Planning with Incomplete InformationIn this section we consider two proposals for conditional plans in the generalsetting discussed above. Let us start with the one given in [27].A vector plan ~p is an in�nite sequence of vectors of actions ~a0~a1 : : : 2(Actk)!. The execution of the hth component of ~p starting from w0h 2 W0,denoted by exeh(~p;w0h), is the in�nite sequence of states w0hw1h : : : suchthat wi+1h = R(wih; aih). The trace traceh(~p;w0h) of the hth componentof ~p starting from w0 2 W0 is the in�nite sequence �(w0h)�(w1h) : : :. Thevector plan ~p realizes the goal G if and only if traceh(~p;w0h) 2 L(G), forh = 0; : : : ; k � 1.



5.2. AUTOMATA-BASED APPROACH TO PLANNING 91So far, a vector plan is simply the parallel composition of k sequentialplans, each one starting from a di�erent initial state. Conditional plans arevector plans whose actions agree on executions with the same observations.To formally de�ne conditional plans, we introduce the following notion ofequivalence on �nite executions. Let w0l : : : wnl and w0m : : : wnm two �niteexecutions of the components l and m, respectively. Thenw0l : : : wnl � w0m : : : wnm i� �(w0l) : : : �(wnl) = �(w0m) : : : �(wnm)A conditional plan ~p is a vector plan such that given the �nite executionsw0l : : : wnl and w0m : : : wnm of a pair of components l and m, we have thatanl = anm whenever w0l : : : wnl � w0m : : : wnm.Again, the synthesis of a conditional plan goes through the constructionof a B�uchi automaton encoding such plans, and then through the nonempti-ness check. Speci�cally, we build the generalized B�uchi automaton T G =hActk; ST G; ST G0 ; �T G ; FT Gi where:� Actk is the alphabet of the automaton.� ST G = Sk �W k �Ek, where Ek is the set of equivalence relations on theset f0; : : : ; k � 1g.� ST G0 = Sk0 � f(w00; : : : ; w0k�1)g� �0, where i �0 j i� w0i = w0j .� (~sj ; ~wj ;�j) 2 �T G((~si; ~wi;�i);~a) i�, for h = 0; : : : ; k � 1, we have that{ wjh = R(wih; ah) and sjh 2 �(sih; �(wih)){ if l �i m then al = am{ l �j m i� l �i m and �(wjl) = �(wjm)� FT G = fF � Sk�1 �W k � Ek; : : : ; Sk�1 � F �W k � EkgHowever, consider the planning domain shown in Figure 5.11, where w1and w2 are the initial states, and suppose that �(w1) 6= �(w2) and �(w3) =�(w4). Hence, since �(w1) 6= �(w2), we have that w1w3 6� w2w4 and thatdi�erent actions can be associated to w3 and w4, even though they are notdistinguishable.To solve this problem, we require that actions associated to states that areindistinguishable are the same. Formally, a conditional plan ~p is now a vectorplan such that given the �nite executions w0lw1l : : : wnl and w0mw1m : : : wnmof a pair of components l and m, we have that anl = anm if �(wnl) = �(wnm).This a�ects the construction of T G = hActk; ST G ; ST G0 ; �T G ; FT Gi as follows� Actk is the alphabet of the automaton.



92 CHAPTER 5. PLANNING AS MODEL CHECKING
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Figure 5.11: A planning domain.� ST G = Sk �W k.� ST G0 = Sk0 � f(w00; : : : ; w0k�1)g.� (~sj ; ~wj) 2 �T G((~si; ~wi;~a) i�, for h = 0; : : : ; k � 1, we have that{ wjh = R(wih; ah) and sjh 2 �(sih; �(wih)){ al = am if �(wil) = �(wim).� FT G = fF � Sk�1 �W k; S � F � Sk�2 �W k; : : : ; Sk�1 � F �W kg.In this latter case, the conditional plan returned by the emptiness check canbe put in a more convenient form using case statements testing the observablepart of states. Finally, observing that for storing an equivalence relation onf0; : : : ; k� 1g we only need k bits, it can be shown that planning in the abovesetting is, for both the proposals, PSPACE-complete, or EXPSPACE-completewith respect to a compact representation of T .5.2.5 Improved Automata Generation for Linear Temporal LogicEven though the previous section deals with goals expressed in a very generalway as B�uchi automata, it is often more comfortable to express them as LTLformulas like, for example, Fg for goal of attainment, or GFg for going in-�nitely often through g. A translator like the one described in Section 3.2.2is then used to produce the goal B�uchi automaton. However, this translationis critical for two reasons. First, it can result in an exponential number ofstates and, therefore, several algorithms can yield very di�erent results. Sec-ond, since the goal automaton is put in product with the planning domainautomaton, each di�erence in its construction is ampli�ed by the usually hugesize of this latter one. For these reasons, it is clearly desirable to keep the goalautomaton as small as possible, and to work on-the-y, that is, to detect thata plan exists by constructing and visiting only some part of the search spacecontaining it.



