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Preface

This thesis inspects the planning as model checking paradigm, bringing to-
gether several contributions in the fields of formalization and efficiency.

This planning paradigm has been recently proposed and seems to be very
promising to develop formally clear and efficient planners dealing with expres-
sive planning problems, that is, dealing with nondeterministic actions, partial
observability of world states, and temporally extended goals.

Joining formal clearness, efficiency, and expressiveness becomes possible
by exploiting the large amount of research carried out in the field of model
checking, a very successful formal verification technique able to automatically
check finite-state systems with respect to temporal specifications.

More in detail, a planning domain is looked at as a semantic structure,
properties of planning domains are expressed in some temporal logic, and
planning amounts to checking whether temporal formulas are true in the se-
mantic structures, that is, amounts to model checking.

Previous work in this field uses model checking techniques for addressing
nondeterministic planning domains, but does not cast them as model checking
problems, loosing the formal clearness. Other work exploits the model check-
ing framework in order to deal with temporally extended goals and partial
observability.

In this thesis, we show how the former approach can be enhanced and
formalized as a model checking problem, and improve the model checking
techniques required by the latter.
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Introduction

Planning [38, 34, 62, 5, 43, 15] the course of actions to achieve a goal has
been one of the first and most challenging interests of Artificial Intelligence,
motivated and since then strictly related to robotic applications. So far, the
research in planning has mainly followed two divergent directions. From one
end, it has heavily limited the expressiveness to yield efficient planners and,
from the other end, has developed very expressive frameworks in which plan-
ning is a very hard task. Several practical planners [62, 5, 41] are available for
the so called classical planning, which makes some fundamental assumptions:
the planner has complete information about the initial state of the world,
complete observability of the world states, the goals are goals of attainment,
and the effects of execution of actions are deterministic. These assumptions
are unrealistic in several practical domains. For instance, in a realistic robotic
application, the action “pick-up a block” can not be simply described through
the deterministic effect “the block is at hand”. “Pick-up a block” might result
either in a success or a failure, and the result can not be known a priori of the
execution. On the other hand, expressiveness has been targeted in deductive
planning [38, 77, 78], where planning amounts to prove a theorem, or in theory
of actions [56, 52, 53]. Unfortunately, while the automatic generation of plans
in deductive planning is still an open problem, the framework based on theory
of action does not even deal with the problem of plan generation.

Temporal logic [67, 30] was introduced by philosophers for providing a for-
mal system for qualitatively describing and reasoning about how the truth val-
ues of assertions change over time. In temporal logic, time is not mentioned
explicitly. Instead, a formula might specify that eventually some designate
property is satisfied, or that another property is never satisfied. Temporal
logics come in two ways, according to the time structure: in linear time tem-
poral logic [30], each instant of time has a unique successor, while in branching
time temporal logic [30] each instant of time can have many successors.

Model checking [22, 69, 51, 9, 84] is a formal technique used for checking
that a finite-state system satisfies its specifications. Model checking has raised
a lot of attention during the last ten years, since it succeeded in making for-
mal verification applicable in practice, allowing for early discovery of subtle



2 CONTENTS

logical errors in real designs. In this approach the system to verify is modeled
as state-transition systems, while its specifications are expressed in temporal
logic. An efficient search procedure is then used to check whether the state-
transition system is a model of the specifications. Most important, such check
is completely automatic and, when failing, provides a counterexample show-
ing why the system does not satisfies its specifications. On the other hand,
the algorithmic nature of model checking makes it very sensitive to the size
of the system. This problem—known as state-space explosion problem—is
the major limitation of the approach. The most important discovery to face
such a problem has been symbolic model checking [9, 60], which exploits a new
data structure, namely, the ordered binary decision diagrams [6], to concisely
represent state-transition systems and to efficiently manipulate them. An al-
ternative approach relies on automata on infinite words [8, 81, 82], and exploits
the close relationship existing between them and temporal logics [84, 85, 35].

Planning as model checking [15, 37, 2, 19, 18, 26, 16, 27] is a new planning
paradigm that seems to be very promising in re-setting the focus of the re-
search on planning towards more balanced objectives, that is, towards building
planners that deal with more realistic planning problems and have good per-
formances. This approach has been proposed by Cimatti et al. [15], who first
used symbolic techniques to solve planning problems. The main idea underly-
ing this paradigm is that, as in model checking, planning problems are faced
model-theoretically. That is, planning domains are formalized as semantic
models, properties of planning domains are formalized as temporal formulas,
and planning is carried out by verifying whether semantic models satisfy tem-
poral formulas. Looking at planning from this perspective introduces many
new important features:

e The approach is well-founded: Planning problems are given a clear and
intuitive formalization.

e The approach is general: The same framework can be used to naturally
tackle many different aspects of planning, e.g., many initial states, partial
observability, nondeterministic domains, and extended goal, that is, not
only goals of attainment.

e The approach is practical: By exploiting the large amount of techniques
developed for model checking, it is possible to devise efficient algorithms
that generate plans automatically and that can deal with large size prob-
lems.

Beyond [15], many other works have then extended the approach to deal with
nonclassical planning in several ways [19, 18, 26, 16]. More in detail, [15] in-
troduces weak plans, that is, plans that may achieve the goal but, because of



CONTENTS 3

nondeterminism and because plans are sequences of actions, are not guaran-
teed to do so. Indeed, nondeterminism has to be tackled by planning con-
ditional behaviors, which depend on the information that can be gathered at
execution time, e.g., try to pick up the block again if the execution of “pick-up
a block” has failed. [19] then introduces strong plans, namely, plans that are
guaranteed to achieve the goal in spite of nondeterminism. However, most
often, a conditional plan is not enough: plans encoding iterative trial-and-
error strategies like “pick up the block until succeed” are the only acceptable
solutions. Indeed, in several realistic domains, a certain effect, say action suc-
cess, can never be guaranteed a priori of execution and, in principle, iterative
plans might loop forever, under an infinite sequence of failure. The planner,
however, should generate iterative plans whose executions always have a pos-
sibility of terminating and, if they do, they achieve the goal. [18, 26] deals
with strong cyclic plans, whose aim is to encode such iterative trial-and-error
strategies. On the other hand, Vardi and DeGiacomo [27] have shown how to
cope with temporally extended goals and partial observability in deterministic
domains by exploiting the automata-based approach. Here, both the planning
domain and the goal are looked at as automata on infinite words, and are then
suitably combined in order to select the paths in the planning domain that are
compatible with the goal. The close relationship between the Linear Temporal
Logic LTL [30] and automata on infinite words makes then more comfortable
to express goals as LTL formulas, like “eventually G” for goals of attainment
or “always eventually G” for going infinitely often through the goal.

In this thesis, we inspect planning as model checking, dealing with ef-
ficiency, formalization, and expressiveness aspects. In particular, the thesis
builds on [15, 19, 18, 27, 35], bringing the following contributes:

1. We provide a formal definition of strong cyclic plans based on the branch-
ing time Computational Tree Logic CTL [30]. The idea is that a strong
cyclic plan is a solution such that “for each possible execution, always
during the execution, there ezists the possibility of eventually achieving
the goal”. The formalization is obtained by exploiting the universal and
existential path quantifiers of CTL, as well as the “always” and “even-
tually” temporal connectives.

We define a new algorithm for strong cyclic planning. Our algorithm
is correct and complete, i.e., it generates strong cyclic plans according
to the formal definition while, if no strong cyclic solutions exist, it ter-
minates with failure. The algorithm in [18] did not satisfy the formal
specifications. Indeed, it could generate plans that could get stuck in
loops with no possibility of terminating.

We improve the quality of strong cyclic solutions by eliminating nonrel-
evant actions.
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We show how to extend the above formalization to weak (there exists an
execution that eventually achieves the goal) and strong (all the execu-
tions eventually achieve the goal) plans.

2. We improve the algorithm for translating LTL formulas into automata.
The algorithm is used to produced the goal automaton starting from the
LTL formula representing the goal. Since this translation is PSPACE-
complete [23] and since the goal automaton has to be composed with the
usually huge automaton for the planning domain, it is highly desirable
to keep the goal automaton as small as possible.

We propose a test methodology to test the above translation. More-
over, our methodology can be also used for evaluating LTL deciders and
its underlying concepts, basically targeting a uniform coverage of the
formula space, can be exported to other logics.

Part of the material included in this thesis has already been published in
the following papers:

e Daniele, M., Traverso, P., Vardi, M. Y., Strong Cyclic Planning Re-
visited. In Proceeding of the 2nd FEuropean Conference on Planning
(ECP99).

e Cesta, A., Riccucci, P., Daniele, M., Traverso, P., Giunchiglia, E., Piag-
gio, M., and Shaerf, M., Jerry: a system for the automatic generation
and execution of plans for robotic devices - the case study of the Spider
arm. In Proceedings of the 5th International Symposium on Artificial
Intelligence, Robotics and Automation in Space (ISAIRAS99).

e Daniele, M., Giunchiglia, F., and Vardi, M. Y. Improved automata gen-
eration for linear temporal logic. In Proceedings of the 11th International
Conference on Computer-Aided Verification (CAV99).

The thesis consists of two parts. The first part (Chapters 1-4) deals with
preliminaries, while the second one (Chapter 5) introduces the new material.
More in detail,

e Chapter 1 introduces planning, discussing plan representation and plan-
ning approaches.

e Chapter 2 deals with temporal logics, presenting the logics LTL and CTL
as sublogics of the more powerful logic CTL*.

e Chapter 3 presents model checking algorithms for both CTL and LTL
specifications.
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e Chapter 4 introduces the ordered binary decision diagrams and shows
how to exploit them in order to yield symbolic model checking algorithms
for both CTL and LTL specifications.

e Chapter 5 is the core of the thesis. It presents a formal framework giv-
ing semantics to weak, strong, and strong cyclic plans, and introduces
symbolic algorithms for weak, strong, and strong cyclic planning. More-
over, it discusses the automata-based approach to planning and presents,
and describes experiments with, an algorithm for generating automata
corresponding to LTL goals.
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Chapter 1

Planning

In this chapter we present the fundamental concepts about planning. More in
detail, we start by discussing classical planning in Section 1.1, introduce the
most important representations of planning problems in Section 1.2, describe
the most relevant approaches to classical planning in Section 1.3, and con-
clude with Section 1.4 by surveying some solutions considered in nonclassical
planning.

1.1 Classical Planning

The field of Al planning seeks to build control algorithms that enable an agent
to synthesize a program of actions, whose execution from some initial state
satisfies the goal. More in detail, a planning domain is a finite set of world
states, and a finite set of actions, which are respounsible for transforming the
state of the world. A planning problem is a planning domain, plus a description
of the initial states and a description of the desired behavior, i.e., of the goal.
A solution for a planning problem, i.e., a plan, is a program of actions whose
execution starting from some initial state satisfies the goal.

Note that the above formulation of planning is rather abstract, since the
plan is a program with no further structure, actions can be nondeterministic,
that is, the result of their executions cannot be known a priori, and the goal
has to be (somehow) satisfied, rather than reached. However, most of the
research in planning deals with classical planning, by making the following
assumptions:

Deterministic effects: The effect of executing an action is a deterministic
function of the action and the state of the world when the action is
executed.

Omniscience: The agent has complete knowledge about the initial state of

7



8 CHAPTER 1. PLANNING

the world, that is, the initial state is unique, and has complete observ-
ability of each state of the world.

Sole cause of change: The only way the worlds changes is by agent’s own
actions. There are no other agents and the world is static by default.

Goals of attainment: Goals are described by the state of the world the
agent wants to achieve after the execution of the plan. No attention is
kept to the way in which the goal state is reached.

Note that, in classical planning, due to the deterministic nature of actions,
the unique initial state, and the simple nature of the goals, plans have a very
simple structure, namely, a sequence of actions.

1.2 Planning Problem Representation

In this section, we describe the two most popular languages for planning prob-
lem representation, namely, STRIPS and ADL.

1.2.1 STRIPS

STRIPS [34] is one of the earliest representation language for planning prob-
lems' and, due to its simplicity, one of the most popular. This representation
models actions as operation on a database, which records the current state of
the world.

A STRIPS description is a pair (L, O) where L is a subset of a first-order
language for describing states and O is a set of actions.

More in detail, the alphabet of L consists of a finite set of constant symbols
¢;, a finite set of variable symbols x;, a finite set of predicate symbols p; with
arity a(p;), and the negation —. A constant or a variable is also called a term.
An atom is an expression of the form p(tq,...,t,), where p is a n-ary predicate
and the t; are terms. A [literal is an atom or its negation and, as usual, -—A
is assumed to be A. A ground literal is a literal without variables. A ground
atom is also referred to as fluent.

State descriptions and goals can be constructed from the above fragment
of the first-order logic. As an example, consider the robot hand and initial
configuration of blocks shown in Figure 1.1 (left). This situation can be rep-
resented by the set of literals {ON(A,TABLE), ON(C, A), ON(B,TABLE),
CLEAR(C), CLEAR(B), HANDEMPTY}. Here, the constant symbols are A,

! Actually, STRIPS was a planner obtained by adapting a problem solver. Indeed, the
name STRIPS stands for STanford Research Institute Problem Solver. Due to the success
of the description language, the acronym STRIPS has been since then used to denote the
language.
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D[ c

Figure 1.1: Initial and goal states for the “Sussman Anomaly” problem in the
Block World.

B, and C, while the predicate symbols are CLEAR, HANDEMPTY, and ON.
The literal CLEAR(B) means that block B has a clear top, that is, no other
block is on it. The ON predicate is used to describe which block are directly
on other blocks. The predicate HANDEMPTY is true just when the robot
hand is empty, as in the situation depicted.

Since we require the initial state to be unique, all literals not explicitly
listed in the description are assumed to be false. This is called the “Closed
World Assumption” [70]. This means that, for instance, ~ON(A4,C) and
—~CLEAR(A) are implicitly in the initial state description.

Goal descriptions can be expressed as a set of literals too. For example,
if we want the robot to counstruct a stack of blocks in which, as in Figure 1.1
(right), the block B is on the block C' and the block A is on the block B, we
might describe the goal as { ON(B,C), ON(A,B), ON(C,TABLE)}. Figure 1.1
yields a simple block-stacking challenge called the “Sussman Anomaly”?2.

For goal expressions, we allow set of literals, and any variables in goal
expressions are assumed to be existentially quantified. For initial and inter-
mediate state descriptions, we allows only set of ground literals.

Action description consists of three sets of positive literals that are called
precondition, delete list, and add list respectively. As an alternative represen-
tation, actions can be seen as two sets, the precondition and the effect. As
before, the precondition is a set of positive literals, while the effect is simply
a set of literals, where the negated ones represent the above delete list.

To understand how the execution of an action changes the current state of
the world, it is necessary to introduce the concept of unification among literals.
Given a set of literals, the target is to compute a substitution of terms for the

2The problem was discovered at MIT in 1973 by Allen Brown who noticed that the
HACKER problem solver, developed by Sussman, had problems dealing with it.
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variables to make all the literals identical. Substitutions are represented as set
of pairs {z1/t1,...,z,/t,} where each z; is a variable and each t; is a term
in which z; does not occur. For example, the literals ON(z,C) and ON(A, C)
are unified by the substitution {x/A}. A unifying substitution for the set £
of literals is called a unifier of E. The composition of two substitutions s; and
s9, denoted as s;s9, is that substitution obtained by applying so to the terms
of s1 and then adding those pairs of sy having variables not occurring among
the variables of s;. Thus, for example, {z/g(z,y)H{z/A,y/B,w/C,z/D} is
{z/9(A,B),z/A,y/B,w/C}. A unifier g of a set E of literal is called the most
general unifier of E if, for every other unifier s of F, there exists a substitution
s’ such that s can be obtained by composing g and s'.

An action is ezecutable in a state if there exists a most general unifier
unifying each one of the literals in the preconditions with some ground literal
in the state description. We call such unifier the match substitution. When an
action is executable and is executed in a state description, the first step is to
apply the match substitution to both the add and the delete lists. We assume
that all the variables occurring in such lists also occur in the precondition.
Second, the ground literals from the delete list are removed from the old state
description, while the ground literals from the add list are added to this latter
state description to produce the new state description.

As an example, we could model the action of moving a block x from the
source y to the target z as follows

MOVE(z,y, z):

Precondition: {ON(x,y), CLEAR(z), CLEAR(z),z # y,z # z,
2 # TABLE}

Delete list: {ON(z,y), CLEAR(z)}

Add list: {ON(z, z), CLEAR(y)}

or, alternatively, as
MOVE(x, y, z):

Precondition: {ON(x,y), CLEAR(z), CLEAR(z),z # y,x # z,
2 # TABLE}
Effect: {-~ON(z,y), ~CLEAR(z), ON(z, z), CLEAR(y)}

The above action is executable in the state depicted in Figure 1.1 when for ex-
ample z is substituted with C, y with A, and z with B. When the action is exe-
cuted, the new state description becomes { CLEAR(A), CLEAR(C), ON(C, B),
ON(A,TABLFE),ON(B,TABLE)}.
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Note that our definition is restricted so that a block can not be moved to
the table. This is necessary because the action’s effects are different when the
destination is the table. Specifically, the intuition for the table is that it is
always clear, and this clashes with the effect making the destination not clear.

1.2.2 ADL

Another interesting language for planning problem representation is the Action
Description Language (ADL) [62], which introduces conditional effects and
universal quantification.

Conditional effects are useful to relax the annoying aspect of the MOVE
operator defined above, that is, the restriction that the destination can not be
the table. Due to this restriction, to describe the possible movement actions, it
is necessary to augment MOVE with an additional MOVE-TO-TABLE. This
is irritating for both the user, software engineering, and efficiency. Indeed, for
example, a planner has to commit whether the destination is the table or some
other block, even if the movement action is required to deal with part of the
goal that has nothing to do with the destination. This problem is solved by
allowing action definitions to use conditional effects. The basic idea is simple:
we allow a special when clause in the syntax of action effect. when takes
two arguments, an antecedent and a consequent. Both the antecedent and
the consequent are a set of literals, but their interpretation is very different.
The antecedent refers to the state before the action is executed, while the
consequent refers to the state after the execution. The interpretation is that
the execution of the action will have the consequent’s effect just in the case
that the antecedent is true immediately before the execution. For example,
we can extend the MOVE definition in order to release the constraint on the
destination as follows

MOVE(z,y, z):

Precondition: {ON(x,y), CLEAR(z), CLEAR(z),z # y,z # =,
2 # TABLE}
Effect: {=ON(z,y), ON(z, z), CLEAR(y),
({-CLEAR(z)} when {z # TABLE})

Universal quantification is very handy to express actions in a concise and
clear way. For example, one could implement the CLEAR predicate by uni-
versally quantifying over the ON predicate. Another interesting case is mixing
universal quantification with conditional effects that, for example, allows for
the specification of objects like briefcases where moving the briefcase causes
all objects inside to move as well:

MOVE(x, y, z):
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Figure 1.2: A fragment of the state space in the block world.

Precondition: { BRIEFCASE(x), AT(y),y # z}
Effect: {AT(z,z), 2AT(x,y),
(VE)({AT(k,z),~AT(k,y)} when {IN(k,z)})}

Finally, note that, while universal quantification is basically syntactic sugar,
conditional effects strictly increase the expressive power of STRIPS.

1.3 Approaches to Classical Planning

In this section we try to classify the solutions adopted by some of the most
relevant classical planning systems. More in detail, we consider state-space
search in Subsection 1.3.1, and plan-space search in Subsection 1.3.2. In Sub-
section 1.3.3 we introduce deductive planning. Finally, we consider the last
advances in classical planning, namely, planning as graph analysis in Subsec-
tion 1.3.4 and as satisfiability in Subsection 1.3.5. Such a classification is not
a partition since, for example, searching in the state-space is a particular case
of searching in the plan-space, and deductive planning, due to its generality,
can encode all the other approaches.

1.3.1 Planning as State-Space Search

The simplest way to build a planner is to cast the planning problem as search
through the space of world states. Figure 1.2 shows a fragment of such a
space for the world of blocks. Each node in the graph denotes a state of the
world, and edges connect worlds that can be reached by executing a single
action. In general, arcs are directed, but in our model of the block world all
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Algorithm REGRESSION(initial-state, current-goal, actions, path)
1. Termination: If initial-state satisfies the current-goal then return path.

2. Action selection: Let act = CHOOSE from actions an action whose
effects matches at least one literal in current-goal.

3. Goal regression: Let new-current-goal be the result of regressing
current-goal through act, and new-path be the result of concatenating
act and path.

4. Failure: If no choice for act is possible or new-current-goal is undefined
or contains current-goal then return failure.

5. Recursive invocation: Return REGRESSION(init-state, new-current-
goal, actions, new-path)

Figure 1.3: A regressive, state-based planner. The initial call should set path
to the null sequence.

the actions are reversible, so that we have replaced two directed edges with
a single undirected one to increase readability. Note that the initial and the
goal states of the Sussman anomaly are highlighted in grey. When phrased in
this manner, the solution to a planning problem is a path through the state
space.

The advantage of casting planning as a simple search problem is the im-
mediate applicability of all the familiar brute force and heuristic search algo-
rithms [47]. For example, one could use depth-first, breadth-first, or iterative
deepening A* search starting from the initial state until the goal is located.
Alternatively, more sophisticated memory bounded algorithms could be used
[71, 48].

A handy way to describe search algorithms is to specify them nondeter-
ministically by using a nondeterministic CHOOSE primitive. CHOOSE takes a
set of possible options and “magically” selects the right one. In real plan-
ners, CHOOSE can be implemented through any exhaustive search method or
approximated with some aggressive search strategy.

In Figure 1.3, we describe a nondeterministic regressive planning algorithm
that operates by searching backwards from the goal until the initial state is
found.

When REGRESSION is called on the Sussman anomaly, current-goal is ini-
tially set to {ON(A,B), ON(B,C)}, and path is set to the null sequence of
actions and, since this situation does not satisfy the initial state, CHOOSE de-
mands an action whose effect contains a literal in current-goal. Magically, the
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action MOVE-A-FROM-TABLE-TO-B is returned.

The next step, that is, goal regression, forms the core of the algorithm. new-
current-goal is assigned the result of regressing the set current-goal through the
action act. The result of this regression is another set of literals that encodes
the weakest precondition that must be true before act is executed in order
to assure that current-goal will be true after act is executed. This is simply
the union of act’s precondition with all the literals in the current goal, except
those provided by the effects of act, that is,

new-current-goal = precondition(act) U (current-goal \ add-list(act))

In our example, suppose that MOVE-A-FROM-TABLE-TO-B is defined
as

Precondition: {ON(A,TABLE),CLEAR(A), CLEAR(B)}
Delete-list: {ON(A, TABLE), CLEAR(B)}
Add-list: {ON(A, B)}

the effect of regressing {ON(A, B), ON(B,C)} is the set {ON(A,TABLE),
CLEAR(A), CLEAR(B), ON(B,C)}. Since act does not affect ON(B,C), it
remains part of the weakest preconditions.

If the selection of the action is not possible, or the regression step fails, the
algorithm returns failure. More in detail:

e If no action has an effect containing a literal matching one of the literal
in current-goal, then no action if profitable.

e If the effect of act conflicts with current-goal, the result of regressing
current-goal through act is undefined. Indeed, no matter what is true
before act is executed, its execution will ruin things.

o If current-goal is contained in its regression, each state satisfying the
regression satisfies current-goal as well. Thus, there is no point in con-
sidering such an act because any successful plan that might result could
be improved by eliminating act from path.

Otherwise, if both the selection and the regression steps are successful, the
selected action is appended to the current partially-specified path, and the
algorithm is invoked recursively.

STRIPS is a classic planner searching the state space through a regressive
algorithm. Moreover, it uses the means-ends strategy to direct the search
process, that is, actions are selected in order to minimize the difference between
the current state and the initial one. Due to this strategy, STRIPS produces
straightforward solutions to many problems, but there are problems for which
it produces nonoptimal solutions, that is, solutions longer than necessary, and
problems for which it cannot find any solution at all.
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Figure 1.4: A fragment of the plan space in the block world.

