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BDD-Based De
ision Pro
edures forModal Logi
 KGuoqiang Pan
Abstra
tWe des
ribe BDD-based de
ision pro
edures for K. Our approa
h is inspired by theautomata-theoreti
 approa
h, but we avoid expli
it automata 
onstru
tion. Our al-gorithms 
ompute the �xpoint of a set of types, whi
h are sets of formulas satisfyingsome 
onsisten
y 
onditions. We use BDDs to represent and manipulate su
h sets. Byviewing the sets of types as symboli
 en
oding of all possible models of a formula, wedeveloped parti
le-based and lean-ve
tor-based representation te
hniques whi
h givesmore 
ompa
t representations. By taking advantage of the �nite-tree-model propertyof K, we introdu
ed a level-based evaluation s
heme to speed up 
onstru
tion and re-du
e memory 
onsumption. We also studied the e�e
t of formula simpli�
ation on thede
ision pro
edures. As part of the ben
hing pro
edure, we 
ompared the BDD-basedapproa
h with a representative sele
tion of 
urrent approa
hes, as well as developingan algorithm to translate K to QBF based on our de
ision pro
edure. Experimentalresults show that the BDD-based approa
h dominates for modally heavy formulas,while sear
h-based approa
hes dominate for propositionally-heavy formulas.
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Chapter 1Introdu
tionModal logi
, the logi
 of ne
essity and possibility, of \must be" and \may be", was dis-
ussed by several authors in an
ient times. Like most work before the modern period,it was non-symboli
 and not parti
ularly systemati
 in approa
h. The �rst symboli
and systemati
 approa
h to the subje
t appears to be the work of Lewis, beginning in1912 and 
ulminating in the book Symboli
 Logi
 with Langford [LL59℄. Propositionalmodal logi
 is obtained from propositional logi
 by adding a modal 
onne
tive 2, i.e.,if � is a formula, then 2� is also a formula. Intuitively, 2� asserts that � is ne
es-sarily true. Dually, :2:�, abbreviated as 3�, asserts that � is possibly true. Modallogi
 has many appli
ations, due to the fa
t that the notions of ne
essity and possibil-ity 
an be given many 
on
rete interpretations. For example, \ne
essarily" 
an mean\a

ording to the laws of physi
s", or \a

ording to my knowledge", or even \after theprogram terminates". In the last 20 years modal logi
 has been applied to numerousareas of 
omputer s
ien
e, in
luding arti�
ial intelligen
e [BLMS94, MH69℄, programveri�
ation [CES86, Pra76, Pnu77℄, hardware veri�
ation [Bo
82, RS83℄, databasetheory [CCF82, Lip77℄, and distributed 
omputing [BAN88, HM90℄.In this thesis, we restri
t our attention to the smallest normal modal logi
 K, anddes
ribe a new approa
h to de
ide the satis�ability of formulas in this logi
. Sin
emodal logi
 extends propositional logi
, the study in modal satis�ability is deeply 
on-ne
ted with that of propositional satis�ability. In the past, a variety of approa
hes topropositional satis�ability have been su

essfully 
ombined with various approa
hesto handle modal 
onne
tives. For example, tableau based de
ision pro
edures for Kare presented in [Lad77, HM92, PSH99℄. Su
h methods are built on top of the propo-



2sitional tableau 
onstru
tion pro
edure by forming a fully expanded propositionaltableau and generating su

essor nodes \on demand". A similar method uses theDavis-Logemann-Loveland method as the propositional engine by treating all modalsub-formulas as propositions and, when a satisfying assignment is found, 
he
kingmodal sub-formulas for the legality of this assignment [GS00, Ta
99℄.Re
ently, we see e�orts to unifying the optimizations used in tableau and DPLLbased approa
hes. Introdu
tion of semanti
al methods like semanti
 bran
hing andBoolean 
onstraint propagation into tableau allowed DLP to be
ome one of the fastestsolvers for K.Another approa
h to modal satis�ability, the inverse 
al
ulus for K [Vor01℄, 
anbe seen as a modalized version of propositional resolution. Non-propositional meth-ods take a di�erent approa
h to the problem. It has been shown re
ently that,by embedding K into �rst order logi
, a �rst-order theorem prover 
an be used forde
iding modal satis�ability [AGHd00℄. The latter approa
h works ni
ely with aresolution-based �rst-order theorem prover, whi
h 
an be used as a de
ision pro
e-dure for modal satis�ability by using appropriate resolution strategies [HS00℄. Otherapproa
hes for modal satis�ability su
h as mosai
s, type elimination, or automata-theoreti
 approa
hes are well-suited for proving exa
t upper 
omplexity bounds, butare rarely used in a
tual implementations [BdV01, HM92, Var97℄.The basi
 algorithms presented here are inspired by the automata-theoreti
 ap-proa
h for logi
s with the tree-model property [Var97℄. In that approa
h one pro
eedsin two steps. First, an input formula is translated to a tree automaton that a

eptsall tree models of the formula. Se
ond, the automata is tested for non-emptiness, i.e.,does it a

ept some tree. In our approa
h here we, in essen
e, 
ombine the two stepsand we apply the non-emptiness test without expli
itly 
onstru
ting the automaton.As pointed out in [BT01℄, the inverse method des
ribed in [Vor01℄ 
an also be viewedas an appli
ation of the automata-theoreti
 approa
h that avoids an expli
it automata
onstru
tion.



3The logi
 K is simple enough that the automaton non-emptiness test 
onsists ofa single �xpoint 
omputation, whi
h starts with a set of states and then repeatedlyapplies a monotone operator until a �xpoint is rea
hed. 1 In the automata that
orrespond to formulas ea
h state is a type, i.e., a set of formulas satisfying some
onsisten
y 
onditions. The algorithms presented here all start from some set oftypes, and then repeatedly apply a monotone operator until a �xpoint is rea
hed:either they start with the set of all types and remove those types with \possibilities"3' for whi
h no \witness" 
an be found, or they start with the set of types having nopossibilities 3', and add those types whose possibilities are witnessed by a type inthe set. The two approa
hes, top-down and bottom-up, 
orresponds to the two waysin whi
h non-emptiness 
an be tested for automata for K: via a greatest �xpoint
omputation for automata on in�nite trees or via a least �xpoint 
omputation forautomata on �nite trees. The bottom-up approa
h is 
losely related to the inversemethod des
ribed in [Vor01℄, while the top-down approa
h is reminis
ent of the \type-elimination" method developed for Propositional Dynami
 Logi
 in [Pra80℄.The key idea underlying our implementation is that of representing sets of typesand operating on them symboli
ally. Our implementation uses Binary De
ision Dia-grams (BDDs) [Bry86℄: BDDs are a 
ompa
t representation of propositional formulas,and are 
ommonly used as a 
ompa
t representation of states. One of their advantagesis that they 
ome with eÆ
ient operations for 
ertain manipulations. By representingsets of types with BDDs, we are able to symboli
ally 
onstru
t �xpoint type setseÆ
iently.We then study optimization issues for BDD-based K solvers. First we fo
us ondi�erent representations that 
an be used for the 
onstru
ted state set. Types exerta stri
t 
onsisten
y requirement on the assignment to related subformulas, whi
h isa major fa
tor in the size of the BDD used to represent the type sets. The normalform used for the type-based approa
h also makes no distin
tion between box and1This approa
h 
an be easily extended to K (m).



4diamond operators, in
reasing the number of ne
essary witness 
he
ks. By using arelaxed 
onsisten
y representation 
alled parti
les, we are able to redu
e the numberof witness 
he
ks and simplify the 
onsisten
y requirement. We also investigate thelean ve
tor approa
h, in whi
h the 
onstraint is further simpli�ed by removing thevariables whose values are implied by the 
onstraints. These approa
hes redu
e thememory 
onsumption of the BDDs and improve performan
e.Next, we take advantage of the properties of K, namely the �nite-tree-model prop-erty. The sets of types/parti
le ve
tors impli
itly en
odes a model for the formula. By
onsidering a layered model instead of a general model, we 
an modify the bottom-up pro
edure so ea
h step only 
he
ks witness for diamond operators o

urring at aspe
i�
 depth. This approa
h yields further performan
e improvements.Finally, we turn to a prepro
essing optimization. The idea is to apply some light-weight reasoning to simplify the input formula before starting to apply heavy-weightBDD operations. In the propositional 
ase, a well-known prepro
essing rule is thepure-literal rule [DLL62℄. Prepro
essing has also been shown to be useful for linear-time formulas [SB00, EH00℄, but has not been explored for K. Our prepro
essingis based on a modal pure-literal simpli�
ation, whi
h takes advantage of the tree-model property of K. We show that adding prepro
essing yield a fairly signi�
antperforman
e improvements, enabling us to handle the hard formulas of TANCS 2000.This thesis 
onsists of a viability study for our approa
h. As a measure of 
ompet-itiveness between di�erent optimizations on BDD-based approa
hes, we use existingben
hmarks of modal formulas, TANCS 98 [HS96℄ and TANCS 2000 [MD00℄, and weused *SAT [Ta
99℄ as a referen
e. A straightforward implementation of our approa
hdid not yield a 
ompetitive algorithm, but an optimized implementation did yield a
ompetitive algorithm indi
ating the viability of our approa
h.We also fo
us on BDD-spe
i�
 optimizations on our implementation of the algo-rithm. Besides using optimized image �nding te
hniques like 
onjun
tive 
lusteringwith early quanti�
ation [BCL91, GB94, RAB+95, CCGR00℄, we also study the issue



5of variable order, whi
h is known to be of 
riti
al importan
e to BDD-based algo-rithms. The performan
e of BDD-based depends 
ru
ially on the size of the BDDs andvariable order is a major fa
tor in determining BDD size, as a \bad" order may 
ausean exponential blow-up [Bry86℄. While �nding an optimal variable order is knownto be intra
table [THY93℄, heuristi
s often work quite well in pra
ti
e [Rud93℄. Wefo
us here on �nding a good initial variable order (for large problem instan
es wehave no 
hoi
e but to invoke dynami
 variable ordering, provided by the BDD pa
k-age), tailored to the appli
ation at hand. Our �nding is that 
hoosing a good initialvariable order does improve performan
e, but the improvement is rather modest.To assess the 
ompetitiveness of our optimized solver, 
alled KBDD, we ben
h-mark it against both native solver and translation-based solvers.Besides 
omparingwith the standard �rst-order translation approa
h, we also developed a translationfrom K to QBF (whi
h is of independent interest), and apply QuBE, whi
h is a highlyoptimized QBF solver [GNT01℄. Our results indi
ate that the BDD-based approa
hdominates for modally heavy formulas while sear
h-based approa
hes dominate forpropositionally-heavy formulas.The paper is organized as follows. After introdu
ing the modal logi
 K in 
hapter2, we present our algorithms and show them to be sound and 
omplete in 
hapter3. In 
hapter 4, we dis
uss four optimizations that we applied, and present a BDDbased implementation in 
hapter 5. An embedding of K into QBF is presented in
hapter 6. Finally, we present the performan
e 
omparasions, both between di�erentoptimizations in the BDD-based framework, and with other solvers in 
hapter 7.
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Chapter 2PreliminariesIn this se
tion, we introdu
e the syntax and semanti
s of the modal logi
 K, as wellas types and how they 
an be used to en
ode a Kripke stru
ture.The set of K formulas is 
onstru
ted from a set of propositional variables � =fq1; q2; : : :g, and is the least set 
ontaining � and being 
losed under Boolean operators^ and : and the unary modality 2. As usual, we use other Boolean operatorsas abbreviations, and 3' as an abbreviation for :2:'. The set of propositionalvariables used in a formula ' is denoted AP (').A formula in K is interpreted in a Kripke stru
ture K = hV;W;R; Li, where V isa set (
ontaining �) of propositions, W is a set of possible worlds, R � W �W is thea

essibility relation on worlds, and L : W ! V ! f0; 1g a labeling fun
tion for ea
hstate. The notion of a formula ' being satis�ed in a world w of a Kripke stru
tureK (written as K;w j= q) is indu
tively de�ned as follows:� K;w j= q for q 2 � i� L(w)(q) = 1� K;w j= ' ^  i� K;w j= ' and K;w j=  � K;w j= :' i� K;w 6j= '� K;w j= 2' i�, for all w0, if (w;w0) 2 R, then K;w0 j= 'The abbreviated operators 
an be de�ned as follows:� K;w j= ' _  i� K;w j= ' or K;w j=  � K;w j= 3' i� there exists w0 with (w;w0) 2 R and K;w0 j= '.