5.2. AUTOMATA-BASED APPROACH TO PLANNING 93So far, the state-of-the-art on-the-y algorithm for turning LTL formulasinto automata has been the one presented in [35]. We refer to that algorithmas GPVW. That paper also discusses several possible improvements. We referto the improved algorithm as GPVW+. In the rest of this section we present,and describe experiments with, a new algorithm for building an automatonfrom a linear temporal logic formula. Such algorithm, hereafter LTL2AUT,though being based on GPVW+, is geared towards building smaller automatain less time. The improvements are based on simple syntactic techniques,carried out on-the-y when states are processed, that allow us to eliminatethe need of storing some information. Experimental results demonstrate thatGPVW+ signi�cantly outperforms GPVW and show that LTL2AUT furtheroutperforms GPVW+, with respect to both the size of the generated automataand computation time. The testing has been performed following a newlydeveloped methodology, which, inspired by the methodologies proposed in [61]and [36] for propositional and modal K logics, is based on randomly generatedformulas.The CoreLTL2AUT, GPVW+, and GPVW can be obtained by suitably instantiatingthe core we are about to present. The instantiation a�ects some functionsthat, in what follows, are highlighted through the small capital font. Thecentral part of the core is the computation of a cover of a set A of formulas,that is, a possibly empty set C = fCi : i 2 Ig of sets of formulas such thatV�2A �$ Wi2I V�i2Ci �i.Covers The algorithm for computing covers is de�ned by extending thepropositional tableau in order to allow it to deal with temporal operators.The algorithm works with formulas in negation normal form, that is, suchthat negations only occur in front of propositions. Such formulas are builtby combining literals, that is, propositions and their negations, through the_ and ^ propositional operators, and the X, U and V temporal operators.The formulas that are not decomposed by the tableau construction are calledelementary, and corresponds to true, false, literals and next-time formulas.A set of formulas is said to be elementary if all its formulas are. Unlikeelementary formulas, nonelementary formulas can be decomposed, accordingto the tableau rules of Figure 5.12, so that � $ V�12�1(�) �1 _ V�22�2(�) �2.Note that the fundamental rules used for decomposing temporal operators arethe identity �U� � � _ (� ^X(�U�)) and its dual �V� � � ^ (� _X(�V�)).The line numbers in the following description refer to the algorithm appearingin Figure 5.13. The algorithm handles the following data structures:ToCover The set of formulas to be covered but still not processed.
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� �1(�) �2(�)�1 ^ �2 f�1; �2g fFg�1 _ �2 f�1g f�2g�1 U�2 f�2g f�1;X(�1 U�2)g�1V�2 f�2; �1g f�2;X(�1V�2)gFigure 5.12: Tableau rules.

1 function Cover(A)2 return cover(A; ;; ;; ;)3 function cover(ToCover; Current; Covered; Cover)4 if ToCover = ;5 then return Cover [ fCurrentg6 else select � from ToCover7 remove � from ToCover and add it to Covered8 if has to be stored(�)9 then Current = Current [ f�g10 if contradiction(�; ToCover; Current; Covered)11 then return Cover12 else if redundant(�; ToCover; Current; Covered)13 then return cover(ToCover; Current; Covered; Cover)14 else if � is elementary15 then return cover(ToCover; Current [ f�g;16 CoveredCover)17 else return cover(ToCover [ (�1(�) n Current);18 Current; Covered;19 cover(ToCover [ (�2(�) n Current);20 Current; Covered; Cover))Figure 5.13: Cover computation.



5.2. AUTOMATA-BASED APPROACH TO PLANNING 95Current The element of the cover currently being computed.Covered The formulas already processed and covered by Current.Cover The cover so far computed.When computing the current element of the cover, the algorithm �rstchecks whether all the formulas have been covered (line 4). If so, Currentis ready to be added to Cover (line 5). If a formula � has still to be covered(line 6), the algorithm checks whether � has to be stored in the current elementof the cover (line 8) and, if so, adds it to Current (line 9). Processing � canbe avoided in two cases: If there is a contradiction involving it (line 10) or it isredundant (line 12). In the former case, Current is discarded (line 11), whilein the latter one � is discarded (line 13). Finally, if � does need to be covered,it is covered according to its syntactic structure. If � is elementary, it is cov-ered simply by itself (line 15). Otherwise, � is covered by covering, accordingto the tableau rules appearing in Figure 5.12, either �1(�) (line 17) or �2(�)(line 19). This is justi�ed by recalling that �$ V�12�1(�) �1 _V�22�2(�) �2.The Automaton Construction Our goal is to build a labeled generalizedB�uchi automaton recognizing exactly all the models of a linear time temporallogic formula  . The presentation and the proof of correctness of the algorithmare simpli�ed if we slightly modify the de�nition of B�uchi automata by movingthe labeling from the transition function to states.More in detail, a generalized B�uchi automaton is now a quadruple A =hQ;I; �;Fi, where� Q is a �nite set of states.� I � Q is the set of initial states.� � : Q ! 2Q is the transition function.� F � 22Q is a, possibly empty, set of sets of accepting states F =fF1; F2; : : : ; Fng.An execution of A is an in�nite sequence � = q0q1q2 : : : such that� q0 2 I.� For all i � 0, qi+1 2 �(qi).� is accepting execution if, for each Fi 2 F , there exists qi 2 Fi that appearsin�nitely often in �.A labeled generalized B�uchi automaton is a triple hA;D;Li, where



96 CHAPTER 5. PLANNING AS MODEL CHECKING� A is a generalized B�uchi automaton.� D is some �nite domain.� L : Q ! 2D is the labeling function.A labeled generalized B�uchi automaton accepts a word � = x0x1x2 : : : from D!i� there exists an accepting execution � = q0q1q2 : : : of A such that xi 2 L(qi),for each i � 0.A labeled generalized B�uchi automaton A = hhQ;I; �;Fi;D;Li as de�nedabove can be translated into an equivalent traditionally de�ned B�uchi au-tomaton A0 = h�;S;S0; �0;F 0i by replacing each transition in A with jL(s)jtransitions each of which is labeled with an element of L(s). Formally:� � = D� S = Q� S0 = I� �0(s; a) = fs0 : s0 2 �(s) and a 2 L(s)g� F 0 = FThe algorithm for turning LTL formulas into B�uchi automata is presentedin two phases. First, we introduce the automaton structure, i.e., its states,which are obtained as covers, initial states, and transition function. The linenumbers in the following description refer to this part of the algorithm, whichappears in Figure 5.14. Then, we complete such structure by de�ning labelingand acceptance conditions.The algorithm starts by computing the initial states as cover of f g (line 2).A set U of states whose transition function has still to be de�ned is kept. Allthe initial states are clearly added to U (line 2). When de�ning the transitionfunction for the state s (line 4), we �rst compute its successors as cover off� : X� 2 sg (line 5). For each computed successor r, the algorithm checkswhether r has been previously generated as a state r0 (line 6). If so, it su�cesto add r0 to �(s) (line 7). Otherwise, r is added to Q and �(s) (lines 8 and 9).Moreover, r is also added to U (line 10), for �(r) to be eventually computed.The domain D is 2P and the label of a state s consists of all subsetsof 2P that are compatible with the propositional information contained ins. More in detail, let Pos(s) be s \ P and Neg(s) be fp 2 P : :p 2 sg.Then, L(s) = fX : X � P ^ Pos(s) � X ^ X \ Neg(s) = ;g. Finally, wehave to impose acceptance conditions. Indeed, our construction allows someexecutions inducing interpretations that are not models of  . This happensbecause it is possible to procrastinate forever the ful�lling of U -formulas, and



