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AbstractWe investigate the extension of linear temporal logic with !-automata. We give an alternativetranslation from Extended Temporal Logic [WVS83] formulas to nondeterministic B�uchi automata.The novelty in our translation is usage of alternating automata, thus, simplifying the translationwhile staying with the same complexity bounds.We continue and use alternating B�uchi automata as temporal connectives of the logic. Againwe translate the formulas of the logic to nondeterministic B�uchi automata. Although alternat-ing automata are exponentialy more succinct than nondeterministic ones, the complexity of thetranslation does not change.Finally we combine the extension in the expressive power of the logic with the reference to thepast. We use 2-way alternating automata as temporal connectives. Also here we give a translationof logic formulas to nondeterministic B�uchi automata.
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Chapter 1Preliminaries1.1 IntroductionTemporal logic has been used for many years now as a tool for the speci�cation and veri�cationof programs [Pnu77, MP92]. Although as expressive as monadic �rst-order logic of the naturalnumbers with the less than relation, Wolper [Wol83] has shown that for the task of veri�cationtemporal logic is sometimes not expressive enough.Wolper [Wol83] suggested to augment temporal logic with the power of the !-regular expres-sions. Wolper, Vardi and Sistla followed and considered !-automata as a �nitary way of representingthe !-regular expressions [WVS83, SVW87, VW94]. They created several logics, using di�erenttypes of automata. Safra and Vardi tried to �nd which automata produce the most succinct for-mulas [SV89].Extending temporal logic with !-automata seems like a reasonable proposition. Hardwareimplementations frequently include Finite State Machines (FSMs). As automata and FSMs arebasically the same thing, it seems that including FSMs in the speci�cation language will give theimplementers a powerful formalism they are already familiar with.!-automata are characterized by di�erent acceptance conditions. Wolper et al. [WVS83,SVW87, VW94] proposed to use nondeterministic �nite automata (yielding the logic ETLf ), non-deterministic looping automata (ETLl) or nondeterministic B�uchi automata (ETLr). We call theselogics the extended temporal logics or ETLs for short. Wolper et al. studied the expressive powersof the di�erent ETLs. They showed that every !-regular set can be expressed by a formula of everyone of the ETLs and that the set of models of an ETL formula is an !-regular set [WVS83, VW94].Given a logic formula, an important question is whether it is satis�able. This question wasstudied for the three mentioned extended temporal logics. Decision procedures for the logics wereo�ered. A formula of the logic was converted into a nondeterministic B�uchi automaton such that theautomaton accepts exactly the set of models of the formula [Var96]. Hence, the formula is satis�ablei� the automaton's language is not empty. The decision problem for each of the logics is shown to bePSPACE-complete. The decision problem for ETLf and ETLl is in linear nondeterministic space[WVS83, VW94]. The decision problem for ETLr is in nondeterministic O(n2) space [SVW87].Our main interest in this work is the decision problem for temporal logic extended with !-automata. Since the publication of the above mentioned papers, alternating automata [CKS81,BL80] were introduced and widely studied. Since the combinatorial structure of alternating au-tomata is rich, they are more suitable for handling logic than nondeterministic automata. Alter-3



nating automata enable a complete partition between the logical and the combinatorial aspects ofthe decision problem for logic, and give rise to cleaner and simpler algorithms [Var96].The decision procedures for ETLf , ETLl, and ETLr used an ad-hoc construction of a non-deterministic B�uchi automaton. We propose a more uniform treatment. Given a formula we �rsttranslate it into an alternating B�uchi automaton with the same set of models. This alternating au-tomaton can be converted to a nondeterministic B�uchi automaton using the construction of Miyanoand Hayashi [MH84]. The usage of alternating automata yields a cleaner construction with cleanerproofs. We stay within the same complexity bounds and improve the decision procedure of ETLrto O(n log(n)) nondeterministic space (using complementation constructions for nondeterministicB�uchi automata [KV97, Tho98, Saf88]).Safra and Vardi [SV89] checked other types of automata, they tried to �nd the most succinct wayof writing formulas. As suggested in [VW94], we use alternating automata as temporal connectives.It was shown that nondeterministic automata and alternating automata have the same expressivepower [MH84], hence temporal logic extended with nondeterministic automata is just as expressiveas temporal logic extended with alternating automata. On the other hand, alternating automataare exponentially more succinct than nondeterministic automata. There are languages that can berecognized by an alternating automaton with n states but nondeterministic automata recognizingthese languages have at least exp(n) states [BL80, CKS81].We solve the decision problem of this logic in the same way. We translate a formula to analternating automaton whose language is exactly the set of models of the formula. This alternatingautomaton in turn is translated to a nondeterministic automaton that can be checked for emptiness.Our �nal problem with ETL is that it cannot express properties that depend on the past. Itwas shown that temporal logic with past operators is more adequate to the task of compositionalveri�cation [LPZ85]. We can solve the expressiveness problem and add reference to past propertiesby introducing 2-way alternating automata as temporal connectives. Vardi [Var98] has shown howto transform a 2-way alternating automaton to a 1-way nondeterministic automaton. We slightlymodify his work and get a transformation from 2-way alternating automata to 1-way alternat-ing automata. We incorporate this transformation into the decision procedure for temporal logicaugmented with 2-way alternating automata.1.2 Related WorkWolper [Wol83] has shown that temporal logic with until and next-time operators cannot expressthe property \p is true in all even positions", for a proposition p. The ability to count modulon, not possessed by temporal logic, is important to program speci�cation. Consider the followingexample of two processes working synchronously that use a single critical section, based on [LPZ85].264 l0 : loop foreverl1 : send ; non criticall2 : send ; critical 375 jj264 m0 : loop foreverm1 : receive ; criticalm2 : receive ; non critical 375Before executing `send' process 1 waits for process 2 to get to `receive' and vice versa. We wouldlike to establish that process 1 and process 2 never enter the critical section together. The so-lution proposed in [LPZ85] is to show that process 1 may visit l2 only after an even number ofcommunications and process 2 may visit m1 only after an odd number of communications.4



Various solutions have been considered for extending the power of temporal logic. For example,using quanti�ers ranging over propositional variables [LPZ85, SVW87, MP92], or adding least �xedpoint operators, resulting in �-calculus [Koz83].Wolper [Wol83] suggested extending the expressive power of temporal logic using !-regular ex-pressions as following. Given a sequence of propositional formulas f = f0; f1; ::: and a computationw = w0; w1; :::, we say that the sequence f is satis�ed by w if f0 is satis�ed by w0, f1 is satis�ed byw1 and so on. Now consider an !-regular expression over propositional formulas S. The expressionS identi�es a set of sequences of formulas. We say that S is satis�ed by the computation w if thereis a sequence of formulas f in S that is satis�ed by w.!-regular sets can be represented using !-automata. Wolper's work was extended in [WVS83,VW94], where di�erent automata are suggested as connectives. Wolper et al. study three types ofautomata. Looping automata (the automaton has to run forever) inducing the logic ETLl, �niteautomata (the automaton has to reach a designated set of states) inducing ETLf and repeating(or B�uchi) automata (the set of designated states has to be visited in�nitely often) inducing ETLr.Wolper et al. [WVS83, VW94] show that the three logics have the same expressive power.Translations fromETLr to ETLf and ETLl are exponential in the size of the formula. The decisionproblem of formulas is reduced to the emptiness problem of nondeterministic B�uchi automata. Thenondeterministic automata created are exponential in the size of the formula, yielding a PSPACEalgorithm for the decision problem. It should be noted that complementation of B�uchi automataresults in an exponential blowup that is provably with a nonlinear exponent [Mic88]. Formulas ofETLr may include negations in front of automata connectives, it seems reasonable that the decisionprocedure for ETLr will be in nonlinear space.Safra and Vardi [SV89] further studied this type of extensions. They extended the logic withStreett automata [Str82] and with EL automata [EL87]. They show that the decision procedurefor ETLEL is EXPSPACE-complete. The decision of ETLS remains in PSPACE and is proposedas the ultimate extended temporal logic.Another way to classify !-automata is by the type of their branching mode. In a deterministicautomaton, the transition function � maps a pair of a state and a letter into a single state. Theintuition is that when the automaton is in state q and it reads a letter a , then the automaton movesto state �(q; a) from which it should accept the su�x of the word. When the branching mode isexistential or universal, � maps q and a into a set of states. In the existential mode, the automatonshould accept the su�x of the word from one of the states of the set, and in the universal mode, itshould accept the su�x from all the states in the set. In an alternating automaton [CKS81, BL80],both universal and existential modes are allowed, and the transitions are given as Boolean formulasover the set of states. For example �(q; a) = (q1 ^ q2)_ q3 means that the automaton should acceptthe su�x of the word either from both q1 and q2 or from q3.Although alternating B�uchi automata have the same expressive power as nondeterministic B�uchiautomata [MH84], they are exponentially more succinct. As suggested in [VW94], we augment tem-poral logic with alternating automata connectives. Alternating B�uchi automata are as expressiveas nondeterministic B�uchi automata so extending the logic with alternating automata does notchange its expressive power. We show that it also does not change the complexity of the decisionprocedure. We show that a formula of temporal logic extended with alternating automata can betranslated to a nondeterministic B�uchi automaton with the same complexity as an ETLr formula.Two-way automata over in�nite structures were introduced as part of the e�ort to createautomata-theoretic techniques to handle �-calculus with both forward and backward modalities.5



Two-way automata over �nite words have been shown to have the same power as 1-way automataover �nite words [RS59, She59]. Vardi [Var88, Var98] has shown that the same is also true for2-way automata over in�nite structures. Thus, extending temporal logic with 2-way alternatingautomata results in a logic with the same expressive power. The complexity of this logic is slightlyhigher and we show that it is decidable in O(n2log(n)) nondeterministic space.1.3 Basic De�nitionsWe consider in�nite sequences of symbols from some �nite alphabet �. Given a word w, an elementin �!, we denote by wi the ith letter of the word w, and by w�i the su�x of w starting at wi hencew = w�0 = w0w1w2 : : : and lim(w) = fa 2 �ja = wi for in�nitely many i'sg, thus lim(w) is the setof letters appearing in�nitely often in w. Automata that read in�nite sequnces are usually referredto as !-automata. We give de�nitions of three di�erent types of automata.1.3.1 Finite automata on in�nite wordsNondeterministic automata A nondeterministic automaton is a �ve-tuple A = h�; S; S0; �; F i,where � is the �nite alphabet, S is the �nite set of states, S0 � S is the set of initial states,� : S � � ! 2S is the transition function, and F is the acceptance set. We de�ne a run of anautomaton on an in�nite word w = w0w1::: 2 �! as a �nite or in�nite sequence � = s0; s1; :::,where s0 2 S0 and for all 0 � i < j�j, we have si+1 2 �(si; wi). Acceptance of a run is de�nedaccording to one of the following conditions:� Finite acceptance, where a state of the set F has to occur somewhere along the run (in thiscase the run is �nite).� Looping acceptance, where the run should be in�nite.� Repeating acceptance, where a state of the set F has to occur in�nitely often in the run (alsocalled B�uchi condition).Alternating automata Given a set S we �rst de�ne the set B+(S) as the set of all positiveformulas over the set S with `true' and `false' (i.e., for all s 2 S, s is a formula and if f1 and f2 areformulas, so are f1 ^ f2 and f1 _ f2). We say that a subset S0 � S satis�es a formula ' 2 B+(S)(denoted S0 j= ') if by assigning `true' to all members of S0 and `false' to all members of S n S0the formula ' evaluates to `true'. Clearly `true' is satis�ed by the empty set and `false' cannot besatis�ed. Given a formula f 2 B+(S), we dualize f by replacing ^ by _, true by false and viceversa.A tree is a set T � IIN � such that if x � c 2 T where x 2 IIN � and c 2 IIN , then also x 2 T . Theelements of T are called nodes, and the empty word � is the root of T . For every x 2 T , the nodesx � c where c 2 IIN are the successors of x, the nodes x � y where y 2 IIN � are the descendants of x.A node is a leaf if it has no successors. A path � of a tree T is a set � � T such that � 2 � andfor every x 2 �, either x is a leaf or there exists a unique c 2 IIN such that x � c 2 �. Given analphabet �, a �-labeled tree is a pair (T; V ) where T is a tree and V : T ! � maps each node ofT to a letter in �. We restrict our attention to �nitely branching trees, forall x 2 T the number ofsuccessors of x is �nite. 6



An alternating B�uchi automaton is a �ve-tuple A = h�; S; s0; �; F i where �; S and F are likebefore. The state s0 is a unique starting state and � : S��! B+(S) is the transition function. Wede�ne a run of an alternating automaton on an in�nite word w = w0w1::: 2 �! as a S-labeled tree(T; V ) , where V (�) = s0 and for all x 2 T the (possibly empty) set fV (x � c)jc 2 IIN and x � c 2 Tgsatis�es the formula �(V (x); wjxj). A run is accepting if every in�nite path visits the accepting setin�nitely often.A co-B�uchi alternating automaton is de�ned exactly the same except that a run is accepting ifall in�nite paths visit F �nitely often.Given an alternating B�uchi automaton A = h�; S; s0; �; F i, the dual of A is the co-B�uchiautomaton Ad = h�; S; s0; �d; F i where �d(s; a) is the dual of �(s; a). The automata A and Adaccpet complementary languages [MS87], i.e. L(Ad) = �! n L(A).Two-way alternating automata on in�nite words A 2-way alternating B�uchi automatonon in�nite words is a �ve-tuple A = h�; S; s0; �; F i where �; S; s0 and F are like before. Thetransition function is � : S � � ! B+(f�1; 0; 1g � S). A run of an automaton on an in�niteword w = w0w1::: 2 �! is a S-labeled tree (T; V ), where V (�) = (s0; 0) and for all x 2 T withV (x) = (r; n2), the set f(s; a)jc 2 IIN ; x � c 2 T; V (x � c) = (s; n1); a = n1 � n2g satis�es theformula �(r; wn2). A run is accepting if all in�nite paths visit F in�nitely often.A 2-way alternating co-B�uchi automaton is de�ned exactly the same except that a run is ac-cepting if all in�nite paths visit F �nitely often.As before, given a 2-way alternating B�uchi automaton A, its dual automaton Ad, de�ned justlike for 1-way alternating automata, recognizes the complementary language.1.3.2 Linear Temporal LogicWe give a short introduction to linear temporal logic (LTL) [Pnu77]. We only mention a formula ofthis logic once in this paper, as an example. Nevertheless, all this paper is based on this de�nition.Syntax Formulas are de�ned with respect to a set Prop of propositions.� Every proposition p 2 Prop is a formula.� If f1 and f2 are formulas, then :f1; f1 _ f2; f1 ^ f2; 
f1 and f1Uf2 are formulas.Semantics The satisfaction of a formula is de�ned with respect to a model � 2 (2PROP)! and alocation i 2 IIN . We use (�; i) j=  to indicate that the word � in the designated location i satis�esthe formula  .� For a proposition p 2 PROP , we have (�; i) j= p i� p 2 �i.� (�; i) j= :f1 i� not (�; i) j= f1.� (�; i) j= f1 _ f2 i� (�; i) j= f1 or (�; i) j= f2.� (�; i) j= f1 ^ f2 i� (�; i) j= f1 and (�; i) j= f2.� (�; i) j=
f1 i� (�; i+ 1) j= f1. 7



� (�; i) j= f1Uf2 i� there exists k � i such that (�; k) j= f2 and for all i � j < k, we have(�; j) j= f1.We also use the common notations 3f � trueUf , for eventually f , and 2f � :3:f , for alwaysf .1.3.3 Extended Temporal LogicWe present the logics ETLf , ETLl and ETLr as de�ned in [VW94].Syntax Formulas are de�ned with respect to a set Prop of propositions.� Every proposition p 2 Prop is a formula.� If f1 and f2 are formulas, then :f1, f1 _ f2 and f1 ^ f2 are formulas.� For every nondeterministic �nite automaton A = h�; S; �; S0; F i with � = fa1; :::; ang. Iff1; :::; fn are formulas, then A(f1; :::; fn) is a formula.Semantics The satisfaction of a formula is de�ned with respect to a model � 2 (2PROP)! and alocation i 2 IIN . We use (�; i) j=  to indicate that the word � in the designated location i satis�esthe formula  .� For a proposition p 2 PROP , we have (�; i) j= p i� p 2 �i.� (�; i) j= :f1 i� not (�; i) j= f1.� (�; i) j= f1 _ f2 i� (�; i) j= f1 or (�; i) j= f2.� (�; i) j= f1 ^ f2 i� (�; i) j= f1 and (�; i) j= f2.Consider an automaton A = h�; S; S0; �; F i. The run of the formula A(f1; :::; fn) over a word �starting at point i, is a �nite or in�nite sequence � = s0; s1; ::: of states from S, such that s0 2 S0and for all k; 0 � k � j�j, there is some aj 2 � such that (�; i+ k) j= fj and sk+1 2 �(sk; aj).We can now complete the de�nition of semantics:� (�; i) j= A(f1; :::; fn) i� there is an accepting run of A(f1; :::; fn) over � starting at i.Yet to be de�ned is the type of the acceptance used by the automaton: �nite, looping, and repeatingacceptance induce the logics ETLf , ETLl, and ETLr, respectively.For example consider the automatonA = h�; S; S0; �; F i, where � = fa; bg; S = fs0; s1g; �(s0; a) =�(s1; a) = fs0g; �(s0; b) = �(s1; b) = fs1g, and S0 = F = fs1g. If we consider repeating accep-tance, a run of the automaton is accepting if it visits state s1 in�nitely often. The automaton visitss1 exactly when it reads the letter b. Hence, the ETLr connective A(:f; f) is true i� f is truein�nitely often. That is, the ETLr formula A(:f; f) is equal to the LTL formula 23f . Otherexamples can be found in [VW94].When clear from the context we often write the formula A(f1; :::; fn) as A. The name of theautomaton identi�es the formulas f1; :::; fn nested within it.8



Given a formula g, the models of the formula is the set L(g) of all in�nite words w 2 (2PROP )!that satisfy the formula. Given an automaton (either nondeterministic, alternating or 2-way alter-nating) A with alphabet �, the language of the automaton A is the set L(A) of all in�nite wordsw 2 �! accepted by A. The complementary language is the set �! n L(A) of all in�nite wordsw 2 �! rejected by A.
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Chapter 2Translating ETL formulas intonondeterministic B�uchi automataIn this chapter we translate ETL formulas into nondeterministic B�uchi automata. We repeat theprocess three times for ETLf , ETLl and ETLr. First, given a formula g we construct an alternatingB�uchi automaton Ag such that L(Ag) = L(g). Then, we build a nondeterministic B�uchi automatonB such that L(B) = L(Ag).2.1 Translating �nite and looping acceptance !-automata into alternating B�uchiautomataOur goal is given an ETLf (ETLl) formula g, to construct the alternating automaton Ag such thatan in�nite word is a model for g if and only if it is accepted by the automaton Ag. It makes senseto replace the automata connectives in ETLl and ETLf by alternating automata and then plugthese automata into a bigger alternating automaton that takes care of the boolean structure of theformulas (much like [Var96]). In order to do so for a given �nite (looping) acceptance automatonwe build two alternating automata. The �rst recognizing the same language as the �nite (loop-ing) automaton and the second recognizing the complementary language. Since nondeterministicautomata are a special case of alternating automata, the �rst transformation is straightforward.Although the automata we are dealing with read in�nite objects, their simple acceptance conditionmakes complementing very easy. We simply take the dual of the automaton [MS87]. For the sakeof completeness we include the full construction.Let Af = h�; S; S0; �; F i be a �nite acceptance !-automaton. Let S0 = S [ fs0g and assumes0 =2 S. The two alternating automata are:� Aaf = h�; S0; s0; �af ; ;i, where{ �af (s0; a) = ( true S0 \ F 6= ;Ws2S0 Wp2�(s;a) p S0 \ F = ;{ �af (s; a) = ( true s 2 FWp2�(s;a) p s =2 F� Aaf = h�; S0; s0; �af ; Si, where: 10



{ �af (s0; a) = ( false S0 \ F 6= ;Vs2S0 Vp2�(s;a) p S0 \ F = ;{ �af (s; a) = ( false s 2 FVp2�(s;a) p s =2 FNote that the transition of A uses only conjunctions. Hence it has only one possible run on a word.In this sense it is somewhat deterministic, a fact that is used in the following proofs.Claim 2.1.1 L(Aaf ) = L(Af )Proof: An accepting run of Af on a word w induces an accepting run of Aaf on the same word(exchange of �rst state needed) and vice versa.Note that it seems as though the alternating automaton is reading one more letter, it reachesthe accepting state and only the next transition simpli�es to true. The depth of the run tree of thealternating automaton, however, is exactly the length of the run of the nondeterministic automaton.Since the model is in�nite and there is always another letter this does not change the language ofthe automaton.Claim 2.1.2 L(Aaf ) = �! n L(Af )Proof: We �rst show that a word accepted by Af is rejected by Aaf . An accepting run of Af ona word w reaches an accepting state at some stage. The same run is a path in the tree run of Aaf .This path reaches `false' and Aaf rejects. In the other direction, given a word w rejected by Aaf it isaccepted by Af . As mentioned Aaf has a unique run over w. Since the run of Aaf on w is rejectinga path in this run reaches `false'. The same path induces an accepting run of Af on w.Similarly for a looping acceptance !-automaton Al = h�; S; S0; �; ;i, de�ne the following twoalternating automata:� Aal = h�; S0; s0; �al ; Si, where{ �al (s0; a) = Ws2S0 Wp2�(s;a) p{ �al (s; a) = Wp2�(s;a) p� Aal = h�; S0; s0; �al ; ;i, where{ �al (s0; a) = Vs2S0 Vp2�(s;a) p{ �al (s; a) = Vp2�(s;a) pNote that an empty disjunction amounts to `false' and an empty conjunction amounts to `true'.Thus, if �(s0; a0) = ; then �al = false and �al = true. Once again the `negative' automaton has aunique run over a word.Claim 2.1.3 L(Aal ) = L(Al) 11



