RICE UNIVERSITY

BDD-Based Decision Procedures for
Modal Logic K

by
Guoqiang Pan
A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Master of Science

APPROVED, THESIS COMMITTEE:

Dr. Moshe Y. Vardi (Chair),
Karen Ostrum George Professor,
Computer Science

Dr. Devika S. Subramanian,
Associate Professor,
Computer Science

Dr. Dan Osherson,
Professor,
Psychology

HousToN, TEXAS

MARCH, 2003

BDD-Based Decision Procedures for
Modal Logic K

Guoqgiang Pan

Abstract

We describe BDD-based decision procedures for . Our approach is inspired by the
automata-theoretic approach, but we avoid explicit automata construction. Our al-
gorithms compute the fixpoint of a set of types, which are sets of formulas satisfying
some consistency conditions. We use BDDs to represent and manipulate such sets. By
viewing the sets of types as symbolic encoding of all possible models of a formula, we
developed particle-based and lean-vector-based representation techniques which gives
more compact representations. By taking advantage of the finite-tree-model property
of K, we introduced a level-based evaluation scheme to speed up construction and re-
duce memory consumption. We also studied the effect of formula simplification on the
decision procedures. As part of the benching procedure, we compared the BDD-based
approach with a representative selection of current approaches, as well as developing
an algorithm to translate K to QBF based on our decision procedure. Experimental
results show that the BDD-based approach dominates for modally heavy formulas,

while search-based approaches dominate for propositionally-heavy formulas.

Acknowledgments

I wish to thank a number of people who have contributed to the making of this the-
sis. First and foremost, I would like to thank my adviser Dr. Moshe Y. Vardi for his
visionary guidance throughout the project, and the freedom and flexibility he allowed
me at every stage. The driving force can be rightly attributed to his adamant insis-
tence, especially during the formative days, that this project can actually be pulled
off. Dr. Ulrike Sattler provided helpful suggestions in the development of the ldea
and I would like to thank her for the discussions on the theoretical background. I
would also like to thank Dr. Armando Tacchella for his feedback and intuitions on the
problem and for providing his solver (*SAT) as a reference, which greatly supported
my understanding of the problem. Dr. Roberto Sebstiani provided important sug-
gestions on the intuition of the QBF translation. Also, both Andrew Ladd and Ben
McMahan provided useful comments that allows me to see in new ways on optimizing

the algorithm.

Contents

Abstract
Acknowledgments

List of Illustrations
Introduction
Preliminaries

Our Algorithms
3.1 Top-Down Approach
3.2 Bottom-Up Approach

Optimizations

4.1 Particles
4.2 Lean Approaches
4.3 Level-based evaluation

4.4 Formula simplification

Implementation

5.1 Base Algorithm

5.2 Optimizations L
5.2.1 Particles
0.22 Leanvectors.

5.2.3 Level based evaluation

i
1

vi

10
11
12

15
15
18
19
25

5.2.4 Variable Ordering

6 Embedding K with QBF

7 Results

7.1 Comparison indepth
7.1.1 The basic algorithms
7.1.2 Particle approaches
7.1.3 Lean vector approaches

7.1.4 Level based evaluation

7.1.5 Variable ordering and formula simplification

7.2 Comparison between solvers

7.2.1 Results on TANCS suites.

7.2.2 Results on random modal CNF formulas
8 Conclusions

Bibliography

40

44
45
45
45
46
47
20
20
23
o4

59

61

7.1
7.2
7.3
7.4
7.5
7.6
7.7

7.8

7.9

Illustrations

Performance on TANCS 98 (basic approaches) 46
Performance on TANCS 98 (particles vs. types) 47
Performance on TANCS 98 lean vs. full types 48
Performance on TANCS 98 lean vs. full particles 49
Performance on TANCS 98 (level-based evaluation) 51
Optimizations on TANCS 2000 52

Comparison of XBDD, DLP, QuBE/QBF and MSPASS on K
formulas (part 1) Lo 56
Comparison of XBDD, DLP, QuBE/QBF and MSPASS on K
formulas (part 2) 57
Comparison of DLP and BDD on Random formulas 58

Chapter 1

Introduction

Modal logic, the logic of necessity and possibility, of “must be” and “may be”, was dis-
cussed by several authors in ancient times. Like most work before the modern period,
it was non-symbolic and not particularly systematic in approach. The first symbolic
and systematic approach to the subject appears to be the work of Lewis, beginning in
1912 and culminating in the book Symbolic Logic with Langford [LL59]. Propositional
modal logic is obtained from propositional logic by adding a modal connective O, i.e.,
if ¢ is a formula, then O¢ is also a formula. Intuitively, O¢ asserts that ¢ is neces-
sarily true. Dually, -0O—¢, abbreviated as $¢, asserts that ¢ is possibly true. Modal
logic has many applications, due to the fact that the notions of necessity and possibil-
ity can be given many concrete interpretations. For example, “necessarily” can mean
“according to the laws of physics”, or “according to my knowledge”, or even “after the
program terminates”. In the last 20 years modal logic has been applied to numerous
areas of computer science, including artificial intelligence [BLMS94, MH69], program
verification [CES86, Pra76, Pnu77|, hardware verification [Boc82, RS83|, database
theory [CCF82, Lip77], and distributed computing [BAN88, HM90].

In this thesis, we restrict our attention to the smallest normal modal logic K, and
describe a new approach to decide the satisfiability of formulas in this logic. Since
modal logic extends propositional logic, the study in modal satisfiability is deeply con-
nected with that of propositional satisfiability. In the past, a variety of approaches to
propositional satisfiability have been successfully combined with various approaches
to handle modal connectives. For example, tableau based decision procedures for IC

are presented in [Lad77, HM92, PSH99]. Such methods are built on top of the propo-

sitional tableau construction procedure by forming a fully expanded propositional
tableau and generating successor nodes “on demand”. A similar method uses the
Davis-Logemann-Loveland method as the propositional engine by treating all modal
sub-formulas as propositions and, when a satisfying assignment is found, checking
modal sub-formulas for the legality of this assignment [GS00, Tac99].

Recently, we see efforts to unifying the optimizations used in tableau and DPLL
based approaches. Introduction of semantical methods like semantic branching and
Boolean constraint propagation into tableau allowed DLP to become one of the fastest
solvers for K.

Another approach to modal satisfiability, the inverse calculus for K [Vor01], can
be seen as a modalized version of propositional resolution. Non-propositional meth-
ods take a different approach to the problem. It has been shown recently that,
by embedding K into first order logic, a first-order theorem prover can be used for
deciding modal satisfiability [AGHdO00]. The latter approach works nicely with a
resolution-based first-order theorem prover, which can be used as a decision proce-
dure for modal satisfiability by using appropriate resolution strategies [HS00]. Other
approaches for modal satisfiability such as mosaics, type elimination, or automata-
theoretic approaches are well-suited for proving exact upper complexity bounds, but
are rarely used in actual implementations [BdV01, HM92, Var97].

The basic algorithms presented here are inspired by the automata-theoretic ap-
proach for logics with the tree-model property [Var97]. In that approach one proceeds
in two steps. First, an input formula is translated to a tree automaton that accepts
all tree models of the formula. Second, the automata is tested for non-emptiness, i.e.,
does it accept some tree. In our approach here we, in essence, combine the two steps
and we apply the non-emptiness test without explicitly constructing the automaton.
As pointed out in [BT01], the inverse method described in [Vor01] can also be viewed
as an application of the automata-theoretic approach that avoids an explicit automata

construction.

The logic K is simple enough that the automaton non-emptiness test consists of
a single fixpoint computation, which starts with a set of states and then repeatedly

' In the automata that

applies a monotone operator until a fixpoint is reached.
correspond to formulas each state is a type, i.e., a set of formulas satisfying some
consistency conditions. The algorithms presented here all start from some set of
types, and then repeatedly apply a monotone operator until a fixpoint is reached:
either they start with the set of all types and remove those types with “possibilities”
O for which no “witness” can be found, or they start with the set of types having no
possibilities G, and add those types whose possibilities are witnessed by a type in
the set. The two approaches, top-down and bottom-up, corresponds to the two ways
in which non-emptiness can be tested for automata for IC: via a greatest fixpoint
computation for automata on infinite trees or via a least fixpoint computation for
automata on finite trees. The bottom-up approach is closely related to the inverse
method described in [Vor01], while the top-down approach is reminiscent of the “type-
elimination” method developed for Propositional Dynamic Logic in [Pra80].

The key idea underlying our implementation is that of representing sets of types
and operating on them symbolically. Our implementation uses Binary Decision Dia-
grams (BDDs) [Bry86]: BDDs are a compact representation of propositional formulas,
and are commonly used as a compact representation of states. One of their advantages
is that they come with efficient operations for certain manipulations. By representing
sets of types with BDDs, we are able to symbolically construct fixpoint type sets
efficiently.

We then study optimization issues for BDD-based K solvers. First we focus on
different representations that can be used for the constructed state set. Types exert
a strict consistency requirement on the assignment to related subformulas, which is
a major factor in the size of the BDD used to represent the type sets. The normal

form used for the type-based approach also makes no distinction between box and

! This approach can be easily extended to K (m).

diamond operators, increasing the number of necessary witness checks. By using a
relaxed consistency representation called particles, we are able to reduce the number
of witness checks and simplify the consistency requirement. We also investigate the
lean vector approach, in which the constraint is further simplified by removing the
variables whose values are implied by the constraints. These approaches reduce the
memory consumption of the BDDs and improve performance.

Next, we take advantage of the properties of K, namely the finite-tree-model prop-
erty. The sets of types/particle vectors implicitly encodes a model for the formula. By
considering a layered model instead of a general model, we can modify the bottom-
up procedure so each step only checks witness for diamond operators occurring at a
specific depth. This approach yields further performance improvements.

Finally, we turn to a preprocessing optimization. The idea is to apply some light-
weight reasoning to simplify the input formula before starting to apply heavy-weight
BDD operations. In the propositional case, a well-known preprocessing rule is the
pure-literal rule [DLL62]. Preprocessing has also been shown to be useful for linear-
time formulas [SB00, EHOO0], but has not been explored for K. Our preprocessing
is based on a modal pure-literal simplification, which takes advantage of the tree-
model property of K. We show that adding preprocessing yield a fairly significant
performance improvements, enabling us to handle the hard formulas of TANCS 2000.

This thesis consists of a viability study for our approach. As a measure of compet-
itiveness between different optimizations on BDD-based approaches, we use existing
benchmarks of modal formulas, TANCS 98 [HS96] and TANCS 2000 [MDO00], and we
used *SAT [Tac99] as a reference. A straightforward implementation of our approach
did not yield a competitive algorithm, but an optimized implementation did yield a
competitive algorithm indicating the viability of our approach.

We also focus on BDD-specific optimizations on our implementation of the algo-

rithm. Besides using optimized image finding techniques like conjunctive clustering

with early quantification [BCL91, GB94, RAB95, CCGRO00], we also study the issue

of variable order, which is known to be of critical importance to BDD-based algo-
rithms. The performance of BDD-based depends crucially on the size of the BDDs and
variable order is a major factor in determining BDD size, as a “bad” order may cause
an exponential blow-up [Bry86]. While finding an optimal variable order is known
to be intractable [THY93], heuristics often work quite well in practice [Rud93]. We
focus here on finding a good initial variable order (for large problem instances we
have no choice but to invoke dynamic variable ordering, provided by the BDD pack-
age), tailored to the application at hand. Our finding is that choosing a good initial
variable order does improve performance, but the improvement is rather modest.

To assess the competitiveness of our optimized solver, called BDD, we bench-
mark it against both native solver and translation-based solvers.Besides comparing
with the standard first-order translation approach, we also developed a translation
from K to QBF (which is of independent interest), and apply QuBE, which is a highly
optimized QBF solver [GNTO01]. Our results indicate that the BDD-based approach
dominates for modally heavy formulas while search-based approaches dominate for
propositionally-heavy formulas.

The paper is organized as follows. After introducing the modal logic K in chapter
2, we present our algorithms and show them to be sound and complete in chapter
3. In chapter 4, we discuss four optimizations that we applied, and present a BDD
based implementation in chapter 5. An embedding of K into QBF is presented in
chapter 6. Finally, we present the performance comparasions, both between different

optimizations in the BDD-based framework, and with other solvers in chapter 7.