5.2. AUTOMATA-BASED APPROACH TO PLANNING 971 procedure create automaton structure( )2 U = Q = I = Cover(f g), � = ;3 while U 6= ;4 remove s from U5 for r 2 Cover(f� : X� 2 sg)6 if 9r0 2 Q such that r = r07 then �(s) = �(s) [ fr0g8 else Q = Q[ frg9 �(s) = �(s) [ frg10 U = U [ frgFigure 5.14: The algorithm.arises because the formula �U� can be covered by covering � and by promisingto ful�ll it later by covering X(�U�). The problem is solved by imposinggeneralized B�uchi acceptance conditions. Informally, for each subformula �U�of  , we de�ne a set F�U� 2 F containing states s that either do not promiseit or immediately ful�ll it. In this way, postponing forever ful�lling a promisedU-formula gives not rise to accepting executions anymore. Formally, we setF�U� = fs 2 Q : satisfy(s; �U�) ! satisfy(s; �)g where, again, satisfy isa function that will be subject to instantiation.GPVW, GPVW+, and LTL2AUTGPVW is obtained by instantiating the Boolean functions parameterizing thepreviously described core in the following way. has to be stored(�) returnsT. contradiction(�; ToCover; Current; Covered) returnsT i� � isF or � isa literal such that :� 2 Current. redundant(�; ToCover; Current; Covered)returns F. satisfy(s; �) returns T i� � 2 s.For GPVW+ we have the following instantiations. has to be stored(�)returns T i� � is a U-formula or � is the righthand argument of a U-formula.contradiction(�; ToCover; Current; Covered) returns T i� � is F or thenegation normal form of :� is in Covered. redundant(�; ToCover; Current;Covered) returns T i� � is � U� and � 2 ToCover[Current, or � is �V� and�; � 2 ToCover [Current. satisfy(s; �) returns T i� � 2 s.GPVW+ attempts to generate less states than GPVW by reducing the for-mulas to store in Current and by detecting redundancies and contradictionsas soon as possible. Indeed, by reducing the formulas to store in Current,GPVW+ increases the possibility of �nding matching states, while early de-tection of contradictions and redundancies avoids producing the part of theautomaton for dealing with them. However, GPVW+ still does not solve



98 CHAPTER 5. PLANNING AS MODEL CHECKINGsome basic problems. First, states obtained by dealing with a U-formula con-tain either the U-formula or its righthand argument. So, for example, statesgenerated for the righthand argument of �U� are equivalent to, but do notmatch, prior existing states generated for �. Second, redundancy and contra-diction checks are performed by explicitly looking for the source of redundancyor contradiction. So, for example, a U-formula whose righthand argument isa conjunction is considered redundant if such conjunction appears among thecovered formulas, but it is not if, instead of the conjunction, its conjuncts arepresent.LTL2AUT overcomes the above problems in a very simple way: Onlythe elementary formulas are stored in Current, while information about thenonelementary ones is derived from the elementary ones and the ones stored inToCover using quick syntactic techniques. More in detail, we inductively de-�ne the set SI(A) of the formulas syntactically implied by the set of formulasA as follows� T 2 SI(A),� � 2 SI(A), if � 2 A,� � 2 SI(A), if � is non-elementary and either �1(�) � SI(A) or �2(�) �SI(A).LTL2AUT requires then the following settings. has to be stored(�) re-turns F. contradiction(�; ToCover; Current; Covered) returns T i� thenegation normal form of :� belongs to SI(ToCover[Current). redundant(�;ToCover; Current; Covered) returnsT i� � 2 SI(ToCover[Current) and, if �is � U�, � 2 SI(ToCover [ Current). satisfy(s; �) returns T i� � 2 SI(s).The special attention to the righthand arguments of U-formulas in the re-dundancy check is for avoiding discarding information required to de�ne theacceptance conditions.The Test MethodThe method we have adopted is based on two analyses:Average-behavior analysis: For a �xed number N of propositional vari-ables and for increasing values L of the length of the formulas, a problemset PShF;N;Li of F random formulas is generated and given in input tothe procedures to test. After the computation, a statistical analysis isperformed and the results are plotted against L. The process can berepeated for di�erent values of N .Temporal-behavior analysis: For a �xed number N of propositional vari-ables, a �xed length L of the formulas, and for increasing values P of



5.2. AUTOMATA-BASED APPROACH TO PLANNING 99the probability of generating the temporal operators U and V, a problemset PShF;N;L;P i of F random formulas is generated and given in inputto the procedures to test. After the computation, a statistical analysisis performed and the results are plotted against P . The process can berepeated for di�erent values of N and L.When generating random formulas from a formula space, for example de-�ned by the parameters N , L, and P , our target is to cover such space asuniformly as possible. This requires that, when generating formulas of lengthL, we produce formulas of length exactly L, and not up to L. Indeed, in thelatter way, varying L, we give preference to short formulas. Random formulasparameterized by N , L, and P , are then generated as follows. A unit-lengthrandom formula is generated by randomly choosing, according to uniform dis-tribution, one variable. From now on, unless otherwise speci�ed, randomlychosen stands for randomly chosen with uniform distribution. A random for-mula of length 2 is generated by generating op(p), where op is randomly chosenin f:;Xg and p is a randomly chosen variable. Otherwise, with probabilityP2 of choosing either U or V and probability 1�P4 of choosing :, X, ^, or _,the operator op is randomly chosen. If op is unary, the random formula oflength L is generated as op(�), for some random formula � of length L � 1.Otherwise, if op is binary, for some randomly chosen 1 � S � L � 2, tworandom formulas �1 and �2 of length S and L� S � 1 are produced, and therandom formula op(�1; �2) of length L is generated. Since the set of operatorswe use is f:;X;^;_;U ;Vg, random formulas for the average-behavior analysisare generated by setting P = 13 . Note that parentheses are not considered.Indeed, our de�nition generates a syntax tree that makes the priority betweenthe operators clear.In both the above analyses, the parameters we are interested in are thesize of the automata, namely states and transitions, and the time required fortheir generation. When comparing two procedures �1 and �2 with respectto some problem set PShF;N;L;P i and parameter �, we perform the followingstatistical analyses.� E(�1;�;PShF;N;L;P i)E(�2;�;PShF;N;L;P i) : �rst, we compute the mean value of the outputs of�1 and �2 separately, and then consider their ratio.� E(�1�2 ; �;PShF;N;L;P i): we �rst compute the ratio of the outputs of �1and �2 separately for each sample of the problem set, and then the meanvalue of such ratios.ResultsLTL2AUT, GPVW, and GPVW+ have been implemented on the top of thesame kernel, and are accessible through command line options. The code