Proof: An accepting run of Al on a word w induces an accepting run of Aal on the same word(exchange of �rst state needed) and vice versa.Claim 2.1.4 L(Aal ) = �! n L(Al)Proof: An accepting run of Al on a word w is an in�nite run. In the unique tree run of Aal on wthe same path never reaches `true' and the automaton rejects. In the other direction a path in therejecting run of Aal does not reach `true'. The same path provides an accepting run for Al.We have built for every �nite or looping acceptance automaton two alternating automata with oneadditional state that accept the same language and the complementary language.2.2 Negative Normal Form and closure of an ETL formulaSince the transitions of an alternating automaton are of the form ' 2 B+(S) negation in the logicpresents a problem. As in the translation of temporal logic formulas into automata [GPVW95],negation is dealt with ahead of time. Negations are pushed downwards to apply to automata andpropositions only. This is done recursively by:� Changing :(� ^ �) into (:�) _ (:�)� Changing :(� _ �) into (:�) ^ (:�)By De-Morgan rules the models of the formula do not change. Given a formula g, we denoteby g the negative normal form of :g.The closure of the formula g is intended to serve as the state set of the alternating automatonAg. We basically follow the de�nition of the closure in [VW94] but when �nding an automatonconnective it is replaced by its alternating equivalent (that is, a positive automaton for a positivealternating automaton, and a negated automaton for a negative alternating automaton).Before de�ning closure we give the following conventions:� Identify the formula g with g.� Given an alternating automaton A = h�; S; s0; �; F i, for each s 2 S we de�neAs = h�; S; s; �; F i.Now, the closure cl(g) of an ETLf formula g is the minimal set such that:� g 2 cl(g)� if g1 2 cl(g) then g1 2 cl(g)� if g1 ^ g2 2 cl(g) then g1; g2 2 cl(g)� if g1 _ g2 2 cl(g) then g1; g2 2 cl(g)� if Aa(g1; :::; gn) 2 cl(g) then g1; :::; gn 2 cl(g)12



Note that all elements in the closure are in negative normal form. Negations are applied to automataand propositions only.We would like to use the alternating automata prepared in the previous section to replace theautomata connectives in the closure. We replace all automata connectives (or their negation) bythe appropriate alternating automata: For the connective A(f1; :::; fn) where A = h�; S; S0; �; F iwe prepared the alternating automata Aa = h�; S0; s0; �a; F i and Aa = h�; S0; s0; �a; F i, so wereplace A(f1; :::; fn) by Aas0 and :A(f1; :::; fn) by Aas0 . Finally we add to the closure Aas and Aas forevery s 2 S0. After the completion of this phase in all elements in the closure negation applies topropositions only.The number of elements in cl(g) is at most twice the size of g.2.3 ETLf into alternating B�uchi automataWe show now how, given an ETLf formula g, to build an alternating automaton Ag such thatthe language of the automaton is the set of models of g. Like the translation of LTL to alter-nating automata [Var96] we let the transition of the alternating automaton deal with the booleanconnectives and plug in the transition of the alternating automata from Section 2.1.Theorem 2.3.1 For every ETLf formula g of length n there exists an alternating B�uchi automa-ton Ag such that L(Ag) = L(g) and Ag has at most 2n states.In the following construction we use the alternating automata de�ned in Section 2.1. Wehave to modify them slightly. Recall that the �nite acceptance automaton accepts a word whenit reaches an accepting state. Its alternating counterpart reads an extra letter before declaring`true'. We have to amend this di�erence (and a similar di�erence when dealing with negatedconnectives) by replacing every Aas where s 2 F with `true' and replacing every Aas where s 2 Fwith `false'. Using this convention we may assume that for all automata connectives A(f1; :::; fn)where A = h�; S; S0; �; F i the intersection of F and S0 is empty, otherwise the formula is identicalto `true'.We give now the detailed construction. Given an ETLf formula g, de�ne the following alter-nating B�uchi automaton Ag = h2PROP ; cl(g); g;�;Fi, where the transition function � and theacceptance set F are de�ned as follows.� The transition function � : cl(g)� 2PROP ! B+(cl(g)) is de�ned by induction.{ �(true; a) = true{ �(false; a) = false{ �(p; a) = ( true p 2 afalse p =2 a{ �(:p; a) = ( false p 2 atrue p =2 a{ �(g1 ^ g2; a) = �(g1; a) ^�(g2; a){ �(g1 _ g2; a) = �(g1; a) _�(g2; a) 13



{ For ' 2 B+(S) de�ne replaceSA(') by replacing q 2 S by Aq. For example, replaceSAa((s^t) _ q) = (Aas ^ Aat ) _ Aaq and replaceSAa((s ^ t) _ q) = (Aas ^ Aat ) _ Aaq . Recall that fors 2 F , we identi�ed Aas with `true' and Aas with `false'. Now,�(Aa(g1; :::; gn); a) = Wni=1[�(gi; a) ^ replaceSAa(�(s0; ai))]We check that gi in fact holds (�(gi; a)) and continue the computation of Aa. Onecomputation path has to reach a state in F .{ �(Aa(g1; :::; gn); a) = Vni=1[�(gi; a)] _ replaceSAa(�(s0; ai))We check that either gi does not hold (recall that gi is the negative normal form of gi)or the computation of Aa has to continue. All enabled paths have to either reach a deadend or run forever without reaching an accepting state.� The acceptance set is F = fAas jAa = h�; S0; s; �a; Si 2 cl(g) and s 2 Sg.This way positive automata are checked to reach an accepting state and `vanish'. Negativeautomata on the other hand are allowed to (and should) run forever.In the de�nition of �(A; a) we used the negation of formulas gi. This is the only reason toinclude negation of formulas in the closure.Claim 2.3.2 L(Ag) = L(g)Proof: We prove by induction on the structure of the formula that for all subformulas f 2 cl(g),we have L(Af ) = L(f).� For propositions and boolean quanti�ers the proof is not di�erent from the classical proof.� Consider an automaton connective A(f1; :::; fn), A = h�; S; S0; �; F i has the alternating equiv-alent Aa = h�; S0; q0; �a; ;i.A word w = w0w1::: is a model for A(f1; ::; fn) i� there is an accepting run � = s0; s1; :::; smof A where for all 0 � k < m, there is some ajk 2 � such that (w; k) j= fjk , sk+1 2 �(sk; ajk),and sm 2 F .For the formulas f1; :::; fn we can use the induction assumption: (w; j) j= fi i� w�j 2L(Afi). Hence if (w; k) j= fjk there is an accepting run of Afjk on w�k. We modifythe path run of A(f1; :::; fn) on w into a tree by appending to the path the runs of Afjk .We can also remove the node labeled by sm since in the run of AA(f1;:::;fn) we know thatreplaceSA(�(sm�1; ajm�1)) = true, hence under the m � 1 node in the path we append onlythe run of Afjm�1 .Obviously the run answers the demands of the transition of A and the only path labeled bythe automaton A is �nite.If w 2 L(A) there is a sequence Aas0 ; Aas1 ; :::; Aasm�1 such that Aask+1 j= replaceSAa(�a(Ask ; aj))for some j and �(fj; wk) results in an accepting computation. There exists j such thatreplaceSAa(�(sm�1; aj)) = true and �(fj; wm�1) results in an accepting computation. Obvi-ously w j= A(f1; :::; fn).� Consider an automaton connective :A(f1; :::; fn), A = h�; S; S0; �; F i has the alternatingcomplement Aa = h�; S0; q0; �a; Si. 14



It cannot be the case that the same word is a model for A(f1; :::; fn) and it is accepted byA:A. If this is the case there exists an accepting run � = s0; :::; sm of A(f1; :::; fn) on w anda tree run (T; V ) of A:A on w. According to the structure of A we deduce that in level m�1in the tree there is a node labeled by Aasm�1 . Since sm 2 �(sm�1; aj), (w;m � 1) j= fj andwm 2 F we know that replaceSA(�(sm�1; aj)) = false and the run of A has to be rejecting.Therefore L(A:A) \models(A(f1; :::; fn)) = ;.On the other hand if w =2 models(A(f1; :::; fn)) then for every run of A(f1; :::; fn) on w{ either the run s0; s1; ::: is in�nite and never reaches an accepting state: for all k � 0there exists some aj 2 � such that (w; k) j= fj and sk+1 2 �(sk; aj) and sk =2 F .{ or the run s0; s1; :::; sm is �nite, never reaches an accepting state and gets to a pointwhere none of the formulas f1; :::; fn hold: for all 0 � k < m, sk =2 F and there existssome aj 2 � such that (w; k) j= fj and sk+1 2 �(sk; aj) and for all aj 2 �; (w;m) 6j= fj.We can build the run of A:A by induction. Label the root by Aas0 . For all aj 2 � if w j= fj, itmust be the case that no aj successor of s0 is a member of F (i.e. �(s0; aj)\ F = ;) becauseotherwise w is a model of A(f1; :::; fn) contrary to the assumption. Hence we add j�(s0; aj)jsuccessors to the root and label them by Aat for t 2 �(s0; aj). If w 6j= fj we append the runtree of Afj on w under the root (unifying the roots).For a leaf x in the tree, if x is labeled by any proper subformula of A(f1; :::; fn) then itwas appended as a part of a complete run tree and we are ensured that the transition�(V (x); wjxj) = true. If it is labeled by Aat for some t 2 S we can repeat the processapplied to the root. Since we assumed w is not a model of A(f1; :::; fn), no successor is amember of F . We know that replaceSA(�(t; a)) 6= false since no successor can be in F . Thetransition of � is satis�ed by the resulting tree and we are done.
2.4 ETLl into alternating B�uchi automataSimilar to the previous section, given an ETLl formula g we build an alternating automaton suchthat the language of the automaton is the set of models of g. The construction of Ag is very similarto the ETLf case.Theorem 2.4.1 For every ETLl formula g of length n there exists an alternating B�uchi automatonAg such that L(Ag) = L(g) and Ag has at most 2n states.Unlike the case of ETLf , because of the in�nite nature of ETLl there is no need to givespecial attention to the time we identify the entry into the accepting set. We describe part of thetransition function dealing with automata connectives and prove the construction is correct. SoAg = h2PROP ; cl(g); g;�;Fi, where the transition function � and the acceptance set F are de�nedas follows.� The transition function � is de�ned as in for ETLf . We recall part of the de�nition.15



{ �(Aa(g1; :::; gn); a) = Wni=1[�(gi; a) ^ replaceSAa(�a(s0; ai))]We check that gi holds (�(gi; a)) and continue the computation of Aa. There has to bean in�nite path.{ �(Aa(g1; :::; gn); a) = Vni=1[�(gi; a) _ replaceSAa(�a(s0; ai))]We check that either gi does not hold or the computation of Aa continues. All enabledpaths have to reach a dead end of some sort.� The acceptance set is F = fAas jAas = h�; S; s; �a; F i 2 cl(g) and s 2 Sg.When dealing with looping acceptance automata, unlike �nite acceptance, the positive au-tomata may appear on in�nite paths but all negative automata must appear only on �nitepaths.Claim 2.4.2 L(Ag) = L(g)Proof: We prove by induction on the structure of the formula that for all subformulas f 2 cl(g),we have L(Af ) = L(f).� Consider an automaton connective A(f1; :::; fn), A = h�; S; S0; �; Si has the alternating equiv-alent Aa = h�; S0; s0; �a; Si.A word w = w0w1::: is a model for A(f1; :::; fn) i� there is an accepting run � = s0; s1; ::: ofA where for all k � 0 there is some ajk 2 � such that (w; k) j= fjk and sk+1 2 �(sk; ajk).For the formulas f1; :::; fn we can use the induction assumption: (w; j) j= fi i� w�j 2 L(Afi).We modify the path run of A(f1; :::; fn) on w into a tree by appending to the path the runsof Afjk on wk.Obviously the run answers the demands of the transition of A and the only path labeled bythe automaton A is in�nite.If w 2 L(A) then there is an in�nite sequence Aaq0 ; Aaq1 ; ::: such that Aask+1 j= replaceSAa(�a(Ask ; aj))for some j and �(fj; wk) results in an accepting computation. The same holds for A thereforew j= A(f1; :::; fn)� Consider an automaton connective :A(f1; :::; fn), A = h�; S; S0; �; F i has the alternatingcomplement Aa = h�; S; q0; �a; ;i.It cannot be the case that the same word is a model for A(f1; :::; fn) and it is accepted byA:A. If this is the case there exists an accepting run � = s0; s1; ::: of A(f1; :::; fn) on w and atree run of A:A on w. According to the structure of A we know that all paths labeled by Aatfor t 2 S have to be �nite. We show by induction that Aasi appears in level i in the tree. Theroot is labeled by Aas0 . Given a node x in level i in the tree labeled by Aasi we know that thereexists some aj 2 � s.t. (w; i + 1) j= fj and si+1 j= �(si; aj). Hence �(fj; wi) cannot resultin an accepting run tree and there has to be a node under x labeled by Aasi+1 . ThereforeL(A:A) \ L(A(f1; :::; fn)) = ;.On the other hand if w =2 L(A(f1; :::; fn)) then every run of A(f1; :::; fn) on w is rejecting{ either because �(sm; aj) = ; for all aj 2 � such that (w;m) j= fj{ or because for all aj 2 �; (w;m) 6j= fj16



We can build the run of A:A by induction. Label the root by Aas0 . For all aj 2 � such thatw j= fj, if there are no aj successors of s0 (i.e. �(s0; aj) = ;) we are done. Otherwise we addj�(s0; aj)j successors to the root and label them by Aat for t 2 �(s0; aj). If w 6j= fj we appendthe run tree of Afj on w under the root (unifying the roots).For a leaf x in the tree, if x is labeled by any proper subformula of A(f1; :::; fn) then itwas appended as a part of a complete run tree and we are ensured that the transition�(V (x); wjxj) = true. If it is labeled by Aat for some t 2 S we can repeat the processapplied to the root.There cannot be an in�nite path in the run of A:A labeled by Aa. Such a path can beconverted into a run of A(f1; :::; fn) on w contradicting the assumption. Other in�nite pathsare labeled by other automata from a certain point onward. In this case those in�nite pathswere added as a part of an in�nite accepting run tree and visit the acceptance set F in�nitelyoften.2.5 From Alternating B�uchi automata to nondeterministic B�uchi automataConverting alternating automata into nondeterministic automata involves some sort of subset con-struction. The states of the resulting automaton are sets of formulas. Intuitively all formulasappearing in the state have to be checked to hold over the model. The special structure of logicenables two approaches:� A formula not appearing in the state is false in this state and its falseness should be checked.We call this approach the tight approach.� A formula not appearing in the state is not interesting. We call this approach the looseapproach.A formula is either true or false. Hence, when using the tight approach a formula either belongs tothe state or does not belong to it. Using the loose approach, a formula either belongs to the state,or its negation belongs to the state or, not caring about this formula, none of the two belongs.Obviously, it cannot be the case where both the formula and its negation appear in the same set.There are advantages and disadvantages for both approaches (see [GPVW95, DFV99]).Theorem 2.5.1 For every ETLf or ETLl formula g of length n there exists a tight (loose)nondeterministic B�uchi automaton B such that L(B) = L(g) and B has at most 3n (4n) states.The simplest approach to converting alternating B�uchi automata into nondeterministic B�uchiautomata is to use the construction in [MH84]. Given an alternating B�uchi automaton A =h�; S; s0; �; F i they propose B = h�; 2S � 2S ; (fs0g; ;); �0; 2S � f;gi, where �0 is de�ned, for all(P;Q) 2 2S � 2S and a 2 � as follows.� If Q 6= ; then �0((P;Q); a) =8><>:(P 0; Q0 n F ) ������� P 0 satis�es Vp2P �(p; a)Q0 � P 0; andQ0 satis�es Vp2Q �(p; a) 9>=>;17



� If Q = ; the �0((P;Q); a) = f(P 0; P 0 n F )jP 0 satis�es p̂2P �(p; a)gThis way the �rst component in the state of B follows all the paths in a run tree of A in the sametime. The second component collects only paths that owe a visit to the acceptance set F . Oncethe second component is empty (all paths visited F at least once) it is re�lled with the new level inthe run tree of A. If the second component is empty in�nitely often we are ensured that every pathin the tree of A visited F in�nitely often. As noted by Isli [Isl96], all reachable states are of theform (P;Q) 2 2S � 2S where Q � P . Hence we can replace the state set by 3S , where 0 indicatesnot appearing, 1 indicates appearing only in the �rst component and 2 indicates appearing in bothcomponents. The second component in the states of B is often referred to as the book-keepingcomponent.This construction yields for an alternating automaton with n states a nondeterministic automa-ton with 3n states. Given an ETL formula g of length n, the alternating automaton Ag has 2nstates. Therefore the �nal nondeterministic automaton has 32n states.This result can be improved using either the tight approach or the loose approach. We createthe reduced closure of the formula. Let rcl(g) be a subset of g such that for every formula f 2 cl(g)either f 2 rcl(g) or f 2 rcl(g) and it is not the case that f 2 rcl(g) and f 2 rcl(g). Furthermore,all propositions and automata connectives appear in the reduced closure in their positive form (i.e.for all p 2 PROP , we have p 2 rcl(g) and for all As 2 cl(g), we have As 2 rcl(g)). In the followingwe reduce the number of states from 9n to either 3n, using the tight approach, or 4n, using theloose approach. We use the following observation.� Take the run tree of Ag where g is an ETLf formula. If in the run tree of Ag appears a nodelabeled by a negated automaton connective, there might be an in�nite path under that nodelabeled by the same negated automaton in di�erent states. No other condition is imposed onthis in�nite path. All these states (negated automata) are members of the accepting set andthey never appear in the book-keeping component. On the other hand automata connectivesthat are not negated have to be checked to make sure they do not run forever.� For ETLl formulas the opposite is true. Thus, negated automata connectives have to bechecked to have no in�nite paths and non-negated automata may have in�nite paths.We start with the tight approach. We describe only the ETLf construction, the constructionfor ETLl is similar. Given a subset U of cl(g) and the set rcl(g) we say that a formula f 2 rcl(g)appears positive in U if f 2 U and appears negative in U if f 2 U . In the tight approach we usestates from f�1; 1; 2grcl(g). Each state P 2 f�1; 1; 2grcl(g) represents a subset U of cl(g). For aformula f 2 rcl(g), if f 's coordinate in P is �1 it indicates that f 2 U , if f 's coordinate in Pis 1 it indicates that f 2 U , and if f 's coordinate in P is 2 it indicates that f 2 U and that thenondeterministic automaton is following f also in the book-keeping component.In order to simplify notations, the states of the nondeterministic automaton consist of twosubsets of 2rcl(g). Converting our automaton to an automaton using f�1; 1; 2grcl(g), as above, isstraightforward.We �rst con�ne the set 2rcl(g) to the set of all consistent subsets: if a disjunction is a memberof the set, one of the disjuncts has to be in the set as well, and if a conjunction is a member of the18



set, both conjuncts have to be in the set.cons(2rcl(g)) = (P 2 2rcl(g) ����� 8(f1 ^ f2) 2 rcl(g); f1 ^ f2 2 P () f1 2 P and f2 2 P8(f1 _ f2) 2 rcl(g); f1 _ f2 2 P () f1 2 P or f2 2 P )Given Ag = h2PROP ; cl(g); g;�;Fi, we build the nondeterministic automatonB = h2PROP ; S � S; S0 � f;g;�0; S � f;gi, where� S = cons(2rcl(g))� S0 = ft 2 S j g 2 t or g =2 tg, the initial states are the ones for which g is checked to be true.� The transition function �0 is de�ned for all (P;Q) 2 S � S and a � PROP as follows.{ If Q = ;, then (P 0; Q0) 2 �0((P;Q); a) i� all the following conditions hold.* For all p 2 PROP , we have p 2 P i� p 2 a.* For all automata connectives A(f1; :::; fn) with A = h�; S; S0; �; F i.� If As 2 P , then there exists some aj 2 � and t 2 �(s; aj) such that fj 2 P orfj =2 P and either t 2 F or At 2 P 0.� If As =2 P , then for all At such that t 2 �(s; aj) where fj 2 P or fj =2 P , we haveAt =2 P 0.* Q0 = fAsjAs 2 P 0g.{ If Q 6= ; then (P 0; Q0) 2 �0((P;Q); a) i� all the following conditions hold.* For all p 2 PROP , we have p 2 P i� p 2 a.* For all automata connectives A(f1; :::; fn) with A = h�; S; S0; �; F i.� If As 2 P and As =2 Q, then there exists some aj 2 � and t 2 �(s; aj) such thatfj 2 P or fj =2 P and either t 2 F or At 2 P 0.� If As =2 P , then for all At such that t 2 �(s; aj) where fj 2 P or fj =2 P , we haveAt =2 P 0.� If As 2 P and As 2 Q, then there exists some aj 2 � and t 2 �(s; aj) such thatfj 2 P or fj =2 P and either t 2 F or At 2 P 0 and At 2 Q0.The transition function requires that every positive automaton is followed by one possiblesuccessor and every negative automaton is followed by all possible successors. The book-keeping component makes sure that all paths of positive automata are �nite.Claim 2.5.2 L(B) = L(Ag)Proof: The proof is quite straightforward. Proving that L(B) is a subset of L(Ag), we dividethe run of the nondeterministic automaton B into a tree run of Ag, the acceptance condition of Bmakes sure that no path in the tree, labeled with positive automata, is in�nite. Proving that L(Ag)is a subset of L(B), we build a Hintikka Sequence for the word and use the alternating automatonto prove that it satis�es the transition function of B and that the book-keeping component is emptyin�nitely often. We now dive into the details:Suppose w 2 L(B). Then there exists an accepting run (P0; Q0); (P1; Q1); ::: of B on w. Webuild by induction a run tree (T; V ) of Ag on w such that the set of labels of the nodes in level i19



