


ABSTRACT

Assertion-Based Flow Monitoring of SystemC Models

by

Sonali Dutta

SystemC is the de facto system modeling language, used to model hardware-

software systems. Verification of SystemC models enables early verification of hard-

ware/software interfaces. Assertion-Based Dynamic Verification (ABDV) is a tech-

nique that allows dynamic verification of formal properties about the system by au-

tomatically generating runtime monitors from those properties.

A concurrent and reactive hardware-software system performs di↵erent “jobs”

during its execution. Each such job begins with a set of input data, flows through

di↵erent processes in the system, and finally produces a set of output data. We call

such a job a flow, since it flows from one SystemC process to another. Flows are

dynamic and concurrent, since a flow can begin anytime during the simulation and

the system can process multiple flows at the same time.

We provide a library, using which one can explicitly implement flows in a SystemC

model or annotate flows in an existing SystemC model with minimal modification.

We also provide an automated monitoring framework that let us monitor properties

of flows. Such properties capture the reactive nature of a system naturally and are

intuitive to write. Our experimental results show that our framework puts minimal

runtime overhead of monitoring.
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Chapter 1

Introduction

1.1 Background and Motivation

1.1.1 SystemC

SystemC (IEEE Standard 1666-2005) has emerged as the de facto standard for mod-

eling hardware-software systems [1]. SystemC is implemented as a C++ library, which

defines macros and base classes for modeling di↵erent hardware elements, like mod-

ules, processes, channels, signals, ports etc. As a result, SystemC allows users to

model both hardware and software components of a system using a single modeling

language. This enables easier and early verification of hardware-software interfaces.

Using SystemC, one can start designing the software early in the design cycle with-

out waiting for the hardware to get fabricated, enabling hardware-software co-design.

Also SystemC makes it possible to co-simulate the hardware and software together

very early in the design cycle by building a SystemC prototype of the hardware.

SystemC also allows the user to model hardware at di↵erent abstraction levels such as

transaction level and register-transfer level [2]. SystemC is used in industry to build

hardware prototypes for firmware[3].

SystemC has a simulation (OSCI) kernel that simulates the parallel execution of

hardware. In SystemC, one can model the components of a system using modules.

Each module can have one or more SystemC processes. SystemC uses these processes

to model concurrency of hardware. The actual execution of a SystemC model is
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still sequential. The OSCI kernel schedules the execution of the SystemC processes.

The processes run in an interleaving manner to simulate the concurrent execution of

hardware. SystemC processes can synchronize with each other using SystemC events.

A process can wait for an event to be notified whereas another process can notify the

event. The SystemC library, together with a single-core reference simulation kernel,

is available as an open source library at http://www.accellera.org/downloads/

standards/systemc.

Execution of a SystemC model consists of three phases in order: elaboration phase,

simulation phase, and cleanup phase [4]. During the elaboration phase all modules

are instantiated, all channels and ports are connected, and all processes are registered

with the kernel. In the simulation phase, the parallel execution of SystemC processes

is simulated by the kernel. The simulation is invoked by a function call to the SystemC

library function sc start(...) inside the sc main(...) function of main.cc. User can

provide an upper bound on the simulation time as a parameter to sc start(...). The

cleanup phase can be used by the user to analyze the output of the simulation phase.

1.1.2 ABDV of SystemC models

One of the main purposes of modeling hardware-software systems using SystemC is

to enable early verification of the entire system [5]. So verification of SystemC mod-

els is of great importance. There are two main approaches to verification, formal

verification and dynamic verification. Let us assume that we have a model M . We

want to verify if M satisfies some property P . P is also called an assertion. For-

mal verification checks if each possible execution of M satisfies P , whereas dynamic

verification checks if a given execution of M satisfies P . Formal verification guaran-

tees mathematical correctness of the model. But as the model size increases, formal
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verification becomes practically infeasible due to state space explosion. Due to the

scalability issue, most real systems are impossible to verify formally. On the other

hand, dynamic verification can scale with the size of the model though it does not

guarantee the correctness of the model for all possible input environments. But the

coverage of dynamic verification can be increased e�ciently using techniques like path

coverage, automatic test generation etc. Dynamic verification can also be parallelized

to test more input environments. That makes dynamic verification the most common

verification technique, used to verify real systems [6].

Monitoring is one of the most common and well-known dynamic verification tech-

niques [7]. A monitor is a program that runs with the model under verification

(MUV) and verifies a particular execution of the model. Constructing monitors man-

ually is not only a burdensome task, but also error prone. Assertion-based dynamic

verification (ABDV) is a special type of monitoring where the monitors are created

automatically from formal properties, called assertions [8, 9]. ABDV allows the user

to verify formal assertions about the system using dynamic verification technique.

There has been a lot of work in applying the ABDV approach to SystemC models

[10, 11, 12, 13].

Here we present an overview of one such ABDV framework for SystemC, developed

by Tabakov and Vardi [14, 10, 15]. A tool called CHIMP [16] implements this frame-

work. In CHIMP, the user can write formal assertions about the SystemC model

under verification using Linear Temporal Logic (LTL) [17]. An assertion states a

property about the entire execution trace of the MUV. We call it a trace property. A

trace property is an LTL formula interpreted over infinite trace. However, a simula-

tion can not be run for infinite time. The simulation trace of any SystemC model is

finite. So the monitor that is generated from a trace property can have three possible
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outcomes, PASS, FAIL, and UNDETERMINED. The last case happens when there

is some future obligation that is not satisfied in the finite simulation. For example,

if the assertion is “eventually p” and p does not become true during the finite simu-

lation, the outcome of the corresponding monitor will be UNDETERMINED. Every

assertion is converted to a C++ monitor class. During the execution of the MUV, a

single instance of each monitor class is created in the elaboration phase before the

simulation phase begins. The number of monitor instances is equal to the number of

trace properties to verify.

1.1.3 ‘flow’ in SystemC

By its nature, a SystemC model is comprised of the components of the system being

modeled. Thus, the modeler thinks about the system architecturally. An orthogonal

way of thinking about the system is behaviorally [24]. From this perspective, an

execution comprises multiple units of work or “jobs”, for example, load an instruction,

transmit a message, handle an interrupt, and the like. Note that a single “job”

can span many system components; in fact, a job often “flows” from component to

component, which is why we call it a flow. Note that a single execution of the system

can contain multiple, perhaps concurrent, flows. From this behavioral perspective,

it would be natural to write and monitor assertions about flows, for example, we

may want to say that every message transmission concludes successfully or gives an

indication of transmission failure. Yet expressing and monitoring flow properties

are quite di�cult in current ABDV approaches to SystemC, whose focus is on trace

properties. While it might be possible in principle to express a trace property that

talks about all flows that are included in the trace, such properties would be quite

unwieldy and di�cult to write. To the best of our knowledge, none of the existing
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framework supports monitoring of properties about flows in a SystemC model.

Let us elaborate further on the concept of flows. Most of the concurrent hardware-

software systems are multi-user reactive systems. The system runs forever and dif-

ferent users can interact with the system during its execution. A flow can be a job

submitted from outside the system or a job generated by some component of the

system internally. Each flow begins with a set of input data, flows through di↵erent

components in the system, and then ends producing some output data. There can be

di↵erent types of flows in a system; we call them flow types. Example of flow types in

a graphics processor are video compression, image segmentation, spatial transforma-

tion, and the like. Similarly flow types in an ATM server can be money withdrawal,

check deposit, balance inquiry etc.

Each flow type is associated with a set of data variables that contain the inputs to

the flow, the outputs produced by the flow, and any intermediate data. We call them

flow attributes. For example, the flow attributes associated with ‘money withdrawal’

flow type are card number, pin, amount to withdraw (input attributes), transaction

status (output attribute), account number, initial balance, and final balance (in-

termediate attributes). The flow attributes associated with video compression flow

type of a graphics processor are input video, compression ratio (input attributes),

output video, and output status (output attributes).

A flow type can be instantiated any number of times during the simulation. The

instances are flows. Flows are dynamic as they can begin any time during the sim-

ulation and there can be any number of flows of each type. This is determined only

in runtime. Each flow has its own values of the flow attributes, associated with its

type. A flow must complete in finite time. A flow is alive after it begins and before it

ends. A flow that is alive is also called a live flow. Since the system is concurrent, at
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any point during the simulation there can be multiple live flows of same or di↵erent

types. Each system component a flow travels through may perform some operation

on some attributes of that flow.

Fig. 1.1 shows an example illustrating how flows of type video compression flow

crosscutting di↵erent components of a graphics processor. A flow of type video com-

pression begins with an input video and a desired compression ratio. The flow is

initiated by some application software that wants to compress a video. Then the flow

is sent to the OS, which sends it to the device driver. The device driver checks if the

graphics hardware is free to do the job. If not it sets output status = BUSY and

sends the flow back to the OS. The OS sends it back to the application software, at

which point the flow ends. If the graphics hardware is free, the device driver sends the

flow to the graphics controller, which sends it to the graphics engine. The graphics

engine produces the output video and sets output status = DONE. Then it sends

the flow all the way back to the graphics engine to the device driver to the OS to

the application. After the application gets back the processed flow from the OS, it

ends the flow. So depending on the global state of the system and the values of the

input attributes, di↵erent flows of the same type can take di↵erent paths through the

system components. Fig. 1.1 shows the two di↵erent paths (red and green) taken by

flows of type ‘video compression’ depending on whether the hardware is busy or not.

Each flow type T can have one or more properties associated with it. We call

them flow properties of type T. A flow property of type T is a temporal formula

that can refer to the flow attributes of T and the global variables. A flow property

describes the behavior of a single flow, but all flows of a type T must satisfy all flow

properties of type T . An example of a flow property for the video compression flow

type can be: The output video should be produced within 10 clock cycles and the
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Figure 1.1 : Flows of type ‘video compression’ flow through di↵erent components of
graphics processor

size of the output video should be less than or equal to the size of the input video.

In this work we focus on intra-flow properties, where each property can refer to the

attributes of only one flow at a time. Generally, intra-flow properties cannot express

interaction between di↵erent flows, though they can capture the interaction between

the flow and the system components by referring to global variables.

Our goal here is to enable assertion-based monitoring of flow properties. Flow

properties capture the behavior of reactive systems very well. Another advantage of

flow-based monitoring is that one can explore multiple behaviors of the system by

generating flows with di↵erent input attribute values in a single simulation. A flow

property P about a flow type T should be verified for every flow of type T . Since

a flow is always finite, a flow property is interpreted over the finite trace of a flow,
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unlike trace properties that are interpreted over infinite trace of the entire system.

Monitoring flows in a SystemC model faces the following challenges.

First, to monitor each flow individually, the monitor has to know when a flow

starts, when it ends, what its attributes are, how the attributes can be accessed, and

the like. This important information has to be explicit and accessible to the monitors

during the simulation. Thus, to enable flow-based monitoring, we need a methodology

for explicit modeling of flows in a SystemC model. This includes defining di↵erent

flow types and their flow attributes, beginning and ending a flow, and passing a flow

from one SystemC process to another. In later section we show that flows can also

branch and merge. We need a way to model all these features of flows in SystemC.

Second, the flows are dynamic and concurrent; a flow can begin anytime during the

simulation and the total number of flows is not known before the simulation starts.

Thus, unlike trace-property monitors, which can be instantiated before simulation

starts, flow property monitors must be instantiated dynamically in the simulation

phase. Thus, enabling flow-based monitoring requires the development of a software

framework that that is quite di↵erent than the one that enables trace-property mon-

itoring.

Third, a flow corresponds to a finite trace slice of the entire execution trace of

the system. Each flow property should be interpreted over the finite trace slice of a

flow. Since the trace slices of the simultaneously alive flows overlap, it is not clear

how to extract the trace slices for each flow from the entire simulation trace. Also

we need an algorithm to generate C++ monitors from LTL formulas, interpreted over

finite trace.

This thesis proposes an assertion-based flow monitoring framework for SystemC

that addresses all the above challenges. Our framework is called Flow Monitoring
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Framework. Before discussing the framework in more detail, we first look at the

related work.

1.2 Related Work

The main focus of this thesis is modeling flows in SystemC and online monitoring of

flow properties. So, the discussion of related work can be divided in two parts: work

related to general modeling of flows and similar formalisms, and the work related to

monitoring of flows.

