Extending temporal logic with w-automata

Thesis for the M.Sc. Degree
by

Nir Piterman

Under the Supervision of
Prof. Amir Pnueli
Department of Computer Science
The Weizmann Institute of Science
Prof. Moshe Vardi
Department of Computer Science
Rice University

Submitted to the Feinberg Graduate School of
the Weizmann Institute of Science
Rehovot 76100, Israel

August 22, 2000

Abstract

We investigate the extension of linear temporal logic with w-automata. We give an alternative
translation from Extended Temporal Logic [WVS83] formulas to nondeterministic Biichi automata.
The novelty in our translation is usage of alternating automata, thus, simplifying the translation
while staying with the same complexity bounds.

We continue and use alternating Biichi automata as temporal connectives of the logic. Again
we translate the formulas of the logic to nondeterministic Biichi automata. Although alternat-
ing automata are exponentialy more succinct than nondeterministic ones, the complexity of the
translation does not change.

Finally we combine the extension in the expressive power of the logic with the reference to the
past. We use 2-way alternating automata as temporal connectives. Also here we give a translation
of logic formulas to nondeterministic Biichi automata.

Contents

1 Preliminaries 3
1.1 Introduction e e e 3
1.2 Related Work e 4
1.3 Basic Definitions e 6

1.3.1 Finite automata on infinite words Lo oL 6
1.3.2 Linear Temporal Logic 7
1.3.3 Extended Temporal Logic 8

2 Translating ETL formulas into nondeterministic Biichi automata 10
2.1 Translating finite and looping acceptance w-automata into alternating Biichi automata 10
2.2 Negative Normal Form and closure of an ETL formula 12
2.3 ETLy into alternating Biichi automata 13
2.4 ETL; into alternating Biichi automata 15
2.5 From Alternating Biichi automata to nondeterministic Biichi automata 17
2.6 From ETL, formulas to nondeterministic Buichi automata 23

2.6.1 From nondeterministic Biichi automata to alternating Biichi automata 23
2.6.2 Construction of the alternating automaton 24
2.6.3 From alternating Biichi automata to nondeterministic Biichi automata 27

3 Extending temporal logic with alternating automata 31
3.1 Definition of ET L, o o o o e e e e e e e e e e e e e e e e 31
3.2 Translating E'TL, formulas into nondeterministic Biichi automata 32

3.2.1 Complementing an alternating automaton 32
3.2.2 Construction of the alternating Biichi automaton 32
3.2.3 From alternating Biichi automata to nondeterministic Biichi automata 33
3.3 Extending temporal logic with 2-way alternating automata 35
3.4 Definition of ET Lag o o o o o o e e e e e e e e e e e e e e e 36
3.5 Translating ET Ly, formulas into 2-way alternating Biichi automata 36
3.5.1 Complementing a 2-way alternating automaton 37
3.5.2 Construction of the 2-way alternating Biichi automaton 38

3.6 Transforming 2-way automata to 1-way automata 40

3.6.1 A lower bound on the conversion of 2-way alternating automata to l-way

alternating automata Lo Lo 41

3.7 From 2-way alternating Biichi automata to 1-way alternating Biichi automata 42
3.7.1 The construction L 42

3.7.2 From alternating Biichi automata to nondeterministic Biichi automata 46

4 Conclusions 51

A Converting 2-way nondeterministic automata to 1-way alternating automata 55

A1 Definitions L e e 55
A.2 Automata on Finite Words 56
A.2.1 Removing ‘zero’ steps e 56
A22 TWO-Way TUNS . .« o v v v v e e e e e e e e e e e e 57
A.2.3 The Construction o i i e e e e e e 58
A.2.4 Proof of correctness e 60
A.3 Automata on infinite words 62
A3 L Zero Steps . . . o o e e e e e e e e 62
A3.2 TWO-WaY TUNS . .+ v v v v v e e e e e e e e e e e e e e e e e 63
A.3.3 The Construction e e e e 64
A.3.4 Proof of correctness 66
A 3.5 Complementing the alternating automaton 68
A.3.6 Parity and Rabin acceptance conditions 69
A4 Conclusions e e e e e e 70

Chapter 1

Preliminaries

1.1 Introduction

Temporal logic has been used for many years now as a tool for the specification and verification
of programs [Pnu77, MP92|. Although as expressive as monadic first-order logic of the natural
numbers with the less than relation, Wolper [Wol83] has shown that for the task of verification
temporal logic is sometimes not expressive enough.

Wolper [Wol83] suggested to augment temporal logic with the power of the w-regular expres-
sions. Wolper, Vardi and Sistla followed and considered w-automata as a finitary way of representing
the w-regular expressions [WVS83, SVW87, VW94]. They created several logics, using different
types of automata. Safra and Vardi tried to find which automata produce the most succinct for-
mulas [SV89].

Extending temporal logic with w-automata seems like a reasonable proposition. Hardware
implementations frequently include Finite State Machines (FSMs). As automata and FSMs are
basically the same thing, it seems that including FSMs in the specification language will give the
implementers a powerful formalism they are already familiar with.

w-automata are characterized by different acceptance conditions. Wolper et al. [WVSS83,
SVW87, VW94] proposed to use nondeterministic finite automata (yielding the logic ETLy), non-
deterministic looping automata (ETL;) or nondeterministic Biichi automata (ETL,.). We call these
logics the extended temporal logics or ETLs for short. Wolper et al. studied the expressive powers
of the different ETLs. They showed that every w-regular set can be expressed by a formula of every
one of the ETLs and that the set of models of an ETL formula is an w-regular set [WVS83, VW94].

Given a logic formula, an important question is whether it is satisfiable. This question was
studied for the three mentioned extended temporal logics. Decision procedures for the logics were
offered. A formula of the logic was converted into a nondeterministic Biichi automaton such that the
automaton accepts exactly the set of models of the formula [Var96]. Hence, the formula is satisfiable
iff the automaton’s language is not empty. The decision problem for each of the logics is shown to be
PSPACE-complete. The decision problem for ET' Ly and ETL; is in linear nondeterministic space
[WVS83, VW94]. The decision problem for ETL, is in nondeterministic O(n?) space [SVW8T].

Our main interest in this work is the decision problem for temporal logic extended with w-
automata. Since the publication of the above mentioned papers, alternating automata [CKSS81,
BL80] were introduced and widely studied. Since the combinatorial structure of alternating au-
tomata is rich, they are more suitable for handling logic than nondeterministic automata. Alter-

nating automata enable a complete partition between the logical and the combinatorial aspects of
the decision problem for logic, and give rise to cleaner and simpler algorithms [Var96].

The decision procedures for ET Ly, ETL;, and ETL, used an ad-hoc construction of a non-
deterministic Biichi automaton. We propose a more uniform treatment. Given a formula we first
translate it into an alternating Biichi automaton with the same set of models. This alternating au-
tomaton can be converted to a nondeterministic Biichi automaton using the construction of Miyano
and Hayashi [MHS84|. The usage of alternating automata yields a cleaner construction with cleaner
proofs. We stay within the same complexity bounds and improve the decision procedure of ET'L,
to O(n log(n)) nondeterministic space (using complementation constructions for nondeterministic
Biichi automata [KV97, Tho98, Saf88]).

Safra and Vardi [SV89] checked other types of automata, they tried to find the most succinct way
of writing formulas. As suggested in [VW94], we use alternating automata as temporal connectives.
It was shown that nondeterministic automata and alternating automata have the same expressive
power [MHS84], hence temporal logic extended with nondeterministic automata is just as expressive
as temporal logic extended with alternating automata. On the other hand, alternating automata
are expounentially more succinct than nondeterministic automata. There are languages that can be
recognized by an alternating automaton with n states but nondeterministic automata recognizing
these languages have at least exp(n) states [BL80, CKS81].

We solve the decision problem of this logic in the same way. We translate a formula to an
alternating automaton whose language is exactly the set of models of the formula. This alternating
automaton in turn is translated to a nondeterministic automaton that can be checked for emptiness.

Our final problem with ETL is that it cannot express properties that depend on the past. It
was shown that temporal logic with past operators is more adequate to the task of compositional
verification [LPZ85]. We can solve the expressiveness problem and add reference to past properties
by introducing 2-way alternating automata as temporal connectives. Vardi [Var98] has shown how
to transform a 2-way alternating automaton to a 1-way nondeterministic automaton. We slightly
modify his work and get a transformation from 2-way alternating automata to 1-way alternat-
ing automata. We incorporate this transformation into the decision procedure for temporal logic
augmented with 2-way alternating automata.

1.2 Related Work

Wolper [Wol83] has shown that temporal logic with until and next-time operators cannot express
the property “p is true in all even positions”, for a proposition p. The ability to count modulo
n, not possessed by temporal logic, is important to program specification. Counsider the following
example of two processes working synchronously that use a single critical section, based on [LPZ85].

lp: loop forever mg : loop forever
[1 : send ; non critical | || my : receive ; critical
[y : send ; critical mg : receive ; non critical

Before executing ‘send’ process 1 waits for process 2 to get to ‘receive’ and vice versa. We would
like to establish that process 1 and process 2 never enter the critical section together. The so-
lution proposed in [LPZ85] is to show that process 1 may visit Iy only after an even number of
communications and process 2 may visit my only after an odd number of communications.

Various solutions have been counsidered for extending the power of temporal logic. For example,
using quantifiers ranging over propositional variables [LPZ85, SVW87, MP92|, or adding least fixed
point operators, resulting in p-calculus [Koz83].

Wolper [Wol83] suggested extending the expressive power of temporal logic using w-regular ex-
pressions as following. Given a sequence of propositional formulas f = fg, f1,... and a computation
w = wp, wy, ..., we say that the sequence f is satisfied by w if fy is satisfied by wg, f1 is satisfied by
wi and so on. Now consider an w-regular expression over propositional formulas S. The expression
S identifies a set of sequences of formulas. We say that S is satisfied by the computation w if there
is a sequence of formulas f in S that is satisfied by w.

w-regular sets can be represented using w-automata. Wolper’s work was extended in [WVS83,
VW94]|, where different automata are suggested as connectives. Wolper et al. study three types of
automata. Looping automata (the automaton has to run forever) inducing the logic ET'L;, finite
automata (the automaton has to reach a designated set of states) inducing ET'Ly and repeating
(or Biichi) automata (the set of designated states has to be visited infinitely often) inducing ETL,.

Wolper et al. [WVS83, VW94| show that the three logics have the same expressive power.
Translations from ETL, to ET Ly and ET L; are exponential in the size of the formula. The decision
problem of formulas is reduced to the emptiness problem of nondeterministic Biichi automata. The
nondeterministic automata created are exponential in the size of the formula, yielding a PSPACE
algorithm for the decision problem. It should be noted that complementation of Biichi automata
results in an exponential blowup that is provably with a nonlinear exponent [Mic88]. Formulas of
ETL, may include negations in front of automata connectives, it seems reasonable that the decision
procedure for ET L, will be in nonlinear space.

Safra and Vardi [SV89] further studied this type of extensions. They extended the logic with
Streett automata [Str82] and with EL automata [EL87]. They show that the decision procedure
for ET Lgy is EXPSPACE-complete. The decision of ET Lg remains in PSPACE and is proposed
as the ultimate extended temporal logic.

Another way to classify w-automata is by the type of their branching mode. In a deterministic
automaton, the transition function § maps a pair of a state and a letter into a single state. The
intuition is that when the automaton is in state ¢ and it reads a letter a , then the automaton moves
to state 6(¢g,a) from which it should accept the suffix of the word. When the branching mode is
existential or universal, 6 maps ¢ and a into a set of states. In the existential mode, the automaton
should accept the suffix of the word from one of the states of the set, and in the universal mode, it
should accept the suffix from all the states in the set. In an alternating automaton [CKS81, BL80],
both universal and existential modes are allowed, and the transitions are given as Boolean formulas
over the set of states. For example 6(q,a) = (q1 Aq2) V g3 means that the automaton should accept
the suffix of the word either from both ¢; and g2 or from g¢s.

Although alternating Biichi automata have the same expressive power as nondeterministic Biichi
automata [MHS84], they are exponentially more succinct. As suggested in [VW94], we augment tem-
poral logic with alternating automata connectives. Alternating Biichi automata are as expressive
as nondeterministic Biichi automata so extending the logic with alternating automata does not
change its expressive power. We show that it also does not change the complexity of the decision
procedure. We show that a formula of temporal logic extended with alternating automata can be
translated to a nondeterministic Biichi automaton with the same complexity as an ET L, formula.

Two-way automata over infinite structures were introduced as part of the effort to create
automata-theoretic techniques to handle p-calculus with both forward and backward modalities.

Two-way automata over finite words have been shown to have the same power as 1-way automata
over finite words [RS59, She59]. Vardi [Var88, Var98| has shown that the same is also true for
2-way automata over infinite structures. Thus, extending temporal logic with 2-way alternating
automata results in a logic with the same expressive power. The complexity of this logic is slightly
higher and we show that it is decidable in O(n2log(n)) nondeterministic space.

1.3 Basic Definitions

We consider infinite sequences of symbols from some finite alphabet . Given a word w, an element
in ¢, we denote by w; the i*! letter of the word w, and by w>; the suffix of w starting at w; hence
w = w>g = wowws . .. and lim(w) = {a € X|a = w; for infinitely many i’s}, thus lim(w) is the set
of letters appearing infinitely often in w. Automata that read infinite sequnces are usually referred
to as w-automata. We give definitions of three different types of automata.

1.3.1 Finite automata on infinite words

Nondeterministic automata A nondeterministic automaton is a five-tuple A = (X, S, Sy, p, F),
where 3 is the finite alphabet, S is the finite set of states, Sp C S is the set of initial states,
p:SxY — 29is the transition function, and F is the acceptance set. We define a run of an
automaton on an infinite word w = wow;... € X% as a finite or infinite sequence o = sq, s1, ---,
where sg € Sy and for all 0 < ¢ < |o|, we have s;1 € p(s;,w;). Acceptance of a run is defined
according to one of the following conditions:

e Finite acceptance, where a state of the set F' has to occur somewhere along the run (in this
case the run is finite).

e Looping acceptance, where the run should be infinite.

e Repeating acceptance, where a state of the set F' has to occur infinitely often in the run (also
called Biichi condition).

Alternating automata Given a set S we first define the set BT(S) as the set of all positive
formulas over the set S with ‘true’ and ‘false’ (i.e., for all s € S| s is a formula and if f; and fy are
formulas, so are fi A fo and fi V f3). We say that a subset S’ C S satisfies a formula ¢ € B1(S)
(denoted S’ |= ¢) if by assigning ‘true’ to all members of S’ and ‘false’ to all members of S\ S’
the formula ¢ evaluates to ‘true’. Clearly ‘true’ is satisfied by the empty set and ‘false’ cannot be
satisfied. Given a formula f € B*(S), we dualize f by replacing A by V, true by false and vice
versa.

A treeis a set T C IN * such that if z-¢c € T where x € IN * and ¢ € IN , then also € T. The
elements of 7" are called nodes, and the empty word € is the root of T'. For every x € T', the nodes
z - ¢ where ¢ € IN are the successors of =, the nodes = -y where y € IN * are the descendants of .
A node is a leaf if it has no successors. A path m of a tree T is a set @ C T such that ¢ € 7 and
for every x € 7, either x is a leaf or there exists a unique ¢ € IN such that z - ¢ € . Given an
alphabet X, a X-labeled tree is a pair (T,V') where T is a tree and V : T' — ¥ maps each node of
T to a letter in X. We restrict our attention to finitely branching trees, forall x € T the number of
successors of x is finite.

An alternating Bichi automaton is a five-tuple A = (X, S, s, p, F') where X, S and F' are like
before. The state sq is a unique starting state and p : S x 3 — B(S) is the transition function. We
define a run of an alternating automaton on an infinite word w = wow;... € X* as a S-labeled tree
(T,V) , where V(e) = sp and for all x € T' the (possibly empty) set {V(z-¢)|[c € IN and z-c €T}
satisfies the formula p(V'(x),w,). A run is accepting if every infinite path visits the accepting set
infinitely often.

A co-Bichi alternating automaton is defined exactly the same except that a run is accepting if
all infinite paths visit F finitely often.

Given an alternating Biichi automaton A = (X,S,sg,p, F'), the dual of A is the co-Biichi
automaton A% = (X,, s, p?, F) where p%(s,a) is the dual of p(s,a). The automata A and A%
accpet complementary languages [MS87], i.e. L(A%) = X%\ L(A).

Two-way alternating automata on infinite words A 2-way alternating Buchi automaton
on infinite words is a five-tuple A = (3,5, sg,p, F) where X, S, so and F are like before. The
transition function is p : S x ¥ — BT({-1,0,1} x S). A run of an automaton on an infinite
word w = wowi... € £¥ is a S-labeled tree (T,V'), where V(e) = (sp,0) and for all x € T" with
V(z) = (r,n2), the set {(s,a)lc € N, x-c €T, V(z-¢c) = (s,n1), a = n; — ny} satisfies the
formula p(r,wy,). A run is accepting if all infinite paths visit F' infinitely often.

A 2-way alternating co-Bichi automaton is defined exactly the same except that a run is ac-
cepting if all infinite paths visit F finitely often.

As before, given a 2-way alternating Biichi automaton A, its dual automaton A%, defined just
like for 1-way alternating automata, recognizes the complementary language.
1.3.2 Linear Temporal Logic
We give a short introduction to linear temporal logic (LTL) [Pnu77]. We only mention a formula of
this logic once in this paper, as an example. Nevertheless, all this paper is based on this definition.

Syntax Formulas are defined with respect to a set Prop of propositions.

e Every proposition p € Prop is a formula.

e If fi and fy are formulas, then —f1, f1V fo, f1 A fo, Of1 and f1U fo are formulas.

Semantics The satisfaction of a formula is defined with respect to a model € (2PROP)% and a
location i € IN . We use (7,4) = % to indicate that the word 7 in the designated location i satisfies

the formula 2.

e For a proposition p € PROP, we have (m,i) |=p iff p € m;.

m,4) = 1 iff not (m,4) = fu.
m,4) = fiV fo il (m,4) = fioor (7m,4) = fo

) E fin fo i (m,4) = fiand (7,9) = fo
i) = Of iff (mi+1) E fi.

)

(
(
(
(

o (m,i) = fiU fo iff there exists k > i such that (7w, k) | fo and for all i < j < k, we have

(m,5) E fi.
We also use the common notations < f = trueU f, for eventually f, and Of = =O—f, for always
f-
1.3.3 Extended Temporal Logic

We present the logics ETLy, ETL; and ETL, as defined in [VW94].

Syntax Formulas are defined with respect to a set Prop of propositions.

e Every proposition p € Prop is a formula.
e If f1 and f, are formulas, then —f;, f1 V fo and fi A fy are formulas.

e For every nondeterministic finite automaton A = (¥, 5, p, Sp, F) with ¥ = {a,...,a,}. If
fiy ey fr are formulas, then A(f1,..., fn) is a formula.

Semantics The satisfaction of a formula is defined with respect to a model € (2PROP)¥ and a

location i € IN . We use (7,4) = % to indicate that the word 7 in the designated location i satisfies
the formula 2.

e For a proposition p € PROP, we have (m,i) = p iff p € 7.
(m,i) = —f1 iff not (m,4) = f1.

o (mi) | fiV foiff (m,d) | fior (m,9) = fo

o (mi) = fiAfoiff (m,d) E fi and (m,i) = fo.

Consider an automaton A = (X, S, Sy, p, F). The run of the formula A(fy,..., f,) over a word w
starting at point ¢, is a finite or infinite sequence o = sg, $1, ... of states from S, such that so € Sy
and for all k, 0 < k < |o|, there is some a; € ¥ such that (7,i+ k) |= f; and sg41 € p(sg, aj).

We can now complete the definition of semantics:
o (m,i) = A(f1,..., fn) iff there is an accepting run of A(f1,..., f,) over m starting at .

Yet to be defined is the type of the acceptance used by the automaton: finite, looping, and repeating
acceptance induce the logics ETL;, ETL;, and ETL,, respectively.

For example consider the automaton A = (£, S, Sy, p, F'), where ¥ = {a, b}, S = {so,s1}, p(s0,a) =
p(s1,a) = {so}, p(so,b) = p(s1,b) = {s1}, and Sy = F = {s1}. If we consider repeating accep-
tance, a run of the automaton is accepting if it visits state s infinitely often. The automaton visits
s1 exactly when it reads the letter b. Hence, the ETL, connective A(—f, f) is true iff f is true
infinitely often. That is, the ETL, formula A(—f, f) is equal to the LTL formula OCf. Other
examples can be found in [VW94].

When clear from the context we often write the formula A(f1, ..., f) as A. The name of the
automaton identifies the formulas fi, ..., f,, nested within it.

Given a formula g, the models of the formula is the set L(g) of all infinite words w € (2FPROP)w
that satisfy the formula. Given an automaton (either nondeterministic, alternating or 2-way alter-
nating) A with alphabet X, the language of the automaton A is the set L(A) of all infinite words
w € ¥¥ accepted by A. The complementary language is the set ¢ \ L(A) of all infinite words

w € X rejected by A.

Chapter 2

Translating ETL formulas into
nondeterministic Buchi automata

In this chapter we translate ETL formulas into nondeterministic Biichi automata. We repeat the
process three times for ETLy, ETL; and ETL,. First, given a formula g we construct an alternating
Biichi automaton A, such that L(Ay) = L(g). Then, we build a nondeterministic Biichi automaton
B such that L(B) = L(Ay).

2.1 Translating finite and looping acceptance w-automata into alternating Buchi
automata

Our goal is given an ETL;(ETL;) formula g, to construct the alternating automaton A, such that
an infinite word is a model for g if and only if it is accepted by the automaton A,. It makes sense
to replace the automata connectives in ETL; and ETL; by alternating automata and then plug
these automata into a bigger alternating automaton that takes care of the boolean structure of the
formulas (much like [Var96]). In order to do so for a given finite (looping) acceptance automaton
we build two alternating automata. The first recognizing the same language as the finite (loop-
ing) automaton and the second recognizing the complementary language. Since nondeterministic
automata are a special case of alternating automata, the first transformation is straightforward.
Although the automata we are dealing with read infinite objects, their simple acceptance condition
makes complementing very easy. We simply take the dual of the automaton [MS87|. For the sake
of completeness we include the full construction.