100 CHAPTER 5. PLANNING AS MODEL CHECKINGconsists of 1400 lines of C plus 110 lines for a lex/yacc parser. The code hasbeen compiled through gcc version 2.7.2.3 and executed under the SunOS5.5.1 operating system on a SUNW UltraSPARC-II/296 1G.We start by comparing the three algorithms with respect to the �rst sta-tistical analysis. LTL2AUT and GPVW+ have been compared, accordingto the test method discussed in Section 5.2.5, on 5700 randomly generatedformulas. The results are shown in Figure 5.15. For the average behavioranalysis, LTL2AUT and GPVW+ have been compared on 3300 random for-mulas generated, according to our test method, for F = 100, N = 1; 2; 3,and L = 5; 10; : : : ; 55. Formulas have been collected in 3 groups, for N =1; 2; 3, and inside each group partitioned into 11 problem sets of 100 formu-las each, for L = 5; 10; : : : ; 55. For each group, E(LTL2AUT; states ;PSh100;N;Li)E(GPVW+; states ;PSh100;N;Li) ,E(LTL2AUT; transitions ;PSh100;N;Li)E(GPVW+; transitions ;PSh100;N;Li) , and E(LTL2AUT; time ;PSh100;N;Li)E(GPVW+; time ;PSh100;N;Li) have beenplotted against L. The results show that LTL2AUT clearly outperformsGPVW+, with respect to both the size of automata and computation time.Indeed, just considering formulas of length 30, LTL2AUT produces on the av-erage less than 60% of the states of GPVW+ (for transitions situation is evenbetter) spending on the average less than 30% of the time of GPVW+. More-over, the initial phase, in which LTL2AUT does have a time overhead withrespect to GPVW+, a�ects formulas, for L = 5 andN = 3, which are solved byLTL2AUT in at most 0.000555 CPU seconds, as opposed to the most demand-ing sample for L = 55 and N = 3, which is solved by LTL2AUT in 6659 CPUseconds. For the temporal-behavior analysis, LTL2AUT and GPVW+ havebeen compared over 2400 random formulas generated for F = 100, N = 1; 2; 3,L = 20; 30, and P = 0:3; 0:5; 0:7; 0:95. Note that P = 0:3 is the probabilitywe have assumed for the average-behavior analysis. Formulas have been col-lected in 3 groups, for N = 1; 2; 3, and inside each group partitioned into 2sub-groups, for L = 20; 30. Each sub-group has still been partitioned into 4problem sets, for P = 0:3; 0:5; 0:7; 0:95. For each sub-group, we have plot-ted E(LTL2AUT; states ;PSh100;N;L;P i)E(GPVW+; states ;PSh100;N;L;P i) , E(LTL2AUT; transitions ;PSh100;N;L;P i)E(GPVW+; transitions ;PSh100;N;L;P i) , andE(LTL2AUT; time ;PSh100;N;L;P i)E(GPVW+; time ;PSh100;N;L;P i) against P . Again, the results demonstrate thatLTL2AUT clearly outperforms GPVW+.The comparison between GPVW+ and GPVW, whose results are shownin Figure 5.16, follows the lines of the previous one, by only changing someparameters for allowing GPVW to compute in reasonable time. The average-behavior analysis has been carried out over 2400 random formulas generatedfor F = 100, N = 1; 2; 3, and L = 5; 10; : : : ; 40. The temporal-behavioranalysis has been performed over 2400 random formulas generated for F = 100,N = 1; 2; 3, L = 10; 20, and P = 0:3; 0:5; 0:7; 0:95. The results show that
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Figure 5.15: LTL2AUT vs. GPVW+. Upper row: Average-behavior analysis,F = 100, N = 1; 2; 3, L = 5; 10; : : : ; 55. Middle and lower rows: Temporal-behavior analysis, F = 100, N = 1; 2; 3, L = 20; 30, P = 0:3; 0:5; 0:7; 0:95.
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Figure 5.16: GPVW+ vs. GPVW. Upper row: Average-behavior analysis,F = 100, N = 1; 2; 3, L = 5; 10; : : : ; 40. Middle and lower rows: Temporal-behavior analysis, F = 100, N = 1; 2; 3, L = 10; 20, P = 0:3; 0:5; 0:7; 0:95.