1.2.1 Flow-like modeling

Schwartz-Narbonne et al. proposed Prim-Verilog [18], a language to build Transaction-

level Microarchitecture Model (µ-TLM) of a hardware system. µ-TLM has an inher-

ent notion of transaction, that enables model-checking of transaction-level properties

[19, 20, 21]. The concept of transaction instances in µ-TLM is very similar to our

concept of flows in SystemC. But our notion of flow is more general for the following

four reasons; First, transactions can only begin synchronizing with a global clock

whereas flows can begin anytime during the simulation; Second, at any clock cycle,

no more than one instance of a transaction can begin. In contrast, any number of

instances of a flow type can begin at the same clock cycle; Third, each live transaction

executes one step at each clock tick, while the execution of the di↵erent steps of a

live flow is completely flexible and depends on the model; And fourth, a transaction

instance cannot branch and join, whereas a flow can. When two steps of a flow are in-

dependent, they can be executed by two di↵erent SystemC processes simultaneously.

We call this “branching” of the flow. Also µ-TLM can only model hardware, not

hardware-software systems. We note that a µ-TLM model can be modeled as a flow
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model and properties about its transaction instances can be monitored using Flow

Monitoring Framework.

Damm and Harel proposed LSC (Live Sequence Chart) [22] to describe use cas-

es/scenarios, that crosscut the system modules [23]. Flows also crosscut the system

modules. But the basic di↵erence between LSC and flow is that LSCs can be consid-

ered as specifications about the behavior of the entire system. But flows are di↵erent

jobs performed by the system and we are interested in verifying properties about

flows. A new programming paradigm, Behavioral Programming [24] was introduced

by Harel, Marron andWeiss, that proposed scenario-coding technique to build reactive

systems incrementally from the expected behaviors, called scenarios. In behavioral

programming, the user models only the scenarios and the compiler extracts the sys-

tem components and their behaviors from those scenarios. But in case of modeling

flows in SystemC, the user models both the SystemC modules and the flows flowing

through them. This work focuses on methodology for implementing and monitoring

flows in SystemC.

Talupur and Tuttle defined ‘message flow’ as a linear sequence of messages, sent

among processors during the execution of a protocol [25]. Message flow is used by

protocol designers to describe and reason about protocols. The work described in

[25, 26] uses message flows in parameterized protocol verification by deriving high-

quality protocol invariants from them. The processors can be modeled as SystemC

processes and the message flows can be modeled as flows in a flow model. Again, the

main di↵erence between message flows and our work is that message flows only model

the interaction among the di↵erent components of the system. But we model both

the system components and the flows flowing through the components in a SystemC

model. In our case there is no separate model for flows unlike LSCs, Behavioral
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Programming or ‘message flows’.

A workflow [27] consists of a sequence of connected steps, where each step follows

without delay or gap and ends before the subsequent step may begin. Workflow

management system aims at modeling and controlling the execution of processes in

business, scientific, or even engineering applications [28]. Workflow languages [28, 29]

aim at capturing workflow-relevant information of application processes with the aim

of their controlled execution by a workflow management system. Our SystemC flows

can be described as domain-specific workflows, the domain being SystemC.

All of the above work focus on modeling flows; in contrast, architectural models

focus on modeling components of the system. Stitching together flow models and

architectural models is a major challenge. Aspect-oriented programming [35] is one

way of stitching together architectural models with crosscutting concerns, but aspect-

oriented programming by itself is not rich enough to model flows. For example, Maoz,

Harel, and Kleinbort describe a compiler for transforming LSCs into AspectJ [23].

In contrast, our focus is on enabling users to build SystemC models that are simul-

taneously both architectural models and flow models. The underlying philosophy of

our approach is that flows are already implicitly present in the architectural models,

since the components of the system do have to perform the operations of the flows; all

that is needed is a thin layer of annotation to make these flows explicit, which enables

monitoring their properties. Thus, rather than building separate architectural models

and flow models and then attempting to stitch them together, users can directly build

architectural flow models.
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1.2.2 Monitoring of flows

We now describe the two most relevant pieces of prior work, related to monitoring

of flows: MOP (Monitor-Oriented Programming) and SCV (SystemC Verification Li-

brary). MOP [7] does parametric trace slicing and monitoring [30] for of assertions

about programs written in Java. In Java, one can create an enumerator of a vector to

iterate over the elements of that vector. Example of a parametric property is: a vec-

tor should not change when one of its enumerators is used. This property is verified

for all the vectors in the Java program under test. MOP does dynamic and decen-

tralized monitoring. ‘Decentralized’ means that one monitor instance is generated

for each vector and enumeration pair. ‘Dynamic’ implies that the monitor instances

are generated and destroyed dynamically during the execution. Our Flow Monitoring

Framework is dynamic and decentralized, influenced by MOP. The main di↵erence

between our work and MOP is that MOP does not have a notion of cross-cutting flows

across processes. Further, flows are related to hardware-software concurrent systems,

whereas Java is a software modeling language. Being a system modeling language,

SystemC has its own unique simulation semantics, very di↵erent from Java.

SCV [31] is developed by the Verification Working Group (VWG) of SystemC to

provide a complete platform for verification of SystemC models. SCV provides a set of

APIs that are used as a basis for verification activities with SystemC such as, transac-

tion recording, generation of random values under constraints etc. SCV allows users

to define transaction types and capture transaction level activities during simulation.

These activities can be monitored by another SystemC module at runtime through a

callback mechanism or can be recorded into a database for visualization, debugging,

and post simulation analysis. But SCV does not have a notion of crosscutting flows

that can branch and join. Also our Flow Monitoring Framework is very light-weight
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compared to SCV in terms of size of the framework and coding overhead.

1.3 Contribution

The primary contribution of this thesis is a methodology for e�cient implementation

of flows in a SystemC model and monitor flow properties about those flows. This

includes the following three pieces.

1.3.1 Flow Library

We define the concept of flows in SystemC, which leads to flow-based SystemC mod-

els (flow models, for short). We believe that the idea of flows is already implicit

in many SystemC models, but we want to “expose” flows and make them explicit.

Furthermore, our goal is to accomplish that with a minimum amount of annotation.

For that, we provide a light-weight (228 LOC), yet robust and e�cient C++ library,

called Flow Library, using which one can either design a flow model from the scratch

or annotate flows in an existing SystemC model with minimal change. Using Flow

Library one can model di↵erent flow types in a SystemC model, each having its own

set of flow attributes. The Flow Library allows the user to begin a new flow, end

an alive flow, and transfer a flow from one SystemC process to another. The Flow

Library is designed in such a way that very little (one line) modification of the flow

model is needed to execute it with and without monitors, with the guarantee that the

non-monitored execution does not incur any extra overhead of monitoring. Chapter 2

describes this library in detail.
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1.3.2 Flow Algorithms

This thesis presents two algorithms for monitoring flow properties: Flow Monitor

Generation Algorithm and Flow Monitoring Algorithm. FlowMonGen algorithm

describes how to generate a C++ flow monitor class from a flow property. Since flows

are finite, a flow property is an LTL formula interpreted over the finite trace of a flow,

which is a finite trace slice of the entire execution trace. Our tool FlowMonGen

implements our Flow Monitor Generation Algorithm and can be used to generate

flow monitor classes from flow properties automatically. The complexity of Flow

Monitor Generation Algorithm is doubly exponential in the size of the input flow

property. But in practice we rarely experience the worst case complexity. The Flow

Monitor Theorem (stated in Chapter 3) guarantees that the flow monitors generated

by FlowMonGen are correct and the monitor output is 2-valued: PASS and FAIL

for all complete flows.

The second algorithm is a dynamic and decentralized algorithm that describes

when to create and delete flow monitor instances and when to execute them. We

call it Flow Monitoring Algorithm. This algorithm is dynamic because flow monitor

instances are created dynamically in the simulation phase synchronizing with the be-

ginning of new flows. It is decentralized because there is one flow monitor instance

per flow and flow property pair (as opposed to, one monitor instance per trace prop-

erty). This algorithm is implemented in our Flow Monitoring Framework, discussed

in Chapter 4.

1.3.3 Flow Monitoring Framework

This is a complete and fully automated framework to verify flow properties associated

with di↵erent flow types of a flow model. This framework consists of three compo-
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nents, the Flow Library, a flow model (MUV), and the flow monitors automatically

generated from the flow properties using the FlowMonGen tool. It implements

Flow Monitoring Algorithm including how to automatically instantiate and delete a

flow monitor instance, how and when to execute the flow monitors. It allows the user

to execute the flow monitors at di↵erent levels of abstraction: low levels like every

time a flow attribute changes its value to high-levels like kernel phases and SystemC

process suspensions.

The Flow Library and the FlowMonGen tool are available as a open source

software package, called SystemC Flow Package. The SystemC Flow Package can be

downloaded at https://sourceforge.net/projects/SystemCFlow.

1.4 Organization

The remainder of this thesis is organized as follows. Chapter 2 defines the di↵erent

terminologies related to flows in a SystemC model with concrete examples. It also

describes the Flow Library and how to use it to design a flow model. Chapter 3

presents the algorithms related to flow monitoring, the Flow Monitor Generation

Algorithm and the FlowMonitoring Algorithm. In Chapter 4, we present the complete

Flow Monitoring Framework and how di↵erent pieces work together to monitor the

flow properties in a flow model. Chapter 5 describes a case study, used to analyze

the performance of this framework and the experimental results. Finally, Chapter 6

concludes this thesis and discusses the future work.
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Chapter 2

Flow Library

2.1 flows in SystemC

In this section we define the di↵erent terminologies related to flows in SystemC with

some concrete examples.

2.1.1 flow types

There can be di↵erent types of flows in a flow model. Each type of flow is entitled to

do a specific job. We call them flow types.

Example 2.1 In an ATM server, there can be the following three flow types: ‘money

withdrawal’, ‘check deposit’, and ‘balance inquiry’. These three flow types represent

three di↵erent types of jobs a user can perform at an ATM machine, such as with-

drawing certain amount of money from a bank account, depositing a check to an

account, inquiring the current balance of an account respectively.

2.1.2 flow attributes

Each flow type is associated with a set of data variables, called flow attributes. These

variables contain the inputs to the flow (input attributes), the outputs generated by

the flow (output attributes) and any intermediate data (intermediate attributes). The

same attribute can also act as both input and output attribute by taking the input

value when a flow begins and then producing the output value before the flow ends.
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Example 2.2 The flow attributes associated with ‘money withdrawal flow type are

card number, pin, amount to withdraw (input attributes), transaction status (out-

put attribute), account number, initial balance, and final balance (intermediate at-

tributes).

2.1.3 flows

A flow is an instance of a flow type. A flow type can be instantiated any number of

times during the simulation. The number depends on how the user(s) are modeled in

the flow model and how long the simulation is run. Since the system is concurrent,

multiple flows of same or di↵erent types can begin and flow through the system at the

same time. Each flow of a flow type has its own values of the flow attributes related

to that flow type. A flow does the following during the simulation:

1. Begins with a set of input data (assigned to the input attributes of the flow).

2. Flows from one SystemC process to another. These SystemC processes read and

write the flow attributes to produce the values of the output attributes. They

also update the global state of the system accordingly.

3. The flow ends after finite time.

A flow is alive after it begins and before it ends. A flow that is alive is also called

live flow. In a concurrent system, multiple flows of same or di↵erent types can be

alive at the same time during the simulation.

Example 2.3 We present here a detailed example showing how the flows of a flow

type flow through the components of a system. Fig 2.1⇤ shows the di↵erent possible

⇤
The figure is best viewed online.
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Figure 2.1 : Paths taken by flows of type ‘money withdrawal’ in ATM server
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paths that a flow of type ‘money withdrawal’ in an ATM server may take. A ‘money

withdrawal’ flow begins in a user interface, when a user chooses to withdraw money

through an ATM machine connected to that ATM server. The flow then goes to the

card reader, where the three input attribute values (card number, pin and amount to

withdraw) are assigned. Then the flow moves to the bank database, which checks if the

card is valid, the pin is correct, and the amount to withdraw is less than the current

balance in bank database. If any of these checks fails, the output transaction status

is assigned REJECT and the flow goes back to the user interface and ends. Else, the

current balance is updated in the database and the transaction status is assigned to

ACCEPT. Now the flow concurrent goes to both cash dispenser and receipt printer to

give out the cash and print the receipt respectively. Note that the operations done by

the cash dispenser and the receipt printer on the flow are independent of each other

and can be done in parallel. So in a SystemC simulation, these two operations can

be interleaved in any order. This is called branching of a flow. Once a flow branches,

it must merge before it ends to avoid unexpected behaviors. An example of such

unexpected behavior in our case is when the cash dispenser ends the flow while the

receipt printer is still processing it. So a branching should be followed by a merge

eventually. In this case, the flow merges at user interface and ends.

