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BDD-Based Deision Proedures forModal Logi KGuoqiang Pan
AbstratWe desribe BDD-based deision proedures for K. Our approah is inspired by theautomata-theoreti approah, but we avoid expliit automata onstrution. Our al-gorithms ompute the �xpoint of a set of types, whih are sets of formulas satisfyingsome onsisteny onditions. We use BDDs to represent and manipulate suh sets. Byviewing the sets of types as symboli enoding of all possible models of a formula, wedeveloped partile-based and lean-vetor-based representation tehniques whih givesmore ompat representations. By taking advantage of the �nite-tree-model propertyof K, we introdued a level-based evaluation sheme to speed up onstrution and re-due memory onsumption. We also studied the e�et of formula simpli�ation on thedeision proedures. As part of the benhing proedure, we ompared the BDD-basedapproah with a representative seletion of urrent approahes, as well as developingan algorithm to translate K to QBF based on our deision proedure. Experimentalresults show that the BDD-based approah dominates for modally heavy formulas,while searh-based approahes dominate for propositionally-heavy formulas.
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1
Chapter 1IntrodutionModal logi, the logi of neessity and possibility, of \must be" and \may be", was dis-ussed by several authors in anient times. Like most work before the modern period,it was non-symboli and not partiularly systemati in approah. The �rst symboliand systemati approah to the subjet appears to be the work of Lewis, beginning in1912 and ulminating in the book Symboli Logi with Langford [LL59℄. Propositionalmodal logi is obtained from propositional logi by adding a modal onnetive 2, i.e.,if � is a formula, then 2� is also a formula. Intuitively, 2� asserts that � is nees-sarily true. Dually, :2:�, abbreviated as 3�, asserts that � is possibly true. Modallogi has many appliations, due to the fat that the notions of neessity and possibil-ity an be given many onrete interpretations. For example, \neessarily" an mean\aording to the laws of physis", or \aording to my knowledge", or even \after theprogram terminates". In the last 20 years modal logi has been applied to numerousareas of omputer siene, inluding arti�ial intelligene [BLMS94, MH69℄, programveri�ation [CES86, Pra76, Pnu77℄, hardware veri�ation [Bo82, RS83℄, databasetheory [CCF82, Lip77℄, and distributed omputing [BAN88, HM90℄.In this thesis, we restrit our attention to the smallest normal modal logi K, anddesribe a new approah to deide the satis�ability of formulas in this logi. Sinemodal logi extends propositional logi, the study in modal satis�ability is deeply on-neted with that of propositional satis�ability. In the past, a variety of approahes topropositional satis�ability have been suessfully ombined with various approahesto handle modal onnetives. For example, tableau based deision proedures for Kare presented in [Lad77, HM92, PSH99℄. Suh methods are built on top of the propo-



2sitional tableau onstrution proedure by forming a fully expanded propositionaltableau and generating suessor nodes \on demand". A similar method uses theDavis-Logemann-Loveland method as the propositional engine by treating all modalsub-formulas as propositions and, when a satisfying assignment is found, hekingmodal sub-formulas for the legality of this assignment [GS00, Ta99℄.Reently, we see e�orts to unifying the optimizations used in tableau and DPLLbased approahes. Introdution of semantial methods like semanti branhing andBoolean onstraint propagation into tableau allowed DLP to beome one of the fastestsolvers for K.Another approah to modal satis�ability, the inverse alulus for K [Vor01℄, anbe seen as a modalized version of propositional resolution. Non-propositional meth-ods take a di�erent approah to the problem. It has been shown reently that,by embedding K into �rst order logi, a �rst-order theorem prover an be used fordeiding modal satis�ability [AGHd00℄. The latter approah works niely with aresolution-based �rst-order theorem prover, whih an be used as a deision proe-dure for modal satis�ability by using appropriate resolution strategies [HS00℄. Otherapproahes for modal satis�ability suh as mosais, type elimination, or automata-theoreti approahes are well-suited for proving exat upper omplexity bounds, butare rarely used in atual implementations [BdV01, HM92, Var97℄.The basi algorithms presented here are inspired by the automata-theoreti ap-proah for logis with the tree-model property [Var97℄. In that approah one proeedsin two steps. First, an input formula is translated to a tree automaton that aeptsall tree models of the formula. Seond, the automata is tested for non-emptiness, i.e.,does it aept some tree. In our approah here we, in essene, ombine the two stepsand we apply the non-emptiness test without expliitly onstruting the automaton.As pointed out in [BT01℄, the inverse method desribed in [Vor01℄ an also be viewedas an appliation of the automata-theoreti approah that avoids an expliit automataonstrution.



3The logi K is simple enough that the automaton non-emptiness test onsists ofa single �xpoint omputation, whih starts with a set of states and then repeatedlyapplies a monotone operator until a �xpoint is reahed. 1 In the automata thatorrespond to formulas eah state is a type, i.e., a set of formulas satisfying someonsisteny onditions. The algorithms presented here all start from some set oftypes, and then repeatedly apply a monotone operator until a �xpoint is reahed:either they start with the set of all types and remove those types with \possibilities"3' for whih no \witness" an be found, or they start with the set of types having nopossibilities 3', and add those types whose possibilities are witnessed by a type inthe set. The two approahes, top-down and bottom-up, orresponds to the two waysin whih non-emptiness an be tested for automata for K: via a greatest �xpointomputation for automata on in�nite trees or via a least �xpoint omputation forautomata on �nite trees. The bottom-up approah is losely related to the inversemethod desribed in [Vor01℄, while the top-down approah is reminisent of the \type-elimination" method developed for Propositional Dynami Logi in [Pra80℄.The key idea underlying our implementation is that of representing sets of typesand operating on them symbolially. Our implementation uses Binary Deision Dia-grams (BDDs) [Bry86℄: BDDs are a ompat representation of propositional formulas,and are ommonly used as a ompat representation of states. One of their advantagesis that they ome with eÆient operations for ertain manipulations. By representingsets of types with BDDs, we are able to symbolially onstrut �xpoint type setseÆiently.We then study optimization issues for BDD-based K solvers. First we fous ondi�erent representations that an be used for the onstruted state set. Types exerta strit onsisteny requirement on the assignment to related subformulas, whih isa major fator in the size of the BDD used to represent the type sets. The normalform used for the type-based approah also makes no distintion between box and1This approah an be easily extended to K (m).



4diamond operators, inreasing the number of neessary witness heks. By using arelaxed onsisteny representation alled partiles, we are able to redue the numberof witness heks and simplify the onsisteny requirement. We also investigate thelean vetor approah, in whih the onstraint is further simpli�ed by removing thevariables whose values are implied by the onstraints. These approahes redue thememory onsumption of the BDDs and improve performane.Next, we take advantage of the properties of K, namely the �nite-tree-model prop-erty. The sets of types/partile vetors impliitly enodes a model for the formula. Byonsidering a layered model instead of a general model, we an modify the bottom-up proedure so eah step only heks witness for diamond operators ourring at aspei� depth. This approah yields further performane improvements.Finally, we turn to a preproessing optimization. The idea is to apply some light-weight reasoning to simplify the input formula before starting to apply heavy-weightBDD operations. In the propositional ase, a well-known preproessing rule is thepure-literal rule [DLL62℄. Preproessing has also been shown to be useful for linear-time formulas [SB00, EH00℄, but has not been explored for K. Our preproessingis based on a modal pure-literal simpli�ation, whih takes advantage of the tree-model property of K. We show that adding preproessing yield a fairly signi�antperformane improvements, enabling us to handle the hard formulas of TANCS 2000.This thesis onsists of a viability study for our approah. As a measure of ompet-itiveness between di�erent optimizations on BDD-based approahes, we use existingbenhmarks of modal formulas, TANCS 98 [HS96℄ and TANCS 2000 [MD00℄, and weused *SAT [Ta99℄ as a referene. A straightforward implementation of our approahdid not yield a ompetitive algorithm, but an optimized implementation did yield aompetitive algorithm indiating the viability of our approah.We also fous on BDD-spei� optimizations on our implementation of the algo-rithm. Besides using optimized image �nding tehniques like onjuntive lusteringwith early quanti�ation [BCL91, GB94, RAB+95, CCGR00℄, we also study the issue



5of variable order, whih is known to be of ritial importane to BDD-based algo-rithms. The performane of BDD-based depends ruially on the size of the BDDs andvariable order is a major fator in determining BDD size, as a \bad" order may ausean exponential blow-up [Bry86℄. While �nding an optimal variable order is knownto be intratable [THY93℄, heuristis often work quite well in pratie [Rud93℄. Wefous here on �nding a good initial variable order (for large problem instanes wehave no hoie but to invoke dynami variable ordering, provided by the BDD pak-age), tailored to the appliation at hand. Our �nding is that hoosing a good initialvariable order does improve performane, but the improvement is rather modest.To assess the ompetitiveness of our optimized solver, alled KBDD, we benh-mark it against both native solver and translation-based solvers.Besides omparingwith the standard �rst-order translation approah, we also developed a translationfrom K to QBF (whih is of independent interest), and apply QuBE, whih is a highlyoptimized QBF solver [GNT01℄. Our results indiate that the BDD-based approahdominates for modally heavy formulas while searh-based approahes dominate forpropositionally-heavy formulas.The paper is organized as follows. After introduing the modal logi K in hapter2, we present our algorithms and show them to be sound and omplete in hapter3. In hapter 4, we disuss four optimizations that we applied, and present a BDDbased implementation in hapter 5. An embedding of K into QBF is presented inhapter 6. Finally, we present the performane omparasions, both between di�erentoptimizations in the BDD-based framework, and with other solvers in hapter 7.



6
Chapter 2PreliminariesIn this setion, we introdue the syntax and semantis of the modal logi K, as wellas types and how they an be used to enode a Kripke struture.The set of K formulas is onstruted from a set of propositional variables � =fq1; q2; : : :g, and is the least set ontaining � and being losed under Boolean operators^ and : and the unary modality 2. As usual, we use other Boolean operatorsas abbreviations, and 3' as an abbreviation for :2:'. The set of propositionalvariables used in a formula ' is denoted AP (').A formula in K is interpreted in a Kripke struture K = hV;W;R; Li, where V isa set (ontaining �) of propositions, W is a set of possible worlds, R � W �W is theaessibility relation on worlds, and L : W ! V ! f0; 1g a labeling funtion for eahstate. The notion of a formula ' being satis�ed in a world w of a Kripke strutureK (written as K;w j= q) is indutively de�ned as follows:� K;w j= q for q 2 � i� L(w)(q) = 1� K;w j= ' ^  i� K;w j= ' and K;w j=  � K;w j= :' i� K;w 6j= '� K;w j= 2' i�, for all w0, if (w;w0) 2 R, then K;w0 j= 'The abbreviated operators an be de�ned as follows:� K;w j= ' _  i� K;w j= ' or K;w j=  � K;w j= 3' i� there exists w0 with (w;w0) 2 R and K;w0 j= '.