in the tree is a subset of Pi or formally for all nodes x 2 T such that jxj = i either V (x) 2 Pi orV (x) =2 Pi. We start by V (�) = g, since (P0; Q0) 2 S0; g 2 P0 or g =2 P0. Given a node x 2 T thelabel of x is either an automaton in some state or a proposition.� If the label is a (negated) proposition V (x) 2 PROP then by induction assumption it is inPjxj and we can conclude that V (x) 2 wjxj (V (x) =2 wjxj).� If the label is some automaton V (x) = As where the connective is A(f1; :::; fn) and As doesnot appear in the book-keeping component, As =2 Qjxj, then there has to be some t 2 �(s; aj)such that fj 2 Pjxj or fj =2 Pjxj and either t 2 F and then we are done or At 2 Pjxj+1. Inthis case we add a successor to x in T and label it V (x) = At. We take apart fj (or fj) andget its propositional and automata components, propositions are ful�lled (they are ful�lledin the run of B) and automata parts are handled as if labeling x.� If the label is some automaton V (x) = As where the connective is A(f1; :::; fn) and As appearsin the book-keeping component, As 2 Qjxj, then if As has a successor in the accepting set(i.e. for some fj 2 Pjxj or fj =2 Pjxj there is t 2 �(s; aj) such that t 2 F ) then we only handlethe propositional and automata requirements for fj. Otherwise we follow the path inside thebook-keeping component in a similar way to the previous item and handle fj (or fj).� If the label is some negative automaton V (x) = As where the connective is A(f1; :::; fn) thenfor all t such that t 2 �(s; aj) and fj 2 Pjxj or fj =2 Pjxj we add successors to x and label themAt. For f1; :::; fn, if fj appears in Pjxj it is satis�ed and if fj does not appear in Pjxj, take fjapart and handle its components just like before.The resulting tree is a run tree of Ag. We have to make sure it is accepting.Assume by contradiction that there is an in�nite path x0; x1; ::: labeled by positive automata.From the construction of the run tree, if the label of xi is some automaton As then the label ofxi+1 is either the same automaton in another state or an automaton that is nested inside the �rst.The level of nesting is bounded hence there exists a point i in the path beyond which all the labelsbelong to the same automaton connective. Since in the run of B the book-keeping component Qis empty in�nitely often there is a point j > i such that Qj = ;. Hence the label of xj+1 is foundin Qj+1. From the construction of the run tree we can deduce that for all k > j the label of xk isfound in Qk. Since Ql = ; for in�nitely many ls this is a contradiction.Suppose w 2 L(Ag) then there exists an accepting run tree (T; V ) of Ag on w. Furthermorefrom the previous parts for every formula f in the closure of g we know that (w; i) j= f () w�i 2L(Af ). Hence if a formula f is true at point i of the sequence (w; i) j= f , then there exists anaccepting run tree (T if ; V if ) of Af on the word w�i. In particular (T 0g ; V 0g ) is the run of Ag on w.We construct the run of B in two stages �rst we construct the Hintikka sequence that providesfor the �rst component of every ordered pair. Then we complete the second component - the book-keeping component. For the Hintikka sequence we take all the formulas that are true at the timePi = ff 2 rcl(g)j(w; i) j= fg. Obviously, for every formula f in Pi there exists an accepting run(T if ; V if ) and for every formula f not in Pi there exists an accepting run (T if ; V if ). This is su�cientto prove that the sequence P0; P1; ::: is a projection of a run of B on the �rst component of S � S.Obviously for all i; Pi is consistent and if some automaton connective As(f1; :::; fn) appears in Pithen either s has an accepting state reachable from it or we can take from the run (T iAs ; V iAs) theelement At appearing in level 1 of the tree and we know that it is satis�ed at time i+ 1. Similarly20



if an automaton connective does not appear in a state all the possible successors do not appear inthe following state.We are left with the `acceptance' part of the run of B. This is built by induction from empty setto empty set. The �rst state Q0 is empty by de�nition. Given Qi empty in the run we know thatQi+1 holds all the positive automata held in Pi+1. Denote Qi+1 = fA1s1 ; :::; Apspg. For every oneof these automata there is an accepting run (T i+1Ajsj ; V i+1Ajsj ). Since the paths with positive automatain these trees are �nite we unite the positive successors of A1s1 ; :::; Apsp into the sequence of Qs.Obviously the Qs are subsets of the true formulas. We can gather that for some l > i, the set Qlis empty again.In the loose approach, we describe only the ETLl construction, the construction for ETLf issimilar. We reduce the state set to f�2;�1; 0; 1grcl(g). Given a subset U � cl(g), the stateP 2 f�1; 0; 1; 2grcl(g) represents it. For a formula f 2 rcl(g) if f 's coordinate in P is �1 it indicatesthat f 2 U , if f 's coordinate in P is 0 it indicates that f =2 U and f =2 U , if f 's coordinate in Pis 1 it indicates that f 2 U and if f 's coordinate in P is 2 it indicates that f 2 U and that thenondeterministic automaton is following f also in the book-keeping component. For simplicity ofnotation we use a separate book-keeping component.We con�ne the set f�1; 0; 1grcl(g) to the set of consistent subsets. Given a set P 2 f�1; 0; 1grcl(g),we abuse notation and write f 2 P for Pf = 1 (i.e. f 's coordinate in P equals 1), f2P if Pf = �1and f =2 P if Pf = 0.cons(f�1; 0; 1grcl(g)) = 8>>><>>>:P ��������� 8(f1 ^ f2) 2 rcl(g); f1 ^ f2 2 P ) f1 2 P and f2 2 P8(f1 _ f2) 2 rcl(g); f1 _ f2 2 P ) f1 2 P or f2 2 P8(f1 ^ f2) 2 rcl(g); f1 ^ f22P ) f12P or f22P8(f1 _ f2) 2 rcl(g); f1 _ f22P ) f12P and f22P 9>>>=>>>;Given the alternating B�uchi automaton Ag = h2PROP ; cl(g); g;�;Fi we build the followingnondeterministic B�uchi automaton B = h2PROP ; S � S; S0 � f;g;�; S � f;gi, where� S = cons(f�1; 0; 1grcl(g))� S0 = ft 2 Sjg 2 t or g2tg. The initial states are the ones for which g is checked to be true.� The transition function �0 is de�ned for all (P;Q) 2 S � S and a � PROP as follows.{ If Q = ;, then (P 0; Q0) 2 �0((P;Q); a) i� all the following conditions hold.* For all p 2 PROP , we have p 2 P implies p 2 a, and p2P implies p =2 a.* For all automata connectives A(f1; :::; fn) with A = h�; S; S0; �; F i.� If As 2 P , then there exists some aj 2 � and t 2 �(s; aj) such that fj 2 P orfj2P , and At 2 P 0.� If As2P , then for all At such that t 2 �(s; aj) where fj 2 P or fj2P or (fj =2 Pand fj =2 P ), we have At2P 0.* Q0 = fAsjAs2P 0g.{ If Q 6= ;, then (P 0; Q0) 2 �0((P;Q); a) i� all the following conditions hold.21



* For all p 2 PROP , we have p 2 P implies p 2 a, and p2P implies p =2 a.* For all automata connectives A(f1; :::; fn) with A = h�; S; S0; �; F i.� If As 2 P , then there exists some aj 2 � and t 2 �(s; aj) such that fj 2 P orfj2P , and At 2 P 0.� If As2P and As =2 Q, then for all At such that t 2 �(s; aj) where fj 2 P orfj2P or (fj =2 P and fj =2 P ), we have At2P 0.� If As2P and As2Q, then for all At such that t 2 �(s; aj) where fj 2 P or fj2Por (fj =2 P and fj =2 P ), we have At2P 0 and At2Q0.The transition function requires that every positive automaton is followed by some successorand every negative automaton is followed by all possible successors. For the subformulasf1; :::; fn of the automaton connective A(f1; :::; fn), if in the current state P we do not careabout a formula fj (both the formula and its negation do not appear in the state), we assumethat it is correct.Claim 2.5.3 L(B) = L(Ag)Proof: Given a run of the nondeterministic automaton B, we turn it into a run of A and viceversa.Suppose w 2 L(B) then there exists an accepting run (P0; Q0); (P1; Q1); of B on w. We buildby induction a run tree (T; V ) of Ag on w such that the set of labels of the nodes in level i inthe run tree is a subset of Pi. Formally for all nodes x 2 T such that jxj = i either V (x) 2 Pi orV (x)2Pi. We start with V (�) = g, since P0 2 S0 either g 2 P0 or g2P0. Given a node x 2 T thelabel of x is either an automaton in some state or a proposition.� If the label is a (negated) proposition then by the induction assumption it is in Pjxj (not inPjxj) and V (x) 2 wjxj (V (x)2wjxj).� If the label is some automaton V (x) = As where the connective is A(f1; :::; fn) (positiveautomata do not appear in the book-keeping component), then there has to be some t 2�(s; aj) such that fj 2 Pjxj or fj2Pjxj and At 2 Pjxj+1. We add a successor x � c to x in T andlabel it V (x � c) = At.� If the label is some negative automaton V (x) = As where the connective is A(f1; :::; fn) andAs does not appear in the book-keeping component. For every formula fi:{ If we do not care about fi (fi =2 Pjxj and fi =2 Pjxj) then if �(s; aj) is empty we are done.Otherwise for every t 2 �(s; aj), At appears in Pjxj+1. We add a successor to x and labelit by At.{ If fi is positive (fi 2 Pjxj or fi2Pjxj) we handle As just like when we do not care aboutfj.{ If fi is negative (fi 2 Pjxj or fi2Pjxj) then as Pjxj is consistent, all subformulas of fi arecared about. We handle these subformulas as if labeling x.� If the label is some negative automaton V (x) = As where the connective is A(f1; :::; fn) andAs appears in the book-keeping component. We handle it just like we handled a negativeautomaton not appearing in the book-keeping component but follow its descendents in Qjxj+1rather than in Pjxj+1. 22



Assume by way of contradiction that the resulting tree is not accepting. In this case there is anin�nite path of negative automata. Just like in the previous proof of the tight case this path will�nally get trapped in the book-keeping component. Since the book-keeping component is emptyin�nitely often, this is a contradiction.Assume w 2 L(Ag). In order to show that w is accepted also by B we can use the previousproof for the tight nondeterministic automaton. We simply use B as a tight automaton, disallowingthe dont care state. Thus the proof is a simple variant of the proof in the tight case (for ETLf )and we omit it.2.6 From ETLr formulas to nondeterministic B�uchi automataIn this section we construct for an ETLr formula g a nondeterministic B�uchi automaton B such thatL(B) = B(g). The work in this section is very similar to the work in the previous sections. Givena nondeterministic B�uchi automaton we show how to construct an alternating B�uchi automatonaccepting the same language and an alternating B�uchi automaton accepting the complementarylanguage. Given an ETLr formula g, we build the alternating B�uchi automaton Ag such thatL(g) = L(Ag). Finally, we transform Ag to a nondeterministic B�uchi automaton.2.6.1 From nondeterministic B�uchi automata to alternating B�uchi automataAs in the �rst part, we start by building two alternating automata. Given a nondeterministic B�uchiautomaton we build an alternating automaton that accepts the same language and an alternatingautomaton that accepts the complementary language. We use the constructions given in [KV97]and [Tho98]. We use the following notations S0 = S[fs0g, [k] = f0; 1; :::; kg and Odd(P ) = fi 2 P jiis oddg.Given a nondeterministic B�uchi automaton A = h�; S; S0; �; F i, we de�ne� Aa = h�; S0; s0; �a; F i, where{ �a(s0; a) = Ws2S0 Wp2�(s;a) p{ �a(s; a) = Wp2�(s;a) p� Aa = h�; S0 � [2n]; (s0; 2n); �a; S0 �Odd([2n])i, where{ �a((s0; 2n); a) = Vs2S0 Vp2�(s;a)Wi0�2n(p; i0){ �a((s; i); a) = ( Vp2�(s;�)Wi0�i(p; i0) s =2 F or i is evenfalse s 2 F and i is oddClaim 2.6.1 L(Aa) = L(A)Proof: A run of A corresponds to a tree of Aa and vice versa.Claim 2.6.2 L(Aa) = �! n L(A)Proof: The proof is given in [KV97]. Considerable parts of the proof appear with variations alsohere. For an idea of the proof see Claim 2.6.4, Claim 3.2.4 and Subsection 3.5.1.23



2.6.2 Construction of the alternating automatonGiven an ETLr formula g, we construct an alternating automaton Ag such that L(Ag) = L(g).We use the closure of the formula cl(g) as the state set for this alternating automaton. Recallthe de�nition of closure given for ETLf and ETLl formulas (Section 2.2). Recall also that fora formula g, the formula g denotes the negative normal form of :g and the function replaceSA asde�ned in Section 2.3.Theorem 2.6.3 For every ETLr formula g of length n there exists an alternating B�uchi automatonAg such that L(Ag) = L(g) and Ag has O(n2) states.Given an ETLr formula g, we de�ne Ag = h2PROP ; cl(g); g;�;Fi, where the transition function� and the acceptance set F are de�ned as follows.� The transition function � : cl(g)�2PROP ! B+(cl(g)) is de�ned as in previous sections. Werecall part of the de�nition.{ �(Aa(g1; :::; gn); �) = Wni=1[�(gi; �) ^ replaceSAa(�Sa (s0; ai))]One of the formulas gi is checked to hold and the computation of Aa continues. One runvisits F in�nitely often.{ �(Aa(g1; :::; gn); �) = Vni=1[replaceSAa(�a((s0; 2n); ai)) _�(gi; �)]Either gi does not hold or the computation of Aa has to continue. No possible run visitsF in�nitely often.� The acceptance set isF =[ fAas jAa = h�; S; s0; �a; F ai 2 cl(g) and s 2 F agfAa(s;i)jAa = h�; S � [2n]; (s0; 2n); �a; S �Odd([2n])i 2 cl(g) and i is oddgUnlike �nite and looping acceptance automata for which it was su�cient to check only thepositive or only the negative, here we have to check that both the negative and the positive automatavisit in�nitely often their acceptance sets.Claim 2.6.4 L(Ag) = L(g)Proof: Prove by induction on the structure of the formula:� Given the automaton connective A(f1; :::; fn) where A = h�; S; S0; �; F i with the alternatingequivalent Aa = h�; S0; s0; �a; F ai.A word w = w0w1::: is a model for A(f1; :::; fn) if there is an accepting run � = s0; s1; ::: of Awhere for all k � 0 there is some ajk 2 � such that (w; k) j= fjk and sk+1 2 �(sk; ajk) and �visits F in�nitely often.By the induction assumption (w; k) j= fjk if and only if Afjk accepts the word w�k if andonly if �(fjk ; wk) has an accepting run tree.We know that Aask+1 j= replaceSAa(�a(sk; ajk)), so we can build the run tree of Ag:{ Label the root Aas0 24



{ Given a leaf xk in the tree labeled by Aask , by the induction assumption there is anaccepting run tree of Afjk on w�k concatenate this tree under xk (with xk serving asthe root) and add an extra leaf xk+1 labeled Ask+1{ Other leaves are parts of the subtree of Afl for some l. As we concatenated an acceptingrun of Afl we do not have to worry about these leaves. If a leaf appears in this subtreethe transition associated with it has to be �(V (x); ajxj) = true.This is obviously a run of AA(f1;:::;fn). There is only one in�nite path we have to worry about.This path is Aas0 ; Aas1 ; ::: which obviously visits the accepting set in�nitely often.A word w = w0w1::: is in L(AA(f1;:::;fn)) if there is an accepting run tree (T; V ). There hasto be in (T; V ) an in�nite path x0; x1; ::: labeled Aas0 ; Aas1 ; :::. The sequence s0; s1; ::: is anaccepting run of A(f1; :::; fn) on w.� Given the automaton connective :A(f1; :::; fn) where A = h�; S; s0; �; F i with the alternatingcomplement Aa = h�; S0 � [2n]; (s0; 2n); �a; S �Odd([2n])i.Suppose w = w0w1::: does not satisfy :A(f1; :::; fn). Then there exists an accepting run� = s0; s1; ::: such that for all k � 0 there is ajk 2 � that (w; k) j= fjk and sk+1 2 �(sk; ajk)that visits F in�nitely often.By contradiction suppose that (T; V ) is an accepting run tree of A:A(f1;:::;fn) on w and buildby induction a path that does not visit F in�nitely often:{ The root � is labeled Aa(s0;2n){ Given a path Aa(s0;i0); Aa(s1;i1); :::; Aa(sm;im)We know that Afjm accepts w�m hence there is no accepting tree for �(fjm ; wm) sothere is a node under Aa(sm;im) labeled Aa(sm+1;im+1)We showed that Aa(s0;i0); Aa(s1;i1); ::: is a path in the tree (T; V ). The sequence i0; i1; ::: is notincreasing, therefore there exists some l such that for all p � l; ip = il. Since � is anaccepting run of A(f1; :::; fn) it visits F in�nitely often and there is no way that il is odd.The path we found in the tree visits S�Odd([2n]) �nitely often and the computation of A isrejecting. We have shown that L(A) � L(:A(f1; :::; fn)) The other direction follows closelythe proofs given in [KV97].Suppose w 2 L(:A(f1; :::; fn)), there is no accepting run of A(f1; :::; fn) on w. For all possibleruns{ either � = s0; s1; ::: is in�nite and for all k � 0 there is some ajk 2 � such that(w; k) j= fjk and sk+1 2 �(sk; ajk) and lim(�) \ F = ;{ or � = s0; s1; :::; sm is �nite and for all 0 � k < m there is some ajk such that (w; k) j= fjkand sk+1 2 �(sk; ajk) and 8al 2 �; (w;m) 6j= fl.We build the following labeled tree (T; V ):{ The root � is labeled s0{ Given a leaf x 2 G labeled V (x) de�ne SONSx = fsj9aj 2 � s.t. s 2 �(V (x); aj) and(w; jxj) j= fjg. Let jSONSxj = m then add x1; :::; xm as successors of x and label themwith the values in SONSx. 25



Given a tree run (T; V ) we de�ne the subtree of x 2 T as (Tx; Vx) where Tx = fyjx � y 2 Tgand Vx(y) = V (x � y). A tree (T; V ) is de�ned memoryless if for every two nodes in the samelevel with the same label the subtrees below them are identical. Formally for all x; y 2 Tsuch that jxj = jyj and V (x) = V (y), (Tx; Vx) = (Ty; Vy). In a memoryless tree it seems awaste to hold more than a subset of S0 per level. Since our tree is memoryless (see de�nitionof SONSx) we can convert it into a Directed Acyclic Graph G = (V;E) where V � S0 � IINand E � S1i=0(S0 � fig) � (S0 � fi+ 1g):V = f(V (x); jxj)jx 2 TgE = f((V (x); jxj); (V (y); jyj))jx; y 2 T and y successor of x in TgFrom here on the proof is given in [KV97], we give here the main claims and the de�nitionsused there.Given a (possibly �nite) DAG G0 � G. We de�ne a vertex (s; i) as eventually safe in G0i� only �nitely many vertices in G0 are reachable from (s; i). We de�ne a vertex (s; i) ascurrently safe in G0 i� all the vertices in G0 reachable from (s; i) are not members of F � IIN .Now de�ne the inductive sequence:{ G0 = G{ G2i+1 = G2i n f(s; i)j(s; i) is eventually safe in G2ig{ G2i+2 = G2i+1 n f(s; i)j(s; i) is currently safe in G2i+1gLemma 2.6.5 [KV97] For every i � 0, there exists li such that for all l � li, there are atmost n� i vertices of the form (s; i) in G2iBy the lemma G2n is �nite and hence G2n+1 is empty.Index the vertices in G in the following way:{ 2i, if the vertex is eventually safe in G2i{ 2i+ 1 if the vertex is currently safe in G2i+1All indices are in the range [2n].Lemma 2.6.6 [KV97] For every two vertices (s; i) and (s0; i0) in G, if (s0; i0) is reachablefrom (s; i) then rank(s0; i0) � rank(s; i).Lemma 2.6.7 [KV97] In every in�nite path in G, there exists a vertex (s; i) with an odd ranksuch that all the vertices (s0; i0) in the path that are reachable from (s; i) have rank(s0; i0) =rank(s; i).We get back from [KV97] to the tree (T; V ) and recall that the successors of x in T areSONSx = fsjs 2 �(V (x); aj) ^ (w; jxj) j= fjg. We modify the tree:{ For the root � we change the label to Aa(s0;2n){ For every vertex x 6= � we change the label to include its ranking: Aa(V (x);rank(V (x);jxj)).Since the rank is in the range [2n], Aa(V (x);rank(V (x);jxj)) is indeed a state of the automaton.26



Now for every x we append the following subtree. For all aj 2 � such that (w; jxj) 6j= fj weadd the computation of Afj (with x as the root).We �rst show that this is indeed a run of A:A(f1;:::;fn), i.e. all nodes in the tree supply thetransition function and that it is an accepting run:{ The root � is labeled by Aa(s0;2n)We divide the successors of � to those labeled by Aa and those labeled by subformulasof f1; :::; fn. Since 2n is the maximal possible index all Aa are indexed below 2n and thetransition is legal. The successors labeled by subformulas of f1; :::; fn were added as acomplete tree and obviously have legal transitions.{ For a node x labeled by Aa(s;i)We divide the successors of x to those labeled by Aa and those labeled by subformulas off1; :::; fn. The node x and a successor labeled Aa are derived from two adjacent nodes inthe tree (T; V ). From Lemma 2.6.6 all successors of x have index smaller than i or equalto it. We also know that there is no way that s 2 F and i is odd. Again subformulas off1; :::; fn should not concern us.The tree supplies the transition of the automaton.By lemma 2.6.7, each in�nite path of nodes labeled by Aa has a constant index from somelevel onward and that index is odd. The run is accepting.2.6.3 From alternating B�uchi automata to nondeterministic B�uchi automataGiven an ETLr formula g we constructed the alternating automaton Ag. In this section, given thealternating automaton Ag, we use the construction in [MH84] and the methods discussed in theprevious sections to transform it to a nondeterministic automaton. Let jgj = n, then jcl(g)j = 2n2,implementing [MH84, Isl96] results in 32n2 states.Theorem 2.6.8 For every ETLr formula g of length n there exists a tight (loose) nondeterministicB�uchi automaton B such that L(B) = L(g) and B has 2O(n log(n)) states.Kupferman and Vardi [KV97] note that there is no point in using all the subsets of cl(g). Thereis no need to hold a subset with the same state of an automaton with two di�erent ranks. We cancombine the tight and loose approaches with this observation to improve the construction.In order to do so we extend the de�nition of a memoryless run to include two states withdi�erent indices.De�nition 1 A rank memoryless run tree (T; V ) of Ag is a memoryless run that has no two nodesin the same level labeled by Aa(s;i) and Aa(s;i0) where i 6= i0 and Aa 2 cl(g).Kupferman and Vardi [KV97] noted that a single run of a negative automaton results in a rank-memoryless run. In our case negative automata that are nested within other automata are spawnedin di�erent stages of the run. We cannot claim that the run is rank-memoryless and have to adaptit to be so. 27