1.3.2 Planning as Plan-Space Search

In 1974, Earl Sacerdoti built a planner, called NOAH [72], with many novel
features among which the most innovative was the reformulation of planning.
Instead of searching the space of states, in which edges denote action execution,
Sacerdoti phrased planning as search through the space of plans. In this space,
nodes represent partially-specified plans and edges denote plan refinements.
A plan refinement is obtained by adding an action and defining its execution
order with respect to the actions already present in the plan. Figure 1.4
illustrates a fragment of such a space in the block world. In such case, the
ordering among actiouns is given by the arrows relating them. Note that the
ordering among actions defining the partial plans labeling the nodes is a partial
ordering, rather than the total order one obtains by searching the state space.
For this reasons, planner working in this environment are also called partial
order planners. This means that the resulting plan is indeed a set of totally
ordered set of actions, namely, the ones compatible with the partial order plan.
Partial order planners are also called least commitment planners, since they
allow for deferring decisions about action ordering until this is really required.

While visiting the state space has been seen being (conceptually) simple,
searching the plan space is much more complex and requires introducing some
background work. A partial plan is a 3-tuple (A, O, L) where A is a set of
actions, O is a set of partial ordering constraints over A, and L is the set of
causal links, which we are about to explain below. As a partial order planner
refines a plan, it must do constraint satisfaction to ensure the consistency of
O, that is, to ensure that from O can be extracted at least one sequence of
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actions whose order is compatible with the one stated in O.

A key aspect that partial order plans have to take into account is keeping
track of past decisions and the reasons for those decisions. For example, if
one purchases plane tickets to satisfy the goal of boarding the plane, then one
should be sure to take them at the airport. If another goal, say having one’s
hands free to open the taxi door, causes one to drop the tickets, one should
be sure to pick them up again. A good way of ensuring that the different
actions introduced for different goals will not interfere each other is to record
the dependencies among actions. To record these dependencies, we use causal
links. A causal link consists of three parts: two actions, namely the link’s
producer A, and its consumer A., and a literal (), which is an effect of the
first action and a precondition of the second one. We write such a causal link
as Ap 2) A¢, and say that @ is supported by A, in A..

Causal links are used to detect whether a newly introduced action interferes
with past decisions. We call such an action a threat. More precisely, suppose

that (4,0, L) is a partial plan, A, < A, is a causal link in L, and let A; be a

different action in A. We say that A; threatens A, % A, if the followings are
satisfied:

e OU{A, < A; < A.} is consistent,

e A; has —() as effect.
For example, if A, asserts () =ON(A,B), which is a precondition for A., and

the plan contains A, < A., then A; would be considered a threat if it moved
A off B and the ordering constraints did not prevent A; from being executed
between A, and A..

When a plan contains a threat, there is a danger that the plan will not
work as anticipated. To prevent this from happening, the planning algorithm
must check for threats and take evasive countermeasures. For example, the
algorithm could add an additional ordering constraint to ensure that A; is exe-
cuted before Aj. This particular threat protection method is called demotion.
adding a symmetric constraint A. < Ay is called promotion.

The totally undefined plan, or null plan, can be represented as the tuple
(A ={A40,Ax},0 = {Ay) < Ax},{}), where A is a new “start” action with
no precondition and add-list defining the initial state, and A, is a new “end”
action with no effects and precondition defining the goal. For example, the
null plan corresponding to the Sussman anomaly is

A[]Z

Preconditions:
Effect: {ON(A,TABLE), ON(C,A), ON(B,TABLE),
CLEAR(C),CLEAR(B)}
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Ao

Preconditions: {ON(B, C), ON(A, B), ON(C,TABLE),
CLEAR(A)}

In Figure 1.5 we describe a simple regressive, partial order plan algorithm.
POP maintains the set of currently unsupported literals in agenda as set of
tuples (Q;j, A;). Thus, agenda is initially set to the goal, that is, to {(Q;, Aco) :
Q; is a literal of the goal}. POP starts with the null plan for the planning
problem at hand, and makes nondeterministic choices until all literals of every
action’s precondition have been supported by causal links and all threatened
links have been protected from possible interferences.

The most important results in planning as plan-space search is UCPOP
[62], a sound and complete partial order planner for ADL.

1.3.3 Deductive Planning

Deductive planning [38, 77, 78] consists of formulating the planning problem
as a problem of deduction in such a way that a theorem prover can solve it
and, by solving it, exhibits a proof from which a plan can be extracted.

For example, the Green’s formulation [38], which is considered to be one of
the first attempts to solve planning problems, is based on a resolution theorem
prover, involves one set of assertions that describe the initial state and another
set that describe the effects of the various actions. To keep track of which facts
are true in which state, a “state” or “situation” variable is included in each
predicate. This idea, often referred to as the situation calculus, goes back to
McCarthy [58, 59]. The goal condition is then described by a formula with
an existentially quantified state variable. That is, the system would attempt
to prove that there exists a state in which certain condition are true. A
constructive proof method can then be used to produce the set of actions that
generate the desired state.

Suppose that we have the initial situation depicted in Figure 1.1 (left).
Suppose we name this initial state SO. Then we denote the fact that block
x is on some other block y (or on the table) in situation SO by the literal
ON(z,y,SO) (ON(z,TABLE, SO)). The state name is made an explicit ar-
gument of the predicates. The complete configuration of blocks in the initial
state is then given by

ON(C, A, SO)

ON(A, TABLE, SO)
ON(B,TABLE, SO)
CLEAR(C, SO)
CLEAR(B, SO)
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Algorithm POP((A, O, L), agenda, actions)

1.

2.

Termination: If agenda is empty return (A, O, L).

Goal selection: Let (), Ajeeq) = CHOOSE a pair from the agenda.

. Action selection: Let A,;; = CHOOSE an action that adds ). Agqq

can be a newly instantiated action or an action already in A, which can
be consistently ordered prior to A, eeq. If Aggq is newly instantiated then
let

e A'=AU {Agda}-

e I'=LU {Aadd 2} Aneed}

e O'=0U {AO < Agad < Aneed < Aoo}-
else let

e A=A

o I'=LU {Aadd 2) Aneed}

e O'=0U {Aadd < Aneed}

Failure: If no action can be chosen then return failure.

. Update goal set: Let agendd = agenda\{(Q, Aneed)}- If Aggq is newly

instantiated, then for each literal @Q; of its preconditions, add (@, Ay ceq)
to agendd .

. Causal link protection: For every action A; that might threaten a

causal link A, < A. € L', CHOOSE a cousistent ordering constraint
between:

(a) Demotion: Add A4; < A, to O
(b) Promotion: Add A, < A; to O'

If neither constraint is consistent, then return failure.

7. Recursive invocation: POP((A', O, L"),agendd’, actions)

Figure 1.5: A regressive partial order planner. The initial call must set
(A, O, L) to the null plan for the planning problem, and agenda to the goal.
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Now we need a way to express the effects that various actions might
have on the states. The natural way of doing this is through implications.
Moreover, when an action is executed in one state, we use the special term
“do(action, state)” to denote the new state. Thus, if the action MOVE(z,y, z)
moving the block  from the position y to the position z is executed in SO,
the new state is represented by the term do(MOVE(z,y, z),SO). A possible
formulation of MOVE(z,y, z) follows:

MOVE(z,y, z):

(CLEAR(z, S)ANCLEAR(z,S)ANON(z,y, S)\(z # z)) =
(ON(z, z,do(MOVE(z,y, z),S))N\CLEAR(z,do(MOVE(z,y, z), S))
A CLEAR(y,do(MOVE(z,y, z),S)))

However, the above formulation does not completely specify the effects of
the action. We must also state through further assertions that certain features
are unaffected by the action. Such assertions are called the frame assertions
[59]. For example, the following assertion expresses that the blocks that are
not moved stay in the same position:

ON(v,w,S) A (v # z) =
ON(v,w,do(MOVE(x,y, Z), S))

Finally, suppose that we want to achieve the simple goal depicted in Fig-
ure 1.1 (right). This goal would be expressed as

(3S)ON(A, B, S)NON(B, C, S)AON(C, TABLE, S)NCLEAR(A, S)

The problem can now be solved by finding a constructive proof of the goal
formula, where the existential witness of the form

do(ay,(...,do(ay, SO)...)

represents the plan ay ... s,.

1.3.4 Planning Graph Analysis

This approach [5, 46, 54] is based on constructing and analyzing a compact
structure called the planning graph. The approach combines aspects of both
state-space search and partial-order planners. Indeed, it makes strong commit-
ments while constructing the planning graph, but generates partially ordered
plans. The approach alternates between two phases: graph expansion and
solution extraction. The graph expansion phase extends the planning graph
forward in “time” until it has achieved a necessary, but possibly insufficient,
condition for plan existence. The solution extraction phase then performs
a backward-chaining search on the graph, looking for a plan that solves the
problem. If no solution is found, the cycle repeats by further expanding the
planning graph.
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Figure 1.6: A fragment of a planning graph.

Expanding the Planning Graph

The planning graph contains two types of nodes, proposition nodes and ac-
tion nodes, arranged into levels as shown in Figure 1.6. The planning graph
alternates proposition (circle) and action (square) layers. Horizontal dashed
lines between propositions layers represent “maintenance actions”, which en-
code the possibility that unaffected propositions will persist until the next
layer. Even-numbered levels contain proposition nodes, that is, ground liter-
als, and the zeroth level consists precisely of the propositions that are true
in the initial state of the planning problem at hand. Nodes in odd-numbered
levels correspond to action instances. There is one such node for each action
instance whose preconditions are present and are mutually consistent at the
previous level. Edges connect proposition nodes to the action instances at
the next level whose preconditions mention those propositions, and additional
edges connect from action nodes to subsequent propositions made true by the
action’s effects.

Note that the planning graph represents “parallel” actions at each action
level. However, just because two actions are included in the planning graph at
some level does not mean that it is possible to execute both at once. Central to
the efficiency of this approach is inference regarding a binary mutual exclusion
relation (from now on mutez) among nodes at the same level. We define this
relation recursively as follows

e Two action instances at level 7 are mutex if either

— Inconsistent effects: The effect of one action is the negation of
another action’s effect, or

— Interference: One action deletes the precondition of another, or

— Competing Needs: The actions have preconditions that are mutually
exclusive at level ¢ — 1.
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Inconsistent effects Interference

Competing needs Inconsistent support

Figure 1.7: Graphical depiction of mutex definition. Curved lines represent
mutex relations, curved lines with arrows represent mutex causes.

e Two propositions at level ¢ are mutex if either

— Inconsistency: One is the negation of the other, or

— Inconsistent support: All the ways of achieving the propositions,
that is, actions at level 7 — 1, are pairwise mutex.

In Figure 1.7, a graphical representation of the above conditions is given.
While expanding the plan, one has also to take into account to propagate the
mutex relationship from one layer to the next one.

Solution extraction

The second phase starts when the planning graph has been extended to an even
level ¢ in which all the goal literals are present and none are pairwise mutex.
This is a necessary condition for plan existence, but it does not ensure that a
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Goal: p,q,r

-r

Figure 1.8: Mutex is not a sufficient condition for planning existence.

plan does exist, as shown in Figure 1.8. The point is that the propagation of
the mutex conditions finds many incompatibilities, but not all.

Solution extraction searches for a plan by considering each of the literals
in turn. For each such literal at level ¢, again magically, CHOOSE selects an
action a at level ¢+ — 1 that achieves the literal and is nonmutex with those
already gathered. If no such choice is possible, then failure is returned.

Once a counsistent set of actions for level ¢ has been found, we have to
consider their preconditions. Therefore, if 7 = 1 one has to check that the pre-
conditions hold in the initial state, otherwise such preconditions are recursively
analyzed.

1.3.5 Planning as Satisfiability

Planning as propositional satisfiability [43, 44, 42, 41] has gained a lot of atten-
tion during the last years, due to recent advances in propositional satisfiability
methods [75, 4, 57, 88]. Indeed, the first attempt of facing planning in such a
manner were rather unremarkable [43].

Figure 1.9 shows the typical architecture of a planning system based on a
propositional decider. The compiler takes a planning problem as input, guesses
a plan length, and generates a propositional formula, usually in conjunctive
normal form, that is satisfiable if and only if a plan of such a length exists.
During this step, a symbol table records the correspondence between proposi-
tional variables and the planning instance. The simplifier shrinks the formula
removing possible redundancies, and the solver uses systematic or stochastic
methods to find a satisfying assignment that the decoder translates, by using
the symbol table, into a solution plan. Similarly to the graph-based approach,
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Figure 1.9: The structure of a typical planner via satisfiability.

if the solver fails in finding a satisfying assignment, the compiler generates a
new encoding reflecting a longer length.

Beside the solver, a critical component of the above architecture is the
compiler, which should produce quickly a “good” formula. However, this
translation is complicated by the fact that a propositional formula can be
measured in terms of the number of variables, the number of clauses, or the
total number of literals summed over all clauses. Moreover, often a decrease
of one parameter will increase another. In what follows, we present a param-
eterized space of possibilities, developed in [33], with two dimensions: action
representation and frame azioms.

Each of the encodings we are about to introduce resembles the structure
of a plan in the graph-based approach: fluents occur at even-numbered times
and actions at odd-numbered times. Moreover, all such encodings use the
following set of universal axioms

e init: The initial state is completely specified at time zero, including all
properties presumed false by the closed-world assumption.

e goal: In order to test for a plan of length n, all desired goal properties
are asserted to be true at time 2n.

e precondition-effect implication: Actions imply their preconditions and
effects. For each odd time ¢ between 1 and 2n —1 and for each consistent
ground action, an axiom asserts that execution of the action at time ¢
implies its effects hold at time ¢ + 1 and its preconditions hold at time
t—1.

Action Representation

The first major encoding choice is how to represent actions. This choice spec-
ifies the correspondence between propositional variables and ground actions
and works out a tradeoff between the number of propositional variables and
the number of clauses.
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In the regular representation, each ground action is represented by a dif-
ferent propositional variable, for a total of n - |Act| - [Dom|44t, where n is
the number of odd-time steps in plan, |Act| is the number of action schemata,
|Dom| is the number of constants in the domain, and A4 is the maximum
arity of actions schemata. Therefore, the factor |Act| - |[Dom|44et represents
the number of ground actions. Since systematic solvers take time exponential
in the number of variables, and large number of variables also slow stochastic
solvers down, we would like to reduce this number.

In order to do this, in [44] was introduced the simple operator splitting,
which replaces each n-ary action with n unary fluents throughout the en-
coding. For example, MOVE(A, B, C,t)? is replaced with the conjunction of
MOVE-ARGI1(A,t), MOVE-ARG2(B,t), and MOVE-ARG3(C,t). Doing this
for all fully-instantiated actions reduces the number of variables needed to
represent all actions to n - |Act|- |Dom| - Act.

In simple splitting, only instances of the same action share propositional
variables. An alternative is overloaded splitting. Overloaded splitting replaces
MOVE(A, B,C,t) by conjuncting ACT(MOV E,t), ARG1(A,t), ARG2(B,1),
and ARG3(C,t), while a different action PAINT(A, RED,t) is replaced by the
conjunction ACT(PAINT,t), ARGI(A,t), ARG2(RED,t). This technique
further reduces the number of variables to n(|Act| + |Dom|Asct).

Finally, the bitwise representation shrinks the number of variables even
more, by representing the actions with only nlog,[(|Act| - |[Dom|*4et)] vari-
ables. More in detail, this is carried out by numbering the ground actions from
0 to |Act|-|Dom|*et —1. The number encoded by the bit symbols determines
the ground action that executes at each odd time step. For example, if there
were 4 ground actions, —bitl; A —bit2; replaces the first action, —bitly A bit2;
replaces the second one, and so on.

Frame Axioms

The other important encoding choice is related to the frame axioms, that is,
how to constrain unaffected fluents when an action occurs.

Classical frame azioms [59] state which fluents are left unchanged by a
given action. For example, a classical frame axiom for the MOVE action,
stating that moving a block A from B to C leaves D’s clearness unchanged,
can be encoded as CLEAR(D,t—1) AMOVE(A, B,C,t) = CLEAR(D,t+1).

Adding classical frame axioms for each action and each odd time to the
universal axioms almost produces a valid encoding of the planning problem.
However, if no action occurs at time £, the axioms of the encoding can infer

3Note that we are using nonstandard notation here in order to emphasize the combina-
torics. Indeed, when writing MOVE(A, B, C,t) we denote a propositional variable. A more
clear but heavier notation would have been MOVE-A-FROM-B-TO-C-AT-TIME-t.
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nothing about the truth value of fluents at time ¢+ 1, which can therefore take
arbitrary values. The solution is to add an at-least-one axiom for each time
step, that is, a disjunction of every possible ground action ensuring that some
action occurs at each odd time step. However, as shown in [33], this approach
has a huge effect on the size of these axioms. The resulting plan consists then
of a totally-ordered sequence of actions. Indeed, classical frame and at-least-
one axioms do not force that exactly one action occurs at each odd time step.
However, when combined with the precondition-effect implication axioms and
considering that the initial state is completely defined they ensure that any
two actions occurring at odd time ¢ lead to an identical state at time ¢ + 1.
Therefore, the linear ordering can be obtained by randomly selecting, for each
odd time ¢, an action among those occurring at time ¢.

Ezplanatory frame azioms [39] enumerate the set of actions that could have
occurred in order to account for a state change. For example, an explanatory
axiom would say which actions could have caused D’s clearness status to
change from true to false as

CLEAR(D,t — 1) A~CLEAR(D,t + 1)
= (MOVE(A, B, D,t) V MOVE(A,C,D,t) V ...

As a supplement to the universal axioms, explanatory frame axioms must
be added for each ground fluent and each odd time ¢ to produce a correct
encoding. With explanatory frame axioms, a change in a fluent’s truth value
implies that some action occurs, so (contrapositively) if no action occur at an
odd time step, this will be correctly treated as a no-operation. Therefore, no
at-least-one axioms are required.

Explanatory frame axioms brings an important benefit. Since they do not
explicitly force the fluents unaffected by action execution to remain unchanged,
they permit parallelism. Specifically, any actions whose preconditions are sat-
isfied at time ¢ and whose effects do not contradict each other might be ex-
ecuted in parallel. This kind of parallelism is, however, problematic, since it
might give rise to valid plans from which no totally-ordered sequence of actions
can be extracted. For example, suppose that the action a; has precondition
X and effect Y, while the action ay as precondition —Y and effect —X, and
suppose that X A =Y and =X AY are satisfiable. While these actions might
be executed in parallel since neither their preconditions nor their effects are
inconsistent, there is no legal total ordering of the two actions. Hence, one
must explicitly rule out this type of pathological behavior with the exzclusion
axioms. Complete exclusion ensures that only one action can occur at each
odd-time step and, for each ground action a; and ag and odd-time ¢, adds
clauses encoding that either a; or ao cannot occur at time ¢t. Conflict exclu-
ston results in partially-ordered plans from which totally-ordered plans can be
extracted by introducing new clauses only for the conflicting actions.
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Finally, experience [33, 44] shows that explanatory frame axioms are clearly
superior to classical frame axioms in almost every case.

1.4 Nonclassical Planning

Classical planning makes some fundamental assumptions: the planner has
complete information about the initial state of the world, complete observ-
ability on the world states, effects of the execution of actions are determinis-
tic, and therefore the solution to the planning problem can be expressed as
a sequence of actions. These assumptions are unrealistic in several practical
domains, like robotics, scheduling, and control. The initial state of a planning
problem may be not unique, some features of the world may be not observ-
able, and the effect of actions may have several effects. Moreover, in case of
nondeterminism, plans as sequences of actions are bound to failure. Indeed,
nondeterminism must be tackled by planning conditional behaviors, which de-
pend on the information that can be gathered at execution time. For instance,
in a realistic robotic application, the action “pick-up a block” cannot be sim-
ply described as a STRIPS operator whose effect is “the block is at hand”.
“Pick-up a block” might result either in a success or a failure, and the result
cannot be known a priori of execution. A useful plan, depending on the action
outcome, should execute different actions, e.g., try to pick-up the block again
if the action execution has failed.

Most often, a conditional plan is not enough: plans encoding iterative
trial-and-error strategies, like “pick up a block until succeed”, are the only
acceptable solutions. In several realistic domains, a certain effect (e.g., action
success) might never be guaranteed a priori of execution and, in principle,
iterative plans might loop forever, under an infinite sequence of failures. The
planner, however, should generate iterative plans whose executions always
have a possibility of terminating and, when they do, they are guaranteed to
achieve the goal.

However, even though classical planning suffers from the lacks we have
described, most of the work in planning is focused on it. Only in the last
couple of years, some works have extended classical planners to contingent
planners [87, 86, 63, 68, 19], which generate plans with conditionals, or to
conformant planners [76, 17, 16], which unrealistically try to find solutions
to nondeterministic planning problem as sequences of actions. Note that the
first problem one has to solve when dealing with nondeterministic planning
domains is that neither STRIPS nor ADL are expressive enough. Indeed, in
order to express nondeterminism one needs languages that allows us to express
the fact that an action has multiple outcomes or, in other words, disjunctive
effects.
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Deductive planning frameworks [77, 78] can be used to specify desired
plans in nonclassical frameworks. Nevertheless, the automatic generation of
plans in these deductive frameworks is still an open problem. [13] proposes
a framework based on process algebra and mu-calculus for reasoning about
nondeterministic and concurrent actions. The framework is rather expressive,
but it does not deal with the problem of plan generation. In planning based
on Markov Decision Processes [28, 11, 40], nondeterministic environments are
dealt with through stochastic automata, where actions induce transitions with
an associated probability, and states have an associated reward. The planning
task is then reduced to look for optimal executions with respect to rewards
and probability distributions. Planning as model checking [15, 37, 19, 2, 18,
26, 16, 27], which is the subject of this thesis, joins expressiveness with the
possibility of devising automatic practical planners. In particular, [18, 26] deal
with iterative plans, while [27] handles incomplete information and temporally
extended goals in deterministic domains.
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Chapter 2

Temporal Logics

Temporal logics [67, 30] were introduced by philosophers for providing a for-
mal system for qualitatively describing and reasoning about how the truth
values of assertions change over time. Later, in a landmark paper [64], Pnueli
argued that temporal logic could be a useful formalism for specifying and ver-
ifying correctness of finite-state computer programs. More generally, looking
at finite-state systems as temporal logic semantic structures, temporal logics
can be used to describe properties of such systems.

A finite-state system such a planning domain, a hardware controller, or a
communication protocol can be described abstractly by a structure consist-
ing of a finite set of the possible states of the system and a set of the legal
transitions between states. For example, in a planning problem in the block
world, states may differ on the location of blocks, while in a communication
protocol some states might represent situations in which some input buffer is
full, and some other states might represent situations in which the buffer is
only partially filled. In addition, we also need a way to describe properties
of such states. To this end, we label states with symbols from some set to
represent such properties. These symbols are called atomic propositions. A
tuple consisting of a set of states, a transition relation, and a labeling of states
by atomic propositions is called a state transition graph, or a Kripke structure
[30].

In temporal logic, time is not mentioned explicitly. Instead, a formula
might specify that eventually some designate property is satisfied, or that
another property is never satisfied. These operators can also be combined
with Boolean connectives or nested arbitrarily.

The temporal logics we are going to consider can be uniformly introduced
as fragments of the more powerful logic called CTL* [30].

29
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Unwinding the graph
to obtain an infinite tree

Figure 2.1: Computation trees.

2.1 The Computational Tree Logic CTL*

Conceptually, CTL* formulas describe properties of computation trees. The
tree is formed by designating a state in a Kripke structure as the initial state
and then unwinding the structure into an infinite tree with the designated
state as the root, as illustrated in Figure 2.1. The computation tree shows all
the possible executions starting from the initial state.

In CTL*, formulas are composed of path quantifiers and temporal opera-
tors. The path quantifiers are used to describe the branching structure in the
computation tree. There are two such quantifiers: A (“for all the computation
paths”) and E (“for some computation path”). These quantifiers are used in
a particular state to specify that all of the paths or some of the paths starting
at that state have some property. The temporal operators describe properties
of a path through the tree. There are five such operators:

e X (“next time”) requires that a property hold in the second state of the
path.
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The F (“eventually” or “in the future”) operator is used to assert that
a property holds at some state on the path.

