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ABSTRACT

Büchi Automata as Specifications for Reactive Systems

by

Seth Fogarty

Computation is employed to incredible success in a massive variety of applications,
and yet it is difficult to formally state what our computations are. Finding a way to
model computations is not only valuable to understanding them, but central to auto-
matic manipulations and formal verification. Often the most interesting computations
are not functions with inputs and outputs, but ongoing systems that continuously react
to user input. In the automata-theoretic approach, computations are modeled as words, a
sequence of letters representing a trace of a computation. Each automaton accepts a set
of words, called its language. To model reactive computation, we use Büchi automata:
automata that operate over infinite words. Although the computations we are modeling
are not infinite, they are unbounded, and we are interested in their ongoing properties.
For thirty years, Büchi automata have been recognized as the right model for reactive
computations.

In order to formally verify computations, however, we must also be able to create
specifications that embody the properties we want to prove these systems possess. To
date, challenging algorithmic problems have prevented Büchi automata from being used
as specifications. I address two challenges to the use of Büchi automata as specifications
in formal verification. The first, complementation, is required to check program adher-
ence to a specification. The second, determination, is used in domains such as synthesis,
probabilistic verification, and module checking. I present both empirical analysis of ex-
isting complementation constructions, and a new theoretical contribution that provides
more deterministic complementation and a full determination construction.
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Chapter 1

Introduction

1.1 Formal Verification for Reactive Systems
Computational systems, both hardware and software, are increasingly pervasive in so-
ciety. The most interesting systems are often not functions with inputs and outputs,
but ongoing systems that continuously react to user input. Because of the increasing
complexity of these systems, we often want to verify their correctness. The traditional
method of ensuring that a system behaves as expected is testing: manually or automat-
ically run the system over a variety of test cases, and look for errors on those particular
cases. For some systems, testing does not provide sufficient assurance that the system is
correct. For instance, hardware systems are expensive to replace if a bug is found after
release, embedded systems can control vehicles, medical devices, and other correctness-
critical devices, and high-assurance software can be responsible for critical business op-
erations [Har03,RvH93]. In these situations, we can seek a formal method for verifying
that a system adheres to a specification. A proof of such adherence provides increased
assurance that the system is correct.

There are three steps to formally verifying a computational system. First, we must
abstract the system into a model, as proving any interesting property of on the system
directly is undecidable. Second, we must construct a specification that embodies the
properties we wish to prove the system possesses. Finally, we must prove the model
adheres to the specification [VW86]. In the automata-theoretic approach, computations
are modeled as words, a sequence of letters representing a trace of a computation. A
system is thus a set of words, called an language. This approach then reduces checking
adherence to checking language containment. To model reactive computation, we use
infinite words. Although the computations we are modeling are not infinite, they are
unbounded, and we are interested in their ongoing properties, properties like liveness,
fairness, or termination.

To represent a set of words, we use automata: mathematical machines with a finite
number of states. Each word defines a set of possible paths through the automaton,
called the runs of the automaton on the word. Depending on the runs, the automaton
will accept or reject the word. Thus each automaton accepts a set of words, called its
language. Automata that operate over infinite words are classified by their acceptance
condition and transition structure. This work primarily considers nondeterministic Büchi
automata on infinite words (NBW). In an NBW, some of the states are designated as
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accepting, a run is accepting if it visits accepting states infinitely often, and a word is
accepted if there exists a possible run that is accepting [Büc62]. For thirty years, Büchi
automata have been recognized as the right model for reactive systems [Kur94].

1.2 Büchi Specifications
This dissertation addresses theoretical and practical limitations to the use of Büchi au-
tomata as specifications for reactive systems. Given a Büchi automaton as a specifica-
tion, we address the manipulations and algorithms necessary to perform verification.
When manipulating automata specifications, there are two canonical operations that
have emerged over the last thirty years. Complementation is used to check that a pro-
gram adheres to a specification, while determinization is employed in domains such as
synthesis, probabilistic verification, and module checking. For automata on finite words,
both complementation and determinization are done via the subset construction [RS59].
For Büchi automata the subset construction is not sufficient, and complementation and
determinization constructions are more complicated [Var07a].

1.2.1 Complementation

When employing the automata-theoretic approach to formal verification, we construct
one automaton A that models to the system, and another automaton B that corresponds
to a property [VW86]. This reduces the question of the model adhering to the specifi-
cation to the question of the language of A being contained in the language of B. The
standard approach to checking language containment employs complementation. First,
obtain an automaton that accepts all and only the words that B rejects. We call this
automaton the complement of B, written B. The language of B contains all possible
counterexamples to adherence. To see if any of these counterexamples are valid, we
compute the intersection of A with B, and check to see if there exists a word accepted
by the intersection. If the language of the intersection is empty, then there is no coun-
terexample and the model adheres to the specification. If the language of the intersection
is not empty, then we have a counterexample which can be used to examine the system
for bugs or to revise the model for increased fidelity to the system.

For a nondeterministic automaton B, a word w is rejected by B if all runs of B

on w reject the word. Thus, the complementary automaton has to consider all possi-
ble runs. Efforts to develop simple complementation constructions for Büchi automata
started early in the 60’s, motivated by decision problems of second-order logics. Büchi
suggested a complementation construction for nondeterministic Büchi automata that in-
volved a Ramsey-based combinatorial argument and a doubly-exponential blow-up in
the state space [Büc62]. Thus, complementing an automaton with n states resulted
in an automaton with 22O(n) states. In [SVW87], Sistla et al. suggested an improved
implementation of Büchi’s construction with only 2O(n2) states, which is still not opti-
mal. Only in [Saf88] Safra introduced a determinization construction, based on Safra
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trees, which also enabled a 2O(n logn) complementation construction, matching a lower
bound described by Michel [Mic88]. A careful analysis of the exact blow-up in Safra’s
and Michel’s bounds, however, reveals an exponential gap in the constants hiding in
the O() notations: while the upper bound on the number of states in the complemen-
tary automaton constructed by Safra is n2n, Michel’s lower bound involves only an n!
blow up: roughly (n/e)n. In addition, Safra’s construction has been resistant to opti-
mal implementations [ATW06, THB95], due to do with the complicated combinatorial
structure of its states and transitions. In 2001, Kupferman and Vardi suggested a new
complementation approach, called the rank-based approach, that circumvented Safra’s
determinization construction and the complicated data structure of Safra trees [KV01].
The resulting rank-based construction gave rise to a sequence of works improving the
complexity [FKV06, Sch09a]. In an effort to unify Büchi complementation with other
operations on automata, Kähler and Wilke introduced yet approach to complementing
nondeterministic Büchi automata, called the slice-based approach [KW08].

In 2007, Tabakov and Vardi began investigating rank-based algorithms that checked
language containment directly, without explicitly constructing the complemented au-
tomaton [TV07]. These algorithm explore the state space of the automaton on the fly,
employing heuristic approaches to improve performance. Doyen and Raskin later intro-
duced a useful subsumption technique for the rank-based approach [DR09], providing
containment checking algorithms that scaled to problems an order of magnitude larger
than previous approaches.

Despite the numerous approaches to complementation proposed over the years, prac-
tical application has remained elusive. No model checkers perform complementation
for nondeterministic Büchi automata. The SPIN model checker accepts Büchi specifi-
cations, but it requires they be complemented ahead of time, given as a ’Never-Claims’
automaton [Hol97]. By contrast, COSPAN accepts Büchi specifications only if they
are deterministic [HHK96, Kur94], which reduces the complexity of complementation
to polynomial [Kur87]. Some of the difficulty emerges from the nondeterminism inher-
ent to complementation: complementation constructions must produce nondeterministic
automata, which have been shown to perform poorly in practice [ST03].

1.2.2 Determinization

Determinization of nondeterministic automata is a fundamental problem in automata
theory, going back to [RS59]. A deterministic automaton has only one run on a given
word, greatly simplifying manipulations of the automaton. To determinize an automa-
ton B, we construct an automaton B′ that accepts the same language as B but is deter-
ministic. Determinization of NBW is employed in many applications, including deci-
sion procedures for branching-time logics [EJ88], synthesis of reactive systems [PR89],
verification of probabilistic systems [CY95, Var85], and module checking [KVW01].
Determinization of NBW is complicated by the fact that they are not closed under de-
terminization; deterministic Büchi automata are strictly less expressive than their non-
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deterministic counterparts [Lan69]. Thus, a determinization construction for Büchi au-
tomata must result in automata with a more powerful acceptance condition, such as
Muller [McN66], Rabin [Saf88], or parity conditions [KC11, KW08, Pit06].

The first determinization construction for Büchi automata was presented by Mc-
Naughton, with a doubly-exponential blowup [McN66]. In 1988, Safra introduced a
singly exponential construction [Saf88]. Safra’s construction encodes a state of the de-
terministic automaton as a labeled tree, now called a Safra tree, of sets of states of the in-
put Büchi automaton, generalizing the subset construction of [RS59]. In 2006, Piterman
improved Safra trees by simplifying the use of labels [Pit06]. In 2009, Schewe offered a
further improvement by moving the acceptance conditions from states to edges [Sch09b]
(see also [LW09]). Karmarkar and Chakraborty, building on [Saf92], supply another
take on Safra trees, providing a uniform way of determinizing automata with different
acceptance conditions [KC11]. In a separate line of work, Muller and Schupp proposed a
different determinization construction, based on Muller–Schupp trees [MS95]. In 2008,
Kähler and Wilke proposed a simplification of the Muller–Schupp approach [KW08].

Unfortunately, both Safra trees and Muller–Schupp trees are combinatorially com-
plex, and transitions between trees are defined as a sequence of operations on these trees.
While Piterman and Schewe’s improvements to Safra trees, and Kähler and Wilke’s im-
provements to Muller–Schupp trees help separate the acceptance condition from the
“mechanics” of the trees, they still rely on these trees as the underlying state structure.
Because of this, determinization constructions have proven challenging to implement
efficiently [ATW05, THB95]. In fact, the difficulty of determinization has motivated
attempts to find determinization-free decision procedures [KV05]. The fundamental
problem is that known determinization constructions lack crisp mathematical descrip-
tions.