Let Ay = (%, 5,50, p, F) be a finite acceptance w-automaton. Let S’ = S U {so} and assume
so ¢ S. The two alternating automata are:

o A =(X,5 s0,p%,0), where

true SoNF £
- | ors

VSESO vPEp(s,a) p SoNF = 0

— p(s,a) = true seF
7 Voepsa)? s ¢ F

° Z‘} = (E,Sl,so,ﬁ?,S% where:

10

(50, 0) = false SoNE £
Priso /\SESO /\pEp(s,a) p SoNF = 0

~ (s,a) = false seF
P @)= /\pEp(s,a)p s ¢ F

Note that the transition of A uses only conjunctions. Hence it has only one possible run on a word.
In this sense it is somewhat deterministic, a fact that is used in the following proofs.

Claim 2.1.1 L(A}) = L(Ay)

Proof: An accepting run of Ay on a word w induces an accepting run of A} on the same word
(exchange of first state needed) and vice versa. L

Note that it seems as though the alternating automaton is reading one more letter, it reaches
the accepting state and only the next transition simplifies to true. The depth of the run tree of the
alternating automaton, however, is exactly the length of the run of the nondeterministic automaton.
Since the model is infinite and there is always another letter this does not change the language of
the automaton.

Claim 2.1.2 L(A}) = ¥\ L(Ay)

Proof: We first show that a word accepted by Ay is rejected by Z‘;c. An accepting run of Ay on
a word w reaches an accepting state at some stage. The same run is a path in the tree run of Z[;c.
This path reaches ‘false’ and Z; rejects. In the other direction, given a word w rejected by Z‘} it is

accepted by Ay. As mentioned Z?‘ has a unique run over w. Since the run of Z?‘ on w is rejecting
a path in this run reaches ‘false’. The same path induces an accepting run of Ay on w.]

Similarly for a looping acceptance w-automaton A; = (3,5, S, p,?), define the following two
alternating automata:

o A =(X,5',s0,pf,S), where

- ,0?(30, a) = VSESO VpEp(s,a) p

- p?(s7a) = Vp€p(57a)p
o A = (2,8, 50,7},0), where

- p?(soa a) = /\sESO /\pEp(s,a) p
B ﬁ?(sv a) = /\pep(s,a)p

Note that an empty disjunction amounts to ‘false’ and an empty conjunction amounts to ‘true’.
Thus, if p(s’,a’) = 0 then p} = false and pf* = true. Once again the ‘negative’ automaton has a
unique run over a word.

Claim 2.1.3 L(A}) = L(4,)

11

Proof: An accepting run of 4; on a word w induces an accepting run of A} on the same word
(exchange of first state needed) and vice versa. L

Claim 2.1.4 L(4}) = X%\ L(4;)

Proof: An accepting run of 4; on a word w is an infinite run. In the unique tree run of Aj on w
the same path never reaches ‘true’ and the automaton rejects. In the other direction a path in the
rejecting run of A? does not reach ‘true’. The same path provides an accepting run for A;.]

We have built for every finite or looping acceptance automaton two alternating automata with one
additional state that accept the same language and the complementary language.

2.2 Negative Normal Form and closure of an ETL formula

Since the transitions of an alternating automaton are of the form ¢ € B*(S) negation in the logic
presents a problem. As in the translation of temporal logic formulas into automata [GPVW95],
negation is dealt with ahead of time. Negations are pushed downwards to apply to automata and
propositions only. This is done recursively by:

e Changing —(a A) into (—a) V (=f)
e Changing —(«a V () into (—a) A (=f)

By De-Morgan rules the models of the formula do not change. Given a formula g, we denote
by g the negative normal form of —g.

The closure of the formula ¢ is intended to serve as the state set of the alternating automaton
Ag. We basically follow the definition of the closure in [VW94] but when finding an automaton
connective it is replaced by its alternating equivalent (that is, a positive automaton for a positive
alternating automaton, and a negated automaton for a negative alternating automaton).

Before defining closure we give the following conventions:

e Identify the formula g with g.

e Given an alternating automaton A = (3, S, so, p, F'), for each s € S we define
As = (Easasapa F)

Now, the closure cl(g) of an ET Ly formula g is the minimal set such that:

* g€clg)

if g1 € cl(g) then g7 € cl(g)

if g1 A go € cl(g) then g1,g2 € cl(g)

if g1 V g2 € cl(g) then g1,g2 € cl(g)

if A%(g1,...,9n) € cl(g) then g1, ..., g5 € cl(g)

12

Note that all elements in the closure are in negative normal form. Negations are applied to automata
and propositions only.

We would like to use the alternating automata prepared in the previous section to replace the
automata connectives in the closure. We replace all automata connectives (or their negation) by
the appropriate alternating automata: For the connective A(f1,..., f) where A = (X, S, Sp, p, F)
we prepared the alternating automata A% = (¥,5', sy, p% F) and A" = (X, 5, 50, %, F), so we
replace A(f1,..., fn) by A§, and =A(f1,..., fn) by Zgo. Finally we add to the closure A% and A, for
every s € S'. After the completion of this phase in all elements in the closure negation applies to
propositions only.

The number of elements in cl(g) is at most twice the size of g.

2.3 ETLy into alternating Biichi automata

We show now how, given an ETL; formula g, to build an alternating automaton A, such that
the language of the automaton is the set of models of g. Like the translation of LTL to alter-
nating automata [Var96] we let the transition of the alternating automaton deal with the boolean
connectives and plug in the transition of the alternating automata from Section 2.1.

Theorem 2.3.1 For every ETL; formula g of length n there exists an alternating Bichi automa-
ton Ay such that L(Ay) = L(g) and Ay has at most 2n states.

In the following construction we use the alternating automata defined in Section 2.1. We
have to modify them slightly. Recall that the finite acceptance automaton accepts a word when
it reaches an accepting state. Its alternating counterpart reads an extra letter before declaring
‘true’. We have to amend this difference (and a similar difference when dealing with negated
connectives) by replacing every A% where s € F with ‘true’ and replacing every ZZ where s € F
with ‘false’. Using this convention we may assume that for all automata connectives A(f1,..., fn)
where A = (3, S, Sy, p, F') the intersection of F and Sy is empty, otherwise the formula is identical
to ‘true’.

We give now the detailed construction. Given an ETL; formula g, define the following alter-
nating Biichi automaton A, = (2FPROP cl(g), g, A, F), where the transition function A and the
acceptance set F are defined as follows.

e The transition function A : cl(g) x 2PROP — B*(cl(g)) is defined by induction.

— A(true,a) = true

— A(false,a) = false

B) true p€a

A(p,a)—{ false pé¢a

B) false pe€a
A(—up,a)—{ true pé¢a

— A(g1 N g2,a) = A(g1,a) AN A(gz, a)
— A(g1V g2,a) = A(g1,a) V A(gz, a)

13

— For ¢ € B*(S) define replace’ () by replacing g € S by A,. For example, replace5. ((sA
t)Vq) = (A§ N A}) V A7 and replace%a((s At)Vq) = (A; NA))V ZZ. Recall that for
s € F, we identified A? with ‘true’ and A; with ‘false’. Now,
A(Aa(gla S gn)a a) = vglzl[A(gia a) N Teplacefla (P(So, az))]
We check that g; in fact holds (A(g;,a)) and continue the computation of A*. One
computation path has to reach a state in F.

A (g1, s 90) @) = Ny [AFs)] V replaceSe (550, az)
We check that either g; does not hold (recall that g; is the negative normal form of g;)
or the computation of A has to continue. All enabled paths have to either reach a dead
end or run forever without reaching an accepting state.

e The acceptance set is F = {A;[A" = (,5',5,7% S) € cl(g) and s € S}.

This way positive automata are checked to reach an accepting state and ‘vanish’. Negative
automata on the other hand are allowed to (and should) run forever.

In the definition of A(4,a) we used the negation of formulas g;. This is the only reason to
include negation of formulas in the closure.

Claim 2.3.2 L(A,) = L(g)

Proof: We prove by induction on the structure of the formula that for all subformulas f € cl(g),
we have L(Ay) = L(f).

e For propositions and boolean quantifiers the proof is not different from the classical proof.

e Cousider an automaton connective A(f1, ..., fn), A = (X, S, Sp, p, ') has the alternating equiv-
alent A% = (3,5, g0, pa, D).

A word w = wows... is a model for A(f1,.., f,,) iff there is an accepting run o = sq, $1, ..., Sm
of A where for all 0 < k < m, there is some aj, € ¥ such that (w, k) |= fj,, sk+1 € p(sk, a5,),
and s, € F.

For the formulas fi,..., f, we can use the induction assumption: (w,j) E f; iff ws; €
L(Ay,). Hence if (w,k) = fj, there is an accepting run of Ay on wxr. We modify
the path run of A(fi,...,fn) on w into a tree by appending to the path the runs of Afjk‘
We can also remove the node labeled by s, since in the run of Ay ;) we know that
replaces (p(sm—1,aj, ,)) = true, hence under the m — 1 node in the path we append only
the run of Ay, .

Obviously the run answers the demands of the transition of A and the only path labeled by
the automaton A is finite.

If w € L(A) there is a sequence A% A%

507 517 °

., A5, such that A = replace? (pa(As,,a;))
for some j and A(fj,wg) results in an accepting computation. There exists j such that
replaceSa (p(sm—1,a;)) = true and A(fj, wy,_1) results in an accepting computation. Obvi-

OU-SIy w): A(fl)) fn)

e Consider an automaton connective —A(f1,..., fn), A = (X,5,S0,p, F) has the alternating
complement A* = (2,5, q0,7,, S).

14

It cannot be the case that the same word is a model for A(fi,..., f,) and it is accepted by
A_ 4. If this is the case there exists an accepting run o = sq, ..., S, of A(f1, ..., fr) on w and
a tree run (7,V') of A4 on w. According to the structure of A we deduce that in level m — 1

in the tree there is a node labeled by A, _ . Since sm, € p(sm—1,0a;5), (w,m — 1) |= f; and

Wy, € F we know that Teplace%(ﬁ(sm,l,aj_)) = false and the run of A has to be rejecting.
Therefore L(A-4) N models(A(f1,..., fn)) = 0.

On the other hand if w ¢ models(A(f1,..., fn)) then for every run of A(fi,..., fn) on w

— either the run sg, s1,... is infinite and never reaches an accepting state: for all £ > 0
there exists some a; € ¥ such that (w, k) |= f; and sg41 € p(sg,a;) and si ¢ F'.

— or the run sy, sy, ..., Sy, is finite, never reaches an accepting state and gets to a point
where none of the formulas fi,..., f, hold: for all 0 < k < m, s ¢ F and there exists
some a; € ¥ such that (w, k) = f; and sg41 € p(sk, a;) and for all a; € X, (w,m) & f;.

We can build the run of A4 by induction. Label the root by ZZO. Forall aj € ¥ if w |= f;, it
must be the case that no a; successor of sg is a member of F' (i.e. p(sg,a;) N F = 0) because
otherwise w is a model of A(f1,..., fn) contrary to the assumption. Hence we add |p(so,a;)|
successors to the root and label them by A for t € p(so, aj). If w %= f; we append the run
tree of Af—j on w under the root (unifying the roots).

For a leaf x in the tree, if x is labeled by any proper subformula of A(fi,..., fn) then it
was appended as a part of a complete run tree and we are ensured that the transition
A(V(z),wy) = true. If it is labeled by A} for some t € S we can repeat the process
applied to the root. Since we assumed w is not a model of A(fy,..., fn), no successor is a
member of F. We know that replace2(p(t,a)) # false since no successor can be in F. The

A
transition of A is satisfied by the resulting tree and we are done.

O

2.4 FETL, into alternating Biichi automata

Similar to the previous section, given an ETL; formula ¢ we build an alternating automaton such
that the language of the automaton is the set of models of g. The construction of A, is very similar
to the ET' Ly case.

Theorem 2.4.1 For every ETL; formula g of length n there exists an alternating Biuchi automaton
Ag such that L(Ag) = L(g) and Ay has at most 2n states.

Unlike the case of ETLy, because of the infinite nature of ETL; there is no need to give
special attention to the time we identify the entry into the accepting set. We describe part of the
transition function dealing with automata connectives and prove the construction is correct. So
A, = (2PROP [cl(g), g, A, F), where the transition function A and the acceptance set F are defined
as follows.

e The transition function A is defined as in for ETL;. We recall part of the definition.

15

— A(AYg1, s 9n), @) = Vizy [Algi, a) A replacel (pa(so, a))]
We check that ¢g; holds (A(g;,a)) and continue the computation of A*. There has to be
an infinite path.

— A(A* (g1, s gn)s @) = N1 [A(Gi, a) V replace%a (Pa(50,a4))]

We check that either g; does not hold or the computation of A continues. All enabled
paths have to reach a dead end of some sort.

e The acceptance set is F = {A%|A? = (X, S,s,p* F) € cl(g) and s € S}.

When dealing with looping acceptance automata, unlike finite acceptance, the positive au-
tomata may appear on infinite paths but all negative automata must appear only on finite
paths.

Claim 2.4.2 L(A,) = L(g)

Proof: We prove by induction on the structure of the formula that for all subformulas f € cl(g),
we have L(Ay) = L(f).

e Counsider an automaton connective A(f1, ..., fn), A = (X, S, So, p, S) has the alternating equiv-
alent A% = (3,5, 50, pa, S).
A word w = wowy ... is a model for A(f1, ..., f) iff there is an accepting run o = s, s1, ... of
A where for all k£ > 0 there is some aj, € ¥ such that (w,k) = f;, and sgy1 € p(sg, aj,)-

For the formulas f1, ..., f,, we can use the induction assumption: (w, j) = f; iff w>; € L(Ay,).
We modify the path run of A(f1,..., f,) on w into a tree by appending to the path the runs
of Afjk on wy,.

Obviously the run answers the demands of the transition of A and the only path labeled by
the automaton A is infinite.

Ifw € L(A) then there is an infinite sequence A7 , A7 , ... such that A5, = replaceda(pa(As,, aj))

for some j and A(f;, wy) results in an accepting computation. The same holds for A therefore

w |: A(fla 7fn)

e Consider an automaton connective —A(f1,..., fn), A = (X,5,S0,p, F) has the alternating
complement A* = (3, S, qo,7,,0).
It cannot be the case that the same word is a model for A(fy,..., f,) and it is accepted by
A_ 4. If this is the case there exists an accepting run o = sq, s1, ... of A(f1,..., fn) on w and a
tree run of A4 on w. According to the structure of A we know that all paths labeled by A;
for ¢ € S have to be finite. We show by induction that Zji appears in level ¢ in the tree. The
root is labeled by ZZO. Given a node z in level ¢ in the tree labeled by Zl:i we know that there
exists some a; € ¥ s.t. (w,i + 1) = f; and s;11 = p(ss,a5). Hence A(fj, w;) cannot result
in an accepting run tree and there has to be a node under x labeled by ZZM. Therefore
L(A-4) N L(A(f1, s fn)) = 0.
On the other hand if w ¢ L(A(f1,..., fn)) then every run of A(f1,..., fn) on w is rejecting

— either because p(sy,,a;) =0 for all a; € ¥ such that (w,m) = f;

— or because for all a; € ¥, (w,m) [~ f;

16

We can build the run of A-4 by induction. Label the root by ZZO. For all a; € ¥ such that
w = f;, if there are no a; successors of 5o (i.e. p(sg,a;) = 0) we are done. Otherwise we add
|p(s0, a;)| successors to the root and label them by A} for ¢t € p(sg,a;). If w = f; we append
the run tree of Af—]_ on w under the root (unifying the roots).

For a leaf x in the tree, if x is labeled by any proper subformula of A(fi,..., f,) then it
was appended as a part of a complete run tree and we are ensured that the transition
A(V(z),wy) = true. If it is labeled by A} for some t € S we can repeat the process
applied to the root.

There cannot be an infinite path in the run of A4 labeled by A”. Such a path can be
converted into a run of A(fi,..., fn) on w contradicting the assumption. Other infinite paths
are labeled by other automata from a certain point onward. In this case those infinite paths
were added as a part of an infinite accepting run tree and visit the acceptance set F infinitely
often.

(

2.5 From Alternating Buchi automata to nondeterministic Biichi automata

Converting alternating automata into nondeterministic automata involves some sort of subset con-
struction. The states of the resulting automaton are sets of formulas. Intuitively all formulas
appearing in the state have to be checked to hold over the model. The special structure of logic
enables two approaches:

e A formula not appearing in the state is false in this state and its falseness should be checked.
We call this approach the tight approach.

e A formula not appearing in the state is not interesting. We call this approach the loose
approach.

A formula is either true or false. Hence, when using the tight approach a formula either belongs to
the state or does not belong to it. Using the loose approach, a formula either belongs to the state,
or its negation belongs to the state or, not caring about this formula, none of the two belongs.
Obviously, it cannot be the case where both the formula and its negation appear in the same set.
There are advantages and disadvantages for both approaches (see [GPVW95, DFV99]).

Theorem 2.5.1 For every ETL; or ETL; formula g of length n there exists a tight (loose)
nondeterministic Bichi automaton B such that L(B) = L(g) and B has at most 3™ (4™) states.

The simplest approach to converting alternating Biichi automata into nondeterministic Biichi
automata is to use the construction in [MH84]. Given an alternating Biichi automaton A =
(X, S, s0,p, F) they propose B = (X,25 x 2% ({s0},0),0',2% x {#}), where p' is defined, for all
(P,Q) €29 x 2% and a € ¥ as follows.

o If Q # 0 then p/'((P,Q),a) =

P’ satisfies \,cp p(p, a)
(P,Q'\F)| Q' € P',and
Q' satisties \,cq p(p, a)

17

o If Q =0 the p'((P,Q),a) =

{(P',P"\ F)|P' satisies)\ p(p,a)}
peEP

This way the first component in the state of B follows all the paths in a run tree of A in the same
time. The second component collects only paths that owe a visit to the acceptance set F. Once
the second component is empty (all paths visited F' at least once) it is refilled with the new level in
the run tree of A. If the second component is empty infinitely often we are ensured that every path
in the tree of A visited F' infinitely often. As noted by Isli [Isl96], all reachable states are of the
form (P, Q) € 2% x 2% where Q C P. Hence we can replace the state set by 3°, where 0 indicates
not appearing, 1 indicates appearing only in the first component and 2 indicates appearing in both
components. The second component in the states of B is often referred to as the book-keeping
component.

This construction yields for an alternating automaton with n states a nondeterministic automa-
ton with 3" states. Given an ETL formula g of length n, the alternating automaton A, has 2n
states. Therefore the final nondeterministic automaton has 327 states.

This result can be improved using either the tight approach or the loose approach. We create
the reduced closure of the formula. Let rcl(g) be a subset of ¢ such that for every formula f € cl(g)
either f € rcl(g) or f € rcl(g) and it is not the case that f € rcl(g) and f € rcl(g). Furthermore,
all propositions and automata connectives appear in the reduced closure in their positive form (i.e.
for all p € PROP, we have p € rcl(g) and for all As € cl(g), we have As € rel(g)). In the following
we reduce the number of states from 9" to either 3", using the tight approach, or 4", using the
loose approach. We use the following observation.

e Take the run tree of A, where g is an ETL; formula. If in the run tree of A, appears a node
labeled by a negated automaton connective, there might be an infinite path under that node
labeled by the same negated automaton in different states. No other condition is imposed on
this infinite path. All these states (negated automata) are members of the accepting set and
they never appear in the book-keeping component. On the other hand automata connectives
that are not negated have to be checked to make sure they do not run forever.

e For ETL; formulas the opposite is true. Thus, negated automata connectives have to be
checked to have no infinite paths and non-negated automata may have infinite paths.

We start with the tight approach. We describe only the ETL; construction, the construction
for ETL; is similar. Given a subset U of ¢l(g) and the set rcl(g) we say that a formula f € rcl(g)
appears positive in U if f € U and appears negative in U if f € U. In the tight approach we use
states from {—1,1,2}719), Each state P € {—1,1,2}"19) represents a subset U of cl(g). For a
formula f € rcl(g), if f’s coordinate in P is —1 it indicates that f € U, if f’s coordinate in P
is 1 it indicates that f € U, and if f’s coordinate in P is 2 it indicates that f € U and that the
nondeterministic automaton is following f also in the book-keeping component.

In order to simplify notations, the states of the nondeterministic automaton consist of two
subsets of 27¢t(9), Converting our automaton to an automaton using {—1,1, 2}”1(9), as above, is
straightforward.

We first confine the set 27U9) to the set of all consistent subsets: if a disjunction is a member
of the set, one of the disjuncts has to be in the set as well, and if a conjunction is a member of the

18

set, both conjuncts have to be in the set.

cons(Z’“d(g)) = {P € 2rel(9)

V(fi A fa) €rcl(g), fiNfao € P < fr € Pand fo € P
V(fiV fa) €rcl(g), iVIfo€P <= fi€Por freP

Given A, = (2PR9% cl(g), g, A, F), we build the nondeterministic automaton
B = (2PROP S x S, Sy x {0}, A, S x {B}), where

o S = cons(2U9)
o Sy ={teS|getoryg¢t}, the initial states are the ones for which g¢ is checked to be true.
e The transition function A’ is defined for all (P, Q) € S x S and a C PROP as follows.

— If Q =0, then (P',Q") € A'((P,Q),a) iff all the following conditions hold.

*x For all p € PROP, we have p € P iff p € a.
* For all automata connectives A(f1, ..., fp) with A = (X, S, So, p, F).

- If A; € P, then there exists some a; € ¥ and ¢ € p(s,a;) such that f; € P or
fj & P and either t € F or A, € P'.

- If A ¢ P, then for all A; such that t € p(s,a;) where f; € P or f; ¢ P, we have
A ¢ P
* Q' ={As|As € P'}.
— If Q # 0 then (P, Q") € A'((P,Q), a) iff all the following conditions hold.
*x For all p € PROP, we have p € P iff p € a.
* For all automata connectives A(f1, ..., fp) with A = (X, S, So, p, F).
- If A; € P and A, ¢ @, then there exists some a; € ¥ and ¢ € p(s, a;) such that
fj € Por f; ¢ P and either t € F or A, € P'.
- If A ¢ P, then for all A; such that t € p(s,a;) where f; € P or f; ¢ P, we have
A ¢ P
- If A; € P and A, € @, then there exists some a; € ¥ and ¢ € p(s, a;) such that
fj € Por fj ¢ P and either t € F or A, € P' and A; € Q.

The transition function requires that every positive automaton is followed by one possible
successor and every negative automaton is followed by all possible successors. The book-
keeping component makes sure that all paths of positive automata are finite.