G (“always” or “globally”) specifies that a property holds at every state
on the path.

The U (“until”) operator is a bit more complicated, since it is used to
combine two properties. It holds if there is a state on the path where
the second property holds and, at every preceding state on the path, the
first property holds.

V (“releases”) also combines two properties, and is the logical dual of
the U operator. It requires that the second property holds along the
path up to and including the first state where the first property holds.

The remainder of this section contains a precise description of the syntax
and semantics of CTL*. There are two types of formulas in CTL*: state
formulas, which are true in a specific state, and path formulas, which are true
along a specific path. Let P be the set of atomic proposition names. The
syntax of state formulas is given by the following rules:

If p € P, then p is a state formula.
If f and g are state formulas, then = f, fVg, and fAg are state formulas.

If f is a path formula, then E(f) and A(f) are state formulas.

Two additional rules are needed to specify the syntax of path formulas:

If f is a state formulas, then f is also a path formula.

If f and g are path formulas, then —f, f Vg, f Ag, Xf, Ff, Gf, fUg,
and fVg are path formulas.

The length of a path or state formula f, denoted as |f|, is defined induc-
tively as follows:

If f € P, then |f| = 0.

If f is —f1, then |f| = [f1] + 1.

If fis fi A foor fi A fo, then [f| = [fi| + | f2| + 1.
If fis Ef; or Afy, then |f] = |f1] + 1.

If fis X f1, then |f| = |f1| + L.

If f is Ffy, then [f| = |fi] + L.
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o If fis Gfy, then |f| = |fi| + 1.
° IfflS f]_UfZ, then |f| =|f1|+|f2|+1
° IfflS f1Vf2, then |f| =|f1|+|f2|+1

We define the semantics of CTL* with respect to a Kripke structure M =
(S, R, L), where S is the set of states; R C S .S is the total transition relation,
ie., for all states s € S there exists a state s’ € S such that (s,s’) € R;
and L : S — 27 is a function that labels each state with the set of atomic
propositions true in that state. Unless otherwise stated, all of our results apply
only to finite Kripke structures.

A path 7 in M is an infinite sequence of states sgsi ... such that, for every
i > 0, we have that (s, s;+1) € R. We use 7; to denote the suffiz of 7 starting
at s;. The state labeling can be extended to paths, that is, the labeling of
a path sgsp... is the sequence L(sg)L(s1).... If f is a state formula, the
notation M, s |= f means that f holds at state s in the Kripke structure M.
Similarly, if f is a path formula, M, 7 |= f means that f holds along the path
7 in the Kripke structure M. When the Kripke structure M is clear from
the context, we will usually omit it. The relation |= is defined inductively as
follows (assuming that f; and f, are state formulas and g; and go are path
formulas):

e M,sEpiff pe L(s), forp € P.

o M,s | —fiiff M,s [~ f1.

e M,skE=fiV foiff M,s = fi1 or M,s |= fa.

o M,sk= fiNfoif M,s = fi and M,s = fo.

e M,s = E(gy) iff there is a path 7 from s such that M, 7 = g;.
e M,s = A(gy) iff for all path 7 from s we have that M, |= ¢;.
e M,7 = f1 iff s is the first state of m and M, s = fi.

o M,w =gy iff M, 7 [~ g;.

e M,ml=g1Vgo iff M, |= g1 or M, 7 = go.

e M,ml=g1 ANgo it M,m = g1 and M, 7 = gs.

o M,m|=Xg it M, m = g1.

e M,7 |= Fg; iff there exists & > 0 such that M, = g1.

e M, 7 = Gg iff for all £ > 0 we have that M, n; = g;.
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e M,7 = g1Ugq iff there exist £ > 0 such that M, n; = g2 and, for all
0<j <k, wehave M,7; |= gi.

o M,m = ¢g1Vge iff for all £ > 0, either M, 7y |= g2 or for some 0 < j < k
we have that M, 7; |= g1.

It is easy to see that the operators V, -, X, U, and E are sufficient to
express any other CTL* formula:

 fAg=—(=fVy)
fVg=-(=fU~g)
Ff = (TrUEUY)

Gf = —IF—|f
A(f) = —E(=f)

2.2 CTL and LTL

In this section, we consider two useful sublogics of CTL*: one is a branching-
time logic and one is a linear-time logic. The distinction between the two is how
they handle branching in the underlying computation tree. In branching-time
temporal logic the temporal operators quantify over the paths that are possible
from a given state. In linear-time temporal logic, operators are provided for
describing events along a single computation path.

Computation Tree Logic (CTL) [30] is a restricted subset of CTL* that
permits only branching-time operators: each of the temporal operators X,
F, G, U, and V must be immediately preceded by a path quantifier. More
precisely, CTL is the subset of CTL* that is obtained if the following rule is
used to specify the syntax of path formulas.

e If f and g are state formulas, then X f, Ff, Gf, fUg, and fVg are path
formulas.

Linear Temporal Logic (LTL) [30], on the other hand, consists of formulas
that have the form A f where f is a restricted path formula, i.e., one in which
the only state formulas permitted are atomic propositions. More precisely, a
path formulas is now defined as

e If p € P, then p is a path formula

e If f and ¢ are path formulas, then —f, f Vg, fAg, Xf, Ff, Gf, fUg,
and fVg are path formulas.
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It can be shown [29, 31, 50] that the three logics that we have discussed
so far have different expressive powers. For example, there is no CTL formula
that is equivalent to the LTL formula A(FGp). Likewise, there is no LTL
formulas that is equivalent to the CTL formula AG(EFp). The disjunction
of these two formulas A(FGp) V AG(EFp) is a CTL* formula that is not
expressible in either CTL or LTL.

Because of its structure, CTL is often proposed starting by the following
ten operators:

e AX and EX.
e AF and EF.
e AG and EG.
e AU and EU.
e AV and EV.

that, in turn, can be expressed in terms of the three operators EX, EG, and
EU:

e AXf = -EX(~f)

e EFf = E(TrUEU)

o AGf = —EF(~f)

e AFf = -EG(~f)

* A(fUg) = -E(-gU(~f A g)) A ~EG(—g)
* A(fVyg) = -E(-fU-y)

* E(fVyg) = E(~(=fU~y))

The four operators that are used most widely are illustrated in Figure 2.2.
Each computation tree has the state sy as its root.

In turn, LTL is often proposed by omitting the leading path quantifier A,
that is, dealing only with restricted path formulas. As a consequence, LTL
formulas are now assigned semantics with respect to paths, highlighting time
linearity, and not with respect to Kripke structures anymore.
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Figure 2.2: Basic CTL operators.
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2.3 Fairness

A very important issue is the one of fairness. Indeed, in many cases we are only
interested in stating properties along fair computation paths. For example,
consider a communication protocol that operates over reliable channels hav-
ing the property that no message is ever continuously transmitted but never
received. Such property, which can be expressed in LTL as G(msg_snd) —
F(msg_rcv), cannot be directly expressed in CTL [29, 31]. In order to deal
with fairness, it is necessary to modify CTL semantics. Such a semantics is
called fair semantics. A fairness constraint is an arbitrary set of sets of states.
A path is said to be fair with respect to a set of fairness constraints if each
constraint holds infinitely often along the path. The fair semantics is then
obtained by restricting the path quantifiers to fair paths.

Formally, a fair Kripke structure is a tuple M = (S, L, R, F') where S, L,
and R are defined as before and F C 2° is the set of fairness constraints. A
path is fair if for every fairness constraint set there exists a state that occurs in
the path infinitely often. The fair CTL* semantics is then defined by replacing
the semantic definitions of the path quantifiers. In what follows, M,s =r f
and M, 7 |=p g denote the fair semantics with respect to the fair constraints
F.

e M,s =r Eg; iff there exists a fair path 7 from s such that M, 7 Ep g;.

e M,s Ep Ag iff for all the fair paths = from s we have that M, 7 =p g;1.



Chapter 3

Model Checking

Model checking [22, 69, 51, 9, 84] is a formal technique for verifying finite-
state systems with respect to their specifications. Specifications are expressed
in some temporal logic, while the system to be checked is looked at as a
semantic structure in such logic. The verification process is then carried out
by checking that the system induces indeed a model of the specifications, or by
producing a counter-example. In particular, in CTL and LTL model checking,
the finite-state systems are represented as Kripke structures and often comes
along with a set of initial states. Model checking can then be reformulated as
checking that each initial state satisfies the specifications. In the rest of the
chapter, we introduce the model checking algorithm for CTL and LTL.

3.1 CTL Model Checking

CTL model checking [22, 69] has been the first experience with this formal
verification technique. Let M = (S, R, L) be a Kripke structure and f be a
CTL formula. In order to check whether some designated initial states satisfy
f, we first compute the set of states that satisfy f and then check that the
initial states are there contained.

The algorithm is depicted in Figure 3.1 and works by labeling the states
of M with the set of f’s subformulas they satisfy. Being s a state, the above
labeling will be denoted as label(s). Subformulas are analyzed according to
an order making g; preceding g, whenever g; is a subformula of gs. As we
have seen before, we can restrict to formulas containing only the following
operators: -, V, EX, EG, and EU.

The basic case are propositions, which are solved by looking at M’s label-
ing, i.e., for each s € S we will have label(s) = L(s).

When dealing with formulas of the form g = —f;, we label with g those
states that are not labeled with f;. To handle formulas of the type g = f1V fa,

37
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procedure CHECK(f)
begin
case f of
proposition:
for each s € S such that f € L(s) do
label(s) = label(s) U{f}
~fi:
CHECK(f1)
for each s € S such that f; & label(s) do
label(s) = label(s) U{f}
f1V fa
CHECK(f1)
CHECK(f2)
for each s € S such that f; € label(s) or fs € label(s) do
label(s) = label(s) U {f}
EXf1:
CHECK(f1)
for each s € S such that 3s' € S, R(s,s'), and f; € label(s") do
label(s) = label(s) U{f}
E(f1Uf2):
CHECK(f1)
CHECK( f2)
CHECKEU(f1, f2)
EG(f1):
CHECK(f1)
CHECKEG(f1)
end
end

Figure 3.1: Procedure for CTL model checking. Before calling the procedure,
the label sets have to be assigned the empty set.
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procedure CHECKEU(f1, f2)
begin
T :={s: fa € label(s)}
for every s € T do label(s) := label(s) U{E(f1U f2)}
while 7' # () do
select s €T
T:=T\{s}
for every t such that R(¢,s) do

begin
if E(f1Uf2) & label(t) and f1 € label(t) then
begin
label(t) := label(t) U {E(f1Uf2)}
T:=TU{t}
end
end
end
end

Figure 3.2: Procedure for labeling the states satisfying E(f1U f2).

we label with g states that are labeled either with f; or with fa.

The case ¢ = EX f; is handled by labeling with g states that are connected
through R to some state labeled with f;.

For formulas of the form g = E(f,Ufy), we first label with g states that
are labeled with fo. Then we work backwards, labeling with g those states
that are labeled with f; and are connected through R to some state labeled
with g. The algorithm implementing this backward labeling is depicted in
Figure 3.2, and takes time O(|S| + |R|).

The case in which ¢ = EG f; is slightly more complicated. First, we restrict
our attention on the graph G = (S’, R') obtained by deleting from S the states
that are not labeled with f; and restricting R accordingly, i.e., R' = {(s1, s2) :
s1,82 € S" and R(s1,s2)}. Second, G is decomposed in nontrivial maximal
strongly connected components. A strongly connected component (SCC) C is
a subgraph such that each node in C can be reached from each other node
in C through paths entirely contained in C. C' is nontrivial if it contains at
least one edge. C' is mazimal if there does not exist a strictly larger SCC
C' containing C. All states belonging to some SCC are then labeled with g.
Finally, we work backward, as we have done for E(f;Uf3), and label with ¢
all the states in G from which some SCC can be reached. The algorithm for
labeling states with EG f; is depicted in Figure 3.3. This algorithm also takes
time O(|S|+ |R|) and, therefore, the overall complexity is O(|f]- (|S|+|R]|))-
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procedure CHECKEG(f1)
begin
S':={s€S: f1 €label(s)}
R :={(s1,s2) € R: 51,50 € 5"}
SCC :={C : C is a maximal non trivial SCC in (S’, R')}
T :=Ucescc{s:seC}
for every s € T do label(s) := label(s) U{EG f1}
while T' # () do
begin
T:=T\ {s}
for every ¢ such that t € ', R'(t,s), and EG(f) ¢ label(t) do
begin
label(t) = label(t) UEG fi
T:=TU{t}
end
end
end

Figure 3.3: Procedure for labeling states satisfying EG f;.

Figure 3.4: A Kripke structure.

As an example, consider to compute EGp in the Kripke structure shown
in Figure 3.4. After the first step, only the nodes already labeled with p are
kept. These nodes are shown in Figure 3.5. The next step is then to decompose
into maximal nontrivial SCCs the graph obtained in the previous step. The
only SCC is greyed in Figure 3.6. All these nodes have to be labeled with
EGp. Finally, we work backward to label with EGp all the nodes, actually
just one, from which the SCC is reachable. The result of this computation is
then depicted in Figure 3.7.
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Figure 3.5: Computing EGp, pruning nodes not satisfying p.

Figure 3.6: Computing EGp, decomposition in SCCs.

Figure 3.7: Computing EGp, backward traversal from the SCCs.



42 CHAPTER 3. MODEL CHECKING

3.1.1 Fair CTL Model Checking

In this section we show how the CTL model checking algorithm can be ex-
tended to deal with fair Kripke structures M = (S,R,L,F), where F =
{F1,...,F,}.

The key point of this extension is being able to deal with formulas of the
form EG f;, which is carried out through the procedure FAIRCHECKEG. The
algorithm resembles the one given for regular Kripke structures, from which
it differs only in the partitioning into SCCs, which are now are also required
to be fair. An SCC C is fair if, for each F; € F, we have that C N F; # 0. All
the states belonging to such SCCs are then labeled with EG f; and, finally, all
the states that are labeled with f; and from which there exists a path leading
to some fair maximal non trivial SCC are labeled with EG f;. The complexity
of the above step is O((|S| + |R|) - |F|), since it is necessary to check whether
the SCCs are fair or not.

Leaning on the above algorithm, one can handle the remaining cases. First
of all, the new proposition FEzistsFairPath is introduced and all the states
satisfying EG(TRUE) according to the fair semantics, that is, those from which
a fair path departs, are labeled with EzistsFairPath. Then, when dealing with
a proposition p, one has to label with p all the states s such that p € L(s)
and FEzistsFairPath € label(s). The cases for dealing with the propositional
operators — and V are the same as before. The remaining temporal operators
are computed as

e FAIRCHECKEX(f1) = CHECKEX(f1 A ExistsFairPath)
e FAIRCHECKEU(f;) = CHECKEU(f1, f2 A ExzistsFairPath)

All of the previous computations have complexity O((|S| + |R|) - |F|) and,
therefore, the overall complexity is O((|S] + |R]) - |F| - | f])-

3.2 LTL Model Checking

LTL model checking [51, 84] requires a completely different approach with
respect to the one we have just described for CTL. First, it requires the con-
struction of a graph, called the tableau, whose paths encode all the models of
the negation of the LTL specifications. The tableau and the Kripke structure
are then searched for compatible paths: finding one means that the Kripke
structure does not satisfy the specifications. In what follows, we describe two
instances of the above approach. In the first one, the tableau is exactly a
graph, while in the second one it is an automaton on infinite words.
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3.2.1 Graph-based LTL Model Checking

Let M = (S, R, L) be a Kripke structure and f be the LTL specifications, that
is, a restricted path formula. Unless otherwise stated, in this chapter we deal
with restricted path formulas built starting from atomic propositions and the
operators -, V, X, and U. Below we describe the approach considered in [55].

The definition of the tableau requires some background work. The closure
of a formula g, denoted as g, is the smallest set of formulas such that

e gcg.
e For every g; € g, then —¢g; € 7.
e For every g1 V ¢go € 7, then g1,g92 € 3.

e lor every g;Ug, € g, then g1, 92, X(91Ug2) € 7.

In the above, to keep the closure finite, we identify ——g; with ¢;. An atom
for ¢ is a subset A C g such that

e For every g1 €7, g1 € A iff ~g; € A.
e Forevery g1 Vg2 €7, g1 Vg2 € A iff either g € A or g5 € A.
e For every g1Ugy € G, g1 Ugy € A iff either g2 € A or ¢g1,X(91Ugz) € A.

The direct graph representing the tableau for a formula g is then constructed
as follows

e The nodes of the graph are the atoms of g.

e There is an edge from the atom A to the atom B iff for every Xg; €
we have that Xg; € A iff g, € B.

As an example, in Figure 3.8 the tableau for ¢ = pUygq is depicted. To sim-
plify the presentation only positive formulas, i.e., those not starting with —,
are mentioned in the states. The idea underlying such construction is that
infinite paths starting from some node s induce, by removing the nonpropo-
sitional formulas, models of the formulas contained in s. Unfortunately, the
construction achieves only part of this aim. In fact, the graph takes care of
local consistency, i.e., propositional and next state consistency, but has no
way of controlling the fulfillment of until formulas. This means that it can
be possible for some paths to have a node containing a until formula f;U fo
without any one of the subsequent nodes contain fo. We will see later how
this can be dealt with. A node is said to be fulfilling with respect to a until
formula f1Ufs € 7 if either f1U fo does not belong to the node or fo belongs to
it. A path is called fulfilling if, for every until formula f,Ufy € g, it contains
infinitely many nodes fulfilling f,U f2. Fulfilling paths do induce models.
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Figure 3.8: Graph-based tableau for ¢ = pUg.

Theorem 3.2.1 Let Ty be the tableau for the LTL formula f, and ™ = sgs1 ...
be a fulfilling path in it. Moreover, let ©' = rory ... be the restriction of © to
P, i.e., for every i >0, let r; = s; N P. Then 7' = sp.

Moreover, all the models are encoded through some fulfilling path.

Theorem 3.2.2 Let Ty be the tableau for the LTL formula f, and & |= f.
Then, in Ty, there exists a fulfilling path ™ = sgs1... such that f € so and £
15 the restriction of w to P.

Through the above construction, one can build the tableau for the negation
of the specifications. The next step is producing the behavior graph that
encodes the “wrong” paths, i.e., paths that are both in the Kripke structure
and in the tableau for the negation of the specifications. The behavior graph
is built as follows

e The nodes of the behavior graph are the pairs (s, A), where s € S and
A is an atom consistent with s, i.e., such that the ANP = L(s).

e There is a direct edge from (s, A) to (s', A") iff R(s,s") and there is an
edge connecting A to A'.
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54:/ \i 52
83
Figure 3.9: A system.

For example, let us consider the system shown in Figure 3.9, where s; is the
initial state. If one wants to verify this system with respect to the specifica-
tions —pV —gq, the behavior graph one obtains is the one shown in Figure 3.10,
combining the system with the tableau for pUq = —=(—pV—q) shown in Fig-
ure 3.8

Finally, according to Theorem 3.2.1 and Theorem 3.2.2, the behavior graph
has to be searched for infinite paths related to fulfilling paths in the tableau
and starting with a node (s, A) such that the negation of the specification —f
is in A. However, since the fulfillment of the until formulas is not guaranteed
by the tableau construction, this step is rather expensive for it involves com-
puting fulfilling maximal nontrivial SCCs. An SCC C of the behavior graph
is fulfilling if every fiUfo € —f is fulfilled by an atom A such that (s, A) € C
for some state s. Note that a fulfilling SCC, due to its connectivity and being
fulfilling, allows for extracting fulfilling paths by allowing for the fulfillment
of until formulas whenever this is required. This means that “wrong” paths
depart from states s such that there exists a node (s, A) with =f € A that
is connected to a fulfilling SCC. With respect to the example shown in Fig-
ure 3.10, a fulfilling SCC is {(s1, A7), (s2, As), (s3, A4), (54, Ag)}. Moreover, it
is reachable from (s;, A;) and g € A;. This means that the system does not
satisfy its specifications.

The algorithm we have just depicted has time complexity proportional to
(IS| + |R]) - 2°U/D, where the exponential factor is introduced by the tableau
construction for the specifications. In general, it can be shown that the LTL
model checking problem is PSPACE-complete [23]. Finally, it has to be men-
tioned that the above tableau construction is easy to present but immediately
realizes the worst case exponential complexity. However, more efficient incre-
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51 Ag

Figure 3.10: Behavior graph.
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mental algorithms are available [55, 25].

3.2.2 Automata-based LTL Model Checking

An alternative tableau construction has been given by Vardi and Wolper [84,
85] by exploiting the close relationship existing between linear temporal logic
and automata on infinite words [81]. In this approach, both the system and
the specification are turned into automata. The system automaton recognizes
all the executions of the system, while the specification one recognizes all the
models of the negation of the specifications. Verification then amounts to
check that the two automata do not recognize any common words.

The automata they use for representing the tableau are Biichi automata
[8]. A Biichi automaton is a tuple A = (X, S, Sy, p, F') where

e Y is the finite alphabet.

e S is a finite set of states.

e Sy C S is a set of initial states.

e §:5 x X — 25 is the transition function.
e ' C S is aset of accepting states.

An ezecution p of A on an infinite word w = aga; ... € ¥¥ is an infinite
sequence of states sgsi ... such that

e 55 €.5p.
e For all ¢ > 0, we have s;11 € 6(s;,a;).

An execution p is said to be accepting if it contains an accepting state
infinitely often. We say that a word w is accepted by A if there is an accepting
execution of A over w. The language of A, denoted by L(.A), is the set of the
words accepted by A.

A useful generalization of Biichi automata, which does not increase their
expressive power, is given by generalized Buchi automata, that is, Buchi au-
tomata with a, possibly empty, set of accepting sets F = {Fy,Fs,...,F,}. In
this case, an execution p = sgsi ... is accepting if it contains infinitely often
a state from each accepting set. As opposed to generalized Biichi automata,
those with one accepting states are now called simple Biichi automata.

Even though more effective constructions to turn LTL formulas into Biuchi
automata have been given [35, 25], a very simple way to present this translation
is to exploit the graph-based tableau construction depicted in the previous
section. Indeed, a generalized Biichi automaton A, recognizing all the models
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of the LTL formula g can be obtained by the graph-based tableau for g by
labeling the edges with the propositional information contained in the nodes
and by making the accepting states play the role of the fulfilling SCCs, in the
sense that fulfilling paths are now seen as accepting executions. Formally, we
have that

e The alphabet is 27
e The states of the automaton are the node of the graph.
e The initial states are those containing g.

e The transition function of the automaton corresponds to the edges of
the graph labeled with the propositional information contained in the
nodes edges depart from, i.e., (s, sNP) = {s’ such that there is an edge
connecting s to s'}.

e For each formula of the form f,Ufy occurring in g, an accepting set
Fp uy, of states containing either —(f1 U f2) or fo is defined.

As an example, in Figure 3.11 the automaton-based tableau for pUgq corre-
spondent to the graph-based tableau shown in Figure 3.8 is depicted. Initial
states are denoted through arrows that do not depart from any state, while
accepting states (we have only one accepting set) are denoted as double circles.

Once we build the automaton A-,; for the negation of the LTL specification
f, we also need to turn the Kripke structure M = (S, R, L) into a simple Biichi
automaton Ay = (X, Qur, Qaros 001, Far), whose language is the set of the
(labels of the) paths of M. This is done as follows:

e The alphabet ¥,/ is 27.

The set Qs of states is the set S of states of the Kripke structure.

The initial states Qprq are the whole set of states Q.

The transition function of the automaton is induced by the transition
relation of the Kripke structure, i.e., dp(s, L(s)) = {s' € S: R(s,s')}.

e There is one accepting set containing all the states, i.e., Fiy = Q.

In Figure 3.12 the automaton corresponding to the Kripke structure depicted
in Figure 3.9 is shown.

The next step is to compute the synchronous product A-y x Ay, that is,
the analogous of the behavior graph, in order to accept the intersection of the
related languages. Let us start by translating the generalized Biichi automaton
Aoy = (8o, Q-p, Q-pys 6-p, Frf = {Fy, ..., F_1}) into an equivalent simple
one AL, = (XL, QL ,ﬂfo’ Ly FLy). This is done as follows:
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Figure 3.11: Automata-based tableau for pUg.