1.3 Results
This work attacks the problem of using Büchi automata as specifications on two fronts.
One direction to develop concrete containment checking algorithms and empirically
test their real-world performance. We also develop a new theoretical analysis of Büchi
automata that results in new complementation and determinization constructions.

The empirical analysis focuses on two approaches to complementation: the 2O(n logn)

rank-based approach, and the 2O(n2) Ramsey-based approach. Due to the massive gap
in worst-case complexity, the Ramsey-based approach was discounted in the 1980’s and
neither studied much nor implemented. We perform an empirical comparison of the
two approaches by examining the size of complemented automata. Due to a paucity of
real-world containment problems, we compare the algorithms over a terrain of random
automata [TV07]. The results hint that despite the exponential gap, the Ramsey-based
approach may be competitive with the rank-based approach. Far more significantly,
however, the results demonstrate that direct complementation using any approach is not
feasible: we can only scale to automata with at most 10 states.
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We therefore expand the Ramsey-based approach to a new on-the-fly containment
checking algorithms. To improve the performance, we develop a subsumption technique
modeled off [BAL07]. By doing so we provide a direct algorithm, derived from the
Ramsey-based complementation construction, for checking the containment of Büchi
automata. We note that subsumption is a heuristic technique and, even with this im-
provement, there is still an exponential gap between the 2O(n2) Ramsey-based approach
and the 2O(n logn) rank-based approach. Therefore, we investigate the empirical per-
formance of the Ramsey-based algorithm and the rank-based containment algorithm of
Doyen and Raskin [DR07]. Our empirical results indicate that containment checking al-
gorithms can scale to automata orders of magnitude larger than direct complementation.
Further, the two algorithms exhibit significantly different behavior, with each scaling
better on different configurations of problems. These investigations have thus provided
a case study arguing that, while worst-case complexity is a useful metric, it is a poor
predictor of performance and no substitute for empirical analysis.

One drawback of the rank-based approach is that it is inherently very nondeter-
ministic. Restricting nondeterminism is necessary to use Büchi automata in several
areas [CY95], and even when nondeterminism is allowed it can performs poorly in
practice [ST03]. In the rank-based approach, the ranks bound the visits to accepting
states yet to come. Thus, the ranks refer to the future of the run, making the construc-
tion inherently nondeterministic. In contrast, in the slice-based approach of Kähler and
Wilke, states are partitioned based on previous visits to accepting states. Thus, the par-
tition refers to the past of the run, not the future, and the slice-based approach has the
potential to be less nondeterministic. We realize this potential. To do so, we introduce
a new analysis based on a notion of profiles that unifies the rank and slice-based ap-
proach. In addition to revealing the theoretical connections between the two seemingly
different approaches, profiles lead to a complementation construction with a transition
function that is smaller and deterministic in the limit: every accepting run of the automa-
ton is eventually deterministic. Determinism in the limit is sufficient for verification in
probabilistic settings [CY95].

However, determinism in the limit is not sufficient in all situations, for instance
in decision procedures for branching-time logics [EJ88], synthesis of reactive systems
[PR89], or module checking [KVW01]. In these domains we require full determiniza-
tion. We therefore extend the profile-based approach to full determinization. This ap-
proach provides a mathematically crisp Büchi determinization construction, in which
a state of the deterministic automaton is a set of states of the input nondeterministic
automaton, a preorder induced by profiles, a second preorder that encodes information
about shared ancestry of nodes, and the labeling.

The work described in this dissertation has already had significant impact. For thirty
years, the Ramsey-based approach languished. Now, the Ramsey-based approach has
become an area of active research. Abdulla et al. built on the Ramsey-based subsump-
tion relation and implement several heuristics to further improve Ramsey-based con-
tainment checking [ACC+11]. Lange recently extended the Ramsey-based approach
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to checking the emptiness of alternating parity automata [Lan11]. Perhaps most excit-
ingly, Breuers, Löding, and Olschewski just published a variant of the Ramsey-based
complementation construction with 2O(n logn) worst-case bound, matching other con-
structions [BLO12].

1.4 Outline
Chapter 2 contains the preliminaries used throughout this dissertation, including Büchi
automata, the run DAG, complementation, determinization, containment checking, and
related topics. We also introduce two existing complementation constructions: the
Ramsey-based approach of [SVW87], which has a worst-case complexity of 2O(n2), and
the rank-based approach of [KV01], with a worst-case complexity of 2O(n logn).

Chapter 3 introduces the Tabakov-Vardi random automata that underlie the empir-
ical analyses of this work. We then perform an empirical comparison of the two ap-
proaches by examining the size of complemented automata. The results demonstrate
that for direct complementation neither approach scales to large problems, but that the
Ramsey-based approach is surprisingly competitive. Chapter 4, presenting work pub-
lished in [FV10], introduces an existing on-the-fly containment checking algorithm for
the rank-based approach that makes heavy use of a subsumption heuristic [DR07]. We
then expand the Ramsey-based approach to a new on-the-fly containment checking al-
gorithms. Finally, we investigate the empirical performance of these two algorithms.

Chapter 5, presenting work published in [FKVW10], introduces another existing ap-
proach to complementation, the slice-based approach of Kähler and Wilke [KW08], and
then defines a new approach to complementation we call the profile-based approach.
Chapter 6 extends the techniques of Chapter 5 to full determinization. We first intro-
duce some definitions of relations over sets, and then defines a mathematically crisp
determinization construction based on the notion of profiles. Finally, Chapter 7 con-
cludes with a discussion on the use of Büchi automata as specifications, and presents
future work.
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Chapter 2

Preliminaries

This chapter provides the basic structures and notations used throughout this disserta-
tion. We present Büchi automata, finite state machines that operate over infinite words.
To analyze all possible runs of a Büchi automaton on a single word, we present the
notion of a run DAG. We then describe in general terms how to check the containment
of one Büchi automaton in another. Finally, we present two existing complementation
constructions, the rank-based approach and the Ramsey-based approach.

2.1 Büchi Automata
A nondeterministic Büchi automaton on infinite words (NBW) is a five-tuple
A = 〈Σ, Q,Qin, ρ, F 〉, where Σ is a finite alphabet, Q a finite set of states, Qin ⊆ Q
a set of initial states, F ⊆ Q a set of accepting states, and ρ : Q × Σ → 2Q a non-
deterministic transition relation. For convenience, we assume that no initial states are
accepting: that F ∩ Qin = ∅. We lift the function ρ to sets R of states in the usual
fashion: ρ(R, σ) =

⋃
q∈R ρ(q, σ). Further, we lift ρ to words word σ0 · · ·σi by defining

ρ(R, σ0 · · · σi) = ρ(ρ(R, σ0), σ1 · · ·σi). For completeness, let ρ(R, ε) = R.
An infinite run of an NBW A on an infinite word w = σ0σ1 · · · ∈ Σω is an infinite

sequence of states p0, p1, . . . ∈ Qω such that p0 ∈ Qin and, for every i ≥ 0, we have
pi+1 ∈ ρ(pi, σi). Correspondingly, a finite run of A from p to q on w = σ0 · · · σn−1 is a
finite sequence of states p0, . . . , pn such that p0 = p, pn = q, and for every 0 ≤ i ≤ n
we have pi+1 ∈ ρ(pi, σi). We say there is a finite run of A from p to q when there is a
w ∈ Σ∗ and a finite run from p to q on w. Finally, say there is a finite run of A to q on
w when there is a p ∈ Qin and a finite run from p to q on w. When unspecified, a run
refers to an infinite run. A finite run is accepting when pi ∈ F for some i. An infinite
run is accepting iff pi ∈ F for infinitely many i ∈ N. A word w ∈ Σω is accepted by
A if there is an accepting run of A on w. The words accepted by A form the language
of A, denoted by L(A). The complement of L(A), denoted L(A), is Σω \ L(A). To
complement an automaton A is to create an automaton A so that L(A) = L(A).

A state q ∈ Q is deterministic if for every σ ∈ Σ it holds that |ρ(q, σ)| ≤ 1. An
automaton is deterministic if every state is deterministic. To determinize an automaton
A is to create a deterministic automaton A′ so that L(A) = L(A′). For NBW, there
is not always a deterministic equivalent, and determinization results in automata with
different acceptance conditions. This is discussed in more detail in Chapter 6. However,
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Figure 2.1 : The automaton B, which has five states. B accepts words in which the
letter b occurs a finite, but non-zero, number of times.

there are intermediate levels of determinism. Say an automaton is deterministic in the
limit if every state reachable from an accepting state is deterministic. Converting an
NBW A to an equivalent deterministic in the limit automaton involves an exponential
blowup [CY95, Saf88]. One can simultaneously complement and determinize in the
limit, via co-determinization into a parity automaton [Pit06], and then converting that
parity automaton to a deterministic-in-the-limit Büchi automaton, with a cost of (n2/e)n.
Alternately, say an automaton A in unambiguous when, for every w ∈ Σω, there is at
most one accepting run of A on w.
Example 2.1. In Figure 2.1 we describe an NBW B that accepts words with a finite but
non-zero number of b’s. Intuitively, we wait in p until we guess we have seen the last
b, on which we transition to q. If we guess wrong, we can escape to r and try again,
transitioning to t on the final b.

Run DAG: Central to many of the constructions in this work is the notion of a run DAG.
Consider an NBW A and an infinite word w = σ0σ1 · · · . The runs of A on w can be
arranged in an infinite DAG (directed acyclic graph) G = 〈V,E〉, where

• V ⊆ Q×N is such that 〈q, i〉 ∈ V iff there is a finite run of A to q on w0 · · ·wi−1.

• E ⊆
⋃

i≥0
(Q×{i}) × (Q×{i+1}) is s.t. E(〈q, i〉, 〈q′, i +1〉) iff 〈q, i〉 ∈ V and

q′ ∈ ρ(q, σi).