Claim 2.6.9 There is an accepting run of Ag on w i� there is a rank memoryless accepting runof Ag on wProof: In a rank memoryless accepting run we have to replace every occurrence of A(s;i) with nopredecessor labeled by A by A(s;2n). This does not a�ect the limit nature of the run and it remainsan accepting run.Given an accepting run (T; V ) we transform it into a rank memoryless run by induction on thelevels: For level 0 the tree is rank memoryless. Assume it is so until level i and show for i+1: Giventwo vertices in level i+ 1 labeled Aa(s;i) and Aa(s;i0). W.l.o.g i � i0 and we replace the subtree underAa(s;i0) (including Aa(s;i0)) with the subtree under Aa(s;i). The limit tree (T 0; V 0) is a rank memorylesstree and is still a valid run of A. It is left to prove that (T 0; V 0) is accepting.Assume by contradiction that (T 0; V 0) is not accepting, then there has to be an in�nite pathx0; x1; ::: in the tree that does not visit the acceptance set from some point onward. All the labelsof this path are automata and if xi is the parent of xi+1 in the tree either their labels belongto the same automaton or the automaton labeling xi+1 is nested within the automaton labelingxi. Since the nesting degree is bounded, from some point in the path all labels are states of thesame automaton. Hence either the path is labeled by a positive automaton that does not visit itsaccepting set or it is labeled by a negative automaton that is trapped in an even rank k. We showthat either way a su�x of the path is included in the original tree.In the �rst case, since there is a point from which the path is labeled by a positive automatonit cannot be the case that changes have been made to nodes in this path itself. Hence from thispoint onward the path is included in (T; V ) and it has to be visiting F in�nitely often.In the second case all the labels belong from some point to the same negative automaton. Weknow as well that the ranks associated with this path are descending. The rank gets trapped insome k. Formally there exists some i � 0 such that for all l � i the label of xl is Aa(sl;k) for someautomaton A and state sl 2 S. Show by induction that A(si;k); A(si+1;k); ::: are the labels of a pathin (T; V ):� Since A(si;k) appears in (T 0; V 0) there is some node in level i in T with the same label. Lety0; y1; :::; yi be the path from the root to that node.� Suppose y0; y1; :::; ym; m � i is a path in (T; V ) and the labels of yi; :::; ym are labeledA(si;k); :::; A(sm;k),Below ym there is a node labeled A(sm+1;f) for some f � k. But we know that in (T 0; V 0)appears in level m+ 1 a node with label A(sm+1;k), hence k is the minimal rank appearing in(T; V ) in level m+ 1 associated with sm+1. We conclude that f = k.Since (T; V ) is an accepting run such a path cannot appear in it and we can conclude that (T 0; V 0)is also accepting.We combine the rank memoryless with the tight approach. We reduce the closure to containone polarity of every formula rcl(g) without ranks. We build a nondeterministic B�uchi automatonwith the consistent subsets of f�2m; :::;�0;�2m; :::;�0; 1; 2grcl(g) . Here m is the maximal numberof states of all automata connectives A(f1; :::; fn) nested in the formula g. Using this notation 1indicates that the positive of the formula should be checked, �i indicates that the negative of the28



formula ranked i should be checked, 2 indicates that the positive of the formula should be checkedand appears in the book-keeping component and �i indicates that the negative of the formularanked i should be checked and appears in the book-keeping component. A subset S is consistentif (a) boolean consistency of conjunctions and disjunctions is kept (b) a formula that is not anautomaton connective always appears with rank 1 or �1.We de�ne the B�uchi automaton B = h2PROP ; S; S0;�0; �i where S is the set of consistentsubsets of f�2m; :::; 2grcl(g); S0 contains all subsets in which g appears in the positive (rank 1)or g appears in the negative (rank �2m; :::;�0) and no state appears with ranks 2;�2m; :::;�0.The acceptance set � includes all the sets in which no element is ranked 2;�2m; :::;�0 (the book-keeping component is empty). The transition function requires that every positive automaton isfollowed by one possible successor and every negative automaton ranked i is followed by all possiblesuccessors ranked below i. We abuse notation and write (P;Q) as a state of B. For f 2 rcl(g)and As an automaton connective in rcl(g) we abuse notation and write f 2 P meaning Pf = 1(i.e. f 's coordinate in P equals 1), As 2 P and As =2 Q meaning PAs = 1, As 2 P and As 2 Qmeaning PAs = 2 (Only automata might appear in Q), (f; i) =2 P meaning Pf = �i ((As; i) =2 Pand A(s;i) =2 Q for automata connectives) and (As; i) =2 P and A(s;i) 2 Q meaning PAs = �i.The transition function �0 is de�ned for all (P;Q) 2 S and a � PROP as follows.� If Q = ;, then (P 0; Q0) 2 �0((P;Q); a) i� all the following conditions hold.{ For all p 2 PROP , we have p 2 P i� p 2 a.{ For all automata connectives A(f1; :::; fn) with A = h�; S; S0; �; F i.* If As 2 P , then there exists some aj 2 � and t 2 �(s; aj) such that fj 2 P or forsome i, (fj; i) =2 P and At 2 P 0.* If (As; i) =2 P , then for all At such that t 2 �(s; aj) where fj 2 P or for some l,(fj ; l) =2 P , there exists some p � i and (At; p) =2 P 0.{ Q0 = S fAsjAs 2 P 0 and s =2 FgfA(t;p)j(At; p) =2 P 0 and p is eveng� If Q 6= ;, then (P 0; Q0) 2 �0((P;Q); a) i� all the following conditions hold.{ For all p 2 PROP , we have p 2 P i� p 2 a.{ For all automata connectives A(f1; :::; fn) with A = h�; S; S0; �; F i.* If As 2 P and As =2 Q, then there exists some aj 2 � and t 2 �(s; aj) such thatfj 2 P or for some i, (fj; i) =2 P and At 2 P 0.* If (As; i) =2 P and A(s;i) =2 Q, then for all At such that t 2 �(s; aj) where fj 2 P orfor some l, (fj; l) =2 P , there exists some p � i and (At; p) =2 P 0.* If As 2 P and As 2 Q, then there exists some aj 2 � and t 2 �(s; aj) such thatfj 2 P or for some i, (fj; i) =2 P and At 2 P 0 and either t 2 F or At 2 Q0.* If (As; i) =2 P and A(s;i) 2 Q, then for all At such that t 2 �(s; aj) where fj 2 P orfor some l, (fj ; l) =2 P , there exists some p � i and (At; p) =2 P 0 and either p is oddor A(t;p) 2 Q0.Claim 2.6.10 L(Ag) = L(B) 29



The proof is similar to the proof of claim 2.5.2. Proving that L(B) � L(Ag) we convert an acceptingrun of B to an accepting run tree of Ag. Proving that L(Ag) � L(B) we build a Hintikka sequencefor B and use the runs of Ag and Af where f is a subformula of g to prove that the Hintikkasequence is indeed an accepting run of B.We combine rank memoryless with the loose approach. The state set of the new automatonis the consistent sets in f�2m; :::;�0;�2m; :::;�0; 0; 1; 2grcl(g) . Again a state is consistent if (a)boolean consistency of disjunctions and conjunctions is kept and (b) subformulas that are notautomata connectives appear with ranks �0; 0 and 1 only.For f 2 rcl(g) and As an automaton connective in rcl(g) we abuse notations and write f 2 Pmeaning Pf = 1 (i.e. f 's coordinate in P equals 1), As 2 P and As =2 Q meaning PAs = 1, As 2 Pand As 2 Q meaning PAs = 2, (f; i)2P meaning Pf = �i, (As; i)2P and A(s;i) =2 Q meaningPAs = �i, (As; i)2P and A(s;i) 2 Q meaning PAs = �i and f =2 P meaning Pf = 0.The nondeterministic B�uchi automaton is B = h2PROP ; S; S0;�0; �i where S is the set ofconsistent sets in f�2m; :::;�0;�2m; :::;�0; 0; 1; 2grcl(g) , S0 contains all the sets in which g appearswith rank 1 or g appears with some negative rank and the book-keeping component is empty. Theacceptance condition is all the states where the book-keeping component is empty.The transition function �0 is de�ned for all (P;Q) 2 S and a � PROP as follows.� If Q = ;, then (P 0; Q0) 2 �0((P;Q); a) i� all the following conditions hold.{ For all p 2 PROP , we have p 2 P implies p 2 a and p2P implies p =2 a.{ For all automata connectives A(f1; :::; fn) with A = h�; S; S0; �; F i.* If As 2 P , then there exists some aj 2 � and t 2 �(s; aj) such that fj 2 P or forsome i, (fj; i)2P and At 2 P 0.* If (As; i)2P , then for all At such that t 2 �(s; aj) where fj 2 P or for some l,(fj ; l)2P or (fj =2 P and fj =2 P ), there exists some p � i and (At; p)2P 0.{ Q0 = S fAsjAs 2 P 0 and s =2 FgfA(t;p)j(At; p)2P 0 and p is eveng� If Q 6= ;, then (P 0; Q0) 2 �0((P;Q); a) i� all the following conditions hold.{ For all p 2 PROP , we have p 2 P implies p 2 a and p2P implies p =2 a.{ For all automata connectives A(f1; :::; fn) with A = h�; S; S0; �; F i.* If As 2 P and As =2 Q, then there exists some aj 2 � and t 2 �(s; aj) such thatfj 2 P or for some i, (fj; i)2P and At 2 P 0.* If (As; i)2P and A(s;i) =2 Q, then for all At such that t 2 �(s; aj) where fj 2 P or forsome l, (fj; l)2P or (fj =2 P and fj =2 P ), there exists some p � i and (At; p)2P 0.* If As 2 P and As 2 Q, then there exists some aj 2 � and t 2 �(s; aj) such thatfj 2 P or for some i, (fj; i)2P and At 2 P 0 and either t 2 F or At 2 Q0.* If (As; i)2P and A(s;i) 2 Q, then for all At such that t 2 �(s; aj) where fj 2 P orfor some l, (fj ; l)2P or (fj =2 P and fj =2 P ), there exists some p � i and (At; p)2P 0and either p is odd or A(t;p) 2 Q0.Claim 2.6.11 L(Ag) = L(B)The proof is similar to previous proofs and is omitted.30



Chapter 3Extending temporal logic withalternating automataAs suggested in the last section of [VW94], we extend temporal logic with alternating automata, wecall this logic ETLa. Since alternating automata are as expressive as nondeterministic automata,the expressive power of ETLa is equal to that of ETLr1. Although alternating automata areexponentially more succinct the translation from ETLa to nondeterministic B�uchi automata hasthe same complexity.3.1 De�nition of ETLaSyntax Formulas are de�ned with respect to a set Prop of propositions.� Every proposition p 2 Prop is a formula.� If f1 and f2 are formulas , then :f1, f1 _ f2 and f1 ^ f2 are formulas.� For every alternating �nite automaton A = h�; S; �; s0; F i with � = fa1; :::; ang. If f1; :::; fnare formulas, then A(f1; :::; fn) is a formula.Semantics The satisfaction of a formula is de�ned with respect to a model � 2 (2PROP )! and alocation i 2 IIN . Given an in�nite word � 2 (2PROP )! and a location i 2 IIN we de�ne satisfaction:� For a proposition p 2 PROP , we have (�; i) j= p i� p 2 �i.� (�; i) j= :f1 i� not (�; i) j= f1.� (�; i) j= f1 _ f2 i� (�; i) j= f1 or (�; i) j= f2� (�; i) j= f1 ^ f2 i� (�; i) j= f1 and (�; i) j= f2Consider an automaton A = h�; S; s0; �; F i. The run of the formula A(f1; :::; fn) over a word� starting at point i, is a �nite or in�nite S-labeled tree (T; V ) such that V (�) = s0 and for1The expressiveness power of ETLf , ETLl and ETLr are all equal [VW94]31



all nodes x 2 T there is some aj 2 � such that (�; i + jxj) j= fj and the (possibly empty) setP = fV (y)jy is a successor of x in Tg satis�es the transition �(V (x); aj).A run is accepting if every in�nite path of T visits F in�nitely often. We can now complete thede�nition of semantics:� (�; i) j= A(f1; :::; fn) i� there is an accepting run of A(f1; :::; fn) over � starting at i.3.2 Translating ETLa formulas into nondeterministic B�uchi automataAs in the case nondeterministic automata, given an ETLa formula we build a nondeterministicB�uchi automaton that accepts the same language. Again, this is done in two stages, �rst con-struct an alternating B�uchi automaton and then convert the alternating B�uchi automaton into anondeterministic B�uchi automaton.3.2.1 Complementing an alternating automatonWe create for every automaton connective an alternating automaton accepting the same languageand an alternating automaton accepting the complementary language. The one accepting the samelanguage is already given to us. We build an automaton accepting the complementary language.Given an alternating automaton A = h�; S; s0; �; F i the dual automaton is a co-B�uchi automa-ton accepting the complementary language. Kupferman and Vardi [KV97] build a weak alternatingautomaton that accepts the complementary language (a weak alternating automaton is both B�uchiand co-B�uchi). We use the same notation used in previous chapter.Aa = h�; S � [2n]; (s0; 2n); �a; S0 �Odd([2n])iIn order to de�ne the transition function we follow the notation used in [KV97]. We de�ne thefunction release : B+(S) � [2n] ! B+(S � [2n]). Given a formula � 2 B+(S), and a ranki 2 [2n], the formula release(�; i) is obtained from � by replacing an atom s 2 S by the disjunctionWi0�i(s; i0). Recall the de�nition of �d, the dual of � (obtained from � by replacing ^ with _ andvice versa). �a((s; i); �) = ( release(�0(s; �); i) s =2 F or i is evenfalse s 2 F and i is oddClaim 3.2.1 L(A) = �! n L(A)Proof: The proof is given in [KV97]3.2.2 Construction of the alternating B�uchi automatonGiven an ETLa formula g, we construct an alternating automaton Ag such that L(Ag) = L(g).Theorem 3.2.2 For every ETLa formula g of length n there exists an alternating B�uchi automatonAg such that L(Ag) = L(g) and Ag has O(n2) states.32



For the state set of this alternating automaton we use the closure of the formula cl(g). Recallthe de�nition of closure from previous sections. Again all formulas in the closure are assumed tobe in negative normal form. Recall also that the function replaceSA takes a formula � and replacesan element s by As.Given an ETLa formula g, we de�ne Ag = h2PROP ; cl(g); g;�;Fi, where the transition function� and the acceptance set F are de�ned as follows.� The transition function � : cl(g)�2PROP ! B+(cl(g)) is de�ned as in previous sections. Werecall part of the de�nition.{ �(A(g1; :::; gn); a) = Wni=1[�(gi; a) ^ replaceSA(�(s0; ai))]{ �(A(g1; :::; gn); a) = Vni=1[replaceSA(�((s0; 2n); ai)) _�(gi; a)]� The acceptance set isF =[ fAsjA = h�; S; s0; �; F i 2 cl(g) and s 2 FgfA(s;i)jA = h�; S � [2n]; (s0; 2n); �; S �Odd([2n])i 2 cl(g) and i is oddgClaim 3.2.3 L(Ag) = L(g)Proof: The proof is very similar to the proof in the case of ETLr. The fact that a memorylessrun exists was proven in [EJ91].3.2.3 From alternating B�uchi automata to nondeterministic B�uchi automataAs in the previous chapters, we can use [MH84] to convert the alternating automaton into anondeterministic automaton. Given a formula g with jgj = n, the size of Ag is O(n2) and we get anondeterministic automaton with 2O(n2) states.Again this can be reduced to 2O(n log(n)). In order to use the methods of the previous sectionwe have to show a rank-memoryless run. Recall De�nition 1. No negative automaton can appearin the same state with two di�erent ranks. In the previous chapter the deterministic nature of therun of negative automata was used in the proof.An alternating parity automaton is a tuple P = h�; Q; q0; �; �i where �; Q; q0 and � are likebefore and � = fF0; :::; Fmg is a subset of 2Q . A run of a parity automaton on a word w is de�nedlike the run of an alternating B�uchi automaton. The run is accepting if for every in�nite path inthe run of P there is an even i such that the path visits Fi in�nitely often and visits Fi0 for i0 < ionly �nitely often.Claim 3.2.4 There is an accepting run of Ag on w i� there is a rank memoryless accepting runof Ag on w.Proof: Once again a rank memoryless run is a run. In order to show the other direction wewould like to combine B�uchi and co-B�uchi conditions in one automaton. We use alternating parityautomata. 33



Given an ETLa formula g we built an alternating B�uchi automaton Ag by incorporatinginto it alternating automata for positive automata formulas and alternating automata for nega-tive automata formulas. Using the parity acceptance condition we can avoid the complementa-tion construction for alternating automata as following. Given a negative automaton connective:A(f1; :::; fn) we can build Ad the dual of A, a co-B�uchi automaton.Now for every positive automaton connective we have an equivalent alternating B�uchi automa-ton and for every negative automaton connective we have an equivalent co-B�uchi automaton. Weplug the co-B�uchi automaton into the alternating parity automaton instead of the complementaryautomaton we have built. We de�ne the acceptance set � = fF1; F2; F3g of the parity automatonas follows.For every positive automaton A = h�; Q; q0; �; F i we unite with F2 the set fAsjs 2 Fg andwith F3 the set fAsjs =2 Fg. This way if F is visited in�nitely often F2 will be visited in�nitelyoften otherwise F3 will be visited in�nitely often and F2 only �nitely often. For every negativeautomaton (co-B�uchi) Ad = h�; Q; q0; �d; F i, we unite with F1 the set fAds js 2 Fg and with F2 theset fAds js =2 Fg. This way if F is visited in�nitely often F1 will be visited in�nitely often, otherwiseF2 will be visited in�nitely often. Or more formallyF1 = fAds jA(f1; :::; fn) 2 cl(g); Ad = h�; S; s0; �d; F i and s 2 FgF2 =[ fAds jA(f1; :::; fn) 2 cl(g); Ad = h�; S; s0; �d; F i and s =2 FgfAsjA(f1; :::; fn) 2 cl(g); A = h�; S; s0; �; F i and s 2 FgF3 = fAsjA(f1; :::; fn) 2 cl(g); A = h�; S; s0; �; F i and s =2 FgThe formula g de�nes a natural partial order on the elements in cl(g). Enhance this orderinto a well order g1 < g2 < ::: < gl = g. We are interested only in automata connectives becausepropositions and boolean disjunctions and conjunctions do not appear as labels in the run tree ofAg (except maybe as the label of the root).Take a node in the run tree of the parity automaton Ag. If this node is labeled by some formulaf 2 cl(g) then the successors of x will be labeled by formulas that are before f in the above order.That is V (x �c) � V (x). As every descending chain is �nite in the order we know that every in�nitepath eventually gets trapped, i.e. for every path � there exists some node x 2 � such that for ally 2 IIN � such that x � y 2 �, we have V (x) � V (x � y) and V (x � y) � V (x). As only automataand propositions label the nodes in the run tree of Ag, this means that the label of x and all itsdescendents on the path � are labeled by some automaton connective with di�erent states. Thisfact ensures that the acceptance condition of the parity automaton is sound.Emerson and Jutla [EJ91] have shown that alternating parity automata have memoryless runs.So we can restrict our attention to memoryless runs of the parity automaton. Now we convert itinto a B�uchi automaton by applying the ranking method of Kupferman and Vardi [KV97]. Everynegative automaton is augmented with a ranking just like we had in the �rst place.We show how to replace an automaton connective appearing in F1 and F2 by a connectiveappearing in F2 and F3. After F1 is left empty we have a parity automaton A = h2PROP ; S; s0;�; �iwith � = fF 02; F 03g. The language of this automaton is equal to the language of the B�uchiautomaton A0 = h2PROP ; S; s0;�; F 02i. Take an accepting run of A, every in�nite path visits F 02in�nitely often, hence it is also an accepting run of A0. Take an accepting run of A0, every in�nitepath visits F 02 in�nitely often, hence it is also an accepting run of A, the minimal set in � a pathvisits is even. 34