5.2. AUTOMATA-BASED APPROACH TO PLANNING 103GPVW+ clearly outperforms GPVW both in the size of automata and, afteran expected initial phase, also in time. The initial phase interests formulas,for L = 10 and N = 3, which are solved by GPVW+ in at most 0.004226CPU seconds, as opposed to the hardest sample for L = 40 and N = 3, whichis solved by GPVW+ in 178 CPU seconds.The direct comparison between LTL2AUT and GPVW is shown in Fig-ure 5.17. Note that LTL2AUT behaves better than GPVW+ in the initialphase, in which both LTL2AUT and GPVW+ pay a time overhead with re-spect to GPVW.Finally, with respect to the second statistical analysis, the results of thecomparison are shown in Figures 5.18, 5.19, and 5.20. This analysis gives equalweight to easy and hard instances, while the previous one gives more weightto hard instances. Therefore, since the outputs related to samples belongingto same problem sets turn out to be very heterogeneous (up to 5 orders ofmagnitude), the comparison of this analysis and the previous one indicatesthat the gap among the procedures increases for hard formulas.Proof of Correctness of LTL2AUTThe main theorem is the following:Theorem 5.2.1 The automaton A( ) constructed for the LTL formula  recognizes exactly all the models of  .Proof: The two directions are proved in Lemma 5.2.8 and Lemma 5.2.11below.Let us �rst extend some de�nitions.De�nition 5.2.1 A pseudo-execution � is an in�nite sequence s0s1s2 : : : ofstates such that, for each i � 0, si+1 2 �(si). � is accepting if, for each Fi 2 F ,there exists qi 2 Fi that appears in�nitely often in �. � accepts the word � ifit is accepting and, for i � 0, �(i) 2 L(si). A �nite pseudo-execution � is a�nite sequence s0s1s2 : : : sn of states such that, for each i 2 f0; : : : ; n� 1g, wehave that si+1 2 �(si).Let us note that the cover computation shown in Figure 5.13 when instan-tiated for LTL2AUT does not uses the argument Covered. For this reason,in what follows we will not mention such argument. Moreover, in order tosimplify the notation, we write A instead of Vf2A f , or true in the case ofthe empty set, for a set A of formulas.Lemma 5.2.1 Let ToCover be a set of formulas, Current be elementary set,and Cover = fCoveri : i 2 Ig be a set of elementary sets. Then the callcover(ToCover; Current; Cover) returns a set fCj : j 2 Jg such that, for allj 2 J
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Figure 5.17: LTL2AUT vs. GPVW. Upper row: Average-behavior analysis,F = 100, N = 1; 2; 3, L = 5; 10; : : : ; 40. Middle and lower rows: Temporal-behavior analysis, F = 100, N = 1; 2; 3, L = 10; 20, P = 0:3; 0:5; 0:7; 0:95.
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Figure 5.18: LTL2AUT vs. GPVW+. Upper row: Average behavior analysis,F = 100, N = 1; 2; 3, L = 5; 10; : : : ; 55. Middle and lower rows: Temporalbehavior analysis, F = 100, N = 1; 2; 3, L = 20; 30, P = 0:3; 0:5; 0:7; 0:95.
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Figure 5.19: GPVW+ vs. GPVW. Upper row: Average behavior analysis,F = 100, N = 1; 2; 3, L = 5; 10; : : : ; 40. Middle and lower rows: Temporalbehavior analysis, F = 100, N = 1; 2; 3, L = 10; 20, P = 0:3; 0:5; 0:7; 0:95.
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Figure 5.20: LTL2AUT vs. GPVW. Upper row: Average behavior analysis,F = 100, N = 1; 2; 3, L = 5; 10; : : : ; 40. Middle and lower rows: Temporalbehavior analysis, F = 100, N = 1; 2; 3, L = 10; 20, P = 0:3; 0:5; 0:7; 0:95.



108 CHAPTER 5. PLANNING AS MODEL CHECKING1. Cj is elementary2. (ToCover [ Current) _Wi2I Coveri $ Wj2J Cj3. (ToCover [ Current) _Wi2I Coveri 2 SI(Cj)Proof: By induction over n =Pf2ToCover C(�) whereC(�) = 8><>: 1 if � is elementaryC(�1) + C(�2) + 1 if � is �1 _ �2 or �1 ^ �2C(�1) + C(�2) + 2 if � is �1U�2 or �1V�2If n = 0 then ToCover = ; and the function returns fCurrentg [ Cover.Then, for each j 2 J1. Cj is elementary, due to the hypothesis.2. (ToCover[Current)_Wi2I Coveri $ Current_Wi2I Coveri $ Wj2J Cj.3. (ToCover[Current)_Wi2I Coveri = Current_Wi2I Coveri 2 SI(Cj),since Cj is either some Coveri or Current.If n > 0, let f 2 ToCover be the chosen formula and ToCover0 = ToCover nffg. Let us consider the possible cases. If a contradiction in ToCover [Current is detected because the negation normal form of :f belongs toSI(ToCover0 [ Current), then the function returns Cover and1. Cj is elementary, due to the hypothesis.2. (ToCover [ Current) _Wi2I Coveri $ Wi2I Coveri = Wj2J Cj.3. (ToCover [Current)_Wi2I Coveri 2 SI(Cj), since Cj is some Coveri.If f is redundant in ToCover0[Current, that is, f 2 SI(ToCover0[Current),then the function returns cover(ToCover0; Current; Cover). By inductivehypothesis, this latter call returns a set fCj : j 2 Jg such that, for all j 2 J1. Cj is elementary.2. (ToCover0 [Current) _Wi2I Coveri $ Wj2J Cj.3. (ToCover0 [Current) _Wi2I Coveri 2 SI(Cj).Therefore, for all j 2 J1. Cj is elementary.2. (ToCover[Current)_Wi2I Coveri $ Wj2J Cj, since f 2 SI(ToCover0[Current).



5.2. AUTOMATA-BASED APPROACH TO PLANNING 1093. (ToCover[Current)_Wi2I Coveri 2 SI(Cj), since f 2 SI(ToCover0[Current).Let us now consider the cases when f is handled according to its syntac-tic structure. If f is elementary, then the function returns cover(ToCover0;Current[ ffg; Cover). By inductive hypothesis, this latter call returns a setfCj : j 2 Jg such that, for all j 2 J1. Cj is elementary.2. (ToCover0 [Current [ ffg) _Wi2I Coveri $ Wj2J Cj .3. (ToCover0 [Current [ ffg) _Wi2I Coveri 2 SI(Cj).Therefore1. Cj is elementary.2. (ToCover [ Current) _Wi2I Coveri $ Wj2J Cj.3. (ToCover [ Current) _Wi2I Coveri 2 SI(Cj).Finally, if f is nonelementary, the function returns cover(ToCover0 [(�1(f) n Current); Current; cover(ToCover0 [ (�2(f) n Current); Current;Cover). By inductive hypothesis, the inner call returns fDh : h 2 Hg suchthat, for all h 2 H1. Dh is elementary.2. (ToCover0 [ (�2(f) n Current) [ Current) _Wi2I Coveri $ Wh2H Dh.3. (ToCover0 [ (�2(f) n Current) [ Current) _Wi2I Coveri 2 SI(Dh).while the outer call returns fCj : j 2 Jg such that1. Cj is elementary.2. (ToCover0 [ (�1(f) n Current) [ Current) _Wh2H Dh $ Wj2J Cj .3. (ToCover0 [ (�2(f) n Current) [ Current) _Wh2H Dh 2 SI(Cj).Thus, for each j 2 J1. Cj is elementary.2. (ToCover [ Current) _ Wi2I Coveri $ (ToCover0 [ f�1(f) _ �2(f)g [Current)_Wi2I Coveri $ (ToCover0[f�1(f)g[Current)_(ToCover0[f�2(f)g[Current)_Wi2I Coveri $ (ToCover0 [f�2(f)g[Current)_Wh2H Dh $ Wj2J Cj.