Claim 2.5.2 L(B) = L(Ay)

Proof: The proof is quite straightforward. Proving that L(B) is a subset of L(A), we divide
the run of the nondeterministic automaton B into a tree run of Ay, the acceptance condition of B
makes sure that no path in the tree, labeled with positive automata, is infinite. Proving that L(A)
is a subset of L(B), we build a Hintikka Sequence for the word and use the alternating automaton
to prove that it satisfies the transition function of B and that the book-keeping component is empty
infinitely often. We now dive into the details:

Suppose w € L(B). Then there exists an accepting run (P, Qo), (P1,Q1),... of B on w. We
build by induction a run tree (T,V') of A, on w such that the set of labels of the nodes in level i

19

in the tree is a subset of P; or formally for all nodes = € T such that |z| = ¢ either V(z) € P; or
V(z) ¢ P;. We start by V(e) = g, since (Py, Qo) € So, g € Py or g ¢ Py. Given a node z € T the
label of = is either an automaton in some state or a proposition.

e If the label is a (negated) proposition V(z) € PROP then by induction assumption it is in
Py, and we can conclude that V(z) € wyy (V(2) & wyy))-

e If the label is some automaton V() = As; where the connective is A(f1, ..., fn) and Ay does
not appear in the book-keeping component, A5 ¢ Q|,|, then there has to be some t € p(s, a;)
such that f; € Py or f_] ¢ Py, and either ¢ € F and then we are done or A; € Py 41. In
this case we add a successor to z in T and label it V(z) = A;. We take apart f; (or f;) and
get its propositional and automata components, propositions are fulfilled (they are fulfilled
in the run of B) and automata parts are handled as if labeling z.

e If the label is some automaton V(z) = As where the connective is A(fy, ..., f,) and A appears
in the book-keeping component, A; € Q,|, then if As has a successor in the accepting set
(i.e. for some f; € P, or fi ¢ P there is t € p(s,a;) such that ¢t € F) then we only handle
the propositional and automata requirements for f;. Otherwise we follow the path inside the
book-keeping component in a similar way to the previous item and handle f; (or f;).

e If the label is some negative automaton V (z) = As where the connective is A(f1, ..., f,) then
for all ¢ such that t € p(s,a;) and f; € Py or f_] ¢ P, we add successors to x and label them
Ay. For fi, ..., fn, if f; appears in Py, it is satisfied and if f; does not appear in P, take f_]
apart and handle its components just like before.

The resulting tree is a run tree of .A;. We have to make sure it is accepting.

Assume by contradiction that there is an infinite path xg,x1,... labeled by positive automata.
From the construction of the run tree, if the label of z; is some automaton A, then the label of
Ziy1 is either the same automaton in another state or an automaton that is nested inside the first.
The level of nesting is bounded hence there exists a point ¢ in the path beyond which all the labels
belong to the same automaton connective. Since in the run of B the book-keeping component @)
is empty infinitely often there is a point j > ¢ such that ; = (). Hence the label of x4, is found
in Qj4+1. From the construction of the run tree we can deduce that for all £ > j the label of x;, is
found in Q. Since Q; = () for infinitely many /s this is a contradiction.

Suppose w € L(Ay) then there exists an accepting run tree (7,V) of Ay on w. Furthermore
from the previous parts for every formula f in the closure of ¢ we know that (w,i) |= f <= w>; €
L(Ay). Hence if a formula f is true at point ¢ of the sequence (w,i) = f, then there exists an
accepting run tree (TJZL7 VJ}) of Ay on the word wx;. In particular (T}, V) is the run of Ay on w.

We construct the run of B in two stages first we construct the Hintikka sequence that provides
for the first component of every ordered pair. Then we complete the second component - the book-
keeping component. For the Hintikka sequence we take all the formulas that are true at the time
P, ={f € rc(g)|(w,i) = f}. Obviously, for every formula f in P; there exists an accepting run
(T}, Vf‘) and for every formula f not in P; there exists an accepting run (T%, VT‘) This is sufficient
to prove that the sequence Py, Py, ... is a projection of a run of B on the first component of S x S.
Obviously for all 4, P; is consistent and if some automaton connective As(f1, ..., f) appears in P,
then either s has an accepting state reachable from it or we can take from the run (les, les) the
element A; appearing in level 1 of the tree and we know that it is satisfied at time ¢ + 1. Similarly

20

if an automaton connective does not appear in a state all the possible successors do not appear in
the following state.

We are left with the ‘acceptance’ part of the run of B. This is built by induction from empty set
to empty set. The first state)y is empty by definition. Given); empty in the run we know that
Qi+1 holds all the positive automata held in P;yq. Denote Q;11 = {Al ...,A@’p}. For every one

517

of these automata there is an accepting run (Ti;]fl, ijl). Since the paths with positive automata
Sj 8
1

in these trees are finite we unite the positive successors of Aj , ...,A@’p into the sequence of @s.
Obviously the @s are subsets of the true formulas. We can gather that for some [> ¢, the set @
is empty again.]

In the loose approach, we describe only the ETL; construction, the construction for ETL; is
similar. We reduce the state set to {—2,—1,0,1}"19). Given a subset U C cl(g), the state
Pe{-1,0,1, 2}’"‘3!(9) represents it. For a formula f € rcl(g) if f’s coordinate in P is —1 it indicates
that f € U, if f’s coordinate in P is 0 it indicates that f ¢ U and f ¢ U, if f’s coordinate in P
is 1 it indicates that f € U and if f’s coordinate in P is 2 it indicates that f € U and that the
nondeterministic automaton is following f also in the book-keeping component. For simplicity of
notation we use a separate book-keeping component.

We confine the set {—1,0,1}719) to the set of consistent subsets. Given aset P € {—1,0,1}"19),
we abuse notation and write f € P for Py =1 (i.e. f’s coordinate in P equals 1), fEP if Py = —1
and f ¢ P if Py = 0.

V(fi A fa) €rcl(g), iNfao € P= f; € Pand fo € P
rel(g)\ _ V(fiV fa) erclg), iVfoe P= fi€Por faeP
cons({=L 0N =Py n Ty € rdlg), i F5EP = AEP or fiEP
Y(f1V fa) € rellg), f1V fo€P = fLEP and fy€P

Given the alternating Biichi automaton A, = (2777 cl(g),g, A, F) we build the following
nondeterministic Biichi automaton B = (2PROP § x S Sy x {0}, A, S x {B}), where

o S =cons({-1,0,1})
e Sy ={t € Slg €tor g€t} The initial states are the ones for which g is checked to be true.
e The transition function A’ is defined for all (P, Q) € S x S and a C PROP as follows.

— IfQ =0, then (P',Q") € A'((P,Q),a) iff all the following conditions hold.
* For all p € PROP, we have p € P implies p € a, and p€P implies p ¢ a.
* For all automata connectives A(f1, ..., fp) with A = (X, S, So, p, F).
- If Ay € P, then there exists some a; € ¥ and ¢ € p(s,a;) such that f; € P or
[;€EP, and A, € P'.
- If A;€P, then for all A; such that ¢ € p(s,a;) where f; € P or f;EP or (f; ¢ P
and f; ¢ P), we have A,€P’.
*x Q' = {As|A€P'}.
— IfQ #0, then (P',Q") € A'((P,Q),a) iff all the following conditions hold.

21

* For all p € PROP, we have p € P implies p € a, and p€P implies p ¢ a.
* For all automata connectives A(f1, ..., f) with A = (X, S, So, p, F).
- If Ay € P, then there exists some a; € ¥ and ¢ € p(s,a;) such that f; € P or
fjgp, and A; € P'.
- If A;EP and Ay ¢ Q, then for all A; such that ¢ € p(s,a;) where f; € P or
J;€EP or (f; ¢ P and f; ¢ P), we have A,€P'.
- If A;EP and A €Q, then for all A; such that t € p(s,a;) where f; € P or f;EP
or (f; ¢ P and f; ¢ P), we have A;€P" and A,€Q".

The transition function requires that every positive automaton is followed by some successor
and every negative automaton is followed by all possible successors. For the subformulas
f1y -y fro of the automaton connective A(fy,..., fn), if in the current state P we do not care
about a formula f; (both the formula and its negation do not appear in the state), we assume
that it is correct.

Claim 2.5.3 L(B) = L(Ay)

Proof: Given a run of the nondeterministic automaton B, we turn it into a run of A and vice
versa.

Suppose w € L(B) then there exists an accepting run (P, Qo), (P1,Q1), of B on w. We build
by induction a run tree (T',V) of A, on w such that the set of labels of the nodes in level 7 in
the run tree is a subset of P;. Formally for all nodes € T such that |z| = i either V(z) € P; or
V(x)EP;. We start with V(e) = g, since Py € Sy either g € Py or gEP,. Given a node = € T the
label of = is either an automaton in some state or a proposition.

o If the label is a (negated) proposition then by the induction assumption it is in P, (not in

fj‘z‘) and V(I) € Wy (V(J})g’wm)

e If the label is some automaton V(x) = As where the connective is A(f1,..., fn) (positive
automata do not appear in tge book-keeping component), then there has to be some t €
p(s,a;) such that f; € Py or f;€P, and A; € Py41. We add a successor x - ¢ to z in T" and
label it V(z - ¢) = A;.

e If the label is some negative automaton V(x) = A, where the connective is A(f1, ..., f,) and
A, does not appear in the book-keeping component. For every formula f;:

— If we do not care about f; (f; ¢ P, and fi¢ P) then if p(s, a;) is empty we are done.
Otherwise for every t € p(s, a;), Ay appears in P, ;. We add a successor to z and label
it by Aq.

— If fi is positive (f; € P or EEPM) we handle A; just like when we do not care about
e

— If f; is negative (f; € Py or fi€P,) then as P, is consistent, all subformulas of f; are
cared about. We handle these subformulas as if labeling .

e If the label is some negative automaton V (x) = As; where the connective is A(f1, ..., f) and
A, appears in the book-keeping component. We handle it just like we handled a negative
automaton not appearing in the book-keeping component but follow its descendents in Q|11
rather than in P 4.

22

Assume by way of contradiction that the resulting tree is not accepting. In this case there is an
infinite path of negative automata. Just like in the previous proof of the tight case this path will
finally get trapped in the book-keeping component. Since the book-keeping component is empty
infinitely often, this is a contradiction.

Assume w € L(Ay). In order to show that w is accepted also by B we can use the previous
proof for the tight nondeterministic automaton. We simply use B as a tight automaton, disallowing
the dont care state. Thus the proof is a simple variant of the proof in the tight case (for ETLy)
and we omit it.]

2.6 From ETL, formulas to nondeterministic Buchi automata

In this section we construct for an ETL, formula g a nondeterministic Biichi automaton B such that
L(B) = B(g). The work in this section is very similar to the work in the previous sections. Given
a nondeterministic Biichi automaton we show how to construct an alternating Biichi automaton
accepting the same language and an alternating Biichi automaton accepting the complementary
language. Given an ETL, formula g, we build the alternating Biichi automaton A, such that
L(g) = L(Ay). Finally, we transform .4, to a nondeterministic Biichi automaton.

2.6.1 From nondeterministic Biichi automata to alternating Biichi automata

As in the first part, we start by building two alternating automata. Given a nondeterministic Biichi
automaton we build an alternating automaton that accepts the same language and an alternating
automaton that accepts the complementary language. We use the constructions given in [KV97]
and [Tho98]. We use the following notations S’ = SU{sp}, [k] = {0,1,...,k} and Odd(P) = {i € PJi
is odd}.
Given a nondeterministic Biichi automaton A = (X, S, Sy, p, '), we define
o A% = (3,5 s, p* F), where
- pa(807 a’) = VSESO VpEp(s,a) p
- pa(87 a) = VpEp(s,a)p
o A = (2,5 x [2n], (s0,2n),5% S x Odd([2n])), where
- ﬁa((sm 2”)7 a) = /\sESo /\pEp(s,a) Vi’SZn(pa Zl)

. . _J Npepsim) Vir<i(psi') s ¢ Foriis even
p ((Sal)’a) B { false s € F and 7 is odd

Claim 2.6.1 L(A%) = L(A)
Proof: A run of A corresponds to a tree of A* and vice versa. L]
Claim 2.6.2 L(A%) = x¥\ L(A)

Proof: The proof is given in [KV97]. Considerable parts of the proof appear with variations also
here. For an idea of the proof see Claim 2.6.4, Claim 3.2.4 and Subsection 3.5.1. L]

23

2.6.2 Construction of the alternating automaton

Given an ETL, formula g, we construct an alternating automaton A, such that L(Ay) = L(g).
We use the closure of the formula cl(g) as the state set for this alternating automaton. Recall
the definition of closure given for ETL; and ETL; formulas (Section 2.2). Recall also that for
a formula g, the formula § denotes the negative normal form of —g and the function replacei as
defined in Section 2.3.

Theorem 2.6.3 For every ETL, formula g of length n there exists an alternating Bucht automaton
Ay such that L(Ay) = L(g) and A, has O(n?) states.

Given an ETL, formula g, we define A, = (297 cl(g), g, A, F), where the transition function
A and the acceptance set F are defined as follows.

e The transition function A : ¢l(g) x 2PROP — B (cl(g)) is defined as in previous sections. We
recall part of the definition.

— A(Aa(g1, s) m) = Viti [Algi, ™) Areplace?a (p7 (s0, a:))]
One of the formulas g; is checked to hold and the computation of A continues. One run
visits F' infinitely often.

- A(Za(gla ey gn)7 7r) = /\i”:l[replace%a (pa((sm 2”)7 al)) \ A(Ea W)]
Either g; does not hold or the computation of A" has to continue. No possible run visits
F infinitely often.

e The acceptance set is

Fo {A“|A”— (2,8, s0,p% F*) €cl(g) and s € F*}
U {A “)|A = (3,8 x [2n],(s0,2n),p% S x Odd([2n])) € cl(g) and i is odd}

Unlike finite and looping acceptance automata for which it was sufficient to check only the
positive or only the negative, here we have to check that both the negative and the positive automata
visit infinitely often their acceptance sets.

Claim 2.6.4 L(A,) = L(g)

Proof: Prove by induction on the structure of the formula:

e Given the automaton connective A(f1,..., f,) where A = (2,5, Sy, p, F) with the alternating
equivalent A* = (X, 5", sg, p*, F%).

A word w = wywy... is a model for A(f1, ..., fn) if there is an accepting run o = sg, sy, ... of A
where for all k£ > 0 there is some a;, € ¥ such that (w,k) |= f;, and sg41 € p(sg,aj,) and o
visits F' infinitely often.

By the induction assumption (w,k) {= fj, if and only if Ay, —accepts the word wxy if and
only if A(fj,,wy) has an accepting run tree.

We know that A5, | |= replaceS. (pa(sk, aj,)), s0 we can build the run tree of Ay:

— Label the root A§

24

a
Sk’

— Given a leaf zjp in the tree labeled by A¢ , by the induction assumption there is an
accepting run tree of Afjk on wsy concatenate this tree under z; (with xj serving as

the root) and add an extra leaf x,1 labeled Asy

— Other leaves are parts of the subtree of Ay, for some [. As we concatenated an accepting
run of Ay, we do not have to worry about these leaves. If a leaf appears in this subtree
the transition associated with it has to be p(V(z), a)) = true.

This is obviously a run of Ay, .. r,)- There is only one infinite path we have to worry about.
This path is A% | A% ... which obviously visits the accepting set infinitely often.

507 510 °°
A word w = wowy... is in L(Ayy, . f,)) if there is an accepting run tree (7,V). There has
to be in (7, V) an infinite path xo, w1, ... labeled A§ , A% ,.... The sequence sg, sy, ... is an
accepting run of A(fy,..., fn) on w.

Given the automaton connective = A(f1, ..., fn) where A = (X, S, s¢, p, F') with the alternating
complement A“ = (X, 8" x [2n], (s0,2n), 7%, S x Odd([2n])).

Suppose w = wpw;... does not satisfy —A(f1,..., fn). Then there exists an accepting run
o = 80, 51,... such that for all £ > 0 there is a;, € ¥ that (w,k) = f;, and sg11 € p(sk,aj,)
that visits F infinitely often.

By contradiction suppose that (T,V) is an accepting run tree of A_ (s, . r) on w and build
by induction a path that does not visit F infinitely often:

a

— The root € is labeled Z(SO,Qn)

a

(s1,81)7 " A(sm,im)

We know that Ay, —accepts wxy, hence there is no accepting tree for A(fj.sWm) s0
a

(Sm+1,8m+1)

— Given a path Z‘(lso,io),z

there is a node under Z‘(lsmim) labeled A

a

We showed that Z‘(’SOJO),Z(SLH), ... is a path in the tree (7,V'). The sequence g, i1, ... is not
increasing, therefore there exists some [such that for all p > [, 4, = 7. Since ¢ is an
accepting run of A(f1,..., f) it visits F' infinitely often and there is no way that ¢; is odd.
The path we found in the tree visits S x Odd([2n]) finitely often and the computation of A is
rejecting. We have shown that L(A) C L(—A(f1,..., fn)) The other direction follows closely
the proofs given in [KV97].

Suppose w € L(—A(f1,..., fn)), there is no accepting run of A(fi, ..., fn) on w. For all possible
runs
— either 0 = sg,51,... is infinite and for all & > 0 there is some aj € X such that
(w, k) = fj, and sg41 € p(sk,a;,) and lim(c) N F =0
— Or 0 = Sp, 51, ..., Sy 1s finite and for all 0 < k < m there is some aj, such that (w, k) = f;,
and sg41 € p(sg,aj,) and Va; € B, (w,m) = fi.
We build the following labeled tree (7, V):

— The root ¢ is labeled sg

— Given a leaf x € G labeled V(z) define SONS, = {s|3a; € ¥ s.t. s € p(V(2),a;) and
(w,|z|) = f;}. Let [SONS;| = m then add z1, ..., x,, as successors of « and label them
with the values in SONS,.

25

Given a tree run (7,,V) we define the subtree of z € T as (1}, V) where T, = {y|lz -y € T'}
and V,(y) = V(x-y). A tree (T, V) is defined memoryless if for every two nodes in the same
level with the same label the subtrees below them are identical. Formally for all z,y € T
such that |z| = |y| and V(z) = V(y), (T4, Ve) = (Ty,Vy). In a memoryless tree it seems a
waste to hold more than a subset of S’ per level. Since our tree is memoryless (see definition
of SONS,) we can convert it into a Directed Acyclic Graph G = (V, E) where V C S’ x IN
and E C [J2,(S" x {i}) x (8" x {i +1}):

V=A{(V(x), |lz|)|x € T}

E={((V(z),|z|), V(y),|y])|z,y € T and y successor of = in T'}

From here on the proof is given in [KV97], we give here the main claims and the definitions
used there.

Given a (possibly finite) DAG G’ C G. We define a vertex (s,i) as eventually safe in G’
iff only finitely many vertices in G’ are reachable from (s,7). We define a vertex (s,i) as
currently safe in G iff all the vertices in G’ reachable from (s,%) are not members of F X IN .

Now define the inductive sequence:
- Gp=G
— Gait1 = Goi \ {(s,1)|(s,17) is eventually safe in Go;}

— Gaito = Gaiy1 \ {(s,7)|(s,7) is currently safe in Go;y1}

Lemma 2.6.5 [KV97| For every i > 0, there exists l; such that for all | > [;, there are at
most n — i vertices of the form (s,i) in Gy;

By the lemma Go, is finite and hence Gy, is empty.
Index the vertices in G in the following way:

— 21, if the vertex is eventually safe in Go;

— 2¢ + 1 if the vertex is currently safe in Gg; 1

All indices are in the range [2n].

Lemma 2.6.6 [KV97] For every two wvertices (s,i) and (s',i") in G, if (s',i') is reachable
from (s,i) then rank(s',i') < rank(s,i).

Lemma 2.6.7 [KV97| In every infinite path in G, there ezists a vertez (s,i) with an odd rank
such that all the vertices (s',i") in the path that are reachable from (s,i) have rank(s',i') =
rank(s,i).

We get back from [KV97] to the tree (7,V) and recall that the successors of x in T' are
SONS, = {s|s € p(V(x),a;) A (w,|z|) = f;}. We modify the tree:
— For the root € we change the label to Z‘(ISO,%)

— For every vertex x # € we change the label to include its ranking: Z?V(w)7rank(v(x)7‘w‘)).
Since the rank is in the range [2n], Z?V(z),rank(V(w),\zD) is indeed a state of the automaton.

26

Now for every = we append the following subtree. For all a; € ¥ such that (w, |z|) & f; we
add the computation of Af—j (with z as the root).

We first show that this is indeed a run of A_ 4.y, . 1), i-e. all nodes in the tree supply the
transition function and that it is an accepting run:

— The root € is labeled by Z[(lsoﬂn)
We divide the successors of € to those labeled by A and those labeled by subformulas
of f1,..., fn. Since 2n is the maximal possible index all A* are indexed below 2n and the
transition is legal. The successors labeled by subformulas of fi,..., f, were added as a
complete tree and obviously have legal transitions.

— For a node z labeled by Z[(ls’i)
We divide the successors of z to those labeled by A and those labeled by subformulas of
fiy ey fn. The node z and a successor labeled A“ are derived from two adjacent nodes in
the tree (7, V). From Lemma 2.6.6 all successors of have index smaller than i or equal
to it. We also know that there is no way that s € F' and ¢ is odd. Again subformulas of
f1, .-y frn. should not concern us.

The tree supplies the transition of the automaton.

By lemma 2.6.7, each infinite path of nodes labeled by A has a constant index from some
level onward and that index is odd. The run is accepting.

O

2.6.3 From alternating Biichi automata to nondeterministic Biichi automata

Given an ETL, formula g we constructed the alternating automaton .4,. In this section, given the
alternating automaton A4, we use the construction in [MH84] and the methods discussed in the
previous sections to transform it to a nondeterministic automaton. Let |g| = n, then |cI(g)| = 2n?,
implementing [MH84, Isl96] results in 320" gtates.

Theorem 2.6.8 For every ETL, formula g of length n there exists a tight (loose) nondeterministic
Biichi automaton B such that L(B) = L(g) and B has 20 19(") states.

Kupferman and Vardi [KV97] note that there is no point in using all the subsets of ¢l(g). There
is no need to hold a subset with the same state of an automaton with two different ranks. We can
combine the tight and loose approaches with this observation to improve the construction.

In order to do so we extend the definition of a memoryless run to include two states with
different indices.

Definition 1 A rank memoryless run tree (T, V') of Ay is a memoryless run that has no two nodes
in the same level labeled by Z?sﬂ-) and Z‘(lsﬂv,) where i # i’ and A° € cl(g).

Kupferman and Vardi [KV97]| noted that a single run of a negative automaton results in a rank-
memoryless run. In our case negative automata that are nested within other automata are spawned
in different stages of the run. We cannot claim that the run is rank-memoryless and have to adapt
it to be so.