Given a memoryless accepting run tree (T; V ) of Ag on a word w we convert it to a DAGrun G = (V;E) where V = f(V (x); jxj)jx 2 Tg and E = f((V (x); jxj); (V (y); jyj))jx; y 2 T and ysuccessor of x in Tg.We are only interested in the co-B�uchi automaton Ad = h�; Q; q0; �d; F i. Given a DAG G0 � G,we change the de�nitions accordingly. A vertex (s; i) is eventually safe in G0 i� only �nitely manyvertices labeled by states of Ad (i.e. for some state q 2 Q, Adq) are reachable in G0 from (s; i). Avertex (s; i) is currently safe in G0 i� all the vertices labeled by states of Ad reachable in G0 from(s; i) are not members of F � IIN . Notice that automata nested within A(f1; :::; fn) in the formulag are eventually safe. Indeed, no vertex labeled by A is reachable from them.The inductive sequence:� G0 = G� G2i+1 = G2i n f(s; i)j(s; i) is currently safe in G2ig� G2i+2 = G2i+1 n f(s; i)j(s; i) is eventually safe in G2i+1gLemma 3.2.1 [KV97] For every i � 0, there exists li such that for all l � li, there are at mostn� i vertices of the form (Ads ; i) in G2i.As we changed the de�nition of currently safe and eventually safe, the same proof from [KV97]works also here.We give the vertices labeled by states of S ranks as in [KV97]. Rank (Ads ; l) by 2i if the vertexis eventually safe in G2i. Rank (Ads ; l) by 2i+ 1 if the vertex is currently safe in G2i+1.Lemma 2.6.6 and Lemma 2.6.7 apply also here. In the de�nition of Ag we replace the states oftype Ads by Ad(s;i) where i 2 [2n]. We replace Adq0 by Ad(q0;2n) and modify the transition of Ag forthe new states: �(Ad(s;i); a) = ( release(�(Ads ; a); i) s =2 F or i is evenfalse s 2 F and i is oddWe remove from F1 and F2 all the states of Ad, add to F2 the states Ad(s;i) where i is odd, and addto F3 the states A(s;i) where i is even.As we started from a memoryless run of the parity automaton and handled all the states of thenegative automata together, we conclude that the run of the resulting B�uchi automaton is rankmemoryless.Theorem 3.2.5 For every ETLa formula g of length n there exists a tight (loose) nondeterministicB�uchi automaton B such that L(B) = L(g) and B has 2O(n log(n)) states.Given the alternating automaton Ag the construction of the nondeterministic automaton B isvery similar to the construction described in the previous chapter.3.3 Extending temporal logic with 2-way alternating automataThe �nal stage is to enhance the logic with 2-way alternating automata, we call this logic ETL2a.Once again given an ETL2a formula g we build a nondeterministic B�uchi automaton that accepts35



exactly the models of the formula. The stages are similar to the work in previous chapters andproceeds as follows. We complement a 2-way alternating B�uchi automaton. We build a 2-wayalternating B�uchi automaton that accepts the models of g. We then show that we cannot convert a2-way alternating automaton into a 1-way alternating automaton avoiding an exponential blowup.Consequently, we use a larger alphabet as extra memory. We de�ne a 1-way alternating automatonover a larger alphabet and a projection from the larger alphabet on the original alphabet. Theprojection of the language of the 1-way alternating automaton is the language of the 2-way alter-nating automaton. Our �nal step is translating the alternating automaton into a nondeterministicautomaton.3.4 De�nition of ETL2aSyntax Formulas are de�ned with respect to a set Prop of propositions.� Every proposition p 2 Prop is a formula.� If f1 and f2 are formulas , then :f1, f1 _ f2 and f1 ^ f2 are formulas.� For every 2-way alternating �nite automaton A = h�; S; �; s0; F i with � = fa1; :::; ang. Iff1; :::; fn are formulas, then A(f1; :::; fn) is a formula.Semantics The satisfaction of a formula is de�ned with respect to a model � 2 (2PROP )! and alocation i 2 IIN . Given an in�nite word � 2 (2PROP )! and a location i 2 IIN we de�ne satisfaction:� For a proposition p 2 PROP , we have (�; i) j= p i� p 2 �i.� (�; i) j= :f1 i� not (�; i) j= f1.� (�; i) j= f1 _ f2 i� (�; i) j= f1 or (�; i) j= f2.� (�; i) j= f1 ^ f2 i� (�; i) j= f1 and (�; i) j= f2.Consider an automaton A = h�; S; s0; �; F i. The run of the formula A(f1; :::; fn) over a word �starting at point i, is a �nite or in�nite (S� IIN )-labeled tree (T; V ) such that V (�) = (s0; i) and forall x 2 T , let V (x) = (s; k), then there is some aj 2 � such that (�; k) j= fj and the (possibly empty)set P = f(s0; c0)jy successor of x in T and V (y) = (s0; k + c0)g satis�es the transition �(V (x); aj).The run is accepting if every in�nite path of T visits F � IIN in�nitely often. We can completethe de�nition of semantics:� (�; i) j= A(f1; :::; fn) i� there is an accepting run of A(f1; :::; fn) over � starting at i.3.5 Translating ETL2a formulas into 2-way alternating B�uchi automataSimilar to the previous sections, given a ETL2a formula g, we construct a 2-way alternating automa-ton Ag such that L(Ag) = L(g). Our �rst step is to given a 2-way alternating B�uchi automaton,construct a 2-way alternating B�uchi automaton accepting the complementary language.36



3.5.1 Complementing a 2-way alternating automatonWe claim that the construction of Kupferman and Vardi [KV97] works also here. Once againwe repeat the main claims and de�nitions. This time we have to prove some of the claims. LetA = h�; Q; q0; �; F i be a 2-way alternating B�uchi automaton. Its dual Ad = h�; Q; q0; �d; F i is a2-way alternating co-B�uchi automaton accepting the complementary language. We analyze the runof Ad in order to construct a 2-way alternating B�uchi automaton that accepts the same languageas Ad (the complement of A).Theorem 2 If a 2-way co-B�uchi automaton A0 accepts a word w, then there exists a memorylessaccepting run of A0 on w.Proof: Emerson and Jutla [EJ91] showed that if a 1-way co-B�uchi automaton accepts a wordw, then there exists a memoryless accepting run of the automaton on w. Their proof consists ofbuilding a ranking function that depends only on the future of the run. The same proof works alsofor 2-way runs.Given a 2-way alternating co-B�uchi automaton A = h�; Q; q0; �; F i and an accepting run (T; V )of A on a word w, we can represent the run using a directed (probably cyclic) graph G whereV = fV (x)jx 2 Tg and E = f(V (x); V (y))jx; y 2 T and y successor of x in Tg. Given a node x 2 Twith label V (x) = (s; i), the node x relates to letter i of the input word. As the automaton is a2-way automaton the successors of x may relate to letter i again, go backwards to read i� 1 or goforward to read letter i+ 1. Thus, V is still a subset of Q� IIN but E is a subset of[1i=00B@[ ((Q� fig) � (Q� fi+ 1g))((Q� fig) � (Q� fig))((Q� fi+ 1g) � (Q� fig)) 1CAOnce again given a (possibly �nite) directed graphG0 � G. We de�ne a vertex (s; i) as eventuallysafe in G0 i� only �nitely many vertices in G0 are reachable from (s; i). We de�ne a vertex (s; i) ascurrently safe in G0 i� all the vertices in G0 reachable from (s; i) are not members of F � IIN .Now de�ne the inductive sequence:� G0 = G� G2i+1 = G2i n f(s; i)j(s; i) is eventually safe in G2ig� G2i+2 = G2i+1 n f(s; i)j(s; i) is currently safe in G2i+1gLemma 3.5.1 [KV97] For every i � 0, there exists li such that for all l � li, there are at mostn� i vertices of the form (s; i) in G2iProof: We follow the proof in [KV97]. The induction base case is immediate. Assume the lemma'srequirement holds for i. Consider G2i, in the case it is �nite, then G2i+1 is empty, G2i+2 is emptyas well, and we are done. Otherwise, there must exist some currently safe vertex in G2i+1. Assumeby contradiction that G2i is in�nite and no vertex in G2i+1 is currently safe. Since G2i is in�niteso is G2i+1 and every vertex in G2i+1 has at least one successor. Consider some vertex (q0; l0) in37



G2i+1. By the assumption it is not currently safe, so there is some vertex (q1; l1) reachable from(q0; l0) where q1 2 F is a member of the set F . Let (q2; l2) be a successor of (q1; l1), by assumption(q2; l2) is also not currently safe. We can continue and build by induction an in�nite path in G2i+1that visits F in�nitely often. But this path is also a path in (T; V ) contradicting the assumptionthat (T; V ) is an accepting run.We diverge here from the proof in [KV97]. Let (q; l) be a currently safe vertex in G2i+1. Weshow that removing it and all its descendants results in a thinner graph. Denote the subgraph ofall the vertices reachable from (q; l) by G0. Since (q; l) is in G2i+1, G0 is in�nite and all nodes in G0are currently safe. We de�ne an ordering on the nodes in G0 according to (a) the minimal distancefrom the vertex (q; l) (b) the level in the graph (c) some ordering on Q. Obviously this is a wellorder. Let G00 be a subgraph of G0. G00 contains all vertices in G0 but every vertex has at most onepredecessor, the minimal predecessor in G0 according to the ordering. The graph G00 is a tree.There are no cycles in G00. A cycle cannot include (q; l), since it has no predecessors. Suppose(q0; l0) is the minimal node in a cycle. The shortest path from (q; l) to (q0; l0) in G0 cannot passthrough one of the nodes in the cycle. Hence (q0; l0) does not choose any of the nodes in the cycleas its predecessor.The graph G00 remains connected. Assume otherwise, there is a connected component that isnot reachable from (q; l). Take the minimal node in that connected component (q0; l0). There is ashortest path in G0, connecting (q; l) to (q0; l0). The predecessor of (q0; l0) along this path cannot bein the connected component of (q0; l0), contradiction.We have shown that G00 is an in�nite tree. By K�onig's lemma this tree contains an in�nitediverging path �, this path does not return to the same vertex twice. De�ne li+1 = max(l; li), weknow that for every k > li+1 the path � visits level k in the graph G2i+1. All nodes on � are noteventually safe in G2i and are currently safe in G2i+1 hence they are not in G2i+2. We are done.By the lemma, G2n is �nite and hence G2n+1 is empty.Lemma 3.5.1 [KV97] For every two vertices (s; i) and (s0; i0) in G, if (s0; i0) is reachable from(s; i) then rank(s0; i0) � rank(s; i).Lemma 3.5.2 [KV97] In every in�nite path in G, there exists a vertex (s; i) with an odd rank suchthat all the vertices (s0; i0) in the path that are reachable from (s; i) have rank(s0; i0) = rank(s; i).The proof of the above two Lemmas follows [KV97].Given a 2-way alternating B�uchi automaton A = h�; Q; q0; �; F i the complement automaton isA = h�; Q� [2n]; (q0; 2n); �;Q�Odd([2n])i where � = release(�d) and �d is the dual of �.3.5.2 Construction of the 2-way alternating B�uchi automatonWe construct now a 2-way alternating B�uchi automaton that accepts the set of models of an ETL2aformula g. The method is similar to the constructions in previous sections.Theorem 3.5.3 For every ETL2a formula g of length n there exists an 2-way alternating B�uchiautomaton Ag such that L(Ag) = L(g) and Ag has O(n2) states.38



As before, the state set of the 2-way alternating automaton is the closure of the formula g.Recall that the closure consists of formulas in negative normal form. We use the function replaceSAde�ned in previous chapters.Given the ETL2a formula g, we de�ne Ag = h2PROP ; cl(g); g;�;Fi, where the transition func-tion � and the acceptance set F are de�ned as follows.� The transition function � : cl(g)� 2PROP ! B+(f�1; 0; 1g � cl(g)) is de�ned by induction.{ �(p; a) = ( true p 2 afalse p =2 a{ �(:p; a) = ( true p =2 afalse p 2 a{ �(g1 ^ g2; a) = (g1; 0) ^ (g2; 0){ �(g1 _ g2; a) = (g1; 0) _ (g2; 0){ �(A(g1; :::; gn); a) = Wni=1[(gi; 0) ^ replaceSA(�(s0; ai))]{ �(A(g1; :::; gn); a) = Vni=1[replaceSA(�((s0; 2n); ai)) _ (gi; 0)]� The acceptance set isF =[ fAsjA = h�; S; s0; �; F i 2 cl(g) and s 2 FgfA(s;i)jA = h�; S � [2n]; (s0; 2n); �; S �Odd([2n])i 2 cl(g) and i is oddgNote that here, unlike previous sections, instead of de�ning � recursively we spawn states thatread the same letter and check the correctness of a sub expression.Claim 3.5.4 L(Ag) = L(g)Proof: We prove by induction on the structure of the formula g. Note that it is not enoughto simply walk on the parse tree of the formula g. This time if a process is spawned when theautomaton is reading wi it may go backwards to read the letters of w occuring before i. Theinduction assumption is that if the automaton spawns a copy in state s reading letter wi this copyaccepts i� (w; i) j= s. The proof for propositions and boolean connectives is immediate.� For a formula g = A(g1; :::; gn) where A = h�; S; s0; �; F i.If (w; k) j= A(g1; :::; gn) we know there exists an accepting run tree of A on w. The labels ofthe tree T are from the set S � IIN . We convert this tree run into a tree run of Ag startingat letter wk. Assuming that Ag is spawned reading letter wk, it may go further back untilw0. We also add the runs of Agi . Note that this time we add the runs of Agi as is, we takethe root of the run and add it under the node in the tree run of Ag (and not unite the rootslike in previous cases).The other direction is similar. Given an accepting tree run of Ag starting from letter wk, fromthe induction assumption an accepting run of Agi starting from letter wj exists i� (w; j) j= gi.We can prune the tree to serve as a run tree of the formula g on the word w starting from k.39



� For a formulaG = :A(g1; :::; gn) whereA = h�; S; s0; �; F i andA = h�; S�[2n]; (s0; 2n); �; S�Odd([2n])i.Suppose (w; k) j= A(g1; :::; gn). The accepting runs of A(g1; :::; gn) on w starting at kand A:A(g1;:::;gn) on w starting at k cannot co-exist. There are two paths s0; s1; ::: and(s0; 2n); (s1; i1); ::: the �rst in the run of A(g1; :::; gn) and the second in the run of A:A(g1;:::;gn).The �rst should visit F in�nitely often and thus the second cannot be trapped in a setS � f2i + 1g. Hence L(A:A(g1;:::;gn)) � L(A(g1; :::; gn)).Given that there is no accepting run of A(g1; :::; gn) on w starting at k. We build by inductiona tree of states from S � IIN . We start with (s0; k). We assume by induction that for a leaf(s; l) the formula As(g1; ::::; gn) does not hold on w (starting at l). Obviously for (s0; k) theassumption holds.For a leaf x labeled (s; l), since (w; l) 6j= As(g1; ::::; gn) for every letter aj 2 � such that(w; l) 6j= fj (that is (w; l) j= fj) there exists a set of states and directions f(s1; c1); :::; (s2; :::c2)gthat satis�es the dual of the transition �(s; aj), l + ci � 0 and (w; l + ci) 6j= Asi(g1; :::; gn) forall is. If such a set does not exist then (w; l) j= As(g1; ::::; gn) contrary to the assumption. Sofor every letter aj such that (w; l) 6j= fj we add this set of successors to the leaf x.According to [EJ91] we can also �nd such a memoryless tree. We build the Directed Graphjust like in Section 3.5.1 and show that the we can rank the states with the set [2n].Our last step is to complete the tree T with ranks and with the subtrees of the computationsof gj when appropriate. The resulting tree is a valid run of A starting at k. The in�nitebehavior of the tree supplies the acceptance condition S �Odd([2n]).This completes the construction of Ag. We review the options of converting 2-way automata to1-way automata.3.6 Transforming 2-way automata to 1-way automataWe would like now to convert the 2-way alternating B�uchi automaton into a 1-way alternatingB�uchi automaton. In order to give a uniform treatment to the di�erent extended temporal logics,we would like to continue working with alternating automata. As we show in Appendix A, given a2-way nondeterministic B�uchi automaton we can construct a 1-way alternating B�uchi automatonrecognizing the same language. The number of states of the alternating automaton is polynomialin the number of states of the nondeterministic one.We would have liked to do a similar construction for 2-way alternating B�uchi automata. Thus,given a 2-way alternating B�uchi automaton, we want to construct an equivalent 1-way alternatingB�uchi automaton of polynomial size. A lower bound by Birget [Bir93] claims that there is anexponential gap between 2-way and 1-way alternating �nite automata. We enhance this lowerbound to apply also for B�uchi automata.We would like to avoid an exponential blowup when transforming a 2-way alternating automatonto a 1-way alternating automaton. In order to do so we use the alphabet as extra memory. Givena 2-way automaton we construct a 1-way automaton over a larger alphabet and a homomorphismbetween the two alphabets (see [HU87]). Birjet [Bir96] has shown that the language of a 2-way40



alternating �nite automaton is a homomorphic image of the language of a polynomial size 1-wayalternating �nite automaton. We enhance this result to alternating B�uchi automata.3.6.1 A lower bound on the conversion of 2-way alternating automata to 1-way al-ternating automataBirjet [Bir93] showed that the best conversion from 2-way alternating �nite automata to one-wayalternating automata is exponential. We enhance this result to alternating B�uchi automata onwords.Theorem 3 [Bir93] For every n there exists a language L � �� and a 2-way alternating �niteautomaton with n states accepting L such that the minimal 1-way alternating �nite automatonaccepting L has at least 2n�2 states.Assume that ] =2 �. We prove the following two claims:Claim 3.6.1 Given a two-way alternating �nite automaton with n states accepting the language L,one can construct a two-way alternating B�uchi automaton accepting the language L � ]! with O(n)states.Claim 3.6.2 Given a 1-way alternating B�uchi automaton with n states accepting the languageL � ]!, one can construct a 1-way alternating �nite automaton accepting L with O(n) states.From the two claims the following corollary follows:Corollary 4 For every n, there exists a language L � �! and a 2-way alternating B�uchi automatonwith n states accepting L such that a 1-way alternating B�uchi automaton accepting L has at least2
(n) states.Proof: [Claim 3.6.1] Given a 2-way alternating �nite automaton U = h�; Q; q0; �; F i acceptingL � �� we construct U 0 = h�[f]g; Q[fq]g; q0; �0; fq]gi accepting the language L�]! . The transitionfunction is de�ned:�0(q; a) = 8>>><>>>: �(q; a) if q 2 Q and a 6= ](q]; 1) if (q 2 F or q = q]) and a = ]false if q =2 F and q 6= q] and a = ]false if q = q] and a 6= ]We show now that U 0 accepts exactly L �]!. Given a �nite word w 2 L there exists an acceptingrun of U on w. Since the run is accepting it is a �nite run and all its leaves are states from F . Weappend an in�nite path under each one of these vertices labeled by (q]; jwj + i). The new in�nitetree is an accepting run of U 0.Given an accepting run of U 0 on a word w 2 (L [ f]g)! we show that w = w0 � ]! for somew0 2 L. Take the accepting run of U 0, since the run is accepting every path visits q] in�nitely often.Since q] is a sink reading only ] signs the word is of the form �� � ]!. Furthermore since q] movesonly forward we can prune all the in�nite paths labeled by q] and get an accepting run of U .
41



Proof: [Claim 3.6.2] Given an 1-way alternating B�uchi automaton A = h� [ f]g; Q; q0; �; F iaccepting L � ]! we construct A0 = h�; Q; q0; �0; F 0i where �0 is the restriction of � to � andF 0 = fqjAq accepts ]!g (where Aq is the automaton A with start state q).An accepting run tree of A0 on a word w can be easily converted into an accepting run tree ofA on w � ]!. An accepting run of A on a word w � ]! can be pruned into an accepting run tree of A0.All the states appearing in level jwj in the tree have to appear in F 0, they accept the su�x ]!.3.7 From 2-way alternating B�uchi automata to 1-way alternating B�uchi au-tomataGiven a 2-way alternating �nite automaton A = h�; S; s0; �; F i, Birjet [Bir96] has shown thatthere exists an alphabet �0, a function p : �0 ! � and a 2-way alternating �nite automatonA0 = h�0; S0; s00; �0; F 0i such that if we enhance p to words in �0� and to subsets of �0� in thenatural way, p(L(A0)) = L(A). The number of states of A0 need not be more than polynomial inthe number of states of A.We prove a similar result for 2-way alternating B�uchi automata. Given a 2-way alternatingB�uchi automaton A = h�; Q; q0; �; F i, we give two alphabets. The alphabet of A, namely � andanother alphabet �A that depends on the structure of A. We build a 1-way alternating automatonB = h���A; Q0; q00; �0; F 0i whose alphabet is ���A. As an homomorphism we use the projectionon the �rst component. More formally, we de�ne the projection p1 : ���A ! �, as p(a; b) = a.(enhanced to (���A)! and subsets of (���A)! in the natural way) such that p1(L(B)) = L(A).In particular, A recognizes the empty language i� B recognizes the empty language.3.7.1 The constructionThe details follow Vardi [Var98]. As Vardi solved the problem of converting 2-way alternatingparity tree automata into 1-way nondeterministic parity tree automata we have to modify slightlyhis work. To each letter of the alphabet we add a strategy, a way to satisfy the transition of A,and an annotation, a �nite representation of backward runs.Let A = h�; Q; �; q0; F i be a 2-way alternating B�uchi automaton.De�nition 5 A strategy for A is a mapping � : IIN ! 2Q�f�1;0;1g�Q. For each label � � Q �f�1; 0; 1g � Q, de�ne state(�) = fu : (u; i; u0) 2 �g. The strategy � is on a word w if q0 2state(�(0)), and for all i 2 IIN and each state q 2 state(�(i)), the set f(c; q0)j(q; c; q0) 2 �(i)gsatis�es �(q; wi).A path in a strategy � is a �nite or in�nite sequence (0; q0); (i1; q1); (i2; q2); ::: of pairs fromIIN � Q such that, either the path is in�nite and for all j � 0, there is some cj 2 f�1; 0; 1gsuch that (qj; cj ; qj+1) 2 �(ij) and ij+1 = ij + cj , or the path is �nite (0; q0); :::; (im; qm) and forall 0 � j < m, there is some cj 2 f�1; 0; 1g such that (qj; cj ; qj+1) 2 �(ij), ij+1 = ij + cj and�(qm; wim) = `true0. A path is de�ned accepting if it visits IIN � F in�nitely often or if it �nite.We say that � is accepting if all in�nite paths in � are accepting.Proposition 3.7.1 [Var98] A two-way alternating B�uchi automaton accepts a word i� it has anaccepting strategy on the word. 42