The DAG G, called the run DAG of A on w, embodies all possible runs of A on w. We
are primarily concerned with initial paths in G: paths that start in Qin × {0}. Define
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Figure 2.2 : The first seven levels of the rejecting run DAG G for the automaton B, from
Figure 2.1, on w = babaabaaabaaaa · · · . Nodes are superscripted with the prospective
labels of Chapter 2.2.1.

a node 〈q, i〉 to be an F -node when q ∈ F , and a path in G to be accepting when it is
both initial and contains infinitely many F -nodes. An accepting path in G corresponds
to an accepting run of A on w. When G contains an accepting path, call G an accepting
run DAG, otherwise call it a rejecting run DAG. We often consider DAGs H that are
subgraphs of G. A node u is a descendant of v in H when u is reachable from v in H .
A node v is finite in H if it has only finitely many descendants in H . A node v is F -free
in H if it is not an F -node, and has no descendants in H that are F -nodes. We say a
node splits when it has at least two children, and conversely that two nodes join when
they share a common child.

Containment Checking: We say that a Büchi automaton A is contained in a Büchi
automaton B iffL(A) ⊆ L(B). To check containment, we verifying that the intersection
of A with B is empty: L(A) ∩ L(B) = ∅. Given A and B, we can compute their
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product: an automaton whose language isL(A)∩L(B), which has has a number of states
proportional to the product of the number states of the original automaton [Cho74].
Further, we know that the language of an automaton is non-empty iff there are states
q ∈ Qin, r ∈ F such that there is a path from q to r and a path from r to itself. The
initial path is called the prefix, and the combination of the prefix and cycle is called
a lasso [Var07b]. Checking for a lasso in an automaton can be done in linear time
[CVWY92], although if a symbolic or semi-symbolic representation of states is used,
a quadratic algorithm is often preferred [EL86, DR07]. Thus the most computationally
demanding step is constructing the complement of B. In the formal verification field,
a paucity of real-world containment problems has limited empirical work. Existing
empirical work has focused on the simplest form of containment testing, universality
testing, where A is the universal automaton [DR09, TV07]. In universality testing, we
answer if Σω ⊆ L(B) by checking that L(B) = ∅.

In practice, we do not want to explicitly compute the complement of B, none the less
compute the product of A and the complement of B. These automata can be very large,
and it may not be necessary to search the entire automaton to find a counterexample.
Instead, we can construct the automaton on-the-fly and search only a subset of states.
An on the fly algorithm maintains one or more sets of reachable states, and performs
tests on these sets to either search for a lasso or rule out the possibility of a lasso. Often,
these algorithm employ heuristics. One of the most powerful heuristics for algorithms
searching Büchi automata has been the use of a subsumption relation. A subsumption
relation ≺ relates certain states in the automaton being searched, so that if a state q
subsumes a state r, written q ≺ r, then r can be discarded from a set that contains
q. Intuitively, if r is on a lasso, then q must also be on a lasso, and there is no need to
consider r. Thus a set needs to contain only the minimal elements under the subsumption
relation.

2.2 Complementation Constructions
We present two complementation constructions central to this dissertation. The first
is the rank-based construction from Kupferman and Vardi, proposed in 2001. This
construction is based on mapping the nodes of the run DAG to ranks, where the rank
of a node essentially indicates the progress made towards a suffix of the run with no
accepting states. Further, all the runs of B on w are rejecting iff there is a certain kind
of ranking, called a bounded odd ranking, of the DAG. The second is the Ramsey-based
construction from Sistla, Vardi, and Wolper, proposed in 1987. This construction is
based on encoding the connectivity of the automaton in a set of arc-labeled graphs over
states. Each graph describes a set of finite words that are processed by the automaton
in the same way, and so partitions the infinite set of finite words into a finite set of
equivalence classes.
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2.2.1 Rank-Based Complementation

If an NBW B does not accept a word w, then every run of B on w must eventually
cease visiting accepting states. The notion of rankings, foreshadowed in [Kla90] and
introduced in [KV01], uses natural numbers to track the progress of each run in the DAG

towards this point. A ranking for a DAG G = 〈V,E〉 is a mapping from V to N, in which
no F -node is given an odd rank, and in which the ranks along all paths do not increase.
Formally, a ranking is a function r : V → N such that if u ∈ V is an F -node then r(u)
is even; and for every u, v ∈ V , if (u, v) ∈ E then r(u) ≥ r(v). Since each path starts
at a finite rank and ranks cannot increase, every path eventually becomes trapped in a
rank. A ranking is called an odd ranking if every path becomes trapped in an odd rank.
Since F -nodes cannot have odd ranks, if there exists an odd ranking r, then every path
in G must stop visiting accepting nodes when it becomes trapped in its final, odd, rank,
and G must be a rejecting DAG.

Lemma 2.2. [KV01] If a run DAG G has an odd ranking, then G is rejecting.

A ranking is bounded by l when its range is {0, ..., l}, and an NBW B is of rank l
when for every w 6∈ L(B), the rejecting DAG G has an odd ranking bounded by l. If we
can prove that an NBW B is of rank l, we can use the notion of odd rankings to construct
a complementary automaton. This complementary NBW, denoted CR

l (B), tracks the
levels of the run DAG and attempts to guess an odd ranking bounded by l. An l-bounded
level ranking for an NBW B is a function f : QB → {0, . . . , l,⊥}, such that if q ∈ FB

then f(q) is even or⊥. Let Rl be the set of all l-bounded level rankings. The state space
of CR

l (B) is based on the set of l-bounded level rankings for B. To define transitions of
CR
l (B), we need the following notion: for σ ∈ Σ and f, f ′ ∈ Rl, say that f ′ follows f

under σ when for every q ∈ QB and q′ ∈ ρB(q, σ), if f(q) 6= ⊥ then f ′(q′) 6= ⊥ and
f ′(q′) ≤ f(q): i.e. no transition between f and f ′ on σ increases in rank. Finally, to
ensure that the guessed ranking is an odd ranking, we employ the cut-point construction
of Miyano and Hayashi, which maintains an obligation set of nodes along paths obliged
to visit an odd rank [MH84]. For a level ranking f , let even(f) = {q | f(q) is even}
and odd(f) = {q | f(q) is odd}.

Definition 2.3. For an NBW B = 〈Σ, QB, Q
in
B , ρB, FB〉 and l ∈ N, define CR

l (B) to be
the NBW 〈Σ,Rl × 2QB , 〈f in, ∅〉, ρR,Rl × {∅}〉, where:
• f in(q) = l for each q ∈ Qin

B , ⊥ otherwise.

• ρR(〈f,O〉, σ) =

{
{〈f ′, ρB(O, σ)\odd(f ′)〉 | f ′ follows f under σ} if O 6= ∅,
{〈f ′, even(f ′)〉 | f ′ follows f under σ} if O = ∅.

Lemma 2.4. [KV01] For every l ∈ N , it holds that L(CR
l (B)) ⊆ L(B).

Lemma 2.4 states that for every l ∈ N, the NBW CR
l (B) accepts only words rejected

by B — exactly all words for which there exists an odd ranking with maximal rank l.
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In addition, [KV01] prove that for every rejecting run DAG there exists a bounded odd
ranking. Below we sketch the derivation of this ranking. Given a rejecting run DAG G,
we inductively define a sequence of subgraphs by eliminating nodes that cannot be part
of accepting runs. At odd steps we remove finite nodes, while in even steps we remove
nodes that are F -free. Formally, define a sequence of subgraphs as follows:

• G0 = G.
• G2i+1 = G2i \ {v | v is finite in G2i}.
• G2i+2 = G2i+1 \ {v | v is F -free in G2i+1}.

It is shown in [GKSV03, KV01] that only m = 2|QB \FB| steps are necessary to
remove all nodes from a rejecting run DAG: Gm is empty. Nodes can be ranked by
the last graph in which they appear: for every node u ∈ G, the prospective rank of u
is the index i such that u ∈ Gi but u 6∈ Gi+1. The prospective ranking of G assigns
every node its prospective rank. Paths through G cannot increase in prospective rank,
and no F -node can be given an odd rank: thus the prospective ranking abides by the
requirements for rankings. We call these rankings prospective because the rank of a
node depends solely on its descendants. By [KV01], if G is a rejecting run DAG, then
the prospective ranking of G is an odd ranking bounded by m. By the above, we thus
have the following.

Theorem 2.5. [KV01] For every NBW B, it holds that L(CR
m(B)) = L(B).

Example 2.6. In Figure 2.2, nodes for states s and t are finite in G0. With these nodes
removed, r-nodes are F -free in G1. Without r-nodes, q-nodes are finite in G2. Finally,
p-nodes are F -free in G3.

A number of improvements have been proposed since the initial introduction of
the rank-based construction. The most notable improvements are the introduction of
tight rankings [FKV06], presented below, and Schewe’s improved cut-point construc-
tion [Sch09a]. These improvements tightened the (6n)n upper bound of [KV01] to
(0.76n)n. Together with recent work on a tighter lower bound [Yan06], the gap between
the upper and lower bound is now a quadratic term. Karmarkar and Chakraborty have
derived both theoretical and practical benefits from exploiting properties of this prospec-
tive ranking: they demonstrated an unambiguous complementary automaton that, for
certain classes of problems, is exponentially smaller than CR

m(B) [KC09].

Tight Rankings: For an odd ranking r and l ∈ N, let max rank(r, l) be the maximum
rank that r assigns a vertex on level l of the run DAG. We say that r is tight1 if there exists
an i ∈ N such that, for every level l ≥ i, all odd ranks below max rank(r, l) appear on
level l. It is shown in [FKV06] that the retrospective ranking is tight. This observation

1This definition of tightness for an odd ranking is weaker that of [FKV06], but does not affect the
resulting bounds.
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suggests two improvements toCR
m(B). First, we can postpone, in an unbounded manner,

the level in which it starts to guess the level ranking. Until this point, CR
m(B) may use

sets of states to deterministically track only the levels of the run DAG, with no attempt
to guess the ranks. Second, after this point, CR

m(B) can restrict attention to tight level
rankings – ones in which all the odd ranks below the maximal rank appear. Formally,
say a level ranking f with a maximum rank mr = max{f(q) | q ∈ Q, f(q) 6= ⊥} is
tight when, for every odd i ≤ mr, there exists a q ∈ Q such that f(q) = i. Let Rm

T

be the subset of Rm that contains only tight level rankings. The size of Rm
T is at most

(0.76n)n [FKV06]. Including the cost of the cut-point construction, this reduces the
state space of CR

m(B) to (0.96n)n.