27

Claim 2.6.9 There is an accepting run of Ay on w iff there is a rank memoryless accepting run
of Ay on w

Proof: In a rank memoryless accepting run we have to replace every occurrence of Z(S,i) with no
predecessor labeled by A by Z(s72n). This does not affect the limit nature of the run and it remains
an accepting run.

Given an accepting run (7, V') we transform it into a rank memoryless run by induction on the
levels: For level 0 the tree is rank memoryless. Assume it is so until level ¢+ and show for 1+ 1: Given
two vertices in level 7 4 1 labeled Z[(ls’i) and Z[(ls’i,). W.lo.g i < i’ and we replace the subtree under
Z&m (including Z[(lsyi,)) with the subtree under Z?S7Z~). The limit tree (77, V") is a rank memoryless
tree and is still a valid run of A. It is left to prove that (77, V') is accepting.

Assume by contradiction that (77, V’) is not accepting, then there has to be an infinite path
Ty, T1,... in the tree that does not visit the acceptance set from some point onward. All the labels
of this path are automata and if z; is the parent of x;;; in the tree either their labels belong
to the same automaton or the automaton labeling x;;; is nested within the automaton labeling
x;. Since the nesting degree is bounded, from some point in the path all labels are states of the
same automaton. Hence either the path is labeled by a positive automaton that does not visit its
accepting set or it is labeled by a negative automaton that is trapped in an even rank k. We show
that either way a suffix of the path is included in the original tree.

In the first case, since there is a point from which the path is labeled by a positive automaton
it cannot be the case that changes have been made to nodes in this path itself. Hence from this
point onward the path is included in (7',V') and it has to be visiting F' infinitely often.

In the second case all the labels belong from some point to the same negative automaton. We
know as well that the ranks associated with this path are descending. The rank gets trapped in
some k. Formally there exists some ¢ > 0 such that for all [> ¢ the label of z; is Z?s“k) for some
automaton A and state s; € S. Show by induction that Z(si,k),z(w,k), ... are the labels of a path
in (7,V):

e Since A,) appears in (I, V') there is some node in level ¢ in T with the same label. Let
Y0, Y1, ---, ¥; be the path from the root to that node.

® Suppose Yo, Y1, - Ym, M > i is a path in (7,V) and the labels of y;, ...,y are labeled
A(si,k)a S A(sm,k)a .
Below y,, there is a node labeled A, ., r) for some f < k. But we know that in (1", v")

appears in level m + 1 a node with label Z(sm_;,_l,k)a hence k is the minimal rank appearing in

(T, V) in level m + 1 associated with s,,41. We conclude that f = k.

Since (7, V) is an accepting run such a path cannot appear in it and we can conclude that (77, V")
is also accepting. U

We combine the rank memoryless with the tight approach. We reduce the closure to contain
one polarity of every formula rcl(g) without ranks. We build a nondeterministic Biichi automaton
with the consistent subsets of {F2m, ..., F0, —=2m, ..., —0,1,2}7"9) _ Here m is the maximal number
of states of all automata connectives A(f1, ..., f,) nested in the formula g. Using this notation 1
indicates that the positive of the formula should be checked, —i indicates that the negative of the

28

formula ranked ¢ should be checked, 2 indicates that the positive of the formula should be checked
and appears in the book-keeping component and Fi indicates that the negative of the formula
ranked ¢ should be checked and appears in the book-keeping component. A subset S is consistent
if (a) boolean consistency of conjunctions and disjunctions is kept (b) a formula that is not an
automaton connective always appears with rank 1 or —1.

We define the Biichi automaton B = (2FPROP S) A’ o) where S is the set of consistent
subsets of {F2m, ...,2}719) S, contains all subsets in which g appears in the positive (rank 1)
or g appears in the negative (rank —2m,...,—0) and no state appears with ranks 2, F2m, ..., F0.
The acceptance set « includes all the sets in which no element is ranked 2, F2m, ..., 70 (the book-
keeping component is empty). The transition function requires that every positive automaton is
followed by one possible successor and every negative automaton ranked ¢ is followed by all possible
successors ranked below i. We abuse notation and write (P, Q) as a state of B. For f € rcl(g)
and A, an automaton connective in rcl(g) we abuse notation and write f € P meaning Py = 1
(i.e. f’s coordinate in P equals 1), A; € P and Ay ¢ @ meaning Py, =1, A, € P and A, € Q
meaning Py, = 2 (Only automata might appear in @), (f,i) ¢ P meaning Py = —i ((As,1) ¢ P
and A(s i) ¢ Q for automata connectives) and (As,4) ¢ P and A(s i) € @ meaning Py, = :Fz

The transition function A’ is defined for all (P, Q) € S and a C PROP as follows.

e If Q =0, then (P',Q") € A'((P,Q), a) iff all the following conditions hold.

— For all p € PROP, we have p € P iff p € a.
— For all automata connectives A(f1, ..., f) with A = (X, S, So, p, F).
* If Ay € P, then there exists some a; € ¥ and ¢t € p(s,a;) such that f; € P or for
some i, (f;,4) ¢ P and A; € P'.
* If (As,2) ¢ P, then for all A; such that ¢t € p(s,a;) where f; € P or for some [,
(f5,) g_f P, there exists some p < i and (A, p) ¢ P'.
oy {As|As € P and s ¢ F}
Y {Aupl(Ay,p) ¢ P'and p is even}

o If Q #0, then (P',Q") € A'((P,Q),a) iff all the following conditions hold.

— For all p € PROP, we have p € P iff p € a.
— For all automata connectives A(f1, ..., f) with A = (X, S, So, p, F).
* If Ay € P and A; ¢ @, then there exists some a; € ¥ and ¢t € p(s,a;) such that
fj € P or for some i, (fj,i) ¢ P and A, € P'.
* If (Ay,9) ¢ P and A(, ;) ¢ Q, then for all Ay such that ¢ € p(s, a;) where f; € P or
for some 1, (fj,1) ¢ P, there exists some p < i and (A;,p) ¢ P

* If A, € P and A, € Q, then there exists some a; € ¥ and ¢t € p(s,a;) such that
f; € P or for some i, (fj,i) ¢ P and A; € P’ and either t € F or 4; € Q'

* If (Ag,0) ¢ P and A(s i) € @, then for all A; such that ¢ € p(s,a;) where f; € P or
for some I, (f;,1) ¢ P, there exists some p < i and (A, p) ¢ P’ and either p is odd
or Z(t,p) S Ql.

Claim 2.6.10 L(Ay) = L(B)

29

The proof is similar to the proof of claim 2.5.2. Proving that L(B) C L(A,) we convert an accepting
run of B to an accepting run tree of A,. Proving that L(A,) C L(B) we build a Hintikka sequence
for B and use the runs of A, and Ay where f is a subformula of g to prove that the Hintikka
sequence is indeed an accepting run of B.

We combine rank memoryless with the loose approach. The state set of the new automaton
is the consistent sets in {F2m, ..., F0, —2m, ..., —0,0,1,2}"U9) Again a state is consistent if (a)
boolean consistency of disjunctions and conjunctions is kept and (b) subformulas that are not
automata connectives appear with ranks —0,0 and 1 only.

For f € rel(g) and A, an automaton connective in rcl(g) we abuse notations and write f € P
meaning Py =1 (i.e. f’s coordinate in P equals 1), A, € P and A, ¢ Q meaning Py, =1, A, € P
and As € Q meaning Py, = 2, (f,i)€P meaning Py = —i, (As,1)€P and A, ;) ¢ @ meaning
Py, = —i, (As,9)€P and Z(s,z') € QQ meaning P4, = Fi and f ¢ P meaning Py = 0.

The nondeterministic Biichi automaton is B = (2PR9P S Sy, A’ o) where S is the set of
consistent sets in {F2m, ..., ¥0, —2m, ..., —0,0, 1, 2}"}1(9), Sp contains all the sets in which g appears
with rank 1 or g appears with some negative rank and the book-keeping component is empty. The
acceptance condition is all the states where the book-keeping component is empty.

The transition function A’ is defined for all (P, Q) € S and a C PROP as follows.
e If Q =0, then (P',Q") € A'((P,Q), a) iff all the following conditions hold.

— For all p € PROP, we have p € P implies p € a and p€EP implies p ¢ a.
— For all automata connectives A(f1, ..., f) with A = (X, S, So, p, F).
* If Ay € P, then there exists some a; € ¥ and ¢t € p(s,a;) such that f; € P or for
some ¢, (f;,7)€EP and A; € P'.
* If (Ag,7)EP, then for all A; such that t € p(s,a;) where f; € P or for some [,
(fj;1)EP or (f; ¢ P and f; ¢ P), there exists some p < ¢ and (A, p)EP’.
o=y {As]As € P and s ¢ F'}
7 {Ap)|(Ay,p)EP" and p is even}

o If Q #0, then (P',Q") € A'((P,Q), a) iff all the following conditions hold.

— For all p € PROP, we have p € P implies p € a and p€P implies p ¢ a.
— For all automata connectives A(f1, ..., f) with A = (X, S, So, p, F).
* If A, € P and A, ¢ Q, then there exists some a; € ¥ and ¢t € p(s,a;) such that
fj € P or for some i, (f;,7)€EP and A; € P'.
* If (As,7)EP and Z(M) ¢ @, then for all A; such that ¢ € p(s, a;) where f; € P or for
some [, (f;,1)€P or (f; ¢ P and f; ¢ P), there exists some p < ¢ and (A;,p)€EP".
* If A, € P and A, € Q, then there exists some a; € ¥ and ¢t € p(s,a;) such that
fj € P or for some i, (f;,7)€EP and A; € P" and either t € F or A; € Q'.
* If (As,7)EP and Z(s,i) € Q, then for all A; such that t € p(s,a;) where f; € P or
for some I, (f;,1)€P or (f; ¢ P and f; ¢ P), there exists some p < ¢ and (A, p)€EP’

and either p is odd or A,) € Q.
Claim 2.6.11 L(A,) = L(B)

The proof is similar to previous proofs and is omitted.

30

Chapter 3

Extending temporal logic with
alternating automata

As suggested in the last section of [VW94], we extend temporal logic with alternating automata, we
call this logic ET'L,. Since alternating automata are as expressive as nondeterministic automata,
the expressive power of ETL, is equal to that of ETL,!. Although alternating automata are
exponentially more succinct the translation from ET L, to nondeterministic Biichi automata has
the same complexity.

3.1 Definition of ETL,

Syntax Formulas are defined with respect to a set Prop of propositions.

e Every proposition p € Prop is a formula.
e If f1 and fy are formulas , then —f;, f1 V fo and fi A fo are formulas.

e For every alternating finite automaton A = (X, S, p, s, F) with £ = {a1,...,a,}. If fi1,..., fn
are formulas, then A(f1, ..., f) is a formula.

Semantics The satisfaction of a formula is defined with respect to a model 7 € (2P*97)% and a

location i € IN . Given an infinite word 7 € (2PRO7)% and a location i € IN we define satisfaction:
e For a proposition p € PROP, we have (7,i) =p iff p € m;.
o (m i) = —fy iff not (m,i) = fi.
o (mi) = fiVv foiff (m,0) | fior (i) = fo
o (mi) = fiA foiff (mi) = fi and (m,9) = f2

Consider an automaton A = (3, S, sp,p, F). The run of the formula A(fy,..., f,) over a word
7 starting at point ¢, is a finite or infinite S-labeled tree (7',V') such that V(e) = sy and for

!The expressiveness power of ETL;, ETL; and ETL, are all equal [VW94]

31

all nodes « € T there is some a; € ¥ such that (7,7 + |z]) = f; and the (possibly empty) set
P = {V(y)|y is a successor of z in T'} satisfies the transition p(V(z), a;).

A run is accepting if every infinite path of 7" visits F' infinitely often. We can now complete the
definition of semantics:

o (mi) = A(f1,..., fn) iff there is an accepting run of A(f1,..., f,) over 7 starting at .

3.2 Translating EFTL, formulas into nondeterministic Biichi automata

As in the case nondeterministic automata, given an ETL, formula we build a nondeterministic
Bichi automaton that accepts the same language. Again, this is done in two stages, first con-
struct an alternating Biichi automaton and then convert the alternating Biichi automaton into a
nondeterministic Biichi automaton.

3.2.1 Complementing an alternating automaton

We create for every automaton connective an alternating automaton accepting the same language
and an alternating automaton accepting the complementary language. The one accepting the same
language is already given to us. We build an automaton accepting the complementary language.

Given an alternating automaton A = (3, S, sg, p, F') the dual automaton is a co-Biichi automa-
ton accepting the complementary language. Kupferman and Vardi [KV97] build a weak alternating
automaton that accepts the complementary language (a weak alternating automaton is both Biichi
and co-Biichi). We use the same notation used in previous chapter.

A" = (%, 8 x [2n], (s0,2n),7% 5" x Odd([2n]))

In order to define the transition function we follow the notation used in [KV97]. We define the
function release : BT(S) x [2n] — B*(S x [2n]). Given a formula ¢ € BT(S), and a rank
i € [2n], the formula release(,) is obtained from ¢ by replacing an atom s € S by the disjunction
Vir<i(5,4"). Recall the definition of p¢, the dual of p (obtained from p by replacing A with V and
vice versa).

—a . release(p'(s,m),i) s ¢ F or i is even
p((s,z),w)z{ false) siFandiisodd

Claim 3.2.1 L(A) = X%\ L(A)
Proof: The proof is given in [KV97] U

3.2.2 Construction of the alternating Biichi automaton

Given an ETL, formula g, we construct an alternating automaton A4 such that L(A,) = L(g).

Theorem 3.2.2 For every ET L, formula g of length n there exists an alternating Buchi automaton
Ay such that L(A,) = L(g) and A, has O(n?) states.

32

For the state set of this alternating automaton we use the closure of the formula cl(g). Recall
the definition of closure from previous sections. Again all formulas in the closure are assumed to
be in negative normal form. Recall also that the function replacei takes a formula ¢ and replaces
an element s by A,.

Given an ETL, formula g, we define A, = (2RO cl(g), g, A, F), where the transition function
A and the acceptance set F are defined as follows.

e The transition function A : ¢l(g) x 2PROP — B (cl(g)) is defined as in previous sections. We
recall part of the definition.

= A(A(g15 -, 9n)s @) = Vizi [Algi, @) Areplace?y (p(so, a:))]
— A(A(g1, - gn), @) = Nizy[replace(p((s0,2n), ai)) V A(gi, a)]

e The acceptance set is

U {As|A=(%,S,s0,p, F) € cl(g) and s € F}
{A0|A=(X,S x [2n], (s0,2n),p,S x Odd([2n])) € cl(g) and i is odd}

Claim 3.2.3 L(A,) = L(g)

Proof: The proof is very similar to the proof in the case of ETL,. The fact that a memoryless
run exists was proven in [EJ91]. L

3.2.3 From alternating Bichi automata to nondeterministic Biichi automata

As in the previous chapters, we can use [MHS84] to convert the alternating automaton into a
nondeterministic automaton. Given a formula g with |g| = n, the size of A, is O(n?) and we get a
nondeterministic automaton with 20("*) states.

Again this can be reduced to 20 ©°9(?) In order to use the methods of the previous section
we have to show a rank-memoryless run. Recall Definition 1. No negative automaton can appear
in the same state with two different ranks. In the previous chapter the deterministic nature of the
run of negative automata was used in the proof.

An alternating parity automaton is a tuple P = (X, Q, qo, p, &) where ¥, @Q, qo and p are like
before and « = {Fy, ..., F,,} is a subset of 2¢ . A run of a parity automaton on a word w is defined
like the run of an alternating Biichi automaton. The run is accepting if for every infinite path in
the run of P there is an even 7 such that the path visits F; infinitely often and visits Fy for ¢’ < i
only finitely often.

Claim 3.2.4 There is an accepting run of Ay on w iff there is a rank memoryless accepting run

of Ay on w.

Proof: Once again a rank memoryless run is a run. In order to show the other direction we
would like to combine Biichi and co-Biichi conditions in one automaton. We use alternating parity
automata.

33

Given an ETL, formula g we built an alternating Biichi automaton .4, by incorporating
into it alternating automata for positive automata formulas and alternating automata for nega-
tive automata formulas. Using the parity acceptance condition we can avoid the complementa-
tion construction for alternating automata as following. Given a negative automaton connective
—=A(f1, ..., fn) we can build A? the dual of A, a co-Biichi automaton.

Now for every positive automaton connective we have an equivalent alternating Biichi automa-
ton and for every negative automaton connective we have an equivalent co-Biichi automaton. We
plug the co-Biichi automaton into the alternating parity automaton instead of the complementary
automaton we have built. We define the acceptance set o = {F}, Fy, F3} of the parity automaton
as follows.

For every positive automaton A = (X, Q, qo, p, F') we unite with Fy the set {A;]s € F} and
with Fj the set {Ag|s ¢ F'}. This way if F' is visited infinitely often F, will be visited infinitely
often otherwise F3 will be visited infinitely often and F» only finitely often. For every negative
automaton (co-Biichi) A% = (X, Q, o, p?, F), we unite with F| the set {A%s € F} and with F, the
set {A%|s ¢ F}. This way if F is visited infinitely often Fy will be visited infinitely often, otherwise
F, will be visited infinitely often. Or more formally

Fi = {AYA(f1, oo fu) € cllg), A = (5,5, 50,p% F) and s € F}

F, = {Ag|A(f17 7fn) € Cl(g)a At = (E,S, 507:0d7F> and s ¢ F}
2=U [a() € ellg), A= (5.5, 50,0 F) and s € F)
A

F3 = {AS|A(flaafn) € d(g) = (E,S, 305 P, F) and s ¢ F}

The formula ¢ defines a natural partial order on the elements in ¢l(g). Enhance this order
into a well order g; < g2 < ... < g; = g. We are interested only in automata connectives because
propositions and boolean disjunctions and conjunctions do not appear as labels in the run tree of
Ay (except maybe as the label of the root).

Take a node in the run tree of the parity automaton A,. If this node is labeled by some formula
f € cl(g) then the successors of will be labeled by formulas that are before f in the above order.
That is V(z-c) < V(x). As every descending chain is finite in the order we know that every infinite
path eventually gets trapped, i.e. for every path 7 there exists some node x € 7 such that for all
y € IN * such that = -y € m, we have V(z) < V(z-y) and V(z-y) < V(x). As only automata
and propositions label the nodes in the run tree of Ag, this means that the label of z and all its
descendents on the path 7 are labeled by some automaton connective with different states. This
fact ensures that the acceptance condition of the parity automaton is sound.

Emerson and Jutla [EJ91] have shown that alternating parity automata have memoryless runs.
So we can restrict our attention to memoryless runs of the parity automaton. Now we convert it
into a Biichi automaton by applying the ranking method of Kupferman and Vardi [KV97]. Every
negative automaton is augmented with a ranking just like we had in the first place.

We show how to replace an automaton connective appearing in F; and Fy by a connective
appearing in Fy and F3. After Fy is left empty we have a parity automaton A = (2PROF S sy, A,)
with a = {F'y,F'3}. The language of this automaton is equal to the language of the Biichi
automaton A’ = (2PROP S 54 A, F'y). Take an accepting run of A, every infinite path visits F'y
infinitely often, hence it is also an accepting run of A’. Take an accepting run of A’, every infinite
path visits F’y infinitely often, hence it is also an accepting run of A, the minimal set in « a path
visits is even.

34

Given a memoryless accepting run tree (7,V) of A, on a word w we convert it to a DAG
run G = (V, E) where V = {(V(x),|z|)|x € T} and E = {(V (), |z]), (V(y),|y]))|z,y € T and y
successor of x in T'}.

We are only interested in the co-Biichi automaton A% = (3, Q, qo, p¢, F). Given a DAG G’ C G,
we change the definitions accordingly. A vertex (s,i) is eventually safe in G' iff only finitely many
vertices labeled by states of A? (i.e. for some state ¢ € Q, Ag) are reachable in G’ from (s,7). A
vertex (s,i) is currently safe in G’ iff all the vertices labeled by states of A% reachable in G’ from
(s,4) are not members of F x IN . Notice that automata nested within A(fy, ..., f,,) in the formula
g are eventually safe. Indeed, no vertex labeled by A is reachable from them.

The inductive sequence:
® Go = G
o Goir1 =G\ {(5,7)|(s,1) is currently safe in Gy;}

o Goiro = Gaigr1 \ {(5,7)|(s,i) is eventually safe in Ga;11}

Lemma 3.2.1 [KV97] For every i > 0, there exists l; such that for all I > l;, there are at most
n — i vertices of the form (A%,7) in Go;.

As we changed the definition of currently safe and eventually safe, the same proof from [KV97]
works also here.

We give the vertices labeled by states of S ranks as in [KV97]. Rank (A%,1) by 2i if the vertex
is eventually safe in Gy;. Rank (A%,1) by 2i + 1 if the vertex is currently safe in Gy; 1.

Lemma 2.6.6 and Lemma 2.6.7 apply also here. In the definition of A, we replace the states of
type A% by A‘(is) where i € [2n]. We replace AZO by Al(iqo 2n) and modify the transition of A, for
the new states:

d | release(A(A%,a),i) s ¢ F oriis even
Al 0) = { false s € F and 7 is odd

We remove from F; and Fy all the states of Ad, add to Fy the states A‘(is) where 7 is odd, and add
to F3 the states A(, ;) where ¢ is even.

As we started from a memoryless run of the parity automaton and handled all the states of the
negative automata together, we conclude that the run of the resulting Biichi automaton is rank
memoryless. L]

Theorem 3.2.5 For every ET L, formula g of length n there exists a tight (loose) nondeterministic
Biichi automaton B such that L(B) = L(g) and B has 200" 109(0) stqtes.

Given the alternating automaton A, the construction of the nondeterministic automaton B is
very similar to the construction described in the previous chapter.

3.3 Extending temporal logic with 2-way alternating automata

The final stage is to enhance the logic with 2-way alternating automata, we call this logic ET Lo,.
Once again given an ET Ly, formula ¢ we build a nondeterministic Biichi automaton that accepts

35

exactly the models of the formula. The stages are similar to the work in previous chapters and
proceeds as follows. We complement a 2-way alternating Biichi automaton. We build a 2-way
alternating Biichi automaton that accepts the models of g. We then show that we cannot convert a
2-way alternating automaton into a 1-way alternating automaton avoiding an exponential blowup.
Consequently, we use a larger alphabet as extra memory. We define a 1-way alternating automaton
over a larger alphabet and a projection from the larger alphabet on the original alphabet. The
projection of the language of the 1-way alternating automaton is the language of the 2-way alter-
nating automaton. Our final step is translating the alternating automaton into a nondeterministic
automaton.