Chapter 2

Preliminaries

In this section, we introduce the syntax and semantics of the modal logic I, as well
as types and how they can be used to encode a Kripke structure.

The set of K formulas is constructed from a set of propositional variables ® =
{q1,q2, ...}, and is the least set containing ® and being closed under Boolean operators
A and — and the unary modality O. As usual, we use other Boolean operators
as abbreviations, and ¢¢ as an abbreviation for —O-p. The set of propositional
variables used in a formula ¢ is denoted AP(¢p).

A formula in K is interpreted in a Kripke structure K = (V, W, R, L), where V is
a set (containing ®) of propositions, W is a set of possible worlds, R C W x W is the
accessibility relation on worlds, and L : W — V' — {0, 1} a labeling function for each
state. The notion of a formula ¢ being satisfied in a world w of a Kripke structure

K (written as K, w |= q) is inductively defined as follows:

o K,wkqforqge ®iff L(w)(q) =1

e KwEpAyYiff K,jwkEpand K,w =1y

o KwE-pifft K,wl e

e K,w [Oy iff, for all v, if (w,w') € R, then K, w' = ¢
The abbreviated operators can be defined as follows:

e KwEpVvyiff K,wkEpor K,wE 1Y

o K,w k= g iff there exists w' with (w,w’) € R and K, w' = ¢.

A formula 1) is satisfiable if there exist K, w with K, w [= 1. In this case, K is called
a model of 1.

The most important property of I is the tree-model property, which allows
automata-theoretic approaches to be applied. In fact, it has the stronger finite-tree-
model property, which will allow both top-down and bottom-up construction of such

automata.

Theorem 2.1. K has the finite-tree-model property, where for any formula o, if
there is some M,w such that M,w |= ¢, then there exists a finite M' such that exists
w' € M" where M',w' |= .

Proof. See [BAVO1].
In fact, a formula ¢ in K have a finite tree model that is only as deep as its modal

depth, defined as:

Definition 2.1. Given a formula 1, call its set of subformulas sub(v)). Take any
@ € sub(v), we define dist(v, @) as follows:

o If) = o, then dist(y), p) = 0;
o Ifo=y¢' N", &' V', or =y, then dist(v,¢') = dist(¢, ¢") = dist(y, p);
o If p=0¢" or Oy, then dist(v, ') = dist(v, p) + 1.

The modal depth md(s)) is defined as maxycsup) (dist(V, @)).

We will use this property for certain optimizations in our algorithm.

We restrict our attention to formulas in a certain normal form to simplify consid-
erations on the form of a formula. A formula v of K is said to be in box normal form
(BNF) if all its sub-formulas are of the form p A ', oV ¢', Op, =0y, ¢, or =¢q where
q € AP(¢). All K formulas can be obviously converted into BNF without blow up

by pushing negation inwards and, if not stated otherwise, we assume all formulas to

be in BNF. The closure of a formula cl(¢)) is defined as the smallest set such that, for
all sub-formula ¢ of ¢, if ¢ is not =¢', then {p, —p} C cl(1)).

Our algorithms will work on types, i.e., sets of (sub)formulas that are consistent
w.r.t. the Boolean operators, and where (negated) box formulas are treated as atoms.
A set of formulas a C cl(¢)) is called a ¢-type (or simply a type if ¢ is clear from the

context) if it satisfies the following conditions:
o If p=—¢, then p € aiff ¢’ ¢ a.
o [fo=¢' ANy then p € aiff ¢ € a and ¢" € a.
e [fo=¢' V¢ then pecaiff ¢ €aor ¢’ €a.
For a set of types A, we define the relation A C A x A as follows:
Ala,a') iff for all Oy’ € a, we have ¢' € d'.

Given a set of types A C 29%) we can construct a Kripke structure K4 using the
relation A as follows: K4 = (AP(¢), A, A, L) with L(a)(¢) =1 iff ¢ € a.

We should compare the structure we built against the canonical model of K.

Definition 2.2. [BdV01]The canonical model for KC is defined as K = (AP,W, R, L)

where:

o W is the set of all mazimal consistent set of IC formulas.

e R is defined as R(x,y) iff for all ¢ € y, Op € x. (Note together with consis-

tency, this says for all Op € z, p € y.

e L is the normal interpretation, where for p € AP, L(W)(p) iff p € W.

We know that we can filter K against cl(1)) to produce a model K, for the purpose
of checking whether there are any state w in K, where ¢» € w. We would show the
K4 we build will have the same property as K."

Thus we would like to prove that, for all ¢ € cl(¢):

'In fact, their structure is very similar.

Claim 2.1. Ka,a FE ¢ iff ¢ € a.

We can see this is clearly true for propositional ¢ by requirement on types and
true for o = O¢' by construction of A. The only case that needs special consideration
is the case =0y € a: it might be the case that ¢ € b for all b with A(a,b). In the

following chapter, we will show that our construction satisfies claim 2.1.

10

Chapter 3

Our Algorithms

The two algorithms presented here take a certain “initial” set of types and apply
repeatedly a monotone operator to it. If this application reaches a fixpoint, we can
show that it yields a set of types where the above construction yields indeed a Kripke
structure that satisfies the claim 2.1, i.e., all negated box formulas are indeed “wit-
nessed” by some b € A. This Kripke structure is then a model of ¢ iff ¢ € a for some
a€ A

The first algorithm follows a “top-down” approach, i.e., it starts with the set A C
2¢¥) of all valid types, and the monotone operator removes those types containing
negated box formulas which are not witnessed in the current set of types. Dually,
the second, “bottom-up”, approach starts with the set of types that do not contain
negated box formulas, and then adds those types whose negated box formulas are
witnessed in the current set of types.

In the following, we will call our class of algorithms KBDD since we intend to use
BDD as the state set representation.

Both algorithms follow the following scheme:

X < Initial (1)
repeat
X' =X
X < Iterate(X')
until X = X'
if exists x € X such that ¢y € then

return “¢ is satisfiable”

11

else
return “¢ is not satisfiable”

end if

Since this algorithm will work on a fixed set of types and use a monotone Iterate(-)
operator, it obviously terminates. In fact, we can show that it will terminate in

md(1) + 1 iterations. It remains to define Initial(vy) and Iterate(-).

3.1 Top-Down Approach

The top-down approach is closely related to the type elimination approach which is,
in general, used for more complex modal logics, see, e.g., Section 6 of [HM92]. For the
algorithm pursuing the top-down approach, the functions I'nitial(y)) and Iterate(-)

are defined as follows:

e Initial(v)) is the set of all i-types.

e [terate(A) := A\ bad(A), where bad(A) are the types in A that contain unwit-

nessed negated box formulas. More precisely,

bad(A) := {a € A| there exists 7Oy € @ and, for all b € A with A(a,b),

we have ¢ € b}.
Theorem 3.1. The top-down algorithm decides satisfiability of K formulas.

Proof. Let A be the set of types that is the fixpoint of the top-down algorithm, i.e.,
Iterate(A) = A. We use A° for Imitial(1)) and A’ for the set of types after i iterations.

Lemma 3.1. (Soundness) For each type a € A and formula ¢ € cl(v)), we have
KAaa):SOiﬁQOGG-

Proof. By induction on the structure of formulas.

o If p € AP (), then Ky, a = ¢ iff ¢ € a by construction of L.

12

o If o=—q, ¢ NY", or ¢ V", the claim follows immediately by induction and
the definition of types.

e If o = 0Oy € a, the definition of A implies that ¢’ € o' for all ¢’ with A(a,d’),
and by induction, K,d' |= ¢'. Hence Ka,a | O¢' .

o If ¢ = -0y € a, then a ¢ bad(A) because Iterate(A) = A, and thus there
exists b € A with A(a,b) and ¢' ¢ b. By induction, K4,b = —¢', and thus
Ky, a =-0¢. O

Lemma 3.2. (Completeness) For all ¢ in cl(v), if ¢ is satisfiable, then there exists

some a € A with ¢ € a.

Proof. Given a satisfiable formula ¢, take a model K = (AP(¢),W, R, L) with
K, w, |= ¢. For every world w € W, we define a type a(w) = {0 € cl(¢) : K, w = o}.
Next, we define A(W) = {a(w) | w € W}. Obviously, due to the semantics of the box
modality, R(v, w) implies A(a(v),a(w)). Then it can be shown by induction on the
number of iterations that A(W) C A. Since ¢ € a(w,) by construction, this proves

the lemma.
o A(W) C A% since A° contains all types a C cl(1)).

o Let A(W) C A’ and assume that A(W) ¢ A", Then there is some w € K
such that a(w) € bad(A). So there is some —Op € a(w) and, for all b € A*
with A(a(w),b), we have o € b. Hence there is no v € W with R(w,v) and
K,v = —p, in contradiction to K, w = —Op. O

3.2 Bottom-Up Approach

As mentioned above, the algorithm pursuing the top-down approachstarts with all
valid types, and repeatly removes unwitnessed types. In contrast, the algorithm

persuing the bottom-up approach starts with a small set of types (i.e., those without

13

negated box formulas), and repeatedly adds those types whose negated box formulas
are witnessed in the current set. More precisely, for the bottom-up approach, the

functions Initial(1)) and Iterate(-) are defined as follows:

e Initial(v) is the set of all those types that do not require any witnesses, which
means that they do not contain any negated box formula or, equivalently, that

they contain all positive box formulas in cl(¢)). More precisely,

Initial(¢) := {a C cl(¥)) | a is a type and Oy € a for each Oy € cl(y))}.

o [terate(A) := A U supp(A), where supp(A) is the set of those types whose

negated box formulas are witnessed by types in A. More precisely,

supp(A) :={a C cl(v)) | ais a type and for all ~O¢p € a, there exists b € A
with ¢ € b and A(a,b)}.

We say that a type in supp(A) is witnessed by a type in A.
Theorem 3.2. The bottom-up algorithm decides satisfiability of IC formulas.

Proof. As in the proof of Theorem 3.1, we use A for the fixpoint of the bottom-up
algorithm, A° for Imitial(v), and A’ for the set of types after ¢ iterations.

Lemma 3.3. (Soundness) For each type a € A and formula ¢ € cl(v), we have
Knakyifgca

Proof. Again by induction on the structure of formulas.
o If p = ¢, then K4,a |= ¢ iff ¢ € a by construction of L.

o If p=—q, O NY" or ¢ V" the claim follows immediately by induction and
the definition of types.

o If p =0y’ € a, then by definition of A and induction, K4, a = .

14

o If o = =0y’ € a, then there exists by construction of A some b € A with
—¢" € b and A(a,b). Thus, by induction, K,a | ¢. O

Lemma 3.4. (Completeness) For all p € cl(v), if ¢ is satisfiable, then there exists

some a € A with ¢ € a.

Proof. 1t is well-known that C has the finite-tree-model property (see, e.g. [HM92]),
i.e., each satisfiable K formula v has a model whose relational structure forms a finite
tree. Take such a model K = (AP(y), W, R, L) with K,w, = ¢, and define the
mappings a(-) and A(-) from worlds in K to types as in the proof of Lemma 3.2. We
show by induction on 7z that, if ¢ is the maximal distance between a node w € W and
the leaves of K’s subtree rooted at w, then a(w) € A’. Since A7 C A’*! for all j and

K forms a finite tree model of ¢, this proves the lemma.

e Ifi =0, then w is a leaf in K (i.e., there is no w’ € W with R(w,w")), and thus
K,w £ —0¢ holds for all =0¢" € cl(v). Hence a(w) € A°.

e Let © > 0 and w a node with ¢ the maximal distance between w and the
leaves of K’s subtree rooted at w. Then, by induction, for each child w' of w,
we have a(w') € A™!. Now R(w,w') implies A(a(v),a(w)). Thus, for each
—=0¢' € a(w), there is some w' € W with a(w') € A""! and —¢' € a(w'). Thus
a(w) € supp(A~1) C A O

15

Chapter 4

Optimizations

The decision procedures described above handles a formula in three steps. First, the
formula is converted into box normal form. Then, a set of bit vectors representing
types is generated. Finally, this set is updated through a fixpoint process. The answer
of the decision procedure depends on a simple syntactic check of this fixpoint. In this
section, we will describe four orthogonal optimization techniques, working on different

stages in the procedure.