7A formula  is satis�able if there exist K;w with K;w j=  . In this ase, K is alleda model of  .The most important property of K is the tree-model property, whih allowsautomata-theoreti approahes to be applied. In fat, it has the stronger �nite-tree-model property, whih will allow both top-down and bottom-up onstrution of suhautomata.Theorem 2.1. K has the �nite-tree-model property, where for any formula ', ifthere is some M;w suh that M;w j= ', then there exists a �nite M 0 suh that existsw0 2M 0 where M 0; w0 j= '.Proof. See [BdV01℄.In fat, a formula  in K have a �nite tree model that is only as deep as its modaldepth, de�ned as:De�nition 2.1. Given a formula  , all its set of subformulas sub( ). Take any' 2 sub( ), we de�ne dist( ; ') as follows:� If  = ', then dist( ; ') = 0;� If ' = '0 ^ '00, '0 _ '00, or :'0, then dist( ; '0) = dist( ; '00) = dist( ; ');� If ' = 2'0 or 3'0, then dist( ; '0) = dist( ; ') + 1.The modal depth md( ) is de�ned as max'2sub( )(dist( ; ')).We will use this property for ertain optimizations in our algorithm.We restrit our attention to formulas in a ertain normal form to simplify onsid-erations on the form of a formula. A formula  of K is said to be in box normal form(BNF) if all its sub-formulas are of the form '^'0, '_'0, 2', :2', q, or :q whereq 2 AP ( ). All K formulas an be obviously onverted into BNF without blow upby pushing negation inwards and, if not stated otherwise, we assume all formulas to



8be in BNF. The losure of a formula l( ) is de�ned as the smallest set suh that, forall sub-formula ' of  , if ' is not :'0, then f';:'g � l( ).Our algorithms will work on types, i.e., sets of (sub)formulas that are onsistentw.r.t. the Boolean operators, and where (negated) box formulas are treated as atoms.A set of formulas a � l( ) is alled a  -type (or simply a type if  is lear from theontext) if it satis�es the following onditions:� If ' = :'0, then ' 2 a i� '0 =2 a.� If ' = '0 ^ '00, then ' 2 a i� '0 2 a and '00 2 a.� If ' = '0 _ '00, then ' 2 a i� '0 2 a or '00 2 a.For a set of types A, we de�ne the relation � � A� A as follows:�(a; a0) i� for all 2'0 2 a, we have '0 2 a0.Given a set of types A � 2l( ), we an onstrut a Kripke struture KA using therelation � as follows: KA = hAP ( ); A;�; Li with L(a)(q) = 1 i� q 2 a.We should ompare the struture we built against the anonial model of K.De�nition 2.2. [BdV01℄The anonial model for K is de�ned as K = hAP;W;R; Liwhere:� W is the set of all maximal onsistent set of K formulas.� R is de�ned as R(x; y) i� for all ' 2 y, 3' 2 x. (Note together with onsis-teny, this says for all 2' 2 x, ' 2 y.� L is the normal interpretation, where for p 2 AP , L(W )(p) i� p 2 W .We know that we an �lterK against l( ) to produe a modelK for the purposeof heking whether there are any state w in K where  2 w. We would show theKA we build will have the same property as K .1Thus we would like to prove that, for all ' 2 l( ):1In fat, their struture is very similar.



9Claim 2.1. KA; a j= ' i� ' 2 a.We an see this is learly true for propositional ' by requirement on types andtrue for ' = 2'0 by onstrution of �. The only ase that needs speial onsiderationis the ase :2' 2 a: it might be the ase that ' 2 b for all b with �(a; b). In thefollowing hapter, we will show that our onstrution satis�es laim 2.1.



10
Chapter 3Our AlgorithmsThe two algorithms presented here take a ertain \initial" set of types and applyrepeatedly a monotone operator to it. If this appliation reahes a �xpoint, we anshow that it yields a set of types where the above onstrution yields indeed a Kripkestruture that satis�es the laim 2.1, i.e., all negated box formulas are indeed \wit-nessed" by some b 2 A. This Kripke struture is then a model of  i�  2 a for somea 2 A.The �rst algorithm follows a \top-down" approah, i.e., it starts with the set A �2l( ) of all valid types, and the monotone operator removes those types ontainingnegated box formulas whih are not witnessed in the urrent set of types. Dually,the seond, \bottom-up", approah starts with the set of types that do not ontainnegated box formulas, and then adds those types whose negated box formulas arewitnessed in the urrent set of types.In the following, we will all our lass of algorithms KBDD sine we intend to useBDD as the state set representation.Both algorithms follow the following sheme:X ( Initial( )repeatX 0 ( XX ( Iterate(X 0)until X = X 0if exists x 2 X suh that  2 x thenreturn \ is satis�able"



11elsereturn \ is not satis�able"end ifSine this algorithmwill work on a �xed set of types and use a monotone Iterate(�)operator, it obviously terminates. In fat, we an show that it will terminate inmd( ) + 1 iterations. It remains to de�ne Initial( ) and Iterate(�).3.1 Top-Down ApproahThe top-down approah is losely related to the type elimination approah whih is,in general, used for more omplex modal logis, see, e.g., Setion 6 of [HM92℄. For thealgorithm pursuing the top-down approah, the funtions Initial( ) and Iterate(�)are de�ned as follows:� Initial( ) is the set of all  -types.� Iterate(A) := A n bad(A), where bad(A) are the types in A that ontain unwit-nessed negated box formulas. More preisely,bad(A) := fa 2 A j there exists :2' 2 a and, for all b 2 A with �(a; b);we have ' 2 bg:Theorem 3.1. The top-down algorithm deides satis�ability of K formulas.Proof. Let A be the set of types that is the �xpoint of the top-down algorithm, i.e.,Iterate(A) = A. We use A0 for Initial( ) and Ai for the set of types after i iterations.Lemma 3.1. (Soundness) For eah type a 2 A and formula ' 2 l( ), we haveKA; a j= ' i� ' 2 a.Proof. By indution on the struture of formulas.� If ' 2 AP ( ), then KA; a j= ' i� ' 2 a by onstrution of L.



12� If ' = :q, '0 ^ '00, or '0 _ '00, the laim follows immediately by indution andthe de�nition of types.� If ' = 2'0 2 a, the de�nition of � implies that '0 2 a0 for all a0 with �(a; a0),and by indution, KA; a0 j= '0. Hene KA; a j= 2'0 .� If ' = :2'0 2 a, then a =2 bad(A) beause Iterate(A) = A, and thus thereexists b 2 A with �(a; b) and '0 =2 b. By indution, KA; b j= :'0, and thusKA; a j= :2'0.Lemma 3.2. (Completeness) For all ' in l( ), if ' is satis�able, then there existssome a 2 A with ' 2 a.Proof. Given a satis�able formula ', take a model K = hAP ( );W;R; Li withK;w' j= '. For every world w 2 W , we de�ne a type a(w) = f% 2 l( ) : K;w j= %g.Next, we de�ne A(W ) = fa(w) j w 2 Wg. Obviously, due to the semantis of the boxmodality, R(v; w) implies �(a(v); a(w)). Then it an be shown by indution on thenumber of iterations that A(W ) � A. Sine ' 2 a(w') by onstrution, this provesthe lemma.� A(W ) � A0 sine A0 ontains all types a � l( ).� Let A(W ) � Ai and assume that A(W ) 6� Ai+1. Then there is some w 2 Ksuh that a(w) 2 bad(Ai). So there is some :2% 2 a(w) and, for all b 2 Aiwith �(a(w); b), we have % 2 b. Hene there is no v 2 W with R(w; v) andK; v j= :%, in ontradition to K;w j= :2%.3.2 Bottom-Up ApproahAs mentioned above, the algorithm pursuing the top-down approahstarts with allvalid types, and repeatly removes unwitnessed types. In ontrast, the algorithmpersuing the bottom-up approah starts with a small set of types (i.e., those without



13negated box formulas), and repeatedly adds those types whose negated box formulasare witnessed in the urrent set. More preisely, for the bottom-up approah, thefuntions Initial( ) and Iterate(�) are de�ned as follows:� Initial( ) is the set of all those types that do not require any witnesses, whihmeans that they do not ontain any negated box formula or, equivalently, thatthey ontain all positive box formulas in l( ). More preisely,Initial( ) := fa � l( ) j a is a type and 2' 2 a for eah 2' 2 l( )g:� Iterate(A) := A [ supp(A), where supp(A) is the set of those types whosenegated box formulas are witnessed by types in A. More preisely,supp(A) := fa � l( ) j a is a type and for all :2' 2 a, there exists b 2 Awith :' 2 b and �(a; b)g:We say that a type in supp(A) is witnessed by a type in A.Theorem 3.2. The bottom-up algorithm deides satis�ability of K formulas.Proof. As in the proof of Theorem 3.1, we use A for the �xpoint of the bottom-upalgorithm, A0 for Initial( ), and Ai for the set of types after i iterations.Lemma 3.3. (Soundness) For eah type a 2 A and formula ' 2 l( ), we haveKA; a j= ' i� ' 2 a.Proof. Again by indution on the struture of formulas.� If ' = q, then KA; a j= ' i� ' 2 a by onstrution of L.� If ' = :q, '0 ^ '00, or '0 _ '00, the laim follows immediately by indution andthe de�nition of types.� If ' = 2'0 2 a, then by de�nition of � and indution, KA; a j= '.