3.4 Definition of ET'L,,

Syntax Formulas are defined with respect to a set Prop of propositions.

e Every proposition p € Prop is a formula.
e If fi and fy are formulas , then —f;, fi V fo and fi A fy are formulas.

e For every 2-way alternating finite automaton A = (3,5, p, so, F) with ¥ = {ay,...,a,}. If
f1y ey fro are formulas, then A(f1,..., f,) is a formula.

Semantics The satisfaction of a formula is defined with respect to a model = € (2PR9P)¥ and a

location i € IN . Given an infinite word 7 € (2P*7)“ and a location i € IN we define satisfaction:
e For a proposition p € PROP, we have (m,i) |=p iff p € m;.
o (m,i) = —f1 iff not (m,i) = fi.
o (mi) = fiV foiff (m, i) = fior (m,i) = fa.
o (mi) = fiAfoiff (m,0) = fi and (7,9) |= fa.

Consider an automaton A = (2,5, sg, p, F'). The run of the formula A(fi,..., f,) over a word w
starting at point 4, is a finite or infinite (S x IN)-labeled tree (7', V') such that V'(e) = (sp,7) and for
allz € T, let V() = (s, k), then there is some a; € ¥ such that (7, k) |= f; and the (possibly empty)
set P = {(s',)|y successor of z in T and V(y) = (s',k + ')} satisfies the transition p(V(z), a;).

The run is accepting if every infinite path of 1" visits F' X IN infinitely often. We can complete
the definition of semantics:

o (m,i) = A(f1,..., fn) iff there is an accepting run of A(f1,..., f,) over m starting at .

3.5 Translating ETL,, formulas into 2-way alternating Biichi automata

Similar to the previous sections, given a E'T Ly, formula g, we construct a 2-way alternating automa-
ton Ay such that L(Ay) = L(g). Our first step is to given a 2-way alternating Biichi automaton,
construct a 2-way alternating Biichi automaton accepting the complementary language.

36

3.5.1 Complementing a 2-way alternating automaton

We claim that the construction of Kupferman and Vardi [KV97] works also here. Once again
we repeat the main claims and definitions. This time we have to prove some of the claims. Let
A= (Z,Q,q,p, F) be a 2-way alternating Biichi automaton. Its dual A = (X, Q, qo, p%, F) is a
2-way alternating co-Biichi automaton accepting the complementary language. We analyze the run
of A in order to construct a 2-way alternating Biichi automaton that accepts the same language
as A? (the complement of A).

Theorem 2 If a 2-way co-Biichi automaton A’ accepts a word w, then there exists a memoryless
accepting run of A’ on w.

Proof: Emerson and Jutla [EJ91] showed that if a 1-way co-Biichi automaton accepts a word
w, then there exists a memoryless accepting run of the automaton on w. Their proof consists of
building a ranking function that depends only on the future of the run. The same proof works also
for 2-way runs. L]

Given a 2-way alternating co-Biichi automaton A = (X,Q, qo, p, F') and an accepting run (7,V)
of A on a word w, we can represent the run using a directed (probably cyclic) graph G where
V={V(z)|lzr €T} and E = {(V(z),V(y))|z,y € T and y successor of z in T'}. Given a node z € T
with label V(z) = (s,1), the node z relates to letter ¢ of the input word. As the automaton is a
2-way automaton the successors of x may relate to letter ¢ again, go backwards to read ¢ — 1 or go
forward to read letter ¢ + 1. Thus, V is still a subset of x IN but FE is a subset of

N (Q x {i}) x (@ x {i +1}))
UZ, [U (@ x {ih) x (@ x {i})
(Q x {i+1}) x (@ x {i}))

Once again given a (possibly finite) directed graph G’ C G. We define a vertex (s,) as eventually
safe in G' iff only finitely many vertices in G’ are reachable from (s,7). We define a vertex (s,) as
currently safe in G' iff all the vertices in G’ reachable from (s,7) are not members of F x IN .

Now define the inductive sequence:
® Go =G
o Goir1 =Gy \ {(s,9)|(s,1) is eventually safe in Gy;}

e Gyito = Goit1 \ {(s,7)|(s,7) is currently safe in Gg;1}

Lemma 3.5.1 [KV97] For every i > 0, there exists l; such that for all I > [;, there are at most
n — i vertices of the form (s,i) in Go;

Proof: We follow the proofin [KV97]. The induction base case is immediate. Assume the lemma’s
requirement holds for ¢. Consider Gy;, in the case it is finite, then Gg;41 is empty, Go;y2 is empty
as well, and we are done. Otherwise, there must exist some currently safe vertex in Gg;4+1. Assume
by contradiction that Gg; is infinite and no vertex in Gg;41 is currently safe. Since G; is infinite
s0 is G9;41 and every vertex in Go; 11 has at least one successor. Consider some vertex (qo,lp) in

37

Goit1. By the assumption it is not currently safe, so there is some vertex (qi,[;) reachable from
(qo,lo) where ¢; € F' is a member of the set F'. Let (g2,[2) be a successor of (¢1,[1), by assumption
(g2,12) is also not currently safe. We can continue and build by induction an infinite path in Gg;41
that visits F' infinitely often. But this path is also a path in (7, V') contradicting the assumption
that (7, V') is an accepting run.

We diverge here from the proof in [KV97]. Let (q,l) be a currently safe vertex in Gy;11. We
show that removing it and all its descendants results in a thinner graph. Denote the subgraph of
all the vertices reachable from (g,l) by G'. Since (g,1) is in G;11, G’ is infinite and all nodes in G’
are currently safe. We define an ordering on the nodes in G’ according to (a) the minimal distance
from the vertex (g¢,l) (b) the level in the graph (c) some ordering on Q. Obviously this is a well
order. Let G” be a subgraph of G’. G contains all vertices in G’ but every vertex has at most one
predecessor, the minimal predecessor in G’ according to the ordering. The graph G” is a tree.

There are no cycles in G”. A cycle cannot include (g,1), since it has no predecessors. Suppose
(¢',1") is the minimal node in a cycle. The shortest path from (¢,1) to (¢',I') in G’ cannot pass
through one of the nodes in the cycle. Hence (¢',1") does not choose any of the nodes in the cycle
as its predecessor.

The graph G” remains connected. Assume otherwise, there is a connected component that is
not reachable from (g,[). Take the minimal node in that connected component (¢’,1"). There is a
shortest path in G’, connecting (g,1) to (¢’,1"). The predecessor of (¢’,1') along this path cannot be
in the connected component of (¢’,1'), contradiction.

We have shown that G” is an infinite tree. By Konig’s lemma this tree contains an infinite
diverging path «, this path does not return to the same vertex twice. Define l;11 = maz(l,[;), we
know that for every k > l;;; the path « visits level k£ in the graph Gg;y;. All nodes on « are not
eventually safe in G'y; and are currently safe in Gg;41 hence they are not in Gy;42. We are done.

O

By the lemma, G, is finite and hence Gy, is empty.

Lemma 3.5.1 [KV97] For every two vertices (s,i) and (s',i') in G, if (s',i') is reachable from
(s,1) then rank(s',i") < rank(s,i).

Lemma 3.5.2 [KV97] In every infinite path in G, there exists a vertez (s,i) with an odd rank such
that all the vertices (s',1") in the path that are reachable from (s,i) have rank(s',i") = rank(s,1).

The proof of the above two Lemmas follows [KV97].

Given a 2-way alternating Biichi automaton A = (X, Q, qo, p, F') the complement automaton is
A= (%,Q x [2n],(q0,2n),7,Q x Odd([2n])) where p = release(p?) and p? is the dual of p.

3.5.2 Construction of the 2-way alternating Biichi automaton

We construct now a 2-way alternating Biichi automaton that accepts the set of models of an ET' Lo,
formula g. The method is similar to the constructions in previous sections.

Theorem 3.5.3 For every ET Lo, formula g of length n there exists an 2-way alternating Bichi
automaton A, such that L(Ay) = L(g) and A, has O(n?) states.

38

As before, the state set of the 2-way alternating automaton is the closure of the formula g.
Recall that the closure consists of formulas in negative normal form. We use the function replace?
defined in previous chapters.

Given the ET Ly, formula g, we define A, = (2PRO7 cl(g), g, A, F), where the transition func-
tion A and the acceptance set F are defined as follows.

e The transition function A : cl(g) x 2PROP — BT ({-1,0,1} x cl(g)) is defined by induction.

- 8 ={ s
true a
- Alp,a { false i i a
— A(g1 A g2, a) = (91,0) A(g2,0)
— Ag1V g2,a) = (91,0) V (92,0)
— A(A(g1, -+ 9n)s @) = Vizi[(gi,0) A replacel (p(so0, a;))]
— A(A(g15 -+ gn)s @) = Ny [replaceS(p((s0,2n), ai)) V (3, 0)]

e The acceptance set is

F_ U {As|A=(%,S,s0,p, F) € cl(g) and s € F}
{A0|A=(X,S x [2n],(s0,2n),p,S x Odd([2n])) € cl(g) and i is odd}

Note that here, unlike previous sections, instead of defining A recursively we spawn states that
read the same letter and check the correctness of a sub expression.

Claim 3.5.4 L(A,) = L(g)

Proof: We prove by induction on the structure of the formula g. Note that it is not enough
to simply walk on the parse tree of the formula g. This time if a process is spawned when the
automaton is reading w; it may go backwards to read the letters of w occuring before i. The
induction assumption is that if the automaton spawns a copy in state s reading letter w; this copy
accepts iff (w,7) = s. The proof for propositions and boolean connectives is immediate.

e For a formula g = A(¢1,...,g,) where A = (X, S, sg, p, F).

If (w, k) = A(g1, ..., gn) we know there exists an accepting run tree of A on w. The labels of
the tree T" are from the set S x IN . We convert this tree run into a tree run of A, starting
at letter wy. Assuming that A, is spawned reading letter wy, it may go further back until
wp. We also add the runs of Ay,. Note that this time we add the runs of Ay, as is, we take
the root of the run and add it under the node in the tree run of A, (and not unite the roots
like in previous cases).

The other direction is similar. Given an accepting tree run of A, starting from letter wy, from
the induction assumption an accepting run of Ay, starting from letter w; exists iff (w, j) = gi.
We can prune the tree to serve as a run tree of the formula g on the word w starting from k.

39

e For a formula G = =A(g1, ..., gn) where A = (X, S, 50, p, F) and A = (3, Sx[2n], (s9, 2n),p, Sx
Odd([2n])).

Suppose (w,k) = A(g1,...,9n). The accepting runs of A(gi,...,gn) on w starting at k
and A_ (g, .4, On w starting at k cannot co-exist. There are two paths so, sy, ... and
(s0,27), (81,11), .. the first in the run of A(g1, ..., g») and the second in the run of A_ 44, . 5.)-
The first should visit F' infinitely often and thus the second cannot be trapped in a set
S x {2i +1}. Hence L(AﬁA(ghwgn)) C L(A(g1y -y 9n))-

Given that there is no accepting run of A(g1, ..., g,) on w starting at k. We build by induction
a tree of states from S x IN . We start with (sg, k). We assume by induction that for a leaf
(s,1) the formula A4(g1,....,g,) does not hold on w (starting at). Obviously for (sg, k) the
assumption holds.

For a leaf x labeled (s,!), since (w,l) ¥ Ag(g1,....,9n) for every letter a; € X such that
(w, 1) = fj (that is (w,l) |= f;) there exists a set of states and directions {(s1, ¢1), ..., (s2,...c2)}
that satisfies the dual of the transition p(s,a;), [+¢; > 0 and (w,l + ¢;) & As, (91, ..., gn) for
all 4s. If such a set does not exist then (w,!) = As(g1, ..., gn) contrary to the assumption. So
for every letter a; such that (w,l) £ f; we add this set of successors to the leaf .

According to [EJ91] we can also find such a memoryless tree. We build the Directed Graph
just like in Section 3.5.1 and show that the we can rank the states with the set [2n].

Our last step is to complete the tree T" with ranks and with the subtrees of the computations
of g; when appropriate. The resulting tree is a valid run of A starting at k. The infinite
behavior of the tree supplies the acceptance condition S x Odd([2n]).

O

This completes the construction of A,. We review the options of converting 2-way automata to
1-way automata.

3.6 Transforming 2-way automata to 1-way automata

We would like now to convert the 2-way alternating Biichi automaton into a 1-way alternating
Biichi automaton. In order to give a uniform treatment to the different extended temporal logics,
we would like to continue working with alternating automata. As we show in Appendix A, given a
2-way nondeterministic Biichi automaton we can construct a 1-way alternating Biichi automaton
recognizing the same language. The number of states of the alternating automaton is polynomial
in the number of states of the nondeterministic one.

We would have liked to do a similar construction for 2-way alternating Biuchi automata. Thus,
given a 2-way alternating Biichi automaton, we want to construct an equivalent 1-way alternating
Biichi automaton of polynomial size. A lower bound by Birget [Bir93] claims that there is an
exponential gap between 2-way and 1-way alternating finite automata. We enhance this lower
bound to apply also for Biichi automata.

We would like to avoid an exponential blowup when transforming a 2-way alternating automaton
to a 1-way alternating automaton. In order to do so we use the alphabet as extra memory. Given
a 2-way automaton we construct a 1-way automaton over a larger alphabet and a homomorphism
between the two alphabets (see [HU87]). Birjet [Bir96] has shown that the language of a 2-way

40

alternating finite automaton is a homomorphic image of the language of a polynomial size 1-way
alternating finite automaton. We enhance this result to alternating Biichi automata.

3.6.1 A lower bound on the conversion of 2-way alternating automata to 1-way al-
ternating automata

Birjet [Bir93] showed that the best conversion from 2-way alternating finite automata to one-way
alternating automata is exponential. We enhance this result to alternating Biichi automata on
words.

Theorem 3 [Bir93] For every n there exists a language L C X* and a 2-way alternating finite
automaton with n states accepting L such that the minimal 1-way alternating finite automaton
accepting L has at least 2% states.

Assume that § ¢ . We prove the following two claims:

Claim 3.6.1 Given o two-way alternating finite automaton with n states accepting the language L,
one can construct a two-way alternating Bichi automaton accepting the language L - with O(n)
states.

Claim 3.6.2 Given a 1-way alternating Buchi automaton with n states accepting the language
L -4, one can construct a 1-way alternating finite automaton accepting L with O(n) states.

From the two claims the following corollary follows:

Corollary 4 For every n, there exists a language L C 3% and a 2-way alternating Bicht automaton
with n states accepting L such that o 1-way alternating Biuchi automaton accepting L has at least
29" states.

Proof: [Claim 3.6.1] Given a 2-way alternating finite automaton U = (X, Q, qo, p, F') accepting
L C ¥* we construct U' = (XU{#}, QU{as}, g0, 0, {@s}) accepting the language L-§“. The transition
function is defined:
p(g,a) ifg€Q and a# 4
(g, a) = (g,1) if (¢ € Forg=g;) and a =4
’ false ifq¢ Fand g # q; and a ={
false ifg=gqyand a#14
We show now that U’ accepts exactly L-4“. Given a finite word w € L there exists an accepting
run of U on w. Since the run is accepting it is a finite run and all its leaves are states from F. We
append an infinite path under each one of these vertices labeled by (gs, |w| + 7). The new infinite
tree is an accepting run of U’.
Given an accepting run of U’ on a word w € (L U {#})* we show that w = w'- §¥ for some
w' € L. Take the accepting run of U’, since the run is accepting every path visits ¢; infinitely often.
Since gy is a sink reading only f signs the word is of the form ¥* - §. Furthermore since gz moves
only forward we can prune all the infinite paths labeled by ¢; and get an accepting run of U. [

41

Proof: [Claim 3.6.2] Given an l-way alternating Biichi automaton A = (X U {t},Q, qo,p, F)
accepting L - #* we construct A" = (3,Q,qo,p', F') where p’ is the restriction of p to ¥ and
F' = {q|A? accepts £} (where A? is the automaton A with start state ¢).

An accepting run tree of A’ on a word w can be easily converted into an accepting run tree of
Aon w-4¥. An accepting run of A on a word w-$“ can be pruned into an accepting run tree of A’.
All the states appearing in level |w| in the tree have to appear in F’, they accept the suffix . [

3.7 From 2-way alternating Biichi automata to 1-way alternating Biichi au-
tomata

Given a 2-way alternating finite automaton A = (3,5, sg,p, F'), Birjet [Bir96] has shown that
there exists an alphabet ¥', a function p : ¥’ — ¥ and a 2-way alternating finite automaton
A= (X, 8 s, p/, F') such that if we enhance p to words in ¥'* and to subsets of ¥'* in the
natural way, p(L(A’)) = L(A). The number of states of A’ need not be more than polynomial in
the number of states of A.

We prove a similar result for 2-way alternating Biichi automata. Given a 2-way alternating
Biichi automaton A = (X, Q, qo, 0, F'), we give two alphabets. The alphabet of A, namely ¥ and
another alphabet A, that depends on the structure of A. We build a 1-way alternating automaton
B=(YxA,,Q,q0,F) whose alphabet is ¥ x A ,. As an homomorphism we use the projection
on the first component. More formally, we define the projection p; : ¥ x A, — X, as p(a,b) = a.
(enhanced to (X x A ,)“ and subsets of (¥ x A ,)“ in the natural way) such that p;(L(B)) = L(A).
In particular, A recognizes the empty language iff B recognizes the empty language.

3.7.1 The construction

The details follow Vardi [Var98]. As Vardi solved the problem of converting 2-way alternating
parity tree automata into 1-way nondeterministic parity tree automata we have to modify slightly
his work. To each letter of the alphabet we add a strategy, a way to satisfy the transition of A,
and an annotation, a finite representation of backward runs.

Let A=(X,Q,6,q0, F) be a 2-way alternating Biichi automaton.

Definition 5 A strategy for A is a mapping 7 : IN — 29<{=L0OLXQ " For eqeh label ¢ C Q x
{=1,0,1} x Q, define state(¢) = {u : (u,i,u’) € ¢}. The strategy T is on a word w if qo €
state(r(0)), and for all i € IN and each state q € state(7(i)), the set {(c,q')|(q,¢,¢") € (i)}
satisfies 6(q, w;).

A path in a strategy 7 is a finite or infinite sequence (0,qo), (i1,41), (42,¢2), ... of pairs from
IN x @ such that, either the path is infinite and for all j > 0, there is some ¢; € {-1,0,1}
such that (¢;,¢j,qj+1) € 7(¢;) and ;41 = i; + ¢;, or the path is finite (0, qp), ..., (im, ¢m) and for
all 0 < j < m, there is some ¢; € {—1,0,1} such that (gj,c¢j,qj41) € 7(45), ij41 = i; + ¢; and
8(qm,w;,,) = ‘true’. A path is defined accepting if it visits IN x F infinitely often or if it finite.
We say that 7 is accepting if all infinite paths in 7 are accepting.

Proposition 3.7.1 [Var98| A two-way alternating Biichi automaton accepts a word iff it has an
accepting strategy on the word.

42

An annotation for A is a mapping n: IN — 2@*<{LT}x@ T the following discussion we regard
1 < T as an ordering on the pair. We also use

(q) = T ifqeF
Xel) =Y L ifqe¢ F

the characteristic function of F'.

We say that 7 is an annotation of the strategy 7 (which in turn is on the word w) if the following
closure conditions hold for all z € IN .

—_

- if (¢, o, ¢') € n(2) and (¢, B, ¢") € n(i) then (¢, maz(, §),¢") € ni).

2. if (¢,0,¢') € 7(i) then (g, x.(¢'),q") € n().

3.iti >0, (¢,-1,¢") e 7(3), (¢, ,¢") €n(i —1) and (¢",1,¢"") € 7(i — 1) then
(q,mafﬁ(XF(Q')a X¢(4")),q") € n(0).

4. if (¢,1,4¢") € 7(3), (¢',,q") € n(i+1) and (¢",-1,¢") € 7(i + 1) then
(g, maz(x, ('), & xp(d")), 4") € n(i).

5.if i >0, (¢, —1

,¢") € 7(i) and (¢, 1,¢") € 7(i — 1) then (g, maz(x,(¢"), x,(¢")),d") € n(i).
)

6. if (¢,1,¢') € 7(i) and (¢', —=1,¢") € 7(i + 1) then (¢, max(x,(¢), x»(¢")),d") € n(3).

A downward path kin 1 is a sequence (i1, q1,t1), (é2, g2, t2), ... of triplets, where each ¢; is in IN ,
each ¢; is in @, each ¢; is either an element of 7(i;) or n(i;), and

e Either ¢; is (¢j,1,¢j41) and é;41 = i; + 1 in this case we record a visit to the accepting set if
gj+1 € F.

e Or t; is (¢j,®,qj+1) where o € {1, T} and ¢j41 = ¢; in this case we record a visit to the
accepting set if a = T.

A downward path can be finite, if the last triplet is (i, G, tm) and t,, = (¢, @, q) (i.e. the
path ends in a loop) or the last triplet is (i, @m,tm) and 8(gm,w;,,) = true. A finite path is
accepting in two cases. Let (4., Gm, ;) be the last triplet in the path, then it is accepting if either
0(qm,w;,,) = true or t,, = (¢, T,q). An infinite path is accepting if it visits the acceptance set
infinitely often.

Proposition 3.7.2 [Var98] A two-way alternating Bichi automaton accepts a word iff it has a
strateqy on the word and an accepting annotation of the strategy.

Given a 2-way alternating Biichi automaton A = (¥, Q, qo, 6, F'} we define two alphabets ASQ C
2@x{-1,0,1}xQ, Ay = 2@x{LT}x@ " Denote ' = ¥ x A x Af. We define three projections
1:Y =X, pp: Y — A and p; : ¥ — A%, the projections on the first, second and third
components. We enhance the projections in the natural way for infinite words and sets of infinite
words.
We build the 1-way alternating Biichi automaton B = (X', Q’, ¢, p, F') such that p,(L(B)) =
L(A). We build B in two stages. First B; makes sure that ps(w) is a strategy on pi(w) and that

43

p3(w) is an annotation of the strategy ps(w). Second we build By that checks that all downward
paths visit F' infinitely often.

We start with By. Most of the conditions B; has to check are local conditions. In order to
check the conditions of the strategy and the first two conditions of the annotation we can check each
entry (a,(,pn) € X', So we restrict ¥’ to include only the letters that supply these local conditions.
Consecution of the strategy and conditions 3-6 of the annotation involve relation between two
letters and are checked by Bj.

Let Bl = (EI; Ql;q(%7pl7 {Q%}> where

}qiﬁ»’m {e.¢)

_ c} xQ x A€,

Q=U (3% Qx {1y xQx (g}
{0} x @ x (LT} x Qx (€.¢)

. The four kinds of states are:

e The states ¢} and ¢f, when reading letter (a,(, 1) spawn all processes that check consecution

of the strategy and conditions 3-6 of the annotation. The state gj checks that go is in the
state set of the second element of the current letter. Both spawn ¢i to check recursively the
rest of the word.