4.1 Particles

In the approaches presented so far, we memorize and take care of redundant informa-
tion: for example, a bit vector represents both a conjunction and the corresponding
conjuncts, whereas the truth value of the former is determined by the truth value of
the latter. Now we propose a representation where we only keep track of the “non-
redundant” sub-formulas, which possibly reduces the size of the corresponding BDDs.
To do so, it is convenient to work on formulas in a different normal form.

A K formula ¢ is said to be in negation normal form (NNF) if all its sub-formulas
are of the form o A ¢', p V ¢, Op, Oy, q, or =g where ¢ € AP(1)). When needed,
we assume the formula 1 is already in NNF. We use sub(¢) to represent the set of
sub-formulas of NNF(¢). All K formulas can be converted into negation normal
form without blow up by pushing negation inwards.

A set p C sub() is a full 1-particle if it satisfies the following conditions:

o If o = ¢/, then ¢ € p implies ¢’ ¢ p.

16

o If o =¢' A", then ¢ € p implies ¢’ € p and " € p.

o If p=¢' V" then ¢ € pimplies ¢' € p or ¢" € p.
Thus, in contrast to a type, a full particle may contain both ¢’ and ¢”, but neither
©' A" nor ' V.

For particles, A(-,-) is defined as for types. From a set of particles P and the
corresponding A(-,-), we can construct a Kripke structure Kp in the same way as
from a set of types.

For the top-down approach, the auxiliary functions Initial(-) and Iterate(-) for

full particles are defined as follows:
e Initial(v)) is the set of all full y-particles.

e [terate(P) = P \ bad(P), where bad(P) is the particles in P that contain

unwitnessed diamond formulas, i.e.

bad(P) = {p € P | there exists Op € p such that, for all ¢ € P

with A(p, q), we have ¢ ¢ g}.

Theorem 4.1. The top-down algorithm for particles decides satisfiability of IC for-

mulas.
Proof.

Lemma 4.1. (Soundness) For each type p € P and formula ¢ € sub(v), if ¢ € p,
then Kp,p = .

Proof. The same proof as lemma 3.1 applies, except for the =0¢' part, (which does

not exist for particles), and for the < operator:

o If o = Oy’ € p, then p ¢ bad(P) because Iterate(P) = P, and thus exists ¢ € P
with A(p, q) and ¢' € ¢. By induction, Kp,q | ¢, and thus Kp,p E O¢'.

17
Lemma 4.2. (Completeness) For all ¢ € sub(v), if ¢ is satisfiable, then there
exists some p € P where ¢ € p.

Proof. See lemma 3.2. A analogous proof can be constructed by taking a model K
for ¢ and generate a particle set P(W) from the states of K. To show P(W) C P,

we can follow the same proof by contradiction scheme:
o P(W) C P since P° contains all particles p C sub(1)).

e Let P(W) C P' and assume that P(W) € P, Then there is some w € K
such that p(w) € bad(P?). So there is some Oy € p(w) and for all ¢ € A’
with A(p(w), q), we have ¢ ¢ g. Hence there is no v € W with R(w,v) and
K, v = =y, in contradiction to K, w = <.

Analogously, these functions are defined for the bottom-up approach as follows:

e Initial(v)) is the set of full ¢-particle p that do not contain diamond formulas,
i.e., Op ¢ p for all Oy € sub(1).

o [terate(P) = P Usupp(P), where supp(P) is the set of witnessed particles, i.e.

supp(P) = {p Csub(v) | pis a ¢-particle and, for all Cp € p,
there exists ¢ € P with ¢ € ¢ and A(p,q)}.

Theorem 4.2. The bottom-up algorithm for particles decides satisfiability of IC for-

mulas.
Proof.

Lemma 4.3. (Soundness) For each particle p € P and formula ¢ € sub(v)), if

© €p, then Kp,p = .

Proof. Analogous to 3.3 and lemma 4.1.

Lemma 4.4. (Completeness) For all ¢ € sub(v), if ¢ is satisfiable, then there

exists some p € P with ¢ € p.

18

Proof. Analogous to 3.4 and lemma 4.2.

While encoding particle sets by BDDs may require more BDD variables, we still
might see a reduction in BDD size, because particles requires fewer constraints than
types.! Beside a possible reduction in the size required to encode a bit-vector represen-
tation of particle sets, the particle-based approaches also can improve running time.
From the definition of bad and supp, we can see that, in the type-based approaches,
for each fixpoint iteration, the number of constraints that needs to be applied to the
state set in each iteration is equal to the number of O operators, which is equal to
the total number of all modal operators in the original formula. On the other hand,
in particle-based approaches, the number of constraints only have to be equal to the

number of & operators in the NNF form of the formula, which is smaller.

4.2 Lean Approaches

This optimization is also motivated by the idea to compress the size of the bit vector
representing a type by omitting redundant information. To this purpose, we first
define a set of “non-redundant” sub-formulas atom(¢)) as the set of those formulas in
cl(¢) that are neither conjunctions nor disjunctions, i.e., each ¢ € atom(v)) is of the
form O¢', ¢, ~0¢', or =q. By the definition of types, each type a C cl(¢), corresponds
one-to-one to a lean type lean(a) := a N atom(t)). So storing types in lean form is

equivalent to storing them in full form. Thus the following theorem is trivial.

Theorem 4.3. The top-down/bottom-up algorithms for lean atoms decide satisfiabil-
ity for IC.

Proof. Take any atom set A during the algorithm and its lean version A’. Define
full(A") = {a | anatom(y)) € A’ and a is an atom}, we can see full(A’) = A. So given

the full atom algorithms are sound and complete, so are the lean atom algorithms.

LOf course, BDD size is always formula dependent. In our experiments, we observed that particle
approaches gives BDD sizes between a small constant factor (i.e., 2-3) larger to orders of magnitudes

smaller compared to type approaches.

19

Analogously, we can define a lean representation for particles. First, we define
the relevant sub-formulas part(1)) as follows: For ¢ € sub(1)), if ¢ is O, O¢’, ¢, or
—q, then ¢ is in part(¢). For a full particle p C sub(1)), we define the corresponding
lean particle lean(p) as follows: lean(p) = p N part(¢)). Because the (first) condition
on particles is more relaxed than that of atoms, a lean particle does not correspond

to a single full particle, but can represent several full particles.

Theorem 4.4. The top-down/bottom-up algorithms for lean particles decide satisfi-
ability for IC.

Proof. Given a particle set P used in the full version of the algorithm and the its lean
correspondent P’, there does not exist a bijection from P to P'.? But the particle
set P we construct in our algorithms have additional properties. In particular, for if
p € P, for all consistent ¢ C cl(¢) such that p’ = ¢', ¢ € P. So P’ fully characterizes
P. This is by definition of Initial(y) and Iterate(P) since these functions only
apply constraints on subformulas that are member of part(¢)). So at any step in the
algorithm, take P’ and build full(P’) = {p C sub(%)) | lean(p) € P’ A p is consistent },
full(P') = P. So given the full particle algorithms are sound and complete, so are the
lean particle algorithms.

Although lean approaches can possibly reduce the size required for representing
worlds, we have to pay for these savings since computing bad and supp using lean

types and particles can be more complicated.

4.3 Level-based evaluation

As already mentioned, K has the finite-tree-model property, i.e., each satisfiable for-
mula ¢ of K has a finite tree model of depth bounded by the depth md(v) of nested
modal operators in). Here, we take advantage of this property and, instead of rep-

resenting a complete model using a set of particles or types, we represent each layer

’In fact, | P |#| P’ |

20

(i.e., all worlds being at the same distance from the root node) in the model using
a separate set (For a level-based approach in the context of the first-order approach
to IC, see [AGHAO00]). Since only a subset of all sub-formulas appears in one layer,
the representation can be more compact. We only present the optimization for the
approach using (full) types. The particle approach and the lean approaches can be

constructed analogously. For 0 < i < md(v)), we write
cli(¢0) := {p € cl(¥) | ¢ occurs at modal depth ¢ in 9},

and we adapt the definition of the possible accessibility relation A accordingly:
Ai(a,ad) iff a Ccl;, a' Ccliyq, and ¢’ € @ for all Oy’ € a.

A sequence of sets of types A = (A, Ay, ..., Ag) with A; C 2% can be converted

into a tree Kripke structure

Ka=(APWL ALRL)

0<i<d

(where the worlds are the disjoint union of the A;) as follows:

e For a world a € A; and ¢ € AP(¢), we define L(a)(q) = 1 if ¢ € a, and
L(a)(q) =0if ¢ ¢ a.

e For a pair of states a,ad’, R(w,w") = 1 iff, for some i, a € A; and ¢’ € A;;, and

Ai(a, CL,).

The algorithm for level-based evaluation works as follows:

d <= md(v)

Xy < Initialy(v)

for : = d — 1 downto 0 do
X; < Iterate(X;;1,1)

end for

if exists x € Xy where ¢ € x then

21

1 is satisfiable.
else

¥ is not satisfiable.
end if

Please note that this algorithm works bottom-up in the sense that it starts with
the leaves of a tree model at the deepest level and then moves up the tree model toward
the root, adding nodes that are “witnessed”. In contrast, the bottom-up approach
presented earlier can be said to start with all leaves of a tree model.

For the level based algorithm and types as data structure, the auxiliary functions

can be defined as follows:

e Initial;(¢) = {a C cly(¥) | a is a type}.

o [terate(A,i) = {a € Initial;(yp) | forall -0O¢p € a thereexists b €
A where = € b and A;(a,b)}.

For a set A of types of formulas at level i + 1, Iterate(A, i) represents all types of

formulas at level ¢ that are properly witnessed in A.

Definition 4.1. Since in the level-based evaluation algorithm, we use each assign-
ment set to represent only assignments to cl;(1)), the assignments are not valid types,
but they are consistent enough for what formulas occuring at level i. We call an as-
signment a consistent for level v if it meets the requirement on types for formulas in
cl;(0). The same definition can be made for assignment sets, and if the set A; is
labeled with a level, we take a shortcut and use it as if it is a set of types if it is

consistent for level 1.
Theorem 4.5. The level based algorithm for atom assignments is sound and complete.

Proof. We write the sequence of assignment sets constructed by the level based

algorithm as A = (Ay, Ay, ..., Aq) where d = md(v).

22

Lemma 4.5. (Soundness) For all ¢ € cl;(v)), and a € A;, we have Ka, wq; = ¢

iff ¢ € a.

Proof. Induction on the structure of the formula.

e ¢ =¢: Then K4, w,; = ¢ by construction of L.

e Otherwise, assume inductively the claim holds for all subformulas of ¢.

— o= AN PV ¢ We here prove for the A case. By definition

of cly, ¢ € cl;i(v), ¢" € cli(v). By consistency of A;, for all a € A;, if
¢ € a, we have ¢' € a, ¢" € a. By inductive hypothesis, K4, w,; = ¢/,
Ka,we; E ¢". So Ka,w,; = ¢ by semantics of K. The same argument

can be made of V and —.

e = O¢": If ¢ € a, then by construction of R, we have: (1) For all
o' € A;4q that R(wg, weit1), we have ¢ € a'. (2) There are no j # i+ 1
where R(w,;, wy ;) for any assignment b. By definition of cl;, ¢ € cl;11(¢)).
So by the inductive hypothesis, K4, wq 41 | ¢’ for all such a'. So by
semantics of IC, K4, w,; = ¢. If ¢ ¢ a, By definition of Iterate, every
assignment a € A; is consistent for cl;(¢)). So —¢ € a. By definition of
Iterate, exists a' € A;y1 such that —¢’ € o’ and for all Op € a, we know
that Op € cl;(¢)) so o € @’. So by definition of R, R(w,;, w. i+1) holds. By

induction hypothesis, K4, wy i11 = ¢'. So Ka, w,,; = .

Corollary 4.1. If exists a € Ay such that ¢ € a, then Ka, wa o = 1.

Lemma 4.6. (Completeness) For ¢ € cl;(v), if ¢ is satisfiable, then there is an

atom assignment a € A; where ¢ € a.