Di↵erent flows of a flow type can take di↵erent paths through the system depend-

ing on the current state of the system and input attributes values. For example, in

Fig. 2.1, if the input pin is incorrect, the flow takes the red path, otherwise it takes

the green path. Irrespective of what path a flow takes, it must satisfy all the flow

properties associated with the money-withdrawal flow type. One such flow property

could be: “if the card is valid, the pin is correct, and the amount to withdraw is

less than the current balance, then eventually globally transaction status will be AC-
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CEPT; else eventually globally it will be REJECT †. Note that the current balance

here is a global variable, stored in the bank database.

2.1.4 flow properties

A flow property is an LTL (Linear Temporal Logic) [17] formula that describes the

flows of a flow type. There are two types of flow properties: intra-flow properties

and inter-flow properties. An intra-flow property can only refer to the attributes

of a single flow, whereas an inter-flow property refers to more than one flow. This

work only focuses on intra-flow properties. From now on, we mean only intra-flow

properties by the term ‘flow properties’. Each flow type T has a set of flow properties

associated with it. We call them flow properties of type T. A flow property of type T

can refer to the flow attributes of T and the global variables of the SystemC model.

A flow property of type T must be satisfied by all flows of type T.

Example 2.4 Let us assume that the bank database of the ATM server contains a map

M containing the information about all the accounts. The key of M is the account

number and the value is an object containing di↵erent fields like account owner’s

name, balance etc. A flow property of type ‘money withdrawal’ of ATM server can

be: If the pin is correct and the initial balance is greater than or equal to the amount

to withdraw, then eventually final balance and the balance field of M[account number ]

becomes equal to (initial balance - amount to withdraw) and eventually after that

transaction status becomes “ACCEPT”; Else eventually transaction status becomes

“REJECT” and final balance becomes equal to initial balance.

†
We use Linear Temporal Logic to specify flow properties; see below.
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2.2 Flow Library

The first contribution of this thesis is a light-weight C++ library (228 LOC), called

Flow Library, using which one can design flow models from scratch or annotate flows

in an existing SystemC model. This section describes di↵erent components of Flow

Library and how to use this library to design a flow model. Flow Library provides

base classes and APIs for modeling di↵erent types of flows, beginning and ending of

a flow, and transferring of a flow from one SystemC process to another. All these

aspects are modeled keeping the ease of monitoring of flows in mind. The monitors

should be automatically informed whenever a new flow begins or a live flow ends.

The monitors should also be able to access the flow attributes of any flow e�ciently

during the monitored simulation.

2.2.1 Components

Flow Library contains three classes written in five files: flow class in flow.h and

flow.cc files, flow manager class in flow manager.h and flow manager.cc files, and

base monitor class in base monitor.h file. It also defines an enum, called error code,

in flow manager.h that contains a list of error codes that the APIs of Flow Library

return. The error codes enable some automatic error checking on the implementation

of flows in flow models.

enum error code

Flow Library defines a set of possible error codes to enforce some basic properties of

flows on the flows of a flow model. Each API defined in the Flow Library returns an

error code indicating if the input argument is valid or the user is trying to do some

invalid operation. For example, a flow can begin only once; a flow cannot be referred
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Error name Cause of occurance

DONE No error occurred.

NOT ALIVE A process is trying to access a flow that is not alive.

CANNOT END A process is trying to end a flow that is being used by some other

process.

ALREADY ALIVE A process is trying to begin a flow that is already alive.

CANNOT RELEASE A process is trying to release the access of a flow too many times.

NULL FLOW The flow pointer is NULL.

Table 2.1 : Error codes defined in enum error code

or accessed if it is is not a live flow; a process cannot end a flow if some other process

is still using it etc. All the error codes are defined as an enum, called error code

in flow manaher.h file. We will see the use of these error code later in this section.

Table 2.1 shows all the error codes defined in Flow Library. All these codes other

than DONE indicate erroneous implementation of flows in the flow model and must

be corrected.

flow class

Given that each flow type has a set of flow attributes and a flow is just an instance

of a flow type, it is easy to see that the most object-oriented way to model flows is

to model flow types as classes and flow attributes as their member variables. Then a

flow is nothing but an object of its flow type class. Also beginning and ending a flow

become as simple as creating an object of its flow type class and deleting that object.

But there is some common data associated with all flows irrespective of their

types. For example, to identify each flow uniquely, each flow object needs to have a
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unique id. So Flow Library provides a base class for all the user-defined flow type

classes, called flow class. The flow class has one static member variable: static

unsigned int new flow id , and three non-static member variables: const unsigned int

flow id , const int flow type and unsigned int num proc.

The member variable flow id contains the unique id of each flow. It is the job of

the Flow Library to assign a unique value to the flow id of every newly begun flow.

The static member variable new flow id is used by the flow class to assign unique

id to every flow object. Everytimne a new flow begins, the value of new flow id is

incremented by 1 and is assigned to the flow id of that newly begun flow.

There is a unique id associated with each user-defined flow type classes, called flow

type id. If there are n user-defined flow type classes in a flow model, the flow type ids

will vary from 0 to n�1. These ids are decided by the designer of the flow model and

passed to the flow class while constructing flow objects. Each flow object contains

the unique id of its flow type in a member variable called flow type. All flows of the

same flow type have the same value of flow type.

Since a flow can branch, a flow can be processed by more than one SystemC process

at the same time. To avoid accidental ending of a flow, it is important to keep track

of the number of processes processing a flow at any point in time. Then if a process

tries to end a flow when some other process is still operating on that flow, the Flow

Library can raise an error. At any time during the simulation, num proc member

variable of a flow contains the number of processes operating on the flow. num proc

is initialized to 1 inside the constructor of flow class when the flow begins. The

value of num proc is updated automatically by the Flow Library. The num proc of

flow f is incremented by 1 every time a process starts working on f and is decremented

by 1 every time a process finishes working on f . flow id and flow type are declared
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as const and initialized in the flow class constructor when a flow begins.

flow class contains three getter functions for flow id , flow type, and num proc.

The flow class also contains two more functions: void flow::increment num proc()

that increments num proc by one whenever a SystemC process starts working on

the flow; and error code flow::decrement num proc() that decrements num proc by

one whenever a SystemC process finishes working on the flow. The second function

returns error code::CANNOT RELEASE if the num proc is already 0. Otherwise it

decrements num proc and returns error code::DONE.

flow manager class

To monitor flows, the monitors need to know when a new flow begins, when it ends,

how to access its attributes and the like. The cleanest way to expose this information

to the monitors is to have a single point of access (independent of the user-defined

flow types) in the Flow Library, through which the monitors can access information

about all flows without interacting with every flow directly. For that Flow Library

provides a flow manager class that keeps all the information about the flows and

provides it to the flow monitors as necessary. flow manager class maintains a data

structure, called alive flows that contains the list of all live flows.

The flow manager class provides four APIs that can be used by the SystemC

processes of the flow model to register flows with flow manager and access those flows

from anywhere in the model. They are:

begin flow : used by a process to begin a new flow.

end flow : used by a process to end a live flow.

get flow : used to access a flow object, given its flow id.
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release flow : For security purposes, the flow manager keeps track of how many

processes are working on a flow at the same time (in the member variable

num proc). So, when a process is done working on a flow, it calls release flow

to notify the flow manager about it.

Each of the these four APIs returns an error code.

In SystemC there can be two types of processes: thread process and method pro-

cess. The thread processes execute only once during the simulation. But they can

suspend and resume themselves during the simulation, as many times as they want.

Normally thread processes are designed to have a infinite while loop that is syn-

chronized with some clock. At the end of each iteration, the thread process suspends

itself and waits for the next clock cycle. The method processes works a bit di↵erently.

A method process can execute multiple times during the simulation. Unlike thread

processes, method processes cannot suspend themselves. Usually method processes

have a static sensitivity to some clock. At every cycle of that clock, the method

process executes once. So both method and thread process meet the same purpose of

repeating sequence of actions. The only di↵erence is the way they are written.

If a process P (method or thread) operates on clock C, it performs a sequence of

actions at every clock cycle of C. Assume that P is a process in a flow model. For

example, P is a process in the bank database of the ATM server that runs the validity

check on each transaction. So, at every clock cycle of C, P operates on some flow,

the flows that it obtains from the card reader. So a process performs the following

three steps in sequence at every cycle of the clock it operates on:

1. Either begins a new flow (if it is a user process or a application process that

submits jobs) or gets a flow from some other process.
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2. Reads and writes the attributes of that flow and update the state of the system

accordingly.

3. Either sends the flow in some other process or ends the flow.

The flow manager class also does some error checking and returns appropri-

ate error codes (defined in error code) to the user method that makes a call to

flow manager class. Another member variable in flow manager class is const int

num flow types that denotes the number of user-defined flow types in the flow model.

This variable is assigned in the constructor of the flow manager class. Each flow

model defines a global pointer variable flow manager* fmanager that points to an ob-

ject of flow manager class. fmanager is used to register and access flows throughout

the flow model.

base monitor class

The last class is base monitor class. This class is not needed to write a flow model.

This class is used during monitoring of flows. base monitor class serves as the base

class for all the monitor classes. The user does not have to instantiate or use this

class anywhere in his flow model. We will see this class’s functionality in Chapter 4

in detail.

2.2.2 Modeling flow types and flow attributes

A user-defined flow type T in a flow model can be defined as a C++ class T , derived

from the flow class. The flow attributes of flow type T can be modeled as member

variables of class T . Each user-defined flow type should have a unique integer id.

This id should vary from 0 to (number of user-defined flow types � 1). It is the
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responsibility of the user to assign an unique id to each user-defined flow type. In the

constructor of the flow type class, T for example, the base class constructor should

be called with id of flow type T as parameter.

A flow type class constructor must initialize all the flow attributes. If it is an

input attribute, the value will be passed by the process that is creating this flow. The

values of the output and intermediate attributes should be set to some default values.

The flow attributes are recommended to be modeled as private member variables of

the flow type class and to be accessed only through setter and getter methods.

The flow model of ATM server in Fig. 2.1 has three flow types: ‘money with-

drawal’, ‘check deposit’, and ‘balance inquiry’. Let us assume that the unique ids of

these flow types are 0, 1, and 2 respectively. Listing below shows how to model the

class for ‘money withdrawal’ flow type.

/⇤⇤

⇤ Class r ep r e s en t i n g f l ow type ‘ withdraw money ’

⇤/

#ifndef WITHDRAWMONEYH

#define WITHDRAWMONEYH

#include ” f low . h”

//Other f i l e s to inc l ude i f needed

. . .

enum t r a n s s t a t u s {NOT ASSIGNED, ACCEPT, REJECT} ;

class withdraw money : public f l ow {

public : //Constructor

withdraw money (unsigned int amount ) :

/⇤ t y p e i d o f t h i s f l ow t y p e = 0⇤/
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f low (0 ) ,

card number ( ”” ) ,

pin ( ”” ) ,

amount to withdraw (amount ) ,

s t a tu s (NOT ASSIGNED) ,

ca sh g iven ( fa l se ) ,

account number ( ”” ) ,

i n i t i a l b a l a n c e ( 0 ) ,

f i n a l b a l a n c e (0 )

{}//End o f cons t ruc t o r

// S e t t e r s and g e t t e r s f o r the f l ow a t t r i b u t e s

. . .