The states labeled by ¢ check consecution of the strategy. If there is some state (¢,1,¢') in
the current strategy there should be a strategy for ¢’ in the next strategy. If there is no
strategy for ¢’ in the current strategy the next strategy should not contain states of the form

(Q7 _17 q,)

The states labeled by a represent a triple (¢, «, ¢') of the annotation that should belong (€)
or not belong (¢) to the third element of the current letter.

The states labeled by s represent a triple (¢, —1,¢’) of the strategy that should not belong to
the second element of the current letter.

The transition of B; is defined as following:

) true if ¢ € state({) or 6(q,a) = ‘true’
p((c, q, 6)7 (ay CMU’)) - { false Otherwise

| false if there exists ¢’ s.t. (¢, —1,q) € ¢
p(<ca q,%),(a,C,ﬂ)) - { true Oth@T’lU’iS@

true if (qq, «, €
(1,002, €). (0.C.) = { e e S

false if (q1,a,q2) € p

true if (q1,0,q2) ¢ p
¢
¢

p(<aa q1,x,q2, %)7 (aa Ca :U’))

p((57q17i7q27 ¢)7 (0’7C7u)) - { thZLZZB i Egizzzgz; ;

44

e Define consec(a,() = {q € Q|q ¢ state(¢) and 6(q,a) # true}.
Let ¢°(a,Cp) = A (e,)N A (cq,€)

q€consec(a,() (¢',1,9)€C
This represents the consecution of the strategy.

e Define ¢*(a,(,n) = A A A e, ¢, ,q", &)V (s,q",—1,¢", ¢)]
(21,4)€C (g9)¢p 9"€Q
where o = max(c/, x,.(¢), x,-(¢"")). This represents condition 3 of the annotation.

YORS A ((s,0,-1,¢,¢)V (a,q,0/,¢", €)]

(¢ .q")en (¢",1,4")eC 9€Q

where o/ = maz(«, x,.(¢'), XF(")). This represents condition 4 of the annotation.
) =

/\ /\ (Saqa_]-)qﬂag)
(¢9,1,9")€C (g,0,9")En
Where o = maz(x,(¢'), x»(¢")). This represents condition 5 of the annotation.

o Define ¢°(a,C,p)= A Al(s,q,-1,d,¢)V(a,q,2,¢",€)]
(¢',1,¢")eC 9€Q
Where o = max(x, (q'), x,(¢")). This represents condition 6 of the annotation.

qt A ¢°(a,¢) A @3 (a, ¢ pm) A dHa, ¢, p) A @P(a, ¢) A ¢(a, ¢) if go € state(C)

e Define ¢*(a,(

e Define ¢°(a,(, pt

o p(g5,(a, ¢ n) =
false Otherwise

e plat,(a,¢) =gl Ag%(a,) Ad*(a, ¢) A d*(a, ¢) A d®(a, ¢) A ¢B(a, ¢, p)

The consecution of the strategy checks that either the transition of a state is ‘true’ or the
computation has to continue. The correctness of the annotation conditions results from the following
simple logical equivalences:

©1 NP2 N3 — o4 = o1 A (—ps) = (mp2) V (—ps)

©1 NP2 N3 — @i = P1 Ny — pa V (—p3)

The state g} ensures that go has some strategy. Since qi is always spawned the strategy is on
the word and the annotation is of the strategy (other conditions are part of the alphabet).

We turn now to the second automaton. We define By = (X', Q x {L, T}, p, (g0, L), p2, F x {L}U
Q x {T}), where the transition function py is defined as follows.

. (¢, L,q) € por
false if J¢'st. (¢, a,q¢') € pand (¢, L,¢") €p

p2((g, @), (a, ¢, 1)) =
/\(q]_7q (ql J—)

/\(q,ﬁ, JER /\(q’ 1,¢")eC (¢", B)

Otherwise

There is one difference from the definition of a downward path. A downward path could
take O-steps, i.e. read a triple from the annotation and stay reading the same letter. From the
closure condition of the annotation we see that if (¢,«,q¢') € p and (¢, 3,¢") € p then so is
(¢, max(«, B),q") € p. If a downward path makes a finite sequence of steps reading the same
letter in w, (qo, @0, q1); s (¢m> Q¥m, Gm+1) and then taking a forward step (¢m+1, 1, @gm2) from the

45

strategy, we can model this behavior by (g0, maz(a;), gm+1) € p and (¢m+1,1, gm12) € ¢. If a
downward path makes an infinite sequence of steps reading the same letter in w there has to be
some state ¢/ appearing infinitely often in the sequence and by the same closure property there

exists (¢, ,¢') € p and (¢'8,q') € p.
We take now By and By and combine them to a single automaton B that is the conjunction of
the two.

3.7.2 From alternating Biuchi automata to nondeterministic Biichi automata

Recall that given a formula g of length n the 2-way alternating automaton A, = (2PRF cl(g), g, A, F)
has O(n?) states. Hence, the 1-way alternating automaton in this case has O(n?*) states. If we use
[MHS84| to convert this alternating automaton to a nondeterministic Biichi automaton, we get a
nondeterministic automaton with 20("*) states. We endeavor to reduce this to 20(7*leg(n)),

Theorem 3.7.1 For every ET Ly, formula g of length n there exists a nondeterministic Buchi
automaton B such that L(B) = L(g) and B has 20("*129() gtates.

We define the consistent subsets of ¢l(g) x {—1,0,1} x cl(g) (strategy) and of ¢l(g) x {L, T} x cl(g)
(annotation). Intuitively in a consistent subset there cannot appear a formula and its negation and
also a negative formula with more than one rank. We show that a rank memoryless run exists also
here. The strategy of such a run is consistent and the minimal annotation of that strategy is also
consistent.

We start with the strategy. For a subset ¢ C ¢l(g)x{—1,0,1}xcl(g), state(¢) = {q|(¢,¢,¢") € (}
and target(¢) = {(c,q")|(g,¢,q¢") € }. A subset ¢ is consistent if for every automaton connective

A(g15 ey gn):
1. If A, € state(C) then for all ranks 4, A, ;) ¢ state(()
2. If A, ;) € state(¢) then A, ¢ state(Q).
3. If A(y ;) € state(¢) then for all other ranks ¢’ # i, A(, ;) ¢ state(().
4. If (¢, Ay) € target(C) then for all ranks 4, (c, A, ;) ¢ target(¢)
5. If (¢, A, i) € target(C) then (¢, As) ¢ target(Q)
6. If (¢, Ay 5)) € target(¢) then for all other ranks i' # i, (¢, A(s) ¢ target(C)

Denote CON S the set of consistent subsets of ¢l(g) x {—1,0,1} x cl(g).

Definition 6 A rank memoryless strategy for A s a mapping 7 : IN — CONS. The rest of the
definition is similar to Definition 5.

The annotation is rank memoryless if it supplies similar conditions. For a subset u C cl(g) x

{L, T} xcl(g) define current(pu) = {s|3s’,a s.t. (s,a,8") € por (s',a,s) € p}. Consider the letter
Of 2,7 (a7 C) ILL)

1. If A, € current(p) then for all ranks i, A, ;) ¢ current(p)

46

2. If Z(sﬂ-) € current(p) then for no other rank ' # i, Z(Sm € current(pu)
3. If A(y;) € current(p) then A, ¢ current(p)
4. If A, € current(p) then A € state(()

5. If A(y ;) € current(u) then Ay, ;) € state(C)

We now show that A, has a rank memoryless run and that the strategy of this run and the
annotation of that strategy are also rank memoryless.

Claim 3.7.2 A two-way alternating Buchi automaton accepts an input w iff it has an accepting
rank memoryless run on w.

Proof: One direction is simple. A rank memoryless run is a run. We combine the proofs of Claim
3.2.4 and Lemma 3.5.1. We build an alternating parity automaton and show using the ordering
(1) distance from the root (2) level in the graph (3) some order on the state set how to get a rank
memoryless tree from the run of the parity automaton.]

The strategy applied by the automaton in this rank memoryless run is a rank memoryless strat-
egy. This strategy also supplies another condition. Given three consecutive letters
(@is Cis i)y (@ig1,s Ci1s it1), (@ig2, Giva, pite) we know that if (1, A ;) € target(¢;) and (=1, A(s 1)) €
target(Git2) then i =i’ (and A, ;) € state(Cit1)).

Given two annotations of the same strategy n; and 7, we know that their intersection 1 N7y
defined by n1 Nna(z) = m1(xz)Nn2(x) is also an annotation of the strategy. So if we take the minimal
annotation of the rank memoryless strategy it is rank memoryless by the following claim.

Claim 3.7.3 If a triple (q,«,q") appears in the minimal annotation of the letter w; with the strategy
of some Tun, there are states q and q' that read letter w; in that run.

Proof: We prove the claim by induction on the closure properties of the annotation.

1. For the condition: if (¢,a,¢") € n(é) and (¢', 8,¢") € n(4) then (g, maz(c, 8),¢") € n(i). By
induction in the run of A, there are state ¢ and ¢” reading letter w.

2. For the condition: if (¢,0,¢") € 7(i) then (¢, x,(¢'),¢") € n(é). The rank memoryless strategy
was obtained from the rank memoryless run, hence there is a state ¢ reading w; and it has a
successor ¢’ reading also w;.

3. For the condition: if i > 0, (¢,—1,¢") € 7(4), (¢',a,q¢") € n(i — 1) and (¢",1,¢") € 7(1 — 1)
then
(g, maz(x,.(¢), 0, x, (@), ¢"") € n(i). The state ¢ reading letter w; from the strategy. The
state ¢” reading w; 1 from the induction assumption and then by the strategy ¢"” reads w;.

4. For the condition: if (¢,1,¢") € 7(i), (¢',a,q¢") € n(i +1) and (¢",—-1,¢"") € 7(i + 1) then
(g, max(x,(¢"), @ x-(¢"),q") € n(i). Similar to condition number 3.

5. For the condition: ifi > 0, (¢,—1,¢') € 7(i) and (¢, 1,¢") € 7(i—1) then (¢, maz(x,(¢'), x»(¢")),q") €
n(i). States ¢ and ¢” reading letter w; from the strategy.

47

6. For the condition: if (¢,1,¢") € 7(i) and (¢', —1,¢") € 7(i+1) then (¢, maz(x.(¢"), x»(¢")),q") €
n(i). States ¢ and ¢” reading letter w; from the strategy.

(

Since the run is rank memoryless so is the annotation.

We further restrict the alphabet ¥’ to adhere to these new rules about the strategy and the
annotation.

Recall that given an alternating automaton B = (X,Q,qo,p, F) we get a nondeterministic
automaton N = (X, 29 x 29, o/, 29 x ()) where a state (P, Q) € 29 x 2% always conforms to Q C P.

The state set of Ay, denoted D, is the union of:
{40, 41}
{c} x c(g) x {€, ¢}
{a} x cl(g) x {L, T} x cl(g) x {€, ¢}

{s} xcl(g) x {=1} x cl(g) x {€, ¢}
c(g) x {L, T}

In order to understand which subsets of D will suffice, we analyze the transition. Take the
sequence (a1, (1, 1), (a2,(2, p2). The current letter read by the automaton is (a1, (y,u1). We have
to decide on the subset of states spawned to read (ag, (2, p2). We have to show that holding one
rank per automaton in this subset is enough.

Making the states labeled by ¢ (consecution of the strategy) memoryless is easy. We spawn a
state (c, As, ¢) (with no rank) only if this negative automaton does not appear at all in the current
strategy, and we spawn a state (c, Z(Sﬁv), ¢) if exactly this rank of the automaton A, appears in the
current strategy. In this case (c, Z(s,i), ¢) checks that only rank i of the automaton A, may appear
in the strategy of the next letter. The states (c, Z(Sﬁv), €) will be spawned with one rank only from
the consistency of the alphabet.

In order to show a similar result for the states labeled by s and by a we give different semantics
to states (s,q,—1,¢',¢) when they are part of ¢> and ¢®> and when they are part of ¢* and ¢°.
Hence we double the number of states by considering {s(35), 5,6} X cl(g) x {=1} x cl(g) x {¢}
Dealing with ¢3 and ¢° is a bit more complex than ¢* and ¢°.

We start with ¢*.

¢*a,Cpm) = N AN A s.¢,-1,,¢)V(a,q0,q¢" €)

(¢',a,9")ep (¢'",1,¢")e¢ 9€Q

The states ¢ and ¢" appear in current(u;) and target(¢y). Therefore if either of the two is a nega-
tive automaton, it may appear with only one rank. So all states of the form (s, ¢, —1,Z(s7j), ¢)
have j = i, similarly for (a,q, O/,A(SJ-), ¢). The state ¢ appears in a conjunction over all possible
states. If we take a negative automaton A in state r, either there exists some 7 such that A, ;
belongs to state((a) or for all is A, ;) does not belong to state((z). If the second is correct then

even if we do not give rank to (s(), Ar, —1,¢', ¢) the state will hold over (y. If the first is correct

48

then there is some rank 4 for which (3(476),Zr, —1,¢',¢) does not hold. We require that for the
same rank (a, A, o', ¢", €) will hold. But from the consistency of ¢, and ps the only possible rank
of A, appearing in s is i. We conclude that there is no need to rank the state g, we interpret
((46)> 0> —1,¢', &) as true only if ¢ does not appear at all in (. We interpret (a,q, ', ¢", €) as true
if some rank of g appears in us.

The analysis of ¢% is similar.

°la, ;)= N Als,0.-1,d,¢)V(a,q,0,¢", €)]

(¢',1,¢")eC 9@

Again g appears in all possible ranks and we interpret (3(476), q,—1,q', ¢) as true if ¢ does not appear
at all in (s.

$*a,(m) = N A A lad.o\q" &)V (s,q",-1,¢", &)

(¢,1,¢")eC (9,29)Ep ¢"€Q

In ¢? the state ¢’ appears in target({;) so it will have one rank only. For ¢” we again take conjunction
over all possible states. If we take a negative automaton A in state r, it either appears in ¢, with
one rank only or does not appear at all. If the second is the case, we are done. If the first is the case
then for this specific rank (s(35), Ar, —1,¢", ¢) will not hold. If it does not hold, (a,q’,a’,q", ¢)
has to hold. Since (» and po are consistent the only possible appearance of A, in uy is with the
same specific rank 7. So once again we do not have to mark the rank of ¢”, (5(375),ZT, -1,¢",¢) is
true if A, does not appear at all in (and (a,q’, o', A,, ¢) is true if A, does not appear at all in ps.

The state ¢" is somewhat more complex. Suppose ¢ = A,. Either (¢, «, A,) does not belong
to w1 for all ranks, or it does belong for exactly one rank. If the first is the case then we can define
(53,5),4" —1,A,, ¢) as true if no rank of A, appears in (. If some rank appears in (s then it must
be the case that for the same ¢”, (¢, ’,¢") ¢ ps. In the second case we record the rank of A, and
interpret (szs5),¢", —1, A(rq), €) as true over (y if for other ranks (¢”,—1,4,) does not appear in

Go-

¢5(07C;H) = /\ /\ (87q7_17q”7¢)

(2.1,9")eC (q,0,4")¢
The analysis of ¢° is similar. The state g appears in state(¢) and the state ¢” is similar to ¢’ in
¢*.
As the alphabet monitors the ranks of negative automata, in the book-keeping component we
have to follow only states from ¢l(g) x {1, T}. It is enough to consider {—2, —1,0,1,2}(9),

Concluding the last few paragraphs, given a formula ¢ of length |g| = n, the nondeterministic
Biichi automaton recognizing L(g) has 20(n’log(n)) gtates. Denote m as the maximal number of
states of an automaton connective in the formula g. Let K = {—2m, ..., —0,0,1} U{nr} with same
semantics as before?. A state is a five tuple (¢, C, S, A, P):

L g€ {q a1}
2. C € K{c}xrclgx{e,ﬁ}

2ng- - A negative automaton with no rank, for conditions 3 and 5 of the annotation and for the consistency of the

strategy

49

3. § € K1s@s)s@eltxrelg)x{-1}xrc(g)x{¢}
4. A€ K{a}xrcl(g)x{J_,T}chl(g)x{e,ﬁ}
5. Pe{-2,-1,0,1,2}7lo)x{LT}

The initial states impose no conditions on the strategy and the annotation of the first letter
(C, S, A consist of rank 0 only). The formula (g, L) appears in P and no state in P appears with
rank —2 or 2.

The acceptance set consists of all sets in which the book-keeping component in P is empty, i.e.
no state in P is ranked —2 or 2.

The transition combines the transitions of By and By with the last results on the rank memo-

rylessness.

50

Chapter 4

Conclusions

We have shown decision procedures for the logics ETLy, ETL; and ETL, proposed by Vardi,
Wolper and Sistla [WVS83]. Given an ET Ly (ETL;) formula of length n we give a nondeterministic
Bichi automaton with 3™ or 4™ states. The emptiness of this automaton can be checked in linear
nondeterministic space. Given an ETL, formula we build a nondeterministic Biichi automaton with
20(n log(n)) states. The emptiness of this automaton can be checked in O(n log(n)) nondeterministic
space.

We follow the suggestion of Wolper, Vardi and Sistla [WVS83] and augment temporal logic with
alternating automata. Given an AT'L formula of length n we build a nondeterministic automaton
with 200 leg(n) states.

Our final move is to add 2-way alternating automata to the logic. Given a 2ATL formula of
length n, its decision procedure is in O(n?log(n)) space. All three decision procedures are PSPACE-
complete, the first (ETL) from [VW94] and the latter two subsume the first. A summary of these
results can be found in Table 4.1.

Vardi [Var98] has shown how to convert 2-way alternating parity automata on trees to 1-way
nondeterministic parity automata on trees. The method used in Section 3.6 can be used to handle
2-way parity automata on trees. Thus, given a 2-way alternating parity automaton we can give an
equivalent 1-way alternating parity automaton (a projection of the language of the second is the
language of the first).

Vardi’s construction [Var98] includes strategy and annotation. The strategy is a way to satisfy
the transition of the automaton and the annotation is a finite representation of 2-way run segments.

Formula of length n | 2ABW | 1ABW | NBW |
ETL; 2n states 3™/ 4™ states
ETL, 2n states 3" / 4™ states
ETL, O(n?) states | 200" 109(n) states
ETL, O(n?) states | 2007 log(n)) states
ETLs, O(n?) states | O(n?) states | 20("109(0) states

Table 4.1: Summary of results

o1

The annotation includes also information about future 2-way run segments. If we use alternating
automata, the annotation can be restricted to data about the past alone (both on trees and on
words). Removing this part of the annotation requires augmenting the construction with parts
that check that such future run segments do exist. Such a part of the automaton will resemble the
construction of the 1-way alternating automaton in Appendix A.

52

Bibliography

[Bir93]
[Bir96]
[BLSO]
[CKS81]

[DFV99]

[EJ91]
[EL87]

[GPVWO5]

[HK96]

[HUS7]
[15196]
[Koz83]

[KV97]

[LPZ85]

[MH84]

J.C. Birget. State-complexity of finite-state devices, state compressibility and incompressibility.
Mathematical Systems Theory, 26(3):237-269, 1993.

J.C. Birget. Two-way automata and length-preserving homomorphisms. Mathematical Systems
Theory, 29(3):191-226, 1996.

J.A. Brzozowski and E. Leiss. Finite automata and sequential networks. Theoretical Computer
Science, 10:19-35, 1980.

A K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Association for
Computing Machinery, 28(1):114-133, January 1981.

N. Daniele, F.Guinchiglia, and M.Y. Vardi. Improved automata generation for linear temporal
logic. In Computer Aided Verification, Proc. 11th Int. Conference, volume 1633 of Lecture Notes
in Computer Science, pages 249-260. Springer-Verlag, 1999.

E.A. Emerson and C. Jutla. Tree automata, p-calculus and determinacy. In Proc. 32nd IEEE
Symposium on Foundations of Computer Science, pages 368-377, San Juan, October 1991.

E.A. Emerson and C.-L. Lei. Modalities for model checking: Branching time logic strikes back.
Science of Computer Programming, 8:275-306, 1987.

R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of
linear temporal logic. In P. Dembiski and M. Sredniawa, editors, Protocol Specification, Testing,
and Verification, pages 3—18. Chapman & Hall, August 1995.

G. Holzmann and O. Kupferman. Not checking for closure under stuttering. In The Spin
Verification System, pages 17-22. American Mathematical Society, 1996. Proc. 2nd International
SPIN Workshop.

J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Computa-
tion, chapter 2, pages 13-45. Addison-Wesley Publishing Company, 1987.

A. Isli. Converting a Biichi alternating automaton to a usual nondeterministic one. the Indian
Journal SADHANA, 21:213-228, 1996.

D. Kozen. Results on the propositional p-calculus. Theoretical Computer Science, 27:333-354,
1983.

O. Kupferman and M.Y. Vardi. Weak alternating automata are not that weak. In Proc. 5th Israeli
Symposium on Theory of Computing and Systems, pages 147-158. IEEE Computer Society Press,
1997.

O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of the past. In Logics of Programs, volume
193 of Lecture Notes in Computer Science, pages 196218, Brooklyn, June 1985. Springer-Verlag.

S. Miyano and T. Hayashi. Alternating finite automata on w-words. Theoretical Computer
Science, 32:321-330, 1984.

53

[Mic88]
[MP92]
[MS87]
[Pnu77]
[RS59]
[Safsg]
[She59]
[Str82]
[SV89]
[SVW87]
[Tho98]
[Var8g]

[Varg89]

[Var96]

[Var9g|

[VW94]

[Wil99]

[Wol83]

[WVS83]

M. Michel. Complementation is more difficult with automata on infinite words. CNET, Paris,
1988.

Z.Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer-Verlag, Berlin, January 1992.

D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. Theoretical Computer
Science, 54:267-276, 1987.

A. Puueli. The temporal logic of programs. In Proc. 18th IEEE Symposium on Foundation of
Computer Science, pages 46-57, 1977.

M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of Research
and Development, 3:115-125, 1959.

S. Safra. On the complexity of w-automata. In Proc. 29th IEEE Symposium on Foundations of
Computer Science, pages 319-327, White Plains, October 1988.

J. C. Shepherdson. The reduction of two-way automata to one-way automata. IBM Journal of
Research and Development, 3:198-200, 1959.

R.S. Streett. Propositional dynamic logic of looping and converse. Information and Control,
54:121-141, 1982.

S. Safra and M.Y. Vardi. On w-automata and temporal logic. In Proc. 21st ACM Symposium
on Theory of Computing, pages 127-137, Seattle, May 1989.