Proof. We know from [HM92] that if ¢ is satisfiable, it have a finite tree model

of depth d, = md(y). We also know from definition of md and cl; that ¢ + d, <

dy = md(¢). Given that ¢ is satisfiable, take a tree model K, with depth d where

23

K, ,w, E ¢ and d < d, — 1. Since i+ d, < dy, such a model exists. Since K, is
a tree model, each state w € W only occurs at a unique distance from the root w,.
We partition the state set W of K, into {Wy, W1,..., Wy}, in which a state w € W;
occurs at distance j from the root. For each w € W; we define an atom assignment
a(w) ={o€cli+jy) | K,,w = p}. We define A(W;) = {a(w) | w € W,} as a set of
assignments to formulas in cl;;;(1). We now show that A(W;) C A;;.

We prove by induction on depth j:

e j = d: We know every state w € Wy is a terminal state in K. It follows that
for all o = —0O¢', we have K,,w = 0. So ¢ ¢ a(w). And by semantics of K,
a(w) is consistent. Since A;;; contains all witnessed assignments to cl;y;(¢) by

definition, we have a(w) € A;4;.

e j < d: Assume inductively that the claim holds for j = j + 1. For a state
w € W;, a(w) is consistent by the semantics of K. For all p = =00 € cl;1; (),
we have ¢’ € cli (). If p € a(w), we have K,, w = —~0¢'. So exists w' € Wj
where R(w,w’) and K,,w' = —¢'. So =¢" € a(w’). By inductive hypothesis,
a(w') € A;yj. By the semantics of K, for all Oo” € cl;1j(v)), where 09" € a(w),

we have ¢” € a(w'). So a(w) € A;4; by definition of Iterate.

Since w, € Wy, we have a(w,) € A;, and because ¢ € cl;(¢), we have ¢ € a(w,) by

construction of a.
Corollary 4.2. If ¢ is satisfiable, then exists a € Ay such that ¢ € a.

The same algorithms can be defined for particle based approaches, by defining an

analogous sub; (1), and using

e Initial;(v) = {p C sub;(¥)) | p is a particle}.

o [terate(P,i) = {p € Initial;(¢y) | for all Gy € p there exists ¢ € P where ¢ €
¢ and A;(p, q)}.

24

Theorem 4.6. The level based algorithm for particle assignments is sound and com-

plete.

Proof. We write the sequence of assignment sets constructed by the level based

algorithm as P = (P, P, ..., P;) where d = md(v).

Lemma 4.7. (Soundness) For all ¢ € sub;(v), and p € P, if ¢ € p, then
Kp, wp,; |= .

Proof. Induction on the structure of the formula.
e © =¢,~q: Then Kp,w,; = ¢ by construction of L.
e Otherwise, assume inductively the claim holds for all subformulas of ¢.

—@o =¢ N, o V" We here prove for the A case. By definition of
sub;, ¢’ € sub;(v)), ¢" € sub;(1)). By consistency of P;, for all p € P;, if
¢ € p, we have ¢' € p, ¢" € p. By inductive hypothesis, Kp,w,; = ¢/,
Kp,w,; = ¢". So Kp,wy; = ¢ by semantics of K. The same argument

can be made for V.

— ¢ = Oy': By construction of R, for every w, ; where R(w, ;, wy ;), we know
that j =i+ 1 and ¢’ € p’. So by semantics of O, we get Kp, w,; = .

— =@ Assume Kp,w,; ~ ¢. Then Kp,w,,; = O-¢'. So for all wy ;1
where R(w,;, Wy it1), Kp,wy iy1 = ¢’ by semantics of K. By inductive
hypothesis, ¢’ ¢ p'. So p ¢ Iterate(P;y1,i) by definition of Iterate which

is a contradiction. So Kp,w,; = ¢.

Lemma 4.8. (Completeness) For ¢ € sub;(1)), if ¢ is satisfiable, then there is a

particle assignment p € P; where ¢ € p.

Proof. Given that ¢ is satisfiable, take a tree model K, rooted at w, with depth d
where K,, w, = ¢ and d < d;, —i. Since i + d, < dy, such a model exists. Since K,

is a tree model, each state w € W only occurs at a unique distance from the root w,,.

25

We partition the state set W of K, into {Wy, W1, ..., Wy}, in which a state w € W;
occurs at distance j from the root. For each w € W; we define a particle assignment
p(w) = {o € sub;y;) | Ky, w |= 0}. We define P(W;) = {p(w) | w € W,} as a set of
assignments to formulas in sub;;(¢). We now show that P(W;) C Py,.

We prove by induction on depth j:

e j = d: We know every state w € Wy is a terminal state in K. It follows that
for all p = ¢/, we have K,,w = 0. So 0 ¢ p(w). And by semantics of K,
p(w) is consistent. Since Pj;; contains all witnessed assignments to sub; ()

by definition, we have p(w) € Piy,.

e j < d: Assume inductively that the claim holds for j' = j + 1. For a state
w € W;, p(w) is consistent by the semantics of K. For all p = o' € subiy (1),
we have ¢’ € sub; /(). If 0 € p(w), we have K,, w = Op'. So exists w' € Wy
where R(w,w') and K,,w' | ¢. So ¢ € p(w'). By inductive hypothesis,
p(w') € P j. By the semantics of K, for all Og" € sub;j(¢)), where Og" € p(w),

we have ¢” € p(w'). So p(w) € P;4; by definition of Iterate.

Since w, € Wy, we have p(w,) € P;, and because ¢ € sub;(1/), we have ¢ € p(w,) by

construction of p.

4.4 Formula simplification

We now turn to a high-level optimization, in which we apply some preprocessing to
the formula before submitting it to XBDD. The idea is to apply some light-weight
reasoning to simplify the input formula before starting to apply heavy-weight BDD
operations. In the propositional case, a well-known preprocessing rule is the pure-
literal rule [DLL62|, which can be applied both in a preprocessing step as well as
dynamically, following the unit-propagation step. Preprocessing has also been shown

to be useful for linear-time formulas [SB00, EH00], but has not been systematically

26

explored for L. Our preprocessing is based on a modal pure-literal simplification,
which takes advantage of the layered-model property of K.
When studying preprocessing for satisfiability solvers, two types of transformation

should be considered:

1. Equivalence preserving: This requires that the simplified formulas ¢’ is logi-
cally equivalent to the input formula . Unit propagation is an example of an
equivalence-preserving transformation. Such a transformation is used in model
checking [SB00, EH00|, where the semantics of the formula needs to be pre-

served. An equivalence-preserving rule can be applied to subformulas.

2. Satisfiability preserving: This requires only that ¢’ is satisfiable iff ¢ is sat-
isfiable. Pure-literal simplification is an example of a satisfiability-preserving
transformation. Such transformations allow for more aggressive simplification,
but cannot be applied to subformulas. Note that such a transformation can be

used for satisfiability solving but not for model checking.

Our preprocessing was designed to reduce the number of BDD operations called
by KBDD, though its correctness is algorithm independent. (We found that such
preprocessing was beneficial for DLP, a tableau-based modal solver, as well as QuBE,
a DPLL-based solver but not for MSPASS, a resolution-based solver.) The focus of

the simplification is on the following aspects:

1. The primary goal is to minimize the size of the formula. A smaller formula
leads to a reduction in BDD size as well as a reduction in the number of BDD

operations and dynamic variable re-orderings.

2. We also aim at minimizing the number of modal operators in the formula. This
leads to a smaller transition relation, where we have a constraint for each O sub-
formula, as well as a smaller number of BDD operations involved in witnessing

<& subformulas.

27

Propositional rules

Equivalence f Atrue = f f N false — false
fV true — true fVfalse = f
fNF—=f fvVi—=1Ff
fAN—f — false fV—f — true

Modal rules

Equivalence <& false — false O true — true
OfVvOg—O(fVy) Of AOg — O(f Ag)

Satisfiability CfANOgAh —O(fAg)AR Of = f

preserving where h is a propositional formula.

Table 4.1 : Simplification rewriting rules for

4.4.0.1 Rewrite rules

Our preprocessing includes rewriting according to a collection of rewrite rules (see
Table 4.1). Although the rules can be applied in both directions, we apply only the
direction that reduces the size of the formula. It is easy to see that the rules are
equivalence or satisfiability preserving. These rules by themselves are only modestly
effective for K formulas; they do become quite effective, however, when implemented
in combination with pure-literal simplification, described below. These rules allows us
to propagate the effects of pure-literal simplification by removing redundant portions
of the formula after pure-literal simplification. This usually allows more pure literals

to be found and can greatly reduce the size of the formula.

4.4.0.2 Pure-literal simplification

To apply pure-literal simplification to IC satisfiability solving, we first need to extend
it to the modal setting.

28

Definition 4.2. Given a set S of (propositional or modal) formulas in NNF, we
define lit(S) = {l | L € S and l is q or —q, where ¢ € ®} as the set of literals of S.
The set pure(S) of defined as the set of literals that have a pure-polarity occurrence
in S, i.e., | € pure(S) iff | € lit(S) and -l & lit(S).

It is well known that pure-literal simplification preserves propositional satisfiabil-
ity; that is, given a propositional formula ¢, for any literal [€ pure(y), ¢ is satisfiable
iff [/ true] is satisfiable. There are a number of ways to extend the definition of pure

literals to modal logics. A naive definition can be as follows:

Definition 4.3. For a formula 1) in NNF, we define pure(y)) = pure(sub(¢))) as the
set of globally pure literals of v, and define the corresponding formula after pure
literal simplification as 1y, = [pure(t))/ true].

Given that IC has the layered-model property, assignments to literals at different
modal depth are in different worlds and should not interfere with each other. A

stronger definition of pure literals can be as follows:

Definition 4.4. For ¢ in NNF, we define level-pure literals by pure;(¢p) =
pure(sub;(¢))), for 0 < i < md(v). The substitution used for level-pure literals
needs to take into consideration that | € pure;(v)) is only pure at modal depth i,
so we let [pure;(¢)/ true|; be the substitution with true of all level-pure literals

[that occur at distance i from . The result of the pure-literal simplification is

U1, = Ylpurey () / trueo ... [pure,, 4y, (1) / truelmagy,)

Remark 4.1. It is possible to push this idea of “separation” further. Because each
world in the model only needs to satisfy a subset of sub(1)), the possible subsets can be
constructed to determine which of the literals can be pre-assigned true. For example,
it s possible to construct sets of subformulas that can occur together in a tableau and
define pure literals based on such sets. We did not find that the performance benefit

justified the implementation overhead for this extension.

29

We now prove the sound and completeness of pure-literal simplification. That is,
we show that pure-literal simplification preserves satisfiability for both globally pure

literals and level-pure literals.

Theorem 4.7. Both global and level pure-literal simplifications are satisfiability pre-
serving. That is, for a formula ¥, we have that ¢ is satisfiable iff ¥ (or }) is
satisfiable.

Proof. We write ¢’ instead of i, or ¢}, when the formula used is clear from the
context. Without loss of generality, we assume that only one literal [is substituted.
Since other pure literals for) are still pure with respect to ¢’ under both definitions,
the general case can be shown by induction on the number of literals.

The completeness part of the claim is easy. It is known that the O and & operators
are monotone [BAVO1]. More formally, if ¢ is a formula in NNF, « is a subformula
occurrence of 1 and [is another formula that is logically implied by «, then ¢[a/f]
is logically implied by 1. It follows that ¢’ is logically implied by . In particular, if
1 is satisfiable, then v’ is satisfiable.

In the following, we take K = (®, W, R, L) and K' = (®,W, R, L) to be finite
tree Kripke structures of depth md(v)) with the same underlying frame, and wy € W
to be the root of the tree, where we want ¢ and ¢’ to hold.

The soundness proof for pure-literal simplification depends whether we use glob-

ally pure or level-pure literals.

e Globally pure literals: Assume K’ , wy = v'. Note that [does not occur in 1),
so we can assume that L does not define a truth value for [. We construct K
from K' by taking L to be an extension of L' such that L(w)(l) = true for every
w € W. We claim that for every state w € W and every formula ¢ € sub(%)),
we have that K',w = ¢[l/true] implies K,w = ¢. We prove the claim by
induction on the structure of the formula. If ¢ is a propositional literal, the

property holds because either ¢ = [, in which case K, w [= [by construction, or

30

@ is a literal I’ such that AP(I") # AP(l), in which case L(w) and L'(w) agree
on l', so K',w | ' implies K,w [I'. For the induction, we show only the
case when ¢ = O¢'. Given K',w [= ¢[l/ true|, we have that K', w' |= ¢'[l/ true]
holds for all w' such that R(w,w’). By the inductive hypothesis, K, w' = ¢’ for
all such w' as well. So K, w = ¢ holds. Thus K', wy = ¢ implies K, wq |= 1.