14� If ' = :2'0 2 a, then there exists by onstrution of A some b 2 A with:'0 2 b and �(a; b). Thus, by indution, KA; a j= '.Lemma 3.4. (Completeness) For all ' 2 l( ), if ' is satis�able, then there existssome a 2 A with ' 2 a.Proof. It is well-known that K has the �nite-tree-model property (see, e.g. [HM92℄),i.e., eah satis�able K formula  has a model whose relational struture forms a �nitetree. Take suh a model K = hAP ( );W;R; Li with K;w' j= ', and de�ne themappings a(�) and A(�) from worlds in K to types as in the proof of Lemma 3.2. Weshow by indution on i that, if i is the maximal distane between a node w 2 W andthe leaves of K's subtree rooted at w, then a(w) 2 Ai. Sine Aj � Aj+1 for all j andK forms a �nite tree model of ', this proves the lemma.� If i = 0, then w is a leaf in K (i.e., there is no w0 2 W with R(w;w0)), and thusK;w 6j= :2'0 holds for all :2'0 2 l( ). Hene a(w) 2 A0.� Let i > 0 and w a node with i the maximal distane between w and theleaves of K's subtree rooted at w. Then, by indution, for eah hild w0 of w,we have a(w0) 2 Ai�1. Now R(w;w0) implies �(a(v); a(w)). Thus, for eah:2'0 2 a(w), there is some w0 2 W with a(w0) 2 Ai�1 and :'0 2 a(w0). Thusa(w) 2 supp(Ai�1) � Ai.
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Chapter 4OptimizationsThe deision proedures desribed above handles a formula in three steps. First, theformula is onverted into box normal form. Then, a set of bit vetors representingtypes is generated. Finally, this set is updated through a �xpoint proess. The answerof the deision proedure depends on a simple syntati hek of this �xpoint. In thissetion, we will desribe four orthogonal optimization tehniques, working on di�erentstages in the proedure.4.1 PartilesIn the approahes presented so far, we memorize and take are of redundant informa-tion: for example, a bit vetor represents both a onjuntion and the orrespondingonjunts, whereas the truth value of the former is determined by the truth value ofthe latter. Now we propose a representation where we only keep trak of the \non-redundant" sub-formulas, whih possibly redues the size of the orresponding BDDs.To do so, it is onvenient to work on formulas in a di�erent normal form.A K formula  is said to be in negation normal form (NNF) if all its sub-formulasare of the form ' ^ '0, ' _ '0, 2', 3', q, or :q where q 2 AP ( ). When needed,we assume the formula  is already in NNF. We use sub( ) to represent the set ofsub-formulas of NNF ( ). All K formulas an be onverted into negation normalform without blow up by pushing negation inwards.A set p � sub( ) is a full  -partile if it satis�es the following onditions:� If ' = :'0, then ' 2 p implies '0 =2 p.



16� If ' = '0 ^ '00, then ' 2 p implies '0 2 p and '00 2 p.� If ' = '0 _ '00, then ' 2 p implies '0 2 p or '00 2 p.Thus, in ontrast to a type, a full partile may ontain both '0 and '00, but neither'0 ^ '00 nor '0 _ '00.For partiles, �(�; �) is de�ned as for types. From a set of partiles P and theorresponding �(�; �), we an onstrut a Kripke struture KP in the same way asfrom a set of types.For the top-down approah, the auxiliary funtions Initial(�) and Iterate(�) forfull partiles are de�ned as follows:� Initial( ) is the set of all full  -partiles.� Iterate(P ) = P n bad(P ), where bad(P ) is the partiles in P that ontainunwitnessed diamond formulas, i.e.bad(P ) = fp 2 P j there exists 3' 2 p suh that, for all q 2 Pwith �(p; q); we have ' =2 qg:Theorem 4.1. The top-down algorithm for partiles deides satis�ability of K for-mulas.Proof.Lemma 4.1. (Soundness) For eah type p 2 P and formula ' 2 sub( ), if ' 2 p,then KP ; p j= '.Proof. The same proof as lemma 3.1 applies, exept for the :2'0 part, (whih doesnot exist for partiles), and for the 3 operator:� If ' = 3'0 2 p, then p =2 bad(P ) beause Iterate(P ) = P , and thus exists q 2 Pwith �(p; q) and '0 2 q. By indution, KP ; q j= '0, and thus KP ; p j= 3'0.



17Lemma 4.2. (Completeness) For all ' 2 sub( ), if ' is satis�able, then thereexists some p 2 P where ' 2 p.Proof. See lemma 3.2. A analogous proof an be onstruted by taking a model Kfor ' and generate a partile set P (W ) from the states of K. To show P (W ) � P ,we an follow the same proof by ontradition sheme:� P (W ) � P 0 sine P 0 ontains all partiles p � sub( ).� Let P (W ) � P i and assume that P (W ) 6� P i+1. Then there is some w 2 Ksuh that p(w) 2 bad(P i). So there is some 3' 2 p(w) and for all q 2 Aiwith �(p(w); q), we have ' =2 q. Hene there is no v 2 W with R(w; v) andK; v j= :', in ontradition to K;w j= 3'.Analogously, these funtions are de�ned for the bottom-up approah as follows:� Initial( ) is the set of full  -partile p that do not ontain diamond formulas,i.e., 3' =2 p for all 3' 2 sub( ).� Iterate(P ) = P [ supp(P ), where supp(P ) is the set of witnessed partiles, i.e.supp(P ) = fp � sub( ) j p is a  -partile and, for all 3' 2 p;there exists q 2 P with ' 2 q and �(p; q)g:Theorem 4.2. The bottom-up algorithm for partiles deides satis�ability of K for-mulas.Proof.Lemma 4.3. (Soundness) For eah partile p 2 P and formula ' 2 sub( ), if' 2 p, then KP ; p j= '.Proof. Analogous to 3.3 and lemma 4.1.Lemma 4.4. (Completeness) For all ' 2 sub( ), if ' is satis�able, then thereexists some p 2 P with ' 2 p.



18Proof. Analogous to 3.4 and lemma 4.2.While enoding partile sets by BDDs may require more BDD variables, we stillmight see a redution in BDD size, beause partiles requires fewer onstraints thantypes.1 Beside a possible redution in the size required to enode a bit-vetor represen-tation of partile sets, the partile-based approahes also an improve running time.From the de�nition of bad and supp, we an see that, in the type-based approahes,for eah �xpoint iteration, the number of onstraints that needs to be applied to thestate set in eah iteration is equal to the number of 2 operators, whih is equal tothe total number of all modal operators in the original formula. On the other hand,in partile-based approahes, the number of onstraints only have to be equal to thenumber of 3 operators in the NNF form of the formula, whih is smaller.4.2 Lean ApproahesThis optimization is also motivated by the idea to ompress the size of the bit vetorrepresenting a type by omitting redundant information. To this purpose, we �rstde�ne a set of \non-redundant" sub-formulas atom( ) as the set of those formulas inl( ) that are neither onjuntions nor disjuntions, i.e., eah ' 2 atom( ) is of theform 2'0, q, :2'0, or :q. By the de�nition of types, eah type a � l( ), orrespondsone-to-one to a lean type lean(a) := a \ atom( ). So storing types in lean form isequivalent to storing them in full form. Thus the following theorem is trivial.Theorem 4.3. The top-down/bottom-up algorithms for lean atoms deide satis�abil-ity for K.Proof. Take any atom set A during the algorithm and its lean version A0. De�nefull(A0) = fa j a\ atom( ) 2 A0 and a is an atomg, we an see full(A0) = A. So giventhe full atom algorithms are sound and omplete, so are the lean atom algorithms.1Of ourse, BDD size is always formula dependent. In our experiments, we observed that partileapproahes gives BDD sizes between a small onstant fator (i.e., 2-3) larger to orders of magnitudessmaller ompared to type approahes.



19Analogously, we an de�ne a lean representation for partiles. First, we de�nethe relevant sub-formulas part( ) as follows: For ' 2 sub( ), if ' is 3'0, 2'0, q, or:q, then ' is in part( ). For a full partile p � sub( ), we de�ne the orrespondinglean partile lean(p) as follows: lean(p) = p \ part( ). Beause the (�rst) onditionon partiles is more relaxed than that of atoms, a lean partile does not orrespondto a single full partile, but an represent several full partiles.Theorem 4.4. The top-down/bottom-up algorithms for lean partiles deide satis�-ability for K.Proof. Given a partile set P used in the full version of the algorithm and the its leanorrespondent P 0, there does not exist a bijetion from P to P 0.2 But the partileset P we onstrut in our algorithms have additional properties. In partiular, for ifp 2 P , for all onsistent q � l( ) suh that p0 = q0, q 2 P . So P 0 fully haraterizesP . This is by de�nition of Initial( ) and Iterate(P ) sine these funtions onlyapply onstraints on subformulas that are member of part( ). So at any step in thealgorithm, take P 0 and build full(P 0) = fp � sub( ) j lean(p) 2 P 0 ^ p is onsistentg,full(P 0) = P . So given the full partile algorithms are sound and omplete, so are thelean partile algorithms.Although lean approahes an possibly redue the size required for representingworlds, we have to pay for these savings sine omputing bad and supp using leantypes and partiles an be more ompliated.4.3 Level-based evaluationAs already mentioned, K has the �nite-tree-model property, i.e., eah satis�able for-mula  of K has a �nite tree model of depth bounded by the depth md( ) of nestedmodal operators in  . Here, we take advantage of this property and, instead of rep-resenting a omplete model using a set of partiles or types, we represent eah layer2In fat, j P j6=j P 0 j



20(i.e., all worlds being at the same distane from the root node) in the model usinga separate set (For a level-based approah in the ontext of the �rst-order approahto K, see [AGHd00℄). Sine only a subset of all sub-formulas appears in one layer,the representation an be more ompat. We only present the optimization for theapproah using (full) types. The partile approah and the lean approahes an beonstruted analogously. For 0 � i � md( ), we writeli( ) := f' 2 l( ) j ' ours at modal depth i in  g;and we adapt the de�nition of the possible aessibility relation � aordingly:�i(a; a0) i� a � li, a0 � li+1, and '0 2 a0 for all 2'0 2 a.A sequene of sets of types A = hA0; A1; : : : ; Adi with Ai � 2li( ) an be onvertedinto a tree Kripke strutureKA = hAP ( ); _℄0�i�dAi; R; Li(where the worlds are the disjoint union of the Ai) as follows:� For a world a 2 Ai and q 2 AP ( ), we de�ne L(a)(q) = 1 if q 2 a, andL(a)(q) = 0 if q =2 a.� For a pair of states a; a0, R(w;w0) = 1 i�, for some i, a 2 Ai and a0 2 Ai+1 and�i(a; a0).The algorithm for level-based evaluation works as follows:d( md( )Xd ( Initiald( )for i = d� 1 downto 0 doXi ( Iterate(Xi+1; i)end forif exists x 2 X0 where  2 x then



21 is satis�able.else is not satis�able.end ifPlease note that this algorithm works bottom-up in the sense that it starts withthe leaves of a tree model at the deepest level and then moves up the tree model towardthe root, adding nodes that are \witnessed". In ontrast, the bottom-up approahpresented earlier an be said to start with all leaves of a tree model.For the level based algorithm and types as data struture, the auxiliary funtionsan be de�ned as follows:� Initiali( ) = fa � li( ) j a is a typeg.� Iterate(A; i) = fa 2 Initiali( ) j for all :2' 2 a there exists b 2A where :' 2 b and �i(a; b)g.For a set A of types of formulas at level i+1, Iterate(A; i) represents all types offormulas at level i that are properly witnessed in A.De�nition 4.1. Sine in the level-based evaluation algorithm, we use eah assign-ment set to represent only assignments to li( ), the assignments are not valid types,but they are onsistent enough for what formulas ouring at level i. We all an as-signment a onsistent for level i if it meets the requirement on types for formulas inli( ). The same de�nition an be made for assignment sets, and if the set Ai islabeled with a level, we take a shortut and use it as if it is a set of types if it isonsistent for level i.Theorem 4.5. The level based algorithm for atom assignments is sound and omplete.Proof. We write the sequene of assignment sets onstruted by the level basedalgorithm as A = hA0; A1; : : : ; Adi where d = md( ).