Figure 3.12: A system automaton.
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The alphabet X ; is 27,

The set Q’jf of states is Q-y x {0,...,k —1}.

The set Q' of initial states is Qo x {0}.

e The transition function, for : =0,...,k — 1, is
! ((s,),0) = {(s', (i + 1)modk) : s' € 0-f(s,a)} if s € F;
AN {(s',9) : s € d¢(s,a)} if s ¢ F;

e The set F' of accepting states is Fy x {0}.

The tricky part is to ensure that every Fj is visited infinitely often. In order
to achieve this, k& copies of the automaton are considered. We move from the
copy i to the copy (74 1)modk when we hit a state s € F;. Otherwise, we keep
moving in the ith copy. In this way, visiting infinitely often Fjy x {0} amounts
to visiting infinitely often every Fj.

The synchronous product between A" 7 and Ajy is then defined as follows

e The alphabet is 27.
e The set of states is the product Q’ﬁf X @ of the two sets of states.

e The set of initial states is the product Q,ﬁfo X Qary of the two sets of
initial states.

e The transition function maps each ((s1,¢1),a) € (Q-f x Q) x 2% into
the set {(s2,g2) : s2 € 8" ;(s1,a) and g2 € dn(q1,0)}.

e The set of accepting states is induced by the accepting states of A’ Iz
and is defined as F’,; x Q.

In Figure 3.13, the automaton corresponding to the composition of the system
automaton of Figure 3.12 and the specification automaton of Figure 3.11 is
shown.

The last step is to check the emptiness of L(AL ; x Au): each word belong-
ing to the above language is indeed a witness of the violation of f by M. This
check can be carried out in time linear in the size of the product automaton
[24] by looking for some accepting state reachable from itself and from some
initial state.

Finally, let us note that rather than expressing the specifications as LTL
formulas, one can express them directly as Biichi automata. In this way, if
from one end one looses the simplicity and conciseness of LTL specifications,
from the other end one gains in expressive power. Indeed, for example, LTL
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Figure 3.13: Synchronous product.

Figure 3.14: Biichi automaton recognizing the set of sequences in which p
holds at the even places.
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has not counting capabilities: no LTL formula can express the set of sequences
in which the proposition p is true in every even state [80], while this set can
be simply described by the Biichi automaton shown in Figure 3.14. Note that
the upper arrow labeled with p denotes a set of transitions departing from s,
namely, those related to subsets of P containing p. In turn, the lower arrow
denotes all the transitions departing from ssg.



Chapter 4

Symbolic Model Checking

The algorithmic nature of model checking makes it fully automatic, convenient
to use and very attractive to practitioners. On the other hand, model checking
is very sensitive to the size of the system. This problem—known as state-space
explosion problem—is the major limitation of model checking. One of the
most important developments in this area is the discovery of symbolic model-
checking methods [60, 9]. In particular, the use of ordered binary decision
diagrams [6] for model representation has yielded model-checking tools that
can handle systems with 102" states and beyond [21]. In this chapter we start
by introducing the ordered binary decision diagrams and show how to exploit
them in order to devise symbolic model checking algorithms for both CTL and
LTL.

4.1 Ordered Binary Decision Diagrams

Ordered binary decision diagrams (OBDDs) are an economic and efficient way
of representing Boolean functions. Thus, through suitable encodings, OBDDs
can represent any sets by representing their characteristic functions. Unlike
other representations for Boolean functions, OBDDs have the advantage of a
canonical form, that is, two equivalent Boolean functions are represented by
the same OBDD. This canonical form can be obtained by imposing a total
order on the set of Boolean variables. This means that for checking whether
two Boolean functions are equivalent, or two sets are equal, we have to compute
the related OBDDs and check, in constant time, whether they are the same.
According to the same logic, we can check whether a formula is unsatisfiable
by computing its OBDD and comparing it with the OBDD for FALSE.
OBDDs are an evolution of ordered binary decision trees. An ordered
binary decision tree for a set of Boolean variables {vy,...,v,,} is a complete
labeled binary tree of height m + 1, where the root has height 1. Each nonleaf

93
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i

Figure 4.1: A binary decision tree.

node n of height 7 is labeled with v; and has two children, low(n) corresponding
to the case when v; is assigned to FALSE (often denoted as 0), and high(n)
corresponding to the case when v; is assigned to TRUE (often denoted as 1).
Each leaf node is labeled either with 0 or 1. In Figure 4.1, it is shown the
ordered binary decision tree for the function f(a,b,c,d) =a AbV ¢ Ad. The
left children are the low ones, while the right children are the high ones. Given
a truth assignment for {vy,...,v,}, one can compute the truth value of the
function represented by a binary decision tree by traversing it from the root
towards the leaves. At each nonleaf node n labeled with v;, one descends to
high(n) if v; is assigned to TRUE, or to low(n) otherwise.

Ordered binary decision trees are not a very concise representation for
Boolean functions. Indeed, they usually contain a lot of redundancy, i.e.,
distinct but isomorphic subtrees. Two subtrees are isomorphic is there exists
a bijective function h mapping nonleaf nodes into nonleaf nodes and leaf nodes
into leaf nodes such that for each node n of the tree, the label of n is the
same of the label of h(n) and, for nonleaf nodes, h(low(n)) = low((h(n)), and
h(high(n)) = high((h(n)). For example, in Figure 4.1, the nodes marked with
an asterisk are isomorphic. Thus, we can obtain a more concise representation
by merging together isomorphic subtrees. The result is not a tree anymore,
but a ordered binary decision graph. More precisely, a ordered binary decision
graph is a rooted labeled directed acyclic graph with two types of nodes,
terminal nodes and nonterminal nodes. As in the case of the binary decision
trees, each nonterminal node n labeled with the variable v; has two successors,
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Figure 4.2: A binary decision diagram.

1

namely low(n) and high(n), while each terminal node is labeled either with
TRUE or FALSE. Each node n in a binary decision diagram defines a Boolean
function fp,(v1,...,v,) as follows:

e If n is a terminal node:

— If n is labeled with TRUE, f,(v1,...,v,) = TRUE
— If n is labeled with FALSE, f,(v1,...,v,) = FALSE
e If n is a nonterminal node labeled with v;, we have f,(vi,...,v,) =

(_'Ui A flow(n) (U17 s ,’Un)) v (Ui A fhzgh(n) (Ulu s 7'Un))

In Figure 4.2 The binary decision diagram related to the binary decision tree
of Figure 4.1 is depicted.

Beside the redundancy introduced by isomorphic subtree, there is redun-
dancy introduced by redundant nodes, that is, those such that their low and
high nodes are identical. A redundant node n may be removed, and each arc
leading to it can be replaced by one leading to low(n)(= high(n)). This last
step leads to the OBDD shown in Figure 4.3.

To summarize, the canonical OBDD form is a labeled directed acyclic graph
that can be obtained from the ordered binary decision tree by the following
two steps:

e Merge isomorphic subtrees into a single subtree.

e Eliminate any nodes whose left and right children are isomorphic.
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()
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Figure 4.3: An ordered binary decision diagram.

Bryant [6] described an algorithm, called REDUCE, to compute the above steps
in a bottom up fashion in time linear with respect to the size of the initial
ordered binary decision tree.

Unfortunately, OBDDs are very sensitive to the variable ordering, which
is the key point to obtain the canonical form. For example, while the OBDD
in Figure 4.3 has 4 nonterminal nodes, by choosing the order a,c,b,d one
obtains the 7-nonterminal-node OBDD of Figure 4.4. Moreover, it can be
proved that some functions have exponential size OBDDs, no matter what the
variable ordering is. One classic example is the function encoding the integer
multiplication between two bit vectors [7].

Beside the reduction of an ordered binary decision tree, Bryant also de-
scribed an algorithm called APPLY that applies an arbitrary Boolean operation
f:{0,1}2 = {0, 1} to two OBDDs. The operation f can be any Boolean func-
tion of two variables.

The algorithm works by recursive descent on the two OBDDs and uses
an hash table to store the result returned for each pair of nodes, so that the
result for a given pair only has to be computed once. As a result, APPLY has
quadratic complexity. Moreover, note that the negation of an OBDD o can be
performed in linear complexity, being -0 = APPLY(XOR, 0,1).

To see how APPLY works when given a pair of nodes p and ¢, let us break
the problem of computing f(p, q) into cases. First, if both p and ¢ are termi-
nals, then we simply return f(p, q).

If p and g are not terminal and are labeled with the same variable v;,
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Figure 4.4: Changing the variable ordering.

then we call APPLY recursively to compute " = f(low(p), low(q)) and h' =
f (high(p), high(q)). If I' = h' then we return I’, otherwise we return a node n
labeled with v; such that low(n) =1’ and high(n) = h'.

If p and ¢ are not terminal and are labeled with different variables v; and
v; we have two symmetric cases. Let us consider that v; < v;. Then ¢ does
not depend on v; and it can be shown that f(p,q) correspond to a node n
labeled with v; such that low(n) = f(low(p),q) and high(n) = f(high(n),q).

Bryant also gave the algorithm COMPOSE that can be used for composing
two Boolean functions p : {0,1}" — {0,1} and ¢ : {0,1}" — {0,1}". Since
Juv.p = p(FALSE) V p(TRUE), the function COMPOSE could be easily adapted
in order to compute 30.p, for a vector ¥/ of Boolean variables. Therefore, the
CoMPOSE algorithm could be used to symbolically evaluate EXg as 37.R A g,
where R is the Boolean function representing the transition relation and g
is the function representing the states labeled with g. However, since the
performances of the model checker heavily rely on computing EXg, the ad
hoc function ANDEXIST has been developed.

The ANDEXISTS function takes in input a vector ¥ of Boolean variables
and two OBDDs p and ¢, and computes d9.p A g. It is basically a modification
of the ApPLY function, where f(p,q) = p A ¢. Indeed, rather that computing
the entire OBDD for pAgq before applying the existential quantifier, one applies
the existential quantifier to the partial results. More in detail, before we return
a result, say r = (v,[, h), we test the variable v to see if it occurs in the vector
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o. If it does, we call APPLY to compute [ V h, which is exactly Jv. f,.

4.2 Symbolic Kripke structures

In this section, we show how Kripke structures can be thought of as Boolean
functions, that is symbolically, and therefore efficiently represented and han-
dled through OBDDS.

The first step is the representation of a finite set D of cardinality |D| < 2".
By using a suitable encoding v : {0,1}" — D, D can be represented through
its characteristic function over the Boolean variables {v; ...,v,} as

fD(Ul,...,Un) iﬂ‘Q/J(Ul,...,Un) eD

For example, assuming the encoding #(0,0) = a, 1(0,1) = b, ¥(1,0) = ¢,
¥(1,1) = d, the subset {a,b,d} of {a,b,c,d} can be represented as the function
) A U1 V ) /\’Ul /\’Uo /\’Ul.

A relation R on the domains Dy,..., D, can be similarly represented as

fr(U1; .. O) E R(4h1(T1), - 9o (Tn))

where the 1;’s are the encodings of the domains D;’s. For example, the relation
(a + 1) =4 b between 2-bit numbers, that is, {(0,1),(1,2),(2,3),(3,0)}, can
be encoded as {(00,01), (01, 10), (10,11), (11,00)} by exploiting the previous
encoding. Therefore, it can be represented through a function of the variables
{vo, v1,v2,v3} as —wg A =y A =g Az V =g Avp Ave A =gV og A o Avg A
v3 Vug A vy A —vg A\ —v3.

Because of this strong relationship among sets, relations, Boolean func-
tions, and OBDDs, we often use the same name for denoting the different
objects belonging to the above classes. That is, as the context requires, the
set A becomes an OBDD, a relation, or a Boolean function.

Consider now the fair Kripke structure M = (S, R, L, F = {Fy,..., F,}).
To represent this structure, we have to describe the set S, the relation R,
the labeling L, and the fair sets Fi,...,F,. For the sets S and Fy,..., Fy,,
assuming they contain at most 2" elements, we consider a Boolean encoding
s : {0,1}" — S and represent them through their characteristic functions.
For the relation R, we use the same encoding twice, once for the current
state and one for next state. It is customary to denote the variables encoding
the next states as primed version of the ones used for the current state, i.e.,
representing R as fr(¥,7"), which holds if and only if R(1(7),1(7")) does.
Finally, the labeling L maps each state into the propositions true that hold in
that state. A representation that better fits the approach already described
consists in representing L by representing, for each proposition p, the set of
states L, in which p holds. Again, each L, is represented by using the same
encoding used for representing the set of states.
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4.3 Fix point characterization of CTL operators

Let M = (S, R, L) be a finite Kripke structure and let us consider the complete
lattice (PowerSet(S), C) obtained by partially ordering through the inclusion
the set of the subsets of S. The least element of such power set is the empty
set, while the greatest element of such power set is S. A functional F in
(PowerSet(S), C) is a function from PowerSet(S) to PowerSet(S). F is called
monotonic if it is order preserving, that is, if A C B implies F(A) C F(B),
for each A, B C S. So, for example, for A C S, F(X) = X N A is monotonic,
since X C X' implies X N A C X' N A. On the other hand, for ) # A C S,
F(X) = A\ X is not monotonic, since for example, ) C A does not imply
F(@) = A Ch=F(A). A functional F is union-continuous when for any
non-decreasing infinite sequence of S’s subsets A; C Ay C ..., we have that
UiF(A;) = F(U;A;). In turn, a functional F is intersection-continuous when
for any non-increasing infinite sequence of S’s subsets A; O A, D ..., we have
that N;F(A;) = F(N;A;). Note that if F is union or intersection continuous it
is also monotonic. A fized point of F is any A C S such that F(A) = A. For
example, A is a fixed point of F(X) = XN A, since F(A) = ANA = A. Tarski
[79] showed that monotonic functionals on complete lattices have a least fixed
point uF defined as

pF =Nx.rx)=xX
and a greatest fixed point vF defined as

vF =Ux.rx)=xX

Moreover, if the functional is union-continuous its least fix point can be char-
acterized as .
pF = U FH(0)

where F? means iterating F i times, that is, F1(X) = F(X) and F"T(X) =
F(F™(X)). On the other hand, if the functional is intersection-continuous its
greatest fix point can be characterized as

vF =N F(S)

We note that if the set S if finite, then any monotonic functional F is also
union- and intersection-continuous. This is because any infinite sequence of
S’s subsets A; C Ay C ... has eventually to stabilize with an element A,,,
possibly the whole S, such that A,, = U;A; while, in turn, any infinite sequence
of S’s subsets A1 D Ay D ... has eventually to stabilize with an element A,,,
possibly the empty set, such that A,, = N;A4;.

Now let us identify every CTL formula f with the set {s : s = f} of
states in which the formula holds. We note that EFp is logically equivalent
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to p V EXEFp. That is, EFp holds in the current state s when p is true in s
or EFp is true in some successor of s. Two logically equivalent formulas are
satisfied by the same set of states. Thus, EFp = p V EXEFp. This makes
EFp a fixed point of the functional F(Z) = pV EXEF(Z). This functional is
monotonic, since if Z C Z’ and there exists a path from a state s to a state
satisfying Z then there is also a path form s to a state satisfying Z’. Thus, the
functional F has a least fixed point that it can be shown being exactly EFp.
Clarke and Emerson [20] showed that similar fixed point characterizations can
be obtained for the other CTL operators:

e EFp = pu(\Z.pV EX(Z))
e EGp =v(\Z.p ANEX(Z))

e E(pUq) = pu(AZ.qV (p NEX(Z)))

AFp = p(AZ.(p v AX(Z)))

AGp =v(\Z.(p N AX(Z)))

e A(pUq) = n(AZ.(q Vv (p AN AX(Z))))
Since we deal with finite Kripke structures, each of the above fixed points can
be characterized as the limit of a series obtained by iterating the corresponding
functionals, that is

e EFp = U;(A.(p vV EX(2)))'(0)

e EGp = N;(A.(p AEX(2)))'(S)

e E(pUq) = Ui(\Z.(qV (» NEX(2))))*(0)

e AFp=U(\Z.(pV AX(2)))'(0)

e AGp = i(AZ.(p A AX(2)))V(S)

o A(pUq) = Ui(A\Z.(qV (p N AX(Z))))"(0)
Indeed, being S finite, we have that eventually, at most when reaching the
whole set S for least fix points or when reaching the empty set for greatest
fix points, the above sequences stabilized on the fix points. Thus, the above

characterizations give us an effective procedure for computing the basic CTL
operators.
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4.4 CTL symbolic Model checking

In this section, we show how the fix point characterization of the CTL oper-
ators given in Section 4.3 can be exploited in order to define a CTL model
checking algorithm implementable through OBDDS. OBDDs will be used to
represent the set of states in which a CTL formula holds, while the required
computations are carried out through the standard OBDD operations. The
function SYMBOLICCHECK, which is depicted in Figure 4.5, when given a CTL
formula f returns the set of states where f holds, and is defined on the struc-
ture of f.

When f is an atomic proposition, SYMBOLICCHECK(f) simply returns the
OBDD for f, while the V and — connective are implemented through the
ArpLY function.

If fis EXf1, SYMBOLICCHECK returns the OBDD for 33".(R(7, ')A f1(7"))
that can be efficiently computed through the function ANDEXIST and CoM-
POSE. This latter one is used for renaming the variables of f; from the current
state variable ¥ into the next state variable ¥/

Finally, if f is E(f1Uf2) or EG f1, SYMBOLICCHECK exploits the fix point
characterizations of Section 4.3. Indeed, least fix points can be computed
through the function shown in Figure 4.6. The function GFP for computing
greatest fix points is obtained from the above by replacing the initialization of
A with Z := S. Such functions can be implemented through OBDDs. Indeed,
both the sets Z and Z’ can be represented as OBDDs and the transformations
induced by the functional F can be realized through the standard OBDD
operations by means of the APPLY, ANDEXIST, or COMPOSE functions.

As an example, let us compute AFp in the Kripke structure shown in
Figure 4.7. The labels of a node define the propositions holding in that node.
Note that, having the Kripke structure 5 states, the functions for computing
least and greatest fix points iterate at most 6 times. The situation after the
first iteration, that is, F'(#) = p V AX() = p, is depicted in Figure 4.8. The
situation after the second iteration, that is, F2(()) = p V AXp, is depicted in
Figure 4.9. This is the fix point, since performing another iteration does not
result in adding any new states.

As another example, consider the computation of EGp over the Kripke
structure shown in Figure 4.10. The situation after the first iteration, that
is, F1(S) = p AEX(S) = p, is depicted in Figure 4.11. The situation after
the second iteration, that is, F2(S) = p A EXp, is depicted in Figure 4.12.
The situation after the third iteration, that is, 73(S) = p A EX(p A EXp),
is depicted in Figure 4.13. This is also the fix point, since the next iteration
does not remove any further states.
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function SYMBOLICCHECK(f)
begin
case f of
proposition:
return the OBDD for L; of the states satisfying f
~fu:
return —(SYMBOLICCHECK(f1))
fiV fe
return SYMBOLICCHECK(f1) V SYMBOLICCHECK( f2)
EXf1:
return SYMBOLICCHECKEX(SYMBOLICCHECK( f1))
E(f1Uf2):
return SYMBOLICCHECKEU(SYMBOLICCHECK( f1),
SYMBOLICCHECK( f2))
EG(f1):
return SYMBOLICCHECKEG(SYMBOLICCHECK( f1))
end
end

function SYMBOLICCHECKEX(f1)
begin
return 37 .(R(7,7") A (f1(V")))
end

function SYMBOLICCHECKEU( f1, f2)
begin
return LFP(AZ.fy V (SYMBOLICCHECKEX(Z) A f1))
end

function SYMBOLICCHECKEG( f1)
begin
return GFP(AZ.f; A SYMBOLICCHECKEX(Z))
end

Figure 4.5: Function for CTL symbolic model checking.
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function LFP(F)
let Z:=10
do
let 72/ .= 7
let Z := F(Z)
until Z = 7'
return 7
end

Figure 4.6: Algorithm for computing the least fix point of a monotonic func-
tional F.

X

Figure 4.7: A Kripke structure.

S

Figure 4.8: Computing AFp, first iteration.
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e

Figure 4.9: Computing AFp, second iteration and fix point.
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Figure 4.10: A Kripke structure.
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Figure 4.11: Computing EGp, first iteration.

e ¥ »-e

Figure 4.12: Computing EGp, second iteration.
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Figure 4.13: Computing EGp, third iteration and fix point.
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4.4.1 Symbolic Fair CTL Model Checking

In this section, we show how to extend the algorithm we have given in the
previous section, in order to take into account fairness F' = {F},..., F,,}. The
way we extend the algorithm is the same of the explicit state case, since we
start by redefining the computation of EG f along fair paths and exploit such
computation for defining the remaining ones. However, the way in which EG f
is computed is different, in order to make it possible through the standard
OBDD operations.

EGf is fairly satisfied along a path if f invariantly holds in such a path
and, for each F; € F there exists s; € F; holding infinitely often along the
path. It can be shown that the set of the states in which EGf holds is the
largest set Z such that

e BEach state in Z satisfies f.

e For each state s in Z and fair set F; € F', there exists a path in Z of
positive length from s to some state in Z satisfying Fj.

Intuitively, from each state contained in such set, it is possible to reach, going
through states satisfying f, another state in which F; holds. Since this latter
state belongs to the set, the reasoning can be iterated reaching all the F;
always satisfying f. Moreover, since the state satisfying F), is in the set, there
is a path satisfying f from this state back to a state satisfying F}. Therefore,
an infinite path always satisfying f and going infinitely often through every
F; can be constructed. Formally, EGf can expressed as

EGf=v(A\Z.f A |\ EX(E(fU(ZAEF))))
F;eF

and, therefore, can be computed through standard symbolic techniques. More
in detail, let fair; be the OBDD for F;, we have

SYMBOLICFAIRCHECK(EG f) =
SYMBOLICFAIRCHECKE U (SYMBOLICFAIRCHECK( f))

where

SYMBOLICFAIRCHECK(f1) =
GFP(AZ.f1A .
Ni=1,..n SYMBOLICCHECKE X (SYMBOLICCHECKEU( f1, Z A fair;)))

Similarly to the explicit state algorithm discussed in Section 3.1.1, the
other cases are dealt with by relying on the set FEuzistsFairPath of states
from which a fair path departs. This set is computed as EzistsFairPath =
SYMBOLICFAIRCHECKEU(S). The function SYMBOLICFAIRCHECK is depicted
in Figure 4.14.
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function SYMBOLICFAIRCHECK(f)
begin
case [ of
proposition:
return the conjunction of EzistsFairPath with the OBDD for Ly
~fi:
return —(SYMBOLICFAIRCHECK(f1))
fiV fa
return SYMBOLICFAIRCHECK(f1) V SYMBOLICFAIRCHECK( f2)
EXf1:
return SYMBOLICCHECKEX(SYMBOLICFAIRCHECK( f1)
A EzistsFairPath)
E(f1Uf2):
return SYMBOLICCHECKEU(SYMBOLICFAIRCHECK(f1),
SYMBOLICFAIRCHECK( f2)
A EzistsFairPath)
EG(f1):
return SYMBOLICFAIRCHECKEG (SYMBOLICFAIRCHECK( f1))
end
end

function SYMBOLICFAIRCHECKEG( f1)
begin
return GFP(AZ.f1 A
Ai=1,. n SYMBOLICCHECKEX (SYMBOLICCHECKEU(f1, Z A fair;)))
end

Figure 4.14: Function for fair CTL symbolic model checking.
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4.5 LTL symbolic model checking

In this section we show how the fair CTL model checking procedure can be
extended in order to deal with LTL specifications. The basic idea is to sym-
bolically encode the graph-based approach to LTL model checking through
fair CTL model checking. This is carried out by looking at the behavior graph
as a symbolic Kripke structure and by exploiting fairness in order to detect
fulfilling paths.