Level-pure literals: Assume K' wy = ', Let dist(¢,1) = d. For 0 < i < md(v),
define W; = {w | distance between w and wy = i}. We construct K from K’
by defining L as follows: (1) L(w) = L'(w) for w ¢ Wy, (2) L(w)(l) = true
for w € Wy, and (3) L(w) agree with L'(w) for p € & — AP(l) and w € Wj.

Intuitively, we modify L' by making [true in all worlds w € Wj.

We claim that for a formula ¢ € sub;(¢), and a world w € W; we have that

K' w E ¢[l/true|y_; implies K,w = ¢. It follows that K, wy = 1[I/ truel,.

For d < i < md(v), note that ¢[l/true]s ; = ¢ and L agrees with L' on all
d(¥)

worlds in Uj;""W;. Since truth of formulas in worlds of W; depends only on

worlds in U?:diw)

W, the claim holds trivially. For 7 < d, we use induction on
the structure of . If ¢ is a propositional literal, the property holds because
either ¢ = [and dist(¢,) = d, in which case K,w [= [by construction, or
either is a literal I’ such that AP(l") # AP(l) or dist(1, ¢) # d, in which case
L(w) and L'(w) agree on I', so K',w = 1" implies K, w = I'. For the induction,
we show only the case when ¢ = O¢'. Given K',w |= ¢[l/ truelq ;, we have
that K',w' = ¢'[l/ true|q—;—1 holds for all w" such that R(w,w’). Note that
if R(w,w') holds and w € W;, then w' € W;,;. By the inductive hypothesis,

K, w' = ¢ for all such w' as well. So K, w = ¢ holds.

31

Chapter 5

Implementation

5.1 Base Algorithm

We use Binary Decision Diagrams (BDDs) [Bry86, And98] to represent sets of types.
BDDs, or more precisely, Reduced Ordered Binary Decision Diagrams (ROBDDs), are
obtained from binary decision trees by following a fixed variable splitting order and by
merging nodes that have identical child-diagrams. BDDs provide a canonical form of
representation for Boolean functions. Experience has shown that BDDs often provide
a very compact representation for very large Boolean functions. Consequently, over
the last decade, BDDs have had a dramatic impact in the areas of synthesis, testing,
and verification of digital systems [BBG194, BCM*92].

In this section, we describe how our two algorithms are implemented using BDDs.
First, we define a bit-vector representation of types. Since types are complete in the
sense that either a sub-formula or its negation must belong to a type, it is possible
for a formula and its negation to be represented using a single BDD variable.

The representation of types a C cl(1)) as bit vectors is defined as follows: Since

both formulas and their negations are in cl(¢), we define

cly () = {pi €cl(®)) | ¢; is not of the form —¢'},
d_(v) = {~¢lyed ()},

and use m for |cly(¢)| = |cl(¥)|/2. For cli(v) = {¢1,...¢0m}, a vector @ =

{ai,...,ay) € {0,1}™ represents a set' a C cl(v)) where ¢; € a iff a; = 1.

!Please note that this set is not necessarily a type.

32

A set of such bit vectors can obviously be represented using a BDD with m
variables. It remains to “filter out” those bit vectors that represent types.
We define C'onsistent,, as the characteristic predicate for types: Consistent, (d) =

Ai<icmn Cons;(d@), where Cons;(d) is defined as follows:
e if ; is neither of the form ¢’ A ¢" nor ¢' Vv ¢”, then Cons;(d) = 1,
o if p; = A", then Cons;(@) = (a; Aa' ANad") V (—a; A (—d' vV —ad")),
o if p; = V" then Cons;(@) = (a; A (' V")V (ma; A =ad' A —a")),

where a' = a, if ¢' = @y € cl(¥), and o’ = —ay if ' = =y for @, € cl (¥).
From this, the implementation of Initial is fairly straight forward: For the top-

down algorithm,
Initial(¢y) = {a € {0,1}™ | Consistent,(d)},
and for the bottom-up algorithm,

Initial(¢) := {d € {0,1}"™ | Consistent, (@) A /\ a; = 1}.
=0y’
In the following, we do not distinguish between a type and its representation as a

bit vector @. Next, to specify bad(-) and supp(-), we define auxiliary predicates:

o O ,(7) is read as “Z needs a witness for a diamond operator at position i” and

is true iff x; = 0 and p; = O¢'.

o Oy (Y) is read as “y is a witness for a negated box formula at position i” and

is true iff p; = Oy; and y; = 0 or ¢; = O—¢p; and y; = 1.

e (%) is read as “Z requires support for a box operator at position i” and is

true iff z; = 1 and ¢; = Oy'.

e U, ,(7) is read as “y provides support for a box operator at position i’ and is

true iff p; = Oy, and y; =1 or ¢; = O=gp; and y; = 0.

33

For a set A of types, we construct the BDD that represents the “maximal” ac-
cessibility relation A, i.e., a relation that includes all those pairs (Z,) such that ¢
supports all of @’s box formulas. For types Z, 7 € {0,1}™, we define

AED) = N (O1() = Oay(7))
1<i<m
Given a set A of types, we write the corresponding characteristic function as x 4.
Both the top-down and the bottom-up algorithm can be defined using the predicates
Xa, A, ;4 and O, ;.

The predicate bad is true on those types that contain a negated box formula that
is not witnessed in the current set of types. We can define a predicate bad; for each
negated box formula ¢; = =Og; that can be used to remove unwitnessed bit vectors

as follows:

Xoad; (x) (Z) = C1,i(@) AVT: (Xx (7)) AAE, 9)) = =C2:(9),

and thus bad(X) can be written as
Xbad(x)(Z) = \/ Xbad; (x)(T)-

In our implementation, we compute each Xbad; (X) and use it in the implementation of
the top-down and the bottom-up algorithm. It is easy to see that Xbad: (%) is equivalent

to
(@) = 7 (xx () A Az, y) A O2i(7))-
For the top-down algorithm, the Iterate function can be written as:
XX \bad(X) ‘= Xx (Z) A /\ (XW@))
1<i<m
For the bottom-up algorithm, we must take care to only add bit vectors representing
types, and so the [terate function can be implemented as:

X XUsupp(X) +— XX(f) \ (XC’onsistentd, (f) A /\ (Xm(f))

1<i<m

34

These functions can be written more succinctly using the pre-image function for the

relation A:

—

preima (Xn) (%) = 37 : xn (9) A A(Z,)

Using pre-images, we can rewrite Xbad; (x) 39 follows:
2

Xpaa, (@) = ©13(Z) — preima (xx (§) A C2,i(9))-

Finally, the bottom-up algorithms can be implemented as iterations over the sets
Xxusupp(x), and the top-down algorithms can be implemented as iterations over
X x\bad(x) until a fixpoint is reached. Then checking whether ¢ is present in a type of
this fixpoint is trivial.

The pre-image operation is a key operation in both the bottom-up and the top-
down approaches. It is also known to be a key operation in symbolic model checking
[BCM™92] and it has been the subject of extensive research (cf. [BCL91, GB94,
RAB'95, CCGRO0]), since it can be a quite time and space consuming operation.
Various optimizations can be applied to the pre-image computation to reduce the
time and space requirements. A method of choice is that of conjunctive partitioning
combined with early quantification. The idea is to avoid building a monolithic BDD
for the relation A, since this BDD can be quite large. Rather, we take advantage of the
fact that A is defined as a conjunction of simple conditions. Thus, to compute the pre-
image we have to evaluate a quantified Boolean formula of the form (Jy;) ... (Jy,)(c1 A
...\ ¢p,), where the ¢;’s are Boolean formulas. Suppose, however, that a variable y;

does not occur in the clauses ¢;;1,...,¢,. Then the formula can be rewritten as

(Elyl) . (Elyj_l)(ﬂyj+1) e (Elyn)((fly])(cl VANPAN Ci) A (Ci—l—l VANPIAN Cm))

This enables us to apply existential quantification to smaller BDDs.
Of course, there are many ways in which one can cluster and re-order the ¢;’s. One

of which we used is the methodology developed in [RAB*95], called the “IWLS 95”

methodology, to compute pre-images. We also have tried other clustering mechanisms,

35

namely the “bucket-elimination” approach used in [SV01]. Given a set of conjunctive
components ¢y . ..c,, we get the variable support set for each component as Y;...Y,.
Then, a graph of interference of variables is constructed so every vertex represents a
variable, and there is an edge between variables y; and y; if y; and y; occurs together
in some Y;. We conduct an “maximum cardinality ordering” of the variables, so y; is
the variable that occurs with the maximal number of edges, and y; have the maximum
number of edges into previously chosen variables. Given such an variable order, we can
order the conjunctive components in the order of the first occurrence of the highest
(or lowest) ordered variables (either forward or backward). We have implemented all

four combinations in this case, although the performance improvements are minimal.

5.2 Optimizations
5.2.1 Particles

Encoding of the particle based approach with BDDs is analogous to the encoding of
the atom based approach. Since the consistency requirement for particles is more
relaxed then that of atoms, each subformula in sub(t)) needs to be assigned to a
variable. So given sub(¢)) = {¢1,...on}, a vector p'= (p1,...pm) € {0, 1}" represents a
set p C sub(¢)) with ¢; € p iff p; = 1.

Then, for particles, Consistenty (p) = Ni<i<nCons;(p), where Cons;(p) is defined

as follows:
e If o, is neither of the form ¢; A ¢ nor ¢; V ¢y, then Cons;(p) =1,
o If v, = ¢; A gy, then Cons;(p) = (pi = (pj Apr)),
o If v, = ¢; V ¢y, then Cons;(p) = (pi = (p; V o)),
o If v, = —p;, then Cons;(p) = —(pi A pj).

We also need to update the auxiliary predicates for particles:

36

o Oy (%) is true iff z; = 1 and ¢; = Oy

—

o Oyi(y) is true iff ¢; = Oy and y; = 1.
o Uy ;(Z) is true iff x; = 1 and ¢; = Oy'.

o U, ,(7) is true iff p; = Oyp; and y; = 1.

5.2.2 Lean vectors

Lean approaches have much more relaxed consistency predicates at the cost of bigger
witness/support predicates. For lean approaches, Only the Cons;(Z) that is related
to those ¢; in atom(¢)) (or part(¢)) are used.

On the other hand, the auxiliary (witness/support) predicate for the lean approach
is significantly more complex. We now define the corresponding auxiliary functions

for lean assignments.

Definition 5.1. For a formula v, we define bcl(1)) = cl(y)) — atom(v)), representing
the Boolean (non-modal) subformulas in the BNF of 1. The same can be defined for
the NNF of ¢ as bsub(v¢)) = sub(1)) — part()).

Definition 5.2. For lean particle/atom assignments, v, and Oy ; is the same as full
particle/atom assignments. But since the subformula with the modal operator stripped
may not be in atom(v)) or part(v), we need to redefine the functions o4, Ogy with
the same intuition as for full particle/atom vectors.

We do so by defining the helper function strip, inductively as:

strip, () Astripg(9) if vi = ©j A gy,
strip; () V strip, () if i = 05 V

i

)

A\

strip 4 (

<

— strip; (¥/) if pi = g
Vi if p; € atom(v) for atoms or part(1)) for particles

37

Obuiously, for both lean particle or atom assignments, strip, can be computed when
parsing the input formula, and be kept in a table.

Next, $g; and Oy, can be defined as:

strip;() particles
Ooi(7) =
—istrip, () atoms

O,i(9) strip ; (7))

5.2.3 Level based evaluation

The level-based evaluation approaches is computed in a similar way. Since in the level-
based algorithm, we keep an assignment set for each modal level, so going through
all the W(X) is no longer necessary. Also since the level based algorithm only
requires the assignment set to be consistent w.r.t. to subformulas in a single modal
level, we can split the constraint predicate Consistent to d + 1 sets Consistenty to

Consistenty where each only consists of constraints related to ¢; € cl;(¢). So for a

full/lean atom/particle approach alg, We define Xjevel,(x) as:

Xleveli(X)(f) = XConsistent; (f) A /\ (Xm(f))
{ilpjecli(¥)}

Then Xrnitiai; (@) = Consistent;(@), and Xperate(ai) (@) = x(Consistent;)(@) A

Xlevel; (A) (5)-

The level based evaluation for particles can be implemented in the same way.