110 CHAPTER 5. PLANNING AS MODEL CHECKING3. If (ToCover0[(�1(f)nCurrent)[Current)_Wh2H Dh 2 SI(Cj) due to(ToCover0[ (�1(f)nCurrent)[Current), then (ToCover[Current)_Wi2I Coveri 2 SI(Cj). Otherwise, for some h 2 H, Dh 2 SI(Cj) and,therefore, (ToCover0 [ (�2(f) n Current) [ Current) _ Wi2I Coveri 2SI(Cj), that is, (ToCover [ Current)_Wi2I Coveri 2 SI(Cj)Corollary 5.2.1 Let ToCover be a set of formulas, then the call Cover(A)returns a set fCj : j 2 Jg such that, for all j 2 J1. Cj is elementary.2. ToCover $ Wj2J Cj.3. ToCover 2 SI(Cj).Lemma 5.2.2 Let s be a state of A( ) such that X(f) 2 SI(s). Then, forall successors r of s, we have that f 2 SI(r).Proof: If X(f) 2 SI(s) then X(f) 2 s. Since s' successors have been com-puted as Cover(ff : X(f) 2 sg), we conclude by Corollary 5.2.1 (3).Lemma 5.2.3 Let s0s1 : : : sn be a �nite pseudo-execution of A( ) such thatf Ug 2 SI(s0). Then one of the following holds:1. For all i 2 f0; : : : ; ng, we have that f; f Ug 2 SI(si) and g 62 SI(si).2. There exists i 2 f0; : : : ; ng such that g 2 SI(si) and, for all 0 � j < i,f; f Ug 2 SI(sj).Proof: By induction on n. If n = 0, we conclude by de�nition of SI().Otherwise, by de�nition of SI(), either g 2 SI(s0), and (2) holds, or g 62SI(s0) but f;X(f Ug) 2 SI(s0). In this latter case, by Lemma 5.2.2, f Ug 2SI(s1) and we conclude by inductive hypothesis.Lemma 5.2.4 Let s0s1 : : : be a pseudo-execution of A( ) such that f Ug 2SI(s0). Then one of the following holds:1. For all i � 0, we have that f; f Ug 2 SI(si) and g 62 SI(si).2. There exists i � 0 such that g 2 SI(si) and, for all 0 � j < i, f; f Ug 2SI(sj).Proof: If (1) does not hold, there exists {̂ � 0 such that either ff; f Ugg 6�SI(s{̂) or g 2 SI(s{̂). Consider the �nite sequence s0s1 : : : s{̂. For Lemma 5.2.3,we conclude that (2) holds.Lemma 5.2.5 Let s0s1 : : : sn be a �nite pseudo-execution of A( ) such thatfVg 2 SI(s0). Then one of the following holds:



5.2. AUTOMATA-BASED APPROACH TO PLANNING 1111. For all i 2 f0; : : : ; ng, we have that g; fVg 2 SI(si) and f 62 SI(si).2. There exists i 2 f0; : : : ; ng such that f; g 2 SI(si) and, for all 0 � j < i,g; fVg 2 SI(sj) and f 62 SI(sj).Proof: By induction on n. If n = 0, we conclude by de�nition of SI(). Oth-erwise, by de�nition of SI(), g 2 SI(s0) and either f 2 SI(s0), and (2) holds,or f 62 SI(s0) but X(fVg) 2 SI(s0). In this latter case, by Lemma 5.2.2,fVg 2 SI(s1) and we conclude by inductive hypothesis.Lemma 5.2.6 Let s0s1 : : : be a pseudo-execution of A( ) such that fVg 2SI(s0). Then one of the following holds:1. For all i � 0, we have that g; fVg 2 SI(si) and f 62 SI(si).2. There exists i � 0 such that f; g 2 SI(si) and, for all 0 � j < i,g; fVg 2 SI(sj) and f 62 SI(sj).Proof: If (1) does not hold, there exists {̂ � 0 such that either fg; fVgg 6�SI(s{̂) or f 2 SI(s{̂). Consider the �nite sequence s0s1 : : : s{̂. For Lemma 5.2.5,we conclude that (2) holds.Lemma 5.2.7 Let � = s0s1 : : : be an accepting pseudo-execution of A( ) over�. Then � j= SI(s0).Proof: By induction over the structure of the formulas in SI(s0). Note that,due to the contradiction check in the function cover, for all the states s ofA( ), we have that false 62 s. The base case is then for true, for which thethesis trivially follows, and for the propositional literals, for which the thesisholds because of the de�nition of the labeling.If f _ g 2 SI(s0), it has to be that either f 2 SI(s0) or g 2 SI(s0) andwe conclude by inductive hypothesis.In the case f^g 2 SI(s0), it has to be that both f 2 SI(s0) and g 2 SI(s0)and we conclude by inductive hypothesis.When X(f) 2 SI(s0), by Lemma 5.2.2 it has to be that f 2 SI(s1) andwe conclude by inductive hypothesis.If f Ug 2 SI(s0), we have two cases. If f Ug is not a subformula of  ,then it has to be that g 2 SI(s0), and we conclude by inductive hypothesis.Otherwise, since � is accepting, according to Lemma 5.2.4, only the second caseis possible. We conclude by inductive hypothesis and by semantic de�nitionof the until operator.If fVg 2 SI(s0), we conclude by Lemma 5.2.6, by inductive hypothesis,and by semantic de�nition of the release operator.