22Lemma 4.5. (Soundness) For all ' 2 li( ), and a 2 Ai, we have KA; wa;i j= 'i� ' 2 a.Proof. Indution on the struture of the formula.� ' = q: Then KA; wa;i j= ' by onstrution of L.� Otherwise, assume indutively the laim holds for all subformulas of '.{ ' = '0 ^ '00, '0 _ '00, :'0: We here prove for the ^ ase. By de�nitionof li, '0 2 li( ), '00 2 li( ). By onsisteny of Ai, for all a 2 Ai, if' 2 a, we have '0 2 a, '00 2 a. By indutive hypothesis, KA; wa;i j= '0,KA; wa;i j= '00. So KA; wa;i j= ' by semantis of K. The same argumentan be made of _ and :.{ ' = 2'0: If ' 2 a, then by onstrution of R, we have: (1) For alla0 2 Ai+1 that R(wa;i; wa0;i+1), we have '0 2 a0. (2) There are no j 6= i+ 1where R(wa;i; wb;j) for any assignment b. By de�nition of li, '0 2 li+1( ).So by the indutive hypothesis, KA; wa0;i+1 j= '0 for all suh a0. So bysemantis of K, KA; wa;i j= '. If ' =2 a, By de�nition of Iterate, everyassignment a 2 Ai is onsistent for li( ). So :' 2 a. By de�nition ofIterate, exists a0 2 Ai+1 suh that :'0 2 a0 and for all 2% 2 a, we knowthat 2% 2 li( ) so % 2 a0. So by de�nition of R, R(wa;i; wa0;i+1) holds. Byindution hypothesis, KA; wa0;i+1 j= :'0. So KA; wa;i j= :'.Corollary 4.1. If exists a 2 A0 suh that  2 a, then KA; wa;0 j=  .Lemma 4.6. (Completeness) For ' 2 li( ), if ' is satis�able, then there is anatom assignment a 2 Ai where ' 2 a.Proof. We know from [HM92℄ that if ' is satis�able, it have a �nite tree modelof depth d' = md('). We also know from de�nition of md and li that i + d' �d = md( ). Given that ' is satis�able, take a tree model K' with depth d where



23K'; w' j= ' and d � d � i. Sine i + d' � d , suh a model exists. Sine K' isa tree model, eah state w 2 W only ours at a unique distane from the root w'.We partition the state set W of K' into fW0;W1; : : : ;Wdg, in whih a state w 2 Wjours at distane j from the root. For eah w 2 Wj we de�ne an atom assignmenta(w) = f% 2 l i+ j ) j K'; w j= %g. We de�ne A(Wj) = fa(w) j w 2 Wjg as a set ofassignments to formulas in li+j( ). We now show that A(Wj) � Ai+j.We prove by indution on depth j:� j = d: We know every state w 2 Wd is a terminal state in K'. It follows thatfor all % = :2%0, we have K'; w 6j= %. So % =2 a(w). And by semantis of K,a(w) is onsistent. Sine Ai+j ontains all witnessed assignments to li+j( ) byde�nition, we have a(w) 2 Ai+j.� j < d: Assume indutively that the laim holds for j 0 = j + 1. For a statew 2 Wj, a(w) is onsistent by the semantis of K. For all % = :2%0 2 li+j( ),we have :%0 2 li+j0( ). If % 2 a(w), we have K'; w j= :2%0. So exists w0 2 Wj0where R(w;w0) and K'; w0 j= :%0. So :%0 2 a(w0). By indutive hypothesis,a(w0) 2 Ai+j0. By the semantis of K, for all 2%00 2 li+j( ), where 2%00 2 a(w),we have %00 2 a(w0). So a(w) 2 Ai+j by de�nition of Iterate.Sine w' 2 W0, we have a(w') 2 Ai, and beause ' 2 li( ), we have ' 2 a(w') byonstrution of a.Corollary 4.2. If  is satis�able, then exists a 2 A0 suh that  2 a.The same algorithms an be de�ned for partile based approahes, by de�ning ananalogous subi( ), and using� Initiali( ) = fp � subi( ) j p is a partileg.� Iterate(P; i) = fp 2 Initiali( ) j for all 3' 2 p there exists q 2 P where ' 2q and �i(p; q)g.



24Theorem 4.6. The level based algorithm for partile assignments is sound and om-plete.Proof. We write the sequene of assignment sets onstruted by the level basedalgorithm as P = hP0; P1; : : : ; Pdi where d = md( ).Lemma 4.7. (Soundness) For all ' 2 subi( ), and p 2 Pi, if ' 2 p, thenKP ; wp;i j= '.Proof. Indution on the struture of the formula.� ' = q;:q: Then KP ; wp;i j= ' by onstrution of L.� Otherwise, assume indutively the laim holds for all subformulas of '.{ ' = '0 ^ '00, '0 _ '00: We here prove for the ^ ase. By de�nition ofsubi, '0 2 subi( ), '00 2 subi( ). By onsisteny of Pi, for all p 2 Pi, if' 2 p, we have '0 2 p, '00 2 p. By indutive hypothesis, KP ; wp;i j= '0,KP ; wp;i j= '00. So KP ; wp;i j= ' by semantis of K. The same argumentan be made for _.{ ' = 2'0: By onstrution ofR, for every wp0;j where R(wp;i; wp0;j), we knowthat j = i+ 1 and '0 2 p0. So by semantis of 2, we get KP ; wp;i j= '.{ ' = 3'0: Assume KP ; wp;i 6j= '. Then KP ; wp;i j= 2:'0. So for all wp0;i+1where R(wp;i; wp0;i+1), KP ; wp0;i+1 j= :'0 by semantis of K. By indutivehypothesis, '0 =2 p0. So p =2 Iterate(Pi+1; i) by de�nition of Iterate whihis a ontradition. So KP ; wp;i j= '.Lemma 4.8. (Completeness) For ' 2 subi( ), if ' is satis�able, then there is apartile assignment p 2 Pi where ' 2 p.Proof. Given that ' is satis�able, take a tree model K' rooted at w' with depth dwhere K'; w' j= ' and d � d � i. Sine i+ d' � d , suh a model exists. Sine K'is a tree model, eah state w 2 W only ours at a unique distane from the root w'.



25We partition the state set W of K' into fW0;W1; : : : ;Wdg, in whih a state w 2 Wjours at distane j from the root. For eah w 2 Wj we de�ne a partile assignmentp(w) = f% 2 subi+j  ) j K'; w j= %g. We de�ne P (Wj) = fp(w) j w 2 Wjg as a set ofassignments to formulas in subi+j( ). We now show that P (Wj) � Pi+j.We prove by indution on depth j:� j = d: We know every state w 2 Wd is a terminal state in K'. It follows thatfor all % = 3%0, we have K'; w 6j= %. So % =2 p(w). And by semantis of K,p(w) is onsistent. Sine Pi+j ontains all witnessed assignments to subi+j( )by de�nition, we have p(w) 2 Pi+j.� j < d: Assume indutively that the laim holds for j 0 = j + 1. For a statew 2 Wj, p(w) is onsistent by the semantis of K. For all % = 3%0 2 subi+j( ),we have %0 2 subi+j0( ). If % 2 p(w), we have K'; w j= 3%0. So exists w0 2 Wj0where R(w;w0) and K'; w0 j= %0. So %0 2 p(w0). By indutive hypothesis,p(w0) 2 Pi+j0. By the semantis ofK, for all2%00 2 subi+j( ), where 2%00 2 p(w),we have %00 2 p(w0). So p(w) 2 Pi+j by de�nition of Iterate.Sine w' 2 W0, we have p(w') 2 Pi, and beause ' 2 subi( ), we have ' 2 p(w') byonstrution of p.4.4 Formula simpli�ationWe now turn to a high-level optimization, in whih we apply some preproessing tothe formula before submitting it to KBDD. The idea is to apply some light-weightreasoning to simplify the input formula before starting to apply heavy-weight BDDoperations. In the propositional ase, a well-known preproessing rule is the pure-literal rule [DLL62℄, whih an be applied both in a preproessing step as well asdynamially, following the unit-propagation step. Preproessing has also been shownto be useful for linear-time formulas [SB00, EH00℄, but has not been systematially



26explored for K. Our preproessing is based on a modal pure-literal simpli�ation,whih takes advantage of the layered-model property of K.When studying preproessing for satis�ability solvers, two types of transformationshould be onsidered:1. Equivalene preserving: This requires that the simpli�ed formulas '0 is logi-ally equivalent to the input formula '. Unit propagation is an example of anequivalene-preserving transformation. Suh a transformation is used in modelheking [SB00, EH00℄, where the semantis of the formula needs to be pre-served. An equivalene-preserving rule an be applied to subformulas.2. Satis�ability preserving: This requires only that '0 is satis�able i� ' is sat-is�able. Pure-literal simpli�ation is an example of a satis�ability-preservingtransformation. Suh transformations allow for more aggressive simpli�ation,but annot be applied to subformulas. Note that suh a transformation an beused for satis�ability solving but not for model heking.Our preproessing was designed to redue the number of BDD operations alledby KBDD, though its orretness is algorithm independent. (We found that suhpreproessing was bene�ial for DLP, a tableau-based modal solver, as well as QuBE,a DPLL-based solver but not for MSPASS, a resolution-based solver.) The fous ofthe simpli�ation is on the following aspets:1. The primary goal is to minimize the size of the formula. A smaller formulaleads to a redution in BDD size as well as a redution in the number of BDDoperations and dynami variable re-orderings.2. We also aim at minimizing the number of modal operators in the formula. Thisleads to a smaller transition relation, where we have a onstraint for eah 2 sub-formula, as well as a smaller number of BDD operations involved in witnessing3 subformulas.