7A formula  is satis�able if there exist K;w with K;w j=  . In this 
ase, K is 
alleda model of  .The most important property of K is the tree-model property, whi
h allowsautomata-theoreti
 approa
hes to be applied. In fa
t, it has the stronger �nite-tree-model property, whi
h will allow both top-down and bottom-up 
onstru
tion of su
hautomata.Theorem 2.1. K has the �nite-tree-model property, where for any formula ', ifthere is some M;w su
h that M;w j= ', then there exists a �nite M 0 su
h that existsw0 2M 0 where M 0; w0 j= '.Proof. See [BdV01℄.In fa
t, a formula  in K have a �nite tree model that is only as deep as its modaldepth, de�ned as:De�nition 2.1. Given a formula  , 
all its set of subformulas sub( ). Take any' 2 sub( ), we de�ne dist( ; ') as follows:� If  = ', then dist( ; ') = 0;� If ' = '0 ^ '00, '0 _ '00, or :'0, then dist( ; '0) = dist( ; '00) = dist( ; ');� If ' = 2'0 or 3'0, then dist( ; '0) = dist( ; ') + 1.The modal depth md( ) is de�ned as max'2sub( )(dist( ; ')).We will use this property for 
ertain optimizations in our algorithm.We restri
t our attention to formulas in a 
ertain normal form to simplify 
onsid-erations on the form of a formula. A formula  of K is said to be in box normal form(BNF) if all its sub-formulas are of the form '^'0, '_'0, 2', :2', q, or :q whereq 2 AP ( ). All K formulas 
an be obviously 
onverted into BNF without blow upby pushing negation inwards and, if not stated otherwise, we assume all formulas to



8be in BNF. The 
losure of a formula 
l( ) is de�ned as the smallest set su
h that, forall sub-formula ' of  , if ' is not :'0, then f';:'g � 
l( ).Our algorithms will work on types, i.e., sets of (sub)formulas that are 
onsistentw.r.t. the Boolean operators, and where (negated) box formulas are treated as atoms.A set of formulas a � 
l( ) is 
alled a  -type (or simply a type if  is 
lear from the
ontext) if it satis�es the following 
onditions:� If ' = :'0, then ' 2 a i� '0 =2 a.� If ' = '0 ^ '00, then ' 2 a i� '0 2 a and '00 2 a.� If ' = '0 _ '00, then ' 2 a i� '0 2 a or '00 2 a.For a set of types A, we de�ne the relation � � A� A as follows:�(a; a0) i� for all 2'0 2 a, we have '0 2 a0.Given a set of types A � 2
l( ), we 
an 
onstru
t a Kripke stru
ture KA using therelation � as follows: KA = hAP ( ); A;�; Li with L(a)(q) = 1 i� q 2 a.We should 
ompare the stru
ture we built against the 
anoni
al model of K.De�nition 2.2. [BdV01℄The 
anoni
al model for K is de�ned as K = hAP;W;R; Liwhere:� W is the set of all maximal 
onsistent set of K formulas.� R is de�ned as R(x; y) i� for all ' 2 y, 3' 2 x. (Note together with 
onsis-ten
y, this says for all 2' 2 x, ' 2 y.� L is the normal interpretation, where for p 2 AP , L(W )(p) i� p 2 W .We know that we 
an �lterK against 
l( ) to produ
e a modelK for the purposeof 
he
king whether there are any state w in K where  2 w. We would show theKA we build will have the same property as K .1Thus we would like to prove that, for all ' 2 
l( ):1In fa
t, their stru
ture is very similar.



9Claim 2.1. KA; a j= ' i� ' 2 a.We 
an see this is 
learly true for propositional ' by requirement on types andtrue for ' = 2'0 by 
onstru
tion of �. The only 
ase that needs spe
ial 
onsiderationis the 
ase :2' 2 a: it might be the 
ase that ' 2 b for all b with �(a; b). In thefollowing 
hapter, we will show that our 
onstru
tion satis�es 
laim 2.1.
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Chapter 3Our AlgorithmsThe two algorithms presented here take a 
ertain \initial" set of types and applyrepeatedly a monotone operator to it. If this appli
ation rea
hes a �xpoint, we 
anshow that it yields a set of types where the above 
onstru
tion yields indeed a Kripkestru
ture that satis�es the 
laim 2.1, i.e., all negated box formulas are indeed \wit-nessed" by some b 2 A. This Kripke stru
ture is then a model of  i�  2 a for somea 2 A.The �rst algorithm follows a \top-down" approa
h, i.e., it starts with the set A �2
l( ) of all valid types, and the monotone operator removes those types 
ontainingnegated box formulas whi
h are not witnessed in the 
urrent set of types. Dually,the se
ond, \bottom-up", approa
h starts with the set of types that do not 
ontainnegated box formulas, and then adds those types whose negated box formulas arewitnessed in the 
urrent set of types.In the following, we will 
all our 
lass of algorithms KBDD sin
e we intend to useBDD as the state set representation.Both algorithms follow the following s
heme:X ( Initial( )repeatX 0 ( XX ( Iterate(X 0)until X = X 0if exists x 2 X su
h that  2 x thenreturn \ is satis�able"



11elsereturn \ is not satis�able"end ifSin
e this algorithmwill work on a �xed set of types and use a monotone Iterate(�)operator, it obviously terminates. In fa
t, we 
an show that it will terminate inmd( ) + 1 iterations. It remains to de�ne Initial( ) and Iterate(�).3.1 Top-Down Approa
hThe top-down approa
h is 
losely related to the type elimination approa
h whi
h is,in general, used for more 
omplex modal logi
s, see, e.g., Se
tion 6 of [HM92℄. For thealgorithm pursuing the top-down approa
h, the fun
tions Initial( ) and Iterate(�)are de�ned as follows:� Initial( ) is the set of all  -types.� Iterate(A) := A n bad(A), where bad(A) are the types in A that 
ontain unwit-nessed negated box formulas. More pre
isely,bad(A) := fa 2 A j there exists :2' 2 a and, for all b 2 A with �(a; b);we have ' 2 bg:Theorem 3.1. The top-down algorithm de
ides satis�ability of K formulas.Proof. Let A be the set of types that is the �xpoint of the top-down algorithm, i.e.,Iterate(A) = A. We use A0 for Initial( ) and Ai for the set of types after i iterations.Lemma 3.1. (Soundness) For ea
h type a 2 A and formula ' 2 
l( ), we haveKA; a j= ' i� ' 2 a.Proof. By indu
tion on the stru
ture of formulas.� If ' 2 AP ( ), then KA; a j= ' i� ' 2 a by 
onstru
tion of L.



12� If ' = :q, '0 ^ '00, or '0 _ '00, the 
laim follows immediately by indu
tion andthe de�nition of types.� If ' = 2'0 2 a, the de�nition of � implies that '0 2 a0 for all a0 with �(a; a0),and by indu
tion, KA; a0 j= '0. Hen
e KA; a j= 2'0 .� If ' = :2'0 2 a, then a =2 bad(A) be
ause Iterate(A) = A, and thus thereexists b 2 A with �(a; b) and '0 =2 b. By indu
tion, KA; b j= :'0, and thusKA; a j= :2'0.Lemma 3.2. (Completeness) For all ' in 
l( ), if ' is satis�able, then there existssome a 2 A with ' 2 a.Proof. Given a satis�able formula ', take a model K = hAP ( );W;R; Li withK;w' j= '. For every world w 2 W , we de�ne a type a(w) = f% 2 
l( ) : K;w j= %g.Next, we de�ne A(W ) = fa(w) j w 2 Wg. Obviously, due to the semanti
s of the boxmodality, R(v; w) implies �(a(v); a(w)). Then it 
an be shown by indu
tion on thenumber of iterations that A(W ) � A. Sin
e ' 2 a(w') by 
onstru
tion, this provesthe lemma.� A(W ) � A0 sin
e A0 
ontains all types a � 
l( ).� Let A(W ) � Ai and assume that A(W ) 6� Ai+1. Then there is some w 2 Ksu
h that a(w) 2 bad(Ai). So there is some :2% 2 a(w) and, for all b 2 Aiwith �(a(w); b), we have % 2 b. Hen
e there is no v 2 W with R(w; v) andK; v j= :%, in 
ontradi
tion to K;w j= :2%.3.2 Bottom-Up Approa
hAs mentioned above, the algorithm pursuing the top-down approa
hstarts with allvalid types, and repeatly removes unwitnessed types. In 
ontrast, the algorithmpersuing the bottom-up approa
h starts with a small set of types (i.e., those without



13negated box formulas), and repeatedly adds those types whose negated box formulasare witnessed in the 
urrent set. More pre
isely, for the bottom-up approa
h, thefun
tions Initial( ) and Iterate(�) are de�ned as follows:� Initial( ) is the set of all those types that do not require any witnesses, whi
hmeans that they do not 
ontain any negated box formula or, equivalently, thatthey 
ontain all positive box formulas in 
l( ). More pre
isely,Initial( ) := fa � 
l( ) j a is a type and 2' 2 a for ea
h 2' 2 
l( )g:� Iterate(A) := A [ supp(A), where supp(A) is the set of those types whosenegated box formulas are witnessed by types in A. More pre
isely,supp(A) := fa � 
l( ) j a is a type and for all :2' 2 a, there exists b 2 Awith :' 2 b and �(a; b)g:We say that a type in supp(A) is witnessed by a type in A.Theorem 3.2. The bottom-up algorithm de
ides satis�ability of K formulas.Proof. As in the proof of Theorem 3.1, we use A for the �xpoint of the bottom-upalgorithm, A0 for Initial( ), and Ai for the set of types after i iterations.Lemma 3.3. (Soundness) For ea
h type a 2 A and formula ' 2 
l( ), we haveKA; a j= ' i� ' 2 a.Proof. Again by indu
tion on the stru
ture of formulas.� If ' = q, then KA; a j= ' i� ' 2 a by 
onstru
tion of L.� If ' = :q, '0 ^ '00, or '0 _ '00, the 
laim follows immediately by indu
tion andthe de�nition of types.� If ' = 2'0 2 a, then by de�nition of � and indu
tion, KA; a j= '.