An annotation for A is a mapping � : IIN ! 2Q�f?;>g�Q. In the following discussion we regard? < > as an ordering on the pair. We also use�F (q) = ( > if q 2 F? if q =2 Fthe characteristic function of F .We say that � is an annotation of the strategy � (which in turn is on the word w) if the followingclosure conditions hold for all i 2 IIN .1. if (q; �; q0) 2 �(i) and (q0; �; q00) 2 �(i) then (q;max(�; �); q00) 2 �(i).2. if (q; 0; q0) 2 �(i) then (q; �F (q0); q0) 2 �(i).3. if i > 0; (q;�1; q0) 2 �(i); (q0; �; q00) 2 �(i � 1) and (q00; 1; q000) 2 �(i� 1) then(q;max(�F (q0); �; �F (q000)); q000) 2 �(i).4. if (q; 1; q0) 2 �(i); (q0; �; q00) 2 �(i+ 1) and (q00;�1; q000) 2 �(i+ 1) then(q;max(�F (q0); �; �F (q000)); q000) 2 �(i).5. if i > 0; (q;�1; q0) 2 �(i) and (q0; 1; q00) 2 �(i� 1) then (q;max(�F (q0); �F (q00)); q00) 2 �(i).6. if (q; 1; q0) 2 �(i) and (q0;�1; q00) 2 �(i+ 1) then (q;max(�F (q0); �F (q00)); q00) 2 �(i).A downward path k in � is a sequence (i1; q1; t1); (i2; q2; t2); ::: of triplets, where each ij is in IIN ,each qj is in Q, each tj is either an element of �(ij) or �(ij), and� Either tj is (qj ; 1; qj+1) and ij+1 = ij + 1 in this case we record a visit to the accepting set ifqj+1 2 F .� Or tj is (qj ; �; qj+1) where � 2 f?;>g and ij+1 = ij in this case we record a visit to theaccepting set if � = >.A downward path can be �nite, if the last triplet is (im; qm; tm) and tm = (q; �; q) (i.e. thepath ends in a loop) or the last triplet is (im; qm; tm) and �(qm; wim) = true. A �nite path isaccepting in two cases. Let (im; qm; tm) be the last triplet in the path, then it is accepting if either�(qm; wim) = true or tm = (q;>; q). An in�nite path is accepting if it visits the acceptance setin�nitely often.Proposition 3.7.2 [Var98] A two-way alternating B�uchi automaton accepts a word i� it has astrategy on the word and an accepting annotation of the strategy.Given a 2-way alternating B�uchi automaton A = h�; Q; q0; �; Fg we de�ne two alphabets �sQ �2Q�f�1;0;1g�Q, �aQ = 2Q�f?;>g�Q. Denote �0 = � � �sQ � �aQ. We de�ne three projectionsp1 : �0 ! �, p2 : �0 ! �sQ and p3 : �0 ! �aQ, the projections on the �rst, second and thirdcomponents. We enhance the projections in the natural way for in�nite words and sets of in�nitewords.We build the 1-way alternating B�uchi automaton B = h�0; Q0; q00; �; F 0i such that p1(L(B)) =L(A). We build B in two stages. First B1 makes sure that p2(w) is a strategy on p1(w) and that43



p3(w) is an annotation of the strategy p2(w). Second we build B2 that checks that all downwardpaths visit F in�nitely often.We start with B1. Most of the conditions B1 has to check are local conditions. In order tocheck the conditions of the strategy and the �rst two conditions of the annotation we can check eachentry (a; �; �) 2 �0. So we restrict �0 to include only the letters that supply these local conditions.Consecution of the strategy and conditions 3-6 of the annotation involve relation between twoletters and are checked by B1.Let B1 = h�0; Q1; q10; �1; fq11gi whereQ1 =[ fq10; q11gfcg �Q� f2; =2gfsg �Q� f�1g �Q� f=2gfag �Q� f?;>g �Q� f2; =2g. The four kinds of states are:� The states q10 and q11 , when reading letter (a; �; �) spawn all processes that check consecutionof the strategy and conditions 3-6 of the annotation. The state q10 checks that q0 is in thestate set of the second element of the current letter. Both spawn q11 to check recursively therest of the word.� The states labeled by c check consecution of the strategy. If there is some state (q; 1; q0) inthe current strategy there should be a strategy for q0 in the next strategy. If there is nostrategy for q0 in the current strategy the next strategy should not contain states of the form(q;�1; q0).� The states labeled by a represent a triple (q; �; q0) of the annotation that should belong (2)or not belong (=2) to the third element of the current letter.� The states labeled by s represent a triple (q;�1; q0) of the strategy that should not belong tothe second element of the current letter.The transition of B1 is de�ned as following:� �((c; q;2); (a; �; �)) = ( true if q 2 state(�) or �(q; a) = `true0false Otherwise� �((c; q; =2); (a; �; �)) = ( false if there exists q0 s.t. (q0;�1; q) 2 �true otherwise� �((a; q1; �; q2;2); (a; �; �)) = ( true if (q1; �; q2) 2 �false if (q1; �; q2) =2 �� �((a; q1; �; q2; =2); (a; �; �)) = ( false if (q1; �; q2) 2 �true if (q1; �; q2) =2 �� �((s; q1; i; q2; =2); (a; �; �)) = ( false if (q1; i; q2) 2 �true if (q1; i; q2) =2 �44



� De�ne consec(a; �) = fq 2 Qjq =2 state(�) and �(q; a) 6= trueg.Let �c(a; �; �) = Vq2consec(a;�)(c; q; =2) ^ V(q0;1;q)2�(c; q;2)This represents the consecution of the strategy.� De�ne �3(a; �; �) = V(q;1;q0)2� V(q;�;q000)=2� Vq002Q [(a; q0; �0; q00; =2) _ (s; q00;�1; q000; =2)]where � = max(�0; �F (q0); �F (q00)). This represents condition 3 of the annotation.� De�ne �4(a; �; �) = V(q0;�;q00)2� V(q00;1;q000)2� Vq2Q [(s; q;�1; q0; =2) _ (a; q; �0; q000;2)]where �0 = max(�; �F (q0); �F (q000)). This represents condition 4 of the annotation.� De�ne �5(a; �; �) = V(q;1;q0)2� V(q;�;q00)=2�(s; q;�1; q00; =2)Where � = max(�F (q0); �F (q00)). This represents condition 5 of the annotation.� De�ne �6(a; �; �) = V(q0;1;q00)2� Vq2Q[(s; q;�1; q0; =2) _ (a; q; �; q00;2)]Where � = max(�F (q0); �F (q00)). This represents condition 6 of the annotation.� �(q10 ; (a; �; �)) = 8><>: q11 ^ �c(a; �) ^ �3(a; �; �) ^ �4(a; �; �) ^ �5(a; �; �) ^ �6(a; �; �) if q0 2 state(�)false Otherwise� �(q11 ; (a; �; �)) = q11 ^ �c(a; �) ^ �3(a; �; �) ^ �4(a; �; �) ^ �5(a; �; �) ^ �6(a; �; �)The consecution of the strategy checks that either the transition of a state is `true0 or thecomputation has to continue. The correctness of the annotation conditions results from the followingsimple logical equivalences:'1 ^ '2 ^ '3 ! '4 � '1 ^ (:'4)! (:'2) _ (:'3)'1 ^ '2 ^ '3 ! '4 � '1 ^ '2 ! '4 _ (:'3)The state q10 ensures that q0 has some strategy. Since q11 is always spawned the strategy is onthe word and the annotation is of the strategy (other conditions are part of the alphabet).We turn now to the second automaton. We de�ne B2 = h�0; Q�f?;>g; �; (q0;?); �2; F �f?g[Q� f>gi, where the transition function �2 is de�ned as follows.�2((q; �); (a; �; �)) = 8>>>>><>>>>>: false if (q;?; q) 2 � or9q0s.t. (q; �; q0) 2 � and (q0;?; q0) 2 �V V(q;1;q0)2�(q0;?)V(q;�;q0)2� V(q0;1;q00)2� (q00; �) OtherwiseThere is one di�erence from the de�nition of a downward path. A downward path couldtake 0-steps, i.e. read a triple from the annotation and stay reading the same letter. From theclosure condition of the annotation we see that if (q; �; q0) 2 � and (q0; �; q00) 2 � then so is(q;max(�; �); q00) 2 �. If a downward path makes a �nite sequence of steps reading the sameletter in w, (q0; �0; q1); :::; (qm; �m; qm+1) and then taking a forward step (qm+1; 1; qm+2) from the45



strategy, we can model this behavior by (q0;max(�i); qm+1) 2 � and (qm+1; 1; qm+2) 2 �. If adownward path makes an in�nite sequence of steps reading the same letter in w there has to besome state q0 appearing in�nitely often in the sequence and by the same closure property thereexists (q; �; q0) 2 � and (q0�; q0) 2 �.We take now B1 and B2 and combine them to a single automaton B that is the conjunction ofthe two.3.7.2 From alternating B�uchi automata to nondeterministic B�uchi automataRecall that given a formula g of length n the 2-way alternating automatonAg = h2PROP ; cl(g); g;�;Fihas O(n2) states. Hence, the 1-way alternating automaton in this case has O(n4) states. If we use[MH84] to convert this alternating automaton to a nondeterministic B�uchi automaton, we get anondeterministic automaton with 2O(n4) states. We endeavor to reduce this to 2O(n2log(n)).Theorem 3.7.1 For every ETL2a formula g of length n there exists a nondeterministic B�uchiautomaton B such that L(B) = L(g) and B has 2O(n2log(n)) states.We de�ne the consistent subsets of cl(g)�f�1; 0; 1g� cl(g) (strategy) and of cl(g)�f?;>g� cl(g)(annotation). Intuitively in a consistent subset there cannot appear a formula and its negation andalso a negative formula with more than one rank. We show that a rank memoryless run exists alsohere. The strategy of such a run is consistent and the minimal annotation of that strategy is alsoconsistent.We start with the strategy. For a subset � � cl(g)�f�1; 0; 1g�cl(g), state(�) = fqj(q; c; q0) 2 �gand target(�) = f(c; q0)j(q; c; q0) 2 �g. A subset � is consistent if for every automaton connectiveA(g1; :::; gn):1. If As 2 state(�) then for all ranks i, A(s;i) =2 state(�)2. If A(s;i) 2 state(�) then As =2 state(�).3. If A(s;i) 2 state(�) then for all other ranks i0 6= i, A(s;i0) =2 state(�).4. If (c; As) 2 target(�) then for all ranks i, (c;A(s;i)) =2 target(�)5. If (c; A(s;i)) 2 target(�) then (c; As) =2 target(�)6. If (c; A(s;i)) 2 target(�) then for all other ranks i0 6= i; (c; A(s;i0)) =2 target(�)Denote CONS the set of consistent subsets of cl(g) � f�1; 0; 1g � cl(g).De�nition 6 A rank memoryless strategy for A is a mapping � : IIN ! CONS. The rest of thede�nition is similar to De�nition 5.The annotation is rank memoryless if it supplies similar conditions. For a subset � � cl(g) �f?;>g� cl(g) de�ne current(�) = fsj9s0; � s.t. (s; �; s0) 2 � or (s0; �; s) 2 �g. Consider the letterof �0; (a; �; �)1. If As 2 current(�) then for all ranks i; A(s;i) =2 current(�)46



2. If A(s;i) 2 current(�) then for no other rank i0 6= i; A(s;i0) 2 current(�)3. If A(s;i) 2 current(�) then As =2 current(�)4. If As 2 current(�) then As 2 state(�)5. If A(s;i) 2 current(�) then A(s;i) 2 state(�)We now show that Ag has a rank memoryless run and that the strategy of this run and theannotation of that strategy are also rank memoryless.Claim 3.7.2 A two-way alternating B�uchi automaton accepts an input w i� it has an acceptingrank memoryless run on w.Proof: One direction is simple. A rank memoryless run is a run. We combine the proofs of Claim3.2.4 and Lemma 3.5.1. We build an alternating parity automaton and show using the ordering(1) distance from the root (2) level in the graph (3) some order on the state set how to get a rankmemoryless tree from the run of the parity automaton.The strategy applied by the automaton in this rank memoryless run is a rank memoryless strat-egy. This strategy also supplies another condition. Given three consecutive letters(ai; �i; �i); (ai+1; �i+1; �i+1); (ai+2; �i+2; �i+2) we know that if (1; A(s;i)) 2 target(�i) and (�1; A(s;i0)) 2target(�i+2) then i = i0 (and A(s;i) 2 state(�i+1)).Given two annotations of the same strategy �1 and �2 we know that their intersection �1 \ �2de�ned by �1\�2(x) = �1(x)\�2(x) is also an annotation of the strategy. So if we take the minimalannotation of the rank memoryless strategy it is rank memoryless by the following claim.Claim 3.7.3 If a triple (q; �; q0) appears in the minimal annotation of the letter wi with the strategyof some run, there are states q and q0 that read letter wi in that run.Proof: We prove the claim by induction on the closure properties of the annotation.1. For the condition: if (q; �; q0) 2 �(i) and (q0; �; q00) 2 �(i) then (q;max(�; �); q00) 2 �(i). Byinduction in the run of Ag there are state q and q00 reading letter wi.2. For the condition: if (q; 0; q0) 2 �(i) then (q; �F (q0); q0) 2 �(i). The rank memoryless strategywas obtained from the rank memoryless run, hence there is a state q reading wi and it has asuccessor q0 reading also wi.3. For the condition: if i > 0; (q;�1; q0) 2 �(i); (q0; �; q00) 2 �(i � 1) and (q00; 1; q000) 2 �(i � 1)then(q;max(�F (q0); �; �F (q000)); q000) 2 �(i). The state q reading letter wi from the strategy. Thestate q00 reading wi�1 from the induction assumption and then by the strategy q000 reads wi.4. For the condition: if (q; 1; q0) 2 �(i); (q0; �; q00) 2 �(i+ 1) and (q00;�1; q000) 2 �(i+ 1) then(q;max(�F (q0); �; �F (q000)); q000) 2 �(i). Similar to condition number 3.5. For the condition: if i > 0; (q;�1; q0) 2 �(i) and (q0; 1; q00) 2 �(i�1) then (q;max(�F (q0); �F (q00)); q00) 2�(i). States q and q00 reading letter wi from the strategy.47



6. For the condition: if (q; 1; q0) 2 �(i) and (q0;�1; q00) 2 �(i+1) then (q;max(�F (q0); �F (q00)); q00) 2�(i). States q and q00 reading letter wi from the strategy.Since the run is rank memoryless so is the annotation.We further restrict the alphabet �0 to adhere to these new rules about the strategy and theannotation.Recall that given an alternating automaton B = h�; Q; q0; �; F i we get a nondeterministicautomaton N = h�; 2Q� 2Q; �0; 2Q�;i where a state (P;Q) 2 2Q� 2Q always conforms to Q � P .The state set of Ag, denoted D, is the union of:fq10 ; q11gfcg � cl(g) � f2; =2gfag � cl(g) � f?;>g � cl(g)� f2; =2gfsg � cl(g) � f�1g � cl(g) � f2; =2gcl(g) � f?;>gIn order to understand which subsets of D will su�ce, we analyze the transition. Take thesequence (a1; �1; �1); (a2; �2; �2). The current letter read by the automaton is (a1; �1; �1). We haveto decide on the subset of states spawned to read (a2; �2; �2). We have to show that holding onerank per automaton in this subset is enough.Making the states labeled by c (consecution of the strategy) memoryless is easy. We spawn astate (c; As; =2) (with no rank) only if this negative automaton does not appear at all in the currentstrategy, and we spawn a state (c; A(s;i); =2) if exactly this rank of the automaton As appears in thecurrent strategy. In this case (c;A(s;i); =2) checks that only rank i of the automaton As may appearin the strategy of the next letter. The states (c; A(s;i);2) will be spawned with one rank only fromthe consistency of the alphabet.In order to show a similar result for the states labeled by s and by a we give di�erent semanticsto states (s; q;�1; q0; =2) when they are part of �3 and �5 and when they are part of �4 and �6.Hence we double the number of states by considering fs(3;5); s(4;6)g � cl(g) � f�1g � cl(g) � f=2g.Dealing with �3 and �5 is a bit more complex than �4 and �6.We start with �4.�4(a; �; �) = ^(q0;�;q00)2� ^(q00;1;q000)2� q̂2Q [(s; q;�1; q0; =2) _ (a; q; �0; q000;2)]The states q0 and q000 appear in current(�1) and target(�1). Therefore if either of the two is a nega-tive automaton, it may appear with only one rank. So all states of the form (s(4;6); q;�1; A(s;j); =2)have j = i, similarly for (a; q; �0; A(s;j); =2). The state q appears in a conjunction over all possiblestates. If we take a negative automaton A in state r, either there exists some i such that A(r;i)belongs to state(�2) or for all is A(r;i) does not belong to state(�2). If the second is correct theneven if we do not give rank to (s(4;6); Ar;�1; q0; =2) the state will hold over �2. If the �rst is correct48



then there is some rank i for which (s(4;6); Ar;�1; q0; =2) does not hold. We require that for thesame rank (a;Ar; �0; q000;2) will hold. But from the consistency of �2 and �2 the only possible rankof Ar appearing in �2 is i. We conclude that there is no need to rank the state q, we interpret(s(4;6); q;�1; q0; =2) as true only if q does not appear at all in �2. We interpret (a; q; �0; q000;2) as trueif some rank of q appears in �2.The analysis of �6 is similar.�6(a; �; �) = ^(q0;1;q00)2� q̂2Q[(s; q;�1; q0; =2) _ (a; q; �; q00;2)]Again q appears in all possible ranks and we interpret (s(4;6); q;�1; q0; =2) as true if q does not appearat all in �2. �3(a; �; �) = ^(q;1;q0)2� ^(q;�;q000)=2� ^q002Q [(a; q0; �0; q00; =2) _ (s; q00;�1; q000; =2)]In �3 the state q0 appears in target(�1) so it will have one rank only. For q00 we again take conjunctionover all possible states. If we take a negative automaton A in state r, it either appears in �2 withone rank only or does not appear at all. If the second is the case, we are done. If the �rst is the casethen for this speci�c rank (s(3;5); Ar;�1; q000; =2) will not hold. If it does not hold, (a; q0; �0; q000; =2)has to hold. Since �2 and �2 are consistent the only possible appearance of Ar in �2 is with thesame speci�c rank i. So once again we do not have to mark the rank of q00, (s(3;5); Ar;�1; q000; =2) istrue if Ar does not appear at all in �2 and (a; q0; �0; Ar; =2) is true if Ar does not appear at all in �2.The state q000 is somewhat more complex. Suppose q000 = Ar. Either (q; �;Ar) does not belongto �1 for all ranks, or it does belong for exactly one rank. If the �rst is the case then we can de�ne(s(3;5); q00;�1; Ar; =2) as true if no rank of Ar appears in �2. If some rank appears in �2 then it mustbe the case that for the same q00; (q0; �0; q00) =2 �2. In the second case we record the rank of Ar andinterpret (s(3;5); q00;�1; A(r;i); =2) as true over �2 if for other ranks (q00;�1; Ar) does not appear in�2. �5(a; �; �) = ^(q;1;q0)2� ^(q;�;q00)=2�(s; q;�1; q00; =2)The analysis of �5 is similar. The state q appears in state(�) and the state q00 is similar to q000 in�3. As the alphabet monitors the ranks of negative automata, in the book-keeping component wehave to follow only states from cl(g) � f?;>g. It is enough to consider f�2;�1; 0; 1; 2gcl(g) .Concluding the last few paragraphs, given a formula g of length jgj = n, the nondeterministicB�uchi automaton recognizing L(g) has 2O(n2log(n)) states. Denote m as the maximal number ofstates of an automaton connective in the formula g. Let K = f�2m; :::;�0; 0; 1g [ fnrg with samesemantics as before2. A state is a �ve tuple (q; C; S;A; P ):1. q 2 fq0; q1g2. C 2 Kfcg�rclg�f2;=2g2nr - A negative automaton with no rank, for conditions 3 and 5 of the annotation and for the consistency of thestrategy 49



3. S 2 Kfs(3;5);s(4;6)g�rcl(g)�f�1g�rcl(g)�f=2g4. A 2 Kfag�rcl(g)�f?;>g�rcl(g)�f2;=2g5. P 2 f�2;�1; 0; 1; 2grcl(g)�f?;>gThe initial states impose no conditions on the strategy and the annotation of the �rst letter(C;S;A consist of rank 0 only). The formula (g;?) appears in P and no state in P appears withrank �2 or 2.The acceptance set consists of all sets in which the book-keeping component in P is empty, i.e.no state in P is ranked �2 or 2.The transition combines the transitions of B1 and B2 with the last results on the rank memo-rylessness.
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Chapter 4ConclusionsWe have shown decision procedures for the logics ETLf ; ETLl and ETLr proposed by Vardi,Wolper and Sistla [WVS83]. Given an ETLf (ETLl) formula of length n we give a nondeterministicB�uchi automaton with 3n or 4n states. The emptiness of this automaton can be checked in linearnondeterministic space. Given an ETLr formula we build a nondeterministic B�uchi automaton with2O(n log(n)) states. The emptiness of this automaton can be checked in O(n log(n)) nondeterministicspace.We follow the suggestion of Wolper, Vardi and Sistla [WVS83] and augment temporal logic withalternating automata. Given an ATL formula of length n we build a nondeterministic automatonwith 2O(n log(n)) states.Our �nal move is to add 2-way alternating automata to the logic. Given a 2ATL formula oflength n, its decision procedure is in O(n2log(n)) space. All three decision procedures are PSPACE-complete, the �rst (ETL) from [VW94] and the latter two subsume the �rst. A summary of theseresults can be found in Table 4.1.Vardi [Var98] has shown how to convert 2-way alternating parity automata on trees to 1-waynondeterministic parity automata on trees. The method used in Section 3.6 can be used to handle2-way parity automata on trees. Thus, given a 2-way alternating parity automaton we can give anequivalent 1-way alternating parity automaton (a projection of the language of the second is thelanguage of the �rst).Vardi's construction [Var98] includes strategy and annotation. The strategy is a way to satisfythe transition of the automaton and the annotation is a �nite representation of 2-way run segments.Formula of length n 2ABW 1ABW NBWETLf 2n states 3n / 4n statesETLl 2n states 3n / 4n statesETLr O(n2) states 2O(n log(n)) statesETLa O(n2) states 2O(n log(n)) statesETL2a O(n2) states O(n4) states 2O(n2log(n)) statesTable 4.1: Summary of results51