27Propositional rulesEquivalene f ^ true ! f f ^ false ! falsef _ true ! true f _ false ! ff ^ f ! f f _ f ! ff ^ :f ! false f _ :f ! trueModal rulesEquivalene 3 false ! false 2 true ! true3f _3g ! 3(f _ g) 2f ^ 2g ! 2(f ^ g)Satis�ability 3f ^ 2g ^ h! 3(f ^ g) ^ h 3f ! fpreserving where h is a propositional formula.Table 4.1 : Simpli�ation rewriting rules for K4.4.0.1 Rewrite rulesOur preproessing inludes rewriting aording to a olletion of rewrite rules (seeTable 4.1). Although the rules an be applied in both diretions, we apply only thediretion that redues the size of the formula. It is easy to see that the rules areequivalene or satis�ability preserving. These rules by themselves are only modestlye�etive for K formulas; they do beome quite e�etive, however, when implementedin ombination with pure-literal simpli�ation, desribed below. These rules allows usto propagate the e�ets of pure-literal simpli�ation by removing redundant portionsof the formula after pure-literal simpli�ation. This usually allows more pure literalsto be found and an greatly redue the size of the formula.4.4.0.2 Pure-literal simpli�ationTo apply pure-literal simpli�ation to K satis�ability solving, we �rst need to extendit to the modal setting.



28De�nition 4.2. Given a set S of (propositional or modal) formulas in NNF, wede�ne lit(S) = fl j l 2 S and l is q or :q; where q 2 �g as the set of literals of S.The set pure(S) of de�ned as the set of literals that have a pure-polarity ourrenein S, i.e., l 2 pure(S) i� l 2 lit(S) and :l =2 lit(S).It is well known that pure-literal simpli�ation preserves propositional satis�abil-ity; that is, given a propositional formula ', for any literal l 2 pure('), ' is satis�ablei� '[l= true℄ is satis�able. There are a number of ways to extend the de�nition of pureliterals to modal logis. A naive de�nition an be as follows:De�nition 4.3. For a formula  in NNF, we de�ne pure( ) = pure(sub( )) as theset of globally pure literals of  , and de�ne the orresponding formula after pureliteral simpli�ation as  0G =  [pure( )= true℄.Given that K has the layered-model property, assignments to literals at di�erentmodal depth are in di�erent worlds and should not interfere with eah other. Astronger de�nition of pure literals an be as follows:De�nition 4.4. For  in NNF, we de�ne level-pure literals by purei( ) =pure(subi( )), for 0 � i � md( ). The substitution used for level-pure literalsneeds to take into onsideration that l 2 purei( ) is only pure at modal depth i,so we let  [purei( )= true℄i be the substitution with true of all level-pure literalsl that our at distane i from  . The result of the pure-literal simpli�ation is 0L =  [pure0( )= true℄0 : : : [puremd( )( )= true℄md( ).Remark 4.1. It is possible to push this idea of \separation" further. Beause eahworld in the model only needs to satisfy a subset of sub( ), the possible subsets an beonstruted to determine whih of the literals an be pre-assigned true. For example,it is possible to onstrut sets of subformulas that an our together in a tableau andde�ne pure literals based on suh sets. We did not �nd that the performane bene�tjusti�ed the implementation overhead for this extension.



29We now prove the sound and ompleteness of pure-literal simpli�ation. That is,we show that pure-literal simpli�ation preserves satis�ability for both globally pureliterals and level-pure literals.Theorem 4.7. Both global and level pure-literal simpli�ations are satis�ability pre-serving. That is, for a formula  , we have that  is satis�able i�  0G(or  0L) issatis�able.Proof. We write  0 instead of  0G or  0L, when the formula used is lear from theontext. Without loss of generality, we assume that only one literal l is substituted.Sine other pure literals for  are still pure with respet to  0 under both de�nitions,the general ase an be shown by indution on the number of literals.The ompleteness part of the laim is easy. It is known that the 2 and 3 operatorsare monotone [BdV01℄. More formally, if  is a formula in NNF, � is a subformulaourrene of  and � is another formula that is logially implied by �, then  [�=�℄is logially implied by  . It follows that  0 is logially implied by  . In partiular, if is satis�able, then  0 is satis�able.In the following, we take K = h�;W;R; Li and K 0 = h�;W;R; L0i to be �nitetree Kripke strutures of depth md( ) with the same underlying frame, and w0 2 Wto be the root of the tree, where we want  and  0 to hold.The soundness proof for pure-literal simpli�ation depends whether we use glob-ally pure or level-pure literals.� Globally pure literals: Assume K 0; w0 j=  0. Note that l does not our in  0G,so we an assume that L does not de�ne a truth value for l. We onstrut Kfrom K 0 by taking L to be an extension of L0 suh that L(w)(l) = true for everyw 2 W . We laim that for every state w 2 W and every formula ' 2 sub( ),we have that K 0; w j= '[l= true℄ implies K;w j= '. We prove the laim byindution on the struture of the formula. If ' is a propositional literal, theproperty holds beause either ' = l, in whih ase K;w j= l by onstrution, or



30' is a literal l0 suh that AP (l0) 6= AP (l), in whih ase L(w) and L0(w) agreeon l0, so K 0; w j= l0 implies K;w j= l0. For the indution, we show only thease when ' = 2'0. Given K 0; w j= '[l= true℄, we have that K 0; w0 j= '0[l= true℄holds for all w0 suh that R(w;w0). By the indutive hypothesis, K;w0 j= '0 forall suh w0 as well. So K;w j= ' holds. Thus K 0; w0 j=  0 implies K;w0 j=  .� Level-pure literals: Assume K 0; w0 j=  0. Let dist( ; l) = d. For 0 � i � md( ),de�ne Wi = fw j distane between w and w0 = ig. We onstrut K from K 0by de�ning L as follows: (1) L(w) = L0(w) for w 62 Wd, (2) L(w)(l) = truefor w 2 Wd, and (3) L(w) agree with L0(w) for p 2 � � AP (l) and w 2 Wd.Intuitively, we modify L0 by making l true in all worlds w 2 Wd.We laim that for a formula ' 2 subi( ), and a world w 2 Wi we have thatK 0; w j= '[l= true℄d�i implies K;w j= '. It follows that K;w0 j=  [l= true℄d.For d < i � md( ), note that '[l= true℄d�i = ' and L agrees with L0 on allworlds in [md( )j=i Wj. Sine truth of formulas in worlds of Wi depends only onworlds in [md( )j=i Wj, the laim holds trivially. For i � d, we use indution onthe struture of '. If ' is a propositional literal, the property holds beauseeither ' = l and dist( ; ') = d, in whih ase K;w j= l by onstrution, oreither ' is a literal l0 suh that AP (l0) 6= AP (l) or dist( ; ') 6= d, in whih aseL(w) and L0(w) agree on l0, so K 0; w j= l0 implies K;w j= l0. For the indution,we show only the ase when ' = 2'0. Given K 0; w j= '[l= true℄d�i, we havethat K 0; w0 j= '0[l= true℄d�i�1 holds for all w0 suh that R(w;w0). Note thatif R(w;w0) holds and w 2 Wi, then w0 2 Wi+1. By the indutive hypothesis,K;w0 j= '0 for all suh w0 as well. So K;w j= ' holds.



31
Chapter 5Implementation5.1 Base AlgorithmWe use Binary Deision Diagrams (BDDs) [Bry86, And98℄ to represent sets of types.BDDs, or more preisely, Redued Ordered Binary Deision Diagrams (ROBDDs), areobtained from binary deision trees by following a �xed variable splitting order and bymerging nodes that have idential hild-diagrams. BDDs provide a anonial form ofrepresentation for Boolean funtions. Experiene has shown that BDDs often providea very ompat representation for very large Boolean funtions. Consequently, overthe last deade, BDDs have had a dramati impat in the areas of synthesis, testing,and veri�ation of digital systems [BBG+94, BCM+92℄.In this setion, we desribe how our two algorithms are implemented using BDDs.First, we de�ne a bit-vetor representation of types. Sine types are omplete in thesense that either a sub-formula or its negation must belong to a type, it is possiblefor a formula and its negation to be represented using a single BDD variable.The representation of types a � l( ) as bit vetors is de�ned as follows: Sineboth formulas and their negations are in l( ), we de�nel+( ) = f'i 2 l( ) j 'i is not of the form :'0g;l�( ) = f:' j ' 2 l+( )g;and use m for j l+( )j = j l( )j=2. For l+( ) = f'1; : : : 'mg, a vetor ~a =ha1; : : : ; ami 2 f0; 1gm represents a set1 a � l( ) where 'i 2 a i� ai = 1.1Please note that this set is not neessarily a type.



32A set of suh bit vetors an obviously be represented using a BDD with mvariables. It remains to \�lter out" those bit vetors that represent types.We de�ne Consistent as the harateristi prediate for types: Consistent (~a) =V1�i�m Consi(~a), where Consi(~a) is de�ned as follows:� if 'i is neither of the form '0 ^ '00 nor '0 _ '00, then Consi(~a) = 1,� if 'i = '0 ^ '00, then Consi(~a) = (ai ^ a0 ^ a00) _ (:ai ^ (:a0 _ :a00)),� if 'i = '0 _ '00, then Consi(~a) = (ai ^ (a0 _ a00) _ (:ai ^ :a0 ^ :a00)),where a0 = a` if '0 = '` 2 l+( ), and a0 = :a` if '0 = :'` for '` 2 l+( ).From this, the implementation of Initial is fairly straight forward: For the top-down algorithm, Initial( ) := f~a 2 f0; 1gm j Consistent (~a)g;and for the bottom-up algorithm,Initial( ) := f~a 2 f0; 1gm j Consistent (~a) ^ ^'i=2'0 ai = 1g:In the following, we do not distinguish between a type and its representation as abit vetor ~a. Next, to speify bad(�) and supp(�), we de�ne auxiliary prediates:� 31;i(~x) is read as \~x needs a witness for a diamond operator at position i" andis true i� xi = 0 and 'i = 2'0.� 32;i(~y) is read as \~y is a witness for a negated box formula at position i" andis true i� 'i = 2'j and yj = 0 or 'i = 2:'j and yj = 1.� 21;i(~x) is read as \~x requires support for a box operator at position i" and istrue i� xi = 1 and 'i = 2'0.� 22;i(~y) is read as \~y provides support for a box operator at position i" and istrue i� 'i = 2'j and yj = 1 or 'i = 2:'j and yj = 0.