Let us start by symbolically encoding the tableau for the negation —f of
the specification. To this end, recall that the nodes of the tableau are atoms
built on the closure —f, that is, subsets A of =f such that

e For every g1 € -f, g1 € Aiff =g; € A
e For every g1 Vg2 € —~f, g1 V go € A iff either gy € Aor go € A
e For every g1 Ugs € —f, g1Ugy € A iff either g» € A or g1, X (91 Ugs) € A

The nodes of the tableau can then be symbolically represented by setting a
suitable ordering f1, f2,..., fn among the formulas in —f, by introducing the
set Ny ={V, : g € =f} of variables, and by defining

TableauNode(Vy,, ..., Vy,) =
(Av_geny V-g < 2Vg)
A (AVglvg2eNT Vglvgz A Vgl \% ng)
A (/\V91U92 ENT Vglng A VgQ \% (Vgl A X(Vglng)))

Therefore, the edges of the tableau can be symbolically represented as

TableauEdge(Vy,, ..., Vy,, Vf'l, .. ,V;n) —
TableauNode(Vy,, ..., Vy,)
ATableauNode(V} ,...,V} )

ANAvxs eng Vi € Vi,

Let now {wy,...,wy,} be the set of new variables required to symbolically
represent the Kripke structure M = (S, R, L), let ¢ : {wy,...,wy,} — S be
the Boolean encoding of the states of M, and let State, TransitionRelation,
and Labeling be the symbolic representations of the states, of the transition
relation, and of the labeling of M, respectively. More in detail, let Labeling be
a vector of Boolean functions, one for every atomic propositions p, such that
Labeling, (w1, . . . ,wp,) holds if and only if p € L(p(wi, ..., wny)).

The behavior graph can then be looked at as the fair Kripke structure
B = (Sp,Rp, Lp, F), which can be symbolically represented starting from
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the variables wy, ..., wp, Vy,...,Vy, as follows. The set Sp of states is sym-
bolically represented as

BehaviorState(wi, . .., wm, V..., Vy,) =

State(wy, ..., wp,)
A TableauNode(Vy,,. .., Vy,)
A Npep Labeling, (w1, ..., wy) <V,

The relation Rp is symbolically represented as

BehaviorRelation(wy, . .., Wi, Vi, oo, Vi, why ooy wpg, Vi Vi ) =
BehaviorState(w:, . . ., W, Vi, ..., V)
A BehaviorState(wt, ..., wp,, Vi, ..., V} )
A TransitionRelation(wy, ..., Wy, w}, ..., w!

m)
A TableauEdge(Vy,, ..., V5, V]{I, el V]{n)
The labeling Lp is represented, for each p € P, as

BehaviorLabeling, (w1, . . ., wm, Vi, ..., Vy,) =
BehaviorState(wy, . .., wm, Vi, ..., Vi, ) AV,

Finally, for each g;Ugy € —f, a fairness set Fy,uy, is defined and represented

as
BehaviorFairnessg, ug, (Wi, .., W, Vi,.. ., Vi) =

BehaviorState(wn, . .., wm, Vi, ..., Vi) A (Vg ug, V Vi)

A “wrong” path then exists if the following conditions holds:
e The path starts from a state in which V_,; holds.
e The path goes through each fair set infinitely often.

and, therefore, can be encoded by means of the CTL formula
V. N EG(TRUE)

that has to be evaluated according to the fair CTL semantics.



Chapter 5

Planning as Model Checking

Planning as model checking [15, 37, 19, 2, 18, 26, 16, 27] is a new planning
paradigm that seems to be very promising in order to produce automatic good-
performance planners for nonclassical planning. The main idea underlying this
paradigm is that, as in model checking, planning problems are faced model-
theoretically. That is, planning domains are formalized as semantic models,
properties of planning domains are described through temporal formulas, and
planning is carried out by verifying whether semantic models satisfy temporal
formulas. Looking at planning from this perspective introduces many new
important features:

e The approach is well-founded: Planning problems are given a clear and
intuitive formalization in temporal logic.

e The approach is general: The same framework can be used to naturally
tackle many different aspects of planning, e.g., many initial states, partial
observability, nondeterministic domains, and extended goals, that is, not
only goals of attainment.

e The approach is practical: By exploiting the large amount of techniques
developed in the field of model checking, it is possible to devise efficient
algorithms that generate plans automatically and that can deal with
large size problems.

In this chapter, we describe two different approaches to planning as model
checking, one based on symbolic techniques and another relying on automata
on infinite words.

5.1 Symbolic Approach to Planning

Cimatti et al. introduced in [15] the idea to use symbolic model checking tech-
niques for facing planning problems. Such idea has since then been extended

69
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for dealing with nondeterministic domains in several ways. More in detail,
[15] proposes an algorithm for generating weak plans, that is, plans that may
achieve the goal but are not guaranteed to do so; [19] proposes an algorithm to
generate strong plans, that is, plans that are guaranteed to achieve a desired
goal in spite of nondeterminism; and [18, 26] extends [19] to generate strong
cyclic plans, whose aim is to encode iterative trial-and-error strategies like
“pick-up the block until succeed”, as described in Section 1.4. Finally, [16]
shows how to perform conformant planning symbolically.

In this section, we provide a formal definition of weak, strong, and strong
cyclic plans based on the branching time temporal logic CTL and present the
related planning algorithms. The formalization is obtained by exploiting the
universal and existential path quantifiers of CTL, as well as the “always” and
“eventually” temporal connectives. Indeed, the idea is that a weak plan is such
that there exists an execution that eventually achieves the goal, a strong plan
is such that all the executions eventually achieve the goal, and a strong cyclic
plan is such that for each possible execution, always during the execution,
there exists the possibility of eventually achieving the goal.

5.1.1 Planning Problems

In this framework a nondeterministic planning domain can be described in
terms of fluents, which may assume different values in different states, actions
and a transition function describing how (the execution of) an action leads
from one state to possibly many different states.

Definition 5.1.1 (Planning Domain) A planning domain D is a j-tuple
(F,S, A, R) where F is the finite set of fluents, S C 2" is the set of states, A
is the finite set of actions, and R : S x A~ 2° is the transition function.

Fluents belonging (not belonging) to some state s are assigned to TRUE (FALSE)
in s. Our definitions deal with Boolean fluents while examples are easier to
describe through fluents ranging over generic finite domains. For non-Boolean
variables, we use a Boolean encoding similarly to [32]. R(s,a) returns all
the states the execution of a from s can lead to. The action a is said to be
ezecutable in the state s if R(s,a) # 0.

A nondeterministic planning problem is a planning domain, a set of initial
states and a set of goal states.

Definition 5.1.2 (Planning Problem) A planning problem P is a 3-tuple
(D, I,G) where D is the planning domain, I C S is the set of initial states
and G C S is the set of goal states.
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Cy: on-T Cp: on-K-ok
Co: on-K-ok Co: on-T

S on
Ca switch-pn |switch-off
- move (Co,T)
C1: onT
Co: on-ipq
St off

C1
switch-on
C1: on-K-ok

Cp: on-T
g off

Figure 5.1: An example (left) and its formalization (right).

Both I and G can be represented through two Boolean functions Z and G over
F', which define the sets of states in which they hold. From now on, we switch
between the two representations, as sets or functions, as the context requires.

Nondeterminism occurs twice in the above definitions. First, we have a
set of initial states, and not a single initial state. Second, the execution of an
action from a state is a set of states, and not a single state.

As an explanatory example, let us consider the situation depicted in Fig-
ure 5.1 (left). A tray (T) provides two positions in which two containers (C;
and Cg) for solutions may be hosted. In addition, a kettle (K) may host one
container for boiling its solution. The kettle is provided with a switch (S)
that can operate only if the container is well positioned on the kettle. This
situation can be formalized as shown in Figure 5.1 (right). The set F of
(non-Boolean) fluents is {C1,Cs,S}. C; and Cy represent the positions of the
containers, and can be on-T (on tray), on-K-ok (on kettle, steady), or on-K-ko
(on kettle, not steady). S represents the status of the kettle’s switch (on or
off). The set of states is represented by the nodes of the graph, which define
fluents’ values. The set of actions is represented by the edges’ labels. The
actions move (Cy,T), move(Csy,T), switch-on, and switch-off, are determin-
istic; while move(C;,K), move(Cy,K), and fix-position, are not. Indeed,
when moving containers from the tray to the kettle, it can happen the con-
tainers are not correctly positioned. Moreover, it can be possible the wrong
container is picked up and moved upon the kettle. Thus, R(S4,move(C1,K)) =
R(S4,move(Cy,K)) = {S2, 53, S6,57}. Still, when trying to settle a container,
it is possible getting no effect. Thus, R(Ss3,fix-position) = {S2,S3} and
R(S7,fix-position) = {Ss, S7}. The planning problem is to boil the solu-
tion contained in C; starting from a situation where C; is on the tray and
the kettle’s switch is off, that is, Z is C; = on-T A S = off (grey nodes, in
Figure 5.1), and G is C; = on-K-0k A S = on (black node, in Figure 5.1).
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‘ State ‘ Action ‘
S switch-off
S3 | fix-position
Sy move (Cy,T)

Sy | move(Cq,K)

Sy move (Cy,K)

S7 | fix-position
Se switch-on

Figure 5.2: A state-action table.

5.1.2 Plans as State-Action Tables

When dealing with nondeterminism, plans have to be able to represent con-
ditional and iterative behaviors. In this framework plans are defined as state-
action tables (resembling universal plans [73]) that associate actions to states.
The execution of a state-action table can result in conditional and iterative
behaviors. Intuitively, a state-action table execution can be explained in terms
of a reactive loop that senses the state of the world and chooses one among
the corresponding actions, if any, for the execution until the goal is reached.
Therefore, a state-action table results in a memoryless plan.

Definition 5.1.3 (State-Action Table) A state-action table SA for a plan-
ning problem P is a set of pairs {(s,a) : s € S\ G, a € A, and a is executable
in s}

The states of a state-action table may be any state, except for those in the
set of goal states. Intuitively, this corresponds to the fact that when the plan
achieves the goal no further action needs to be executed. Hereafter, we write
STATES(SA) for denoting the set of states in the state-action table SA, i.e.,
STATES(SA)= {s : Ja € A such that (s,a) € SA}, and CLOSURE(SA) to
denote the states that are not in the SA but that are reachable by executing
pairs in SA or are goal states, i.e., CLOSURE(SA) = {s & STATES(SA) :
(s',a'y € SA,s € R(s',a')} UG. The following particular case occurs when
CLOSURE(SA) = G.

Definition 5.1.4 (Total State-Action Table) A state-action table SA for
a planning problem P is total if, for all (s,a) € SA, R(s,a) C STATES(SA)UG.

Intuitively, in a total state-action table, each state that can be reached by
executing an action either is a goal state or has a corresponding action in
the state-action table. The notion of total state-action table is important in
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order to capture strong (cyclic) plans, i.e., plans that must be specified for all
possible outcomes of actions. In Figure 5.2, a total state-action table related
to our example is shown.

Given a notion of plan as a state-action table, weak, strong, and strong
cyclic plans can be formalized in terms of CTL specifications on the possible
executions of state-action tables. A preliminary step is to formalize the notion
of execution of a state-action table

Definition 5.1.5 (Execution) Let SA be a state-action table for the plan-
ning problem P. An execution of SA starting from the state sy € STATES(SA)
U CLOSURE(SA) is an infinite sequence sgsy ... of states in S such that, for
all i > 0, either s; € CLOSURE(SA) and s; = sij+1, or s; € CLOSURE(SA)
and, for some a € A, (sj,a) € SA and sj11 € R(s;,a).

Executions are infinite sequences of states. Depending on nondeterminism, we
may have many possible executions corresponding to a state-action table. Each
nongoal state s; has as successor a state s;41 reachable from s; by executing an
action corresponding to s; in the state-action table; when the sequence reaches
a goal state, the execution is extended with an infinite sequence of the same
goal state. Of course, nontotal state-action tables may induce also executions
dangling at nongoal states, i.e., executions reaching a nongoal state for which
no action is provided.

The executions of a state-action table SA for the planning problem P can
be encoded as paths of the Kripke structure KgA induced by SA.

Definition 5.1.6 (Induced Kripke Structure) Let SA be a state-action
table for the planning problem P. The Kripke structure KgA induced by SA
15 defined as

o WL, = STATES(SA) U CLOSURE(SA);

o T (s,5") iff s € CLOSURE(SA) and s = s', or (s,a) € SA and s' €
R(S7a);

o Lia(s)=s.

Note that having introduced the closure guarantees the totality of the induced
Kripke structure.

5.1.3 Weak Planning

Weak plans are such that, for all the initial states, there ewists at least one
execution that eventually achieves the goal. Formally, we have the following
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function WEAKPLAN(P)

WP:= 0; OldWP:=1

while (I € STATES(WP) U G and OldWP#WP) do
OldwWP.=WP
WP:=WPU WEAKPREIMAGE(P, WP)

endwhile

if (I C StaTES(WP)UG)
then return WP
else return Fail

© XN W

Figure 5.3: An algorithm for weak planning.

Definition 5.1.7 (Weak Plan) A weak plan for a planning problem P is a
state-action table SA for P such that T C WéDA and, for all s € I, we have
KL, s = EFgG.

In Figure 5.3 a simple regressive algorithm for computing weak plans is
shown. The idea underlying this and the following algorithmns is that sets of
states (instead of single states) are manipulated during the search. This allows
the algorithm to be efficiently implemented through OBDDs and, therefore,
to target domains involving large state spaces as shown by the experimental
results in [18].

The algorithm starts with the empty state-action table in WP (line 2)
and works backward gathering in WP state-action pairs whose execution may
lead to G (lines 3-6). This is realized through the function WEAKPREIM-
AGE (line 5) that, given a planning problem P and a state-action table WP,
returns the pairs that are related to states that are neither in WP nor in
G and through which states of WP or G can be reached in one step. For-
mally, WEAKPREIMAGE(P, WP) = {(s,a) : s € S,a € A,s ¢ STATES(WP) U
G, and R(s,a) N (STATES(WP) U G) # 0}. The algorithm keeps expanding
WP until either it contains I \ G or it can not be expanded anymore (line 3).
In the former case, the algorithm returns WP (line 8), while in the latter one
it returns failure (line 9).

For example, Figure 5.3 is a weak plan for the planning problem shown
in Figure 5.1. After one iteration of the while statement at line 3, the last
row of the table is gathered, while after two iterations the last four rows are
collected. After another iteration, the third row is introduced in the table.
Note that, due to the definition of WEAKPREIMAGE, in this iteration the pair
(sg,move (C1,T)) is not inserted in the state-action table, since it is related to
a state that has already been inserted. Finally, after four iterations, the first
two rows are collected. The algorithm then stops since all the initial states
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have been gathered.
The above algorithm always terminates, is correct and complete.

Theorem 5.1.1 Let P be a planning problem, then
1. WEAKPLAN(P) terminates.
2. WEAKPLAN(P) returns a weak plan for P if and only if one exists.

Proof: (1) The termination follows from the fact that the while statement
at line 3 implements a monotonic functional over a finite domain. Indeed, it
keeps adding state-action pairs to WP and therefore it eventually terminates,
possibly when all the pairs have been introduced.

(2) (only if) By definition of induced Kripke structure, we have that the
goal states satisfy EFG. Thus, let us focus on nongoal states. By induc-
tion on the number n of iterations of the while statement at line 3, and
denoting as WP, the state-action table WP after the nth iteration, let us
prove that KI;VP ,s = EF(G), for all s € STATES(WP,). If n = 0, then
STATES( WPy) = § and the claim trivially holds. If n > 0, either no pairs have
been added, and we conclude by inductive hypothesis, or WP, is obtained
from WP, _; by adding some pairs for which at least one of their outcomes
is in STATES(WP,,_1). We conclude by definition of K %/P and by inductive
hypothesis. "

(if) Let us suppose that a weak plan WP for P exists. Then, in K%ﬁ?’

each initial state s is either a goal state or is connected to a goal state through
some minimal length path sj...sp41, where s = s1, $1,...,8, € G, and
Sp+1 € G. By definition of K’i?, the path sy...s,41 corresponds to some

state-action pairs (s1,a1),...,{Sn,ay) such that, for ¢ = 1,2,...,n, we have
Si+1 € R(Si,ai).

Let us now show that after k iterations of the while statement at line 3,
k=1,...,n, we have that s,_r+1 € STATES( WPy) and that all the states in
WPy, are connected to G in K IEVP;C through a path of length k. If £ = 1 then
WEAKPREIMAGE introduces the pair (s,,a,) in WP;. If k > 1, let us note
that s —k+1 cannot belong to WPj,_; since otherwise the inductive hypothesis
would contrast the choice of minimal length path. By inductive hypothesis
Sn—(k—1)+1 € STATES(WPj_1) and therefore the pair (s,_j41,a5—k+1) s in-
serted in WPy. Since WP,y C WPy, s,_(r_1)41 is connected to G by a path
of length £ — 1 in K%/Pk too. Being sy, 41 connected to s, _(x_1)41, we have

that s,_g41 is connected to G by a path of length £ in KIEVPk'
Since for each ¢ we have that WP; C WP; 14, all the states of WP are

eventually gathered in some WP; and, therefore, the algorithm terminates
with success.
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function STRONGPLAN(P)
SP:= (); OldSP:=1
while (I € STATES(SP) UG and OldSP#SP) do
OldSP:=SP
SP:=SP U STRONGPREIMAGE(P,SP)
endwhile
if (I C StATES(SP) U G)
then return SP
else return Fail

© XN W

Figure 5.4: An algorithm for strong planning.

5.1.4 Strong Planning

Strong plans are such that all executions eventually achieve the goal. Formally,
we have the following

Definition 5.1.8 (Strong Plan) A strong plan for a planning problem P is
a total state-action table SA for P such that T C WSI?A and, for all s € Z, we
have KgA,s = AFG.

In Figure 5.4 a simple regressive algorithm for computing strong plans is
shown. Again, sets of states (rather than single states) are manipulated dur-
ing the search, allowing the algorithm to be efficiently implemented through
OBDDs.

The algorithm resembles the one given for computing weak plans, but
for the function WEAKPREIMAGE that is replaced by STRONGPREIMAGE.
STRONGPREIMAGE introduces a state-action pair if it is not related to an al-
ready present state or to a goal state, and if all its nondeterministic outcomes
are contained in the so far computed state-action table or in the goal. Formally,
when given a problem set P and a state-action table SP, STRONGPREIMAGE is
defined as STRONGPREIMAGE(P, SP) = {(s,a) : s € S, a is executable in s, s ¢
(STATES(SP) U G), and R(s,a) C STATES(SP) U G}.

For example, no strong plan exists for the planning problem shown in
Figure 5.1. Indeed, after one iteration, the last row of the state-action table
in Figure 5.2 is gathered, but the second iteration results in the fix point since
no other state-action pairs can be introduced.

The above algorithmm always terminates, is correct and complete.

Theorem 5.1.2 Let P be a planning problem, then
1. STRONGPLAN(P) terminates.

2. STRONGPLAN(P) returns a strong plan for P if and only if one exists.
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Proof: (1) The termination follows from the fact that the while statement
at line 3 implements a monotonic functional over a finite domain. Indeed, it
keeps adding state-action pairs to SP and therefore it eventually terminates,
possibly when all the pairs have been introduced.

(2) (only if) By definition of induced Kripke structure, we have that the
goal states satisfy AFG. Thus, let us focus on nongoal states. By induction
on the number n of iterations of the while statement at line 3, and denoting
as SP, the state-action table SP after the nth iteration, let us prove that
SPy, is total and K§Pn73 = AFG, for all s € STATES(SP,,). If n = 0, then
STATES(SPy) = () and the claim trivially holds. If n > 0, either no pairs
have been added, and we conclude by inductive hypothesis, or SP, is ob-
tained from SP,_; by adding some pairs through STRONGPREIMAGE. The
totality of SP, follows by inductive hypothesis and by definition of STRONG-
PREIMAGE. Moreover, let spsi ... be an infinite path in Kgpn starting from
so € STATES(K{p ). Since Kgpn_l is total and, by definition of STRONG-
PREIMAGE, none of the states related to the new pairs is in STATES(Kgpn_I),
either sgsq ... is a path in KSPPnfl Or 1S3 ... 1s path in Kngl and sg is one of
the new states. Thus, since by inductive hypothesis K 5 P, = AFG for all
s € STATES(SP,,_1), we have that K{p, ,s = AFG, for all s € STATES(SP,,).

(if) Let us suppose that a strong plan SP for P exist and restrict SP to
the states reachable from the initial ones. More in detail, let us define SP, =
{(s,a) € SP: s €I} and SP, ., = SP, U{(s,a) € SP: (s',a') € SP, and s €
R(s',a’)}. Since for all n we have that SP;, C SP;, | and the number of state-
action pairs is finite, we can set SP' = SP,, such that SP,, ., = SP,,. By
induction on k = 1,...,m, it is then trivial to show that for all s € SPj, there
exists sg € I such that sy is connected to s in Kgp"

SP' is total and Kgp,,s E AGG for all s € STATES(SP'). Indeed, let

(s,a) € SP" and let it have been introduced in SP;, for some 0 < | < m.
Since SP is total and by definition of SP), 1, all the state-action pairs related
to states that are outcomes of (s, a) are then present in SPy, ;. This, recalling
that for all n we have that SP,, C SP;,,;, means that SP' is total. Let now
ToT1 ... be a path in Kg starting from the state ro € STATES(SP'). If ro &€ I,
since r( is reachable from some initial state sg, the above path can be extended
to a path sgsi...79r1.... Let gogi... be rory... if ro € I or sps1...7071 - ..
otherwise. gpq; ... eventually hits a goal state. Indeed, if this was not the case,
since SP' is total, we would have that for each ¢ > 0 there exists (g;,a;) € SP
such that gi11 € R(gi,a;). Since SP' C SP, qoq1 ... would be a path in ng:

as well, and this is not possible, since SP' is a strong plan for P. Therefore,
Kgp,,s = AFG for all s € SP'.

As a consequence, there are no cycles in K g P involving states contained
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in STATES(SP'). SP' can then be stratified by defining SPj = () and SP;, | =
SP! U {(s,a) € SP' : s ¢ STATES(SP!) and R(s,a) C STATES(SP!) U G},
and setting SP" = SP/ such that SP/ = SP/, ;. Note that STATES(SP") =
STATES(SP'). Indeed, if this was not the case, one could consider all the pairs
related to the states that are in SP' but not in SP”. Since none of them can be
added to SP/, by totality of SP', they would induce a cycle in K g p - Indeed,

let (s1,a1) € SP'\ SP". Since it can not be added to SP”, it means that it has
an outcome towards a state sp € STATES(SP') \ STATES(SP"), related to the
pair (s2,a2). The claim then follows from the fact that the reasoning can be
iterated and the set from which the pairs are taken is finite.

Finally, denoted as SPy the state-action pairs gathered by the algorithm in
SP after the kth iteration of the while statement at line 3, we show that the
while statement terminates because I C STATES(SPy)UG, for some k. Indeed,
if this was not the case, the above while statement would terminate because,
for some k, we would have that SPy = SPy4+1 but I \ G € STATES(SPy).
Therefore, the set {(s, a,e) : s is a nongoal state not belonging to STATES(SPy)
and (s, a) has been inserted in SP)} is not empty. Let us select from the above
set one of the tuples related to the minimum e, say (s, a,e). Because of this
choice, (s,a) should be introduced in SP;;1 by STRONGPREIMAGE, and this
is absurd.

5.1.5 Strong Cyclic Planning

Strong cyclic plans are such that for all the executions, always during the
execution, there exists the possibility of eventually reaching the goal. This
means that executions might eventually loop forever on a set of states, but if
they terminate they are guaranteed to achieve the goal. Formally, we have the
following

Definition 5.1.9 (Strong Cyclic Plan) A strong cyclic plan for a planning
problem P is a total state-action table SA for P such that T C WéDA and, for
all s € I, we have KL ,, s = AGEFG.

The algorithm for computing strong cyclic plans is presented in two steps:
first, algorithms computing basic strong cyclic plans are introduced (Fig-
ures 5.5 and 5.8), and then an algorithm for improving such basic solutions is
given (Figure 5.10).