112 CHAPTER 5. PLANNING AS MODEL CHECKINGLemma 5.2.8 Let � be an accepting execution of A( ) over �. Then � j=  .Proof: It follows by Lemma 5.2.7, by de�nition of initial states, and byLemma 5.2.1 (3).Lemma 5.2.9 Let ToCover and Current be set of formulas, and Cover beset of sets. Then Cover � cover(ToCover; Current; Cover).Proof: By induction on n = Pf2ToCover C(f). If n = 0, then ToCover = ;and Cover � Cover [ fCurrentg = cover(ToCover; Current; Cover).If n > 0, let f be the selected formula and ToCover0 = ToCover n ffg.Let us consider the several cases. If a contradiction is detected, then Cover =cover(ToCover; Current; Cover).If a redundancy is detected, then we conclude by inductive hypothesis,since cover(ToCover; Current; Cover) = cover(ToCover0; Current; Cover).Let us now consider the cases when f is handled according to its syntac-tic structure. If f is elementary, we conclude by inductive hypothesis, sincecover(ToCover; Current; Cover) = cover(ToCover0; Current[ffg; Cover).Finally, if f is nonelementary, we have that cover(ToCover0; Current [ ffg;Cover) = cover(ToCover0 [ (�1(f) n Current); Current; cover(ToCover0 [(�2(f)nCurrent); Current; Cover)) and, again, we conclude by inductive hy-pothesis.Lemma 5.2.10 Let ToCover be a set of formulas, ffi Ugi : i 2 Ig � ToCover,Current be elementary set, Cover be set of elementary sets, and � such that� j= ToCover [ fgi : i 2 Ig. Then, the call cover(ToCover; Current; Cover)returns the set fCj : j 2 Jg containing the elementary set C|̂ such that1. � j= C|̂.2. ToCover [ Current[ Coverfgi : i 2 Ig 2 SI(C|̂).Proof: By induction over n = Pf2ToCover C(f). If n = 0 then ToCover =; and therefore cover(ToCover; Current; Cover) = fCurrentg [ Cover.Choosing C|̂ = Current we have1. � j= C|̂ = ToCover [ Current[ fgi : i 2 Gg, by initial hypothesis.2. ToCover [ Current[ fgi : i 2 Gg = Current 2 SI(C|̂).If n > 0, let f be the selected formula and ToCover0 = ToCover n ffg.Because of the initial hypothesis, it cannot be the case of contradiction.If f is redundant we have two cases. First, let f be f{̂ Ug{̂ 2 ffi Ugi : i 2Ig. In this case, by inductive hypothesis, cover(ToCover; Current; Cover) =cover(ToCover0; Current; Cover) = fCj : i 2 Jg such that for |̂ 2 J1. � j= C|̂



5.2. AUTOMATA-BASED APPROACH TO PLANNING 1132. ToCover0 [ Current [ fgi : fi Ugi 6= fg 2 SI(C|̂)Therefore, choosing the same C|̂, we conclude since g{̂ 2 SI(ToCover0 [Current). Otherwise, if f is not in ffi Ugi : i 2 Ig, by inductive hypothe-sis, cover(ToCover; Current; Cover) = cover(ToCover0; Current; Cover) =fCj : i 2 Jg such that for |̂ 2 J1. � j= C|̂.2. ToCover0 [ Current [ fgi : i 2 Ig 2 SI(C|̂).Again, choosing the same C|̂, we conclude because f 2 SI(ToCover0 [Current).Let us now analyze the cases when f is handled according to its syntac-tic structure. If f is elementary, then cover(ToCover; Current; Cover) =cover(ToCover0; Current [ ffg; Cover) = fCj : i 2 Jg such that, by induc-tive hypothesis, there exists |̂ 2 J1. � j= C|̂.2. ToCover0 [ Current [ ffg [ fgi : i 2 Ig 2 SI(C|̂).That is, choosing the same C|̂, the thesis.When f is nonelementary, we have two cases. First, let f be f{̂ Ug{̂ 2ffi Ugi : i 2 Ig. In this case we have that cover(ToCover; Current; Cover)= cover(ToCover0 [ (fg{̂g n Current); Current; cover(ToCover0 [ (ff{̂;X(f{̂ Ug{̂)g n Current); Current; Cover)) = fCj : i 2 Jg such that, by in-ductive hypothesis, there exists |̂ 2 J1. � j= C|̂.2. ToCover0 [ (fg{̂g [ Current) [ fgi : fi Ugi 6= fg 2 SI(C|̂).That is, choosing the same C|̂, the thesis. Finally, if f 62 ffi Ugi : i 2 Ig, wehave that either � j= ToCover0[ (�1(f) nCurrent)[Current[fgi : i 2 Ig or� j= ToCover0 [ (�2(f) n Current) [ Current [ fgi : i 2 Ig. In the �rst case,we have that cover(ToCover; Current; Cover) = cover(ToCover0 [ (�1(f) nCurrent); Current; cover(ToCover0[(�2(f)nCurrent); Current; Cover)) =fCj : i 2 Jg such that, by inductive hypothesis, there exists |̂ 2 J1. � j= C|̂.2. ToCover0 [ (�1(f) n Current) [ Current[ fgi : i 2 Ig 2 SI(C|̂).That is, by choosing the same C|̂, the thesis. In the second case, we have thatcover(ToCover0[ (�2(f) nCurrent); Current; Cover) = fCj : i 2 Jg and, byinductive hypothesis, there exists C|̂ such that