33For a set A of types, we onstrut the BDD that represents the \maximal" a-essibility relation �, i.e., a relation that inludes all those pairs (~x; ~y) suh that ~ysupports all of ~x's box formulas. For types ~x; ~y 2 f0; 1gm, we de�ne�(~x; ~y) = ^1�i�m(21;i(~x)! 22;i(~y)):Given a set A of types, we write the orresponding harateristi funtion as �A.Both the top-down and the bottom-up algorithm an be de�ned using the prediates�A, �, 3j;i, and 2j;i.The prediate bad is true on those types that ontain a negated box formula thatis not witnessed in the urrent set of types. We an de�ne a prediate badi for eahnegated box formula 'i = :2'j that an be used to remove unwitnessed bit vetorsas follows: �badi(X)(~x) = 31;i(~x) ^ 8~y : ((�X(~y) ^�(~x; ~y))! :32;i(~y));and thus bad(X) an be written as�bad(X)(~x) = _1�i�m�badi(X)(~x):In our implementation, we ompute eah �badi(X) and use it in the implementation ofthe top-down and the bottom-up algorithm. It is easy to see that �badi(X) is equivalentto 31;i(~x)! 9~y : (�X(~y) ^�(x; y) ^32;i(~y)):For the top-down algorithm, the Iterate funtion an be written as:�Xnbad(X) := �X(~x) ^ ^1�i�m(�badi(X)(~x))For the bottom-up algorithm, we must take are to only add bit vetors representingtypes, and so the Iterate funtion an be implemented as:�X[supp(X) := �X(~x) _ (�Consistent (~x) ^ ^1�i�m(�badi(X)(~x))



34These funtions an be written more suintly using the pre-image funtion for therelation �: preim�(�N)(~x) = 9~y : �N (~y) ^�(~x; ~y):Using pre-images, we an rewrite �badi(X) as follows:�badi(X)(~x) = 31;i(~x)! preim�(�X(~y) ^32;i(~y)):Finally, the bottom-up algorithms an be implemented as iterations over the sets�X[supp(X), and the top-down algorithms an be implemented as iterations over�Xnbad(X) until a �xpoint is reahed. Then heking whether  is present in a type ofthis �xpoint is trivial.The pre-image operation is a key operation in both the bottom-up and the top-down approahes. It is also known to be a key operation in symboli model heking[BCM+92℄ and it has been the subjet of extensive researh (f. [BCL91, GB94,RAB+95, CCGR00℄), sine it an be a quite time and spae onsuming operation.Various optimizations an be applied to the pre-image omputation to redue thetime and spae requirements. A method of hoie is that of onjuntive partitioningombined with early quanti�ation. The idea is to avoid building a monolithi BDDfor the relation �, sine this BDD an be quite large. Rather, we take advantage of thefat that � is de�ned as a onjuntion of simple onditions. Thus, to ompute the pre-image we have to evaluate a quanti�ed Boolean formula of the form (9y1) : : : (9yn)(1^: : : ^ m), where the i's are Boolean formulas. Suppose, however, that a variable yjdoes not our in the lauses i+1; : : : ; m. Then the formula an be rewritten as(9y1) : : : (9yj�1)(9yj+1) : : : (9yn)((9yj)(1 ^ : : : ^ i) ^ (i+1 ^ : : : ^ m)):This enables us to apply existential quanti�ation to smaller BDDs.Of ourse, there are many ways in whih one an luster and re-order the i's. Oneof whih we used is the methodology developed in [RAB+95℄, alled the \IWLS 95"methodology, to ompute pre-images. We also have tried other lustering mehanisms,



35namely the \buket-elimination" approah used in [SV01℄. Given a set of onjuntiveomponents 1 : : : n, we get the variable support set for eah omponent as Y1 : : : Yn.Then, a graph of interferene of variables is onstruted so every vertex represents avariable, and there is an edge between variables yi and yj if yi and yj ours togetherin some Yk. We ondut an \maximum ardinality ordering" of the variables, so y1 isthe variable that ours with the maximal number of edges, and yi have the maximumnumber of edges into previously hosen variables. Given suh an variable order, we anorder the onjuntive omponents in the order of the �rst ourrene of the highest(or lowest) ordered variables (either forward or bakward). We have implemented allfour ombinations in this ase, although the performane improvements are minimal.5.2 Optimizations5.2.1 PartilesEnoding of the partile based approah with BDDs is analogous to the enoding ofthe atom based approah. Sine the onsisteny requirement for partiles is morerelaxed then that of atoms, eah subformula in sub( ) needs to be assigned to avariable. So given sub( ) = f'1; :::'ng, a vetor ~p = hp1; :::pmi 2 f0; 1gn represents aset p � sub( ) with 'i 2 p i� pi = 1.Then, for partiles, Consistent (~p) = ^1�i�nConsi(~p), where Consi(~p) is de�nedas follows:� If 'i is neither of the form 'j ^ 'k nor 'j _ 'k, then Consi(~p) = 1,� If 'i = 'j ^ 'k, then Consi(~p) = (pi ! (pj ^ pk)),� If 'i = 'j _ 'k, then Consi(~p) = (pi ! (pj _ pk)),� If 'i = :'j, then Consi(~p) = :(pi ^ pj).We also need to update the auxiliary prediates for partiles:



36� 31;i(~x) is true i� xi = 1 and 'i = 3'0.� 32;i(~y) is true i� 'i = 3'j and yj = 1.� 21;i(~x) is true i� xi = 1 and 'i = 2'0.� 22;i(~y) is true i� 'i = 2'j and yj = 1.5.2.2 Lean vetorsLean approahes have muh more relaxed onsisteny prediates at the ost of biggerwitness/support prediates. For lean approahes, Only the Consi(~x) that is relatedto those 'i in atom( ) (or part( )) are used.On the other hand, the auxiliary (witness/support) prediate for the lean approahis signi�antly more omplex. We now de�ne the orresponding auxiliary funtionsfor lean assignments.De�nition 5.1. For a formula  , we de�ne bl( ) = l( )� atom( ), representingthe Boolean (non-modal) subformulas in the BNF of  . The same an be de�ned forthe NNF of  as bsub( ) = sub( )� part( ).De�nition 5.2. For lean partile/atom assignments, 31;i and 21;i is the same as fullpartile/atom assignments. But sine the subformula with the modal operator strippedmay not be in atom( ) or part( ), we need to rede�ne the funtions 32;i, 22;i withthe same intuition as for full partile/atom vetors.We do so by de�ning the helper funtion stripi indutively as:
strip i(~y) = 8>>>>>><>>>>>>:

stripj(~y) ^ stripk(~y) if 'i = 'j ^ 'kstripj(~y) _ stripk(~y) if 'i = 'j _ 'k: stripj(~y) if 'i = :'jyi if 'i 2 atom( ) for atoms or part( ) for partiles



37Obviously, for both lean partile or atom assignments, stripi an be omputed whenparsing the input formula, and be kept in a table.Next, 32;i and 22;i an be de�ned as:32;i(~y) = 8<: stripi(~y) partiles: stripi(~y) atoms22;i(~y) = strip i(~y)5.2.3 Level based evaluationThe level-based evaluation approahes is omputed in a similar way. Sine in the level-based algorithm, we keep an assignment set for eah modal level, so going throughall the badi(X) is no longer neessary. Also sine the level based algorithm onlyrequires the assignment set to be onsistent w.r.t. to subformulas in a single modallevel, we an split the onstraint prediate Consistent to d + 1 sets Consistent0 toConsistentd where eah only onsists of onstraints related to 'i 2 li( ). So for afull/lean atom/partile approah alg, We de�ne �leveli(X) as:�leveli(X)(~x) = �Consistenti(~x) ^ ^fjj'j2li( )g(�badj(X)(~x))Then �Initiali(~a) = Consistenti(~a), and �Iterate(A;i)(~a) = �(Consistenti)(~a) ^�leveli(A)(~a).The level based evaluation for partiles an be implemented in the same way.5.2.4 Variable OrderingPerformane of BDD-based algorithms is very sensitive to BDD variable order, sineit is a primary fator inuening BDD size [Bry86℄. Spae blowups of of BDDs for thestate sets Pi, as well as intermediate BDDs during pre-image operation, is observed inour experiments to be a major fator in performane degradation. Sine every step in



38the iteration proess uses BDDs with variables from di�erent modal depth, dynamivariable ordering is of limited bene�t for KBDD (though it is neessary when dealingwith intermediate BDDs blowups), beause there may not be suÆient reuse to makeit worthwhile. Thus, we foused here on onstruting heuristially a good initialvariable order. Our heuristi attempts to �nd a variable order that is appropriatefor KBDD. In this we follows the work of Kamhi and Fix, who argued in favor ofappliation-dependent variable order [KF98℄. As we show in Setion 7.1.5, hoosing agood initial variable order does improve performane, but the improvement is rathermodest.A naive method for assigning initial variable order to a set of subformulas wouldbe to traverse the DAG for the formula in some order. We used a depth-�rst, pre-order traversal. This order, however, does not meet the basi priniple of BDDvariable ordering, whih is to keep related variables in lose proximity. Our heuristiis aimed at identifying suh variables. Note that in our lean representation variablesorrespond to modal subformulas or atomi subformulas. We found that related vari-ables orrespond to subformulas that are related via the sibling or niee relationships.We say that vx is the hild of vy if for the orresponding subformulas we have that'x 2 subi( ), 'y 2 subi+1( ), and 'y is a subformula of 'x, for some 0 � i < md( ).We say that vx and vy are siblings if either both 'x and 'y are in subi( ) or they areboth hildren of another variable vz. We say that vy is a niee of vx if there is a vari-able vz suh that vz is a sibling of vx and vy is a hild of vx. We say that vx and vy aredependent if they are related via the sibling or the niee relationship. The rationale isthat we want to optimize state-set representation for pre-image operations. Keepingsiblings lose helps in keeping state-set representation ompat. Keeping niees loseto their \aunts", helps in keeping intermediate BDDs ompat.We build variable order from the top of the formula down. We start with left-to-right traversal order of top variables in the parse tree of  as the order for variablesorresponding to subformulas in sub0( ). Given an order of the variables of modal



39depth < i, a greedy approah is used to determine the plaement of variables at modaldepth i. When we insert a new variable v we measure the umulative distane of vfrom all variables already in the order that are dependent on v. We �nd a loationfor v that minimizes the umulative distane from other dependent variables. Werefer to this approah as the greedy approah, as opposed to the naive approah ofdepth-�rst pre-order.