A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementation problem for Biichi automata with
applications to temporal logic. Theoretical Computer Science, 49:217-237, 1987.

W. Thomas. Complementation of Biichi automata revisited. Jewels are Forever, Contributions
on Theoretical Computer Science in Honor of Arto Salomaa, pages 109-122, 1998.

M.Y. Vardi. A temporal fixpoint calculus. In Proc. 15th ACM Symp. on Principles of Program-
ming Languages, pages 250-259, San Diego, January 1988.

M.Y. Vardi. Unified verification theory. In B. Baniegbal, H. Barringer, and A. Pnueli, editors,
Proc. Temporal Logic in Specification, volume 398, pages 202-212. Lecture Notes in Computer
Science, Springer-Verlag, 1989.

M.Y. Vardi. An automata-theoretic approach to linear temporal logic. In F. Moller and
G. Birtwistle, editors, Logics for Concurrency: Structure versus Automata, volume 1043 of
Lecture Notes in Computer Science, pages 238-266. Springer-Verlag, Berlin, 1996.

M.Y. Vardi. Reasoning about the past with two-way automata. In Proc. 25th International
Coll. on Automata, Languages, and Programming, volume 1443 of Lecture Notes in Computer
Science, pages 628—641. Springer-Verlag, Berlin, July 1998.

M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Computa-
tion, 115(1):1-37, November 1994.

T. Wilke. CTLT is exponentially more succinct than CTL. In C. Pandu Ragan, V. Raman,
and R. Ramanujam, editors, Proc. 19th conference on Foundations of Software Technology and
Theoretical Computer Science, volume 1738 of Lecture Notes in Computer Science, pages 110—
121. Springer-Verlag, 1999.

P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1-2):72-99,
1983.

P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about infinite computation paths. In Proc.
24th IEEE Symposium on Foundations of Computer Science, pages 185-194, Tucson, 1983.

54

Appendix A

Converting 2-way nondeterministic
automata to 1-way alternating
automata

We give a counstruction for converting 2-way nondeterministic automata to 1-way alternating au-
tomata. We first give a construction for finite automata. We enhance our construction to apply to
2-way nondeterministic Biichi, parity and Rabin automata on infinite words.

We use the fact that the run of the nondeterministic automaton goes back and forth along the
input word. We analyze the form such a run can take and recognize, using alternating automata,
when such a run exists.

Given a 2-way nondeterministic automaton with n states we build an equivalent 1-way al-
ternating automaton with O(n?) states. We also show how to build an alternating automaton
that recognizes the complementary language with the same size. Vardi [Var88] converted a 2-way
nondeterministic Biichi automaton directly into an exponential 1-way nondeterministic Biichi au-
tomaton. If we convert our alternating Biichi automata into a nondeterministic automata [MH84]
we get automata of the same size as in [Var88|.

A.1 Definitions

A 2-way nondeterministic automaton is a five-tuple A = (X, S, s¢, 6, F') where § : Sx¥ — 25%{~1,0,1}
is the transition function. We can run A either on finite words (2-way nondeterministic finite

automaton or 2NFA in short) or on infinite words (2-way nondeterministic Bichi automaton or
NBW in short).

A run on a finite word w = wy, ..., wy is a finite sequence of states and locations (qo, i), (q1,%1); -5 (@ms im) €
(S x{0,...,l +1})*. The pair (gj,%;) represents the automaton is in state ¢; reading letter i;. For-
mally, go = sp and 49 = 0, and for all 0 < j < m, we have i; € {0,...,{} and 4, € {0,...,0 + 1}.
Finally, for all 0 < j < m, we have (gj11,ij+1 — ;) € 6(gj, w;i;). A run is accepting if iy, = 1+ 1
and ¢, € F.

A run on an infinite word w = wqp, w1, ... is defined similarly as an infinite sequence. The
restriction on the locations is removed (for all j, the location ¢; can be every number in IN). In
Bichi automata, a run is accepting if it visits F' X IN infinitely often.

95

A 2-way nondeterministic parity (Rabin) automaton is a five tuple A = (X, S, s¢, 6, @) where
¥, S, sp and 6 are like before and o = {Fp, ..., F},, } is a subset of 2% (o = {(G1, B1), ..., (G, Bin)}
is a subset of 2% x 2%). The index of the automaton is the number of sets (pairs) in its acceptance
condition. A run is defined just like for a 2NBW. A run r of a parity automaton is accepting if
there exists an even 4, 0 < 7 < m such that r visits F; x IN infinitely often and for all i < i, we
have that r visits Fiy x IN only finitely often. A run r of a Rabin automaton is accepting if there
exists an ¢z, 0 < ¢ < m such that r visits G; x IN infinitely often and B; x IN only finitely often.

A 1-way alternating automaton is a five tuple B = (X, Q, so, A, F) where A : Sx ¥ — BT(Q) is
the transition function. Again we may run A on finite words (1AFA) or on infinite words (1ABW).

A run of B on a finite word w = wy...w; is a labeled tree (T',r) where r : T'— (). The maximal
depth in the tree is [+ 1. A node x labeled by s describes a copy of the automaton in state s
reading letter wy,|. The labels of a node and its successors have to satisfy the transition function
A. Formally, r(e) = so and for all nodes x with r(z) = s and A(s,w|,) = ¢ there is a (possibly
empty) set {s1,...,Sn} = ¢ such that for each state s; there is a successor of x labeled s;. The run
is accepting if all the leaves in depth [+ 1 are labeled by states from F.

A run of B on an infinite word w = wows... is defined similarly as an infinite labeled tree. A
run is accepting if all its infinite paths are labeled by F' infinitely often.

A.2 Automata on Finite Words

We start by transforming automata that run on finite words. We then enhance our method to
automata on infinite words.

Theorem A.2.1 For every 2NFA A = (%, S, so, p, F) with n states, there exist 1AFAs B and B’
with O(n?) states such that L(B) = L(A) and L(B') = ¥* \ L(A).

A.2.1 Removing ‘zero’ steps

A (-step in a run of a 2NFA is when two adjacent states in the run read the same letter. Formally,
in the run (so,%0), (51,%1), .-, (Sm,im), step j > 0 is a O-step if i; = ¢;_;.

Our first conversion is from A = (X, S, 50,6, F) with § : § x ¥ — 25*{=101} to an equivalent
A =(%,8,50,6', F) with §' : 8’ x © — 29*{=L1} There are no 0-steps in the run of the second.

We start by defining for each state s and alphabet letter a, the set C; of all states reachable
from s with 0 steps using letter a. We call C; the 0-closure of s and a.

C:={teS|3s1,.cce, s 8.t. 1 <k, s1 =5, s =t and (s;41,0) € 6(s;,a)}

Define ¢"(s,a) = | 6(t,a) and take 8’ = 6" N (S x {—1,1}) (i.e. remove all pairs of the form
teCs

S x {0}). This way the closure takes care of the 0-steps and A’ takes steps either forward or
backward.

Claim A.2.2 L(A) = L(A)

56

Proof: Suppose A accepts w. Let r = (s9,0),..., (Sm,%m) be an accepting run of A on w. We
turn 7 into a run 7’ of A’ on w by pruning 0-steps: if i; = ¢;_; simply remove (s;,4;) from the run.
It is easy to see that 7’ is an accepting run of A’ on w.

Suppose A’ accepts w. Let 1’ = (s9,0), ..., (S, %m) be an accepting run of A" on w. We append
the 0-steps from the closure of each state to complete a run of A on w. L]

A.2.2 Two-way runs

From this point on we consider only 2NFAs with no 0-steps. We use A = (X, S, s¢, 6, F') to denote
the 2NFA and B = (X, Q, 50, A, F') to denote its equivalent 1AFA®.

Recall that a run of A is a sequence r = (s¢,0), (s1,%1), (52,92), .., (Sm, im) of pairs of states and
locations, where s; is the state and ¢; is the location of the automaton in the word w. We refer
to each state as a forward or backward state according to its predecessor in the run. If it resulted
from a backward movement it is a backward state and if from a forward movement it is a forward
state. Formally, (s;,7;) is a forward state if ¢; = 4;_; + 1 and backward state if i; =4;_; — 1. The
first state (sg,0) is defined to be a forward state.

We will be only interested in runs in which the same state in the same position do no repeat
twice during the run.

Definition 7 Simple Run
A run r = (80,0),(81,%1), (52,92), ey (S, i) 18 stmple if for all j and k such that j < k, either
Sj # Sk OT ij # Ug.

Claim A.2.1 There exists an accepting run of A on w iff there exists a simple accepting run of A
on w.

Proof: A simple run is a run. Given an accepting run r = (sg,0), (s1,41), (52,%2), .-, (S, i) Of
A on w, we construct a simple run of A on w. If r is not simple, there are some 7 and k such that
Jj < k, sj = s and ij = iy, consider the sequence (s9,0),...,(55,%5), (Sky» ik+1)s o (Sm, im). Since
(Sk41,0k+1 — k) € O(Sk,a;,) and O(sk,a;,) = 0(sj,a;;) this sequence is still a run. The last state
Sm 1s a member of F' and 4,, = |w| hence the run is accepting. Since the run is finite, finitely many
repetitions of the above operation result in a simple run of A on w. L]

Given the 2NFA A our goal is to construct the 1AFA B recognizing the same language. In
Figure A.la we see that a run of A takes the form of a ‘zigzag’. Our one-way automaton will read
words moving forward and accept if such a ‘zigzag’ run exists. In Figure A.la we see that there
are two transitions using aj. The first (s2,1) € 6(s1,a1) and the second (s4,1) € 6(s3,a1). In
the one-way sweep we would like to make sure that s3 indeed resulted from sy and that the run
continuing from s3 to s4 and further is accepting. Hence when in state s; reading letter a; we guess
that there is a part of the run coming from the future and spawn two processes. The first checks
that s; indeed results in s3 and the second ensures that the part ss, sq, ... of the run is accepting.

Hence the state set of the alternating automaton will be @ = SU (S x S). A state s € Q
represents a part of the run that is only looking forward (s4 in Figure A.1a). A pair state (s1,s3) € Q

!Note that B uses the acceptance set of A.

57

50

- The run P
0
s3 S1 <:::::
t1 T
sS4 -
s5
. P

The word ss
agp al a2 a3
t3

Figure A.1: (a) A zigzag run (b) The transition at the singleton state ¢

represents a part of the run that consists of a forward moving state and a backward moving state
(s1 and s3 in Figure A.la). Such a pair ensures that there is a run segment linking the forward
state to the backward state. We introduce one modification, since s3 is a backward state (i.e.
(s3,—1) € 6(s2,a2)) it makes sense to associate it with as and not with a;. As the alternating
automaton reads a; (when in state s1), it guesses that s3 comes from the future and changes
direction. The alternating automaton then spawns two processes: the first, s4 and the second,
(s2,s3), and both read ay as their next letter. Then it is easier to check that (s3,—1) € 6(s2,a2).

A.2.3 The Construction

The transition at a singleton state We define the transitions of B in two stages. First we
define transitions from a singleton state. When in a singleton state ¢t € @) reading letter a; (See
Figure A.1b) the alternating automaton guesses that there are going to be k more visits to letter
a;j in the rest of the run (as the run is simple k£ can not be larger than the number of states of
the 2NFA A, |S| = n). We refer to the states reading letter a; according to the order they appear
in the run as sq,...,s,. We assume that all states that read letters prior to a; have already been
taken care of, hence s, ..., s; themselves are backward states (i.e. (s;,—1) € 6(pi,a;41) for some
pi). They read the letter a; and move forward (there exists some ¢; such that (¢;,1) € 6(s;,a;)).
Denote the successors of sq, ..., Sk by 1, ..., tx. Hence the alternating automaton has to verify that
there is a run segment connecting the successor of ¢ (denoted ty) to s; (we assume by induction
that all states reading letters before a; have been taken care of, this run segment should not go
back to letters before a;). Similarly verify that a run segment connects ¢; to sy, etc. In general the
automaton checks that there is a part of the run connecting ¢; to s;4+1. Finally, from ¢ the run has
to go on moving forward and reach location |w| in an accepting state.

58

Given a state ¢t and an alphabet letter a, consider the set R! of all possible sequences of states
of length at most 2n — 1 where no two states in an even place (forward states) are equal and no
two states in an odd place (backward states) are equal. We further demand that the first state
in the sequence be a successor of ¢t ((tp,1) € 6(t,a)) and similarly that ¢; be a successor of s;
((t;,1) € 6(s4,a)). Formally

0<k<n

(t071) € 6(t7 a)

Vi < 7, 82'7'58]' andti;«étj
Vi7 (tw 1) € 6(8%@)

RZ: < tp,S1,t1, s Sk, Lk >

The transition of B chooses one of these sequences and ensures that all promises are kept, i.e.
there exists a run segment connecting ¢;_; to s;.

A(t,a) = \/ (to,s1) A (t1,82) A oo A (tg—1, Sk) A tg
<to,.tx>ERL

The transition at a pair state When the alternating automaton is in a pair state (¢, s) reading
letter a; it tries to find a run segment connecting ¢ to s using only the suffix a;...a},—1. We view
t as a forward state reading a; and s as a backward state reading a;_1 (Again (s,—1) € 6(p, a;)).
As shown in Figure A.2a, the run segment connecting ¢ to s might visit letter a; but should not
visit aj—1.

Figure A.2b provides a more detailed example. The automaton in state (¢,s) guesses that the
run segment linking ¢ to s visits ay twice. It guesses that the states reading letter ay are s; and
s9. The automaton further guesses that the predecessor of s is s3 ((s,—1) € 6(s3,a2)) and that the
successors of ¢, s1 and so are tg, t1 and to respectively. The alternating automaton spawns three
processes: (o, s1), (t1,s2) and (tg, s3) all reading letter a; ;. Each of these pair states has to find
a run segment connecting the two states.

The run

The word

s ap a1 a2 a3

Figure A.2: (a) Different connecting segments (b) The transition at the pair state (¢, s)

We now define the transition from state in S xS. Given a state (¢, s) and an alphabet letter a, we
define the set R,(It’s) of all possible sequences of states of length at most 2n where no two states in an

59

even position (forward states) are equal and no two states in an odd position (backward states) are
equal. We further demand that the first state in the sequence be a successor of t ((tg,1) € 6(¢,a)),
that the last state in the sequence be a predecessor of s ((s, —1) € 6(sgt1,a)) and similarly that ¢;
be a successor of s; ((¢;,1) € 6(s;,a)).

0<k<mn

(toa]-) € 6(t7 a)
(s,—1) € 6(skt1,a)
Vi, (tz, 1) € 5(82',&)

Rgtﬁ) = < t07317t17 "'78k7tk7 Sk+1 >

The transition of B chooses one of these sequences and ensures that all pairs meet in due time:

true If (s,—1) € 6(t,a)

A((t =

((73)7 a’) V (to, 81) A (tla 82) FANRAAN (tk, Sk+]_) Otherwise
<t0,...,sk+1>€R,(1t’s)

A.2.4 Proof of correctness

To conclude, the complete description of B is (X, Q, so, A, F') where the initial state and the set of
accepting states is equal to that of A and A is as defined. All the pair-labeled paths in a run of B
have to terminate “before falling of the edge of the tape” and the singleton-labeled path must “fall
off” with an accepting state.

Claim A.2.3 L(A) = L(B)

Proof: Given an accepting simple run of A on a word w of the form (sg,0), (51,%1), -, (S, tm)
we annotate each pair by the place it took in the run of A. Thus the run takes the form
(80,0,0),(81,%1,1), .., (Srns%m, m). We build a run tree of B by induction. In addition to label-
ing the nodes of the trees with states of B (Q U @ x Q) we attach a single tag to a singleton state
and a pair of tags to a pair state. The tag will be a triplet from the annotated run of A. For
example the root of the run tree of B will be labeled by s¢ and tagged by (s¢,0,0). The labeling
and the tagging conforms to the following:

e Given a node z labeled by state s tagged by (s',7,7) from the run of A we build the tree so
that s = &', i = |z| and furthermore all triplets in the run of A whose third element is larger
than j have their second element at least .

e Given a node z labeled by state (¢, s) tagged by (¢,i1,1) and (s, i2,j2) in the run of A we
build the tree so that t = ¢/, s = ', iy =is+1 = |z|, j1 < j2 and that all triplets in the run
of A whose third element is between j; and j» have their second element be at least 4;.

We start with the root labeling it by s¢ and tagging it by (sg,0,0). Obviously this conforms to our
demands.

Given a node z labeled by s tagged by (s,7,7) adhering to our demands (see state ¢ in Fig-
ure A.1b). If (s,4,j) has no successor in the run of A, it must be the case that ¢ = |w| and that

60

s € F. Otherwise we denote the triplets in the run of A whose third element is larger than j and
whose second element is i by (s1,%,71), ..., (Sk, %, jx). By assumption there is no point in the run of
A beyond j visiting a letter before i. Since the run is simple £ < n. Denote by (f9,7+1,j + 1) the
successor of (s,4,7) and by (1,4 + 1,71 +1),..., (tg, 7+ 1, jk + 1) the successors of s1, ..., sp. We add
k + 1 successors to z, label them (t¢, s1), (t1,52), ..., (tk—1, Sk), tx and tag them in the obvious way.
We show now that the new nodes added to the tree conform to our demands. By assumption there
are no visits beyond the j' step in the run of A to letters before a; and s1, ..., s;, are all the visits
to a; after the j'™ step of A.

Let y = x-c be the successor of = labeled ¢ (tagged (tx,i+1,jr+1)). Since |z| = i, we conclude
ly| =i+ 1. All the triplets in the run of A appearing after (tx,7 + 1,jx + 1) will not visit letters
before a;11 (We collected all visits to a;).

Let y = - d be a successor of = labeled by (#;, s;41) (tagged (¢;,¢+ 1,5+ 1) and (s;41,%, j1+1))-
We know that ¢ = |z| hence i + 1 = |y|, j; + 1 < ji4+1 and between the j; + 1 element in the run of
A and the j;11 element there are no visits to letters before a;4;.

We turn to continuing the tree below a node labeled by a pair state. Given a node x labeled
by (t,s) tagged (t,4,7) and and (s,7 — 1, k). By assumption there are no visits to a;_1 in the run
of A between the j"triplet and k' triplet. If ¥ = j + 1 then we are done and we leave this node
as a leaf. Otherwise we denote the triplets in the run of A whose third element is between j and k
and whose second element is 7 by si, ..., s (see Figure A.2b). Denote by t1, ..., t their successors,
by to the successor of ¢t and by siy; the predecessor of s. We add k£ + 1 successors to = and label
them (tg, 1), (t1,82), .-y (tk, Skr1), tagging is obvious. As in the previous case when we combine the
assumption with the way we chose %y, ...t and si, ..., sg4+1, we conclude that the new nodes conform
to the demands.

It is easy to see that all pair-labeled paths terminate with ’true’ before reading the whole word
w and the single path labeled by single states reaches the end of w with an accepting state.

In the other direction we stretch the tree run of B into a linear run of A. We assume ordering
on the successors of each node according to the appearance of their labels in the sets R,. We give
a recursive algorithm to build the run of A.

Starting from the root € labeled (sg,0), we add to the run of A the element (s¢,0). We now
handle the successors of the root according to their order. Going up to the first successor c
labeled (t,s) we add (t,1) to the run of A. Obviously from the definition of R;? we know that
(t,1) € 6(sp,ap). We handle the successors of ¢ in the recursion. When we return to ¢ we add
(s,0) to the run of A (to be justified later). We return now to ¢ and handle the next successor
d. The node d is either labeled by (p,q) or by p. In both cases the definition of R0 ensures that
(p,1) € 6(s,ap). When we return to e after scanning the whole tree the run of A is complete.

Getting to a node z labeled (¢,s) we add (¢, |z|) to the run of z. Adding (t,|z|) itself and
passing to the successors of x and between them was already justified when handling the root.
When the recursion finished handling the last successor of we add (s,|z| — 1) to the run of A.
Suppose the last successor of x was labeled (p,¢) then from the definition of R&ﬁ;j) we know that
(s,—1) € 6(g,a,|) hence this transition is justified.

Getting to a node x labeled s is not different from handling the root. Instead of using the
locations 0 and 1 in the run, we use locations |z| and |z| + 1.

We have to show that the run is valid and accepting. Satisfying the transition was shown. In
the tree run of B there is a single path labeled solely by single states. The last element in the run of

61

A is the same state and reading the same letter as the last in this path. Since the path is accepting
the last state there has to be from F' and reading letter [w| (which does not exists, w = ag...a||—1)-
All other triplets in the run of A read letters in the range {0, ..., |w| — 1}. Otherwise there is some
node z in the run of B such that |z| > |w| (other than the previously designated node). This is
impossible since the run of B is accepting. L]

A.3 Automata on infinite words

In a first glance it seems that the exact same construction should work for Biichi automata. Elimi-
nate the O-steps and then just make sure that the single infinite path visits F' infinitely often. This
is not the case, there are two problems. For one the visits to F' may be ‘hidden’. For example
consider the following run segment ..., (q,%),(¢',7),(¢",i + 1),.... In case ¢' is a member of F, we
shrink the sequence to ..., (g,i),(¢",i + 1),... and reduce the number of visits to F by one. If we
repeat this action infinitely many times we might turn an accepting run into a rejecting one. A
similar problem occurs when checking that a ’zigzag run’ exists, what if the visits to F are in the
zigzags and not along the main path forward ? The second problem is loops that visit F'. In the
sequel we solve these problems.

Theorem A.3.1 For every 2NBW A = (X, S, sg, p, F) with n states, there exist IABWs B and B’
with O(n?) states such that L(B) = L(A) and L(B') = X%\ L(A).

A.3.1 Zero steps

Given an automaton A = (X, S, 59,8, F) where § : S x ¥ — 29{=10:1} we would like to remove all
the 0-steps. There are two potential problems, visits to F' in a 0-step and a loop of 0-steps that
visits F. Hence we double the number of states and add an accepting sink state A’ = (3, (S X
{L, T} U{Acc}, (s, L), 8", (S x {T})U{Acc}). A sequence like ..., ((s,L),7),((s', T),i+1),... in
the run means that in the run of A between the appearance of (s,i) and (s’,7 + 1) there was a
O-step that visited F'. Similarly L means that O-steps (if occured) have not visited F (see also
[Wil99, HK96] where similar problems are solved in a similar way).

Given a state s and an alphabet letter a, we define NC? the set of all states reachable from

state s by a sequence of 0-steps reading letter a and one last forward/backward step. All states
avoid the acceptance set F'.