14� If ' = :2'0 2 a, then there exists by 
onstru
tion of A some b 2 A with:'0 2 b and �(a; b). Thus, by indu
tion, KA; a j= '.Lemma 3.4. (Completeness) For all ' 2 
l( ), if ' is satis�able, then there existssome a 2 A with ' 2 a.Proof. It is well-known that K has the �nite-tree-model property (see, e.g. [HM92℄),i.e., ea
h satis�able K formula  has a model whose relational stru
ture forms a �nitetree. Take su
h a model K = hAP ( );W;R; Li with K;w' j= ', and de�ne themappings a(�) and A(�) from worlds in K to types as in the proof of Lemma 3.2. Weshow by indu
tion on i that, if i is the maximal distan
e between a node w 2 W andthe leaves of K's subtree rooted at w, then a(w) 2 Ai. Sin
e Aj � Aj+1 for all j andK forms a �nite tree model of ', this proves the lemma.� If i = 0, then w is a leaf in K (i.e., there is no w0 2 W with R(w;w0)), and thusK;w 6j= :2'0 holds for all :2'0 2 
l( ). Hen
e a(w) 2 A0.� Let i > 0 and w a node with i the maximal distan
e between w and theleaves of K's subtree rooted at w. Then, by indu
tion, for ea
h 
hild w0 of w,we have a(w0) 2 Ai�1. Now R(w;w0) implies �(a(v); a(w)). Thus, for ea
h:2'0 2 a(w), there is some w0 2 W with a(w0) 2 Ai�1 and :'0 2 a(w0). Thusa(w) 2 supp(Ai�1) � Ai.
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Chapter 4OptimizationsThe de
ision pro
edures des
ribed above handles a formula in three steps. First, theformula is 
onverted into box normal form. Then, a set of bit ve
tors representingtypes is generated. Finally, this set is updated through a �xpoint pro
ess. The answerof the de
ision pro
edure depends on a simple synta
ti
 
he
k of this �xpoint. In thisse
tion, we will des
ribe four orthogonal optimization te
hniques, working on di�erentstages in the pro
edure.4.1 Parti
lesIn the approa
hes presented so far, we memorize and take 
are of redundant informa-tion: for example, a bit ve
tor represents both a 
onjun
tion and the 
orresponding
onjun
ts, whereas the truth value of the former is determined by the truth value ofthe latter. Now we propose a representation where we only keep tra
k of the \non-redundant" sub-formulas, whi
h possibly redu
es the size of the 
orresponding BDDs.To do so, it is 
onvenient to work on formulas in a di�erent normal form.A K formula  is said to be in negation normal form (NNF) if all its sub-formulasare of the form ' ^ '0, ' _ '0, 2', 3', q, or :q where q 2 AP ( ). When needed,we assume the formula  is already in NNF. We use sub( ) to represent the set ofsub-formulas of NNF ( ). All K formulas 
an be 
onverted into negation normalform without blow up by pushing negation inwards.A set p � sub( ) is a full  -parti
le if it satis�es the following 
onditions:� If ' = :'0, then ' 2 p implies '0 =2 p.



16� If ' = '0 ^ '00, then ' 2 p implies '0 2 p and '00 2 p.� If ' = '0 _ '00, then ' 2 p implies '0 2 p or '00 2 p.Thus, in 
ontrast to a type, a full parti
le may 
ontain both '0 and '00, but neither'0 ^ '00 nor '0 _ '00.For parti
les, �(�; �) is de�ned as for types. From a set of parti
les P and the
orresponding �(�; �), we 
an 
onstru
t a Kripke stru
ture KP in the same way asfrom a set of types.For the top-down approa
h, the auxiliary fun
tions Initial(�) and Iterate(�) forfull parti
les are de�ned as follows:� Initial( ) is the set of all full  -parti
les.� Iterate(P ) = P n bad(P ), where bad(P ) is the parti
les in P that 
ontainunwitnessed diamond formulas, i.e.bad(P ) = fp 2 P j there exists 3' 2 p su
h that, for all q 2 Pwith �(p; q); we have ' =2 qg:Theorem 4.1. The top-down algorithm for parti
les de
ides satis�ability of K for-mulas.Proof.Lemma 4.1. (Soundness) For ea
h type p 2 P and formula ' 2 sub( ), if ' 2 p,then KP ; p j= '.Proof. The same proof as lemma 3.1 applies, ex
ept for the :2'0 part, (whi
h doesnot exist for parti
les), and for the 3 operator:� If ' = 3'0 2 p, then p =2 bad(P ) be
ause Iterate(P ) = P , and thus exists q 2 Pwith �(p; q) and '0 2 q. By indu
tion, KP ; q j= '0, and thus KP ; p j= 3'0.



17Lemma 4.2. (Completeness) For all ' 2 sub( ), if ' is satis�able, then thereexists some p 2 P where ' 2 p.Proof. See lemma 3.2. A analogous proof 
an be 
onstru
ted by taking a model Kfor ' and generate a parti
le set P (W ) from the states of K. To show P (W ) � P ,we 
an follow the same proof by 
ontradi
tion s
heme:� P (W ) � P 0 sin
e P 0 
ontains all parti
les p � sub( ).� Let P (W ) � P i and assume that P (W ) 6� P i+1. Then there is some w 2 Ksu
h that p(w) 2 bad(P i). So there is some 3' 2 p(w) and for all q 2 Aiwith �(p(w); q), we have ' =2 q. Hen
e there is no v 2 W with R(w; v) andK; v j= :', in 
ontradi
tion to K;w j= 3'.Analogously, these fun
tions are de�ned for the bottom-up approa
h as follows:� Initial( ) is the set of full  -parti
le p that do not 
ontain diamond formulas,i.e., 3' =2 p for all 3' 2 sub( ).� Iterate(P ) = P [ supp(P ), where supp(P ) is the set of witnessed parti
les, i.e.supp(P ) = fp � sub( ) j p is a  -parti
le and, for all 3' 2 p;there exists q 2 P with ' 2 q and �(p; q)g:Theorem 4.2. The bottom-up algorithm for parti
les de
ides satis�ability of K for-mulas.Proof.Lemma 4.3. (Soundness) For ea
h parti
le p 2 P and formula ' 2 sub( ), if' 2 p, then KP ; p j= '.Proof. Analogous to 3.3 and lemma 4.1.Lemma 4.4. (Completeness) For all ' 2 sub( ), if ' is satis�able, then thereexists some p 2 P with ' 2 p.



18Proof. Analogous to 3.4 and lemma 4.2.While en
oding parti
le sets by BDDs may require more BDD variables, we stillmight see a redu
tion in BDD size, be
ause parti
les requires fewer 
onstraints thantypes.1 Beside a possible redu
tion in the size required to en
ode a bit-ve
tor represen-tation of parti
le sets, the parti
le-based approa
hes also 
an improve running time.From the de�nition of bad and supp, we 
an see that, in the type-based approa
hes,for ea
h �xpoint iteration, the number of 
onstraints that needs to be applied to thestate set in ea
h iteration is equal to the number of 2 operators, whi
h is equal tothe total number of all modal operators in the original formula. On the other hand,in parti
le-based approa
hes, the number of 
onstraints only have to be equal to thenumber of 3 operators in the NNF form of the formula, whi
h is smaller.4.2 Lean Approa
hesThis optimization is also motivated by the idea to 
ompress the size of the bit ve
torrepresenting a type by omitting redundant information. To this purpose, we �rstde�ne a set of \non-redundant" sub-formulas atom( ) as the set of those formulas in
l( ) that are neither 
onjun
tions nor disjun
tions, i.e., ea
h ' 2 atom( ) is of theform 2'0, q, :2'0, or :q. By the de�nition of types, ea
h type a � 
l( ), 
orrespondsone-to-one to a lean type lean(a) := a \ atom( ). So storing types in lean form isequivalent to storing them in full form. Thus the following theorem is trivial.Theorem 4.3. The top-down/bottom-up algorithms for lean atoms de
ide satis�abil-ity for K.Proof. Take any atom set A during the algorithm and its lean version A0. De�nefull(A0) = fa j a\ atom( ) 2 A0 and a is an atomg, we 
an see full(A0) = A. So giventhe full atom algorithms are sound and 
omplete, so are the lean atom algorithms.1Of 
ourse, BDD size is always formula dependent. In our experiments, we observed that parti
leapproa
hes gives BDD sizes between a small 
onstant fa
tor (i.e., 2-3) larger to orders of magnitudessmaller 
ompared to type approa
hes.



19Analogously, we 
an de�ne a lean representation for parti
les. First, we de�nethe relevant sub-formulas part( ) as follows: For ' 2 sub( ), if ' is 3'0, 2'0, q, or:q, then ' is in part( ). For a full parti
le p � sub( ), we de�ne the 
orrespondinglean parti
le lean(p) as follows: lean(p) = p \ part( ). Be
ause the (�rst) 
onditionon parti
les is more relaxed than that of atoms, a lean parti
le does not 
orrespondto a single full parti
le, but 
an represent several full parti
les.Theorem 4.4. The top-down/bottom-up algorithms for lean parti
les de
ide satis�-ability for K.Proof. Given a parti
le set P used in the full version of the algorithm and the its lean
orrespondent P 0, there does not exist a bije
tion from P to P 0.2 But the parti
leset P we 
onstru
t in our algorithms have additional properties. In parti
ular, for ifp 2 P , for all 
onsistent q � 
l( ) su
h that p0 = q0, q 2 P . So P 0 fully 
hara
terizesP . This is by de�nition of Initial( ) and Iterate(P ) sin
e these fun
tions onlyapply 
onstraints on subformulas that are member of part( ). So at any step in thealgorithm, take P 0 and build full(P 0) = fp � sub( ) j lean(p) 2 P 0 ^ p is 
onsistentg,full(P 0) = P . So given the full parti
le algorithms are sound and 
omplete, so are thelean parti
le algorithms.Although lean approa
hes 
an possibly redu
e the size required for representingworlds, we have to pay for these savings sin
e 
omputing bad and supp using leantypes and parti
les 
an be more 
ompli
ated.4.3 Level-based evaluationAs already mentioned, K has the �nite-tree-model property, i.e., ea
h satis�able for-mula  of K has a �nite tree model of depth bounded by the depth md( ) of nestedmodal operators in  . Here, we take advantage of this property and, instead of rep-resenting a 
omplete model using a set of parti
les or types, we represent ea
h layer2In fa
t, j P j6=j P 0 j



20(i.e., all worlds being at the same distan
e from the root node) in the model usinga separate set (For a level-based approa
h in the 
ontext of the �rst-order approa
hto K, see [AGHd00℄). Sin
e only a subset of all sub-formulas appears in one layer,the representation 
an be more 
ompa
t. We only present the optimization for theapproa
h using (full) types. The parti
le approa
h and the lean approa
hes 
an be
onstru
ted analogously. For 0 � i � md( ), we write
li( ) := f' 2 
l( ) j ' o

urs at modal depth i in  g;and we adapt the de�nition of the possible a

essibility relation � a

ordingly:�i(a; a0) i� a � 
li, a0 � 
li+1, and '0 2 a0 for all 2'0 2 a.A sequen
e of sets of types A = hA0; A1; : : : ; Adi with Ai � 2
li( ) 
an be 
onvertedinto a tree Kripke stru
tureKA = hAP ( ); _℄0�i�dAi; R; Li(where the worlds are the disjoint union of the Ai) as follows:� For a world a 2 Ai and q 2 AP ( ), we de�ne L(a)(q) = 1 if q 2 a, andL(a)(q) = 0 if q =2 a.� For a pair of states a; a0, R(w;w0) = 1 i�, for some i, a 2 Ai and a0 2 Ai+1 and�i(a; a0).The algorithm for level-based evaluation works as follows:d( md( )Xd ( Initiald( )for i = d� 1 downto 0 doXi ( Iterate(Xi+1; i)end forif exists x 2 X0 where  2 x then