114 CHAPTER 5. PLANNING AS MODEL CHECKING1. � j= C|̂.2. ToCover0 [ (�2(f) n Current) [ Current[ fgi : i 2 Ig 2 SI(C|̂).Choosing the same C|̂, we conclude by Lemma 5.2.9.Corollary 5.2.2 Let ToCover be a set of formulas, ffi Ugi : i 2 Ig �ToCover, and � be an LTL interpretation such that � j= ToCover[fgi : i 2 Ig.Then, the call Cover(ToCover) returns the set fCj : j 2 Jg containing theelementary set C|̂ such that1. � j= C|̂.2. ToCover [ fgi : i 2 Ig 2 SI(C|̂).Lemma 5.2.11 Let � j=  . Then � is accepted by A( ).Proof: Let us show how an accepting run over � can be constructed. Sincethe initial states are generated as Cover(f g), by Corollary 5.2.1 (2), thereis a state s0 2 I such that � j= s0. In general, having built the fragmentof execution s0s1 : : : sn such that �i j= si, let us show how to choose sn+1.Let Un = f�k U�k : k 2 Kg � SI(sn), f�k : k 2 Kg \ SI(sn) = ;, be theset of the until formulas that are not ful�lled immediately. Since f�k : k 2Kg\SI(sn) = ;, we have that �n j= fX(�k U�k) : k 2 Kg. Therefore, for eachp > 0, we can de�ne Un;p = f�k U�k 2 Un : p = minfq > 0 : �n+q j= �kgg. Byinduction on p, we now prove that for all �k U�k 2 Un;p, there exists 1 � l � psuch that sn+l is accepting with respect to �k U�k, that is �k 2 SI(sn+l). Letus start to consider the case when p = 1. The successors of sn are computedas Cover(ff : X(f) 2 sng) � Un;1 and �n+1 j= ff : X(f) 2 sng[fgi : fi Ugi 2Un;1g. Through Corollary 5.2.2, sn+1 can be chosen such that �n+1 j= sn+1and fgi : fi Ugi 2 Un;1g 2 SI(sn+1). Let us consider now the case p > 1, andlet �k U�k 2 Un;p. Since by Corollary 5.2.1 (3) �k U�k 2 SI(sn+1), either �k 2SI(sn+1) or X(�k U�k) � SI(sn+1). In this latter case, �k U�k 2 Un+1;p�1,and we conclude by inductive hypothesis.



Chapter 6Conclusions and RelatedWorkIn this thesis we have advanced the state-of-the-art in planning as model check-ing according to two directions.First, we have presented a formal account for weak, strong, and strongcyclic planning in nondeterministic domains. We have formalized the notionof weak plans, i.e., plans that may achieve the goal but are not guaranteedto; strong plans, i.e., plans that are guaranteed to achieve the goal in spite ofnondeterminism; and strong cyclic plans, i.e., plans encoding iterative trial-and-error strategies that always have a possibility of terminating and, whenthey do, are guaranteed to achieve the goal in spite of nondeterminism. Morein detail, weak plans are those whose executions satisfy the CTL formula EFG,strong plans are those whose executions satisfy AFG, and strong cyclic plansare plans whose executions satisfyAGEFG, where G is a propositional formularepresenting the set of goal states. We have proven that the algorithms givenin [15, 19] compute weak and strong plans respectively, and have de�ned a newsymbolic algorithm for strong cyclic planning that is guaranteed to generatestrong cyclic plans and to terminate. Indeed, the algorithm given in [18]did not satisfy the formal speci�cation, since it could generate plans whoseexecutions might get stuck inside cycles with no hope of terminating. Allthe three algorithms have been implemented in MBP, a planner built on topof the symbolic model checker NuSMV [14], which is currently used in anapplication for the \Italian Space Agency" (ASI) [12]. A future goal is toextend the planning task from the task of �nding a plan which leads to a setof states (the goal) to the task of synthesizing a plan which satis�es somespeci�cations in some temporal logic. This makes the planning task veryclose to controller synthesis [65, 66, 83, 1, 49], which considers both exogenousevents and nondeterministic actions. Due to its generality, however, the work115



116 CHAPTER 6. CONCLUSIONS AND RELATED WORKin synthesis does not always allow for concise solutions as state-action tables,i.e., memoryless plans. Moreover, it is to be investigated how it can expressand deal with strong cyclic plans.As we have already underlined, most of the work in planning is focused ondeterministic domains and only recently some works have extended classicalplanners to \contingent" planners, which generate plans with conditionals, orto \conformant" planners that, unrealistically, try to �nd strong solutions assequences of actions. Nevertheless, neither existing contingent nor existingconformant planners are able to generate strong cyclic plans. Due to its gen-erality, deductive planning frameworks can be used to specify desired plansin nondeterministic domains. Nevertheless, the automatic generation of plansin these deductive frameworks is still an open problem. Another very expres-sive framework has been proposed in [13], and exploits process algebra andmu-calculus for reasoning about nondeterministic and concurrent actions. Un-fortunately, this framework does not deal with the problem of plan generation.However, it would be interesting to investigate the possibility of embeddingstrong cycling planning in both the above frameworks. Some works proposean approach that is similar to the automata-based approach to planning. TheTLplan system [2] allows for control strategies expressed in LTL and imple-ments a forward chaining algorithm that has strong similarities with the LTLstandard model checking [85]. However, the planner deals only with deter-ministic domains. Moreover, it is not clear how LTL based frameworks can beextended to express strong or strong cyclic solutions, where both a universaland existential path quanti�ers are required, and to generate them. Finally, inplanning based on Markov Decision Processes [28, 40, 11], policies (much likestate-action tables) are constructed from stochastic automata, where actionsinduce transitions with an associated probability, and states have an associatedreward. The planning task is then reduced to constructing optimal policieswith respect to rewards and probability distributions. As a consequence, onehas no control on the structure of the generated plan and, therefore, no conceptof weak, strong, or strong cyclic planning seems expressible.With respect to the automata-based approach, we have shown that thealgorithm for building an automaton from a linear temporal logic formula canbe signi�cantly improved. Since the problem is PSPACE-complete and theautomaton obtained from the goal has to be combined with the, usually huge,one representing the planning domain, our result can dramatically a�ects theperformances of the planner. Moreover, we have proposed a test methodologythat can be also used for evaluating other LTL deciders, and whose underlyingconcept, namely targeting a uniform coverage of the formula space, can be ex-ported to other logics. Of course, the notion of uniform coverage can be furtherre�ned, and this is part of our future work. In particular, we plan to adapt toLTL the probability distributions proposed in [61] for propositional logic and



117adapted in [36] to the modal logic K. These distributions assigns equal prob-abilities to formulas of the same structure (e.g., 3-CNF in the propositionalcase). We are also planning to extend the concept of syntactic implication toa semantic one and, �nally, to explore automata generation in the symbolicframework.An alternative automata construction for temporal speci�cations [45] startswith a two-state automaton that is repeatedly \re�ned" until all models ofthe speci�cations are realized. Due to this re�nement process, however, thisalgorithm can not be used in an on-the-y fashion. Another approach couldbe turning the on-the-y decision procedure presented in [74] into a procedurefor automata construction. It is not clear, however, whether and how thismodi�cation could be done, for that procedure is geared towards �nding andrepresenting one model, but not all models.
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