(50, ey 5k) € {5} - (S\ F)* s.t. 1 < k, s9 =5, sp =t,
NCs =S ((t,L),i) € (S x {L}) x {-1,1}) | YO < j <k, (sj41,0) € &(s;,a)
and (sg,1) € 6(Sk—1,a)

In addition we define AC; the set of all states reachable from state s by a sequence of 0-steps

reading letter a and one last forward/backward step. One of the states in the sequence is an
accepting state.

(50, ..y 5%) € {8} - S* 5t 1<k, s9 =35, sp =1,
AC; =< (5, T),1) € (S x{T}) x{-1,1})| Fj >0 s.t. s; € F, VO < j <k, (sj41,0) € 6(s;,a)
and (si, i) € 6(sp—1,a)

We also have to take care of situations where there is a loop of 0-steps that visits . The boolean
variable ACCEPT; is set to 1 if such a sequence exists and to 0 otherwise. Formally, the variable

62

ACCEPTY is set to 1 iff there exists a sequence (sg,...,s,) € {s} - S¥, where 1 < k and all the
following conditions hold.

® 59 =s.
e There exist j and [such that 0 < j <[<k, sp = s; and s5; € F.
e For all j where 0 < j <k, we have (s;41,0) € 6(sj,a)

We use the two 0-closures and the variable defined above in the definition of the transition
function of the 1AFA B.

Ace, 1 ACCEPT; =1
§((s,1),0) = /(5. T),a) = { ee Lt Aoorit -1

8'(Acc,a) = {(Ace, 1)}
Apparently, A’ is 0-step free.
Claim A.3.2 L(A")=L(A)

Proof: Suppose A accepts w. There exists an accepting run r of A on w. If a finite sequence
of 0-steps appears in r we simply prune it. If that sequence contained a visit to F' add T to the
forward /backward move at the end of the sequence. If r ends in an infinite sequence of 0-steps, this
sequence has a finite prefix (s;,1), (Si41,0), .., (Sitp, () such that s; = s;4, and, as r is accepting,
there is a visit to F' in this prefix. We take the prefix of the run (sg,0),..., (s;,!) and add to it the
infinite suffix (Ace,l+ 1), (Ace, [+ 2), Finally, we add labels L to all unlabeled states. It is easy
to see that the resulting run is a valid run of A’. It is also an accepting run. If the run ends in a
suffix Acc” then it is clearly accepting. Otherwise, removing sequences of 0-steps replaces a finite
number of visits to F by a state labeled by T. As the original run visited F infinitely often, so
does the run of A’.

Suppose A’ accepts w. We append 0-steps as promised from the definition of NC and AC.
If the run ends with an infinite sequence of Acc we can add a loop visiting F. Infinitely many
occurrences of T ensure infinitely many visits to F. L]

A.3.2 Two-way runs

Once again we consider only 2NBWs with no 0-steps. As in the case of O-steps there are two issues
to be considered. Hidden visits to the accepting set F' and loops.

If we take the alternating automaton we built in the finite case and simply run it on infinite
words, we demand that the pair-labeled paths should be finite and that the infinite singleton-labeled
path should visit F' infinitely often. Although an accepting run of A visited F' infinitely often we
cannot ensure infinitely many visits to F' on the infinite path. The visits may be reflected in the
run of B in the pair-labeled paths.

Another problem is similar to the case of the loop in the 0-steps section. The automaton might
be stuck forever in a finite prefix of the word w. We will show that in this case we can find an
alternative accepting run of A in which the suffix of the run is of the form (¢,%s, ..., ¢,)" where
one of the states ¢; is a member of F.

63

Once again we are interested in runs in which the same state in the same position do not repeat
twice during the run. In an infinite run it might be impossible to avoid it completely, hence we try
to minimize such events.

Definition 8 Simple Run
A run r = (s0,0),(s1,71), (s2,%2), ... s simple if one of the following holds

1. For all j <k, either s; # s or ij # iy.

2. There exists [,m € IN such that for all j < k <1+ m, either s; # s or i; # i, and for all
j Z l, S]' == Sj+m and ij = ij+m.

Claim A.3.1 There exists an accepting run of A on w iff there exists a simple accepting run of A
on w.

Proof: A simple runis a run. Given a run r = (sg,0), (s1,141), (82,72), ..., we cannot simply remove
sequences of states like we did in the finite case, the visits to F' might be hidden in these parts of
the run. If for some j < k, we have that s; = s, i; =iy and s, ¢ F for all j < p < k, we can
simply remove this part. As in the finite case, the run stays a valid accepting run.Now if there exists
some j < k such that s; = s and ¢; = ¢, we conclude that there is a visit to F' between the two.
We take the minimal j and k& and create the run (s9,0),...,(sj-1,%5-1), ((55,%5), .-y (Sk—1,1k—=1))*"
Again this is a valid run and it visits F' infinitely often (between s; and si_;). If no such j and &
exist the run is simple. L]

We use A = (X, S, 59,0, F) to denote the 2NBW and B = (X, Q, sy, A, F') to denote the IABW.
As mentioned, we have to record hidden visits to the set F. This is done by doubling the set of
states. While in the finite case the state set is S U S x S, this time we also annotate the states by
1 and T. Hence Q@ = (SUS x S) x {L, T}. A pair state labeled by T is a promise to visit the
acceptance set. The state (s,t, T) means that in the run segment linking s to ¢ there has to appear
a state from F. A singleton state (s, T) is displaying a visit to F' in the zigzags connecting s to the
previous singleton state.

The same notation enables us to solve the problem of loop. This is done by allowing a transition
from a singleton state to a sequence of pair states and demanding that one of this pairs will promise
a visit to F. Details follow.

Some of the unknowns in the definition of B are: Q@ = (SUS x S) x {L, T}, si = (s0,L) and
F' = (8 x {T}). The transition function A is defined in the next section.

A.3.3 The Construction

The transition at a singleton state Just like in the finite case we consider all possible sequences
of states of length at most 2n — 1 with same demands.

0<k<n

(t071) € 6(t7 a)

Vi < g, 82'7'58]' andti;«étj
Vi7 (tw 1) € 6(8%@)

Rt = <to,S1,t1,-; Sk, Ltk >

a

64

Recall that a sequence (%o, s1), (t1,$2), ..., (tk—1, Sk), tx Will check that there is a zigzag run
segment linking ¢y to tx. We mentioned that £, will be annotated with T in case this run segment
has a visit to F. Hence if #;, is annotated with T then at least one of the pairs has to be annotated
with T. Although there might be more than one visit to F we annotate all the other pairs by L.
Hence for a sequence < tg, s1,11, ..., Sk, tx > we counsider the sequences of 1 and T of length k£ + 1
in which if the last is T so is another one. Otherwise all are L.

Ifap = T then ist. 0<i<kand oy =T }

R _ k+1
ak‘{<a°""’0"“>E“’T} Ifap=L1thenVO0<i<k aj=1

However this is not enough. We have to consider also the case of a loop. The automaton has to
guess that the run will terminate with a loop when it reads the first letter of w that is read inside
the loop. The only states reading this letter inside the loop will be backward states. We consider
all sequences of at most 2n states and a location p within the sequence. In order to close the loop
we demand either that the last backward state be equal to some previous backward state or that
some forward state be a successor of the last backward state. The location p denotes the place
where the loop closes (sg+1 = sp or (tp,1) € 6(Sg+1,a)). Sequences of length 2n suffice, the longest
possible sequence without repetition is of length n, we may use the current state as the n + 1*8
backward state or transition into one of the forward states thus creating a sequence of length n+1.
Hence no two states in an even/odd position (forward/backward state) are equal except the last
backward state. We demand that the first state in the sequence be a successor of ¢ ((tg,1) € 6(¢,a)),
that #; be a successor of s; ((¢;,1) € 6(s;,a)) and that the p'" backward state be equal to the last
backward state or the p't forward state be a successor of the last backward state (We identify ¢
with sg, sp = sg41 0or (tp,1) € 8(Sk41,0)).

0<k<n 0<p<k
(to,1) € 6(t,a)
LZ = (< t0, 81,81, -5 Sky by Sk+1 >,p) Vi<j#k4+1, s; # S5 and t; # t;
Vi, (ti,l) € (5(3Z~,a)
Sk+1 = Sp Or (tp,1) € 8(sp41,a) (define sg =t)

It is quite obvious that a visit to F' has to occur within the loop. Hence given the sequence
< 10,81,%1, -y Sk, bk, Sk+1 > and the location p we have to make sure that the run segment connecting
one of the pairs between the p'" pair and the last pair will visit F. Hence we annotate one of the
pairs (tp, Sp+1), - (tk, Sk+1) with T. In case sy =t then one of the pairs has to be annotated by
T. Our notation using p = 0 also works in this case. Again one visit to F' is enough hence all other
pairs are annotated by L.

P

L k+1 >~ p, ¢
Akp = {< g, ...y >€{L, T} st =T }

The transition of B has to choose one of the sequences in R!, U L!. And then choose a sequence
of L and T.

\/t \{%(to, 51,00) A (t1,52,00) Ao A (tg—1, Sk, ag—1) A (tg, o)
R, of

V V (to,s1,0) A (1, s2,00) Ao A (ks Skp1, Q)

t L
La Yk,p

65

Where (3 is either L or T.

The transition at a pair state In this case the only difference is the addition of 1. and T. The
(t,s) - .
set Ry’ is equal to the finite case.

0<k<n

(t[]; 1) € 6(t7 (l)
(s,—1) € 6(sp41,0)
Vi, (tu 1) € 6(8%@)

Rgt’s) = ¢ <to,81,81, - Sk, Tk Skt1 >

In the transition of ‘top’ states we have to make sure that a visit to F' indeed occurs. If the visit
occured in this stage the promise (T) can be removed (L). Otherwise the promise must be passed
to one of the successors.

li -
aft,k _ {< 0s oy >€ (L, THEFL Ifs¢ Fandt ¢ F then list. o =T }

Otherwise VO <1 <k, a; = L

The transition of B chooses a sequence of states and a sequence of L and T.

true If (s,—1) € 6(t,a)
A((t,S,J_),a) = V (to,Sl,_L) AN (tk78k+17—l—) Otherwise

R((lt,s)

true If (s,—1) € 6(t,a) and

ForteF)
A((t,s,T),a) = (s €
((t,5,T),0) V V (to,s1,00) Ao A (tk, Sk41, 1) Otherwise
R((zt’s) O‘?,t,k

A.3.4 Proof of correctness

The proof is just an elaboration on the proof of the finite case. In both directions we use the similar
constructions. We only have to give special attention to visits to the accepting set. As the proofs
are almost identical we just hilight the points of difference.

Claim A.3.3 L(A)=L(B)

Proof: Given an accepting simple run of A on a word w of the form (sg,0), (s1,41), ... we annotate
each pair by the place it took in the run of A. Thus the run takes the form (sg,0,0),(s1,71,1),....
If the run does not end in a loop the construction in the finite case will work. We have to add the
symbols L and T.

When dealing with a node z in the run tree of B labeled by (s, «) tagged by (s,1,7). In the proof
of the finite case we identified the triplets (s1,4, j1), ..., (Sk, ¢, Jk) and (to, i+1, j+1), ..., (tg, 41, jp+1)
and labeled the successors of « with (¢g,s1), ..., (tk—1, Sk), tx. 1f there is no visit to F' between j + 1
and jr + 1 we add to these states L. Otherwise the visit was between j; + 1 and j;41 for some [
(consider j = jp), in this case we add T both to #; and to the pair (#;,s;41), to all other pairs we
add L.

When dealing with a node z in the run tree of B labeled by (¢, s, «) tagged (¢,1,7) and (s,i—1, k).
We identified the set of pairs (tg, s1), ..., (tk, Sk+1). In case a = L we continue just like in the finite

66

case. In case a = T we put it there because there was a visit to F' between 7 and k. This visit
to F' has to occur between ¢; and s;;; for some [and we pass the obligation to this pair. At some
point we reach a visit to F' and then the promise will be removed.

We have now an infinite run tree of B. All pair-labeled paths are still finite and there is one
infinite path labeled by singleton states. Since every occurrence of T on this path covers a finite
number of visits to I’ we are ensured that T will appear infinitely often along this path.

If the run ends in a loop we have to identify the first letter of w read in this loop. Suppose this
letter is ¢. We build the run tree of B as usual until reaching the node = in level ¢ labeled by a
singleton state (s,). As letter i is visited in the loop there are infinitely many visits to it. Denote
these visits by (s1,14,71), (s2,%,72), ..., all backward states. Denote s = sp, and the successors of
50y -y Sn by to, ..., tn. Since the sequence sq,...,s, is n + 1 long, it has to include the same state
occuring twice. Denote its second occurrence by s,,. We consider two cases:

e In case t,,—1 appears twice in the sequence to,...,t, before location m — 1, i.e. t,—1 = t,
where p < m — 1. In this case denote k¥ +1 = m — 1 and take %y, s1,%1, 89, ..., tm_9, S;m_1 as
the sequence from L ((tp,1) = (tx,1) € 8(5k,as)))-

@a|

e Otherwise we denote k¥ + 1 = m and take %y, s1,t1, 52, ...,tm—1k, Sk+1 as the sequence from
Lt Since sp41 was the second occurrence there is a first occurrence s, = sp41.

@z ”

Since the run is simple its suffix is of the form:

(3P7i)7 ((tlhi + 1)7 ey (3P+17i)7 (tp+17i + 1)7 ---------) (Skai)a (tkai + 1)7 ey (3k+17i))w

One of the segments (¢;,7+ 1), ..., (s;41,4) will visit F. Annotate the pair (¢;, s;41) by T and all the
others by L.

In the other direction we apply the same recursive algorithm. If the accepting run tree of B is
infinite then we never return to € but the run created is an accepting run of A.

If the accepting run tree of B is finite we have to identify the point in the tree x labeled by a
singleton state (s, a) under which there are no successors labeled by singleton states. In this point
we identify the loop. The last successor of z is labeled (¢, s’,3). We know that either s’ = s or
there is another successor of = labeled by (¢”,s”,) such that either s” = s’ (in this case (¢, s", §) is
not part of the loop) or (t”,1) € 6(s',a|,)) (in this case (", 5", B) is part of the loop). If s’ = s then
we put aside the run of A built so far, denote it by r. Otherwise we start handling the successors
of x until taking care of all successors that do not take part in the loop. Again we put this run
aside and call it 7. Now we build a new run starting from the point we stopped, since the run of
B is finite the recursion will end and we will be left with the run 7/. Our final step is to present
r(r')¥ as the new run of A. Note that the run r(r')* is not necessarily simple. 0

Both in the finite and the infinite case we separated the construction into two stages. Namely
removing the zero steps and then transforming automata that take no O-steps. In the finite case
the first stage did not increase the number of states. In the infinite case the first stage doubled the
number of states and then squaring we get approximately 8n? + 4n states. We could actually unite
the two stages of the construction into one stage. Such a construction will include the 0-steps in
the definition of the sets R, and L,. We believe our construction is easier to understand, while
improving our construction to include the modification is not so difficult. Transforming the 2NBW
into a IABW in one stage will result in an automaton with approximately 2n? + 2n states.

67

A.3.5 Complementing the alternating automaton

Complementing an ABW is not as easy as complementing an AFA. In the finite case dualizing
the transition function and the acceptance set is enough. In the infinite case we can dualize the
transition but instead of Biichi acceptance we have to use co-Biichi acceptance. That is, states
from the acceptance set have to appear only finitely often along every infinite path [MS87].

Kupferman and Vardi [KV97] showed how to complement alternating automata using weak
alternating automata. Given a 2NBW A with n states, we constructed a 1ABW B with O(n?)
states. If we implement the quadratic construction from [KV97] on B we get B', a IABW with
O(n?) states accepting the complementary language of A. We show how to construct an 1TABW
with O(n?) states whose language is the complement of A’s language. We recall the proof in [KV97]
and show how to avoid the quadratic price in our case. The following is taken from [KV97] with
minor adjustments.

Definition 9 [KV97] A tree run (T,r) is memoryless if for all x1,x9 € T such that |xi| = |x2]
and r(z1) = r(z2), we have that for ally € IN *, r(zy - y) = r(z2 - y).

Theorem 10 [EJ91] If a co-Bichi automaton accepts a word w, then there exists a memoryless
accepting Tun on w.

We can restrict our attention to memoryless run trees. Hence, the run tree (7',r) can be
represented in the form of a directed acyclic graph G = (V,E) where V. C Q@ x IN and E C
20(Q x {i}) x (Q x {i +1}):
V=A{(V(x),|z])|lx € T}
E ={((V(x),|z]), V(y),|y|))|r,y € T and y successor of = in T'}

Given a (possibly finite) DAG G’ C G. We define a vertex (s,7) as eventually safe in G' iff only
finitely many vertices in G’ are reachable from (s,7). We define a vertex (s,i) as currently safe in
G’ iff all the vertices in G’ reachable from (s,4) are not members of F x IN .

Now define the inductive sequence:

L4 Go =G

o Goir1 =Gy \ {(5,9)|(s,1) is eventually safe in Gy;}

e Goito = Goit1 \ {(s,7)|(s,7) is currently safe in Gg;1}
Definition 11 Border, Ultimate Width

1. Gwen a graph G; and a number 0 < p < n the border of p in G; 1s the level | € IN such that
for all 1" > 1 there are at most p vertices of the form (s,l) in G;. If no such number exists
then we define the border of p in G; to be infinity.

2. Giwen a graph G; the ultimate width of G; is the minimal number w < n such that the border
of w in G; is finite. We denote the ultimate width of G; by w(G;).

Lemma A.3.2 [KV97] For every i > 0, either w(Ga;) =0 or w(Gait2) < w(Ga;).

68

In our case, we can partition the state set of B into two sets, S x {1, T} and S x S x {L,T}.
The transition of states of the form (s, ¢, «) includes only states from the same set. This set and
the acceptance set do not intersect, hence in the graph G all the states of this form are ‘currently
safe’ and all of them are missing from G2. We can conclude that w(G3) < 2|S|. Therefore, if we
denote 2|S| by n the graph Gy, 42 is finite and hence Gy, 43 is empty.

Index the vertices in G in the following way:

e 21, if the vertex is eventually safe in Go;

e 2 + 1 if the vertex is currently safe in Gg;11

All indexes are in the range [2n + 2].

Denote our co-Biichi automaton by B’ = (3, Q, (s¢, L), A’, F) where Q@ = (SUS x S) x {L, T}.
Kupferman and Vardi show that how to construct a weak alternating automaton with state set
Q@ x {0, ...,2n + 2} that accepts the same language.

We can further reduce the number of states. We know that only pair-states are reachable from
pair-states and that there is no pair-state in the acceptance set. Hence we can define Gy to be
G\ (SxSx{L, T} xIN)ie. remove from G all the pair labeled states (which are currently safe
in G). This way all indexes are in the range [2n]. Furthermore there is no need to multiply all the
states in @ by [2n]. It is enough to multiply S x {L, T} by [2n]| and consider (S x S x {L, T} as
the minimal set of the weak alternating automaton.

To conclude we give the final weak alternating automaton accepting the language of B’ that is
the complement of B. Given B = (X, Q, (so, L), A, F) where @ = (SUS x S) x {L, T} we define
B=(%,Q,s), A F') where Q' = Sx {L, T} x[2n]US x S x { L, T} where n. = 2|S|. We follow the
notation from [KV97] and define release : BT (Q) x [2n] — B*(Q'). Given a formula ¢ € B1(Q),
and a rank i € [2n], the formula release(¢,) is obtained from ¢ by replacing every element (s, «)
from S x {L, T} by V;<;(s,0,1). Let A" be the dualization of A then:

-« . | release(A'((s,a),a)) if @=L oriiseven
Alls,a),0) = { false if =T and i is odd

A((s,t,a),a) = A((s,t,a),a)

Finally sq = (so, L,2n) and F' = {(s,«,1)|i is odd}.

A.3.6 Parity and Rabin acceptance conditions

Our method works also for 2-way nondeterministic Rabin automata and 2-way nondeterministic
Parity automata.

Theorem A.3.4 For every 2-way nondeterministic Rabin (parity) automaton A = (X, S, so, p, @)
with n states and index m, there exists a IABW B with O(n? - m) states such that L(B) = L(A).

Given a 2-way nondeterministic Rabin automaton A = (3, S, s¢, 6, @) with o« = {< (G1, B1), ..., (G, Bm)}
with n states it is straightforward to construct an equal 2NBW A’ with O(n - m) states. The

construction is not different from the conversion of 1-way Rabin automata to Biichi automata.
Converting the 2NBW A’ to a IABW B, B results in a IABW with O(n? - m?) states.

69

This construction can be improved as following. Build a IABW B for A (without constructing
A’ first). Multiply the state set of B by the index (and one extra copy) m + 1. The i*! copy of
the automaton will avoid all the states in B;. The alternating automaton starts running in copy
0. The transition at a singleton state in copy 0 will include also a guess whether to stay in copy
0 or guess that states from B; will not be visited again during the run and then move to copy ¢.
We should allow also moving into copy ¢ in the middle of the transition into a loop. In this case
only the part of the loop itself should avoid B; and should include a demand for visiting G;. The
transition at a state from the i*t copy will include only states of the same copy. Reference to the
accepting set should be made only outside of copy 0 and in this case G; serves as F.

When given a Parity automaton one may convert it to a Rabin automaton and then apply the
above modification. Taking care of Parity automata without reducing it to Rabin is also possible.
The changes to the construction are very similar to the ones described above for Rabin automata.

A.4 Conclusions

We have shown two constructions. Both show how to construct a 1-way alternating automaton
that accepts the same language as a 2-way nondeterministic automaton. The first construction for
automata that work on finite words and the second for automata that work on infinite words.

In the finite case complementation of alternating automata is very easy. Hence we can easily
get the automaton recognizing the complementary language. This automaton can be envisioned as
searching for errors in all the possible zigzagging run.

The number of states of the new automaton is quadratic in the number of states of the 2-way
automaton and the size of the transition is exponential in the size of the original transition. If we
further convert our alternating automaton into a nondeterministic automaton we get an automaton
with 20) states. Vardi [Var89] showed that given a 2-way nondeterministic automaton, it is
possible to construct a 1-way nondeterministic automaton recognizing the complementary language
with 29(") states. Given a 2-way nondeterministic automaton and seeking an automaton that
recognizes the complementary language one should obviously choose his construction.

In the infinite case we get similar results. Given a nondeterministic automaton with n states
we get an alternating automaton with O(n?) states. If we use the construction in [MHS84] we get a
nondeterministic automaton with 20("*) states. As mentioned Vardi [Var88| has already solved this
problem. He shows given a 2NBW how to construct two 1ABWSs one accepting the same language
and one the complementary language, both with 20(n%) gtates.

70