The annotation includes also information about future 2-way run segments. If we use alternatingautomata, the annotation can be restricted to data about the past alone (both on trees and onwords). Removing this part of the annotation requires augmenting the construction with partsthat check that such future run segments do exist. Such a part of the automaton will resemble theconstruction of the 1-way alternating automaton in Appendix A.
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Appendix AConverting 2-way nondeterministicautomata to 1-way alternatingautomataWe give a construction for converting 2-way nondeterministic automata to 1-way alternating au-tomata. We �rst give a construction for �nite automata. We enhance our construction to apply to2-way nondeterministic B�uchi, parity and Rabin automata on in�nite words.We use the fact that the run of the nondeterministic automaton goes back and forth along theinput word. We analyze the form such a run can take and recognize, using alternating automata,when such a run exists.Given a 2-way nondeterministic automaton with n states we build an equivalent 1-way al-ternating automaton with O(n2) states. We also show how to build an alternating automatonthat recognizes the complementary language with the same size. Vardi [Var88] converted a 2-waynondeterministic B�uchi automaton directly into an exponential 1-way nondeterministic B�uchi au-tomaton. If we convert our alternating B�uchi automata into a nondeterministic automata [MH84]we get automata of the same size as in [Var88].A.1 De�nitionsA 2-way nondeterministic automaton is a �ve-tuple A = h�; S; s0; �; F i where � : S��! 2S�f�1;0;1gis the transition function. We can run A either on �nite words (2-way nondeterministic �niteautomaton or 2NFA in short) or on in�nite words (2-way nondeterministic B�uchi automaton orNBW in short).A run on a �nite word w = w0; :::; wl is a �nite sequence of states and locations (q0; i0); (q1; i1); :::; (qm; im) 2(S � f0; :::; l + 1g)�. The pair (qj; ij) represents the automaton is in state qj reading letter ij . For-mally, q0 = s0 and i0 = 0, and for all 0 � j < m, we have ij 2 f0; :::; lg and im 2 f0; :::; l + 1g.Finally, for all 0 � j < m, we have (qj+1; ij+1 � ij) 2 �(qj ; wij ). A run is accepting if im = l + 1and qm 2 F .A run on an in�nite word w = w0; w1; ::: is de�ned similarly as an in�nite sequence. Therestriction on the locations is removed (for all j, the location ij can be every number in IIN ). InB�uchi automata, a run is accepting if it visits F � IIN in�nitely often.55



A 2-way nondeterministic parity (Rabin) automaton is a �ve tuple A = h�; S; s0; �; �i where�; S; s0 and � are like before and � = fF0; :::; Fmg is a subset of 2S (� = fhG1; B1i; :::; hGm; Bmigis a subset of 2S � 2S). The index of the automaton is the number of sets (pairs) in its acceptancecondition. A run is de�ned just like for a 2NBW. A run r of a parity automaton is accepting ifthere exists an even i, 0 � i � m such that r visits Fi � IIN in�nitely often and for all i0 � i, wehave that r visits Fi0 � IIN only �nitely often. A run r of a Rabin automaton is accepting if thereexists an i, 0 � i � m such that r visits Gi � IIN in�nitely often and Bi � IIN only �nitely often.A 1-way alternating automaton is a �ve tuple B = h�; Q; s0;�; F i where � : S��! B+(Q) isthe transition function. Again we may run A on �nite words (1AFA) or on in�nite words (1ABW).A run of B on a �nite word w = w0:::wl is a labeled tree (T; r) where r : T ! Q. The maximaldepth in the tree is l + 1. A node x labeled by s describes a copy of the automaton in state sreading letter wjxj. The labels of a node and its successors have to satisfy the transition function�. Formally, r(�) = s0 and for all nodes x with r(x) = s and �(s; wjxj) = � there is a (possiblyempty) set fs1; :::; sng j= � such that for each state si there is a successor of x labeled si. The runis accepting if all the leaves in depth l + 1 are labeled by states from F .A run of B on an in�nite word w = w0w1::: is de�ned similarly as an in�nite labeled tree. Arun is accepting if all its in�nite paths are labeled by F in�nitely often.A.2 Automata on Finite WordsWe start by transforming automata that run on �nite words. We then enhance our method toautomata on in�nite words.Theorem A.2.1 For every 2NFA A = h�; S; s0; �; F i with n states, there exist 1AFAs B and B0with O(n2) states such that L(B) = L(A) and L(B0) = �� n L(A).A.2.1 Removing `zero' stepsA 0-step in a run of a 2NFA is when two adjacent states in the run read the same letter. Formally,in the run (s0; i0); (s1; i1); :::; (sm; im), step j > 0 is a 0-step if ij = ij�1.Our �rst conversion is from A = h�; S; s0; �; F i with � : S � � ! 2S�f�1;0;1g to an equivalentA0 = h�; S; s0; �0; F i with �0 : S0 � �! 2S�f�1;1g. There are no 0-steps in the run of the second.We start by de�ning for each state s and alphabet letter a, the set Csa of all states reachablefrom s with 0 steps using letter a. We call Csa the 0-closure of s and a.Csa = ft 2 Sj9s1; ::::::; sk s.t. 1 � k; s1 = s; sk = t and (si+1; 0) 2 �(si; a)gDe�ne �00(s; a) = St2Csa �(t; a) and take �0 = �00 \ (S � f�1; 1g) (i.e. remove all pairs of the formS � f0g). This way the closure takes care of the 0-steps and A0 takes steps either forward orbackward.Claim A.2.2 L(A) = L(A0) 56



Proof: Suppose A accepts w. Let r = (s0; 0); :::; (sm; im) be an accepting run of A on w. Weturn r into a run r0 of A0 on w by pruning 0-steps: if ij = ij�1 simply remove (sj ; ij) from the run.It is easy to see that r0 is an accepting run of A0 on w.Suppose A0 accepts w. Let r0 = (s0; 0); :::; (sm; im) be an accepting run of A0 on w. We appendthe 0-steps from the closure of each state to complete a run of A on w.A.2.2 Two-way runsFrom this point on we consider only 2NFAs with no 0-steps. We use A = h�; S; s0; �; F i to denotethe 2NFA and B = h�; Q; s0;�; F i to denote its equivalent 1AFA1.Recall that a run of A is a sequence r = (s0; 0); (s1; i1); (s2; i2); :::; (sm; im) of pairs of states andlocations, where sj is the state and ij is the location of the automaton in the word w. We referto each state as a forward or backward state according to its predecessor in the run. If it resultedfrom a backward movement it is a backward state and if from a forward movement it is a forwardstate. Formally, (sj ; ij) is a forward state if ij = ij�1 + 1 and backward state if ij = ij�1 � 1. The�rst state (s0; 0) is de�ned to be a forward state.We will be only interested in runs in which the same state in the same position do no repeattwice during the run.De�nition 7 Simple RunA run r = (s0; 0); (s1; i1); (s2; i2); :::; (sm; im) is simple if for all j and k such that j < k, eithersj 6= sk or ij 6= ik.Claim A.2.1 There exists an accepting run of A on w i� there exists a simple accepting run of Aon w:Proof: A simple run is a run. Given an accepting run r = (s0; 0); (s1; i1); (s2; i2); :::; (sm; im) ofA on w, we construct a simple run of A on w. If r is not simple, there are some j and k such thatj < k, sj = sk and ij = ik, consider the sequence (s0; 0); :::; (sj ; ij); (sk1 ; ik+1); :::; (sm; im): Since(sk+1; ik+1 � ik) 2 �(sk; aik) and �(sk; aik) = �(sj ; aij ) this sequence is still a run. The last statesm is a member of F and im = jwj hence the run is accepting. Since the run is �nite, �nitely manyrepetitions of the above operation result in a simple run of A on w.Given the 2NFA A our goal is to construct the 1AFA B recognizing the same language. InFigure A.1a we see that a run of A takes the form of a `zigzag'. Our one-way automaton will readwords moving forward and accept if such a `zigzag' run exists. In Figure A.1a we see that thereare two transitions using a1. The �rst (s2; 1) 2 �(s1; a1) and the second (s4; 1) 2 �(s3; a1). Inthe one-way sweep we would like to make sure that s3 indeed resulted from s2 and that the runcontinuing from s3 to s4 and further is accepting. Hence when in state s1 reading letter a1 we guessthat there is a part of the run coming from the future and spawn two processes. The �rst checksthat s1 indeed results in s3 and the second ensures that the part s3; s4; ::: of the run is accepting.Hence the state set of the alternating automaton will be Q = S [ (S � S). A state s 2 Qrepresents a part of the run that is only looking forward (s4 in Figure A.1a). A pair state (s1; s3) 2 Q1Note that B uses the acceptance set of A. 57
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Figure A.1: (a) A zigzag run (b) The transition at the singleton state trepresents a part of the run that consists of a forward moving state and a backward moving state(s1 and s3 in Figure A.1a). Such a pair ensures that there is a run segment linking the forwardstate to the backward state. We introduce one modi�cation, since s3 is a backward state (i.e.(s3;�1) 2 �(s2; a2)) it makes sense to associate it with a2 and not with a1. As the alternatingautomaton reads a1 (when in state s1), it guesses that s3 comes from the future and changesdirection. The alternating automaton then spawns two processes: the �rst, s4 and the second,(s2; s3); and both read a2 as their next letter. Then it is easier to check that (s3;�1) 2 �(s2; a2).A.2.3 The ConstructionThe transition at a singleton state We de�ne the transitions of B in two stages. First wede�ne transitions from a singleton state. When in a singleton state t 2 Q reading letter aj (SeeFigure A.1b) the alternating automaton guesses that there are going to be k more visits to letteraj in the rest of the run (as the run is simple k can not be larger than the number of states ofthe 2NFA A, jSj = n). We refer to the states reading letter aj according to the order they appearin the run as s1; :::; sk. We assume that all states that read letters prior to aj have already beentaken care of, hence s1; :::; sk themselves are backward states (i.e. (si;�1) 2 �(pi; aj+1) for somepi). They read the letter aj and move forward (there exists some ti such that (ti; 1) 2 �(si; aj)).Denote the successors of s1; :::; sk by t1; :::; tk. Hence the alternating automaton has to verify thatthere is a run segment connecting the successor of t (denoted t0) to s1 (we assume by inductionthat all states reading letters before aj have been taken care of, this run segment should not goback to letters before aj). Similarly verify that a run segment connects t1 to s2, etc. In general theautomaton checks that there is a part of the run connecting ti to si+1. Finally, from tk the run hasto go on moving forward and reach location jwj in an accepting state.58



Given a state t and an alphabet letter a, consider the set Rta of all possible sequences of statesof length at most 2n � 1 where no two states in an even place (forward states) are equal and notwo states in an odd place (backward states) are equal. We further demand that the �rst statein the sequence be a successor of t ((t0; 1) 2 �(t; a)) and similarly that ti be a successor of si((ti; 1) 2 �(si; a)). FormallyRta = 8>>><>>>:< t0; s1; t1; :::; sk; tk > ��������� 0 � k < n(t0; 1) 2 �(t; a)8i < j; si 6= sj and ti 6= tj8i; (ti; 1) 2 �(si; a) 9>>>=>>>;The transition of B chooses one of these sequences and ensures that all promises are kept, i.e.there exists a run segment connecting ti�1 to si.�(t; a) = _<t0;:::;tk>2Rta(t0; s1) ^ (t1; s2) ^ ::: ^ (tk�1; sk) ^ tkThe transition at a pair state When the alternating automaton is in a pair state (t; s) readingletter aj it tries to �nd a run segment connecting t to s using only the su�x aj :::ajwj�1. We viewt as a forward state reading aj and s as a backward state reading aj�1 (Again (s;�1) 2 �(p; aj)).As shown in Figure A.2a, the run segment connecting t to s might visit letter aj but should notvisit aj�1.Figure A.2b provides a more detailed example. The automaton in state (t; s) guesses that therun segment linking t to s visits a2 twice. It guesses that the states reading letter a2 are s1 ands2. The automaton further guesses that the predecessor of s is s3 ((s;�1) 2 �(s3; a2)) and that thesuccessors of t; s1 and s2 are t0; t1 and t2 respectively. The alternating automaton spawns threeprocesses: (t0; s1); (t1; s2) and (t2; s3) all reading letter aj+1. Each of these pair states has to �nda run segment connecting the two states. ts1s2s3s t0t1t2
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Figure A.2: (a) Di�erent connecting segments (b) The transition at the pair state (t; s)We now de�ne the transition from state in S�S. Given a state (t; s) and an alphabet letter a, wede�ne the set R(t;s)a of all possible sequences of states of length at most 2n where no two states in an59



even position (forward states) are equal and no two states in an odd position (backward states) areequal. We further demand that the �rst state in the sequence be a successor of t ((t0; 1) 2 �(t; a)),that the last state in the sequence be a predecessor of s ((s;�1) 2 �(sk+1; a)) and similarly that tibe a successor of si ((ti; 1) 2 �(si; a)).R(t;s)a = 8>>><>>>:< t0; s1; t1; :::; sk; tk; sk+1 > ��������� 0 � k < n(t0; 1) 2 �(t; a)(s;�1) 2 �(sk+1; a)8i; (ti; 1) 2 �(si; a) 9>>>=>>>;The transition of B chooses one of these sequences and ensures that all pairs meet in due time:�((t; s); a) = 8>><>>: true If (s;�1) 2 �(t; a)W<t0;:::;sk+1>2R(t;s)a (t0; s1) ^ (t1; s2) ^ ::: ^ (tk; sk+1) OtherwiseA.2.4 Proof of correctnessTo conclude, the complete description of B is h�; Q; s0;�; F i where the initial state and the set ofaccepting states is equal to that of A and � is as de�ned. All the pair-labeled paths in a run of Bhave to terminate \before falling of the edge of the tape" and the singleton-labeled path must \fallo�" with an accepting state.Claim A.2.3 L(A) = L(B)Proof: Given an accepting simple run of A on a word w of the form (s0; 0); (s1; i1); :::; (sm; im)we annotate each pair by the place it took in the run of A. Thus the run takes the form(s0; 0; 0); (s1; i1; 1); :::; (sm ; im;m). We build a run tree of B by induction. In addition to label-ing the nodes of the trees with states of B (Q [Q�Q) we attach a single tag to a singleton stateand a pair of tags to a pair state. The tag will be a triplet from the annotated run of A. Forexample the root of the run tree of B will be labeled by s0 and tagged by (s0; 0; 0). The labelingand the tagging conforms to the following:� Given a node x labeled by state s tagged by (s0; i; j) from the run of A we build the tree sothat s = s0; i = jxj and furthermore all triplets in the run of A whose third element is largerthan j have their second element at least i.� Given a node x labeled by state (t; s) tagged by (t0; i1; j1) and (s0; i2; j2) in the run of A webuild the tree so that t = t0; s = s0; i1 = i2 + 1 = jxj, j1 < j2 and that all triplets in the runof A whose third element is between j1 and j2 have their second element be at least i1.We start with the root labeling it by s0 and tagging it by (s0; 0; 0). Obviously this conforms to ourdemands.Given a node x labeled by s tagged by (s; i; j) adhering to our demands (see state t in Fig-ure A.1b). If (s; i; j) has no successor in the run of A, it must be the case that i = jwj and that60



s 2 F . Otherwise we denote the triplets in the run of A whose third element is larger than j andwhose second element is i by (s1; i; j1); :::; (sk ; i; jk). By assumption there is no point in the run ofA beyond j visiting a letter before i. Since the run is simple k < n. Denote by (t0; i+1; j + 1) thesuccessor of (s; i; j) and by (t1; i+1; j1 +1); :::; (tk ; i+1; jk +1) the successors of s1; :::; sk. We addk + 1 successors to x, label them (t0; s1); (t1; s2); :::; (tk�1; sk); tk and tag them in the obvious way.We show now that the new nodes added to the tree conform to our demands. By assumption thereare no visits beyond the jth step in the run of A to letters before ai and s1; :::; sk are all the visitsto ai after the jth step of A.Let y = x �c be the successor of x labeled tk (tagged (tk; i+1; jk+1)). Since jxj = i, we concludejyj = i + 1. All the triplets in the run of A appearing after (tk; i + 1; jk + 1) will not visit lettersbefore ai+1 (We collected all visits to ai).Let y = x � d be a successor of x labeled by (tl; sl+1) (tagged (tl; i+1; jl +1) and (sl+1; i; jl+1)).We know that i = jxj hence i+ 1 = jyj; jl + 1 < jl+1 and between the jl + 1 element in the run ofA and the jl+1 element there are no visits to letters before ai+1.We turn to continuing the tree below a node labeled by a pair state. Given a node x labeledby (t; s) tagged (t; i; j) and and (s; i � 1; k). By assumption there are no visits to ai�1 in the runof A between the jthtriplet and kth triplet. If k = j + 1 then we are done and we leave this nodeas a leaf. Otherwise we denote the triplets in the run of A whose third element is between j and kand whose second element is i by s1; :::; sk (see Figure A.2b). Denote by t1; :::; tk their successors,by t0 the successor of t and by sk+1 the predecessor of s. We add k + 1 successors to x and labelthem (t0; s1); (t1; s2); :::; (tk ; sk+1), tagging is obvious. As in the previous case when we combine theassumption with the way we chose t0; :::tk and s1; :::; sk+1, we conclude that the new nodes conformto the demands.It is easy to see that all pair-labeled paths terminate with 'true' before reading the whole wordw and the single path labeled by single states reaches the end of w with an accepting state.In the other direction we stretch the tree run of B into a linear run of A. We assume orderingon the successors of each node according to the appearance of their labels in the sets Ra. We givea recursive algorithm to build the run of A.Starting from the root � labeled (s0; 0), we add to the run of A the element (s0; 0). We nowhandle the successors of the root according to their order. Going up to the �rst successor clabeled (t; s) we add (t; 1) to the run of A. Obviously from the de�nition of Rs0a0 we know that(t; 1) 2 �(s0; a0). We handle the successors of c in the recursion. When we return to c we add(s; 0) to the run of A (to be justi�ed later). We return now to � and handle the next successord. The node d is either labeled by (p; q) or by p. In both cases the de�nition of Rs0a0 ensures that(p; 1) 2 �(s; a0). When we return to � after scanning the whole tree the run of A is complete.Getting to a node x labeled (t; s) we add (t; jxj) to the run of x. Adding (t; jxj) itself andpassing to the successors of x and between them was already justi�ed when handling the root.When the recursion �nished handling the last successor of x we add (s; jxj � 1) to the run of A.Suppose the last successor of x was labeled (p; q) then from the de�nition of R(t;s)ajxj we know that(s;�1) 2 �(q; ajxj) hence this transition is justi�ed.Getting to a node x labeled s is not di�erent from handling the root. Instead of using thelocations 0 and 1 in the run, we use locations jxj and jxj+ 1.We have to show that the run is valid and accepting. Satisfying the transition was shown. Inthe tree run of B there is a single path labeled solely by single states. The last element in the run of61



A is the same state and reading the same letter as the last in this path. Since the path is acceptingthe last state there has to be from F and reading letter jwj (which does not exists, w = a0:::ajwj�1).All other triplets in the run of A read letters in the range f0; :::; jwj � 1g. Otherwise there is somenode x in the run of B such that jxj � jwj (other than the previously designated node). This isimpossible since the run of B is accepting.A.3 Automata on in�nite wordsIn a �rst glance it seems that the exact same construction should work for B�uchi automata. Elimi-nate the 0-steps and then just make sure that the single in�nite path visits F in�nitely often. Thisis not the case, there are two problems. For one the visits to F may be `hidden'. For exampleconsider the following run segment :::; (q; i); (q0; i); (q00; i + 1); :::. In case q0 is a member of F , weshrink the sequence to :::; (q; i); (q00; i + 1); ::: and reduce the number of visits to F by one. If werepeat this action in�nitely many times we might turn an accepting run into a rejecting one. Asimilar problem occurs when checking that a 'zigzag run' exists, what if the visits to F are in thezigzags and not along the main path forward ? The second problem is loops that visit F . In thesequel we solve these problems.Theorem A.3.1 For every 2NBW A = h�; S; s0; �; F i with n states, there exist 1ABWs B and B0with O(n2) states such that L(B) = L(A) and L(B0) = �! n L(A).A.3.1 Zero stepsGiven an automaton A = h�; S; s0; �; F i where � : S ��! 2S�f�1;0;1g we would like to remove allthe 0-steps. There are two potential problems, visits to F in a 0-step and a loop of 0-steps thatvisits F . Hence we double the number of states and add an accepting sink state A0 = h�; (S �f?;>g) [ fAccg; (s0;?); �0; (S � f>g) [ fAccgi. A sequence like :::; ((s;?); i); ((s0 ;>); i + 1); ::: inthe run means that in the run of A between the appearance of (s; i) and (s0; i + 1) there was a0-step that visited F . Similarly ? means that 0-steps (if occured) have not visited F (see also[Wil99, HK96] where similar problems are solved in a similar way).Given a state s and an alphabet letter a, we de�ne NCsa the set of all states reachable fromstate s by a sequence of 0-steps reading letter a and one last forward/backward step. All statesavoid the acceptance set F .NCsa = 8><>:((t;?); i) 2 ((S � f?g)� f�1; 1g) ������� 9(s0; :::; sk) 2 fsg � (S n F )k s:t: 1 � k; s0 = s; sk = t;80 � j < k; (sj+1; 0) 2 �(sj ; a)and (sk; i) 2 �(sk�1; a) 9>=>;In addition we de�ne ACsa the set of all states reachable from state s by a sequence of 0-stepsreading letter a and one last forward/backward step. One of the states in the sequence is anaccepting state.ACsa = 8><>:((t;>); i) 2 ((S � f>g) � f�1; 1g) ������� 9(s0; :::; sk) 2 fsg � Sk s:t: 1 � k; s0 = s; sk = t;9j > 0 s:t: sj 2 F; 80 � j < k; (sj+1; 0) 2 �(sj ; a)and (sk; i) 2 �(sk�1; a) 9>=>;We also have to take care of situations where there is a loop of 0-steps that visits F . The booleanvariable ACCEPT sa is set to 1 if such a sequence exists and to 0 otherwise. Formally, the variable62