//Other f unc t i on s i f needed

. . .

private : //Flow a t t r i b u t e s

std : : s t r i n g card number ;

s td : : s t r i n g pin ;

unsigned int amount to withdraw ;

t r a n s s t a t u s s t a tu s ;

bool ca sh g iven ;

std : : s t r i n g account number ;

unsigned int i n i t i a l b a l a n c e ;

unsigned int f i n a l b a l a n c e ;

} ; //End o f c l a s s
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2.2.3 Beginning and ending a flow

In a flow model, one or more SystemC processes can be responsible to generate new

flows. Such SystemC process represents either a user of the system or some application

that is submitting new jobs to the system. As discussed earlier, this can be a thread

or a method process operating on some clock C, defined in the flow model. At every

clock cycle, the process may begin a new flow by instantiating a flow type class. To

begin a flow of type T, a process does the following:

T⇤ f=new T(<va lue s o f input a t t r i bu t e s >);

e r r o r c od e e = fmanager�>beg in f l ow ( f ) ;

begin flow function is defined in the flow manager class as flow* begin flow(flow*

f, error code* e). In this function f is the pointer to the newly begun flow object and

e is the error code generated by this function. The return value is the same as f to

enhance the usability of this API. begin flow checks if f is indeed a new flow. If not it

returns ALREADY ALIVE. If f is a null pointer, it returns NULL FLOW. Else it in-

serts f in alive flows database and returns DONE. The following Listing shows how to

model the process in User Interface module of ATM that begins ‘money withdrawal’

flows and send them to a process of card reader module.

void u s e r i n t e r f a c e : : submi t r eques t s ( ){

while (1){

/⇤Randomly dec ide which type o f r e que s t

to submit . Options are withdraw money ,

d epo s i t check and in qu i r e ba lance . ⇤/

. . .

i f ( r eque s t type == ”withdraw money” ){



30

/⇤ choose the amount to withdraw ⇤/

unsigned int amt = . . . ;

//Begin a ”withdraw money” f l ow

e r r o r c od e e ;

withdraw moey⇤ f=new withdraw money (amt ) ;

e r r o r c od e e = fmanager�>beg in f l ow ( f ) ;

a s s e r t ( e == DONE) ; //Or other ac t i on s

/⇤Put f�>g e t f l o w i d ( ) in a FIFO

channel to card reader ⇤/

. . .

/⇤Done opera t ing on f l ow f .

Re lease f . ( De t a i l s l a t e r )⇤/

e r r o r c od e e1=fmanager�>r e l e a s e f l ow ( ) ;

. .

//Wait f o r the next c l o c k c y c l e

// S t a t i c a l l y s e n s i t i v e to u s e r c l o c k

wait ( ) ;

} //End o f i f

e l s e i f

. . .

} //End o f wh i l e (1)

} //End o f thread proces s
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Similarly a process can end a flow after operating on it. To end a flow f , a process

calls end flow with the id of f : fid.

e r r o r c od e e = fmanager�>end f low ( f i d ) ;

end flow function is defined in the flow manager class as error code end flow(unsigned

int fid). In this function fid is the unique flow id of the flow to end, f . If fid is not

the flow id of an alive flow, end flow returns NOT ALIVE. If some other process is

still using the flow, it returns CANNOT END. Otherwise, end flow removes f from

alive flows, deallocates the memory of f , and returns DONE. The following Listing

shows how to model the process in User Interface module of ATM server that ends

flows of type ‘money withdrawal’ that did not get rejected at the bank database.

Notice that ending also involves merging of the flow from receipt printer and cash

dispenser.

void u s e r i n t e r f a c e : : end withdraw money success ( ){

while (1){

/⇤Get the id o f the next f l ow

sen t by r e c e i p t p r i n t e r ⇤/

unsigned int id = . . . ;

/⇤Get the corresponding f l ow po in t e r ⇤/

withdraw money⇤ f = fmanager�>g e t f l ow ( id ) ;

/⇤Merge the f l ow from cash

d i spense r and r e c e i p t p r i n t e r ⇤/

i f ( ! f�>g e t c a sh g i v en ( ) ){

/⇤Wait u n t i l c a sh d i s p en s e r i s
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done proce s s ing t h i s f l ow . Can be

modeled us ing SystemC event . ⇤/

wait ( . . . ) ;

} /⇤ I f the f l ow i s s t i l l b e ing used by

ca sh d i s p en s e r ⇤/

//Process the f l ow

f�>s e t s t a t u s (SUCCESS) ;

//Now end the f l ow

e r r o r c od e e = fmanager�>end f low ( id ) ;

a s s e r t ( e == DONE) ;

//Wait f o r next c l o c k c y c l e

wait ( ) ; // S t a t i c s e n s i t i v i t y

} //End o f wh i l e (1)

} //End o f thread proces s

2.2.4 Transferring a flow from one SystemC process to another

A flow travels from one process to another through shared elements. The shared

elements can be any global FIFO queues. The size of these queues will put a bound

on the maximum number of live flows in the system. If the two processes involved

in transferring a flow are in the same SystemC module, the shared element can be

a member variable of the module. If the two processes are in two di↵erent SystemC

modules, the flow can be transferred through SystemC FIFO channels. It is the choice
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of the designer how to transfer a flow from one SystemC process to another.

To avoid unintended mishandling of pointers, each process should only transfer the

flow id of a flow through shared elements, not the entire flow pointer. When a process

receives a flow id from some shared element, it gains access to the corresponding flow

pointer using the get flow API of flow manager class as:

// f i s the f l ow whose acces s i s needed .

// f i d : i d o f f ; T: type o f f

e r r o r c od e e ;

T⇤ f = (T⇤) fmanager�>g e t f l ow ( f id , &e ) ;

get flow is defined in the flow manager class as flow* flow manager::get flow(unsigned

int fid, error code* e), where the fid is the flow id of the flow (f) received and e is the

error code that is assigned its value in this function. get flow assigns NOT ALIVE

to e and returns 0 if f is not alive. Else it increment f ->num proc by one, assigns

DONE to e and returns pointer to f .

At every clock cycle, a process either begins a new flow or fetch the id of a flow

from some shared element. Then it access the actual flow object from fmanager using

that id. Once it obtains the access of the actual flow object, it starts operating on

the attributes of that flow and updates the global state of the system accordingly.

After the process finishes operating on that flow, it either ends the flow or send the

flow to one (transfer) or more (branching) processes.

Before sending a flow to another process, a process must release the flow by calling

the function error code flow manager::release flow(unsigned int fid) as below. Here

fid is the flow id of the corresponding flow f .

e r r o r c od e e=fmanager�>r e l e a s e f l ow ( f i d ) ;
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release flow returns NOT ALIVE if f has already ended. Else it decrements

f->num proc by one and returns DONE. If num proc is already 0, it returns CAN-

NOT RELEASE instead. The following Listing shows how the process card reader::read card()

of ATM server gets a flow from user interface::submit request() process and sends it

to bank database::get request() process.

void ca rd r eade r : : r ead card ( ){

while (1){

/⇤Fetch the id o f the next f l ow

sen t by u s e r i n t e r f a c e module . ⇤/

unsigned int id = . . . ;

//Get the corresponding f l ow po in t e r

e r r o r c od e e ;

withdraw money⇤ f = (withdraw money ⇤)

manager�>g e t f l ow ( id ,&e ) ;

a s s e r t ( e == DONE) ;

//Process the f l ow

/⇤ randomly p i ck a card number⇤/

f�>set card number ( . . . ) ;

/⇤ as s i gn co r r e c t pin wi th

p r o b a b i l i t y 0 .8 ⇤/

f�>s e t p i n ( . . . ) ;

/⇤Transfer id to bank database

: : r e c e i v e f l ow () proces s ⇤/
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. . .

//Release the f l ow

e = fmanager�>r e l e a s e f l ow ( id ) ;

a s s e r t ( e == DONE) ;

//Wait f o r next c l o c k c y c l e

wait ( ) ; // S t a t i c s e n s i t i v i t y

} //End o f wh i l e (1)

} //End o f thread proces s

2.2.5 Branching and joining a flow

A flow may branch when two operations on the flow are independent and can be

done by two di↵erent processes concurrently without a↵ecting each other’s operation.

This means when more than one process operate on a single flow object concurrently,

they writes to di↵erent sets of variables. Since the steps are independent, they ideally

should not write to the same flow attribute and there will be no race condition. If

they do, it is the responsibility of the user to avoid race condition by implementing

locking or some similar mechanism to avoid it.

The Flow Library does not provide any direct API for branching and joining of

the flows. But they can be done by following the methodology described below.

Branching of a flow may happen when two or more steps of the flow are independent

of each other and can be done simultaneously by two or more processes (Let’s call

them branch processes). The process that branches a flow, sends the flow id to all

the branch processes in any order. Now all the branch processes start operating on
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the flow simultaneously. During branching if any of the processes tries to end the

flow while other processes are still working on the flow, the flow manager returns

error dode::CANNOT END.

In Fig. 2.1, the ‘money withdrawal’ flow branches in the bank database and goes

to both receipt printer and cash dispenser. The following Listing shows how to model

the process bank database::receive flow() that receives a flow from card reader and

then either sends it to IO module upon transaction failure or branches it and sends

it to both receipt printer and cash dispenser upon success.

void bank database : : r e c e i v e f l ow ( ){

while (1){

/⇤Fetch the id and

ge t the f l ow po in t e r ⇤/

unsigned int id = . . . ;

withdraw money⇤ f = . . . ;

i f ( ! ( ( f�>get account number ( ) ) . v a l i d ( ) )

| | . . . ) {

// send f back to u s e r i n t e r f a c e

} //End o f i f

/⇤Else branch f to r e c e i p t

p r i n t e r and cash d i spense r . ⇤/

else {

/⇤Put id in the channel

to r e c e i p t p r i n t e r ⇤/
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. . .

/⇤Put id in the channel

to cash d i spense r ⇤/

. . .

} //End o f e l s e

e r r o r c od e e = manager�>r e l e a s e f l ow ( id ) ;

a s s e r t ( e == DONE) ;

. . .

//Wait f o r next c l o c k c y c l e

wait ( ) ; // S t a t i c s e n s i t i v i t y

} //End o f wh i l e (1)

} //End o f thread proces s

Join can happen only after all the branch processes finish operating on the flow.

The process where the flow joins, must wait until then. This synchronization can be

easily implemented using SystemC events and flow attributes. Refer to the end flow

Listing above to see how a ‘money withdrawal’ flow joins in the user module. For ex-

ample, in Listing 2.2.3, the ‘money withdrawal’ flow joins in user interface::end withdraw money()

process. In this case the branch processes are receipt printer::print receipt() and

cash dispenser::give cash(). user interface::end withdraw money() process receives

the flow id from receipt printer and then checks if the cash dispenser is done op-

erating on the flow. If not, it waits until cash dispenser notifies an event saying so.

Once the event is notified, the end withdraw money process ends the flow. Thus join

is implicit and must happen after the branch and before the flow ends.
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Chapter 3

Flow Algorithms

In this section we present two main algorithms related to monitoring of flows in a flow

model. One is Flow Monitor Generation Algorithm that describes how to generate

a C++flow monitor class from a flow property. The other one is Flow Monitoring

Algorithm that describes when to instantiate these flow monitor classes and when and

how to execute those flow monitor instances. We shall also present the complexity,

proof of correctness, and the implementation references of these two algorithms in

this section.

3.1 Finite trace slice of a flow

By definition a flow is finite. The trace of a flow is a finite trace slice of the entire

execution trace of a flow model. The trace slice of flow f begins when the flow f begins

during the simulation and ends when the flow f ends. Since there can be multiple

flows alive at the same time during the simulation, the trace slices of simultaneously

live flows overlap. Fig. 3.1 shows the overlapping finite traces ⇡f1, ⇡f2, and ⇡f3 of

three concurrent flows f1, f2, and f3 as trace slices of the entire execution trace ⇡.

A flow property is interpreted over the finite trace slice of a flow. So a flow

property is an LTL formula interpreted over finite trace. They are defined as LTLf

formulas by Giacomo and Vardi in [32]. LTL and LTLf formulas have the exact

same syntax but di↵erent semantics as described later.
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Figure 3.1 : Showing three overlapping trace slices ⇡f1, ⇡f2, and ⇡f3 for flows f1, f2,
and f3 respectively, ⇡ being the entire simulation trace

Definition 3.1 A flow f of type T satisfies flow property P , associated with flow type

T i↵ the finite trace slice ⇡f of f finitely satisfies the LTLf formula P .

Definition 3.2 The satisfiability of an LTLf formula 'f by a finite trace ⇡(0 · · ·n) is

inductively defined as:

• ⇡(0 · · ·n) |=f p i↵ p 2 ⇡(0), where p is an atomic proposition.

• ⇡(0 · · ·n) |=f (¬ ) i↵ ⇡(0 · · ·n) 6|=f  .