2.2.2 Ramsey-Based Complementation

When Büchi introduced these automata in 1962, he described a complementation con-
struction involving a Ramsey-based combinatorial argument [Büc62]. We describe an
optimized implementation presented in 1987 [SVW87]. To construct the complement
of B = 〈Σ, QB, Q

in
B , ρB, FB〉 we define a set Q̃B whose elements capture the essential

behavior of B. Each element corresponds to an answer to the following question:

Given a finite nonempty word w, for every two states q, r ∈ QB:

(1) Is there a finite run of B from q to r over w?
(2) If so, is some such finite run accepting?

Define Q′ = QB × {0, 1} × QB, and Q̃B to be the subset of 2Q
′ whose elements,

for every q, r ∈ QB, do not contain both 〈q, 0, r〉 and 〈q, 1, r〉. Each element of Q̃B is
a {0, 1}-arc-labeled graph on QB. An arc represents a finite run of B, and the label is
1 if the finite run is accepting. Note that there are 3n

2 such graphs. With each graph
g̃ ∈ Q̃B we associate a language L(g̃), the set of words for which the answer to the
posed question is the graph encoded by g̃.

Definition 2.7. Let g̃ ∈ Q̃B and w ∈ Σ+. Then w ∈ L(g̃) iff, for all pairs of states
q, r ∈ QB:

(1) 〈q, a, r〉 ∈ g̃, a ∈ {0, 1}, iff there is a finite run of B from q to r over w.
(2) 〈q, 1, r〉 ∈ g̃ iff there is an accepting finite run of B from q to r over w.

Example 2.8. Three graphs from Q̃B are shown in Figure 2.1. All graphs have a non-
empty language. The word b is in the language of the first graph, the word a is in the
language of the second graph, and the word ba is in the language of the third graph.

Lemma 2.9. [Büc62, SVW87]

(1) {L(g̃) | g̃ ∈ Q̃B} is a partition of Σ+

(2) If u ∈ L(g̃), v ∈ L(h̃), and uv ∈ L(k̃), then L(g̃) · L(h̃) ⊆ L(k̃)
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Figure 2.3 : Three graphs from Q̃B, where B is from Figure 2.1. All graphs have a
non-empty language. The word b is in the language of the first graph, the word a is in
the language of the second graph, and the word ba is in the language of the third graph.
The arcs of q̃ba indicate that there is an accepting finite run from q to s on ba, and a finite
run from r to s on ba, but no accepting finite run from r to s on ba.

The languages L(g̃), for the graphs g̃ ∈ Q̃B, form a partition of Σ+. With this
partition of Σ+ we can devise a finite family of ω-languages that cover Σω. For every
g̃, h̃ ∈ Q̃B, let Y (g̃, h̃) be the ω-language L(g̃) ·L(h̃)ω. We can restrict our attention to
a subset of these languages through a notion of properness.

Definition 2.10. A pair of graphs 〈g̃, h̃〉 is proper if Y (g̃, h̃) is non-empty, L(g̃) ·L(h̃) ⊆
L(g̃), and L(h̃) · L(h̃) ⊆ L(h̃).

We say that Y (g̃, h̃) is proper when 〈g̃, h̃〉 is proper. There are a finite, if exponential,
number of such languages. A Ramsey-based argument shows that every infinite string
belongs to a language of this form, and that L(B) can be expressed as the union of
languages of this form.

Lemma 2.11. [Büc62, SVW87] Σω =
⋃
{Y (g̃, h̃) | Y (g̃, h̃) is proper}

Proof. The proof is based on Ramsey’s Theorem. Consider an infinite wordw = σ0σ1...
By Lemma 2.9, every prefix of the word w is in the language of a unique graph g̃i. Let
k = 3n

2 be the number of graphs. Thus w defines a partition of N into k sets D1, ..., Dk

such that i ∈ Dl iff σ0...σi−1 ∈ L(g̃l). Clearly there is some m such that Dm is infinite.
Similarly, by Lemma 2.9 we can use the word w to define a partition of all pairs of

elements (i, j) from Dm, where i < j. This partition consists of k sets C1, ...Ck, such
that 〈i, j〉 ∈ Cl iff σi...σj−1 ∈ L(g̃l). Ramsey’s Theorem tells us that, given such a
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partition, there exists an infinite subset {i1, i2, ...} of Dm and a Cn such that for all pairs
of distinct elements ij, ik, it holds that 〈ij, ik〉 ∈ Cn.

This implies that the word w can be partitioned into

w0 = σ0...σi1−1

w1 = σi1 ...σi2−1

w2 = σi2 ...σi3−1

. . .

where w0 ∈ L(g̃m) and wi ∈ L(g̃n) for i > 0. By construction, σ0...σij−1 ∈ L(g̃m) for
every ij , and thus we have that w0w1 ∈ L(g̃m). In addition, as σij ...σik−1 ∈ L(g̃n) for
every pair ij, ik, we have that w1w2 ∈ L(g̃n). By Lemma 2.9, it follows that L(g̃m) ·
L(g̃n) ⊆ L(g̃m), and that L(g̃n) · L(g̃n) ⊆ L(g̃n), and thus Y (g̃m, g̃n) is proper.

Furthermore, each proper language is entirely contained or entirely disjoint from
L(B). This provides a way to construct the complement of L(B): take the union every
proper language that is disjoint from L(B).

Lemma 2.12. [Büc62, SVW87]
(1) For g̃, h̃ ∈ Q̃B, either Y (g̃, h̃) ∩ L(B) = ∅ or Y (g̃, h̃) ⊆ L(B)

(2) For a proper Y (g̃, h̃), it holds that Y (g̃, h̃) ⊆ L(B) iff there exists q ∈ Qin
B , r ∈

QB, a ∈ {0, 1} where 〈q, a, r〉 ∈ g̃ and 〈r, 1, r〉 ∈ h̃.
(3) L(B) =

⋃
{Y (g̃, h̃) | Y (g̃, h̃) is proper and Y (g̃, h̃) ∩ L(B) = ∅}

To obtain the complementary Büchi automaton B, Sistla et al. construct a family of
deterministic automata on finite words that accept, for each g̃ ∈ Q̃B, L(g̃). From these
automata and Lemma 2.11, we can construct the complementary automaton B. The
state space of these automata is Q̃B ∪ {p0}, the set of graphs with the addition of a start
state. Aq is then 〈Σ, Q̃B ∪ {p0}, ρ̃, p0, {q̃}〉 where the deterministic transition function
ρ̃ : Q̃B ∪ {p0} × Σ→ Q̃B is:

ρ̃(p0, a) = {〈q, 0, r〉 | q ∈ QB, r ∈ QB \ FB, r ∈ ρB(q, a)}
∪ {〈q, 1, r〉 | q ∈ QB, r ∈ FB, r ∈ ρB(q, a)}

ρ̃(q̃, a) = {〈q, 0, s〉 | 〈q, 0, r〉 ∈ q̃, s ∈ ρB(r, a) \ FB}
∪ {〈q, 1, s〉 | 〈q, 0, r〉 ∈ q̃, s ∈ ρB(r, a) ∩ FB}
∪ {〈q, 1, s〉 | 〈q, 1, r〉 ∈ q̃, s ∈ ρB(r, a)}

Lemma 2.13. [SVW87] L(Aq) = L(q̃)

Knowing how to construct an automaton for each L(q̃), one can create the comple-
mentary automaton CRamsey(B). For each proper Yqr, create from Aq and Ar a Büchi
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automaton Aqr that accepts Yqr. Simply find all Yqr disjoint from L(A) and construct
the union automaton of the corresponding Aqr.

We pause to note that we can avoid an explicit lasso search over the complementary
automaton by employing the rich structure of the graphs in Q̃B. For every two graphs
g̃, h̃ ∈ Q̃B, determine if Y (g̃, h̃) is proper. If Y (g̃, h̃) is proper, test if it is contained in
L(B). In order to test if a proper language Y (g̃, h̃) is contained in L(B), search for a
q ∈ Qin

B , r ∈ QB, a ∈ {0, 1} such that the arc 〈q, a, r〉 ∈ g̃ and the arc 〈r, 1, r〉 ∈ h̃. We
call this test of a pair of graphs the two-arc test. B is universal if every proper Y (g̃, h̃)
is so contained.

Lemma 2.14. [SVW87] A Büchi automaton B is universal iff every proper pair 〈g̃, h̃〉
of graphs from Q̃B passes the two-arc test.

Lemma 2.14 yields a PSPACE algorithm to determine universality [SVW87]. Sim-
ply check each g̃, h̃ ∈ Q̃B. If Y (g̃, h̃) is both proper and not contained in L(B), then the
pair (g̃, h̃) provide a counterexample to the universality of B. If no such pair exists, the
automaton must be universal.
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Chapter 3

Complementation Experiments

This chapter performs some experiments on the rank and Ramsey-based complemen-
tation constructions. Because Büchi specifications are not used in practice, there is a
paucity of real-world problems on which to evaluate approaches. When specifications
are given as logical formulas, Büchi automata are used as an intermediate step. How-
ever, because formulas have a constant-size negation, automata derived from formulas
often have a linear-sized complement. This makes them a poor suite on which to test
complementation problems. Therefore we employ a random model of automata that has
seen significant use in the literature. We first present the model of random automata.