5.2.4 Variable Ordering

Performance of BDD-based algorithms is very sensitive to BDD variable order, since
it is a primary factor influencing BDD size [Bry86]. Space blowups of of BDDs for the
state sets P;, as well as intermediate BDDs during pre-image operation, is observed in

our experiments to be a major factor in performance degradation. Since every step in

38

the iteration process uses BDDs with variables from different modal depth, dynamic
variable ordering is of limited benefit for KBDD (though it is necessary when dealing
with intermediate BDDs blowups), because there may not be sufficient reuse to make
it worthwhile. Thus, we focused here on constructing heuristically a good initial
variable order. Our heuristic attempts to find a variable order that is appropriate
for KBDD. In this we follows the work of Kamhi and Fix, who argued in favor of
application-dependent variable order [KF98]. As we show in Section 7.1.5, choosing a
good initial variable order does improve performance, but the improvement is rather
modest.

A naive method for assigning initial variable order to a set of subformulas would
be to traverse the DAG for the formula in some order. We used a depth-first, pre-
order traversal. This order, however, does not meet the basic principle of BDD
variable ordering, which is to keep related variables in close proximity. Our heuristic
is aimed at identifying such variables. Note that in our lean representation variables
correspond to modal subformulas or atomic subformulas. We found that related vari-
ables correspond to subformulas that are related via the sibling or niece relationships.
We say that v, is the child of v, if for the corresponding subformulas we have that
g € sub; (), ¢, € sub;1(v), and ¢, is a subformula of ¢,, for some 0 < i < md(v)).
We say that v, and v, are siblings if either both ¢, and ¢, are in sub;(¢)) or they are
both children of another variable v,. We say that v, is a niece of v, if there is a vari-
able v, such that v, is a sibling of v, and v, is a child of v,. We say that v, and v, are
dependent if they are related via the sibling or the niece relationship. The rationale is
that we want to optimize state-set representation for pre-image operations. Keeping
siblings close helps in keeping state-set representation compact. Keeping nieces close
to their “aunts”, helps in keeping intermediate BDDs compact.

We build variable order from the top of the formula down. We start with left-to-
right traversal order of top variables in the parse tree of ¢/ as the order for variables

corresponding to subformulas in subg(7). Given an order of the variables of modal

39

depth < 7, a greedy approach is used to determine the placement of variables at modal
depth 7. When we insert a new variable v we measure the cumulative distance of v
from all variables already in the order that are dependent on v. We find a location
for v that minimizes the cumulative distance from other dependent variables. We
refer to this approach as the greedy approach, as opposed to the naive approach of

depth-first pre-order.

40

Chapter 6

Embedding £ with QBF

Both K and QBF have PSPACE-complete decision problems [Lad77, Sto77]. This
implies that the two problems are polynomially reducible to each other. A natural
reduction from QBF to I is described in [HM92]|. In the last few years extensive
effort was carried out into the development of highly-optimized QBF solvers [GNTO01,
CSGG99]. One motivation for this effort is the hope of using QBF solvers as generic
search engines [Rin99], much is the same way that SAT solvers are being used as
generic search engines, cf. [BCCZ99|. This suggests that another approach to K
satisfiability is to find a natural reduction of K to QBF, and then apply a highly
optimized QBF solver. We describe now such a reduction. (A similar approach is
suggested in [CSGG99] without providing either details or results.)

QBF is an extension of propositional logic with quantifiers. The set of QBF
formulas is constructed from a set ® = {x1,...z,} of Boolean variables, and closed
under the Boolean connectives A and —, as well as the quantifier Vx;. As usual, we use
other Boolean operators as abbreviations, and dz; : ¢ as shorthand for =Vz; : —p.
Like propositional formulas, QBF formulas are interpreted over truth assignments.
The semantics of quantifiers is defined by: 7 = Vp : ¢ iff 7[p/1] = ¢ and 7[p/0] = .

By Theorem 4.6, A IC formula ¢ of modal depth d is satisfiable iff there exists a
proper sequence P = (P, P, ..., P;) of particle sets such that ¢ € p for some p € P.
We construct QBF formulas fy, f1,... fs so each f; encodes the particle set F;. The
construction is by backward induction for i = d...0. For every ¢ € sub;(¢), we have
a corresponding variable z,; as a free variable in f;. The intuition is that f; describes

the set P;. That is, for each p C sub;(¢)), define the truth assignment Tlﬁ as follows:

41

7i(2,,) = 1 iff ¢ € p. The intention is to have P, = {p C sub;(¢)|7} = f;}. We then
say that f; characterizes P;.

In the following, we define particle,;(¢) as the set of all consistent particle vectors
of sub;(¢)). We start by constructing a propositional formula l¢; such that for each
p C suby(¢)) we have that p € particle;(¢)) iff 7 |= Ic;. The formula l¢; is a conjunction

of clauses as follows:
e For ¢ = ¢ € sub;(¢)), we have the clause z,; = —z, ;.
e For ¢ = ¢’ A ¢" € sub;()), we have the clauses x,; — vy ; and z,; — Ty ;.
o For o = ¢’ vV ¢" € sub;(v), we have the clause z,; = (Tyr;i V Ty).

For i = d we simply take f; to be ley. Indeed, we have P, = particle,(¢) = {p C
subg(¢))|7¢ = fa}. Thus, fq characterizes Initialy(v)).

For ¢ < d, suppose we already constructed a QBF formula f;,; that characterizes
P 1. We start by constructing f/, which also characterizes P,. We let f;, = fq.
The propositional part of f! is l¢;, which describes the particles in particle;(¢). In
addition, for each O¢ € sub;(¢)), we need a conjunct mce, that says that if Go is
in a particle p € P;, then O in p is witnessed by a particle in P;;. That is, we
define mcoy, as Top; — g it1:{0esubsyr ()} (fi41 ATy ir1 Alr;), where tr; is the formula
Ncyesub; vy [Toni = Tniv1]. (Here the existential quantifier is a sequence Jx;3. .. 3z,

of existential quantifiers,one for each of the formulas in sub;;(7)).)

Lemma 6.1. If f/,, characterizes Py, then f] characterizes P; = Iterate(Piqq,1).

Proof. By construction, l¢; characterizes part;(1). For the witnessing requirement,
we can see that if 7';; = mco, and To,;, then there is an assignment le;rl where
U T;,Jrl = fli1 A @1 Atr. This is equivalent to asserting that p’ € Py, ¢ € p'

and R;(p,p'). So the lemma holds.

Corollary 6.1. ¢ is satisfiable iff 319 0.49esubo()} 0 A fo is satisfiable.

42

Proof. The claim follows from the soundness and completeness of XBDD.

This reduction of K to QBF is correct; unfortunately, it is not polynomial. The
problem is that f/ requires a distinct copy of f;y; for each formula Cp in sub;(1)).
This may cause an exponential blow-up for fj. We would like f; to use only one copy
of fi11. We do this by replacing the conjunction over all Gy formulas in sub;(¢)) by
a universal quantification. Let k£ be an upper bound on the number of ¢ formulas
in sub; (), for 0 < i < md(y)). We associate an index j € {0,...,k — 1} with each
such subformula; thus, we let & the j-th ©¢ subformula in sub;(¢), in which case
we denote ¢ by strip(¢}). Let m = [lg k]. We introduce m new Boolean variables
Y1, - - -, Ym. Bach truth assignment to these variables induce a number between 0 and
k —1. We refer to this number is val(y) and we use it to point to < subformulas. Let
witness; be the formula \/f;é e which asserts that some witnesses are required.

We can now write f; in a compact fashion:

les AVYL, o VYm0 3T i1 q0esubipy (v)) - WitNESSs; —

k-1
(fi-l—l Atry N /\((UGZ(Y) =7 A ffg;‘.,i) — xstrip(g;i),iﬂ)) .

j=0

The formula f; first asserts the local consistency constraint [c¢;. The quantification
on yi,...,Yn simulates the conjunction on all £ & subformulas in sub;(1)). We then
check if witness; holds, in which case we assert the existence of the witnessing particle.
We use f;11 to ensure that this particle is in Py, and tr; to ensure satisfaction of
O subformulas. Finally, we let val(y) point to the & subformulas that needs to be

witnesses. Note that f; contains only one copy of f;ii.
Lemma 6.2. If f;., characterizes P;yy, then f; characterizes P; = Iterate(Py1,1).
Corollary 6.2. 1 is satisfiable iff 3xg o.{oesubo(v)} w0 N fo 18 satisfiable.

Proof. The claim follows from the fact that f; is logically equivalent to f;.
We implemented this approach by optimizing the translation further. As in the

BDD-based implementation, we represent only Boolean literals, O subformulas and

43

<& subformulas with Boolean variables. The other subformulas are not represented

explicitly, but are logically implied.

44

Chapter 7

Results

We implemented the BDD-based decision procedure in C++ using the CUDD 2.3.1
[Som98] package for BDDs, and we implemented formula simplification preprocessor
in OCaml. The parser for the languages used in the benchmark suites are taken
with permission from *SAT [Tac99]. In the following, we describe and compare the
performance of the different algorithms.*

As benchmarks, we use both the K part of TANCS 98 [HS96] and the MODAL
PSPACE division of TANCS 2000 [MDO00], as well as random formulas generated with
[PSSO01].

We present, the result in two parts. First, using TANCS 98 and TANCS 2000, we
study the influence of each optimization technique and the influence of variable order-
ing to determine the best configuration for BDD. Then, we provide a comparison
of IKBDD with other solvers across a spectrum of different benchmarks .

For most comparison, we set the time out at 1000s and the space limit for BDDs at
384MB. To avoid getting into overwhelming details in the comparison of solvers and
to present a global view of performance, we use the presentation technique suggested
in [SSO1], where we plot the number of cases solved against the running time used.
The chart is scaled so the full scale is the total number of cases in the benchmark.

Thus, the solver with a higher curve is faster than one with a lower curve.

LAll the tests run on a Pentium 4 1.7GHz with 512MB of RAM, running linux kernel version
2.4.2. The solver is compiled with gee 2.96 with parts in OCaml 3.04.

45

7.1 Comparison in depth

To analyze the usefulness of each optimization techniques used, we run the algorithm
with different optimization configurations on the K part of TANCS 98 and TANCS
2000 benchmark suites? , both scalable benchmarks which contains both provable
and non-provable formulas. In TANCS 98, simple formulas have their complexity
increased by re-encoding them with superfluous sub-formulas. In TANCS 2000, for-
mulas are constructed by translating QBF formulas into IC using three translation
schemes, namely Schmidt-Schauss-Smolka translation, which gives easy formulas,
Ladner translation, which gives medium difficulty formulas, and Halpern translation,

which gives hard formulas.

7.1.1 The basic algorithms

To compare our approaches, we benchmark the basic algorithms on TANCS 98. The
results are presented in Fig. 7.1. We can see that *SAT clearly outperforms our
two basic algorithms. An explanation of this “weak” behavior of our approaches is
that the intermediate results of the pre-image operation are so large that the BDDs
space constraint is usually reached. The difference between top-down and bottom-up
approaches is minor. Top-down slightly outperforms bottom-up since in a BDD-
based implementation, top-down removes types, which only requires the consistency
requirement to be asserted once before iteration, while bottom-up adds types, which

requires an extra conjunction to ensure only consistent types are added.

7.1.2 Particle approaches

Now we compare the variants using types with their full particle-based variants. The
results are presented in Fig. 7.2. We can see that, for TANCS 98, the particle ap-

proach slightly outperforms the type approach. Most of the improvements come from

2We used TANCS 98 in cases where too few cases in TANCS 2000 complete under an unoptimized

scheme, allowing better comparison.