• ⇡(0 · · ·n) |=f ('1 ^ '2) i↵ ⇡(0 · · ·n) |=f '1 and ⇡(0 · · ·n) |=f '2.

• ⇡(0 · · ·n) |=f (X ) i↵ n � 1 and ⇡(1 · · ·n) |=f  .

• ⇡(0 · · ·n) |=f ('1U'2) i↵ 9j  n such that ⇡(j · · ·n) |=f '2 and 8k 0  k < j,

⇡(k · · ·n) |=f '1

It is clear from the above definition that in the semantics of LTLf , all the future

obligations have to be met before the trace ends. So given a finite trace ⇡(0 · · ·n) and



40

an LTLf formula 'f , whether ⇡(0 · · ·n) |=f 'f can be determined with certainty in

finite time, more specifically no later than immediately after ⇡(0 · · ·n) ends. So unlike

monitoring of trace property, monitoring of flow property does not have the outcome

UNDETERMINED for any completed flow. We do not monitor incomplete flows,

flows that did not end during the simulation. Rather we report all the incomplete

flows at the end of the simulation.

3.2 Flow Monitor Generation Algorithm

3.2.1 Algorithm

Definition 3.3 A finite word x over alphabet ⌃ is a bad prefix of language L i↵ for

all infinite word y 2 ⌃!
, x.y 62 L.

In [14], Tabakov, Rozier and Vardi propose an algorithm to generate a C++monitor

class M from a trace property ' (LTL formula) such that an instance of M rejects

precisely all the minimal bad prefixes of '. M is nothing but a C++ encoding of the

DFW (Deterministic Finite Automaton on Word) that rejects all the minimal bad

prefixes of '. [33]

Theorem 3.1 An instance of monitor M rejects precisely the minimal bad prefixes of

'. [14]

A very e�cient implementation of LTL to DFW(that rejects all minimal bad

prefixes of the LTL formula) transformation is available in an open source C++ library,

called SPOT [34]. Our goal is to build a C++ monitor class Mf from the flow property

'f (LTLf formula) such that an instance of Mf accepts flow f i↵ the trace slice

of f finitely satisfies 'f . Keeping the implementation e�ciency in mind, we use
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SPOT’s LTL to DFW transformation to do our LTLf to DFW transformation. For

that we first preprocess 'f using the transformation function t : LTLf ! LTL as

defined below to generate an LTL formula '. This transformation is first proposed

by Giacomo and Vardi as reduction of LTLf satisfiability to LTL satisfiability in

[32]. Then we apply the LTL to C++ monitor generation algorithm as given in [14]

on the post-processed formula ' to generate a monitor class M. Later we prove that

an instance of M accepts flow f i↵ the trace slice of flow f finitely satisfies 'f .

Definition 3.4 To define g('f ), we introduce a new atomic proposition alive that

does not occur in 'f . We define the transformation function g : LTLf ! LTL as

g('f ) = t('f ) ^ (alive U G!alive). The function t : LTLf ! LTL is inductively

defined as follows:

• t(p) = p where p is an atomic proposition.

• t(¬ ) = ¬t( )

• t('1 ^ '2) = t('1) ^ t('2)

• t(X') = X(alive ^ t('))

• t('1U'2) = t('1)U(alive ^ t('2))

Intuitively atomic proposition alive is true until the finite trace does not end and

once the trace ends, alive becomes false and never changes again. This expected

behavior of alive is modeled as (alive U G!alive), which is used in conjunction with

t('f ) to compute ' = g('f ).

Algorithm 3.1

Now the LTL over finite trace to C++ monitor algorithm can be defined as follows:
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Input : LTLf formula 'f .

Output : C++ monitor class M .

Step 1 : From 'f , generate the LTL formula ' as ' = g('f ).

Step 2 : From ', generate M that precisely rejects all the minimal bad prefixes of

' [14] using SPOT. Return M .

3.2.2 Complexity

The complexity of LTL to C++ monitor generation algorithm given in [14] is doubly

exponential in the length of the input LTL formula. So Step 2 of Algorithm 3.1 is

doubly exponential. But the worst case complexity is rarely experienced in practice.

In Step 1, one extra propositional variable alive is added per temporal operator in the

LTL formula. So Step 1 is linear. Hence the overall complexity is doubly exponential

in the length of the input LTLf formula.

3.2.3 Implementation

The Flow Monitor Generation Algorithm is implemented in our tool FlowMonGen.

It automatically generates C++flow monitor classes from the given flow properties.

FlowMonGen is written in C++. It takes a configuration file as input. The configu-

ration file contains all the flow properties to verify and some relevant flow information

about the flow model under verification. As output it produces one C++flow monitor

class per flow property. All the monitor classes lie in two files: monitor.h and moni-

tor.cc. It also generates a class called local flow manager class, which is responsi-

ble for instantiating and executing the flow monitor classes. The local flow manager
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class lies in two files local flow manager.h and local flow manager.cc, generated by

FlowMonGen. We discuss more about this class in Chapter 4.

A flow monitor class is a C++ encoding of a DFW. The transition function of the

DFW is encoded as a member function step() in the monitor class. Each time the

function step() is executed, one transition happens in the DFW. So executing one

step of the monitor (DFW) means executing the monitor step() function once. In our

case, all the states of a monitor (DFW) is accepting. A monitor rejects by funding

no possible transition from a state.

3.3 Flow Monitoring Algorithm

Our goal is to verify that each flow f of flow type T satisfies each flow property P ,

associated with flow type T . Each such flow property P can be converted to a flow

monitor class MP . Now we define our Flow Monitoring Algorithm as follows:

Algorithm 3.2

For each flow f and associated flow monitor class M do the following:

Step 1 : When f begins during the simulation, a monitor instance mf of M is

created and assigned to f .

Step 2 : While f is alive, execute the step() of the monitor mf with atomic propo-

sition alive = true.

Step 3 : If mf rejects before f ends, record monitoring status = FAIL and delete

mf .

Step 4 : Else
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Step 4.1 : When f ends, execute the step() ofmf with value of atomic propo-

sition alive = false once.

Step 4.2 : If mf rejects, record monitoring status = FAIL. Else record mon-

itoring status = PASS.

Step 4.3 : Delete mf .

Flow Monitoring Algorithm is dynamic and decentralized. It is dynamic because

all the flow monitor instances are created during the simulation synchronized with the

beginnings of new flows. It is decentralized because there is one monitor instance per

flow and flow property pair, as contrast to one monitor instance per trace property.

For example, let us assume that there are two flow properties ' and  associated

with flow type T. Let the flow monitor classes generated from flow properties ' and

 be M' and M respectively. Also let us assume that during the simulation, three

flows f1, f2, and f3 are created of flow type T . Then there would be total 2⇥ 3 = 6

flow monitor instances, created during the simulation. Three of them are instances

of M' and the other three are instances of M . Each of the three flows f1, f2, and

f3 has two monitor instances associated with them. One of type M' and another of

type M .

3.4 Proof of correctness

To prove the correctness of the above two algorithms, we shall prove that the gen-

erated monitor M accepts a flow f i↵ its finite trace slice ⇡f (0 · · ·n) finitely satisfies

the formula 'f .

Definition 3.5 A finite word x over alphabet ⌃ is a good prefix of language L i↵ for

all infinite word y 2 ⌃!
, x.y 2 L.
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Lemma 3.1 alive is the atomic proposition defined in Definition 3.4. Let ⇡ be an

infinite trace that satisfies the property (alive U G!alive) and alive 2 ⇡(n) and

alive 62 ⇡(n+ 1). Let 'f be an LTL formula. Then the following two hold:

1. If the finite trace ⇡(0 · · ·n) |=f 'f , then ⇡(0 · · ·n+ 1) is a good prefix of t('f ).

2. If the finite trace ⇡(0 · · ·n) 6|=f 'f , then ⇡(0 · · ·n+ 1) is a bad prefix of t('f ).

Proof 3.1 We prove it by Induction on 'f .

Base Case : 'f is an atomic proposition p 6= a.

• ⇡(0 · · ·n) |=f p ) p 2 ⇡(0) ) ⇡(0 · · ·n+1) is a good prefix for t(p) = p.

• ⇡(0 · · ·n) 6|=f p ) p 62 ⇡(0) ) ⇡(0 · · ·n+ 1) is a bad prefix for t(p) = p.

Inductive Step :

1. 'f = ¬ .

• ⇡(0 · · ·n) |=f ¬ ) ⇡ (0 · · ·n) 6|=f  ) By IH ⇡(0 · · ·n + 1) is a

bad prefix of t( ) ) All infinite extension of ⇡(0 · · ·n+1) 6|= t( ) )

All infinite extension of ⇡(0 · · ·n + 1) |= ¬t( ) ) ⇡(0 · · ·n + 1) is a

good prefix for ¬t( ) = t(¬ ) = t('f ).

• ⇡(0 · · ·n) 6|=f ¬ ) ⇡(0 · · ·n) |=f  ) By IH ⇡(0 · · ·n + 1) is a

good prefix of t( ) ) All infinite extension of ⇡(0 · · ·n+1) |= t( ) )

All infinite extension of ⇡(0 · · ·n + 1) 6|= ¬t( ) ) ⇡(0 · · ·n + 1) is a

bad prefix for ¬t( ).

2. 'f = '1 ^ '2

• ⇡(0 · · ·n) |=f '1 ^ '2 ) ⇡(0 · · ·n) |=f '1 and ⇡(0 · · ·n) |=f '2 )

By IH, ⇡(0 · · ·n+ 1) is a good prefix for both t('1) and t('2) ) All
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infinite extension of ⇡(0 · · ·n+1) satisfy both t('1) and t('2) ) All

infinite extensions of ⇡(0 · · ·n + 1) |= t('1) ^ t('2) ) ⇡(0 · · ·n + 1)

is a good prefix for t('1) ^ t('2) = t('1 ^ '2) = t('f ).

• ⇡(0 · · ·n) 6|=f '1 ^ '2 ) ⇡(0 · · ·n) 6|=f '1 or ⇡(0 · · ·n) 6|=f '2 )

By IH, ⇡(0 · · ·n+ 1) is a bad prefix for t('1) or t('2) ) All infinite

extensions of ⇡(0 · · ·n + 1) either does not satisfy t('1) or does not

satisfy t('2) ) All infinite extensions of ⇡(0 · · ·n + 1) 6|= t('1) ^

t('2) ) ⇡(0 · · ·n+ 1) is a bad prefix for t('1) ^ t('2).

3. 'f = X 

• ⇡(0 · · ·n) |=f X ) n � 1 and ⇡(1 · · ·n) |=f  ) alive 2

⇡(1) [ Since n � 1 ] and by IH ⇡(1 · · ·n+1) is a good prefix of t( ) )

All infinite extensions of ⇡(1 · · ·n+1) satisfy both alive and t( ) )

All infinite extensions of ⇡(0 · · ·n+1) |= X(alive^t( )) ) ⇡(0 · · ·n+

1) is a good prefix of X(alive ^ t( )) = t(X ) = t('f )

• ⇡(0 · · ·n) 6|=f X ) Either n = 0 or ⇡(1 · · ·n) 6|=f  ) Either alive 62

⇡(1) [ Since n = 0 ] or by IH ⇡(1 · · ·n + 1) is a bad prefix of t( ) )

Either all infinite extensions of ⇡(1 · · ·n + 1) 6|= alive [Since alive 62

⇡(1) ] or all infinite extensions of ⇡(1 · · ·n+ 1) 6|= t( ) ) All infinite

extensions of ⇡(1 · · ·n+1) 6|= (alive^ t( )) ) All infinite extensions

of ⇡(0 · · ·n + 1) 6|= X(alive ^ t( )) ) ⇡(0 · · ·n + 1) is a bad prefix

of X(alive ^ t( )).