40
Chapter 6Embedding K with QBFBoth K and QBF have PSPACE-omplete deision problems [Lad77, Sto77℄. Thisimplies that the two problems are polynomially reduible to eah other. A naturalredution from QBF to K is desribed in [HM92℄. In the last few years extensivee�ort was arried out into the development of highly-optimized QBF solvers [GNT01,CSGG99℄. One motivation for this e�ort is the hope of using QBF solvers as generisearh engines [Rin99℄, muh is the same way that SAT solvers are being used asgeneri searh engines, f. [BCCZ99℄. This suggests that another approah to Ksatis�ability is to �nd a natural redution of K to QBF, and then apply a highlyoptimized QBF solver. We desribe now suh a redution. (A similar approah issuggested in [CSGG99℄ without providing either details or results.)QBF is an extension of propositional logi with quanti�ers. The set of QBFformulas is onstruted from a set � = fx1; : : : xng of Boolean variables, and losedunder the Boolean onnetives ^ and :, as well as the quanti�er 8xi. As usual, we useother Boolean operators as abbreviations, and 9xi : ' as shorthand for :8xi : :'.Like propositional formulas, QBF formulas are interpreted over truth assignments.The semantis of quanti�ers is de�ned by: � j= 8p : ' i� � [p=1℄ j= ' and � [p=0℄ j= '.By Theorem 4.6, A K formula  of modal depth d is satis�able i� there exists aproper sequene P = hP0; P1; : : : ; Pdi of partile sets suh that  2 p for some p 2 P0.We onstrut QBF formulas f0; f1; : : : fd so eah fi enodes the partile set Pi. Theonstrution is by bakward indution for i = d : : : 0. For every ' 2 subi( ), we havea orresponding variable x';i as a free variable in fi. The intuition is that fi desribesthe set Pi. That is, for eah p � subi( ), de�ne the truth assignment � ip as follows:



41� ip(x';i) = 1 i� ' 2 p. The intention is to have Pi = fp � subi( )j� ip j= fig. We thensay that fi haraterizes Pi.In the following, we de�ne partilei( ) as the set of all onsistent partile vetorsof subi( ). We start by onstruting a propositional formula li suh that for eahp � subi( ) we have that p 2 partilei( ) i� � ip j= li. The formula li is a onjuntionof lauses as follows:� For ' = :'0 2 subi( ), we have the lause x';i ! :x'0;i.� For ' = '0 ^ '00 2 subi( ), we have the lauses x';i ! x'0;i and x';i ! x'00;i.� For ' = '0 _ '00 2 subi( ), we have the lause x';i ! (x'00;i _ x'00;i).For i = d we simply take fd to be ld. Indeed, we have Pd = partiled( ) = fp �subd( )j� dp j= fdg. Thus, fd haraterizes Initiald( ).For i < d, suppose we already onstruted a QBF formula fi+1 that haraterizesPi+1. We start by onstruting f 0i , whih also haraterizes Pi. We let f 0d = fd.The propositional part of f 0i is li, whih desribes the partiles in partilei( ). Inaddition, for eah 3' 2 subi( ), we need a onjunt m3' that says that if 3' isin a partile p 2 Pi, then 3' in p is witnessed by a partile in Pi+1. That is, wede�ne m3' as x3';i ! 9x�;i+1:f�2subi+1( )g(fi+1^x';i+1^ tri), where tri is the formulaV2�2subi( )[x2�;i ! x�;i+1℄. (Here the existential quanti�er is a sequene 9xi9 : : :9xjof existential quanti�ers,one for eah of the formulas in subi+1( ).)Lemma 6.1. If f 0i+1 haraterizes Pi+1, then f 0i haraterizes Pi = Iterate(Pi+1; i).Proof. By onstrution, li haraterizes parti( ). For the witnessing requirement,we an see that if � ip j= m3' and x3';i, then there is an assignment � i+1p0 where� ip [ � i+1p0 j= f 0i+1 ^ x';i+1 ^ tri. This is equivalent to asserting that p0 2 Pi+1, ' 2 p0and Ri(p; p0). So the lemma holds.Corollary 6.1.  is satis�able i� 9x�;0:f�2sub0( )gx ;0 ^ f 00 is satis�able.



42Proof. The laim follows from the soundness and ompleteness of KBDD.This redution of K to QBF is orret; unfortunately, it is not polynomial. Theproblem is that f 0i requires a distint opy of fi+1 for eah formula 3' in subi( ).This may ause an exponential blow-up for f 00. We would like fi to use only one opyof fi+1. We do this by replaing the onjuntion over all 3' formulas in subi( ) bya universal quanti�ation. Let k be an upper bound on the number of 3' formulasin subi( ), for 0 � i � md( ). We assoiate an index j 2 f0; : : : ; k � 1g with eahsuh subformula; thus, we let �ij the j-th 3' subformula in subi( ), in whih asewe denote ' by strip(�ij). Let m = dlg ke. We introdue m new Boolean variablesy1; : : : ; ym. Eah truth assignment to these variables indue a number between 0 andk�1. We refer to this number is val(y) and we use it to point to 3 subformulas. Letwitnessi be the formula Wk�1j=0 x�ij , whih asserts that some witnesses are required.We an now write fi in a ompat fashion:li ^ 8y1; : : : ; 8ym : 9x�;i+1:f�2subi+1( )g : witnessi ! fi+1 ^ tri ^ k�1̂j=0((val(y) = j ^ x�ij ;i)! xstrip(�ij);i+1)! :The formula fi �rst asserts the loal onsisteny onstraint li. The quanti�ationon y1; : : : ; ym simulates the onjuntion on all k 3 subformulas in subi( ). We thenhek if witnessi holds, in whih ase we assert the existene of the witnessing partile.We use fi+1 to ensure that this partile is in Pi+1 and tri to ensure satisfation of2 subformulas. Finally, we let val(y) point to the 3 subformulas that needs to bewitnesses. Note that fi ontains only one opy of fi+1.Lemma 6.2. If fi+1 haraterizes Pi+1, then fi haraterizes Pi = Iterate(Pi+1; i).Corollary 6.2.  is satis�able i� 9x�;0:f�2sub0( )gx ;0 ^ f0 is satis�able.Proof. The laim follows from the fat that fi is logially equivalent to f 0i .We implemented this approah by optimizing the translation further. As in theBDD-based implementation, we represent only Boolean literals, 2 subformulas and



433 subformulas with Boolean variables. The other subformulas are not representedexpliitly, but are logially implied.
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Chapter 7ResultsWe implemented the BDD-based deision proedure in C++ using the CUDD 2.3.1[Som98℄ pakage for BDDs, and we implemented formula simpli�ation preproessorin OCaml. The parser for the languages used in the benhmark suites are takenwith permission from *SAT [Ta99℄. In the following, we desribe and ompare theperformane of the di�erent algorithms.1As benhmarks, we use both the K part of TANCS 98 [HS96℄ and the MODALPSPACE division of TANCS 2000 [MD00℄, as well as random formulas generated with[PSS01℄.We present the result in two parts. First, using TANCS 98 and TANCS 2000, westudy the inuene of eah optimization tehnique and the inuene of variable order-ing to determine the best on�guration for KBDD. Then, we provide a omparisonof KBDD with other solvers aross a spetrum of di�erent benhmarks .For most omparison, we set the time out at 1000s and the spae limit for BDDs at384MB. To avoid getting into overwhelming details in the omparison of solvers andto present a global view of performane, we use the presentation tehnique suggestedin [SS01℄, where we plot the number of ases solved against the running time used.The hart is saled so the full sale is the total number of ases in the benhmark.Thus, the solver with a higher urve is faster than one with a lower urve.1All the tests run on a Pentium 4 1.7GHz with 512MB of RAM, running linux kernel version2.4.2. The solver is ompiled with g 2.96 with parts in OCaml 3.04.



457.1 Comparison in depthTo analyze the usefulness of eah optimization tehniques used, we run the algorithmwith di�erent optimization on�gurations on the K part of TANCS 98 and TANCS2000 benhmark suites2 , both salable benhmarks whih ontains both provableand non-provable formulas. In TANCS 98, simple formulas have their omplexityinreased by re-enoding them with superuous sub-formulas. In TANCS 2000, for-mulas are onstruted by translating QBF formulas into K using three translationshemes, namely Shmidt-Shauss-Smolka translation, whih gives easy formulas,Ladner translation, whih gives medium diÆulty formulas, and Halpern translation,whih gives hard formulas.7.1.1 The basi algorithmsTo ompare our approahes, we benhmark the basi algorithms on TANCS 98. Theresults are presented in Fig. 7.1. We an see that *SAT learly outperforms ourtwo basi algorithms. An explanation of this \weak" behavior of our approahes isthat the intermediate results of the pre-image operation are so large that the BDDsspae onstraint is usually reahed. The di�erene between top-down and bottom-upapproahes is minor. Top-down slightly outperforms bottom-up sine in a BDD-based implementation, top-down removes types, whih only requires the onsistenyrequirement to be asserted one before iteration, while bottom-up adds types, whihrequires an extra onjuntion to ensure only onsistent types are added.7.1.2 Partile approahesNow we ompare the variants using types with their full partile-based variants. Theresults are presented in Fig. 7.2. We an see that, for TANCS 98, the partile ap-proah slightly outperforms the type approah. Most of the improvements ome from2We used TANCS 98 in ases where too few ases in TANCS 2000 omplete under an unoptimizedsheme, allowing better omparison.
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Figure 7.1 : Performane on TANCS 98 (basi approahes)the use of negation normal form, whih allows us to distinguish between diamondsand boxes, resulting in the redution of the image operations needed.7.1.3 Lean vetor approahesNext, for types and partiles, bottom-up and top-down, we ompare the \full" ap-proahes with their lean variants (see Fig. 7.3 and Fig. 7.4). Intuitively, the fullvariants trade a larger number of BDD variables in the representation of the tran-sition relation for simpler onsisteny onstraints. On TANCS 98, we an see thatthe lean approahes outperform in eah ombination their full variants. This showsthat, as a general guideline, we should always attempt to redue the number of BDDvariables, sine this results in smaller BDDs. Indeed, experiene in symboli modelheking suggests that BDD size is typially the dominant fator when evaluating theperformane of BDD-based algorithms [KFB98℄.
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Figure 7.2 : Performane on TANCS 98 (partiles vs. types)7.1.4 Level based evaluationNext, we ompared the level-based approah with the top-down and the bottom-up approah. It turns out that the level-based approah outperforms both, and that,
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Figure 7.3 : Performane on TANCS 98 lean vs. full typesboth for types and partiles, the lean approah again outperforms the full one, see Fig.7.5. By taking advantage of K's layered model property, we an split various spae-onsuming BDDs into smaller ones based on the modal depth of the orresponding
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Figure 7.4 : Performane on TANCS 98 lean vs. full partiles