46

T T T T

*SAT
topdown-full-type
%— bottomup—full-type

350

300

N
al
o

N
o
o

Cases completed

i
al
o

100:

50

10 10 10 10* 10° 10°
Running Time(ms)

Figure 7.1 : Performance on TANCS 98 (basic approaches)

the use of negation normal form, which allows us to distinguish between diamonds

and boxes, resulting in the reduction of the image operations needed.

7.1.3 Lean vector approaches

Next, for types and particles, bottom-up and top-down, we compare the “full” ap-
proaches with their lean variants (see Fig. 7.3 and Fig. 7.4). Intuitively, the full
variants trade a larger number of BDD variables in the representation of the tran-
sition relation for simpler consistency constraints. On TANCS 98, we can see that
the lean approaches outperform in each combination their full variants. This shows
that, as a general guideline, we should always attempt to reduce the number of BDD
variables, since this results in smaller BDDs. Indeed, experience in symbolic model
checking suggests that BDD size is typically the dominant factor when evaluating the
performance of BDD-based algorithms [KFB9S].

350

Cases completed

50

T

*SAT
topdown-full-type

w«— topdown—full-particle

I I I

10

10° 10* 10

Running Time(ms)

300

250

200

Cases completed

100:

50

T

T T T

*SAT
—©— bottomup-full-type
% bottomup—full-particle

I I I

Figure 7.2 : Performance on TANCS 98 (particles vs. types)

10° 10* 10°

Running Time(ms)

7.1.4 Level based evaluation

10

47

Next, we compared the level-based approach with the top-down and the bottom-

up approach. It turns out that the level-based approach outperforms both, and that,

48

T T T T

*SAT
topdown—full-type 4]
s« topdown-lean-type

350

300

250

200 . |

Cases completed

100:

50

0 . . 1 1 1 1
10 10 10° 10* 10° 10°
Running Time(ms)

T T T T

*SAT
—c— bottomup—full-type 4]
% bottomup—-lean-type

300

250

200

Cases completed

100:

50

0 1 1 1 1
10 10 10° 10* 10° 10°
Running Time(ms)

Figure 7.3 : Performance on TANCS 98 lean vs. full types

both for types and particles, the lean approach again outperforms the full one, see Fig.
7.5. By taking advantage of K’s layered model property, we can split various space-

consuming BDDs into smaller ones based on the modal depth of the corresponding

49

350

300

N
al
o

Cases completed
N
o
o

[
al
o

100:

T T T

*SAT

topdown—full-particle
w« topdown-lean—particle

0
10" ° 10" 10° 10
Running Time(ms)
T T T
—t—
350 SAT

300

N
al
o

Cases completed
N
o
o

i
al
o

100:

50

bottomup—full-particle

% bottomup-lean—particle

10*

Running Time(ms)

10

10

Figure 7.4 : Performance on TANCS 98 lean vs. full particles

20

sub-formulas. This minimizes space-outs and improves running time. The associated
reduction in number of pre-image operations is also substantial for most formulas.
In the following, BDD would refer to the level-based lean particle version of the

algorithm.

7.1.5 Variable ordering and formula simplification

To demonstrate the effects of variable ordering and formula simplification, we tested
KBDD with both naive and greedy variable ordering, and with and without formula
simplification, using TANCS 2000 easy and medium formulas [MDO00J?* (XBDD with-
out formula simplification cannot handle the hard formulas of TANCS 2000). The
results are in Figure 7.6.

We see in Figure 7.6 that formula simplification yields a significant performance
improvement. This improvements was observed for different types of formulas and dif-
ferent variable-ordering algorithms. In particular, BDD was able to avoid space outs
in many cases. We can also see that greedy variable ordering is useful in conjunction
with formulas simplification, improving the number of completed cases and some-
times running time as well. Without formula simplification, the results for greedy
variable ordering are not consistent, as overhead of finding the variable order may
offset any advantages of applying it. The combination of formula simplification and
greedy variable ordering clearly improves the performance of XBDD in a significant
way. In the next section, we compare the performance of optimized KBDD against

three other solvers.

7.2 Comparison between solvers

To assess the effectiveness of BDD-based decision procedures for I, we compared the

optimized KBDD against three solvers: (1) DLP is a tableau-based solver [PSH99],

3See http://www.dis.uniromal.it/€ancs/.

350

300

250

200

Cases completed

100:

504

*SAT

° 141

level-full-type b
level-lean-type
topdown-lean-type

I I I I

10° 10° 10* 10° 10°
Running Time(ms)

Cases completed

T T T T

*SAT

i
level-full-particle b
—x— level-lean—particle
o.. topdown-lean—particle

I I I I

2 3

10 10 10* 10° 10°

Running Time(ms)

Figure 7.5 : Performance on TANCS 98 (level-based evaluation)

ol

(2) MSPASS is a resolution-based solver, apply to a translation of modal formulas to

Cases completed

Cases completed

—+ naive
—5- greedy
—%— simp-naive
0 simp-greedy

ol n PR |

TANCS 2000-easy (cnfSSS)

10° 10* 10 10°
Running Time(ms)

T T
—t+— simp-naive
~©- simp-greedy
—%— nosimp-naive
0O- nosimp—greedy
200 T
150 b
100 |- B
50 B
3
o]
o- oo--8-8
il
@0
0 I I fiir) x| |
10" 10° 10° 10" 10° 10°

Running Time(ms)

TANCS 2000-medium (cnfLadn)

Figure 7.6 : Optimizations on TANCS 2000

52

23

first-order formulas [HS00]*, (3) We developed also a reduction of K to QBF (which is
of independent interest), and applied QuBE, which is a highly optimized QBF solver
[GNTO1]. For a fair comparison, we checked first whether our formula-simplification
optimization is useful for these solvers, and used it when it was (DLP and QuBE).
In addition to TANCS 98 and TANCS 2000, we also use randomly generated for-
mulas, as suggested in [PSS01]. This scheme generates random modal-CNF formulas
parameterized with the number N of propositions, the number K of literals in each
clause, the fraction « of modal literals in each clause, the modal-depth bound d, and
the number L of top level clauses. L clauses are generated with K literals each, where
aK literals are modal and the rest are propositional (the polarity of the literals is
chosen uniformly). Each modal literal is expanded into a clause in the same fashion.
The modal depth of the formula is bounded by d. We used d = [1,2], K = 3 and
« = 0.5 in our experiments. In each experiment N is fixed and the propositional

complexity of the formula was varied by increasing the density L/N.

7.2.1 Results on TANCS suites

In Figure 7.7 and Figure 7.8 we see that on the TANCS 98 benchmarks, DLP has the
best performance, but on the more challenging TANCS 2000 benchmarks, KXBDD
outperformed the other solvers, especially on the harder portions of the suite (the
hard formulas of TANCS 2000 required dynamic variable reordering). MSPASS was
a distant third, especially on the harder formulas, and is omitted on the hard formulas
of TANCS 2000°. It is also clear that reducing K satisfiability to a search-based QBF

solver is not a viable approach; it was dominated all other approaches and solved

“We used MSPASS 1.0.0t1.3 with options -EMLTranslations=1 -EMLFuncNary=1 -Select=2 -
PProblem=0 -PGiven=0 -Sorts=0 -CNFOptSkolem=0 -CNFStrSkolem=0 -CNFRenOps=1 -Split=-
1 -Ordering=0 -CNFRenMatch=0 -TimeLimit=1000. Compiler used is gcc-3.1.1 because gcc-2.96
have a serious bug that crashes the resulting executable.

5Better results for MSPASS is possible if different parameters is used for different cases. We did

not take this approach because it is outside the scopt of this thesis.

o4

only a small fraction of the benchmark formulas in TANCS 98. (For TANCS 2000
this approach was so ineffective that we did not report the results.) It would be

interesting to try the reduction-to-QBF approach with another type of QBF solver,
e.g., a resolution-based QBF solver [BKF95].

7.2.2 Results on random modal CNF formulas

A different perspective on the comparison between DLP, a search-based solver, and
KBDD, a symbolic solver, is demonstrated on random modal-CNF formulas. The
generation of the formulas are as suggested in [PSS01]. This scheme generates random
modal-CNF formulas parameterized with the number N of propositions, the number
K of literals in each clause, the fraction « of modal literals in each clause, the modal-
depth bound d, and the number L of top level clauses. L clauses are generated with K
literals each, where «K literals are modal and the rest are propositional (the polarity
of the literals is chosen uniformly). Each modal literal is expanded into a clause in
the same fashion. The modal depth of the formula is bounded by d. We used d =1, 2,
K = 3 and o = 0.5 in our experiments. In each experiment N was fixed and the
propositional complexity of the formula was varied by increasing the density L/N.
We plot here median running time (16 samples per data point) as a function of
density (L/N) to demonstrate the difference between the behavior of the two solvers.
As we can see in figure 7.9, for d = 1, DLP demonstrates the bell-shaped “easy-
hard-easy” pattern that is familiar from random propositional CNF formulas [SML96]
and random QBF formulas [GW99]. In contrast, for BDD we see an increase in
running time as a function of the density; that is, the higher the density the harder
the problem for KBDD. This is consistent with known results on the performance of
BDD-based algorithm for random propositional CNF formulas [CDS100]. For each
modal level, BDD builds a BDD for the appropriate particle set. With increased
density, the construction of these BDDs gets quite challenging, often resulting in

space outs or requiring extensive variable reordering. (In the propositional case, one

95

can develop algorithms that avoid the construction of a monolithic BDD, cf. [SVO1].
It would be interesting to try to apply such ideas for BDD.) This explains why
DLP performs much better than CBDD on random modal-CNF formulas. Unlike
the benchmark formulas of TANCS 98 and TANCS 2000, the random modal-CNF
formulas have a very high propositional complexity (low modal depth). In contrast,
the formulas in TANCS 98 and TANCS 2000 have high modal complexity (high
modal depth). Our conclusion is that DLP is better suited for formulas with high
propositional complexity, while BDD is better suited for formulas with high modal

complexity.

Cases completed

il n P | n ol n ol

Running Time(ms)

TANCS 98

—+— KBDD
~©- DLP
—%— MSPASS

200

150

Cases completed

50

o K—QBF—Semprop

§

T

Ll

10° 10° 10 10° 10°
Running Time(ms)

TANCS 2000 Easy (cnfSSS)

10* 10° 10°

26

Figure 7.7 : Comparison of BDD, DLP, QuBE/QBF and MSPASS on K formulas

(part 1)

o7

T T T T
—— KBDD
DLP
—%— MSPASS

200

150
=}
Q
°
[=R
£
o
o
0
Q

< 100}
(6]

50

0 PR 1
10" 10° 10

Running Time(ms)
TANCS 2000 Medium (c¢nfLadn)

—— T T T
—+— KBDD-reorder
DLP

50 B

30 B

Cases completed

20 B

10 B

O n PR | n Ll n PR | n PR | n PR
10" 10 10° 10* 10° 10°

Running Time(ms)

TANCS 2000 Hard (cnf)

Figure 7.8 : Comparison of BDD, DLP, QuBE/QBF and MSPASS on K formulas
(part 2)

Median running time
(=
o

10

10

[
o
w

[y
o
N

Median running time (ms)

10

10

T T
DLP N=3
DLP N=4
DLP N=5
DLP N=6
KBDD N=3
KBDD N=4
KBDD N=5

Pt ttot

R

NI

e

Ll

Ll

I I I I

I I I I

1
10 20 30 40 50 60 70 80 90

100
Density (L/N)
d=1
T I]
—— DLPN=3]
DLP N=4 |]
—+ DLPN=5 |]
—x— KBDD N=3 |]

M| N

Ll

B

Ll

1 1 1 1 1 1 1 1

I
10 20 30 40 50 60 70 80 90

100
Density (L/N)
d=2

Figure 7.9 : Comparison of DLP and KXBDD on Random formulas

28

29

Chapter 8

Conclusions

We described here BDD-based decision procedures for K. Our approach is inspired
by the automata-theoretic approach, but we avoid explicit automata construction.
We explored a variety of optimization techniques and concluded that, in general, it
is preferred to work with looser constraints; in general, we got the best performance
with lean particles. We also showed that it is necessary to use a level-based approach
to obtain a competitive implementation. Formula preprocessing by removing pure
literals and propogating the effects by syntactical simplification, though not special-
ized to our method in particular, is also important for improving performance. We
also attempted to optimize the implementation by applying BDD-centric techniques
like clustering with early quantification and initial variable ordering.