3.1 Preliminaries: Tabakov-Vardi Random Automata
Random automata were first proposed by Tabakov and Vardi as a method for testing
tools over automata on finite words, and later for tools over automata on infinite words
[TV05, WDHR06, TV07, DR07]. This model fixes the input alphabet as Σ = {0, 1}.
Each automaton B = 〈Σ, Q,Qin, ρ, F 〉 is constructed according to three parameters: a
size n, the transition density r, and the acceptance density f . The set of states Q is the
set {0...n− 1}. Only the first state is initial, and thus Qin = {0}. For each letter σ ∈ Σ,
we choose dn ∗ re pairs of states (s, s′) ∈ Q2 uniformly at random and add the transi-
tion 〈s, σ, s′〉 are included in ρ. Thus the transition density reflects the expected number
of transitions from each state on each letter, and is related to Karp’s model of random
directed graphs [Kar90]. Karp shows that when the transition density is greater than
1, it is very likely that a graph contains a strongly connected component: a necessary
condition for a Büchi automaton to accept a word. We impose one exception to avoid
trivial cases of non-universality: the initial node must have at least one outgoing transi-
tion for each letter of the alphabet. The set of accepting states is likewise constructed as
a linear function of the number of states: F comprises dn ∗ fe states chosen uniformly
at random.

When devising a random model, we want to know that the parameters can generate
a variety of interesting problems. Figure 3.1, taken from [TV07], demonstrates that the
chance of a random automaton of size 6 being universal. The behavior indicates that
the parameters do generate an interesting space of problems, and that universality is

This chapter contains unpublished work, building on that published in [TFVT11].
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highly correlated with the parameters. Automata with a high transition density tend to
be universal, while automata with low transition density tend to be non-universal. With
a transition density of 3, nearly all automata are universal. Correspondingly, with a
transition density of 1, nearly all automata are non-universal. Acceptance density has a
smaller, but still noticeable, affect on universality [TV07].
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Figure 3.1 : Probability that a random automaton of size 6 is universal, varying by
transition density and acceptance density.

Experiments using the Tabakov-Vardi model can be broadly classes into two cate-
gories. Terrain experiments hold the size of the automata constant, and vary the accep-
tance and transition densities. These produce results like Figure 3.1, that demonstrate
behavior over a variety of configurations. Terrain experiments are good for discover-
ing which configurations of problems are hard for a given approach. They provide an
empirical description of how transition and acceptance density might affect the perfor-
mance of an approach. However, terrain experiments are not a good way to judge how
well an approach performs, as they give no indication of the scalability of the approach.
Thus when comparing the suitability of two approaches, it is inappropriate to use terrain
experiments.

To test scalability, we use scaling experiments. In a scaling experiment, we pick an
interesting configuration of transition and acceptance densities, and only use automata
with that configuration. We then examine how an approach performs as we increase the
size of the automata. By plotting the results, we can estimate the real-world scalability
of the approach. In many cases, algorithms with exponential worst cast demonstrate
less-than-exponential real world performance. Thus scaling experiments allow us to
directly compare two approaches on a single configuration of random automata.
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3.2 Empirical Comparisons: Size of Complemented Automata
We compare the size of complemented automata using both the rank and Ramsey-based
complementation constructions. Complemented automata are derived from the GOAL
tool. The rank-based construction employs several optimizations, including the use of
the tight level rankings described in Chapter 2.2.1 and Schewe’s turn-wise cut-point con-
struction. Further, we note that the number of accepting states serves to both limit the
maximum rank, and to reduce the number of legal level rankings. Thus we heuristically
attempt to increase the number of accepting states. If all paths from a state must lead
to an accepting state, then that state can be marked as accepting. There are no effective
heuristics for the Ramsey-based approach: in fact, maximizing the size of the accept-
ing set ends up generating larger automata using the Ramsey-based construction. The
results are not minimized, but the GOAL tool only computes the reachable states in a
construction [TFVT11].

Data points are derived from 100 or more random automata with the given n, r, and
f . All experiments were performed on the Shared University Grid at Rice (SUG@R)1, a
cluster of Sunfire x4150 nodes, each with two 2.83GHz Intel Xeon quad-core processors
and 16GB of RAM. Each tool is given a dedicated node.

The first experiments were terrain experiments, on automata of size 6. As stated
above, randomly generated automata of a given size can be configured by transition and
acceptance density. To map out the behavior of the two approaches over the terrain of
configurations, we hold size constant at n = 6, and examined a variety of configurations.
We generate data points for each combination of transition density r ∈ {1, 1.5, 2, 2.5, 3}
and acceptance density f ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. We attempted to run the tool to
completion on all problems. When this was not possible, we discarded the case. Out of
2500 cases, only eight had to be discarded.

Figure 3.2(a) displays the median size for rank-based complementation. As ex-
pected, the rank-based complementation is very sensitive to the number of accepting
states. This illustrates the utility of maximizing the accepting set of the input automaton.
However, it remains to be seen if this heuristic is equally effective on more structured,
human-generated, problems. Figure 3.2(b) displays the median size for Ramsey-based
complementation. Ramsey-based complementation is very sensitive to the transition
density. A higher transition density results in denser graphs, and seems to reduce the
number of different graphs required to describe all words.

Simply glancing at the terrain graphs, it appears that Ramsey-based complementa-
tion is competitive with rank-based complementation for automata of size 6. Despite
the massive gap in worst-case complexity, when the transition density is high and the
acceptance density is low the Ramsey-based approach produces smaller automata for
this input size. In other cases, the rank-based approach produces smaller automata. We

1http://rcsg.rice.edu/sugar/, funded by NSF under Grant EIA-0216467, and a part-
nership between Rice University, Sun Microsystems, and Sigma Solutions, Inc.

http://rcsg.rice.edu/sugar/
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Figure 3.2 : Differences in behavior between Rank and Ramsey-based complementa-
tion constructions over a terrain of random automata, measured as the median number
of states of the resulting automata, when size n = 6.

also see that neither construction approaches the worst case behavior. This provides the
first hint that the two approaches are not directly comparable, a fact that we will explore
in more depth in the next chapter. We did observe a higher variance in the Ramsey-
based approach, and the worst-case for Ramsey can be very bad indeed. The largest
rank-based complementary automaton had less than 1500 states, while there were 117
Ramsey-based complementary automata with over 10,000 states.

We hasten to note that these results should not be used to indicate that one approach
scales better than the other. We can only conclude that the traits that make a problem
hard in the Ramsey-based approach are different from those traits that make a prob-
lem hard in the rank-based approach. To compare the scalability of the approaches,
we would have to test the complementation constructions on automata of increasing
size and compare the number of states in each construction as a function of the num-
ber of states in the input. However, such a scaling experiment is not feasible here.
Smaller automata are already uninteresting, and in experiments on automata of size 10
the Ramsey-based approach was so slow to complement it had to be removed from the
study entirely [TFVT11]. Thus we cannot generate enough data points to make a scaling
experiment worthwhile.

The real conclusion of these experiments is then that, when checking if a Büchi au-
tomaton A is contained in a Büchi automaton B, it is not feasible to explicitly construct
the complement of B. With input automata of six states, are are already seeing results
with hundreds to thousands of states. If we wish to scale to input automata with fifty or
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a hundred states, the cost of direct complementation is prohibitive. To develop a system
that allows Büchi specifications, we must instead develop algorithms that explore the
complemented automata on the fly, and that avoid searching as much of the state space
as possible.
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Chapter 4

Rank and Ramsey-Based Containment

As we saw in Chapter 3.2, no approach to complementation scaled well: we could
handle around ten states. By avoiding direct complementation, we can scale orders of
magnitude larger. To do so, we develop algorithms that explore complemented automata
on-the-fly, often using heuristics to trim the search space. In this chapter, we present a
rank-based algorithm from Doyen and Raskin, which uses the Emerson-Lei fixpoint and
a subsumption heuristic. We then develop a new Ramsey-based algorithm and subsump-
tion heuristic.

4.1 Preliminaries: Rank-Based Containment Checking
The simplest form of containment checking is universality. An algorithm seeking to re-
fute the universality of B can look for a lasso in the state-space of the rank-based com-
plement of B. A classical approach is Emerson-Lei backward-traversal nested fixpoint.
Given a set of states X ⊂ QB, we define the predecessor operation as PreB(X) =
{y | x ∈ X, a ∈ Σ, x ∈ ρB(y, a)}. The Emerson-Lei universality testing fixpoint is
νY.µX.(PreB(X)∪ (PreB(Y )∩FB)) [EL86]. This nested fixpoint employs the obser-
vation that a state in a lasso can reach an arbitrary number of accepting states. The outer
fixpoint iteratively computes sets Y0, Y1, ... such that Yi contains all states with a path to
i accepting states. Universality is checked by testing if Y∞, the set of all states with a
path to arbitrarily many accepting states, intersects Qin

B . The running time of this algo-
rithm is O(n2), based on the nested fix points. While theoretically quicker algorithms
exist, the Emerson-Lei approach is popular because it requires few operations: intersec-
tion, union, and the predecessor operation. The strongest algorithm implementing this
approach, from Doyen and Raskin, takes advantage of the presence of a subsumption
relation in the rank-based construction.

Definition 4.1. For an NBW B and its rank-based complement CR
m(B), define the rela-

tion ≺ ⊆ (Rm × 2QB)× (Rm × 2QB) so that 〈f ′, o′〉 � 〈f, o〉 iff:
(1) For every q ∈ QB, if f(q) 6= ⊥, then f ′(q) 6= ⊥ and f ′(q′) ≤ f(q)
(2) o′ ⊆ o
(3) o = ∅ iff o′ = ∅

This chapter contains work published in [FV10].
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When computing sets in the Emerson-Lei approach, it is sufficient to store only
the minimal elements under this relation. Let Min be an function that removes all
non-minimal elements from a set. Furthermore, the predecessor operation for a single
state and letter results in at most two incomparable elements. For details, see [DR07].
With this predecessor operation Pre in hand, we can define a universality testing algo-
rithm. This algorithm has scaled to automata an order of magnitude larger than other
approaches [DR07].