21 is satis�able.else is not satis�able.end ifPlease note that this algorithm works bottom-up in the sense that it starts withthe leaves of a tree model at the deepest level and then moves up the tree model towardthe root, adding nodes that are \witnessed". In 
ontrast, the bottom-up approa
hpresented earlier 
an be said to start with all leaves of a tree model.For the level based algorithm and types as data stru
ture, the auxiliary fun
tions
an be de�ned as follows:� Initiali( ) = fa � 
li( ) j a is a typeg.� Iterate(A; i) = fa 2 Initiali( ) j for all :2' 2 a there exists b 2A where :' 2 b and �i(a; b)g.For a set A of types of formulas at level i+1, Iterate(A; i) represents all types offormulas at level i that are properly witnessed in A.De�nition 4.1. Sin
e in the level-based evaluation algorithm, we use ea
h assign-ment set to represent only assignments to 
li( ), the assignments are not valid types,but they are 
onsistent enough for what formulas o

uring at level i. We 
all an as-signment a 
onsistent for level i if it meets the requirement on types for formulas in
li( ). The same de�nition 
an be made for assignment sets, and if the set Ai islabeled with a level, we take a short
ut and use it as if it is a set of types if it is
onsistent for level i.Theorem 4.5. The level based algorithm for atom assignments is sound and 
omplete.Proof. We write the sequen
e of assignment sets 
onstru
ted by the level basedalgorithm as A = hA0; A1; : : : ; Adi where d = md( ).



22Lemma 4.5. (Soundness) For all ' 2 
li( ), and a 2 Ai, we have KA; wa;i j= 'i� ' 2 a.Proof. Indu
tion on the stru
ture of the formula.� ' = q: Then KA; wa;i j= ' by 
onstru
tion of L.� Otherwise, assume indu
tively the 
laim holds for all subformulas of '.{ ' = '0 ^ '00, '0 _ '00, :'0: We here prove for the ^ 
ase. By de�nitionof 
li, '0 2 
li( ), '00 2 
li( ). By 
onsisten
y of Ai, for all a 2 Ai, if' 2 a, we have '0 2 a, '00 2 a. By indu
tive hypothesis, KA; wa;i j= '0,KA; wa;i j= '00. So KA; wa;i j= ' by semanti
s of K. The same argument
an be made of _ and :.{ ' = 2'0: If ' 2 a, then by 
onstru
tion of R, we have: (1) For alla0 2 Ai+1 that R(wa;i; wa0;i+1), we have '0 2 a0. (2) There are no j 6= i+ 1where R(wa;i; wb;j) for any assignment b. By de�nition of 
li, '0 2 
li+1( ).So by the indu
tive hypothesis, KA; wa0;i+1 j= '0 for all su
h a0. So bysemanti
s of K, KA; wa;i j= '. If ' =2 a, By de�nition of Iterate, everyassignment a 2 Ai is 
onsistent for 
li( ). So :' 2 a. By de�nition ofIterate, exists a0 2 Ai+1 su
h that :'0 2 a0 and for all 2% 2 a, we knowthat 2% 2 
li( ) so % 2 a0. So by de�nition of R, R(wa;i; wa0;i+1) holds. Byindu
tion hypothesis, KA; wa0;i+1 j= :'0. So KA; wa;i j= :'.Corollary 4.1. If exists a 2 A0 su
h that  2 a, then KA; wa;0 j=  .Lemma 4.6. (Completeness) For ' 2 
li( ), if ' is satis�able, then there is anatom assignment a 2 Ai where ' 2 a.Proof. We know from [HM92℄ that if ' is satis�able, it have a �nite tree modelof depth d' = md('). We also know from de�nition of md and 
li that i + d' �d = md( ). Given that ' is satis�able, take a tree model K' with depth d where



23K'; w' j= ' and d � d � i. Sin
e i + d' � d , su
h a model exists. Sin
e K' isa tree model, ea
h state w 2 W only o

urs at a unique distan
e from the root w'.We partition the state set W of K' into fW0;W1; : : : ;Wdg, in whi
h a state w 2 Wjo

urs at distan
e j from the root. For ea
h w 2 Wj we de�ne an atom assignmenta(w) = f% 2 
l i+ j ) j K'; w j= %g. We de�ne A(Wj) = fa(w) j w 2 Wjg as a set ofassignments to formulas in 
li+j( ). We now show that A(Wj) � Ai+j.We prove by indu
tion on depth j:� j = d: We know every state w 2 Wd is a terminal state in K'. It follows thatfor all % = :2%0, we have K'; w 6j= %. So % =2 a(w). And by semanti
s of K,a(w) is 
onsistent. Sin
e Ai+j 
ontains all witnessed assignments to 
li+j( ) byde�nition, we have a(w) 2 Ai+j.� j < d: Assume indu
tively that the 
laim holds for j 0 = j + 1. For a statew 2 Wj, a(w) is 
onsistent by the semanti
s of K. For all % = :2%0 2 
li+j( ),we have :%0 2 
li+j0( ). If % 2 a(w), we have K'; w j= :2%0. So exists w0 2 Wj0where R(w;w0) and K'; w0 j= :%0. So :%0 2 a(w0). By indu
tive hypothesis,a(w0) 2 Ai+j0. By the semanti
s of K, for all 2%00 2 
li+j( ), where 2%00 2 a(w),we have %00 2 a(w0). So a(w) 2 Ai+j by de�nition of Iterate.Sin
e w' 2 W0, we have a(w') 2 Ai, and be
ause ' 2 
li( ), we have ' 2 a(w') by
onstru
tion of a.Corollary 4.2. If  is satis�able, then exists a 2 A0 su
h that  2 a.The same algorithms 
an be de�ned for parti
le based approa
hes, by de�ning ananalogous subi( ), and using� Initiali( ) = fp � subi( ) j p is a parti
leg.� Iterate(P; i) = fp 2 Initiali( ) j for all 3' 2 p there exists q 2 P where ' 2q and �i(p; q)g.



24Theorem 4.6. The level based algorithm for parti
le assignments is sound and 
om-plete.Proof. We write the sequen
e of assignment sets 
onstru
ted by the level basedalgorithm as P = hP0; P1; : : : ; Pdi where d = md( ).Lemma 4.7. (Soundness) For all ' 2 subi( ), and p 2 Pi, if ' 2 p, thenKP ; wp;i j= '.Proof. Indu
tion on the stru
ture of the formula.� ' = q;:q: Then KP ; wp;i j= ' by 
onstru
tion of L.� Otherwise, assume indu
tively the 
laim holds for all subformulas of '.{ ' = '0 ^ '00, '0 _ '00: We here prove for the ^ 
ase. By de�nition ofsubi, '0 2 subi( ), '00 2 subi( ). By 
onsisten
y of Pi, for all p 2 Pi, if' 2 p, we have '0 2 p, '00 2 p. By indu
tive hypothesis, KP ; wp;i j= '0,KP ; wp;i j= '00. So KP ; wp;i j= ' by semanti
s of K. The same argument
an be made for _.{ ' = 2'0: By 
onstru
tion ofR, for every wp0;j where R(wp;i; wp0;j), we knowthat j = i+ 1 and '0 2 p0. So by semanti
s of 2, we get KP ; wp;i j= '.{ ' = 3'0: Assume KP ; wp;i 6j= '. Then KP ; wp;i j= 2:'0. So for all wp0;i+1where R(wp;i; wp0;i+1), KP ; wp0;i+1 j= :'0 by semanti
s of K. By indu
tivehypothesis, '0 =2 p0. So p =2 Iterate(Pi+1; i) by de�nition of Iterate whi
his a 
ontradi
tion. So KP ; wp;i j= '.Lemma 4.8. (Completeness) For ' 2 subi( ), if ' is satis�able, then there is aparti
le assignment p 2 Pi where ' 2 p.Proof. Given that ' is satis�able, take a tree model K' rooted at w' with depth dwhere K'; w' j= ' and d � d � i. Sin
e i+ d' � d , su
h a model exists. Sin
e K'is a tree model, ea
h state w 2 W only o

urs at a unique distan
e from the root w'.



25We partition the state set W of K' into fW0;W1; : : : ;Wdg, in whi
h a state w 2 Wjo

urs at distan
e j from the root. For ea
h w 2 Wj we de�ne a parti
le assignmentp(w) = f% 2 subi+j  ) j K'; w j= %g. We de�ne P (Wj) = fp(w) j w 2 Wjg as a set ofassignments to formulas in subi+j( ). We now show that P (Wj) � Pi+j.We prove by indu
tion on depth j:� j = d: We know every state w 2 Wd is a terminal state in K'. It follows thatfor all % = 3%0, we have K'; w 6j= %. So % =2 p(w). And by semanti
s of K,p(w) is 
onsistent. Sin
e Pi+j 
ontains all witnessed assignments to subi+j( )by de�nition, we have p(w) 2 Pi+j.� j < d: Assume indu
tively that the 
laim holds for j 0 = j + 1. For a statew 2 Wj, p(w) is 
onsistent by the semanti
s of K. For all % = 3%0 2 subi+j( ),we have %0 2 subi+j0( ). If % 2 p(w), we have K'; w j= 3%0. So exists w0 2 Wj0where R(w;w0) and K'; w0 j= %0. So %0 2 p(w0). By indu
tive hypothesis,p(w0) 2 Pi+j0. By the semanti
s ofK, for all2%00 2 subi+j( ), where 2%00 2 p(w),we have %00 2 p(w0). So p(w) 2 Pi+j by de�nition of Iterate.Sin
e w' 2 W0, we have p(w') 2 Pi, and be
ause ' 2 subi( ), we have ' 2 p(w') by
onstru
tion of p.4.4 Formula simpli�
ationWe now turn to a high-level optimization, in whi
h we apply some prepro
essing tothe formula before submitting it to KBDD. The idea is to apply some light-weightreasoning to simplify the input formula before starting to apply heavy-weight BDDoperations. In the propositional 
ase, a well-known prepro
essing rule is the pure-literal rule [DLL62℄, whi
h 
an be applied both in a prepro
essing step as well asdynami
ally, following the unit-propagation step. Prepro
essing has also been shownto be useful for linear-time formulas [SB00, EH00℄, but has not been systemati
ally



26explored for K. Our prepro
essing is based on a modal pure-literal simpli�
ation,whi
h takes advantage of the layered-model property of K.When studying prepro
essing for satis�ability solvers, two types of transformationshould be 
onsidered:1. Equivalen
e preserving: This requires that the simpli�ed formulas '0 is logi-
ally equivalent to the input formula '. Unit propagation is an example of anequivalen
e-preserving transformation. Su
h a transformation is used in model
he
king [SB00, EH00℄, where the semanti
s of the formula needs to be pre-served. An equivalen
e-preserving rule 
an be applied to subformulas.2. Satis�ability preserving: This requires only that '0 is satis�able i� ' is sat-is�able. Pure-literal simpli�
ation is an example of a satis�ability-preservingtransformation. Su
h transformations allow for more aggressive simpli�
ation,but 
annot be applied to subformulas. Note that su
h a transformation 
an beused for satis�ability solving but not for model 
he
king.Our prepro
essing was designed to redu
e the number of BDD operations 
alledby KBDD, though its 
orre
tness is algorithm independent. (We found that su
hprepro
essing was bene�
ial for DLP, a tableau-based modal solver, as well as QuBE,a DPLL-based solver but not for MSPASS, a resolution-based solver.) The fo
us ofthe simpli�
ation is on the following aspe
ts:1. The primary goal is to minimize the size of the formula. A smaller formulaleads to a redu
tion in BDD size as well as a redu
tion in the number of BDDoperations and dynami
 variable re-orderings.2. We also aim at minimizing the number of modal operators in the formula. Thisleads to a smaller transition relation, where we have a 
onstraint for ea
h 2 sub-formula, as well as a smaller number of BDD operations involved in witnessing3 subformulas.