4. 'f = '1U'2

• ⇡(0 · · ·n) |=f '1U'2 ) 9j  n such that ⇡(j · · ·n) |=f '2 and

8k 0  k < j, ⇡(k · · ·n) |=f '1 ) By IH 9j  n such that



47

⇡(j · · ·n+1) is a good prefix of t('2) and 8k 0  k < j, ⇡(k · · ·n+1)

is a good prefix of t('1) ) 9j  n such that ⇡(j · · ·n+ 1) is a good

prefix of t('2) ^ alive [Since j  n, alive 2 ⇡(j)] and 8k 0  k <

j, ⇡(k · · ·n + 1) is a good prefix of t('1) ) 9j  n such that all

infinite extensions of ⇡(j · · ·n+1) |= t('2)^alive and 8k 0  k < j, all

infinite extensions of ⇡(k · · ·n) |= t('1) ) For all infinite extensions

⇡(n+2 · · · ), 9j  n such that ⇡(j · · ·n+1)⇡(n+2 · · · ) |= t('2)^alive

and 8k 0  k < j, ⇡(k · · ·n+1)⇡(n+2 · · · ) |= t('1) ) For all infinite

extensions ⇡(n + 2 · · · ), ⇡(0 · · ·n + 1)⇡(n + 2 · · · ) |= t('1)U(t('2) ^

alive) ) ⇡(0 · · ·n + 1) is a good prefix for t('1)U(t('2) ^ alive) =

t('1U'2) = t('f ).

• ⇡(0 · · ·n) 6|=f '1U'2. There are two cases:

Case 1: 8i, 0  i  n, ⇡(i · · ·n) 6|=f '2 ) By IH 8i 0  i 

n, ⇡(i · · ·n+1) is a bad prefix of t('2) ) 8i 0  i  n, ⇡(i · · ·n+

1) is a bad prefix of t('2)^ alive ) ⇡(0 · · ·n+1) is a bad prefix

of t('1)U(t('2) ^ alive)

Case 2: 9k  n such that ⇡(k · · ·n) 6|=f '1 and 8i, 0  i 

k, ⇡(i · · ·n) 6|= '2 ) 9k  n such that ⇡(k · · ·n + 1) is

a bad prefix of t('1) and 8i, 0  i  k, ⇡(i · · ·n + 1) is a

bad prefix of t('2) ) 9k  n such that ⇡(k · · ·n + 1) is

a bad prefix of t('1) and 8i, 0  i  k, ⇡(i · · ·n + 1) is a

bad prefix of t('2) ^ alive ) ⇡(0 · · ·n + 1) is a bad prefix of

t('1)U(t('2) ^ alive).

Theorem 3.2 Let ⇡ be an infinite trace that satisfy the property (alive U G!alive)
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and alive 2 ⇡(n) and alive 62 ⇡(n + 1). Let 'f be an LTL formula. Let M be the

minimal deterministic monitor generated from 'f using Algorithm 1. The finite trace

⇡(0 · · ·n) 6|=f 'f i↵ M rejects ⇡ within n+ 1 steps.

Proof 3.2 ) ⇡(0 · · ·n) 6|=f 'f ) ⇡(0 · · ·n+1) is a bad prefix of t('f ) [ By Lemma 1 ] )

⇡(0 · · ·n+1) is a bad prefix of t('f )^ (alive U G!alive) ) either ⇡(0 · · ·n+1)

is minimal or it has a minimal bad prefix ⇡(0 · · · i) where i  n ) M rejects

⇡ within n+ 1 steps (By Theorem 3.1).

( ⇡(0 · · ·n) |=f 'f ) ⇡(0 · · ·n + 1) is a good prefix of t('f ) [By Lemma 1]

) ⇡(0 · · ·n + 1) is not a bad prefix for t('f ) ^ (alive U G!alive) since by

assumption ⇡(0 · · ·n + 1) is not a bad prefix of (alive U G!alive) ) M does

not reject ⇡(0 · · ·n+ 1).

Let M be the flow monitor class generated by FlowMonGen from a flow prop-

erty P. Let mf be the monitor instance of type M that is responsible to monitor

the flow f . Algorithm 3.2 creates mf with alive = true as soon as the flow begins

and makes alive = false as soon as f ends. So definitely, the infinite trace whose

prefix is the finite trace slice ⇡f of flow f satisfies the property (alive U G!alive).

Theorem 3.2 guarantees that mf rejects in Step 4.1 of Algorithm 3.2 i↵ ⇡f does not

finitely satisfy P . So in Algorithm 3.2 the monitor instance mf accepts a flow f i↵

flow f satisfies the flow property P .

The FlowMonitoring Framework presented in Chapter 4, implements this dynamic

and decentralized Flow Monitoring Algorithm.
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Chapter 4

Flow Monitoring Framework

Our goal is to automatically verify flow properties of a flow model using online mon-

itoring technique. Each flow property of type T should be verified for each flow of

type T . We already presented the algorithm for monitoring flows in Chapter 3. In

this Chapter, we present our completely automated Flow Monitoring Framework that

e�ciently implements that algorithm enabling automatic flow monitoring.

4.1 Components

The complete Flow Monitoring Framework consists of three parts: (1) the Flow Li-

brary that provides the base classes and APIs, required to design flow models, (2)

a flow model (written by the user), which is the model under verification (MUV),

and (3) a set of flow-monitor classes (one flow monitor class per flow property) with

the local flow manager class, generated by our FlowMonGen tool. The first

component, the Flow Library, is the only component that never changes. The flow

library is provided as part of our SystemC Flow Package, which can be downloaded at

http://sourceforge.net/projects/SystemCFlow/. The second component is the

SystemC model under verification and changes every time the user makes a modifica-

tion to his model or wants to verify a di↵erent model. The third component depends

on the flow properties to verify. Every time the user makes any change to the set of

flow properties he/she wants to verify, the user regenerates the flow monitor classes
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Figure 4.1 : The Flow Monitoring Framework

and the local flow manager class using the FlowMonGen tool, provided in our

SystemC Flow Package. The local flow manager class needs to be regenerated

every time a new property is added to the set of flow properties to verify. This is be-

cause it is the job of the local flow manager class to instantiate the flow monitor

classes. So the local flow manager needs to know about all the flow monitor classes.

Fig. 4.1 shows these three di↵erent components of the Flow Monitoring Framework.

The blue arrows show C++ inheritance relationship (will be discussed later in detail).
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4.1.1 First Component: Flow Library

The first component, Flow Library, is described in detail in Chapter 2. In sum-

mary, it contains three classes: first, a flow class that is the base class of all the

user-defined flow type classes in the MUV, second, a flow manager class that has

all the information about the flows that begin and end during a simulation, third,

a base monitor class that serves as a base class for all the flow monitor classes

generated by FlowMonGen from the flow properties.

4.1.2 Second Component: MUV

The second component is the MUV, the flow model that the user intends to verify.

The MUV can have one or more flow types. Each flow type is a class derived from

the flow class. The MUV encodes how the flows travel through di↵erent SystemC

processes using the methodology provided in Chapter 2.

4.1.3 Third Component: flow monitor classes and local flow manager class

The third component is the flow monitor classes and the local flow manager class.

These are generated automatically from the flow properties using FlowMonGen

tool. All the flow monitor classes are derived from the base monitor class, provided

in the Flow Library. This reduces the size of the local flow manager class because

all the methods in the local flow manager class can use the common base class

pointer base monitor*.

The generated local flow manager class is derived from the flow manager

class. When a flow begins or ends the flow manager class informs the local flow manager

class by calling its APIs. The alive flows database of flow manager class is defined

as a protected data member so that the local flow manager class can access the at-



52

tributes of any flow. The local flow manager class also has complete information

about the flow monitor classes; which flow monitor class is associated with which

flow type. So, local flow manager class is the one that dynamically creates the

flow monitor instances, executes their step functions and deletes them when needed

during the monitored simulation as described in Algorithm 3.2.

We have discussed about the first and second components in detail in Chapter 2.

In this Chapter, we focus on the third component and how the three components

work together to achieve the goal of flow monitoring.

4.2 flow monitors

A flow monitor class is a C++ class generated from a flow property P using the

FlowMonGen tool. Assume that P is a flow property of flow type T . P can refer

to the flow attributes of T and the global variables in the MUV. The generated flow

monitor class has one pointer member variable for each global variable, referred in P .

Each such member variable is initialized in the monitor class’s constructor to point to

the corresponding global variable in the MUV. Each monitor class has two member

functions: the constructor and a step().

As mentioned earlier, each flow monitor is a C++ encoding of a DFW (Deterministic

Finite Word automaton). We use the front det ifelse encoding proposed in [14] to

encode the transition function of that DFW. The flow monitor constructor is used to

initialize the member variables of the flow monitor class to pint to the corresponding

global variables of the MUV. It also sets the initial state of the DFW. The step()

function encodes the transition function of the DFW and is defined as:

virtual bool s tep ( f low ⇤ p , bool a l i v e ) ;
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The step() function is virtual as it is first defined in the base monitor class

as an empty function and is overridden by all the flow monitor classes. The step()

function takes two arguments: the pointer to the flow it is monitoring and a boolean

variable called alive. The step() function returns a boolean value. The return value

is true if the there is no possible transition from the current state and false otherwise.

When a flow f begins during the simulation, its corresponding monitor instance m

is created. Since then, until f ends, m’s step() is called one or more times with alive

= true. If any of these steps rejects by returning true, the status of m is recorded as

”FAIL” and m is deleted immediately. Else, when flow f ends, m’s step() function is

called immediately with alive = false and, depending on its return value, the status

of m is recorded and m is deleted.(See Algorithm 3.2) Remember that for a flow f

of type T , there is one such monitor instance m for every flow property P of type T .

For example, if there are three flow properties of type T , there will be three di↵erent

monitor instances, which will be monitoring only flow f .

4.3 local flow manager class

4.3.1 Simulation with and without monitors

The MUV can be run with monitors (monitored simulation) or without monitors

(unmonitored simulation). In monitored simulation, the MUV needs to be modified

to plug-in the calls to the monitors’ step() function at the appropriate locations in it.

This modification is called instrumentation.

Instrumentation can be done either manually or automatically. As the size of the

MUV grows larger, manual instrumentation becomes cumbersome and error prone.

Automatic instrumentation is hard since it needs a full-blown C++ parser. Aspect-
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Oriented Programming [35] is a good fit for this, since inserting monitor calls can be

seen as cross-cutting concerns (aspects) in the MUV. But, unfortunately, the only

aspect-oriented tool for C++, AspectC++, [36] does not support many join points

necessary for monitoring. An example of such join point is Field Access join point,

which denotes all the locations where a particular variable is assigned a value. This is

an important join point in case of monitoring since it makes sense to run the monitors

whenever some variable changes its value.

Since we do not have an automatic instrumentation tool and manual instrumenta-

tion is practically unusable, one of the major goals in this Flow Monitoring Framework

is to support transition from unmonitored simulation to monitored simulation and

vice versa with almost no instrumentation. Also, the unmonitored simulation should

not put any monitoring overhead.

The derived class local flow manager overrides some virtual methods of its base

class flow manager to do some extra work only during monitored simulation. We

want to build our framework in a way such that during unmonitored simulation the

methods of the flow manager class will be called and during monitored simulation

the methods of the local flow manager class will be called. This should happen

automatically. The only thing the user has to write is to indicate somewhere in the

MUV if it is a monitored simulation or an unmonitored one.

This goal can be achieved best using C++ polymorphism (base class pointer point-

ing derived class object). In case of monitored simulation, the global pointer flow manager*

fmanager should point to a local flow manager object (derived class object), whereas

in an unmonitored simulation, fmanager points to a flow manager object (base class

object).

As we have seen in Chapter 2, a flow property can refer to global variables, more
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precisely member variables of di↵erent SystemC modules. If a flow property refers

to a member variable of some SystemC module M, the corresponding flow monitor

needs access to the module object M. It is the job of local flow manager class to

give each flow monitor class access to its required SystemC module objects. For

that, when the object of local flow manager class is constructed, the user needs

to pass the addresses of all the SystemC modules referred in the flow properties to

verify, as the argument to the constructor. The order of the parameters M1, · · · ,Mn

is determined by the order, provided by the user in the input configuration file to

the FlowMonGen tool, while generating the local flow manager class and the

flow monitor classes. The Listing below shows the modification, needed to run the

simulation of a flow model with and without monitor.

//For unmonitored s imu la t i on

f low manager⇤ manager = new f low manager

(<number o f user�de f in ed f low types >);

//For monitored s imu la t i on

/⇤Let M1, . . ,Mn be the g l o b a l v a r i a b l e s ,

r e f e r r e d in the f l ow p r o p e r t i e s ⇤/

f low manager⇤ fmanager =

new l o ca l f l ow manage r

(<number o f user�de f in ed f low types >,

&M1, . . . ,&Mn ) ;

Thus to execute the simulation with and without monitors, the user has to change

only one line of code in the entire MUV.