Algorithm 4.1: RankUniversality(B)
〈Σ, QR, Q

in
R , ρR, FR〉 ⇐ (CR

m(B))
Y⇐ FR
X⇐ ∅
repeat

if Y ∩Qin
R = ∅ then return Universal

X⇐ Min(Y ∩ FR)
repeat

Preds⇐
⋃
〈f,o〉∈X

⋃
a∈Σ Pre(〈f, o〉, a)

X⇐ Min(X ∪ Preds)

until X reaches fixpoint
Y⇐ X

until Y reaches fixpoint
if Y ∩Qin

R = ∅ then return Universal
return Not Universal

Algorithm 4.1 can terminate early on some universal cases, when we have already
computed that no state can reach k accepting states. To lift this algorithm to check the
containment of A in B, we operate over pairs 〈q, 〈f, o〉〉 where q ∈ QA and 〈f, o〉 is
a state in CR

m(B). These pairs correspond to states in the product of A and CR
m(B).

Lifting subsumption to these pairs is simple: say that 〈q′, 〈f ′, o′〉〉 � 〈q, 〈f, o〉〉 when
q′ = q and 〈f ′, o′〉 � 〈f, o〉. The predecessor operation is similar. For a pair 〈q, 〈f, o〉〉, let
Pre(〈q, 〈f, o〉〉, a) = {r | q ∈ ρA(r, a)} × Pre(〈f, o〉, a). Finally, we define two sets of
pairs corresponding to accepting states of A andCR

m(B). Let FA = {〈q, 〈f, o〉〉 | q ∈ FA},
and FR = {〈q, 〈f, ∅〉〉}. We can now define Algorithm 4.2, which checks containment
by using the rank-based construction. This algorithm has three fixpoints, but two are run
in parallel, and thus the running time is still quadratic in the number of states of A and
the complement of B. Like Algorithm 4.1, Algorithm 4.2 can terminate early in cases
where containment can already be shown.

Theorem 4.2. For every two Büchi automata A and B, it holds that L(A) ⊆ L(B) iff
RankContainment(A,B) returns Contained.
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Algorithm 4.2: RankContainment(A,B)
〈Σ, QR, Q

in
R , ρR, FR〉 ⇐ (CR

m(B))
Y⇐ QA ×QR

X1⇐ ∅
X2⇐ ∅
repeat

if Y ∩ (Qin
A ×Qin

R ) = ∅ then return Contained
X1 ⇐ Min(Y ∩ FA)
repeat

Preds⇐
⋃

q∈X1

⋃
a∈Σ Pre(q, a)

X1 ⇐ Min(X1 ∪ Preds)

until X1 reaches fixpoint
X2 ⇐ Min(Y ∩ FR)
repeat

Preds⇐
⋃

q∈X2

⋃
a∈Σ Pre(q, a)

X2 ⇐ Min(X2 ∪ Preds)

until X2 reaches fixpoint
Y⇐ X1 ∩ X2

until Y reaches fixpoint
if Y ∩ (Qin

A ×Qin
R ) = ∅ then return Contained

return Not Contained

4.2 Ramsey-Based Algorithms
To test the containment of a Büchi automaton A in a Büchi automaton B, we could
construct the Ramsey-based complement of B, compute the intersection automaton of A
and B, and search this intersection automaton for a lasso. With universality, however, we
avoided directly constructing B by exploiting the structure of states in the Ramsey-based
construction (see Lemma 2.14). We demonstrate a similar test for containment. We then
introduce an on-the-fly approach to containment checking, that avoids searching graphs
with empty languages. Finally, we define a subsumption relation, similar that that used
for rank-based containment checking.

4.2.1 Ramsey-Based Containment Checking

Consider two automata, A = 〈Σ, QA, Q
in
A , ρA, FA〉 and B = 〈Σ, QB, Q

in
B , ρB, FB〉.

When testing the universality of B, any word not in L(B) is a sufficient counterex-
ample. To test L(A) ⊆ L(B) we must restrict our search to the subset of Σω accepted
by A. In Section 2.2.2, we defined a set Q̃B of 0-1 arc-labeled graphs, whose elements
provide a family of ω-languages that covers Σω (see Lemma 2.11). We now define a set,
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Q̂A,B, which provides a family of ω-languages covering L(A).
We first define Q̄A = QA × QA to capture the connectivity in QA. An element

ḡ = 〈q, r〉 ∈ Q̄A is a single arc asserting the existence of a finite run of A from q to r.
With each arc we associate a language, L(ḡ).

Definition 4.3. Given w ∈ Σ+, say that w ∈ L(〈q, r〉) iff there is a finite run of A from
q to r over w.

Define Q̂A,B as Q̄A × Q̃B. The elements of Q̂A,B, called supergraphs, are pairs
consisting of an arc from Q̄A and a graph from Q̃B. Each element simultaneously cap-
tures all finite runs of B and a single finite run of A. The language L(〈ḡ, g̃〉) is then
L(ḡ)∩L(g̃). For convenience, we implicitly take ĝ = 〈ḡ, g̃〉, and say 〈q, a, r〉 ∈ ĝ when
〈q, a, r〉 ∈ g̃. Since the language of each graph consists of finite words, we employ
the concatenation of languages to characterize infinite runs. To do so, we first prove
Lemma 4.4, which simplifies the concatenation of entire languages by demonstrating an
equivalence to the concatenation of arbitrary words from these languages.

Lemma 4.4. If u ∈ L(ĝ), v ∈ L(ĥ), uv ∈ L(k̂), and L(ḡ) · L(h̄) ⊆ L(k̄), then
L(ĝ) · L(ĥ) ⊆ L(k̂)

Proof. Assume we have such an u and v. We demonstrate every word w ∈ L(ĝ) · L(ĥ)

must be in L(k̂). If we expand the premise, we obtain w ∈ (L(ḡ) ∩ L(g̃)) · (L(h̄) ∩
L(h̃)). This implies w must be in L(ḡ) · L(h̄) and in L(g̃) · L(h̃). Next, we know that
u ∈ L(g̃), v ∈ L(h̃), and uv ∈ L(k̃). Thus by Lemma 2.9, L(g̃) · L(h̃) ⊆ L(k̃),
and w ∈ L(k̃). Along with the premise L(ḡ) · L(h̄) ⊆ L(k̄), we can now conclude
w ∈ L(k̄) ∩ L(k̃), which is L(k̂).

The languages L(ĝ), ĝ ∈ Q̂A,B, cover all finite subwords of L(A). A subword of
L(A) has at least one finite run between two states in QA, and thus is in the language of
an arc in Q̄A. Furthermore, by Lemma 2.9 this word is described by some graph, and
the pair of the arc and the graph makes a supergraph. Unlike the case of graphs and Σ+,
the languages of supergraphs do not form a partition of L(A): a word might have finite
runs between multiple pairs of states in A, and so be described by more than one arc in
Q̄A. With them we construct the finite family of ω-languages that cover L(A). Given
ĝ, ĥ ∈ Q̂A,B, let Z(ĝ, ĥ) be the ω-language L(ĝ) · L(ĥ)ω. In analogy to Section 2.2.2,
we define a notion of properness for supergraphs.

Definition 4.5. Say a pair of supergraphs 〈ĝ, ĥ〉 is proper when (1)Z(ĝ, ĥ) is non-empty;
(2) ḡ = 〈q, r〉 and h̄ = 〈r, r〉 where q ∈ Qin

A and r ∈ FA; (3) L(ĝ) · L(ĥ) ⊆ L(ĝ) and
L(ĥ) · L(ĥ) ⊆ L(ĥ).

Call a language Z(ĝ, ĥ) proper when 〈ĝ, ĥ〉 is proper. We note that Z(ĝ, ĥ) is non-
empty if L(ĝ) and L(ĥ) are non-empty, and that, by the second condition, every proper
Z(ĝ, ĥ) is contained in L(A).
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Lemma 4.6. L(A) =
⋃
{Z(ĝ, ĥ) |, ĝ, ĥ ∈ Q̂A,B, Z(ĝ, ĥ) is proper}.

Proof. We extend the Ramsey argument of Lemma 2.11 to supergraphs.
Consider an infinite word w = σ0σ1... with an accepting run p = p0p1... in A. As

p is accepting, we know that p0 ∈ Qin
A and pi ∈ FA for infinitely many i. Since FA is

finite, at least one accepting state q must appear infinitely often. Let D ⊆ N be the set
of indices i such that pi = q.

We pause to observe that, by the definition of the languages of arcs, for every i ∈ D
the word σ0...σi−1 is in L(〈p0, q〉), and for every i, j ∈ D, i < j, the word σi...σj−1 ∈
L(〈q, q〉). Every language Z(ĝ, ĥ) where ḡ = 〈p0, q〉 and ḡ = 〈q, q〉 also satisfies the
second requirement of properness.

In addition to restricting our attention the subset of nodes where pi = q, we further
partition D into k = 3n

2 sets D1, ..., Dk based on the prefix of w until that point, where
there is a Dl associated with each possible graph g̃l. By Lemma 2.9, every finite word
is in the language of some graph g̃. Say that i ∈ Dl iff σ0...σi−1 ∈ L(g̃l). As k is finite,
for some m the Dm must be infinite. Let g̃ = g̃m.

Similarly, by Lemma 2.9 we can use the word w to define a partition of all unordered
pairs of elements from Dm. This partition consists of k sets C1, ...Ck, such that (i, j) ∈
Cl iff σi...σj−1 ∈ L(g̃l). Without loss of generality, for (i, j) ∈ Cl, assume i < j.
Ramsey’s Theorem tells us that, given such a partition, there exists an infinite subset
{i1, i2, ...} of Dm and a Cn such that (ij, ik) ∈ Cn for all pairs of distinct elements ij, ik.

This is precisely to say there is a graph h̃ so that, for every (ij, ik) ∈ Cn, it holds that
σij ...σik−1 ∈ L(h̃). Cn thus partitions the word w into

w0 = σ0...σi1−1, w1 = σi1 ...σi2−1, w2 = σi2 ...σi3−1, ...,

such that w0 ∈ L(g̃) and wi ∈ L(h̃) for i > 0. Let ĝ = 〈〈p0, q〉, g̃〉 and let ĥ = 〈〈q, q〉, h̃〉.
By the above partition of w, we know that w ∈ Z(ĝ, ĥ).