27Propositional rulesEquivalen
e f ^ true ! f f ^ false ! falsef _ true ! true f _ false ! ff ^ f ! f f _ f ! ff ^ :f ! false f _ :f ! trueModal rulesEquivalen
e 3 false ! false 2 true ! true3f _3g ! 3(f _ g) 2f ^ 2g ! 2(f ^ g)Satis�ability 3f ^ 2g ^ h! 3(f ^ g) ^ h 3f ! fpreserving where h is a propositional formula.Table 4.1 : Simpli�
ation rewriting rules for K4.4.0.1 Rewrite rulesOur prepro
essing in
ludes rewriting a

ording to a 
olle
tion of rewrite rules (seeTable 4.1). Although the rules 
an be applied in both dire
tions, we apply only thedire
tion that redu
es the size of the formula. It is easy to see that the rules areequivalen
e or satis�ability preserving. These rules by themselves are only modestlye�e
tive for K formulas; they do be
ome quite e�e
tive, however, when implementedin 
ombination with pure-literal simpli�
ation, des
ribed below. These rules allows usto propagate the e�e
ts of pure-literal simpli�
ation by removing redundant portionsof the formula after pure-literal simpli�
ation. This usually allows more pure literalsto be found and 
an greatly redu
e the size of the formula.4.4.0.2 Pure-literal simpli�
ationTo apply pure-literal simpli�
ation to K satis�ability solving, we �rst need to extendit to the modal setting.



28De�nition 4.2. Given a set S of (propositional or modal) formulas in NNF, wede�ne lit(S) = fl j l 2 S and l is q or :q; where q 2 �g as the set of literals of S.The set pure(S) of de�ned as the set of literals that have a pure-polarity o

urren
ein S, i.e., l 2 pure(S) i� l 2 lit(S) and :l =2 lit(S).It is well known that pure-literal simpli�
ation preserves propositional satis�abil-ity; that is, given a propositional formula ', for any literal l 2 pure('), ' is satis�ablei� '[l= true℄ is satis�able. There are a number of ways to extend the de�nition of pureliterals to modal logi
s. A naive de�nition 
an be as follows:De�nition 4.3. For a formula  in NNF, we de�ne pure( ) = pure(sub( )) as theset of globally pure literals of  , and de�ne the 
orresponding formula after pureliteral simpli�
ation as  0G =  [pure( )= true℄.Given that K has the layered-model property, assignments to literals at di�erentmodal depth are in di�erent worlds and should not interfere with ea
h other. Astronger de�nition of pure literals 
an be as follows:De�nition 4.4. For  in NNF, we de�ne level-pure literals by purei( ) =pure(subi( )), for 0 � i � md( ). The substitution used for level-pure literalsneeds to take into 
onsideration that l 2 purei( ) is only pure at modal depth i,so we let  [purei( )= true℄i be the substitution with true of all level-pure literalsl that o

ur at distan
e i from  . The result of the pure-literal simpli�
ation is 0L =  [pure0( )= true℄0 : : : [puremd( )( )= true℄md( ).Remark 4.1. It is possible to push this idea of \separation" further. Be
ause ea
hworld in the model only needs to satisfy a subset of sub( ), the possible subsets 
an be
onstru
ted to determine whi
h of the literals 
an be pre-assigned true. For example,it is possible to 
onstru
t sets of subformulas that 
an o

ur together in a tableau andde�ne pure literals based on su
h sets. We did not �nd that the performan
e bene�tjusti�ed the implementation overhead for this extension.



29We now prove the sound and 
ompleteness of pure-literal simpli�
ation. That is,we show that pure-literal simpli�
ation preserves satis�ability for both globally pureliterals and level-pure literals.Theorem 4.7. Both global and level pure-literal simpli�
ations are satis�ability pre-serving. That is, for a formula  , we have that  is satis�able i�  0G(or  0L) issatis�able.Proof. We write  0 instead of  0G or  0L, when the formula used is 
lear from the
ontext. Without loss of generality, we assume that only one literal l is substituted.Sin
e other pure literals for  are still pure with respe
t to  0 under both de�nitions,the general 
ase 
an be shown by indu
tion on the number of literals.The 
ompleteness part of the 
laim is easy. It is known that the 2 and 3 operatorsare monotone [BdV01℄. More formally, if  is a formula in NNF, � is a subformulao

urren
e of  and � is another formula that is logi
ally implied by �, then  [�=�℄is logi
ally implied by  . It follows that  0 is logi
ally implied by  . In parti
ular, if is satis�able, then  0 is satis�able.In the following, we take K = h�;W;R; Li and K 0 = h�;W;R; L0i to be �nitetree Kripke stru
tures of depth md( ) with the same underlying frame, and w0 2 Wto be the root of the tree, where we want  and  0 to hold.The soundness proof for pure-literal simpli�
ation depends whether we use glob-ally pure or level-pure literals.� Globally pure literals: Assume K 0; w0 j=  0. Note that l does not o

ur in  0G,so we 
an assume that L does not de�ne a truth value for l. We 
onstru
t Kfrom K 0 by taking L to be an extension of L0 su
h that L(w)(l) = true for everyw 2 W . We 
laim that for every state w 2 W and every formula ' 2 sub( ),we have that K 0; w j= '[l= true℄ implies K;w j= '. We prove the 
laim byindu
tion on the stru
ture of the formula. If ' is a propositional literal, theproperty holds be
ause either ' = l, in whi
h 
ase K;w j= l by 
onstru
tion, or



30' is a literal l0 su
h that AP (l0) 6= AP (l), in whi
h 
ase L(w) and L0(w) agreeon l0, so K 0; w j= l0 implies K;w j= l0. For the indu
tion, we show only the
ase when ' = 2'0. Given K 0; w j= '[l= true℄, we have that K 0; w0 j= '0[l= true℄holds for all w0 su
h that R(w;w0). By the indu
tive hypothesis, K;w0 j= '0 forall su
h w0 as well. So K;w j= ' holds. Thus K 0; w0 j=  0 implies K;w0 j=  .� Level-pure literals: Assume K 0; w0 j=  0. Let dist( ; l) = d. For 0 � i � md( ),de�ne Wi = fw j distan
e between w and w0 = ig. We 
onstru
t K from K 0by de�ning L as follows: (1) L(w) = L0(w) for w 62 Wd, (2) L(w)(l) = truefor w 2 Wd, and (3) L(w) agree with L0(w) for p 2 � � AP (l) and w 2 Wd.Intuitively, we modify L0 by making l true in all worlds w 2 Wd.We 
laim that for a formula ' 2 subi( ), and a world w 2 Wi we have thatK 0; w j= '[l= true℄d�i implies K;w j= '. It follows that K;w0 j=  [l= true℄d.For d < i � md( ), note that '[l= true℄d�i = ' and L agrees with L0 on allworlds in [md( )j=i Wj. Sin
e truth of formulas in worlds of Wi depends only onworlds in [md( )j=i Wj, the 
laim holds trivially. For i � d, we use indu
tion onthe stru
ture of '. If ' is a propositional literal, the property holds be
auseeither ' = l and dist( ; ') = d, in whi
h 
ase K;w j= l by 
onstru
tion, oreither ' is a literal l0 su
h that AP (l0) 6= AP (l) or dist( ; ') 6= d, in whi
h 
aseL(w) and L0(w) agree on l0, so K 0; w j= l0 implies K;w j= l0. For the indu
tion,we show only the 
ase when ' = 2'0. Given K 0; w j= '[l= true℄d�i, we havethat K 0; w0 j= '0[l= true℄d�i�1 holds for all w0 su
h that R(w;w0). Note thatif R(w;w0) holds and w 2 Wi, then w0 2 Wi+1. By the indu
tive hypothesis,K;w0 j= '0 for all su
h w0 as well. So K;w j= ' holds.
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Chapter 5Implementation5.1 Base AlgorithmWe use Binary De
ision Diagrams (BDDs) [Bry86, And98℄ to represent sets of types.BDDs, or more pre
isely, Redu
ed Ordered Binary De
ision Diagrams (ROBDDs), areobtained from binary de
ision trees by following a �xed variable splitting order and bymerging nodes that have identi
al 
hild-diagrams. BDDs provide a 
anoni
al form ofrepresentation for Boolean fun
tions. Experien
e has shown that BDDs often providea very 
ompa
t representation for very large Boolean fun
tions. Consequently, overthe last de
ade, BDDs have had a dramati
 impa
t in the areas of synthesis, testing,and veri�
ation of digital systems [BBG+94, BCM+92℄.In this se
tion, we des
ribe how our two algorithms are implemented using BDDs.First, we de�ne a bit-ve
tor representation of types. Sin
e types are 
omplete in thesense that either a sub-formula or its negation must belong to a type, it is possiblefor a formula and its negation to be represented using a single BDD variable.The representation of types a � 
l( ) as bit ve
tors is de�ned as follows: Sin
eboth formulas and their negations are in 
l( ), we de�ne
l+( ) = f'i 2 
l( ) j 'i is not of the form :'0g;
l�( ) = f:' j ' 2 
l+( )g;and use m for j 
l+( )j = j 
l( )j=2. For 
l+( ) = f'1; : : : 'mg, a ve
tor ~a =ha1; : : : ; ami 2 f0; 1gm represents a set1 a � 
l( ) where 'i 2 a i� ai = 1.1Please note that this set is not ne
essarily a type.



32A set of su
h bit ve
tors 
an obviously be represented using a BDD with mvariables. It remains to \�lter out" those bit ve
tors that represent types.We de�ne Consistent as the 
hara
teristi
 predi
ate for types: Consistent (~a) =V1�i�m Consi(~a), where Consi(~a) is de�ned as follows:� if 'i is neither of the form '0 ^ '00 nor '0 _ '00, then Consi(~a) = 1,� if 'i = '0 ^ '00, then Consi(~a) = (ai ^ a0 ^ a00) _ (:ai ^ (:a0 _ :a00)),� if 'i = '0 _ '00, then Consi(~a) = (ai ^ (a0 _ a00) _ (:ai ^ :a0 ^ :a00)),where a0 = a` if '0 = '` 2 
l+( ), and a0 = :a` if '0 = :'` for '` 2 
l+( ).From this, the implementation of Initial is fairly straight forward: For the top-down algorithm, Initial( ) := f~a 2 f0; 1gm j Consistent (~a)g;and for the bottom-up algorithm,Initial( ) := f~a 2 f0; 1gm j Consistent (~a) ^ ^'i=2'0 ai = 1g:In the following, we do not distinguish between a type and its representation as abit ve
tor ~a. Next, to spe
ify bad(�) and supp(�), we de�ne auxiliary predi
ates:� 31;i(~x) is read as \~x needs a witness for a diamond operator at position i" andis true i� xi = 0 and 'i = 2'0.� 32;i(~y) is read as \~y is a witness for a negated box formula at position i" andis true i� 'i = 2'j and yj = 0 or 'i = 2:'j and yj = 1.� 21;i(~x) is read as \~x requires support for a box operator at position i" and istrue i� xi = 1 and 'i = 2'0.� 22;i(~y) is read as \~y provides support for a box operator at position i" and istrue i� 'i = 2'j and yj = 1 or 'i = 2:'j and yj = 0.