Given a planning problem P, STRONGCYCLICPLAN(P) (Figure 5.5) gen-
erates strong cyclic plans. The algorithm starts with the largest state-action
table in SC'P (line 2), and repeatedly removes pairs that either spoil SC'P to-
tality or are related to states from which the goal cannot be reached (line 5). If
the resulting SC'P contains all the initial states (line 7), the algorithm returns
it (line 8), otherwise Fuil is returned (line 9).
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function STRONGCYCLICPLAN(P)
SCP:= {(s,a) : s € S\ G and a is executable in s}; OldSCP:=_
while (OldSCP#SCP) do
OldSCP:=SCP
SCP:=PRUNEUNCONNECTED (P, PRUNEOUTGOING (P, SCP))
endwhile
if (I C STAaTES(SCP) U G)
then return SCP
else return Fuil

© XN W

14. function PRUNEOUTGOING(P, SA)

15.  Outgoing := COMPUTEOUTGOING(P, SA)
16.  while (Outgoing # 0) do

17. SA:=SA\ Outgoing

18. Outgoing := COMPUTEOUTGOING(P, SA)
19. endwhile

20. return SA

21. function PRUNEUNCONNECTED(P, SA)

22.  ConnectedToG = 0; OldConnectedToG := L

23.  while ConnectedToG # OldConnectedToG do

24. OldConnectedToG:=ConnectedToG

25. ConnectedToG:=SA N ONESTEPBACK(P, ConnectedToQ)
26. endwhile

27.  return ConnectedToG

Figure 5.5: The algorithm.

Pairs spoiling SCP totality are pruned by function PRUNEOUTGOING
(lines 14-20), which iteratively removes state-action pairs that can lead to
nongoal states for which no action is considered. Its core is the function Com-
PUTEOUTGOING that, for a planning problem P and a state-action table SA,
is defined as {(s,a) € SA: R(s,a) Z (STATES(SA)UG)}. With respect to the
example shown in Figure 5.6 (left), during the first iteration, PRUNEOUTGO-
ING removes (Sy, e) and, during the second one, it removes (S3, b), giving rise
to the situation shown in Figure 5.6 (middle).

Having removed the dangling executions results in disconnecting Ss and
Ss from the goal, and give rise to a cycle in which executions may get stuck
with no hope of terminating. This point, however, was not clear in the work
presented in [18]. States from which the goal cannot be reached have to
be pruned away. This task is accomplished by the function PRUNEUNCON-
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S1

-

Figure 5.6: Pruning the state-action table.

NECTED (lines 21-27) that, when given with a planning problem P and a
state-action table S A, loops backwards inside the state-action table from the
goal (line 25) to return the state-action pairs related to states from which
the goal is reachable. Looping backward is realized through the function
ONESTEPBACK that, when given with a planning problem P and a state-
action table SA’, returns all the state-action pairs possibly leading to states
of SA" or G. Formally, ONESTEPBACK(P, SA") = {(s,a) : s € S\ G,a €
A, R(s,a) N (STATES(SA") UG) # 0}. Note the similarity with WEAKPREIM-
AGE, from which ONESTEPBACK differs because it does not care whether
a state have been already inserted. With respect to the example shown in
Figure 5.6 (middle), PRUNEUNCONNECTED removes both (Se, d) and (Ss, ¢},
producing the situation shown in Figure 5.6 (right). Having removed the above
pairs re-introduces dangling executions and, therefore, requires to apply the
pruning phase once more, leading to the empty set. In general, the pruning
phase has to be repeated until the putative strong plan SCP is not changed
either by PRUNEOUTGOING or by PRUNEUNCONNECTED (line 3).

As an alternative (see Figure 5.8), rather than starting with the largest
state-action table, one could start with an empty state-action table in AccSA
(line 2) and incrementally extend it (line 4) until either a strong cyclic plan
containing all the initial states is found, or AccSA is not extendible anymore
(line 3).

For example, Figure 5.7 is a strong cyclic plan for the planning problem
shown in Figure 5.1. Counsidering the algorithm in Figure 5.8, after one itera-
tion of the while statement at line 3, the last row of the table is gathered, while
after two iterations the last four rows are collected. After another iteration,
the third and the fourth rows are introduced in the table. Note that dur-
ing this iteration, unlike WEAKPREIMAGE, ONESTEPBACK inserts the pair
(sg,move(Cy,T)) in the state-action table. Finally, after four iterations, the
first two rows are collected. The algorithm then stops since all the initial states
have been gathered, the state-action table is total and each state is somehow
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‘ State ‘ Action ‘
S switch-off
S3 | fix-position
Sy move (Cy,T)

Se move(Cy,T)

Sy move (Cy,K)

Sy | move(Cy,K)

S7 | fix-position
Se switch-on

Figure 5.7: A state-action table.

1. function STRONGCYCLICPLAN(P)

2. SCP:= (); AccSA:= 0; OldAceSA:= |

3.  while (I £ STATES(SCP) U G and AccSA # OldAccSA) do

4. OldAccSA:=AccSA; AccSA:=ONESTEPBACK(P, AccSA)

D. SCP:=AccSA; OldSCP:=1

6. while (OldSCP#SCP) do

7. OldSCP:=SCP

8. SCP:=PRUNEUNCONNECTED(P, PRUNEOUTGOING(P, SCP))
9. endwhile

10. endwhile

11.  if (I C STATES(SCP) U G)
12. then return SCP

13. else return Fail

Figure 5.8: The incremental algorithm.

connected to the goal set.

The strong cyclic plans returned by STRONGCYCLICPLAN can be improved
in two directions. Counsider the example in Figure 5.9, where S5 is the initial
state. The strong cyclic plan returned by STRONGCYCLICPLAN for such ex-
ample comprises all the possible state-action pairs of the planning problem.
Note, however, that the pair (S1,a) is absolutely useless, since it is unreach-
able from the initial state. Furthermore, the pair (Sy,d) is useless as well,
because it moves the execution away from the goal. Indeed, when reaching Sy
from S3, one does not want to go back to S3 through d. The algorithm for
getting rid of the above situations is shown in Figure 5.10.

Function PRUNEUNREACHABLE loops forward, inside the state-action ta-
ble returned by the basic algorithm, collecting state-action pairs related to
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states that can be reached from the initial ones. Its core is the function ON-
ESTEPFORTH (line 7) that, when given with a planning problem P and a
state-action table Reachable, returns the set of pairs related to states reach-
able by executing actions in Reachable. Formally, ONESTEPFORTH(P, Reach-
able) = {(s,a) : s € S,a € A,a is executable in s and there exists (s',a’) €
Reachable such that s € R(s',a’)}. Reachable is initialized with the pairs re-
lated to initial states by GETINIT (line 4), defined as GETINIT(P,SCP) =
{(s,a) € SCP : s € I}. With respect to Figure 5.9, this first optimization
phase chops out the pair (S7,a) while, with respect to the state-action table
of Figure 5.2, (51, switch-off) is removed.

Function SHORTESTEXECUTIONS chops out all the pairs (s, a) that do not
start one of the shortest executions leading from s to the goal. Indeed, exe-
cutions passing through s can still reach the goal through one of the shortest
ones. Shortest executions are gathered in Shortest as a set of state-action
pairs by looping backward (line 14) inside the (optimized through PRUNE-
UNREACHABLE) state-action table returned by the basic algorithm, and by
introducing new pairs only when related to states that have not been visited
yet. Indeed, note that this time the function WEAKPREIMAGE is used in
place of ONESTEPBACK. With respect to Figure 5.9, this second optimiza-
tion phase chops out the pair (Sy,d) while, with respect to the state-action
table of Figure 5.2, (Sg,move (Cy,T)) is removed.

The algorithms for generating and optimizing strong cyclic plans are guar-
anteed to terminate, are correct and complete. The results rely on the follow-
ing Lemmas.

Lemma 5.1.1 Let K = (S, R, L) be a Kripke structure, and G C S. Then,
for all s € S we have that K, s |= AGEFG if and only if for all s € S we have
that K, s = EFG.
Proof: (only if) Each state s can be thought of as the starting point of a path
in K. Since K, s = AGEFG, it follows that K, s = EFG.

(if) Let us consider a generic path sps; ... in K. Since for each i > 0 we

Figure 5.9: Problems of the basic algorithm.
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1. function OpTIMIZE(P, SCP)

2. return SHORTESTEXECUTIONS(P, PRUNEUNREACHABLE(P, SCP))
3. function PRUNEUNREACHABLE(FP, SCP)

4. Reachable := GETINIT(P, SCP); OldReachable:= L

5. while (Reachable# OldReachable) do

6. OldReachable:=Reachable

7. Reachable := Reachable U SCP N ONESTEPFORTH(P, Reachable)
8. endwhile

9. return Reachable

10. function SHORTESTEXECUTIONS(P, SCP)

11.  Shortest := 0; OldShortest := L

12.  while (Shortest# OldShortest)

13. OldShortest:=Shortest

14. Shortest := Shortest U SCP N WEAKPREIMAGE(P, Shortest)
15.  endwhile

16. return Shortest

Figure 5.10: Optimization.

have that K,s; = EFG, we conclude that K, sy = AGEFG.

Lemma 5.1.2 Let P be a planning problem, SA be a state-action table for P,
and SA" C SA be a total state-action table for P. Then, PRUNEOUTGOING (P,
SA) returns a total state-action table SA" such that SA' C SA" C SA.
Proof: First of all, let us note that PRUNEOUTGOING(P, SA) terminates,
since the while statement at line 16 implements a monotonic functional over
a finite domain. Indeed, it keeps removing state-action pairs from S'A and,
therefore, it eventually terminates, possibly producing the empty set. This
also means that the state-action table returned by the function is included in
SA.

Let us now denote as S A the state-action table SA after the kth iteration
of the while statement at line 16. Since PRUNEOUTGOING terminates when
SA,, = SAp 41, for some m, and this happens when no pairs have an outcome
that is neither a goal state or a state in SA,,, then SA,, is total.

Finally, by induction on k, let us prove that SA; O SA’. If n = 0 then
the claim trivially holds. If n > 0 we conclude by inductive hypothesis, by
definition of COMPUTEOUTGOING, and because SA’ is total.

Lemma 5.1.3 Let P be a planning problem, SA be a state-action table for P,

and SA" C SA be a total state-action table for P such that KgA,, s = EFG, for
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all s € STATES(SA'). Then, PRUNEUNCONNECTED(P, SA) returns a state-
action table SA" such that

1. SADSA" D SA.
2. KE ., s = EFG, for all s € STATES(SA").

Proof: First of all, let us note that PRUNEUNCONNECTED(P, SA) terminates,
since the while statement at line 23 implements a monotonic functional over
a finite domain. Indeed, it keeps adding pairs to ConnectedToG from S A and,
therefore, it eventually terminates, possibly when having added the whole S A.
This also means that SA D SA”.

Let us now denote as ConnectedToGy, the state-action table ConnetedToG
after the kth iteration of the while statement at line 23. Moreover, let s €
STATES(SA’) and s; ... s,,41 be a path in KgA, connecting s = s1 to s,41 € G,
and s1,...,8, € STATES(SA’). By definition of KgA,, that path corresponds
to n pairs (s1,a1), ..., {sp,a,) € SA" such that fori = 1,...,n, we have s; ;1 €
R(si,a;). By induction on k£ =0, ...,m, we prove that KgonnectedTon’ s =
EFG, for all s € STATES(ConnectedToGy,); that ConnectedToGy, C Connected-
ToGy1; and that s,11 , € STATES(ConnectedToGy) U G. If k = 0 the claim
holds because ConnectedToGy = () and s,41 € G. If k > 0, ConnectedToGy,
is either ConnectedToGy_1, and we conclude by inductive hypothesis and by
definition of ONESTEPBACK, or has been obtained from ConnectedToGj_1
by adding some pairs, each of which has at least one outcome leading to
the goal or to ConnectedToGr_1. By definition of KgonnectedTon and

by inductive hypothesis, this means that K Ig’onnecte dToG, " = EFG, for
all s € STATES(ConnectedToGy). Moreover, since by inductive hypothesis
ConnectedToGk_1 C ConnectedToGy, all the pairs added by ONESTEPBACK
to ConnectedToGy_1 are added by the function to ConnectedToG) as well.
This means that ConnectedToGy C ConnectedToGyyi. Finally, by induc-
tive hypothesis and definition of ONESTEPBACK, we have that spii1—x €
STATES(Connected ToGy,).

The claim we have already proved immediately implies (2) and allows us to
state that STATES(SA’) C STATES(SA”). This means that (1) holds, since S A’
is total and by definition of ONESTEPBACK, when a pair (s, a) is introduced in
ConnectedToGy,, we have that all the pairs (s’,a') having at least one outcome
leading to s or to a goal state are introduced in ConnectedToGyy .

Let us start by proving termination and soundness of the algorithm pre-
sented in Figure 5.5.

Theorem 5.1.3 Let P be a planning problem. Then

1. STRONGCYCLICPLAN(P) terminates.
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2. STRONGCYCLICPLAN(P) returns a strong cyclic plan for P if and only
if one exists.

Proof: (1) The termination follows from the fact that, by Lemmas 5.1.2 and
5.1.3, the while statement at line 3 implements a monotonic functional over
a finite domain. Indeed, it keeps removing state-action pairs from SCP and
therefore it eventually terminates, possibly when producing the empty set.

(2) (only if) Since by Lemmas 5.1.3 and 5.1.2 SCP C PRUNEUNREACH-
ABLE(P,PRUNEOUTGOING(p, SCP)) C PRUNEOUTGOING(p, SCP) C SCP,
we have that the state-action table SCP returned by the algorithm is a
fix point of both PRUNEOUTGOING and PRUNEUNCONNECTED. Its total-
ity, guaranteed by Lemma 5.1.2, is preserved by PRUNEUNCONNECTED thank
to Lemma 5.1.3. Moreover, Lemmas 5.1.1 and 5.1.3 imply that, for all s € I,
KL.p.s E AGEFG.

(if) Let us suppose that a strong cyclic plan SCP for P exist. Let us
denote with SCP; the state-action table SCP after the kth iteration of the
while statement at line 3. Then, it sufficies to show that for every k, SCPy
contains SCP. By induction on k. If £ = 0 the claim trivially holds. If £ > 0
we conclude by inductive hypothesis and Lemmas 5.1.2 and 5.1.3.

Let us now consider the algorithm presented in Figure 5.8.
Theorem 5.1.4 Let P be a planning problem. Then
1. STRONGCYCLICPLAN(P) terminates.

2. STRONGCYCLICPLAN(P) returns a strong cyclic plan for P if and only
if one exists.

Proof: (1) The termination follows from Lemmas 5.1.2 and 5.1.3 and from the
fact that both the while statements at lines 3 and 6 implements monotonic
functionals over a finite domain. Indeed, the former one keeps adding state-
action pairs to AccSA and therefore eventually terminates, possibly when hav-
ing added the whole set of pairs. The latter one keeps removing state-action
pairs from SCP and therefore eventually terminates, possibly when producing
the empty set.

(2) (only if) Since by Lemmas 5.1.3 and 5.1.2 SCP C PRUNEUNREACH-
ABLE(P,PRUNEOUTGOING(p, SCP)) C PRUNEOUTGOING(p, SCP) C SCP,
we have that the state-action table SCP returned by the algorithm is a
fix point of both PRUNEOUTGOING and PRUNEUNCONNECTED. Its total-
ity, guaranteed by Lemma 5.1.2, is preserved by PRUNEUNCONNECTED thank
to Lemma 5.1.3. Moreover, Lemmas 5.1.1 and 5.1.3 imply that, for all s € I,
KLp,s E AGEFG.



86 CHAPTER 5. PLANNING AS MODEL CHECKING

(if) Let us suppose that a strong ciclic plan SCP for P exist and, as in
Theorem 5.1.2, define SCP as the restriction of SCP to the states reachable
from the initial ones. That is, let us define SCPy = {(s,a) € SCP : s € I},
SCP, .1 = SCP, U{(s,a) € SCP: (s',a') € SCP, and s € R(s',a’)}, and set
SCP' = SCP,, such that SCP], = SCP,, . Again, SCP' is total. Moreover,
K§CP’S E AGEFG for all s € STATES(SCP). Indeed, since SCP is strong

cyclic plan for P and each s € STATES(SCP') is an initial state or is reachable
from some initial state in SCP, it has to be that s is connected to some

goal state in K,JST/CTP by some path s;j...s,41, where s = s1, and s1,...,s, €
STATES(S/C’\P), and s;,+1 € G. By definition of K g/C\P, such path corresponds
then to n pairs (s1,a1),...,(Sn,a,) € SCP such that for i = 1,...,n, we
have that s;11 € R(s;,a;). Supposing that s has been introduced in SCPj,, by
induction on i = 1,...,n, we can show that (s;,a;) € SCP;_; ;. If i =1 the

claim follows from the fact that when introducing s all the related pairs are
introduced as well. If ¢ > 1 the claim holds by inductive hypothesis and by
definition of SCP;_, ;. This means that s is connected to some goal state in
K g op well.

Now, denoting as AccSAg the state-action table AccSA after the kth iter-
ation of the while statement at line 3, the existence of the path sy...s,41

connecting in Kgc s = 51 to Sp41 € G ensures that s € STATES(AccSA4,).
This can be showefby proving by induction on k = 1,...,n that s,41 § €

STATES(AccSAg). If k =1 the claim holds because s,+1 € R(sp,a,) NG and
by definition of ONESTEPBACK. If k£ > 1 we conclude by inductive hypothesis
and by definition of ONESTEPBACK. This means that AccSA can be expanded
so that to include all the states of SCP'.

Further, being SCP total, this amounts to the possibility of expanding
AccSA, to obtain say AccSA,,, so that to contain SCP. Indeed, as a state
s € STATES(SCP) is inserted in AccSAy, we have that all the pairs having
s as outcome are inserted in AccSAg,1 by ONESTEPBACK. Therefore, either
a positive answer is given by the algorithm in m' < m steps, or AccSA,, is
accumulated.

Let us denote with SCP, the state-action table SCP after the kth iteration
of the while statement at line 6 when dealing with AccSA,,. By induction
on k we show that SCPj contains SCP'. If n = 0 the claim trivially holds. If
k > 0 we conclude by inductive hypothesis and Lemmas 5.1.2 and 5.1.3.

Finally, let us show that the optimization step does not spoil the computed
strong cyclic plan.

Theorem 5.1.5 Let SCP be a strong cyclic plan for the planning problem P.
Then OpTIMIZE(P, SCP) is a strong cyclic plan for P.
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Proof: PRUNEUNREACHABLE simply implements the reduction of SCP (SP)
to SCP' (SP') that we have already discussed in Theorem 5.1.4 (Theorem 5.1.2).

Let us focus on SHORTESTEXECUTIONS. Since each state s occurring in
SCP' = PRUNEUNREACHABLE(P, SCP) is connected to some goal state in
K§CP’ there is a minimal length path s ... s,11 connecting s = s; to s,41 €
G, and sy,...,s, € STATES(SCP'). Let us denote as Shortest; the state-
action table gathered by the algorithm after the kth iteration of the while
statement at line 12, and prove by induction on k£ = 1,...,n that {s,41-; :
i=1,...,k} C STATES(Shortest;) and that each s € Shortesty is connect to
G through a path of length & in thortestk' If K = 1 the claim holds by

definition of WEAKPREIMAGE. If k > 1, s,1_ & STATES(Shortesty), since
otherwise the inductive hypothesis would contradict the choice of a minimal
length path. Therefore, we conclude by inductive hypothesis and by definition
of WEAKPREIMAGE.

As a consequence of the above claim, we have that STATES(SCP) =
STATES(SHORTESTEXECUTIONS(SCP')) and, since SCP' is total, that so is
SCP" = SHORTESTEXECUTIONS(SCP'). Moreover, the above claim and Lem-
ma 5.1.1 also imply that KSPC’ s E AGEFG for all s € SCP".

5.2 Automata-based Approach to Planning

De Giacomo and Vardi [27] have shown how to face planning in deterministic
domains through the automata-based approach, focusing on temporally ex-
tended goals and partial observability. In this approach, both the planning
domain and the goal are looked at as automata on infinite words, and are then
suitably combined in order to select the paths in the planning domain that
are compatible with the goal.

5.2.1 Planning Problems

A planning problem is formalized as a pair (7,G) where 7 is a deterministic
finite transition system modeling the planning domain and the initial states,
and G is a Biichi automaton modeling the goal. As a consequence of having
described the goal as a Biichi automaton, the interesting executions of 7 are
the infinite ones.

A finite transition system 7T is a tuple (W, Wy, Act, R, Obs, ) where

e W is the finite set of states.
e Wy C W is the set of initial states.

e Act is the finite set of actions.
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e R: W x Act — W is the total deterministic transition function, that is,
R is defined for each state and action.

e Obs is the finite set of observations, which model the observable part of
states.

o m: W — Obs is the observability function, which returns the observable
part of the states.

An ezxecution of the transition system is an infinite sequence of states
wowsy ... € WY such that

e wy €W
e For all ¢ > 0 there exists a; € Act such that w;y; = R(w;,a;).

A trace is what we can observe of an execution. For example, 7(wq)m(wy) ...
is the trace corresponding to the execution wyw; .... The observable behavior
of 7 is the set of all possible traces of T.

The goal G is specified through a Biichi automaton (Obs, S, Sy, d, F') where:

e Obs plays the role of the alphabet of the automaton.
e S is the finite set of states.
e Sy C S is the set of initial states.

§: 8 x Obs — 2% is the nondeterministic transition function.

e ' C S is the set of accepting states.

5.2.2 Planning with Complete Information

We start to consider a simplified case, by assuming complete information on
the initial states and full observability of states.

In this case, the problem domain and the initial states are modeled through
a transition system 7 = (W, Wy, Act, R, Obs, ) where

o Wy C W is a singleton set containing the initial state, which is unique
since completely specified.

e Obs =W and 7w : W — Obs is simply the identity function, since we are
assuming full observability.

A plan p for T is an infinite sequence of actions aga; ... € Act”. The
execution of p from the initial state wg € Wy is an infinite sequence wow; ... €
W* such that w;11 = R(w;, a;), for all ¢ > 0. The trace tr(p, wp) is the infinite
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sequence 7(wp)w(wi)... € Obs”. A plan p realizes a goal specification G if
and ouly if tr(p,wy) € L(G).

A plan that realizes a goal specification can be synthesized by checking for
nonemptiness the Biichi automaton 7G = (Act, S1g, S1¢,, 070, Frg) where

e Act is the alphabet of the automaton.

.STg:SXW.

STgo = SU X Wg.

(55, wj) € 61g((ss,w;),a) iff wj = R(w;,a) and sj € 6(s;, 7(w;)).
o Frg=FxW.

Indeed, TG is the synchronous product of 7 and G, which encodes the traces
of T that are compatible with G. The emptiness check consists in looking for
an accepting state sy reachable from itself and from some initial state. From
such a path, say (so,wo)(s1,wi)...(sf,wy)...(sf,wy)... we have that the
plan can be extracted by chosing a; such that (s;11,w;+1) € d7g((s5, w;), a;).
Since TG can be built on-the-fly while checking for its nonemptiness, one
can look for an accepting state reachable from the initial one and from itself
by using a nondeterministic algorithm that only needs O(log(|W|) + log(]S|))
bits for storing the accepting, the current, and the next states. Moreover, if
we adopt a compact, i.e., logarithmic, representation of the transition system,
then planning in the above setting becomes PSPACE. However, it has to
be noted that only certain transition systems are compactly representable,
since the number of transition functions is [W |1, while those distinguishable
with O(log |[W|) bits are 2°0e(WD) — 1|90 The PSPACE complexity is
the complexity of planning in STRIPS [10], which can be seen as a special
case of the setting considered here when the goal automaton encodes goals of
attainment. Moreover, since STRIPS is PSPACE-hard [10], we can conclude
that planning in the setting above is NLOGSPACE-complete, or PSPACE-
complete with respect to a compact representation of the transition system.

5.2.3 Conformant Planning with Incomplete Information

We now turn to consider a more general case dealing with partial information
about the initial state and partial observability of states. However, we still
stick to generate plans as sequences of actions.