We now show that Z(ĝ, ĥ) is proper. First, as w ∈ Z(ĝ, ĥ), we know Z(ĝ, ĥ) is non-
empty. Second, as noted above, the second requirement is satisfied by the arcs 〈p0, q〉
and 〈q, q〉. Finally, we demonstrate the third condition holds. As σ0...σi−1 ∈ L(g̃) for
every i ∈ Cn, we have that w0w1 ∈ L(g̃). Both w0 and w0w1 are in L(〈p0, q〉) and so
w0, w0w1 ∈ L(ĝ). By the definition of the language of arcs, L(〈p0, q〉) · L(〈q, q〉) ⊆
L(〈p0, q〉). Thus by Lemma 4.4, we can conclude that L(ĝ) ·L(ĥ) ⊆ L(ĝ). Next observe
that as σi...σj−1 ∈ L(h̃) for every pair i, j ∈ Cn, we have that w1w2 ∈ L(h̃). As
w1, w1w2 are both in 〈q, q〉, it holds that w1, w1w2 ∈ L(ĥ). By the definition of the
language of arcs, L(〈q, q〉) · L(〈q, q〉) ⊆ L(〈q, q〉). By Lemma 4.4 we can now conclude
L(ĥ) · L(ĥ) ⊆ L(ĥ). Therefore Z(ĝ, ĥ) is a proper language containing w.

Lemma 4.7.
(1) For all Z(ĝ, ĥ), either Z(ĝ, ĥ) ∩ L(B) = ∅ or Z(ĝ, ĥ) ⊆ L(B).
(2) L(A) ⊆ L(B) iff every proper language Z(ĝ, ĥ) ⊆ L(B).
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(3) Let ĝ, ĥ be a proper pair of supergraphs such that. Z(ĝ, ĥ) ⊆ L(B) iff there exists
q ∈ Qin

B , r ∈ QB, a ∈ {0, 1} such that 〈q, a, r〉 ∈ ĝ and 〈r, 1, r〉 ∈ ĥ.

Proof. Given two supergraphs ĝ = 〈ḡ, g̃〉 and ĥ = 〈h̄, h̃〉, recall that Y (g̃, h̃) is the ω-
language L(g̃) · L(h̃)ω. Further note that L(ĝ) ⊆ L(g̃) and L(ĥ) ⊆ L(h̃), and therefore
Z(ĝ, ĥ) ⊆ Y (g̃, h̃).

(1) Consider two supergraphs ĝ, ĥ. By Lemma 2.12 either Y (g̃, h̃) ∩ L(B) = ∅ or
Y (g̃, h̃) ⊆ L(B). Since Z(ĝ, ĥ) ⊆ Y (g̃, h̃), it holds that Z(ĝ, ĥ) ∩ L(B) = ∅ or
Z(ĝ, ĥ) ⊆ L(B).

(2) Immediate from Lemma 4.6 and clause (1).
(3) By Lemma 2.12 either Y (g̃, h̃) ⊆ L(B) or Y (g̃, h̃) ∩ L(B) = ∅. By Lemma 2.14

Y (g̃, h̃) ⊆ L(B) iff a q, r and a exist such that 〈q, a, r〉 ∈ g̃ and 〈r, 1, r〉 ∈ h̃.
Since Z(ĝ, ĥ) ⊆ Y (g̃, h̃), Z(ĝ, ĥ) ⊆ L(B) iff such a q, r and a exist.

In an analogous fashion to Section 2.2.2, we can use supergraphs to test the contain-
ment of two automata, A and B. Search all pairs of supergraphs, ĝ, ĥ ∈ Q̂A,B for a pair
that is both proper and for which there does not exist a q ∈ Qin

B , r ∈ QB, a ∈ {0, 1}
such that 〈q, a, r〉 ∈ ĝ and 〈r, 1, r〉 ∈ ĥ. Such a pair is a counterexample to containment.
If no such pair exists, then L(A) ⊆ L(B).

4.2.2 Composition of Supergraphs

Employing supergraphs to test containment faces difficulty on two fronts. First, the
number of supergraphs is very large: |QA|23|QB|2 . Second, verifying properness requires
checking language nonemptiness and containment: PSPACE-hard problems. To address
these problems we construct only supergraphs with non-empty languages. Borrowing
a notion of composition from [LJBA01] allows us to use exponential space to compute
exactly the needed supergraphs. Along the way we develop a polynomial-time test for
the containment of supergraph languages. Our plan is to start with graphs corresponding
to single letters and compose them until we reach closure. The resulting subset of Q̂A,B,
written Q̂f

A,B, contains exactly the supergraphs with non-empty languages. In addition
to removing the need to check for emptiness, composition allows us to test the sole
remaining aspect of properness, language containment, in time polynomial in the size
of the supergraphs. We begin by defining the composition of simple graphs.

Definition 4.8. Given g̃ and h̃ define their composition, written g̃; h̃, as the graph

{〈q, 1, r〉 | q, r, s ∈ QB, 〈q, b, s〉 ∈ g̃, 〈s, c, r〉 ∈ h̃, b = 1 or c = 1}
∪ {〈q, 0, r〉 | q, r, s ∈ QB, 〈q, 0, s〉 ∈ g̃, 〈s, 0, r〉 ∈ h̃, and

for all t ∈ QB, b, c ∈ {0, 1} if 〈q, a, t〉 ∈ g̃ and 〈t, b, r〉 ∈ h̃ then a = b = 0}
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Figure 4.1 : The composition of a graph with itself.

Example 4.9. Figure 4.1 shows the composition of a graph with itself. These graphs do
not describe the automaton from Figure 2.1, but demonstrate new behavior. Note that
there are ways to compose an arc from p to s: by following either 〈p, 0, r〉 and 〈r, 0, s〉,
or by following 〈p, 1, q〉 and 〈q, 0, s〉. Since the second pair of arcs contains a 1-labeled
arc, the arc from p to s in the composition is 1-labeled. However, note there is only
one pair of arcs linking q to s: 〈q, 0, r〉 and 〈r, 0, s〉. Therefore the arc from q to s in
the composition is not 0 labeled. Figure 2.3 is also illustrative, as the third graph is the
composition of the first two.

We can then define the composition of two supergraphs ĝ = 〈〈q, r〉, g̃〉 and ĥ =

〈〈r, s〉, h̃〉, written ĝ; ĥ, as the supergraph 〈〈q, s〉, g̃; h̃〉. To generate exactly the set of
supergraphs with non-empty languages, we start with supergraphs describing single let-
ters. For a containment problem L(A) ⊆ L(B), define the subset of Q̂A,B corresponding
to single letters to be Q̂1

A,B = {ĝ | ĝ ∈ Q̂A,B, a ∈ Σ, a ∈ L(ĝ)}. For completeness, we
present a constructive definition of Q̂1

A,B.

Definition 4.10.

Q̂1
A,B =

{
〈〈q, r〉, g̃〉 | a ∈ Σ, q ∈ QA, r ∈ ρA(q, a),

g̃ = {〈q′, 0, r′〉 | q′ ∈ QB \ FB, r
′ ∈ (ρB(q′, a) \ FB)} ∪

{〈q′, 1, r′〉 | q′ ∈ QB, r
′ ∈ ρB(q′, a), q′ or r′ ∈ FB)}

}
We then define Q̂f

A,B to be the closure of Q̂1
A,B under composition. Algorithm

RamseyContainment, which we prove correct below, employs composition to check
the containment of two automata. It first generates the set of initial supergraphs, and then
computes the closure of this set under composition. Along the way it tests properness by
using composition. Every time it encounters a proper pair of supergraphs, it either ver-
ifies that a satisfying pair of arcs exist, or halts with a counterexample to containment.
For convenience, we define the two-arc test for supergraphs.
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Definition 4.11. A proper pair 〈ĝ, ĥ〉 of supergraphs passes the two-arc test when there
exists a q ∈ Qin, r ∈ Q, and a ∈ {0, 1} such that 〈q, a, r〉 ∈ ĝ and 〈r, 1, r〉 ∈ ĥ.

Algorithm 4.3: RamseyContainment(A,B)
Data: Two Büchi automata, A and B.
Result: Whether L(A) is contained in L(B).
Initialize Q̂f ⇐ Q̂1

A,B

repeat
for all pairs ĝ, ĥ ∈ Q̂f where ḡ = 〈q, r〉 and h̄ = 〈r, s〉 do

Add ĝ; ĥ to Q̂f

if q ∈ Qin
A , r ∈ FA, s = r, g̃; h̃ = g̃ and h̃; h̃ = h̃ then

if 〈ĝ, ĥ〉 fails the two-arc test then
return Not Contained

until Q̂f reaches closure
return Contained

To begin proving our algorithm correct, we link composition and the concatenation
of languages, first for simple graphs and then for supergraphs.

Lemma 4.12. For every two graphs g̃ and h̃, it holds that L(g̃) · L(h̃) ⊆ L(g̃; h̃).

Proof. Consider two words w1 ∈ L(g̃), w2 ∈ L(h̃). By Definition 2.7, to prove w1w2 ∈
L(g̃; h̃) we must show that for every q, r ∈ Q: both (1) 〈q, a, r〉 ∈ g̃; h̃ iff there is a finite
run of B from q to r over w1w2, and (2) that a = 1 iff there is an accepting finite run.

If an arc 〈q, a, r〉 ∈ g̃; h̃ exists, then there is an s ∈ Q such that 〈q, b, s〉 ∈ g̃ and
〈s, c, r〉 ∈ h̃. By Definition 2.7, this implies the existence of a finite run x1s from q to s
over w1, and a finite run sx2 from s to r over w2. Thus x1sx2 is a finite run from q to r
over w1w2.

If a is 1, then either b or c must be 1. By Definition 2.7, b (resp., c) is 1 iff there is
an accepting finite run x′1s (resp., sx′2) over w1 (resp.,w2) from q to s (resp., s to r). In
this case x′1sx2 (resp., x1sx

′
2) is an accepting finite run of B from q to r over w1w2.

Symmetrically, if there is a finite run x from q to r over w1w2, then after reading w1

we are in some state s and have split x into x1sx2, so that x1s is a finite run from q to s
and sx2 a finite run from s to r. Thus by Definition 2.7 〈q, b, s〉 ∈ g̃, 〈s, c, r〉 ∈ h̃, and
〈q, a, s〉 ∈ g̃; h̃.