ACCEPT sa is set to 1 i� there exists a sequence (s0; :::; sk) 2 fsg � Sk, where 1 � k and all thefollowing conditions hold.� s0 = s.� There exist j and l such that 0 � j � l < k, sk = sj and sl 2 F .� For all j where 0 � j � k, we have (sj+1; 0) 2 �(sj ; a)We use the two 0-closures and the variable de�ned above in the de�nition of the transitionfunction of the 1AFA B.�0((s;?); a) = �0((s;>); a) = ( f(Acc; 1)g ACCEPT sa = 1NCsa [ACsa ACCEPT sa = 0�0(Acc; a) = f(Acc; 1)gApparently, A0 is 0-step free.Claim A.3.2 L(A')=L(A)Proof: Suppose A accepts w. There exists an accepting run r of A on w. If a �nite sequenceof 0-steps appears in r we simply prune it. If that sequence contained a visit to F add > to theforward/backward move at the end of the sequence. If r ends in an in�nite sequence of 0-steps, thissequence has a �nite pre�x (si; l); (si+1; l); :::; (si+p; l) such that si = si+p and, as r is accepting,there is a visit to F in this pre�x. We take the pre�x of the run (s0; 0); :::; (si; l) and add to it thein�nite su�x (Acc; l+1); (Acc; l+2); :::. Finally, we add labels ? to all unlabeled states. It is easyto see that the resulting run is a valid run of A0. It is also an accepting run. If the run ends in asu�x Acc! then it is clearly accepting. Otherwise, removing sequences of 0-steps replaces a �nitenumber of visits to F by a state labeled by >. As the original run visited F in�nitely often, sodoes the run of A0.Suppose A0 accepts w. We append 0-steps as promised from the de�nition of NC and AC.If the run ends with an in�nite sequence of Acc we can add a loop visiting F . In�nitely manyoccurrences of > ensure in�nitely many visits to F .A.3.2 Two-way runsOnce again we consider only 2NBWs with no 0-steps. As in the case of 0-steps there are two issuesto be considered. Hidden visits to the accepting set F and loops.If we take the alternating automaton we built in the �nite case and simply run it on in�nitewords, we demand that the pair-labeled paths should be �nite and that the in�nite singleton-labeledpath should visit F in�nitely often. Although an accepting run of A visited F in�nitely often wecannot ensure in�nitely many visits to F on the in�nite path. The visits may be re
ected in therun of B in the pair-labeled paths.Another problem is similar to the case of the loop in the 0-steps section. The automaton mightbe stuck forever in a �nite pre�x of the word w. We will show that in this case we can �nd analternative accepting run of A in which the su�x of the run is of the form (t1; t2; :::; tm)! whereone of the states ti is a member of F . 63



Once again we are interested in runs in which the same state in the same position do not repeattwice during the run. In an in�nite run it might be impossible to avoid it completely, hence we tryto minimize such events.De�nition 8 Simple RunA run r = (s0; 0); (s1; i1); (s2; i2); ::: is simple if one of the following holds1. For all j < k, either sj 6= sk or ij 6= ik.2. There exists l;m 2 IIN such that for all j < k < l +m, either sj 6= sk or ij 6= ik, and for allj � l; sj = sj+m and ij = ij+m.Claim A.3.1 There exists an accepting run of A on w i� there exists a simple accepting run of Aon w.Proof: A simple run is a run. Given a run r = (s0; 0); (s1; i1); (s2; i2); :::, we cannot simply removesequences of states like we did in the �nite case, the visits to F might be hidden in these parts ofthe run. If for some j < k, we have that sj = sk; ij = ik and sp =2 F for all j � p � k, we cansimply remove this part. As in the �nite case, the run stays a valid accepting run.Now if there existssome j < k such that sj = sk and ij = ik we conclude that there is a visit to F between the two.We take the minimal j and k and create the run (s0; 0); :::; (sj�1; ij�1); ((sj ; ij); :::; (sk�1; ik�1))!.Again this is a valid run and it visits F in�nitely often (between sj and sk�1). If no such j and kexist the run is simple.We use A = h�; S; s0; �; F i to denote the 2NBW and B = h�; Q; s00;�; F 0i to denote the 1ABW.As mentioned, we have to record hidden visits to the set F . This is done by doubling the set ofstates. While in the �nite case the state set is S [ S � S, this time we also annotate the states by? and >. Hence Q = (S [ S � S) � f?;>g. A pair state labeled by > is a promise to visit theacceptance set. The state (s; t;>) means that in the run segment linking s to t there has to appeara state from F . A singleton state (s;>) is displaying a visit to F in the zigzags connecting s to theprevious singleton state.The same notation enables us to solve the problem of loop. This is done by allowing a transitionfrom a singleton state to a sequence of pair states and demanding that one of this pairs will promisea visit to F . Details follow.Some of the unknowns in the de�nition of B are: Q = (S [ S � S)� f?;>g; s00 = (s0;?) andF 0 = (S � f>g). The transition function � is de�ned in the next section.A.3.3 The ConstructionThe transition at a singleton state Just like in the �nite case we consider all possible sequencesof states of length at most 2n� 1 with same demands.Rta = 8>>><>>>:< t0; s1; t1; :::; sk; tk > ��������� 0 � k < n(t0; 1) 2 �(t; a)8i < j; si 6= sj and ti 6= tj8i; (ti; 1) 2 �(si; a) 9>>>=>>>;64



Recall that a sequence (t0; s1); (t1; s2); :::; (tk�1; sk); tk will check that there is a zigzag runsegment linking t0 to tk. We mentioned that tk will be annotated with > in case this run segmenthas a visit to F . Hence if tk is annotated with > then at least one of the pairs has to be annotatedwith >. Although there might be more than one visit to F we annotate all the other pairs by ?.Hence for a sequence < t0; s1; t1; :::; sk; tk > we consider the sequences of ? and > of length k + 1in which if the last is > so is another one. Otherwise all are ?.�Rk = (< �0; :::; �k >2 f?;>gk+1 ����� If �k = > then 9!i s.t. 0 � i < k and �i = >If �k = ? then 8 0 � i < k; �i = ? )However this is not enough. We have to consider also the case of a loop. The automaton has toguess that the run will terminate with a loop when it reads the �rst letter of w that is read insidethe loop. The only states reading this letter inside the loop will be backward states. We considerall sequences of at most 2n states and a location p within the sequence. In order to close the loopwe demand either that the last backward state be equal to some previous backward state or thatsome forward state be a successor of the last backward state. The location p denotes the placewhere the loop closes (sk+1 = sp or (tp; 1) 2 �(sk+1; a)). Sequences of length 2n su�ce, the longestpossible sequence without repetition is of length n, we may use the current state as the n + 1thbackward state or transition into one of the forward states thus creating a sequence of length n+1.Hence no two states in an even/odd position (forward/backward state) are equal except the lastbackward state. We demand that the �rst state in the sequence be a successor of t ((t0; 1) 2 �(t; a)),that ti be a successor of si ((ti; 1) 2 �(si; a)) and that the pth backward state be equal to the lastbackward state or the pth forward state be a successor of the last backward state (We identify twith s0, sp = sk+1 or (tp; 1) 2 �(sk+1; a)).Lta = 8>>>>><>>>>>:(< t0; s1; t1; :::; sk; tk; sk+1 >; p) ����������� 0 � k < n; 0 � p � k(t0; 1) 2 �(t; a)8i < j 6= k + 1; si 6= sj and ti 6= tj8i; (ti; 1) 2 �(si; a)sk+1 = sp or (tp; 1) 2 �(sk+1; a) (de�ne s0 = t)
9>>>>>=>>>>>;It is quite obvious that a visit to F has to occur within the loop. Hence given the sequence< t0; s1; t1; :::; sk; tk; sk+1 > and the location p we have to make sure that the run segment connectingone of the pairs between the pth pair and the last pair will visit F . Hence we annotate one of thepairs (tp; sp+1); :::; (tk; sk+1) with >. In case sk+1 = t then one of the pairs has to be annotated by>. Our notation using p = 0 also works in this case. Again one visit to F is enough hence all otherpairs are annotated by ?.�Lk;p = (< �0; :::; �k >2 f?;>gk+1 ����� 8 0 � i < p; �i = ? and9!i s.t. �i = > )The transition of B has to choose one of the sequences in Rta [Lta. And then choose a sequenceof ? and >.�((t; �); a) =_ WRta W�Rk (t0; s1; �0) ^ (t1; s2; �1) ^ ::: ^ (tk�1; sk; �k�1) ^ (tk; �k)WLta W�Lk;p(t0; s1; �0) ^ (t1; s2; �1) ^ ::: ^ (tk; sk+1; �k)65



Where � is either ? or >.The transition at a pair state In this case the only di�erence is the addition of ? and >. Theset R(t;s)a is equal to the �nite case.R(t;s)a = 8>>><>>>:< t0; s1; t1; :::; sk; tk; sk+1 > ��������� 0 � k < n(t0; 1) 2 �(t; a)(s;�1) 2 �(sk+1; a)8i; (ti; 1) 2 �(si; a) 9>>>=>>>;In the transition of `top' states we have to make sure that a visit to F indeed occurs. If the visitoccured in this stage the promise (>) can be removed (?). Otherwise the promise must be passedto one of the successors.�Rs;t;k = (< �0; :::; �k >2 f?;>gk+1 ����� If s =2 F and t =2 F then 9!i s.t. �i = >Otherwise 8 0 � i � k; �i = ? )The transition of B chooses a sequence of states and a sequence of ? and >.�((t; s;?); a) = 8<: true If (s;�1) 2 �(t; a)WR(t;s)a (t0; s1;?) ^ ::: ^ (tk; sk+1;?) Otherwise�((t; s;>); a) = 8>><>>: true If (s;�1) 2 �(t; a) and(s 2 F or t 2 F )WR(t;s)a W�Rs;t;k(t0; s1; �0) ^ ::: ^ (tk; sk+1; �k) OtherwiseA.3.4 Proof of correctnessThe proof is just an elaboration on the proof of the �nite case. In both directions we use the similarconstructions. We only have to give special attention to visits to the accepting set. As the proofsare almost identical we just hilight the points of di�erence.Claim A.3.3 L(A)=L(B)Proof: Given an accepting simple run of A on a word w of the form (s0; 0); (s1; i1); ::: we annotateeach pair by the place it took in the run of A. Thus the run takes the form (s0; 0; 0); (s1; i1; 1); :::.If the run does not end in a loop the construction in the �nite case will work. We have to add thesymbols ? and >.When dealing with a node x in the run tree of B labeled by (s; �) tagged by (s; i; j). In the proofof the �nite case we identi�ed the triplets (s1; i; j1); :::; (sk; i; jk) and (t0; i+1; j+1); :::; (tk ; i+1; jk+1)and labeled the successors of x with (t0; s1); :::; (tk�1; sk); tk. If there is no visit to F between j +1and jk + 1 we add to these states ?. Otherwise the visit was between jl + 1 and jl+1 for some l(consider j = j0), in this case we add > both to tk and to the pair (tl; sl+1), to all other pairs weadd ?.When dealing with a node x in the run tree of B labeled by (t; s; �) tagged (t; i; j) and (s; i�1; k).We identi�ed the set of pairs (t0; s1); :::; (tk ; sk+1). In case � = ? we continue just like in the �nite66



case. In case � = > we put it there because there was a visit to F between j and k. This visitto F has to occur between tl and sl+1 for some l and we pass the obligation to this pair. At somepoint we reach a visit to F and then the promise will be removed.We have now an in�nite run tree of B. All pair-labeled paths are still �nite and there is onein�nite path labeled by singleton states. Since every occurrence of > on this path covers a �nitenumber of visits to F we are ensured that > will appear in�nitely often along this path.If the run ends in a loop we have to identify the �rst letter of w read in this loop. Suppose thisletter is i. We build the run tree of B as usual until reaching the node x in level i labeled by asingleton state (s; �). As letter i is visited in the loop there are in�nitely many visits to it. Denotethese visits by (s1; i; j1); (s2; i; j2); :::, all backward states. Denote s = s0, and the successors ofs0; :::; sn by t0; :::; tn. Since the sequence s0; :::; sn is n + 1 long, it has to include the same stateoccuring twice. Denote its second occurrence by sm. We consider two cases:� In case tm�1 appears twice in the sequence t0; :::; tn before location m � 1, i.e. tm�1 = tpwhere p < m � 1. In this case denote k + 1 = m � 1 and take t0; s1; t1; s2; :::; tm�2; sm�1 asthe sequence from Ltajxj ((tp; 1) = (tk; 1) 2 �(sk; ajxj)).� Otherwise we denote k + 1 = m and take t0; s1; t1; s2; :::; tm�1k; sk+1 as the sequence fromLtajxj . Since sk+1 was the second occurrence there is a �rst occurrence sp = sk+1.Since the run is simple its su�x is of the form:(sp; i); ((tp; i+ 1); :::; (sp+1; i); (tp+1; i+ 1); :::::::::; (sk ; i); (tk; i+ 1); :::; (sk+1; i))!One of the segments (tl; i+1); :::; (sl+1; i) will visit F . Annotate the pair (tl; sl+1) by > and all theothers by ?.In the other direction we apply the same recursive algorithm. If the accepting run tree of B isin�nite then we never return to � but the run created is an accepting run of A.If the accepting run tree of B is �nite we have to identify the point in the tree x labeled by asingleton state (s; �) under which there are no successors labeled by singleton states. In this pointwe identify the loop. The last successor of x is labeled (t0; s0; �). We know that either s0 = s orthere is another successor of x labeled by (t00; s00; �) such that either s00 = s0 (in this case (t00; s00; �) isnot part of the loop) or (t00; 1) 2 �(s0; ajxj) (in this case (t00; s00; �) is part of the loop). If s0 = s thenwe put aside the run of A built so far, denote it by r. Otherwise we start handling the successorsof x until taking care of all successors that do not take part in the loop. Again we put this runaside and call it r. Now we build a new run starting from the point we stopped, since the run ofB is �nite the recursion will end and we will be left with the run r0. Our �nal step is to presentr(r0)! as the new run of A. Note that the run r(r0)! is not necessarily simple.Both in the �nite and the in�nite case we separated the construction into two stages. Namelyremoving the zero steps and then transforming automata that take no 0-steps. In the �nite casethe �rst stage did not increase the number of states. In the in�nite case the �rst stage doubled thenumber of states and then squaring we get approximately 8n2+4n states. We could actually unitethe two stages of the construction into one stage. Such a construction will include the 0-steps inthe de�nition of the sets Ra and La. We believe our construction is easier to understand, whileimproving our construction to include the modi�cation is not so di�cult. Transforming the 2NBWinto a 1ABW in one stage will result in an automaton with approximately 2n2 + 2n states.67



A.3.5 Complementing the alternating automatonComplementing an ABW is not as easy as complementing an AFA. In the �nite case dualizingthe transition function and the acceptance set is enough. In the in�nite case we can dualize thetransition but instead of B�uchi acceptance we have to use co-B�uchi acceptance. That is, statesfrom the acceptance set have to appear only �nitely often along every in�nite path [MS87].Kupferman and Vardi [KV97] showed how to complement alternating automata using weakalternating automata. Given a 2NBW A with n states, we constructed a 1ABW B with O(n2)states. If we implement the quadratic construction from [KV97] on B we get B0, a 1ABW withO(n4) states accepting the complementary language of A. We show how to construct an 1ABWwith O(n2) states whose language is the complement of A's language. We recall the proof in [KV97]and show how to avoid the quadratic price in our case. The following is taken from [KV97] withminor adjustments.De�nition 9 [KV97] A tree run (T; r) is memoryless if for all x1; x2 2 T such that jx1j = jx2jand r(x1) = r(x2), we have that for all y 2 IIN �, r(x1 � y) = r(x2 � y).Theorem 10 [EJ91] If a co-B�uchi automaton accepts a word w, then there exists a memorylessaccepting run on w.We can restrict our attention to memoryless run trees. Hence, the run tree (T; r) can berepresented in the form of a directed acyclic graph G = (V;E) where V � Q � IIN and E �S1i=0(Q� fig) � (Q� fi+ 1g):V = f(V (x); jxj)jx 2 TgE = f((V (x); jxj); (V (y); jyj))jx; y 2 T and y successor of x in TgGiven a (possibly �nite) DAG G0 � G. We de�ne a vertex (s; i) as eventually safe in G0 i� only�nitely many vertices in G0 are reachable from (s; i). We de�ne a vertex (s; i) as currently safe inG0 i� all the vertices in G0 reachable from (s; i) are not members of F � IIN .Now de�ne the inductive sequence:� G0 = G� G2i+1 = G2i n f(s; i)j(s; i) is eventually safe in G2ig� G2i+2 = G2i+1 n f(s; i)j(s; i) is currently safe in G2i+1gDe�nition 11 Border, Ultimate Width1. Given a graph Gi and a number 0 � p � n the border of p in Gi is the level l 2 IIN such thatfor all l0 � l there are at most p vertices of the form (s; l) in Gi. If no such number existsthen we de�ne the border of p in Gi to be in�nity.2. Given a graph Gi the ultimate width of Gi is the minimal number w � n such that the borderof w in Gi is �nite. We denote the ultimate width of Gi by w(Gi).Lemma A.3.2 [KV97] For every i � 0, either w(G2i) = 0 or w(G2i+2) < w(G2i).68



In our case, we can partition the state set of B into two sets, S � f?;>g and S � S � f?;>g.The transition of states of the form (s; t; �) includes only states from the same set. This set andthe acceptance set do not intersect, hence in the graph G1 all the states of this form are `currentlysafe' and all of them are missing from G2. We can conclude that w(G2) � 2jSj. Therefore, if wedenote 2jSj by n the graph G2n+2 is �nite and hence G2n+3 is empty.Index the vertices in G in the following way:� 2i, if the vertex is eventually safe in G2i� 2i+ 1 if the vertex is currently safe in G2i+1All indexes are in the range [2n+ 2].Denote our co-B�uchi automaton by B0 = h�; Q; (s0;?);�0; F i where Q = (S [S�S)�f?;>g.Kupferman and Vardi show that how to construct a weak alternating automaton with state setQ� f0; :::; 2n + 2g that accepts the same language.We can further reduce the number of states. We know that only pair-states are reachable frompair-states and that there is no pair-state in the acceptance set. Hence we can de�ne G0 to beG n (S � S � f?;>g � IIN ) i.e. remove from G all the pair labeled states (which are currently safein G). This way all indexes are in the range [2n]. Furthermore there is no need to multiply all thestates in Q by [2n]. It is enough to multiply S � f?;>g by [2n] and consider (S � S � f?;>g asthe minimal set of the weak alternating automaton.To conclude we give the �nal weak alternating automaton accepting the language of B0 that isthe complement of B. Given B = h�; Q; (s0;?);�; F i where Q = (S [ S � S)� f?;>g we de�neB = h�; Q0; s00;�; F 0i where Q0 = S�f?;>g� [2n][S�S�f?;>g where n = 2jSj. We follow thenotation from [KV97] and de�ne release : B+(Q) � [2n] ! B+(Q0). Given a formula � 2 B+(Q),and a rank i 2 [2n], the formula release(�; i) is obtained from � by replacing every element (s; �)from S � f?;>g by Wl�i(s; �; l). Let �0 be the dualization of � then:�((s; �; i); a) = ( release(�0((s; �); a)) if � = ? or i is evenfalse if � = > and i is odd�((s; t; �); a) = �0((s; t; �); a)Finally s00 = (s0;?; 2n) and F 0 = f(s; �; i)ji is oddg.A.3.6 Parity and Rabin acceptance conditionsOur method works also for 2-way nondeterministic Rabin automata and 2-way nondeterministicParity automata.Theorem A.3.4 For every 2-way nondeterministic Rabin (parity) automaton A = h�; S; s0; �; �iwith n states and index m, there exists a 1ABW B with O(n2 �m) states such that L(B) = L(A).Given a 2-way nondeterministic Rabin automaton A = h�; S; s0; �; �i with � = f< hG1; B1i; :::; hGm; Bmigwith n states it is straightforward to construct an equal 2NBW A0 with O(n � m) states. Theconstruction is not di�erent from the conversion of 1-way Rabin automata to B�uchi automata.Converting the 2NBW A0 to a 1ABW B, B results in a 1ABW with O(n2 �m2) states.69



This construction can be improved as following. Build a 1ABW B for A (without constructingA0 �rst). Multiply the state set of B by the index (and one extra copy) m + 1. The ith copy ofthe automaton will avoid all the states in Bi. The alternating automaton starts running in copy0. The transition at a singleton state in copy 0 will include also a guess whether to stay in copy0 or guess that states from Bi will not be visited again during the run and then move to copy i.We should allow also moving into copy i in the middle of the transition into a loop. In this caseonly the part of the loop itself should avoid Bi and should include a demand for visiting Gi. Thetransition at a state from the ith copy will include only states of the same copy. Reference to theaccepting set should be made only outside of copy 0 and in this case Gi serves as F .When given a Parity automaton one may convert it to a Rabin automaton and then apply theabove modi�cation. Taking care of Parity automata without reducing it to Rabin is also possible.The changes to the construction are very similar to the ones described above for Rabin automata.A.4 ConclusionsWe have shown two constructions. Both show how to construct a 1-way alternating automatonthat accepts the same language as a 2-way nondeterministic automaton. The �rst construction forautomata that work on �nite words and the second for automata that work on in�nite words.In the �nite case complementation of alternating automata is very easy. Hence we can easilyget the automaton recognizing the complementary language. This automaton can be envisioned assearching for errors in all the possible zigzagging run.The number of states of the new automaton is quadratic in the number of states of the 2-wayautomaton and the size of the transition is exponential in the size of the original transition. If wefurther convert our alternating automaton into a nondeterministic automaton we get an automatonwith 2O(n2) states. Vardi [Var89] showed that given a 2-way nondeterministic automaton, it ispossible to construct a 1-way nondeterministic automaton recognizing the complementary languagewith 2O(n) states. Given a 2-way nondeterministic automaton and seeking an automaton thatrecognizes the complementary language one should obviously choose his construction.In the in�nite case we get similar results. Given a nondeterministic automaton with n stateswe get an alternating automaton with O(n2) states. If we use the construction in [MH84] we get anondeterministic automaton with 2O(n2) states. As mentioned Vardi [Var88] has already solved thisproblem. He shows given a 2NBW how to construct two 1ABWs one accepting the same languageand one the complementary language, both with 2O(n2) states.
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