56

4.3.2 Dynamic creation and deletion of flow monitor instances

During the simulation, a SystemC process may begin a flow f by calling the be-

gin flow function of flow manager class. After doing all the book-keepings and

security checks (as described in Chapter 2), the flow manager class calls the func-

tion local begin flow(unsigned int id, int type), where id and type are the flow id and

flow type id of f respectively. This function is implemented as an empty virtual

function in flow manager class and overridden by local flow manager class.

In a monitored execution, when a flow f of flow type T begins, the process

first calls begin flow of flow manager class, which calls the local begin flow of

local flow manager class. The local begin flow() creates one instance of each

flow monitor class of type T . All these monitor instances are responsible to monitor

only flow f . We say that these monitor instances are ‘assigned to’ f . After the mon-

itor instances are created, the local flow manager class executes one step of each

monitor instance and returns.

During the simulation, a SystemC process may end a flow f by calling the end flow

function of flow manager class. end flow() does some book keeping, error checking

and then it deletes f if no other process is using f . Before deleting f, it calls a

function local end flow(unsigned int id, int type). This is defined as an empty function

in flow manager class and local flow manager class overrides this to do some

extra work during monitored simulation. For each flow monitor instance m assigned

to flow f , local flow manager::end flow() does the followings:

1. Execute one step of m with alive = true.

2. If step() returns true, record status of m = FAIL and go to Step 4. Else execute

one step with alive = false.
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3. If step() returns false, record status of m = PASS. Else record status of m =

FAIL.

4. Delete m.

Thus local flow manager class takes care of dynamically creating and deleting

monitor instances synchronizing with beginning and ending of flows.

4.3.3 Executing steps of a flow monitor

The Flow Monitoring Framework provides two APIs to the user to execute a step of

a flow monitor from a location in the MUV. The first is:

fmanager�>monitor f l ow (unsigned int f l ow i d ) ;

This function does not do anything in non-monitored execution. But in the moni-

tored execution, it executes one step of all the flow monitor instances, associated with

flow f. The second one is:

fmanager�>mon i t o r a l l ( ) ;

This function does not do anything in non-monitored execution. In the monitored

execution, it executes one step of all flow monitor instances.

4.4 Sampling

Now the question is when to execute the steps of the flow monitors. In monitoring, a

step of a monitor is executed by sampling the state of the MUV. During a monitored

simulation, one can only sample the state of the MUV for a finite number of times.

So it is really important to decide when to sample to obtain the maximum power

of monitoring. Too little sampling might miss some important state of the system.
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Again, too frequent sampling might be too expensive in terms of runtime and some-

times redundant. In case of flow monitoring, the naive approach is to sample after

every statement of the MUV and at each sampling point, execute one step of all

the flow monitor instances of all the live flows. But there are two main drawbacks

of this approach: ine�ciency and redundancy. At any point during the simulation,

there can be a large number of flows alive in the system, each having multiple flow

monitor instances associated with it. If we execute all the flow monitor instances at

each sampling point, it will incur a large monitoring overhead on the simulation time

of the MUV. On the other hand, not all flows change their states at every sampling

point. A flow changes its state only when any of its flow attributes is written. So it

is redundant to monitor every flow at every sampling point.

There are three main goals we would like achieve in the sampling mechanism of

our Flow Monitoring Framework. First is 100% coverage. This means that the step()

of a flow monitor should be executed frequently enough to capture every change in

the state of the MUV relevant to that flow monitor. Second is 0% redundancy. This

means that we should execute the step of a monitor only when some flow attribute

of the flow, it is monitoring, or some global variable, it refers to, changes its value.

Third, sampling should require no manual instrumentation of the MUV.

Using the Flow Monitoring Framework, user can sample at di↵erent resolution

without any instrumentation of the MUV. In this subsection, we discuss how to

sample at di↵erent resolution automatically during the monitored simulation of a

flow model.



59

4.4.1 Sampling at value change of a flow attribute

Let us assume that the MUV has a flow type class T that has a flow attribute int a.

Let f be a flow of type T . The Flow Monitoring Framework can automatically execute

all flow monitor instances associated with flow f , every time the flow attribute a of

flow f is written. For that the setter function of flow attribute a has to be defined in

flow type class T as follows:

void s e t a ( int va l ) { s e t a t t r i b u t e<int>(a , va l ) ; }

The function set attribute() is defined in the flow class of Flow Library as a tem-

plate function as follows:

template <typename T>

void s e t a t t r i b u t e (T& att , const T& val ) ;

The template type is the type of the flow attribute (in this case, integer). In case of

non-monitored simulation, this function just sets the value of the attribute. In case of

monitored simulation, after setting the value, it executes one step of all flow monitor

instances associated with the flow, whose attribute’s value has been set.

4.4.2 Sampling at value change of a global variable

Sometimes flow properties can refer to the global variables of the MUV. In SystemC,

the global variables are mostly member variables of SystemCmodules. The user might

want to execute the flow monitors whenever that global variable is written a value.

That can be done by adding a call to flow manager::monitor all() function at the end

of the the setter method of that global variable:

// In the beg inn ing o f the f i l e

#include ” flow manager . h”
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extern f low manager⇤ fmanager ;

. . .

//Let G be a g l o b a l v a r i a b l e o f type i n t e g e r

void set G ( int va l ){

G = val ;

fmanager�>mon i t o r a l l ( ) ;

}

. . .

In a non-monitored execution, this does nothing. But in the monitor execution, this

executes all the flow monitors associated with all live flows. I would like to emphasize

here that this is part of designing the flow model, not instrumentation.

4.4.3 Sampling at SystemC kernel phases

Sometimes the user might not want to capture all the changes in the system state.

For that our Flow Monitoring Framework also provides a way to sample at lower

granularity, for example, whenever a thread process suspends or whenever a delta

cycle ends during the simulation. In [37], Tabakov et al. defines 18 SystemC kernel

phases. In our Flow Monitoring Framework, the user can associate a set S of SystemC

kernel phases with any flow property P . Each time any kernel phase in S occurs, the

flow monitor instances of P execute one step automatically. The list of kernel phases

supported by our Flow Monitoring Framework is given in Table 4.1

Our tool FlowMonGen takes a flow property associated with a set of ker-

nel phase macros (given in the table above) as input. Each flow property can
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Kernel Phase Name Sampling location

MON INIT PHASE BEGIN Before initialization phase begins

MON INIT UPDATE PHASE BEGIN Before initialization update phase be-

gins

MON INIT UPDATE PHASE END After initialization update phase ends

MON INIT DELTA NOTIFY PHASE BEGIN Before initialization delta notification

phase begins

MON INIT DELTA NOTIFY PHASE ENDS After initialization delta notification

phase ends

MON INIT PHASE END After initialization phase ends

MON DELTA CYCLE BEGIN Before a delta cycle begins

MON DELTA CYCLE END After a delta cycle ends

MON EVALUATE PHASE BEGIN Before an evaluation phase begins

MON EVALUATE PHASE END After an evaluation phase ends

MON UPDATE PHASE BEGIN Before an update phase begins

MON UPDATE PHASE END After an update phase ends

MON DELTA NOTIFY PHASE BEGIN Before a delta notification phase begins

MON DELTA NOITIFY PHASE END After a delta notification phase ends

MON TIMED NOTIFY PHASE BEGIN Before a timed notification phase be-

gins

MON TIMED NOTIFY PHASE END After a timed notification phase ends

MON METHOD SUSPEND After an sc method has ended execu-

tion

MON THREAD SUSPEND After an sc thread has suspended

Table 4.1 : Kernel phase sampling points
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have its own set of kernel phases, it is sensitive to. As output FlowMonGen

generates the local flow manager class and the flow monitor classes such that

local flow manager class automatically executes all the flow monitor instances

associated with flow property P , whenever any kernel phase k, P is sensitive to,

occurs.

When a kernel phase K occurs, the local flow manager class executes all the

flow monitors sensitive to hernel pause K. For that, the local flow manager class

has to know exactly when K occurs during the simulation. In the original SystemC

package, only the SystemC kernel knows this information. To expose this information

to our local flow manager class, we have put a minimal patch on the SystemC-

2.3 kernel, similar to the one proposed in [10], but smaller in size. Our patch only

contains 85 lines of code and is easily portable to the future SystemC releases.
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Chapter 5

Experimental Evaluation

This section presents a case study, where we designed a flow model using our Flow

Library and verified some flow properties of this model using our Flow Monitoring

Framework. We ran a set of flow monitoring experiments with this flow model. We

analyzed the result to see how the runtime overhead due to monitoring varies with

di↵erent aspects of the model such as sampling rate, maximum number of live flows,

ratio of user clock frequency to system clock frequency, total number of flows etc.

5.1 Airline Reservation System: Model under verification

The flow model we have designed, implements a multi-user, concurrent system for

reserving and purchasing airline tickets. It has approximately 3800 lines of code. This

model has one flow type: ‘request’ to book a trip. The users of the system submit

requests to reserve plane tickets by specifying the starting and ending airports of

the trip, the date of travel (if it is a return-trip request, there should be two dates

for going and coming back) and a few other input attributes. The system uses a

randomly generated flight database to find a direct flight or a sequence of up to three

connecting flights. Those are returned back to the users as output attributes. The

entire set of attributes in the corresponding flow type class ‘request’ is given below:

class r eque s t : public f l ow {

//Constructor and Functions
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. . .

//Flow a t t r i b u t e s

private :

// Input Flow A t t r i b u t e s

int source ; // S t a r t i n g po in t o f the t r i p

int de s t i n a t i o n ; // Ending po in t

int date ; // Trave l date

int date2 ; // Return date

int s e a t s ; // Number o f passengers

std : : s t r i n g category ; // bu s ine s s c l a s s , economy c l a s s e t c

bool r e t u r n f l i g h t ; //True i f t h i s i s a re turn t r i p r e que s t

//Output f l ow a t t r i b u t e s

bool s t a tu s ; // False i f not enough resource to proces s r e que s t

l i s t t ⇤ c o n n e c t i n g f l i g h t s ; //Connecting f l i g h t s f o r going

l i s t t ⇤ c o nn e c t i n g f l i g h t s 2 ; //Connecting f l i g h t s f o r coming

//Other a t t r i b u t e

//True i f the r e que s t i s in s p e c u l a t i v e s t a t e ( e xp l a ined l a t e r )

bool i s s p e c u l a t i v e ;

}

The Airline Reservation System model contains four modules connected by finite-

capacity channels. These modules are: user, IO, master and planner. There are two

clocks defined in this model: user clock and system clock. The user module operates

on the user clock and the other three modules operate according to the system clock.

The user module simulates the users of this model and submits a new request at every

clock cycle of the user clock with di↵erent values of input attributes. The other three
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modules process the requests to generate outputs and send them back to the user

module.

Each module has one or more thread processes in it. A request travels through

those processes to get processed. If two processes belong to the same module, a request

is transferred from one process to another using some bounded queue, defined locally

inside that module. If two processes belong to two di↵erent modules, a request is

transferred from one process to another using some finite capacity channel, connecting

those two modules. The sum of the capacities of all these bounded queues and

bounded channels puts a bound on the maximum number of live requests, flowing

through the system during any simulation. The modules use events to synchronize

reading and writing to the queues and the channels. This is a model of a reactive

system that is intended to run forever.

Fig 5.1 shows the possible paths taken by a request in our model. A request is

generated by a thread in the user module. Then it travels to a thread in IO module.

IO module checks if it has space in its internal queue to store this request as a pending

request. It not, it sets the status of the request to false and sends the request back

to the users module that ends the request. Else the IO module sends the request

to the master module after setting its status to true. If it is a 1-way trip request,

master module just sends it to the planner module. If it is a return trip request, the

master module sets the speculative bit of the request to true and sends the request

to the planner module to process trip1. It also keeps a copy of the same request in

its internal queue to send that again to the planner in the near future to process

trip2. Upon receiving a request from master module, the planner module checks its

speculative bit. If the speculative bit is false, then the planner module checks if it

is a return trip request. If it is not a return trip request, the planer module sets
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Figure 5.1 : A ‘request’ to book a trip (1-way or return trip) travels through the
modules of the Airline Reservation System model.
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the flow attribute connecting flights to some randomly generated flights and send the

1-way request back to the master module. If it is a return-trip request, the planner

module sets the connecting flights to some randomly generated connecting flights

and speculates the connecting flights2 as the reverse of connecting flights. Here we

introduce an option of not finding connecting flights with a probability of 10%. Now

the planner module sends the request back to the master. If the speculative bit of

the received request is true, the planner module sets its connecting flights2 with some

randomly generated connecting flights and sets the speculative bit to false. Now the

planner module sends the request back to the master module. Upon receiving a

request from the planner module, the master module first checks its speculative bit.