50sub-formulas. This minimizes spae-outs and improves running time. The assoiatedredution in number of pre-image operations is also substantial for most formulas.In the following, KBDD would refer to the level-based lean partile version of thealgorithm.7.1.5 Variable ordering and formula simpli�ationTo demonstrate the e�ets of variable ordering and formula simpli�ation, we testedKBDD with both naive and greedy variable ordering, and with and without formulasimpli�ation, using TANCS 2000 easy and medium formulas [MD00℄3 (KBDD with-out formula simpli�ation annot handle the hard formulas of TANCS 2000). Theresults are in Figure 7.6.We see in Figure 7.6 that formula simpli�ation yields a signi�ant performaneimprovement. This improvements was observed for di�erent types of formulas and dif-ferent variable-ordering algorithms. In partiular, KBDD was able to avoid spae outsin many ases. We an also see that greedy variable ordering is useful in onjuntionwith formulas simpli�ation, improving the number of ompleted ases and some-times running time as well. Without formula simpli�ation, the results for greedyvariable ordering are not onsistent, as overhead of �nding the variable order mayo�set any advantages of applying it. The ombination of formula simpli�ation andgreedy variable ordering learly improves the performane of KBDD in a signi�antway. In the next setion, we ompare the performane of optimized KBDD againstthree other solvers.7.2 Comparison between solversTo assess the e�etiveness of BDD-based deision proedures for K, we ompared theoptimized KBDD against three solvers: (1) DLP is a tableau-based solver [PSH99℄,3See http://www.dis.uniroma1.it/~tans/.
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Figure 7.5 : Performane on TANCS 98 (level-based evaluation)(2) MSPASS is a resolution-based solver, apply to a translation of modal formulas to
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53�rst-order formulas [HS00℄4, (3) We developed also a redution of K to QBF (whih isof independent interest), and applied QuBE, whih is a highly optimized QBF solver[GNT01℄. For a fair omparison, we heked �rst whether our formula-simpli�ationoptimization is useful for these solvers, and used it when it was (DLP and QuBE).In addition to TANCS 98 and TANCS 2000, we also use randomly generated for-mulas, as suggested in [PSS01℄. This sheme generates random modal-CNF formulasparameterized with the number N of propositions, the number K of literals in eahlause, the fration � of modal literals in eah lause, the modal-depth bound d, andthe number L of top level lauses. L lauses are generated with K literals eah, where�K literals are modal and the rest are propositional (the polarity of the literals ishosen uniformly). Eah modal literal is expanded into a lause in the same fashion.The modal depth of the formula is bounded by d. We used d = [1; 2℄, K = 3 and� = 0:5 in our experiments. In eah experiment N is �xed and the propositionalomplexity of the formula was varied by inreasing the density L=N .7.2.1 Results on TANCS suitesIn Figure 7.7 and Figure 7.8 we see that on the TANCS 98 benhmarks, DLP has thebest performane, but on the more hallenging TANCS 2000 benhmarks, KBDDoutperformed the other solvers, espeially on the harder portions of the suite (thehard formulas of TANCS 2000 required dynami variable reordering). MSPASS wasa distant third, espeially on the harder formulas, and is omitted on the hard formulasof TANCS 20005. It is also lear that reduing K satis�ability to a searh-based QBFsolver is not a viable approah; it was dominated all other approahes and solved4We used MSPASS 1.0.0t1.3 with options -EMLTranslations=1 -EMLFunNary=1 -Selet=2 -PProblem=0 -PGiven=0 -Sorts=0 -CNFOptSkolem=0 -CNFStrSkolem=0 -CNFRenOps=1 -Split=-1 -Ordering=0 -CNFRenMath=0 -TimeLimit=1000. Compiler used is g-3.1.1 beause g-2.96have a serious bug that rashes the resulting exeutable.5Better results for MSPASS is possible if di�erent parameters is used for di�erent ases. We didnot take this approah beause it is outside the sopt of this thesis.



54only a small fration of the benhmark formulas in TANCS 98. (For TANCS 2000this approah was so ine�etive that we did not report the results.) It would beinteresting to try the redution-to-QBF approah with another type of QBF solver,e.g., a resolution-based QBF solver [BKF95℄.7.2.2 Results on random modal CNF formulasA di�erent perspetive on the omparison between DLP, a searh-based solver, andKBDD, a symboli solver, is demonstrated on random modal-CNF formulas. Thegeneration of the formulas are as suggested in [PSS01℄. This sheme generates randommodal-CNF formulas parameterized with the number N of propositions, the numberK of literals in eah lause, the fration � of modal literals in eah lause, the modal-depth bound d, and the number L of top level lauses. L lauses are generated withKliterals eah, where �K literals are modal and the rest are propositional (the polarityof the literals is hosen uniformly). Eah modal literal is expanded into a lause inthe same fashion. The modal depth of the formula is bounded by d. We used d = 1; 2,K = 3 and � = 0:5 in our experiments. In eah experiment N was �xed and thepropositional omplexity of the formula was varied by inreasing the density L=N .We plot here median running time (16 samples per data point) as a funtion ofdensity (L=N) to demonstrate the di�erene between the behavior of the two solvers.As we an see in �gure 7.9, for d = 1, DLP demonstrates the bell-shaped \easy-hard-easy" pattern that is familiar from random propositional CNF formulas [SML96℄and random QBF formulas [GW99℄. In ontrast, for KBDD we see an inrease inrunning time as a funtion of the density; that is, the higher the density the harderthe problem for KBDD. This is onsistent with known results on the performane ofBDD-based algorithm for random propositional CNF formulas [CDS+00℄. For eahmodal level, KBDD builds a BDD for the appropriate partile set. With inreaseddensity, the onstrution of these BDDs gets quite hallenging, often resulting inspae outs or requiring extensive variable reordering. (In the propositional ase, one



55an develop algorithms that avoid the onstrution of a monolithi BDD, f. [SV01℄.It would be interesting to try to apply suh ideas for KBDD.) This explains whyDLP performs muh better than KBDD on random modal-CNF formulas. Unlikethe benhmark formulas of TANCS 98 and TANCS 2000, the random modal-CNFformulas have a very high propositional omplexity (low modal depth). In ontrast,the formulas in TANCS 98 and TANCS 2000 have high modal omplexity (highmodal depth). Our onlusion is that DLP is better suited for formulas with highpropositional omplexity, while KBDD is better suited for formulas with high modalomplexity.
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TANCS 2000 Easy (nfSSS)Figure 7.7 : Comparison of KBDD, DLP, QuBE/QBF and MSPASS on K formulas(part 1)
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59
Chapter 8ConlusionsWe desribed here BDD-based deision proedures for K. Our approah is inspiredby the automata-theoreti approah, but we avoid expliit automata onstrution.We explored a variety of optimization tehniques and onluded that, in general, itis preferred to work with looser onstraints; in general, we got the best performanewith lean partiles. We also showed that it is neessary to use a level-based approahto obtain a ompetitive implementation. Formula preproessing by removing pureliterals and propogating the e�ets by syntatial simpli�ation, though not speial-ized to our method in partiular, is also important for improving performane. Wealso attempted to optimize the implementation by applying BDD-entri tehniqueslike lustering with early quanti�ation and initial variable ordering.Our results show that the payo� of the variable-ordering optimization is rathermodest, while the payo� of the pure-literal optimization is quite signi�ant. Webenhmarked KBDD, our optimized solver, against both native solvers (DLP) andtranslation-based solvers (MSPASS and QuBE). Our results indiate that the BDD-based approah dominates for modally heavy formulas, while searh-based approahesdominate for propositionally heavy formulas.One way to look at the results is that the KBDD approah, by using a more pow-erful underlying solver (BDDs vs. satis�ability) allows the use of a simpler deisionproedure. Instead of requiring exponential number of alls to a propositional satis�-ability proedure, we only required a polynomial number of alls to BDD operations.The question would of ourse be, is suh an trade o� reasonable. We know that theomplexity of BDD operations are highly dependent to the size of the BDDs. So, if



60we are able to ontrol the size of the BDDs, the performane of our deision proedurewould be aeptable.Another explanation would be we traded modal omplexity for propositional om-plexity. This way, we managed to solve a large amount of problems whih have \big"models, whih ause problems with SAT based solvers. We suggest that a omparisonof BDD and SAT based K solver would be like in table 8.1.seem in the following table:
Propositionally sparse Propositionally denseBig model BDD better neither work goodSmall Model Both work good neither work goodSAT slightly faster SAT ould be given more timeTable 8.1 : A hypothetial omparison of BDD vs. SAT based solversAlthough our goal is not to develop the \fastest K solver", the KBDD approahis very ompetitive for most benhmarks. With all the optimization shemes, we ob-tained very good results with urrent strutured benhmark suites. Further researhis required to quantify the distintion between propositionally heavy and modallyheavy formulas. This might enable the development of a ombined solver, whih in-vokes the appropriate engine for the formula under test. Another approah wouldbe to develop a a hybrid solver, ombining BDD-based and searh-based tehniques(f. [GYA+01℄ for a hybrid approah in model heking), whih would perform wellon both modally heavy and propositionally heavy formulas. We leave this for futureresearh.
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