33For a set A of types, we 
onstru
t the BDD that represents the \maximal" a
-
essibility relation �, i.e., a relation that in
ludes all those pairs (~x; ~y) su
h that ~ysupports all of ~x's box formulas. For types ~x; ~y 2 f0; 1gm, we de�ne�(~x; ~y) = ^1�i�m(21;i(~x)! 22;i(~y)):Given a set A of types, we write the 
orresponding 
hara
teristi
 fun
tion as �A.Both the top-down and the bottom-up algorithm 
an be de�ned using the predi
ates�A, �, 3j;i, and 2j;i.The predi
ate bad is true on those types that 
ontain a negated box formula thatis not witnessed in the 
urrent set of types. We 
an de�ne a predi
ate badi for ea
hnegated box formula 'i = :2'j that 
an be used to remove unwitnessed bit ve
torsas follows: �badi(X)(~x) = 31;i(~x) ^ 8~y : ((�X(~y) ^�(~x; ~y))! :32;i(~y));and thus bad(X) 
an be written as�bad(X)(~x) = _1�i�m�badi(X)(~x):In our implementation, we 
ompute ea
h �badi(X) and use it in the implementation ofthe top-down and the bottom-up algorithm. It is easy to see that �badi(X) is equivalentto 31;i(~x)! 9~y : (�X(~y) ^�(x; y) ^32;i(~y)):For the top-down algorithm, the Iterate fun
tion 
an be written as:�Xnbad(X) := �X(~x) ^ ^1�i�m(�badi(X)(~x))For the bottom-up algorithm, we must take 
are to only add bit ve
tors representingtypes, and so the Iterate fun
tion 
an be implemented as:�X[supp(X) := �X(~x) _ (�Consistent (~x) ^ ^1�i�m(�badi(X)(~x))



34These fun
tions 
an be written more su

in
tly using the pre-image fun
tion for therelation �: preim�(�N)(~x) = 9~y : �N (~y) ^�(~x; ~y):Using pre-images, we 
an rewrite �badi(X) as follows:�badi(X)(~x) = 31;i(~x)! preim�(�X(~y) ^32;i(~y)):Finally, the bottom-up algorithms 
an be implemented as iterations over the sets�X[supp(X), and the top-down algorithms 
an be implemented as iterations over�Xnbad(X) until a �xpoint is rea
hed. Then 
he
king whether  is present in a type ofthis �xpoint is trivial.The pre-image operation is a key operation in both the bottom-up and the top-down approa
hes. It is also known to be a key operation in symboli
 model 
he
king[BCM+92℄ and it has been the subje
t of extensive resear
h (
f. [BCL91, GB94,RAB+95, CCGR00℄), sin
e it 
an be a quite time and spa
e 
onsuming operation.Various optimizations 
an be applied to the pre-image 
omputation to redu
e thetime and spa
e requirements. A method of 
hoi
e is that of 
onjun
tive partitioning
ombined with early quanti�
ation. The idea is to avoid building a monolithi
 BDDfor the relation �, sin
e this BDD 
an be quite large. Rather, we take advantage of thefa
t that � is de�ned as a 
onjun
tion of simple 
onditions. Thus, to 
ompute the pre-image we have to evaluate a quanti�ed Boolean formula of the form (9y1) : : : (9yn)(
1^: : : ^ 
m), where the 
i's are Boolean formulas. Suppose, however, that a variable yjdoes not o

ur in the 
lauses 
i+1; : : : ; 
m. Then the formula 
an be rewritten as(9y1) : : : (9yj�1)(9yj+1) : : : (9yn)((9yj)(
1 ^ : : : ^ 
i) ^ (
i+1 ^ : : : ^ 
m)):This enables us to apply existential quanti�
ation to smaller BDDs.Of 
ourse, there are many ways in whi
h one 
an 
luster and re-order the 
i's. Oneof whi
h we used is the methodology developed in [RAB+95℄, 
alled the \IWLS 95"methodology, to 
ompute pre-images. We also have tried other 
lustering me
hanisms,



35namely the \bu
ket-elimination" approa
h used in [SV01℄. Given a set of 
onjun
tive
omponents 
1 : : : 
n, we get the variable support set for ea
h 
omponent as Y1 : : : Yn.Then, a graph of interferen
e of variables is 
onstru
ted so every vertex represents avariable, and there is an edge between variables yi and yj if yi and yj o

urs togetherin some Yk. We 
ondu
t an \maximum 
ardinality ordering" of the variables, so y1 isthe variable that o

urs with the maximal number of edges, and yi have the maximumnumber of edges into previously 
hosen variables. Given su
h an variable order, we 
anorder the 
onjun
tive 
omponents in the order of the �rst o

urren
e of the highest(or lowest) ordered variables (either forward or ba
kward). We have implemented allfour 
ombinations in this 
ase, although the performan
e improvements are minimal.5.2 Optimizations5.2.1 Parti
lesEn
oding of the parti
le based approa
h with BDDs is analogous to the en
oding ofthe atom based approa
h. Sin
e the 
onsisten
y requirement for parti
les is morerelaxed then that of atoms, ea
h subformula in sub( ) needs to be assigned to avariable. So given sub( ) = f'1; :::'ng, a ve
tor ~p = hp1; :::pmi 2 f0; 1gn represents aset p � sub( ) with 'i 2 p i� pi = 1.Then, for parti
les, Consistent (~p) = ^1�i�nConsi(~p), where Consi(~p) is de�nedas follows:� If 'i is neither of the form 'j ^ 'k nor 'j _ 'k, then Consi(~p) = 1,� If 'i = 'j ^ 'k, then Consi(~p) = (pi ! (pj ^ pk)),� If 'i = 'j _ 'k, then Consi(~p) = (pi ! (pj _ pk)),� If 'i = :'j, then Consi(~p) = :(pi ^ pj).We also need to update the auxiliary predi
ates for parti
les:



36� 31;i(~x) is true i� xi = 1 and 'i = 3'0.� 32;i(~y) is true i� 'i = 3'j and yj = 1.� 21;i(~x) is true i� xi = 1 and 'i = 2'0.� 22;i(~y) is true i� 'i = 2'j and yj = 1.5.2.2 Lean ve
torsLean approa
hes have mu
h more relaxed 
onsisten
y predi
ates at the 
ost of biggerwitness/support predi
ates. For lean approa
hes, Only the Consi(~x) that is relatedto those 'i in atom( ) (or part( )) are used.On the other hand, the auxiliary (witness/support) predi
ate for the lean approa
his signi�
antly more 
omplex. We now de�ne the 
orresponding auxiliary fun
tionsfor lean assignments.De�nition 5.1. For a formula  , we de�ne b
l( ) = 
l( )� atom( ), representingthe Boolean (non-modal) subformulas in the BNF of  . The same 
an be de�ned forthe NNF of  as bsub( ) = sub( )� part( ).De�nition 5.2. For lean parti
le/atom assignments, 31;i and 21;i is the same as fullparti
le/atom assignments. But sin
e the subformula with the modal operator strippedmay not be in atom( ) or part( ), we need to rede�ne the fun
tions 32;i, 22;i withthe same intuition as for full parti
le/atom ve
tors.We do so by de�ning the helper fun
tion stripi indu
tively as:
strip i(~y) = 8>>>>>><>>>>>>:

stripj(~y) ^ stripk(~y) if 'i = 'j ^ 'kstripj(~y) _ stripk(~y) if 'i = 'j _ 'k: stripj(~y) if 'i = :'jyi if 'i 2 atom( ) for atoms or part( ) for parti
les



37Obviously, for both lean parti
le or atom assignments, stripi 
an be 
omputed whenparsing the input formula, and be kept in a table.Next, 32;i and 22;i 
an be de�ned as:32;i(~y) = 8<: stripi(~y) parti
les: stripi(~y) atoms22;i(~y) = strip i(~y)5.2.3 Level based evaluationThe level-based evaluation approa
hes is 
omputed in a similar way. Sin
e in the level-based algorithm, we keep an assignment set for ea
h modal level, so going throughall the badi(X) is no longer ne
essary. Also sin
e the level based algorithm onlyrequires the assignment set to be 
onsistent w.r.t. to subformulas in a single modallevel, we 
an split the 
onstraint predi
ate Consistent to d + 1 sets Consistent0 toConsistentd where ea
h only 
onsists of 
onstraints related to 'i 2 
li( ). So for afull/lean atom/parti
le approa
h alg, We de�ne �leveli(X) as:�leveli(X)(~x) = �Consistenti(~x) ^ ^fjj'j2
li( )g(�badj(X)(~x))Then �Initiali(~a) = Consistenti(~a), and �Iterate(A;i)(~a) = �(Consistenti)(~a) ^�leveli(A)(~a).The level based evaluation for parti
les 
an be implemented in the same way.5.2.4 Variable OrderingPerforman
e of BDD-based algorithms is very sensitive to BDD variable order, sin
eit is a primary fa
tor in
uen
ing BDD size [Bry86℄. Spa
e blowups of of BDDs for thestate sets Pi, as well as intermediate BDDs during pre-image operation, is observed inour experiments to be a major fa
tor in performan
e degradation. Sin
e every step in



38the iteration pro
ess uses BDDs with variables from di�erent modal depth, dynami
variable ordering is of limited bene�t for KBDD (though it is ne
essary when dealingwith intermediate BDDs blowups), be
ause there may not be suÆ
ient reuse to makeit worthwhile. Thus, we fo
used here on 
onstru
ting heuristi
ally a good initialvariable order. Our heuristi
 attempts to �nd a variable order that is appropriatefor KBDD. In this we follows the work of Kamhi and Fix, who argued in favor ofappli
ation-dependent variable order [KF98℄. As we show in Se
tion 7.1.5, 
hoosing agood initial variable order does improve performan
e, but the improvement is rathermodest.A naive method for assigning initial variable order to a set of subformulas wouldbe to traverse the DAG for the formula in some order. We used a depth-�rst, pre-order traversal. This order, however, does not meet the basi
 prin
iple of BDDvariable ordering, whi
h is to keep related variables in 
lose proximity. Our heuristi
is aimed at identifying su
h variables. Note that in our lean representation variables
orrespond to modal subformulas or atomi
 subformulas. We found that related vari-ables 
orrespond to subformulas that are related via the sibling or nie
e relationships.We say that vx is the 
hild of vy if for the 
orresponding subformulas we have that'x 2 subi( ), 'y 2 subi+1( ), and 'y is a subformula of 'x, for some 0 � i < md( ).We say that vx and vy are siblings if either both 'x and 'y are in subi( ) or they areboth 
hildren of another variable vz. We say that vy is a nie
e of vx if there is a vari-able vz su
h that vz is a sibling of vx and vy is a 
hild of vx. We say that vx and vy aredependent if they are related via the sibling or the nie
e relationship. The rationale isthat we want to optimize state-set representation for pre-image operations. Keepingsiblings 
lose helps in keeping state-set representation 
ompa
t. Keeping nie
es 
loseto their \aunts", helps in keeping intermediate BDDs 
ompa
t.We build variable order from the top of the formula down. We start with left-to-right traversal order of top variables in the parse tree of  as the order for variables
orresponding to subformulas in sub0( ). Given an order of the variables of modal