In this case, the transition system is 7 = (W, Wy, Act, R, Obs, ) where W,
R, Act, and Obs are as before, but Wy = {wqg, ..., w1}, for some k& > 1,
to reflect the uncertainty about the initial state, and 7 is not the identity
function anymore.
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A plan p for T is an infinite sequence of actions aga; ... € Act”. The
execution of p starting from wg, € Wy is the infinite sequence of states
wopWip - - - € WY such that wiy1, = R(win, a;). The trace tr(p, wop) of p start-
ing from wyy, is the infinite sequence m(wgp)m(wip) . ... A plan p realizes the
goal G = (Obs, S, Sy, d, F) if and only if tr(p, wy,) € L(G), for h =0,...,k—1.

To synthesize such a plan we work as before by checking for the nonempti-
ness of the product Biichi automaton 7G = (Act, S1¢, S16,, 070, Frg), whose
construction is slightly more involved, since we have to keep trace of k£ con-
current executions, and is given as generalized Biichi automaton:

e Act is the alphabet of the automaton.
o Sy =Sk x Wk,
° S']'go = S(]f X {(woo, e ,’u)gk;,l)}.

o (5j,w;) € o1g((55,wW;),a) iff, for h = 0,...,k — 1, we have that w;, =
R(wip,a) and s;jp € 0(sip, m(wip))-

o Fr ={F xS x Wk §x F x8=2x Wk ... Sk x Fx Wk},

Again, the nonemptiness check can be solved by a nondeterministic algo-
rithm. However, this time, the required space is O(k - (log(|W]) + log(]S]))).
Moreover, the algorithm can be shown to be PSPACE-complete or, when
assuming a compact representation of the transition system, EXPSPACE-
complete [27].

It is interesting to note that the above results also holds when one has full
observability of states and the goal automaton encodes goals of attainment. On
the other hand, plan existence in STRIPS with incomplete information on the
initial situation is PSPACE-complete [3]. This means that, when generalizing
the problem domain through a transition system, one does pay a price with
respect to more traditional approaches but, for the same price, one has for
free temporally generalized goals and partial observability of states.

5.2.4 Conditional Planning with Incomplete Information

In this section we consider two proposals for conditional plans in the general
setting discussed above. Let us start with the one given in [27].

A wector plan p is an infinite sequence of vectors of actions dpdy ... €
(Act*)¥. The ezecution of the hth component of 7 starting from wq, € Wy,
denoted by exep(p,woy), is the infinite sequence of states wopwiy ... such
that w;11, = R(wsp,a;,). The trace tracep(p,wpr) of the hth component
of P starting from wy € Wy is the infinite sequence m(wop)m(wyp).... The
vector plan p realizes the goal G if and only if tracep(p,wop) € L(G), for
h=0,...,k—1.
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So far, a vector plan is simply the parallel composition of k sequential
plans, each one starting from a different initial state. Conditional plans are
vector plans whose actions agree on executions with the same observations.

To formally define conditional plans, we introduce the following notion of
equivalence on finite executions. Let wy;...wy and wyy, ... Wy, two finite
executions of the components [ and m, respectively. Then

wWoy -+« Wy ~ Wop, - - » Wy, I T(wop) - .. 7(wypy) = T(wom) - - - T(Wnm)

A conditional plan P is a vector plan such that given the finite executions
Woy « .+ - Wy and Wopy, « . . Wy, Of a pair of components [ and m, we have that
QApl = Gpm Whenever wgy ... Wy ~ Wom, - - - Wnyn -

Again, the synthesis of a conditional plan goes through the construction
of a Biichi automaton encoding such plans, and then through the nonempti-
ness check. Specifically, we build the generalized Biichi automaton 7G =
(Actk, S76,57G,: 076, Frg) where:

e Act” is the alphabet of the automaton.

o Srg = S* x Wk x &, where & is the set of equivalence relations on the
set {0,...,k—1}.

L4 STgO = S[]f X {(woo,. e ,wgk,l)}x =0, where ¢ =0 ] iff Wo; = Woj-
o (5j,Wj,=;) € 07¢((5;,W;, =;),a) iff, for h =0,...,k — 1, we have that

— wjn = R(wip, ar) and sjp € §(sin, m(win))
— if | =; m then a; = a;,

—l=;miff | =y m and w(wj) = m(wj,)
o Frg={F xSF I xWkx&,...,8" 1 x FxWkx &}

However, consider the planning domain shown in Figure 5.11, where w;
and wo are the initial states, and suppose that 7(wy) # w(w2) and 7(w3) =
m(wy). Hence, since m(w;) # w(wsy), we have that wjws # wewy and that
different actions can be associated to w3 and wy, even though they are not
distinguishable.

To solve this problem, we require that actions associated to states that are
indistinguishable are the same. Formally, a conditional plan p'is now a vector
plan such that given the finite executions wywy; ... wy; and wopwip, - . - Whm
of a pair of components [ and m, we have that a,; = apm if 7(wy) = T(wpp).
This affects the construction of TG = (Act®, S7g, S76,, 676, Frg) as follows

e Act” is the alphabet of the automaton.
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oEo -

a1 a2

w2 Wy aé\\

Figure 5.11: A planning domain.

L4 STQ = Sk x Wk,

STgO = S[]]c X {(’wgo,. .. ,’wok_l)}.

(5, w;) € 61g((5;,w;,a) iff, for h=0,...,k — 1, we have that

— wjp = R(wip, ap) and sjp € d(sin, m(win))

— a; = ap if 7r(wil) = 7r(wim)'

Frg={F x SF"'x Wk S x F x SF=2 x Wk ... SF 1 x F x Wk}.

In this latter case, the conditional plan returned by the emptiness check can
be put in a more convenient form using case statements testing the observable
part of states. Finally, observing that for storing an equivalence relation on
{0,...,k—1} we only need k bits, it can be shown that planning in the above
setting is, for both the proposals, PSPACE-complete, or EXPSPACE-complete
with respect to a compact representation of 7.

5.2.5 Improved Automata Generation for Linear Temporal Logic

Even though the previous section deals with goals expressed in a very general
way as Biichi automata, it is often more comfortable to express them as LTL
formulas like, for example, Fg for goal of attainment, or GFg for going in-
finitely often through g. A translator like the one described in Section 3.2.2
is then used to produce the goal Biichi automaton. However, this translation
is critical for two reasons. First, it can result in an exponential number of
states and, therefore, several algorithms can yield very different results. Sec-
ond, since the goal automaton is put in product with the planning domain
automaton, each difference in its construction is amplified by the usually huge
size of this latter one. For these reasons, it is clearly desirable to keep the goal
automaton as small as possible, and to work on-the-fly, that is, to detect that
a plan exists by constructing and visiting only some part of the search space
containing it.
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So far, the state-of-the-art on-the-fly algorithm for turning LTL formulas
into automata has been the one presented in [35]. We refer to that algorithm
as GPVW. That paper also discusses several possible improvements. We refer
to the improved algorithm as GPVW+. In the rest of this section we present,
and describe experiments with, a new algorithm for building an automaton
from a linear temporal logic formula. Such algorithm, hereafter LTL2AUT,
though being based on GPVW+, is geared towards building smaller automata
in less time. The improvements are based on simple syntactic techniques,
carried out on-the-fly when states are processed, that allow us to eliminate
the need of storing some information. Experimental results demonstrate that
GPVW+ significantly outperforms GPVW and show that LTL2AUT further
outperforms GPVW+, with respect to both the size of the generated automata
and computation time. The testing has been performed following a newly
developed methodology, which, inspired by the methodologies proposed in [61]
and [36] for propositional and modal K logics, is based on randomly generated
formulas.

The Core

LTL2AUT, GPVW+, and GPVW can be obtained by suitably instantiating
the core we are about to present. The instantiation affects some functions
that, in what follows, are highlighted through the SMALL CAPITAL font. The
central part of the core is the computation of a cover of a set A of formulas,
that is, a possibly empty set C' = {C; : i € I} of sets of formulas such that

Apeatt < Vier Ny,ec; mi-

Covers The algorithm for computing covers is defined by extending the
propositional tableau in order to allow it to deal with temporal operators.
The algorithm works with formulas in negation normal form, that is, such
that negations only occur in front of propositions. Such formulas are built
by combining literals, that is, propositions and their negations, through the
V and A propositional operators, and the X, U and V temporal operators.
The formulas that are not decomposed by the tableau construction are called
elementary, and corresponds to TRUE, FALSE, literals and next-time formulas.
A set of formulas is said to be elementary if all its formulas are. Unlike
elementary formulas, nonelementary formulas can be decomposed, according
to the tableau rules of Figure 5.12, so that u < /\mEal(u) 61V Aﬁ2€a2(u) Bo.
Note that the fundamental rules used for decomposing temporal operators are
the identity pUn =nV (u A X(pUn)) and its dual pVn =n A (pV X (uVn)).
The line numbers in the following description refer to the algorithm appearing
in Figure 5.13. The algorithm handles the following data structures:

ToCover The set of formulas to be covered but still not processed.
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L o (p) o (p)
pr A po || {p1s w2} {F}
prVope || {p} {n2}

1 Upo {ma} | {pr, X (1 Upz)}
pVpe || {pe, pi} | {pe, X (1 Vp2)}

Figure 5.12: Tableau rules.

1 function Cover(A)
2 return cover(A4,0,0,0)

3 function cover(T'oCover, Current,Covered, Cover)
4 if ToCover =)
5  then return Cover U {Current}

6  else select y from T'oCover

7 remove p from T'oCover and add it to Covered

8 if HAS_TO_BE_STORED (1)

9 then Current = Current U {u}

10 if CONTRADICTION(p, ToCover, Current, Covered)

11 then return Cover

12 else if REDUNDANT(u, T'oCover, Current, Covered)

13 then return cover(T'oCover, Current, Covered, Cover)
14 else if u is elementary

15 then return cover(T'oCover, Current U {u},

16 CoveredCover)

17 else return cover(T'oCover U (ay(p) \ Current),
18 Current, Covered,

19 cover(T'oCover U (aa(p) \ Current),
20 Current, Covered, Cover))

Figure 5.13: Cover computation.
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Current The element of the cover currently being computed.
Covered The formulas already processed and covered by Current.
Cover The cover so far computed.

When computing the current element of the cover, the algorithm first
checks whether all the formulas have been covered (line 4). If so, Current
is ready to be added to Cover (line 5). If a formula p has still to be covered
(line 6), the algorithm checks whether 4 has to be stored in the current element
of the cover (line 8) and, if so, adds it to Current (line 9). Processing u can
be avoided in two cases: If there is a contradiction involving it (line 10) or it is
redundant (line 12). In the former case, Current is discarded (line 11), while
in the latter one p is discarded (line 13). Finally, if x does need to be covered,
it is covered according to its syntactic structure. If p is elementary, it is cov-
ered simply by itself (line 15). Otherwise, p is covered by covering, according
to the tableau rules appearing in Figure 5.12, either a;(p) (line 17) or aa(u)
(line 19). This is justified by recalling that pu <> Nsrcar(w) PV Npscas(u) B2-

The Automaton Construction Our goal is to build a labeled generalized
Biichi automaton recognizing exactly all the models of a linear time temporal
logic formula 1. The presentation and the proof of correctness of the algorithm
are simplified if we slightly modify the definition of Biichi automata by moving
the labeling from the transition function to states.

More in detail, a generalized Biichi automaton is now a quadruple A =
(Q,Z,0,F), where

e Q is a finite set of states.
e 7 C Q is the set of initial states.
e 0:Q — 29 is the transition function.

o F C 22° s a, possibly empty, set of sets of accepting states F =
{F\,F,,...,F,}.

An ezecution of A is an infinite sequence p = qpq1¢2 . . . such that
e gocl.
e For all 2 > 0, gi+1 € 5(qz)

p is accepting execution if, for each F; € F, there exists ¢; € F; that appears
infinitely often in p.
A labeled generalized Biichi automaton is a triple (A, D, L), where
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e A is a generalized Biichi automaton.
e D is some finite domain.
o L:Q — 2P is the labeling function.

A labeled generalized Biichi automaton accepts a word € = zox129 ... from DY
iff there exists an accepting execution p = goq1qs - . . of A such that z; € L(g;),
for each 7 > 0.

A labeled generalized Biichi automaton A = ((Q,Z, 4§, F),D, L) as defined
above can be translated into an equivalent traditionally defined Biichi au-
tomaton A" = (X,8,Sp,d’, F') by replacing each transition in A with |L£(s)]
transitions each of which is labeled with an element of £(s). Formally:

e X=7D
e S=0
08021

e §(s,a) ={s": s €d(s) and a € L(s)}
e F'=F

The algorithm for turning LTL formulas into Biichi automata is presented
in two phases. First, we introduce the automaton structure, i.e., its states,
which are obtained as covers, initial states, and transition function. The line
numbers in the following description refer to this part of the algorithm, which
appears in Figure 5.14. Then, we complete such structure by defining labeling
and acceptance conditions.

The algorithm starts by computing the initial states as cover of {1} (line 2).
A set U of states whose transition function has still to be defined is kept. All
the initial states are clearly added to U (line 2). When defining the transition
function for the state s (line 4), we first compute its successors as cover of
{n: Xp € s} (line 5). For each computed successor r, the algorithm checks
whether r has been previously generated as a state r' (line 6). If so, it suffices
to add 7' to d(s) (line 7). Otherwise, r is added to @ and d(s) (lines 8 and 9).
Moreover, r is also added to U (line 10), for 6(r) to be eventually computed.

The domain D is 27 and the label of a state s consists of all subsets
of 27 that are compatible with the propositional information contained in
s. More in detail, let Pos(s) be s NP and Neg(s) be {p € P : =p € s}.
Then, L(s) = {X : X C P A Pos(s) C X AN X N Neg(s) = 0}. Finally, we
have to impose acceptance conditions. Indeed, our construction allows some
executions inducing interpretations that are not models of ¢. This happens
because it is possible to procrastinate forever the fulfilling of U-formulas, and
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1 procedure create_automaton structure(v))
2 U=Q=7=Cover({¢}),d=10

3 while U # 0

4 remove s from U

5 for r € Cover({u : Xu € s})

6 if 3r' € Q such that r = r'

7 then d(s) = d(s) U {r'}

8 else Q=0U{r}

9 d(s) =d(s) U{r}

10 U=UU{r}

Figure 5.14: The algorithm.

arises because the formula p U7 can be covered by covering ;1 and by promising
to fulfill it later by covering X (uUn). The problem is solved by imposing
generalized Biichi acceptance conditions. Informally, for each subformula pin
of 1, we define a set F,y,, € F containing states s that either do not promise
it or immediately fulfill it. In this way, postponing forever fulfilling a promised
U-formula gives not rise to accepting executions anymore. Formally, we set
Fuuny = {s € Q : SATISFY(s, ulUn) — SATISFY(s,7n)} where, again, SATISFY is
a function that will be subject to instantiation.

GPVW, GPVW+, and LTL2AUT

GPVW is obtained by instantiating the Boolean functions parameterizing the
previously described core in the following way. HAS_TO_BE_STORED(u) returns
T. CONTRADICTION( 1, T'oCover, Current, Covered) returns T iff y is F or p is
a literal such that =y € Current. REDUNDANT (u, ToCover, Current, Covered)
returns F. SATISFY(s, ) returns T iff 4 € s.

For GPVW+ we have the following instantiations. HAS_TO_BE_STORED (/1)
returns T iff p is a U-formula or p is the righthand argument of a U-formula.
CONTRADICTION(u, ToCover, Current, Covered) returns T iff u is F or the
negation normal form of = is in Covered. REDUNDANT (i, T'oCover, Current,
Covered) returns T iff p is nUv and v € ToCover U Current, or p is nVv and
n, v € ToCover U Current. SATISFY(s, u) returns T iff p € s.

GPVW+ attempts to generate less states than GPVW by reducing the for-
mulas to store in Current and by detecting redundancies and contradictions
as soon as possible. Indeed, by reducing the formulas to store in Current,
GPVW+ increases the possibility of finding matching states, while early de-
tection of contradictions and redundancies avoids producing the part of the
automaton for dealing with them. However, GPVW+ still does not solve
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some basic problems. First, states obtained by dealing with a U-formula con-
tain either the U-formula or its righthand argument. So, for example, states
generated for the righthand argument of pUn are equivalent to, but do not
match, prior existing states generated for 7. Second, redundancy and contra-
diction checks are performed by explicitly looking for the source of redundancy
or contradiction. So, for example, a U-formula whose righthand argument is
a conjunction is considered redundant if such conjunction appears among the
covered formulas, but it is not if, instead of the conjunction, its conjuncts are
present.

LTL2AUT overcomes the above problems in a very simple way: Only
the elementary formulas are stored in Current, while information about the
nonelementary ones is derived from the elementary ones and the ones stored in
ToCover using quick syntactic techniques. More in detail, we inductively de-
fine the set SZ(A) of the formulas syntactically implied by the set of formulas
A as follows

e T e SI(A),
o neSI(A),ifue A,

e 1€ SI(A), if 1 is non-elementary and either a;(u) € SZ(A) or aa(p) C
SI(A).

LTL2AUT requires then the following settings. HAS_TO_BE_STORED(u) re-
turns F. CONTRADICTION(u, T'oCover, Current, Covered) returns T iff the
negation normal form of —u belongs to SZ(T'oCoverUCurrent). REDUNDANT( s,
ToCover, Current, Covered) returns T iff p € ST(ToCoverUCurrent) and, if p
is nUv, v € SZ(ToCover U Current). SATISFY(s, i) returns T iff 4 € SZ(s).
The special attention to the righthand arguments of U-formulas in the re-
dundancy check is for avoiding discarding information required to define the
acceptance conditions.

The Test Method
The method we have adopted is based on two analyses:

Average-behavior analysis: For a fixed number N of propositional vari-
ables and for increasing values L of the length of the formulas, a problem
set PS(p N,y of F random formulas is generated and given in input to
the procedures to test. After the computation, a statistical analysis is
performed and the results are plotted against L. The process can be
repeated for different values of V.

Temporal-behavior analysis: For a fixed number N of propositional vari-
ables, a fixed length L of the formulas, and for increasing values P of
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the probability of generating the temporal operators ¢ and V, a problem
set PS (g n,r,p) of F' random formulas is generated and given in input
to the procedures to test. After the computation, a statistical analysis
is performed and the results are plotted against P. The process can be
repeated for different values of N and L.

When generating random formulas from a formula space, for example de-
fined by the parameters N, L, and P, our target is to cover such space as
uniformly as possible. This requires that, when generating formulas of length
L, we produce formulas of length exactly L, and not up to L. Indeed, in the
latter way, varying L, we give preference to short formulas. Random formulas
parameterized by N, L, and P, are then generated as follows. A unit-length
random formula is generated by randomly choosing, according to uniform dis-
tribution, one variable. From now on, unless otherwise specified, randomly
chosen stands for randomly chosen with uniform distribution. A random for-
mula of length 2 is generated by generating op(p), where op is randomly chosen
in {—, X} and p is a randomly chosen variable. Otherwise, with probability
g of choosing either I or V and probability % of choosing =, X, A, or V,
the operator op is randomly chosen. If op is unary, the random formula of
length L is generated as op(u), for some random formula g of length L — 1.
Otherwise, if op is binary, for some randomly chosen 1 < S < L — 2, two
random formulas p; and po of length S and L — S — 1 are produced, and the
random formula op(u1, o) of length L is generated. Since the set of operators
we use is {—, X, A, V,U, V}, random formulas for the average-behavior analysis
are generated by setting P = % Note that parentheses are not considered.
Indeed, our definition generates a syntax tree that makes the priority between
the operators clear.

In both the above analyses, the parameters we are interested in are the
size of the automata, namely states and transitions, and the time required for
their generation. When comparing two procedures II; and Ils with respect
to some problem set PS g n 1 py and parameter 6, we perform the following
statistical analyses.

o ZL1,0.PS(pN,1,p)).
E(112,0,PS(F.N,L,P)) "
II; and IIy separately, and then consider their ratio.

first, we compute the mean value of the outputs of

. E(g—;,@,P&F,N’L’p)): we first compute the ratio of the outputs of Il
and II, separately for each sample of the problem set, and then the mean
value of such ratios.

Results

LTL2AUT, GPVW, and GPVW+ have been implemented on the top of the
same kernel, and are accessible through command line options. The code
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consists of 1400 lines of C plus 110 lines for a lex/yacc parser. The code has
been compiled through gcc version 2.7.2.3 and executed under the Sun0S
5.5.1 operating system on a SUNW UltraSPARC-II/296 1G.

We start by comparing the three algorithms with respect to the first sta-
tistical analysis. LTL2AUT and GPVW+ have been compared, according
to the test method discussed in Section 5.2.5, on 5700 randomly generated
formulas. The results are shown in Figure 5.15. For the average behavior
analysis, LTL2AUT and GPVW+ have been compared on 3300 random for-
mulas generated, according to our test method, for ¥ = 100, N = 1,2,3,
and L = 5,10,...,55. Formulas have been collected in 3 groups, for N =
1,2,3, and inside each group partitioned into 11 problem sets of 100 formu-
E(LTL2AUT, states ,PSioo,n,1))
E(GPVW+, states ,PSo0,n,1)) ’
E(LTL2AUT, transitions ,PS oo n,1)) E(LTL2AUT, time ,PS (100, n,1))
E(GPVW+, transitions ,PS(io,n,1)) ’ and E(GPVW+, time ,PS(100,n,1))
plotted against L. The results show that LTL2AUT clearly outperforms
GPVW+, with respect to both the size of automata and computation time.
Indeed, just considering formulas of length 30, LTL2AUT produces on the av-
erage less than 60% of the states of GPVW+ (for transitions situation is even
better) spending on the average less than 30% of the time of GPVW+. More-
over, the initial phase, in which LTL2AUT does have a time overhead with
respect to GPVW+, affects formulas, for L = 5 and N = 3, which are solved by
LTL2AUT in at most 0.000555 CPU seconds, as opposed to the most demand-
ing sample for L = 55 and N = 3, which is solved by LTL2AUT in 6659 CPU
seconds. For the temporal-behavior analysis, LTL2AUT and GPVW+ have
been compared over 2400 random formulas generated for F = 100, N = 1,2, 3,
L = 20,30, and P = 0.3,0.5,0.7,0.95. Note that P = 0.3 is the probability
we have assumed for the average-behavior analysis. Formulas have been col-
lected in 3 groups, for N = 1,2,3, and inside each group partitioned into 2
sub-groups, for L = 20,30. Each sub-group has still been partitioned into 4

problem sets, for P = 0.3,0.5,0.7,0.95. For each sub-group, we have plot-

q E(LTL2AUT, states ,PS(io0,n,0,py) ELTL2AUT, transitions ,PSioo,n,z,))
te E(GPVWH, states ,PS(ipo,n.z.py) * E(GPVW+, transitions ,PSqoo,n,z,p)) ’
E(LTL2AUT, time ,PS 100, n,2,p))
E(GPVW+, time ,PS(100,n,2,7))
LTL2AUT clearly outperforms GPVW+.

The comparison between GPVW+ and GPVW, whose results are shown
in Figure 5.16, follows the lines of the previous one, by only changing some
parameters for allowing GPVW to compute in reasonable time. The average-
behavior analysis has been carried out over 2400 random formulas generated
for F = 100, N = 1,2,3, and L = 5,10,...,40. The temporal-behavior
analysis has been performed over 2400 random formulas generated for £' = 100,
N =1,2,3, L = 10,20, and P = 0.3,0.5,0.7,0.95. The results show that

las each, for L = 5,10,...,55. For each group,

have been

and

against P. Again, the results demonstrate that
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Figure 5.15: LTL2AUT vs. GPVW+. Upper row: Average-behavior analysis,
F =100, N =1,2,3, L = 5,10,...,55. Middle and lower rows: Temporal-
behavior analysis, ' = 100, N = 1,2,3, L = 20,30, P = 0.3,0.5,0.7,0.95.
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Figure 5.16: GPVW+ vs. GPVW. Upper row: Average-behavior analysis,
F =100, N =1,2,3, L = 5,10,...,40. Middle and lower rows: Temporal-
behavior analysis, F' = 100, N = 1,2,3, L = 10,20, P = 0.3,0.5,0.7,0.95.
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GPVW+ clearly outperforms GPVW both in the size of automata and, after
an expected initial phase, also in time. The initial phase interests formulas,
for L = 10 and N = 3, which are solved by GPVW+ in at most 0.004226
CPU seconds, as opposed to the hardest sample for L = 40 and N = 3, which
is solved by GPVW+ in 178 CPU seconds.