If the speculative bit is true, the master module just discards this request. Else, the

master module sends this request to the IO module. IO module sends it to the users

module that ends the flow.

5.2 Flow properties of Airline Reservation System

We have verified three flow properties of our Airline Reservation System model using

our Flow Monitoring Framework.

5.2.1 Property 1

The first property is a liveness property that asserts that every request is eventually

processed by the Airline Reservation System. It says that eventually globally the

attribute connecting flights should be non-empty and if it is a return trip request,

then eventually globally the attribute connecting flights2 should be nonempty too. If

the user submits requests more frequently than the system can process (user clock

frequency is greater than system clock frequency), some requests will be rejected by
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the IO module and will be sent back to the user module without being assigned flights

by the planner module. These requests will not satisfy this property. But if the user

clock frequency is less than or equal to the system clock frequency, all the requests

get processed, though some requests do not find flights with a probability of 10%

at planner module. So when the user clock frequency is greater than the system

clock frequency, the failure rate increases with the ratio of user clock frequency to the

system clock frequency. The first property is written as the input to FlowMonGen

tool as:

r eque s t ⇤ r

F (G ( ! ” ( r�>g e t c o n n e c t i n g f l i g h t s ())�>empty ( ) ” ) ) &&

(” r�>i s r e t u r n ( )” �> F(G( ! ” ( r�>g e t c o n n e c t i n g f l i g h t s 2 ())�>empty ( ) ” ) ) )

5.2.2 Property 2

The second property captures the behavior of speculative bit for a return-trip request.

For each return-trip request, eventually the speculative bit should be set to true at

master module and then eventually globally it should be set to false by planner

module. Similar to Property 1, if the user clock frequency is greater than the system

clock frequency, some requests will not reach the master module and will not satisfy

this property. This property is written as the input to FlowMonGen tool as:

r eque s t ⇤ q

”q�>i s r e t u r n ( )” �> F(”q�>g e t s p e c u l a t i v e s t a t u s ( )”

&& FG( ! ” q�>g e t s p e c u l a t i v e s t a t u s ( ) ” ) )
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5.2.3 Property 3

The third property is a safety property that makes sure that all the connective flights

have legs less than or equal to the global variable “max legs”, defined in the planner

module. This property shows how to refer to a global variable in a flow property.

Property 3 is written as the input to FlowMonGen tool as:

r eque s t ⇤ p

G ”( (p�>g e t c o n n e c t i n g f l i g h t s ())�> s i z e ( ) )

<= ( planner�>get max l eg s ( ) ) ”

5.3 Experimental setup

In monitoring the main concern is the overhead that the monitors put on the runtime

of the model. The runtime overhead of flow monitoring may depend on multiple

factors, such as the ratio of the frequency of the user clock to the frequency of the

system clock (let us call it frequency ratio), the maximum number of flows that can

be live in the system at the same time (let us call it max live flows), the sampling

rate of the monitor (let us call it sampling rate), the total simulation time (let us call

it simulation time), and the total number of flows that begin during the simulation

(let us call it num flows). It is obvious that the runtime overhead increases with the

num flows and the simulation time because the number of flow monitor instances is

proportional to num flows, which increases with the simulation time.

So the main goal is to find out how the runtime overhead is a↵ected by the

first three factors: frequency ratio, max live flows and sampling rate. For that we

have setup the following experiments for each of the above three properties. We fix

simulation time to 100, 000 SC NS and the user clock cycle time to 10 SC NS. So the
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total number of flows that begin during the simulation is fixed to (100, 000/10) =

10, 000. The maximum number of alive flows in the Airline Reservation System

model is equal to (total capacity of all the bounded queues + total capacity of all

the bounded channels) + (the number of processes that operate on requests, where

each process can store at most one flow). For simplicity of experimental setup, we

make all the bounded queues and channels of equal capacity (let us call it C). There

are 4 bounded channels and 8 bounded queues in our model. The total number

of processes that operates on flows is 11. So in Airline Reservation System model,

max live flows = 12 ⇥ C + 11. Now we want to see how the runtime overhead

changes with C.

For experimental purpose, we consider 10 values of C (capacity): 100 to 1000,

separated by 100; 20 values for frequency ratio (user clock frequency/system clock

frequency): 0.1 to 2, separated by 0.1; and 3 values for sampling rate: sampling at

value change of flow attributes, sampling at delta cycle end and sampling at thread

suspensions. This leaves us with 10 ⇥ 20 ⇥ 3 = 600 combinations for each property.

For each combination we ran the monitored simulation for 10 times and took the

average of the runtimes.

To measure the overhead in runtime due to monitoring, we consider the runtime

of non-monitored execution of Airline Reservation System model as our baseline. In

that case, there is no sampling points. But there are still 10 values for C and 20 values

for frequency ratio. This gives as 10 ⇥ 20 = 200 combinations for running without

monitors. For each combination, we ran 10 times and took the average runtime.

We calculated the monitoring overhead as a percentage increase of the corresponding

(equal values for C and frequency ratio) baseline runtime.
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5.4 Experimental result and analysis

We have some interesting observations from our experiments. One interesting obser-

vation is that one can stress-test the behavior of the system by increasing the user

clock frequency beyond the system clock frequency and see how di↵erent flows be-

have. Also one can observe the system’s behavior at di↵erent values for the input

attributes. Many times in a flow model, the path taken by a flow depends on the

values of the input attributes (Example: ATM server).

Regarding the runtime overhead, there are some important findings about its

variation with respect to frequency ratio, max live flows (proportional to C) and

sampling rate. Similar results have been found for all the three flow properties.

5.4.1 Sampling at value change of flow attributes

When sampling rate is at value change of flow attributes, the runtime overhead does

not change much with the increase of max live flows or frequency ratio. This is

justified by the fact that in case of sampling at value change, we only execute the

monitors of a flow when any of its attributes is assigned a value. So total number

of monitor calls during the entire simulation is equal to the total number of flows

multiplied by attribute assignments for each flow (constant for a given model). So

the number of monitor calls only depends on the total number of flows begun during

the simulation and nothing else.

5.4.2 Sampling at delta cycle end

In case of sampling at delta cycle end, the monitors of all live flows are executed at

each sampling points. So as max live flows increases, the number of queued requests

increases and thus total number of calls to the monitors increases. Thus when there
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are pending requests (user clock frequency is greater than system clock frequency),

the monitoring overhead increases with max live flows or C. Similarly, as the fre-

quency ratio increases, the system queues more and more pending requests and the

monitoring overhead increases.

5.4.3 Sampling at thread suspensions

In case of sampling at thread suspensions, at each sampling point, the monitors of all

the live flows are executed. So the variation in monitoring overhead is very similar to

the case of sampling at delta cycle ends. The overall overhead is slightly higher than

the overhead at sampling at delta cycle end.

Below we present the runtime overhead for Property 1. The runtime overheads

of Property 2 and 3 show similar variations. Fig 5.2 shows the percentage runtime

overhead per flow monitor with respect to the ratio of user clock and system clock

frequency. Each point in this graph is the average of 100 runtime overhead values,

10 for each value of C from 100 to 1000. The percentage runtime overhead per

flow monitor is calculated as (((Runtime of the monitored simulation - Runtime of

corresponding non-monitored simulation)/Runtime of corresponding non-monitored

simulation) * 100%) / Number of monitors. The number of monitors is equal to the

total number of flows begun, which is 10,000 in our experiments. Similarly Fig 5.3

shows the percentage runtime overhead per monitor with respect to the maximum

number of live flows. Each point in this graph is the average of 200 runtime overhead

values, 10 for each value of frequency ratio from 0.1 to 2. Both the graphs shows that

overhead of sampling at value changes at flow attributes is negligible and sampling

at kernel phases is far more expensive than sampling at value changes of the flow

attributes.
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Figure 5.2 : Percentage runtime overhead of flow monitoring of Property 1 with
respect to ratio of user and system clock frequencies. The three curves shows the
runtime overhead for three di↵erent sampling rates.
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Figure 5.3 : Percentage runtime overhead of flow monitoring of Property 1 with
respect to maximum number of alive flows. The three curves shows the runtime
overhead for three di↵erent sampling rates.
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Chapter 6

Concluding Remarks

In this section, we summarize the contribution of this thesis while indicating directions

for future work.

6.1 Summary of contribution

The main contribution of this thesis is four fold. The first is the introduction of the

concept of flows in the context of SystemC and methodology to implement flows in

SystemC models. Though there have been prior work on modeling the formalism

of flows in di↵erent fields of computer science, this is the first time to implement it

in SystemC. Using our light-weight Flow Library, one can design a flow model with

multiple flow types indicating the di↵erent types of jobs that system can perform.

Flow Library provides the base class to model di↵erent flow types and their flow

attributes in a flow model. It also provides APIs using which a SystemC process can

begin a flow, end a flow, transfer a flow to another process. This thesis also shows how

the user can implement branching and merging of a flow using the Flow Library. Also

there is an e�cient error-checking built-in the Flow Library to prevent mishandling

of flow objects by the flow model implementation.

The second one is our LTLf to C++flow monitor generation algorithm that is im-

plemented in our FlowMonGen (Flow Monitor Generation) tool. FlowMonGen

generates one C++ monitor class per flow property. Though the worst case complexity
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is double exponential, prior work [14] shows that LTL to C++ monitor generation

works well in practice and we have shown in Chapter 3 that LTL to LTLf conversion

is linear.

The third contribution is the dynamic and decentralized Flow Monitoring Algo-

rithm. This creates and deletes monitor instances dynamically during the simulation

synchronizing with beginning and ending of flows. This algorithm is decentralized

because instead of generating one monitor instance per flow property, it generates

one monitor instance per flow and flow property pair.

The fourth contribution of this thesis is a completely automated flow monitor-

ing framework for SystemC. Using this framework, one can monitor one or more flow

properties about di↵erent flow types of the flow model under verification. This frame-

work allows automatic sampling for monitoring at di↵erent abstraction levels such as

value change of flow attributes, ending of delta cycles, suspensions of thread processes

etc.

The Flow Library and the FlowMonGen tool are available as the parts of a

package, called SystemC Flow Package, available at: https://sourceforge.net/

projects/SystemCFlow.

6.2 Future Work

This work leads to two other interesting works: hierarchy among flows and online

monitoring of inter-flow properties.

6.2.1 Hierarchy of flows

A flow performs a job. It consists of multiple steps. Sometimes a flow can do similar

work again and again. For example, suppose a system multiplies two numbers by
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repetitive additions. If multiplication and addition are two flow types, it is easy to

see that a flow f of type multiplication consists of many flows of type addition. Those

addition flows can be thought as sub-flows of the multiplication flow f. The flow type

addition is a sub-flow type of flow type multiplication. A flow can be composed of

multiple types of sub-flows. So, a flow type can have more than one sub-flow types.

Similarly a flow type can be sub-flow type of multiple flow types. For example, the

same system can also use addition to compute square of a number. In that case, flow

type addition is sub-flow type of both multiplication and square flow types. Another

real-life example can be processing an image using divide and conquer method. First,

divide the image into smaller segments. Process each segment separately and then

combine the result to produce the output. The processing of the whole image is a

parent flow and processing each segment is a sub-flow of that parent flow. It will be

good to upgrade the whole SystemC Flow Package to support hierarchy of flows.

6.2.2 Monitoring inter-flow properties

There can be interesting properties about how di↵erent flows interact with each other.

Some of these interactions happen using global variables. Since the intra-flow proper-

ties can refer to any global variables, some interactions among flows can be captured

in intra-flow proper ties. But there can be interactions that cannot be captured using

intra-flow properties, that can refer to the attributes of only one flow. For example,

let us assume the flow property that says a flow outputs SUCCESS if and only if all

its sub-flows output SUCCESS. This property can only be written as an inter-flow

property that can refer to the attributes of more than one flow. It will be interesting

to extend this Flow Monitoring Framework to monitor inter-flow properties as well.
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