39depth < i, a greedy approa
h is used to determine the pla
ement of variables at modaldepth i. When we insert a new variable v we measure the 
umulative distan
e of vfrom all variables already in the order that are dependent on v. We �nd a lo
ationfor v that minimizes the 
umulative distan
e from other dependent variables. Werefer to this approa
h as the greedy approa
h, as opposed to the naive approa
h ofdepth-�rst pre-order.
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Chapter 6Embedding K with QBFBoth K and QBF have PSPACE-
omplete de
ision problems [Lad77, Sto77℄. Thisimplies that the two problems are polynomially redu
ible to ea
h other. A naturalredu
tion from QBF to K is des
ribed in [HM92℄. In the last few years extensivee�ort was 
arried out into the development of highly-optimized QBF solvers [GNT01,CSGG99℄. One motivation for this e�ort is the hope of using QBF solvers as generi
sear
h engines [Rin99℄, mu
h is the same way that SAT solvers are being used asgeneri
 sear
h engines, 
f. [BCCZ99℄. This suggests that another approa
h to Ksatis�ability is to �nd a natural redu
tion of K to QBF, and then apply a highlyoptimized QBF solver. We des
ribe now su
h a redu
tion. (A similar approa
h issuggested in [CSGG99℄ without providing either details or results.)QBF is an extension of propositional logi
 with quanti�ers. The set of QBFformulas is 
onstru
ted from a set � = fx1; : : : xng of Boolean variables, and 
losedunder the Boolean 
onne
tives ^ and :, as well as the quanti�er 8xi. As usual, we useother Boolean operators as abbreviations, and 9xi : ' as shorthand for :8xi : :'.Like propositional formulas, QBF formulas are interpreted over truth assignments.The semanti
s of quanti�ers is de�ned by: � j= 8p : ' i� � [p=1℄ j= ' and � [p=0℄ j= '.By Theorem 4.6, A K formula  of modal depth d is satis�able i� there exists aproper sequen
e P = hP0; P1; : : : ; Pdi of parti
le sets su
h that  2 p for some p 2 P0.We 
onstru
t QBF formulas f0; f1; : : : fd so ea
h fi en
odes the parti
le set Pi. The
onstru
tion is by ba
kward indu
tion for i = d : : : 0. For every ' 2 subi( ), we havea 
orresponding variable x';i as a free variable in fi. The intuition is that fi des
ribesthe set Pi. That is, for ea
h p � subi( ), de�ne the truth assignment � ip as follows:



41� ip(x';i) = 1 i� ' 2 p. The intention is to have Pi = fp � subi( )j� ip j= fig. We thensay that fi 
hara
terizes Pi.In the following, we de�ne parti
lei( ) as the set of all 
onsistent parti
le ve
torsof subi( ). We start by 
onstru
ting a propositional formula l
i su
h that for ea
hp � subi( ) we have that p 2 parti
lei( ) i� � ip j= l
i. The formula l
i is a 
onjun
tionof 
lauses as follows:� For ' = :'0 2 subi( ), we have the 
lause x';i ! :x'0;i.� For ' = '0 ^ '00 2 subi( ), we have the 
lauses x';i ! x'0;i and x';i ! x'00;i.� For ' = '0 _ '00 2 subi( ), we have the 
lause x';i ! (x'00;i _ x'00;i).For i = d we simply take fd to be l
d. Indeed, we have Pd = parti
led( ) = fp �subd( )j� dp j= fdg. Thus, fd 
hara
terizes Initiald( ).For i < d, suppose we already 
onstru
ted a QBF formula fi+1 that 
hara
terizesPi+1. We start by 
onstru
ting f 0i , whi
h also 
hara
terizes Pi. We let f 0d = fd.The propositional part of f 0i is l
i, whi
h des
ribes the parti
les in parti
lei( ). Inaddition, for ea
h 3' 2 subi( ), we need a 
onjun
t m
3' that says that if 3' isin a parti
le p 2 Pi, then 3' in p is witnessed by a parti
le in Pi+1. That is, wede�ne m
3' as x3';i ! 9x�;i+1:f�2subi+1( )g(fi+1^x';i+1^ tri), where tri is the formulaV2�2subi( )[x2�;i ! x�;i+1℄. (Here the existential quanti�er is a sequen
e 9xi9 : : :9xjof existential quanti�ers,one for ea
h of the formulas in subi+1( ).)Lemma 6.1. If f 0i+1 
hara
terizes Pi+1, then f 0i 
hara
terizes Pi = Iterate(Pi+1; i).Proof. By 
onstru
tion, l
i 
hara
terizes parti( ). For the witnessing requirement,we 
an see that if � ip j= m
3' and x3';i, then there is an assignment � i+1p0 where� ip [ � i+1p0 j= f 0i+1 ^ x';i+1 ^ tri. This is equivalent to asserting that p0 2 Pi+1, ' 2 p0and Ri(p; p0). So the lemma holds.Corollary 6.1.  is satis�able i� 9x�;0:f�2sub0( )gx ;0 ^ f 00 is satis�able.



42Proof. The 
laim follows from the soundness and 
ompleteness of KBDD.This redu
tion of K to QBF is 
orre
t; unfortunately, it is not polynomial. Theproblem is that f 0i requires a distin
t 
opy of fi+1 for ea
h formula 3' in subi( ).This may 
ause an exponential blow-up for f 00. We would like fi to use only one 
opyof fi+1. We do this by repla
ing the 
onjun
tion over all 3' formulas in subi( ) bya universal quanti�
ation. Let k be an upper bound on the number of 3' formulasin subi( ), for 0 � i � md( ). We asso
iate an index j 2 f0; : : : ; k � 1g with ea
hsu
h subformula; thus, we let �ij the j-th 3' subformula in subi( ), in whi
h 
asewe denote ' by strip(�ij). Let m = dlg ke. We introdu
e m new Boolean variablesy1; : : : ; ym. Ea
h truth assignment to these variables indu
e a number between 0 andk�1. We refer to this number is val(y) and we use it to point to 3 subformulas. Letwitnessi be the formula Wk�1j=0 x�ij , whi
h asserts that some witnesses are required.We 
an now write fi in a 
ompa
t fashion:l
i ^ 8y1; : : : ; 8ym : 9x�;i+1:f�2subi+1( )g : witnessi ! fi+1 ^ tri ^ k�1̂j=0((val(y) = j ^ x�ij ;i)! xstrip(�ij);i+1)! :The formula fi �rst asserts the lo
al 
onsisten
y 
onstraint l
i. The quanti�
ationon y1; : : : ; ym simulates the 
onjun
tion on all k 3 subformulas in subi( ). We then
he
k if witnessi holds, in whi
h 
ase we assert the existen
e of the witnessing parti
le.We use fi+1 to ensure that this parti
le is in Pi+1 and tri to ensure satisfa
tion of2 subformulas. Finally, we let val(y) point to the 3 subformulas that needs to bewitnesses. Note that fi 
ontains only one 
opy of fi+1.Lemma 6.2. If fi+1 
hara
terizes Pi+1, then fi 
hara
terizes Pi = Iterate(Pi+1; i).Corollary 6.2.  is satis�able i� 9x�;0:f�2sub0( )gx ;0 ^ f0 is satis�able.Proof. The 
laim follows from the fa
t that fi is logi
ally equivalent to f 0i .We implemented this approa
h by optimizing the translation further. As in theBDD-based implementation, we represent only Boolean literals, 2 subformulas and



433 subformulas with Boolean variables. The other subformulas are not representedexpli
itly, but are logi
ally implied.
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Chapter 7ResultsWe implemented the BDD-based de
ision pro
edure in C++ using the CUDD 2.3.1[Som98℄ pa
kage for BDDs, and we implemented formula simpli�
ation prepro
essorin OCaml. The parser for the languages used in the ben
hmark suites are takenwith permission from *SAT [Ta
99℄. In the following, we des
ribe and 
ompare theperforman
e of the di�erent algorithms.1As ben
hmarks, we use both the K part of TANCS 98 [HS96℄ and the MODALPSPACE division of TANCS 2000 [MD00℄, as well as random formulas generated with[PSS01℄.We present the result in two parts. First, using TANCS 98 and TANCS 2000, westudy the in
uen
e of ea
h optimization te
hnique and the in
uen
e of variable order-ing to determine the best 
on�guration for KBDD. Then, we provide a 
omparisonof KBDD with other solvers a
ross a spe
trum of di�erent ben
hmarks .For most 
omparison, we set the time out at 1000s and the spa
e limit for BDDs at384MB. To avoid getting into overwhelming details in the 
omparison of solvers andto present a global view of performan
e, we use the presentation te
hnique suggestedin [SS01℄, where we plot the number of 
ases solved against the running time used.The 
hart is s
aled so the full s
ale is the total number of 
ases in the ben
hmark.Thus, the solver with a higher 
urve is faster than one with a lower 
urve.1All the tests run on a Pentium 4 1.7GHz with 512MB of RAM, running linux kernel version2.4.2. The solver is 
ompiled with g

 2.96 with parts in OCaml 3.04.



457.1 Comparison in depthTo analyze the usefulness of ea
h optimization te
hniques used, we run the algorithmwith di�erent optimization 
on�gurations on the K part of TANCS 98 and TANCS2000 ben
hmark suites2 , both s
alable ben
hmarks whi
h 
ontains both provableand non-provable formulas. In TANCS 98, simple formulas have their 
omplexityin
reased by re-en
oding them with super
uous sub-formulas. In TANCS 2000, for-mulas are 
onstru
ted by translating QBF formulas into K using three translations
hemes, namely S
hmidt-S
hauss-Smolka translation, whi
h gives easy formulas,Ladner translation, whi
h gives medium diÆ
ulty formulas, and Halpern translation,whi
h gives hard formulas.7.1.1 The basi
 algorithmsTo 
ompare our approa
hes, we ben
hmark the basi
 algorithms on TANCS 98. Theresults are presented in Fig. 7.1. We 
an see that *SAT 
learly outperforms ourtwo basi
 algorithms. An explanation of this \weak" behavior of our approa
hes isthat the intermediate results of the pre-image operation are so large that the BDDsspa
e 
onstraint is usually rea
hed. The di�eren
e between top-down and bottom-upapproa
hes is minor. Top-down slightly outperforms bottom-up sin
e in a BDD-based implementation, top-down removes types, whi
h only requires the 
onsisten
yrequirement to be asserted on
e before iteration, while bottom-up adds types, whi
hrequires an extra 
onjun
tion to ensure only 
onsistent types are added.7.1.2 Parti
le approa
hesNow we 
ompare the variants using types with their full parti
le-based variants. Theresults are presented in Fig. 7.2. We 
an see that, for TANCS 98, the parti
le ap-proa
h slightly outperforms the type approa
h. Most of the improvements 
ome from2We used TANCS 98 in 
ases where too few 
ases in TANCS 2000 
omplete under an unoptimizeds
heme, allowing better 
omparison.