Our results show that the payoff of the variable-ordering optimization is rather
modest, while the payoff of the pure-literal optimization is quite significant. We
benchmarked KBDD, our optimized solver, against both native solvers (DLP) and
translation-based solvers (MSPASS and QuBE). Our results indicate that the BDD-
based approach dominates for modally heavy formulas, while search-based approaches
dominate for propositionally heavy formulas.

One way to look at the results is that the XBDD approach, by using a more pow-
erful underlying solver (BDDs vs. satisfiability) allows the use of a simpler decision
procedure. Instead of requiring exponential number of calls to a propositional satisfi-
ability procedure, we only required a polynomial number of calls to BDD operations.
The question would of course be, is such an trade off reasonable. We know that the

complexity of BDD operations are highly dependent to the size of the BDDs. So, if

60

we are able to control the size of the BDDs, the performance of our decision procedure
would be acceptable.

Another explanation would be we traded modal complexity for propositional com-
plexity. This way, we managed to solve a large amount of problems which have “big”
models, which cause problems with SAT based solvers. We suggest that a comparison

of BDD and SAT based K solver would be like in table 8.1.seem in the following table:

Propositionally sparse Propositionally dense
Big model BDD better neither work good
Small Model Both work good neither work good
SAT slightly faster | SAT could be given more time

Table 8.1 : A hypothetical comparison of BDD vs. SAT based solvers

Although our goal is not to develop the “fastest K solver”, the KBDD approach
is very competitive for most benchmarks. With all the optimization schemes, we ob-
tained very good results with current structured benchmark suites. Further research
is required to quantify the distinction between propositionally heavy and modally
heavy formulas. This might enable the development of a combined solver, which in-
vokes the appropriate engine for the formula under test. Another approach would
be to develop a a hybrid solver, combining BDD-based and search-based techniques
(cf. [GYAT01] for a hybrid approach in model checking), which would perform well
on both modally heavy and propositionally heavy formulas. We leave this for future

research.

[AGHA00]

[And98]

[BANSS]

[BBG194]

[BCCZ99]

[BCLO1]

61

Bibliography

C. Areces, R. Gennari, J. Heguiabehere, and Maarten de Rijke. Tree-
based heuristics in modal theorem proving. In Proc. of the ECAI’2000,
2000.

H.R. Andersen. An introduction to binary decision diagrams. Technical
report, Department of Information Technology, Technical University of

Denmark, 1998.

M. Burrows, M. Abadi, and R. Needham. Authetication: a practical study
in belief and action. In Proc. 2nd Conference on Theoretical Aspects of

Reasoning about Knowledge, pages 325-342, 1988.

I. Beer, S. Ben-David, D. Geist, R. Gewirtzman, and M. Yoeli. Method-
ology and system for practical formal verification of reactive hardware. In
Proc. 6th Conf. on CAV, volume 818 of LNCS, pages 182-193, Stanford,
June 1994.

A. Biere, A. Cimatti, E.M. Clarke, and Y. Zhu. Symbolic model checking
without BDDs. In Tools and Algorithms for the Analysis and Construction
of Systems, volume 1579 of Lecture Notes in Computer Science. Springer-

Verlag, 1999.

J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking
with partitioned transition relations. In Int. Conf. on VLSI, pages 49-58,
1991.

[BCM*92]

[BAVO1]

[BKF95]

[BLMSO4]

[Boc82]

[Bry86]

[BT01]

[CCF82)

[CCGROO]

62

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang.
Symbolic model checking: 10?° states and beyond. Information and Com-

putation, 98(2):142-170, June 1992.

P. Blackburn, M. de Rijke, and Y. Venema. Modal logic. Camb. Univ.
Press, 2001.

H.K. Buning, M. Karpinski, and A. Flogel. Resolution for quantified
Boolean formulas. Information and Computation, 117(1):12-18, 1995.

R. Brafman, J.-C. Latombe, Y. Moses, and Y. Shoham. Knowledge as a
tool in motion planning under uncertainty. In R. Fagin, editor, Theoretical
Aspects of Reasoning about Knowledge: Proc. Fifth Conference, pages
208-224. Morgan Kaufmann, San Francisco, Calif., 1994.

G. V. Bochmann. Hardware specification with temporal logic: an exam-

ple. IEEE Transactions on Computers, C-31:223-231, 1982.

R.E. Bryant. Graph-based algorithms for Boolean function manipulation.

IEEE Trans. on Comp., Vol. C-35(8):677-691, August 1986.

Franz Baader and Stephan Tobies. The inverse method implements the au-
tomata approach for modal satisfiability. Technical Report LTCS-Report
01-03, Research group for theoretical computer science, Aachen university

of Technology, 2001.

J. M. V. Castilho, M. A. Casanova, and A. L. Furtado. A temporal
framework for database specification. In Proc. 8th Int. Conf. on Very

Large Data Bases, pages 280291, 1982.

A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NUSMV: A new
symbolic model checker. Int. J. on Software Tools for Tech. Transfer,

2(4):410-425, 2000.

[CDS+00]

[CESS6]

[CSGGYY]

[DLL62]

[EHOO]

[GBY4]

[GNTO1]

[GS00]

[GW99)]

63

C. Coarfa, D.D. Demopoulos, A. San Miguel Aguirre, D. Subramanian,
and M.Y. Vardi. Random 3-SAT: The plot thickens. In Proc. of the

International Conference on Constraint Programming, 2000.

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems, 8(2):244-263, Jan-

uary 1986.

M. Cadoli, M. Schaerf, A. Giovanardi, and M. Giovanardi. An algorithm
to evaluate quantified Boolean formulae and its experimental evaluation.
Technical report, Dipartmento di Imformatica e Sistemistica, Universita

de Roma, 1999.

M. Davis, G. Logemann, and D. Loveland. A machine program for theo-

rem proving. Journal of the ACM, 5:394-397, 1962.

K. Etessami and G.J. Holzmann. Optimizing Biichi automata. In CON-
CUR 2000, pages 153-167, 2000.

D. Geist and H. Beer. Efficient model checking by automated ordering
of transition relation partitions. In Proc. of the sizth Int. Conf. on CAV,
pages 299-310, 1994.

E. Giunchiglia, M. Narizzano, and A. Tacchella. QuBE, a system for
deciding quantified Boolean formulae satisfiability. In IJCAR’01, 2001.

F. Giunchiglia and R. Sebastiani. Building decision procedures for modal
logics from propositional decision procedure - the case study of modal

K(m). Infomation and Computation, 162:158-178, 2000.

E. Graedel and I. Walukiewicz. Guarded fixed point logic. In Proc. 14th
Symp. on Logic in Computer Science, July 1999.

64

[GYA'01] A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik. Partition-based de-

[HM90]

[HM92]

[HS96]

[HSO00]

[KF98]

[KFBOS]

[Lad77]

cision heuristics for image computation using SAT and BDDs. In ICCAD
2001, pages 286-292, 2001.

J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a
distributed environment. Journal of the ACM, 37(3):549-587, 1990. A
preliminary version appeared in Proc. 3rd ACM Symposium on Principles

of Distributed Computing, 1984.

J.Y. Halpern and Y. Moses. A guide to completeness and complexity for
modal logics of knowledge and belief. Artificial Intelligence, 54:319-379,
1992.

A. Heuerding and S. Schwendimann. A benchmark method for the propo-
sitional modal logics K, KT, S4. Technical report, Universitiat Bern,

Switzerland, 1996.

U. Hustadt and R. Schmidt. MSPASS: modal reasoning by translation
and first order resolution. In Proc. of TABLEAUX 2000, pages 6771,
2000.

G. Kamhi and L. Fix. Adaptive variable reordering for symbolic model

checking. In ICCAD 1998, pages 359-365, 1998.

G. Kambhi, L. Fix, and Z. Binyamini. Symbolic model checking visualiza-
tion. In Formal Methods in Computer-Aided Design, Second International
Conference FMCAD’98, volume 1522 of LNCS, pages 290-303. Springer-
Verlag, November 1998.

R.E. Ladner. The computational complexity of provability in systems of

modal propositional logic. SIAM J. Comput., 6(3):467-480, 1977.

[Lip77]

[LL59]

[MDOO]

[MH69]

[Puu77]

[Pra76]

[Praso)

[PSH99)

[PSS01]

[RAB+95]

65

W. Lipski. On the logic of incomplete information. In Proc. 6th Inter-
national Symposium on Mathematical Foundations of Computer Science,
Lecture Notes in Computer Science, Vol. 53, pages 374-381. Springer-
Verlag, Berlin/New York, 1977.

C. Lewis and C. Langford. Symbolic Logic. Dover Publications, New York,
1959.

F. Massacci and F.M. Donini. Design and results of TANCS-2000. In
Proc. of TABLEAUX 2000, pages 52-56, 2000.

J. McCarthy and P. J. Hayes. Some philosophical problems from the
standpoint of artificial intelligence. In D. Michie, editor, Machine Intelli-
gence 4, pages 463-502. Edinburgh University Press, Edinburgh, 1969.

A. Pnueli. The temporal logic of programs. In Proc. 18th IEEE Symp. on
Foundation of Computer Science, pages 4657, 1977.

V. R. Pratt. Semantical considerations on Floyd-Hoare logic. In Proc. 17th
IEEE Symp. on Foundations of Computer Science, pages 109-121, 1976.

V.R. Pratt. A near-optimal method for reasoning about action. Journal

of Computer and System Sciences, 20(2):231-254, 1980.

P.F. Patel-Schneider and I. Horrocks. DLP and FaCT. In Analytic
Tableauzr and Related Methods, pages 19-23, 1999.

P.F. Patel-Schneider and R. Sebastiani. A new system and methodology
for generating random modal formulae. In IJCAR 2001, pages 464-468,
2001.

R. Ranjan, A. Aziz, R. Brayton, B. Plessier, and C. Pixley. Efficient BDD
algorithms for FSM synthesis and verification. In Proc. of IEEE/ACM
International Workshop on Logic Synthesis, 1995.

[Rin99)

[RS83]

[Rud93]

[SBOO]

[SMLI6]

[Som98|

SS01]

[Sto77]

[SVO1]

[Tac99]

[THY93]

66

J. Rintanen. Constructing conditional plans by a theorem-prover. Journal

of Artificial Intelligence Research, 10:323-352, 1999.

J. H. Reif and A. P. Sistla. A multiprocessor network logic with temporal
and spatial modalities. In Proc. 12th International Collog. on Automata,
Languages, and Programming, Lecture Notes in Computer Science, Vol.

104. Springer-Verlag, Berlin/New York, 1983.

R. Rudell. Dynamic variable ordering for ordered binary decision dia-

grams. In ICCAD’93, pages 42-47, 1993.

F. Somenzi and R. Bloem. Efficient Blichi automata from LTL formulae.

In CAV 2000, pages 247-263, 2000.

B. Selman, D.G. Mitchell, and H.J. Levesque. Generating hard satisfia-
bility problems. Artificial Intelligence, 81(1-2):17-29, 1996.

F. Somenzi. CUDD: CU decision diagram package, 1998.

G. Sutcliffe and C. Suttner. Evaluating general purpose automated theo-

rem proving systems. Artificial intelligence, 131:39-54, 2001.

L.J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer
Science, 3:1-22, 1977.

A. San Miguel Aguirre and M.Y. Vardi. Random 3-SAT and BDDs: The
plot thickens further. In CP01, 2001.

A. Tacchella. *SAT system description. In Collected Papers from the
International Description Logics Workshop (DL’99). CEUR, 1999.

S. Tani, K. Hamaguchi, and S. Yajima. The complexity of the optimal
variable ordering problems of shared binary decision diagrams. In ISAAC:

4th International Symposium on Algorithms and Computation, 1993.

[Var97]

[Vor(1]

67

M.Y. Vardi. What makes modal logic so robustly decidable? In N. Im-
merman and Ph.G. Kolaitis, editors, Descriptive Complexity and Finite

Models, pages 149-183. American Mathematical Society, 1997.

Andrei Voronkov. How to optimize proof-search in modal logics: new
methods of proving redundancy criteria for sequent calculi. Computational

Logic, 2(2):182-215, 2001.