The direct comparison between LTL2AUT and GPVW is shown in Fig-
ure 5.17. Note that LTL2AUT behaves better than GPVW+ in the initial
phase, in which both LTL2AUT and GPVW+ pay a time overhead with re-
spect to GPVW.

Finally, with respect to the second statistical analysis, the results of the
comparison are shown in Figures 5.18, 5.19, and 5.20. This analysis gives equal
weight to easy and hard instances, while the previous one gives more weight
to hard instances. Therefore, since the outputs related to samples belonging
to same problem sets turn out to be very heterogeneous (up to 5 orders of
magnitude), the comparison of this analysis and the previous one indicates
that the gap among the procedures increases for hard formulas.

Proof of Correctness of LTL2AUT
The main theorem is the following:

Theorem 5.2.1 The automaton A() constructed for the LTL formula 1
recognizes exactly all the models of 1.

Proof: The two directions are proved in Lemma 5.2.8 and Lemma 5.2.11
below.

Let us first extend some definitions.

Definition 5.2.1 A pseudo-execution p is an infinite sequence $9s153... of
states such that, for eachi >0, s;11 € d(s;). p is accepting if, for each F; € F,
there exists q; € Fy that appears infinitely often in p. p accepts the word £ if
it is accepting and, for i > 0, £(i) € L(s;). A finite pseudo-execution p is a
finite sequence sgs1S ... sy, of states such that, for each i € {0,...,n— 1}, we
have that si11 € 0(s;).

Let us note that the cover computation shown in Figure 5.13 when instan-
tiated for LTL2AUT does not uses the argument Covered. For this reason,
in what follows we will not mention such argument. Moreover, in order to
simplify the notation, we write A instead of Afc4 f, or TRUE in the case of
the empty set, for a set A of formulas.

Lemma 5.2.1 Let ToCover be a set of formulas, Current be elementary set,
and Cover = {Cover; : i € I} be a set of elementary sets. Then the call
cover(ToCover, Current, Cover) returns a set {C; : j € J} such that, for all
jeJ
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Figure 5.17: LTL2AUT vs. GPVW. Upper row: Average-behavior analysis,
F =100, N =1,2,3, L = 5,10,...,40. Middle and lower rows: Temporal-
behavior analysis, ' = 100, N =1,2,3, L = 10,20, P = 0.3,0.5,0.7,0.95.
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Figure 5.18: LTL2AUT vs. GPVW+. Upper row: Average behavior analysis,
F =100, N =1,2,3, L = 5,10,...,55. Middle and lower rows: Temporal
behavior analysis, F' = 100, N = 1,2,3, L = 20,30, P = 0.3,0.5,0.7,0.95.
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Figure 5.19: GPVW+ vs. GPVW. Upper row: Average behavior analysis,
F =100, N =1,2,3, L = 5,10,...,40. Middle and lower rows: Temporal
behavior analysis, F' = 100, N = 1,2,3, L = 10,20, P = 0.3,0.5,0.7,0.95.
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Figure 5.20: LTL2AUT vs. GPVW. Upper row: Average behavior analysis,
F =100, N =1,2,3, L = 5,10,...,40. Middle and lower rows: Temporal
behavior analysis, F' = 100, N = 1,2,3, L = 10,20, P = 0.3,0.5,0.7,0.95.
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1. Cj 1is elementary
2. (ToCover U Current) V ;o Cover; <3\ jc; Cj
3. (ToCover U Current) V \/;cy Cover; € SI(Cj)

Proof: By induction over n = 3 rerocoper C(1#) Where

1 if p is elementary
C(p) =19 Clp) +Clu2) +1 if pis pur Vpo or p A po
Cpa) +Clu2) +2 if pis plpg or pnVpso

If n = 0 then ToCover = () and the function returns {Current} U Cover.
Then, for each j € J

1. Cj is elementary, due to the hypothesis.
2. (ToCoverUCurrent)V\,;c; Cover; <> CurrentV\,;c; Cover; <3\ jc; Cj.

3. (ToCoverUCurrent)V\,;c; Cover; = CurrentV \/;c; Cover; € SZ(Cj),
since C} is either some Cover; or Current.

If n >0, let f € ToCover be the chosen formula and ToCover’ = T'oCover \
{f}. Let us consider the possible cases. If a contradiction in T'oCover U
Current is detected because the negation normal form of —f belongs to
SZ(ToCover' U Current), then the function returns Cover and

1. Cj is elementary, due to the hypothesis.
2. (ToCover U Current) V \;cp Cover; <+ \/ ;e Cover; =\ jc; Cj.
3. (ToCover U Current)V \;c; Cover; € SI(C}), since C; is some Cover;.

If f is redundant in ToCover' UCurrent, that is, f € SZ(ToCover'UCurrent),
then the function returns cover(T'oCover’, Current,Cover). By inductive
hypothesis, this latter call returns a set {C; : j € J} such that, for all j € J

1. Cj is elementary.

2. (ToCover' U Current) V Ve Coveri <>V je s Cj.

3. (ToCover" U Current) V \;c; Cover; € SI(Cj).
Therefore, for all j € J

1. Cj is elementary.

2. (ToCoverUCurrent)V\V,;e; Coveri <> \ e, Cj, since f € SI(ToCover'U
Current).
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3. (ToCoverJCurrent)V\/;c; Cover; € SZ(Cj), since f € SZ(ToCover’'U
Current).

Let us now consider the cases when f is handled according to its syntac-
tic structure. If f is elementary, then the function returns cover(ToCover’,
Current U {f}, Cover). By inductive hypothesis, this latter call returns a set
{C;j : j € J} such that, for all j € J

1. Cj is elementary.

2. (ToCover' U Current U{f})V Vs Cover; <> V¢ Cj.

3. (ToCover" U Current U{f}) V V,;c; Cover; € SI(C}).
Therefore

1. Cj is elementary.

2. (ToCover U Current) V ;e Cover; <>\ je; Cj.

3. (ToCover U Current) V \/;c; Cover; € SI(Cj).

Finally, if f is nonelementary, the function returns cover(ToCover’ U
(ar(f) \ Current), Current,cover(T'oCover’ U (as(f) \ Current), Current,
Cover). By inductive hypothesis, the inner call returns {Dj, : h € H} such
that, for all h € H

1. Dy, is elementary.

2. (ToCover' U (aa(f) \ Current) U Current) V \/;c; Cover; <> \/ ey Dh.

3. (ToCover" U (aa(f) \ Current) U Current) V \/;c; Cover; € SZ(Dy,).
while the outer call returns {C; : j € J} such that

1. Cj is elementary.

2. (ToCover' U (ar(f) \ Current) U Current) V /ey D <> Ve, Cj

3. (ToCover' U (aa(f) \ Current) U Current) V \/,cy Dy, € SI(Cj).
Thus, for each j € J

1. Cj is elementary.

2. (ToCover U Current) V \/;c; Cover; <+ (ToCover' U {a1(f) V aa(f)} U
Current)V\;c; Cover; <+ (ToCover'U{ay (f)}UCurrent)V(ToCover'U
{aa(f)} U Current) V \;c; Cover; <+ (ToCover' U{az(f)} U Current) vV
Vier Dn < Ve Cj.
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3. If (ToCover' U (o (f)\ Current) UCurrent)V\/ ez Dy € ST(C;) due to
(ToCover' U (ai(f)\ Current) U Current), then (T'oCover U Current)V
Vier Cover; € SZ(Cj). Otherwise, for some h € H, Dy, € SZ(C}) and,
therefore, (ToCover' U (ax(f) \ Current) U Current) V \/;c; Cover; €
SZ(Cj), that is, (T'oCover U Current) V \,;c; Cover; € SZ(Cj)

Corollary 5.2.1 Let ToCover be a set of formulas, then the call Cover(A)
returns a set {C; : j € J} such that, for all j € J

1. Cj is elementary.
2. ToCover <>\ jc 1 Cj.
3. ToCover € SI(Cj).

Lemma 5.2.2 Let s be a state of A(¢) such that X(f) € SZ(s). Then, for
all successors r of s, we have that f € SZ(r).

Proof: If X(f) € SZ(s) then X(f) € s. Since s’ successors have been com-
puted as Cover({f : X(f) € s}), we conclude by Corollary 5.2.1 (3).

Lemma 5.2.3 Let s¢s1 ... sy be a finite pseudo-execution of A() such that
fUg € SI(sp). Then one of the following holds:

1. For alli€{0,...,n}, we have that f, fUg € SZ(s;) and g & SL(s;).

2. There ezists i € {0,...,n} such that g € SZ(s;) and, for all 0 < j < 1,
[, fUg € SI(sj).

Proof: By induction on n. If n = 0, we conclude by definition of SZ().
Otherwise, by definition of SZ(), either g € SZ(sp), and (2) holds, or g ¢
SZ(sp) but f,X(fUg) € SZ(sp). In this latter case, by Lemma 5.2.2, flUg €
SZ(s1) and we conclude by inductive hypothesis.

Lemma 5.2.4 Let sys1... be a pseudo-execution of A(vp) such that fUg €
SZ(sg). Then one of the following holds:

1. For all i >0, we have that f, fUg € SZ(s;) and g & SI(s;).

2. There ezists 1 > 0 such that g € SI(s;) and, for all0 < j <14, f,fUg €
SZ(sj).

Proof: If (1) does not hold, there exists ¢ > 0 such that either {f, fUg} Z
SZ(s;) or g € SZ(s;). Consider the finite sequence sysy .. . $;. For Lemma 5.2.3,
we conclude that (2) holds.

Lemma 5.2.5 Let s¢s;...sy, be a finite pseudo-ezecution of A() such that
fVg € SI(sp). Then one of the following holds:
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1. For alli€{0,...,n}, we have that g, fVg € SI(s;) and f & SZ(s;).

2. There exists i € {0,...,n} such that f,g € SZ(s;) and, for all0 < j < 1,
g, fVg € SI(s;) and f & SI(sj).

Proof: By induction on n. If n = 0, we conclude by definition of SZ(). Oth-
erwise, by definition of SZ(), g € SZ(s¢) and either f € SZ(sy), and (2) holds,
or f & SI(sp) but X(fVg) € SZ(sp). In this latter case, by Lemma 5.2.2,
fVg € SZ(s1) and we conclude by inductive hypothesis.

Lemma 5.2.6 Let sos1... be a pseudo-execution of A(¢p) such that fVg €
SZ(sg). Then one of the following holds:

1. For all i > 0, we have that g, fVg € SI(s;) and f & SZ(s;).

2. There exists © > 0 such that f,g € SZ(s;) and, for all 0 < j < 1,
9, Vg € SL(s;) and f & SI(s;).

Proof: If (1) does not hold, there exists i > 0 such that either {g, fVg} &
SZ(s;) or f € SZ(s;). Consider the finite sequence sgs ... s;. For Lemma 5.2.5,
we conclude that (2) holds.

Lemma 5.2.7 Let p = s¢s1 ... be an accepting pseudo-execution of A(y)) over
€. Then & = SI(sg).

Proof: By induction over the structure of the formulas in SZ(sp). Note that,
due to the contradiction check in the function cover, for all the states s of
A(1)), we have that FALSE ¢ s. The base case is then for TRUE, for which the
thesis trivially follows, and for the propositional literals, for which the thesis
holds because of the definition of the labeling.

If fVge SI(sy), it has to be that either f € SZ(sg) or g € SZ(sp) and
we conclude by inductive hypothesis.

In the case fAg € SZ(sp), it has to be that both f € SZ(sy) and g € SZ(sg)
and we conclude by inductive hypothesis.

When X(f) € SZ(sp), by Lemma 5.2.2 it has to be that f € SZ(s;) and
we conclude by inductive hypothesis.

If fUg € SZ(sp), we have two cases. If fUg is not a subformula of 9,
then it has to be that g € SZ(sg), and we conclude by inductive hypothesis.
Otherwise, since p is accepting, according to Lemma 5.2.4, only the second case
is possible. We conclude by inductive hypothesis and by semantic definition
of the until operator.

If fVg € SZ(s¢), we conclude by Lemma 5.2.6, by inductive hypothesis,
and by semantic definition of the release operator.
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Lemma 5.2.8 Let p be an accepting execution of A() over &. Then & |= 1.
Proof: It follows by Lemma 5.2.7, by definition of initial states, and by
Lemma 5.2.1 (3).

Lemma 5.2.9 Let ToCover and Current be set of formulas, and Cover be
set of sets. Then Cover C cover(ToCover, Current, Cover).

Proof: By induction on n = 3~ rcrocoper C(f)- I n = 0, then ToCover = ()
and Cover C Cover U {Current} = cover(T'oCover, Current,Cover).

If n > 0, let f be the selected formula and T'oCover’ = ToCover \ {f}.
Let us consider the several cases. If a contradiction is detected, then C'over =
cover(ToCover, Current, Cover).

If a redundancy is detected, then we conclude by inductive hypothesis,
since cover(ToCover, Current, Cover) = cover(ToCover', Current, Cover).

Let us now consider the cases when f is handled according to its syntac-
tic structure. If f is elementary, we conclude by inductive hypothesis, since
cover(ToCover, Current, Cover) = cover(ToCover’, Current U{f}, Cover).
Finally, if f is nonelementary, we have that cover(T'oCover', Current U {f},
Cover) = cover(ToCover' U (a1(f) \ Current), Current,cover(ToCover' U
(a2(f)\ Current), Current, Cover)) and, again, we conclude by inductive hy-
pothesis.

Lemma 5.2.10 Let ToCover be a set of formulas, {filg; : i € I} C ToCover,
Current be elementary set, Cover be set of elementary sets, and & such that
€ |=ToCover U{g; : i € I}. Then, the call cover(ToCover, Current, Cover)
returns the set {C; : j € J} containing the elementary set C; such that

1. £ =G
2. ToCover U Current U Cover{g; : i € I} € SI(Cj).

Proof: By induction over n = 3~ rcpocoper C(f). If n = 0 then ToCover =
0 and therefore cover(T'oCover, Current,Cover) = {Current} U Cover.
Choosing C; = Current we have

1. £ E C; =ToCover U CurrentU{g; : © € G}, by initial hypothesis.
2. ToCover U Current U{g; : i € G} = Current € SI(C}).

If n > 0, let f be the selected formula and ToCover’ = ToCover \ {f}.
Because of the initial hypothesis, it cannot be the case of contradiction.

If f is redundant we have two cases. First, let f be fildg; € {fillg; : i
I}. In this case, by inductive hypothesis, cover(ToCover, Current, Cover)
cover(ToCover’, Current, Cover) = {Cj : i € J} such that for j € J

LEEG

€
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2. ToCover' U Current U{g; : fillg; # f} € SIT(C})

Therefore, choosing the same Cj, we conclude since g; € SZ(T'oCover’ U
Current). Otherwise, if f is not in {f;Ug; : i € I}, by inductive hypothe-
sis, cover (T oCover, Current, Cover) = cover(ToCover', Current, Cover) =
{Cj :i € J} such that for j€ J

1. £ E=C;
2. ToCover' U Current U{g; : i € I'} € SZ(C}).

Again, choosing the same Cj, we conclude because f € SZ(T'oCover’ U
Current).

Let us now analyze the cases when f is handled according to its syntac-
tic structure. If f is elementary, then cover(ToCover, Current,Cover) =
cover(ToCover’, Current U {f}, Cover) = {C; : i € J} such that, by induc-
tive hypothesis, there exists j € J

1. £
2. ToCover' UCurrent U{f}U{g; : i € I} € SZ(Cj).

That is, choosing the same Cj, the thesis.
When f is nonelementary, we have two cases. First, let f be f;Ug; €
{filg; : i € I}. In this case we have that cover(T'oCover, Current,Cover)
= cover(ToCover" U ({g;} \ Current), Current,cover(ToCover’ U ({f;,
X(fidgi)} \ Current),Current,Cover)) = {C; : i € J} such that, by in-
ductive hypothesis, there exists j € J

1. £ =G

2. ToCover' U ({g;} U Current) U{g; : fillg; # f} € SZ(Cy).
That is, choosing the same Cj, the thesis. Finally, if f & {f;Ug; : i € I}, we
have that either ¢ = ToCover' U (aq(f) \ Current) U CurrentU{g;:i € I} or
¢ = ToCover' U (ag(f) \ Current) U Current U {g; : i € I'}. In the first case,
we have that cover(ToCover, Current,Cover) = cover(T'oCover' U (a1 (f) \

Current), Current, cover(ToCover' U(ay(f)\ Current), Current, Cover)) =
{C; i € J} such that, by inductive hypothesis, there exists j € J

1 £=C;
2. ToCover' U (aq(f) \ Current) U CurrentU {g; : i € I'} € SI(Cj).

That is, by choosing the same Cj, the thesis. In the second case, we have that
cover(ToCover' U (az(f) \ Current), Current, Cover) = {C; : i € J} and, by
inductive hypothesis, there exists C; such that
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1. £ =G
2. ToCover' U (aa(f) \ Current) U CurrentU {g; : i € I'} € SI(Cj).

Choosing the same Cj, we conclude by Lemma 5.2.9.

Corollary 5.2.2 Let ToCover be a set of formulas, {filg; : i € I} C
ToCover, and & be an LTL interpretation such that & |= ToCoverU{g; : i € 1}.
Then, the call Cover(T'oCover) returns the set {C; : j € J} containing the
elementary set Cj such that

1 £=C;
2. ToCover U{g; :i € I} € SZ(Cj).

Lemma 5.2.11 Let & |=1. Then £ is accepted by A(v).

Proof: Let us show how an accepting run over ¢ can be constructed. Since
the initial states are generated as Cover({t}), by Corollary 5.2.1 (2), there
is a state sp € Z such that & = so. In general, having built the fragment
of execution sgsj...s, such that & | s;, let us show how to choose s;1.
Let Uy, = {peUnk : k € K} C SZ(sy), {nk : k € K} NSZ(s,) = 0, be the
set of the until formulas that are not fulfilled immediately. Since {n : k €
K}NSZ(sy) =0, we have that &, = {X (uxUng) : k € K}. Therefore, for each
p > 0, we can define U, , = {ppUny € Uy : p = min{qg > 0: &4 =i }}. By
induction on p, we now prove that for all ju, Uy, € U, ,, there exists 1 <1 <p
such that s,,; is accepting with respect to px Uy, that is vy € SZ(s,4;). Let
us start to consider the case when p = 1. The successors of s,, are computed
as Cover({f : X(f) € sp}) D Up1 and &q1 = {f : X(f) € sp}U{gi - fillg; €
Up1}. Through Corollary 5.2.2, s,41 can be chosen such that &,41 = sp41
and {g; : filg; € Uy 1} € SZ(sp+41). Let us consider now the case p > 1, and
let pu, Uvy, € Uy, p. Since by Corollary 5.2.1 (3) ppUvy, € SZ(sy41), either vy, €
SZ(sp+1) or X(pugUvy) € SI(sp41). In this latter case, ppUvy € Upg1p-1,
and we conclude by inductive hypothesis.



Chapter 6

Conclusions and Related
Work

In this thesis we have advanced the state-of-the-art in planning as model check-
ing according to two directions.

First, we have presented a formal account for weak, strong, and strong
cyclic planning in nondeterministic domains. We have formalized the notion
of weak plans, i.e., plans that may achieve the goal but are not guaranteed
to; strong plans, i.e., plans that are guaranteed to achieve the goal in spite of
nondeterminism; and strong cyclic plans, i.e., plans encoding iterative trial-
and-error strategies that always have a possibility of terminating and, when
they do, are guaranteed to achieve the goal in spite of nondeterminism. More
in detail, weak plans are those whose executions satisfy the CTL formula EFG,
strong plans are those whose executions satisfy AFG, and strong cyclic plans
are plans whose executions satisfy AGEFG, where G is a propositional formula
representing the set of goal states. We have proven that the algorithms given
in [15, 19] compute weak and strong plans respectively, and have defined a new
symbolic algorithm for strong cyclic planning that is guaranteed to generate
strong cyclic plans and to terminate. Indeed, the algorithm given in [18]
did not satisfy the formal specification, since it could generate plans whose
executions might get stuck inside cycles with no hope of terminating. All
the three algorithms have been implemented in MBP, a planner built on top
of the symbolic model checker NUSMV [14], which is currently used in an
application for the “Italian Space Agency” (ASI) [12]. A future goal is to
extend the planning task from the task of finding a plan which leads to a set
of states (the goal) to the task of synthesizing a plan which satisfies some
specifications in some temporal logic. This makes the planning task very
close to controller synthesis [65, 66, 83, 1, 49], which considers both exogenous
events and nondeterministic actions. Due to its generality, however, the work
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in synthesis does not always allow for concise solutions as state-action tables,
i.e., memoryless plans. Moreover, it is to be investigated how it can express
and deal with strong cyclic plans.

As we have already underlined, most of the work in planning is focused on
deterministic domains and only recently some works have extended classical
planners to “contingent” planners, which generate plans with conditionals, or
to “conformant” planners that, unrealistically, try to find strong solutions as
sequences of actions. Nevertheless, neither existing contingent nor existing
conformant planners are able to generate strong cyclic plans. Due to its gen-
erality, deductive planning frameworks can be used to specify desired plans
in nondeterministic domains. Nevertheless, the automatic generation of plans
in these deductive frameworks is still an open problem. Another very expres-
sive framework has been proposed in [13], and exploits process algebra and
mu-calculus for reasoning about nondeterministic and concurrent actions. Un-
fortunately, this framework does not deal with the problem of plan generation.
However, it would be interesting to investigate the possibility of embedding
strong cycling planning in both the above frameworks. Some works propose
an approach that is similar to the automata-based approach to planning. The
TLplan system [2] allows for control strategies expressed in LTL and imple-
ments a forward chaining algorithm that has strong similarities with the LTL
standard model checking [85]. However, the planner deals only with deter-
ministic domains. Moreover, it is not clear how LTL based frameworks can be
extended to express strong or strong cyclic solutions, where both a universal
and existential path quantifiers are required, and to generate them. Finally, in
planning based on Markov Decision Processes [28, 40, 11], policies (much like
state-action tables) are constructed from stochastic automata, where actions
induce transitions with an associated probability, and states have an associated
reward. The planning task is then reduced to constructing optimal policies
with respect to rewards and probability distributions. As a consequence, one
has no control on the structure of the generated plan and, therefore, no concept
of weak, strong, or strong cyclic planning seems expressible.

With respect to the automata-based approach, we have shown that the
algorithm for building an automaton from a linear temporal logic formula can
be significantly improved. Since the problem is PSPACE-complete and the
automaton obtained from the goal has to be combined with the, usually huge,
one representing the planning domain, our result can dramatically affects the
performances of the planner. Moreover, we have proposed a test methodology
that can be also used for evaluating other LTL deciders, and whose underlying
concept, namely targeting a uniform coverage of the formula space, can be ex-
ported to other logics. Of course, the notion of uniform coverage can be further
refined, and this is part of our future work. In particular, we plan to adapt to
LTL the probability distributions proposed in [61] for propositional logic and
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adapted in [36] to the modal logic K. These distributions assigns equal prob-
abilities to formulas of the same structure (e.g., 3-CNF in the propositional
case). We are also planning to extend the concept of syntactic implication to
a semantic one and, finally, to explore automata generation in the symbolic
framework.

An alternative automata construction for temporal specifications [45] starts
with a two-state automaton that is repeatedly “refined” until all models of
the specifications are realized. Due to this refinement process, however, this
algorithm can not be used in an on-the-fly fashion. Another approach could
be turning the on-the-fly decision procedure presented in [74] into a procedure
for automata construction. It is not clear, however, whether and how this
modification could be done, for that procedure is geared towards finding and
representing one model, but not all models.
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