46

10
1

10
2

10
3

10
4

10
5

10
6

0

50

100

150

200

250

300

350

Running Time(ms)

C
as

es
 c

om
pl

et
ed

*SAT              
topdown−full−type 
bottomup−full−type

Figure 7.1 : Performan
e on TANCS 98 (basi
 approa
hes)the use of negation normal form, whi
h allows us to distinguish between diamondsand boxes, resulting in the redu
tion of the image operations needed.7.1.3 Lean ve
tor approa
hesNext, for types and parti
les, bottom-up and top-down, we 
ompare the \full" ap-proa
hes with their lean variants (see Fig. 7.3 and Fig. 7.4). Intuitively, the fullvariants trade a larger number of BDD variables in the representation of the tran-sition relation for simpler 
onsisten
y 
onstraints. On TANCS 98, we 
an see thatthe lean approa
hes outperform in ea
h 
ombination their full variants. This showsthat, as a general guideline, we should always attempt to redu
e the number of BDDvariables, sin
e this results in smaller BDDs. Indeed, experien
e in symboli
 model
he
king suggests that BDD size is typi
ally the dominant fa
tor when evaluating theperforman
e of BDD-based algorithms [KFB98℄.
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Figure 7.2 : Performan
e on TANCS 98 (parti
les vs. types)7.1.4 Level based evaluationNext, we 
ompared the level-based approa
h with the top-down and the bottom-up approa
h. It turns out that the level-based approa
h outperforms both, and that,
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Figure 7.3 : Performan
e on TANCS 98 lean vs. full typesboth for types and parti
les, the lean approa
h again outperforms the full one, see Fig.7.5. By taking advantage of K's layered model property, we 
an split various spa
e-
onsuming BDDs into smaller ones based on the modal depth of the 
orresponding
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Figure 7.4 : Performan
e on TANCS 98 lean vs. full parti
les



50sub-formulas. This minimizes spa
e-outs and improves running time. The asso
iatedredu
tion in number of pre-image operations is also substantial for most formulas.In the following, KBDD would refer to the level-based lean parti
le version of thealgorithm.7.1.5 Variable ordering and formula simpli�
ationTo demonstrate the e�e
ts of variable ordering and formula simpli�
ation, we testedKBDD with both naive and greedy variable ordering, and with and without formulasimpli�
ation, using TANCS 2000 easy and medium formulas [MD00℄3 (KBDD with-out formula simpli�
ation 
annot handle the hard formulas of TANCS 2000). Theresults are in Figure 7.6.We see in Figure 7.6 that formula simpli�
ation yields a signi�
ant performan
eimprovement. This improvements was observed for di�erent types of formulas and dif-ferent variable-ordering algorithms. In parti
ular, KBDD was able to avoid spa
e outsin many 
ases. We 
an also see that greedy variable ordering is useful in 
onjun
tionwith formulas simpli�
ation, improving the number of 
ompleted 
ases and some-times running time as well. Without formula simpli�
ation, the results for greedyvariable ordering are not 
onsistent, as overhead of �nding the variable order mayo�set any advantages of applying it. The 
ombination of formula simpli�
ation andgreedy variable ordering 
learly improves the performan
e of KBDD in a signi�
antway. In the next se
tion, we 
ompare the performan
e of optimized KBDD againstthree other solvers.7.2 Comparison between solversTo assess the e�e
tiveness of BDD-based de
ision pro
edures for K, we 
ompared theoptimized KBDD against three solvers: (1) DLP is a tableau-based solver [PSH99℄,3See http://www.dis.uniroma1.it/~tan
s/.
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Figure 7.5 : Performan
e on TANCS 98 (level-based evaluation)(2) MSPASS is a resolution-based solver, apply to a translation of modal formulas to
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53�rst-order formulas [HS00℄4, (3) We developed also a redu
tion of K to QBF (whi
h isof independent interest), and applied QuBE, whi
h is a highly optimized QBF solver[GNT01℄. For a fair 
omparison, we 
he
ked �rst whether our formula-simpli�
ationoptimization is useful for these solvers, and used it when it was (DLP and QuBE).In addition to TANCS 98 and TANCS 2000, we also use randomly generated for-mulas, as suggested in [PSS01℄. This s
heme generates random modal-CNF formulasparameterized with the number N of propositions, the number K of literals in ea
h
lause, the fra
tion � of modal literals in ea
h 
lause, the modal-depth bound d, andthe number L of top level 
lauses. L 
lauses are generated with K literals ea
h, where�K literals are modal and the rest are propositional (the polarity of the literals is
hosen uniformly). Ea
h modal literal is expanded into a 
lause in the same fashion.The modal depth of the formula is bounded by d. We used d = [1; 2℄, K = 3 and� = 0:5 in our experiments. In ea
h experiment N is �xed and the propositional
omplexity of the formula was varied by in
reasing the density L=N .7.2.1 Results on TANCS suitesIn Figure 7.7 and Figure 7.8 we see that on the TANCS 98 ben
hmarks, DLP has thebest performan
e, but on the more 
hallenging TANCS 2000 ben
hmarks, KBDDoutperformed the other solvers, espe
ially on the harder portions of the suite (thehard formulas of TANCS 2000 required dynami
 variable reordering). MSPASS wasa distant third, espe
ially on the harder formulas, and is omitted on the hard formulasof TANCS 20005. It is also 
lear that redu
ing K satis�ability to a sear
h-based QBFsolver is not a viable approa
h; it was dominated all other approa
hes and solved4We used MSPASS 1.0.0t1.3 with options -EMLTranslations=1 -EMLFun
Nary=1 -Sele
t=2 -PProblem=0 -PGiven=0 -Sorts=0 -CNFOptSkolem=0 -CNFStrSkolem=0 -CNFRenOps=1 -Split=-1 -Ordering=0 -CNFRenMat
h=0 -TimeLimit=1000. Compiler used is g

-3.1.1 be
ause g

-2.96have a serious bug that 
rashes the resulting exe
utable.5Better results for MSPASS is possible if di�erent parameters is used for di�erent 
ases. We didnot take this approa
h be
ause it is outside the s
opt of this thesis.



54only a small fra
tion of the ben
hmark formulas in TANCS 98. (For TANCS 2000this approa
h was so ine�e
tive that we did not report the results.) It would beinteresting to try the redu
tion-to-QBF approa
h with another type of QBF solver,e.g., a resolution-based QBF solver [BKF95℄.7.2.2 Results on random modal CNF formulasA di�erent perspe
tive on the 
omparison between DLP, a sear
h-based solver, andKBDD, a symboli
 solver, is demonstrated on random modal-CNF formulas. Thegeneration of the formulas are as suggested in [PSS01℄. This s
heme generates randommodal-CNF formulas parameterized with the number N of propositions, the numberK of literals in ea
h 
lause, the fra
tion � of modal literals in ea
h 
lause, the modal-depth bound d, and the number L of top level 
lauses. L 
lauses are generated withKliterals ea
h, where �K literals are modal and the rest are propositional (the polarityof the literals is 
hosen uniformly). Ea
h modal literal is expanded into a 
lause inthe same fashion. The modal depth of the formula is bounded by d. We used d = 1; 2,K = 3 and � = 0:5 in our experiments. In ea
h experiment N was �xed and thepropositional 
omplexity of the formula was varied by in
reasing the density L=N .We plot here median running time (16 samples per data point) as a fun
tion ofdensity (L=N) to demonstrate the di�eren
e between the behavior of the two solvers.As we 
an see in �gure 7.9, for d = 1, DLP demonstrates the bell-shaped \easy-hard-easy" pattern that is familiar from random propositional CNF formulas [SML96℄and random QBF formulas [GW99℄. In 
ontrast, for KBDD we see an in
rease inrunning time as a fun
tion of the density; that is, the higher the density the harderthe problem for KBDD. This is 
onsistent with known results on the performan
e ofBDD-based algorithm for random propositional CNF formulas [CDS+00℄. For ea
hmodal level, KBDD builds a BDD for the appropriate parti
le set. With in
reaseddensity, the 
onstru
tion of these BDDs gets quite 
hallenging, often resulting inspa
e outs or requiring extensive variable reordering. (In the propositional 
ase, one
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an develop algorithms that avoid the 
onstru
tion of a monolithi
 BDD, 
f. [SV01℄.It would be interesting to try to apply su
h ideas for KBDD.) This explains whyDLP performs mu
h better than KBDD on random modal-CNF formulas. Unlikethe ben
hmark formulas of TANCS 98 and TANCS 2000, the random modal-CNFformulas have a very high propositional 
omplexity (low modal depth). In 
ontrast,the formulas in TANCS 98 and TANCS 2000 have high modal 
omplexity (highmodal depth). Our 
on
lusion is that DLP is better suited for formulas with highpropositional 
omplexity, while KBDD is better suited for formulas with high modal
omplexity.
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Chapter 8Con
lusionsWe des
ribed here BDD-based de
ision pro
edures for K. Our approa
h is inspiredby the automata-theoreti
 approa
h, but we avoid expli
it automata 
onstru
tion.We explored a variety of optimization te
hniques and 
on
luded that, in general, itis preferred to work with looser 
onstraints; in general, we got the best performan
ewith lean parti
les. We also showed that it is ne
essary to use a level-based approa
hto obtain a 
ompetitive implementation. Formula prepro
essing by removing pureliterals and propogating the e�e
ts by synta
ti
al simpli�
ation, though not spe
ial-ized to our method in parti
ular, is also important for improving performan
e. Wealso attempted to optimize the implementation by applying BDD-
entri
 te
hniqueslike 
lustering with early quanti�
ation and initial variable ordering.Our results show that the payo� of the variable-ordering optimization is rathermodest, while the payo� of the pure-literal optimization is quite signi�
ant. Weben
hmarked KBDD, our optimized solver, against both native solvers (DLP) andtranslation-based solvers (MSPASS and QuBE). Our results indi
ate that the BDD-based approa
h dominates for modally heavy formulas, while sear
h-based approa
hesdominate for propositionally heavy formulas.One way to look at the results is that the KBDD approa
h, by using a more pow-erful underlying solver (BDDs vs. satis�ability) allows the use of a simpler de
isionpro
edure. Instead of requiring exponential number of 
alls to a propositional satis�-ability pro
edure, we only required a polynomial number of 
alls to BDD operations.The question would of 
ourse be, is su
h an trade o� reasonable. We know that the
omplexity of BDD operations are highly dependent to the size of the BDDs. So, if



60we are able to 
ontrol the size of the BDDs, the performan
e of our de
ision pro
edurewould be a

eptable.Another explanation would be we traded modal 
omplexity for propositional 
om-plexity. This way, we managed to solve a large amount of problems whi
h have \big"models, whi
h 
ause problems with SAT based solvers. We suggest that a 
omparisonof BDD and SAT based K solver would be like in table 8.1.seem in the following table:
Propositionally sparse Propositionally denseBig model BDD better neither work goodSmall Model Both work good neither work goodSAT slightly faster SAT 
ould be given more timeTable 8.1 : A hypotheti
al 
omparison of BDD vs. SAT based solversAlthough our goal is not to develop the \fastest K solver", the KBDD approa
his very 
ompetitive for most ben
hmarks. With all the optimization s
hemes, we ob-tained very good results with 
urrent stru
tured ben
hmark suites. Further resear
his required to quantify the distin
tion between propositionally heavy and modallyheavy formulas. This might enable the development of a 
ombined solver, whi
h in-vokes the appropriate engine for the formula under test. Another approa
h wouldbe to develop a a hybrid solver, 
ombining BDD-based and sear
h-based te
hniques(
f. [GYA+01℄ for a hybrid approa
h in model 
he
king), whi
h would perform wellon both modally heavy and propositionally heavy formulas. We leave this for futureresear
h.
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