Furthermore, if there is an accepting finite run from q to r over w1w2, then after
reading w1 we are in some state s and have split the finite run into x1sx2, so that x1s
is a finite run from q to s, and sx2 a finite run from s to r. Either x1s or sx2 must be
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accepting, and thus by Definition 2.7 〈q, b, s〉 ∈ g̃, 〈s, c, r〉 ∈ h̃, and either b or c must
be 1. Therefore a must be 1.

Lemma 4.13. Let ĝ, ĥ, k̂ be supergraphs in Q̂f
A,B such that ḡ = 〈q, r〉, h̄ = 〈r, s〉, and

k̄ = 〈q, s〉. Then ĝ; ĥ = k̂ iff L(ĝ) · L(ĥ) ⊆ L(k̂).

Proof. Assume ĝ; ĥ = k̂ as a premise. This implies k̂ = 〈〈q, s〉, g̃; h̃〉). If either L(ĝ) or
L(ĥ) are empty, then L(ĝ) · L(ĥ) is empty and this direction holds trivially. Otherwise,
take two words u ∈ L(ĝ), v ∈ L(ĥ). By construction, u ∈ L(〈q, r〉) and v ∈ L(〈r, s〉).
The definition of the languages of arcs therefore implies the existence of a finite run
of B from q to r over u and a finite run from r to s over v. Thus uv ∈ L(〈q, s〉).
Similarly, u ∈ L(g̃), v ∈ L(h̃), and Lemma 4.12 implies that uv ∈ L(k̃). Thus uv is in
L(〈〈q, r〉, k̃〉) and by Lemma 4.4 L(ĝ) · L(ĥ) ⊆ L(k̂).

In the other direction, if L(ĝ) · L(ĥ) ⊆ L(k̂), we show that ĝ; ĥ = k̂. By definition,
ĝ; ĥ is 〈〈q, s〉, g̃; h̃〉. As ĝ, ĥ ∈ Q̂f

A,B, they are the composition of a finite number of
graphs from Q̂1

A,B. The above direction then demonstrates that they are non-empty, and
there is a wordw ∈ L(ĝ)·L(ĥ). This expands tow ∈ (L(ḡ)∩L(g̃))·(L(h̄)∩L(h̃)), which
implies w ∈ L(g̃) · L(h̃). By Lemma 4.12, w is then in L(g̃; h̃). Since, by Lemma 2.9,
w is the language of exactly one graph, we have that g̃; h̃ = k̃, which proves ĝ; ĥ = k̂.

Lemma 4.13 provides the polynomial time test for properness employed in Algo-
rithm RamseyContainment. Namely, given two supergraphs ĝ = 〈〈q, r〉, g̃〉 and
ĥ = 〈〈r, r〉, h̃〉 from Q̂f

A,B, the pair 〈ĝ, ĥ〉 is proper exactly when q ∈ Qin
A , r ∈ FA,

g̃; h̃ = g̃ and h̃; h̃ = h̃. We now provide the final piece of our puzzle: proving that the
closure of Q̂1

A,B under composition contains every non-empty supergraph.

Lemma 4.14. For two NBW A and B, every ĥ ∈ Q̂A,B, where L(ĥ) 6= ∅, is in Q̂f
A,B.

Proof. Let ĥ = 〈〈q, r〉, h̃〉 where L(ĥ) 6= ∅. Then there is at least one word w =

σ0...σn−1 ∈ L(ĥ), which is to say w ∈ L(〈q, r〉) ∩ L(h̃). By the definition of the
languages of arcs, there is a finite run p = p0...pn in A over w such that p0 = q and
pn = r.

Define g̃σi to be the graph in Q̃1
B containing σi. Let ĝσi be 〈〈pi, pi+1〉, g̃σi〉, and let

ĝw be ĝσ0 ; ĝσ1 ; ...; ĝσn−1 . Note that each ĝσi ∈ Q̂1
A,B. By Lemma 4.13 w ∈ g̃w. By

Lemma 2.9, w is in only one graph and g̃w = h̃. By construction, ḡw = 〈q, r〉. Therefore
〈ḡw, g̃w〉 = 〈〈q, r〉, h̃〉 = ĥ, and ĥ is in the closure of Q̂1

A,B under composition.

We can now show the correctness of Algorithm RamseyContainment, using
Lemma 4.13 to justify testing properness with composition, and Lemma 4.15 below
to justify the correctness and completeness of our search for a counterexample.
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Lemma 4.15. Let A and B be two Büchi automata. L(A) is not contained in L(B) iff
Q̂f

A,B contains a pair of supergraphs ĝ, ĥ such that 〈ĝ, ĥ〉 is proper and there do not exist
arcs 〈q, a, r〉 ∈ ĝ and 〈r, 1, r〉 ∈ ĥ, q ∈ Qin

B .

Proof. As all proper graphs are non-empty, this follows Lemma 4.7 parts (2) and (3)
and Lemma 4.14.

Theorem 4.16. For every two Büchi automata A and B, it holds that L(A) ⊆ L(B) iff
RamseyContainment (A,B) returns Contained.

Proof. By Lemma 4.13, testing for composition is equivalent to testing for language
containment, and the outer conditional in Algorithm RamseyContainment holds
only for proper pairs of supergraphs. By Lemma 4.15, the inner conditional checks if a
proper pair of supergraphs is a counterexample, and if no such proper pair in Q̂f

A,B is a
counterexample then containment must hold.

4.2.3 Subsumption in Ramsey-Based Containment Checking

Subsumption has proven to be very effective in the rank-based approach [DR09]. In
[FV09], we demonstrated that the Lee, Jones, and Ben-Amram algorithm for size-
change termination is a specialized realization of the Ramsey-based containment test.
In [BAL07], Ben-Amram and Lee demonstrated the effectiveness of subsumption for
this specialized algorithm. We now show how to employ Ben-Amram and Lee’s sub-
sumption relation for the general case of Büchi universality. Doing so allows us to
ignore graphs when they are approximated by other graphs.

In the special case of size-change termination, Ben-Amram and Lee replaced a test
for an arc in idempotent graphs with a test for strongly-connected components in all
graphs. To use subsumption in the general Ramsey-based approach, we need to replace
the two-arc test over proper pairs of supergraphs. We simplify Algorithm 4.3 by relaxing
the requirement that pairs of supergraphs be proper. First, we introduce the subsumption
relation. Then, we demonstrate how to change the algorithm to allow for discarding
subsumed supergraphs. Finally, we present a proof of correctness.

Intuitively, a graph g̃ approximates another graph h̃ when the arcs of g̃ are a subset
of, or less strict than, the arcs of h̃. In this case, finding an arc in g̃ is strictly harder than
finding one in than h̃. When the right arc can be found in g̃, then it also occurs in h̃.
When g̃ does not have a satisfying arc, then we already have a counterexample. Thus
we need not consider h̃.

Definition 4.17.
(1) For two g̃, h̃ ∈ Q̃B, say that g̃ approximates h̃, written g̃ � h̃, when for every arc
〈q, a, r〉 ∈ g̃ there is an arc 〈q, a′, r〉 ∈ h̃ where a ≤ a′.

(2) For two supergraphs ĝ, ĥ ∈ Q̂A,B, say that ĝ � ĥ when ḡ = h̄ and g̃ � h̃.
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We note that approximation is a transitive relation. Using the notion of approxima-
tion, we can compute a subset of Q̂f

A,B, called Q̂�, that contains only minimal elements
under the � relation. A set Q̂ of supergraphs is �-closed under composition when for
every ĝ, ĥ ∈ Q̂, there exists k̂ ∈ Q̂ such that k̂ � ĝ; ĥ.

However, once we limit our search to supergraphs in Q̂� the two-arc test is no longer
sufficient. Since we are now removing elements from Q̂�, it is possibly that the proper
pair of supergraphs in Q̂f

A,B that fails the two-arc test may never be computed: a graph in
the pair may be approximated by another graph, one that does not satisfy the conditions
of properness. As an example, consider the set containing the single supergraph ĝ =
〈〈s, s〉, {〈q, 0, q〉, 〈q, 0, r〉, 〈r, 0, q〉}〉 when s ∈ Qin

A and s ∈ FA. This set is �-closed
under composition, but 〈ĝ, ĝ〉 is not proper. We must relax our notion of properness.

Recall that a pair 〈ĝ, ĥ〉 of supergraphs is proper when three conditions hold. First,
L(ĝ) and L(ĥ) must be nonempty, Second, it must hold that ḡ = 〈q, r〉 and h̄ = 〈r, r〉

where q ∈ Qin
A and r ∈ FA. Finally, it must hold that ĝ; ĥ = ĝ and ĥ; ĥ = ĥ. It is this

third requirement that we remove.

Definition 4.18. A pair 〈ĝ, ĥ〉 of supergraphs is weakly proper when L(ĝ) 6= ∅, L(ĥ) 6=
∅, and ḡ = 〈q, r〉 and h̄ = 〈r, r〉 where q ∈ Qin

A and r ∈ FA.

When examining a proper pair of supergraphs, we used the two-arc test: search for
a q ∈ Qin, r ∈ Q, a ∈ {0, 1} such that 〈q, a, r〉 ∈ ĝ and 〈r, 1, r〉 ∈ ĥ. When examining
a weakly proper pair of supergraphs, we cannot limit our search to single arcs. Consider
the supergraph ĝ = 〈〈s, s〉, {〈q, 1, r〉, 〈r, 1, q〉}〉: while this supergraph does represent an
accepting finite run in B, note that 〈ĝ, ĝ〉 fails the two-arc test We must search the graph
for a path from q to r, and a path from r to itself. We test for this path by computing the
strongly connected components of ĥ, and testing if some strongly connected component
of ĥ both contains a 1-labeled arc and is reachable from a start state in ĝ.

A strongly connected component (SCC) of a graph g̃ is a maximal set S of nodes, so
that for every q, r ∈ S there is a path from q to r, and a path from r to q. Computing the
strongly connected components of a graph can be done in linear time with a depth-first
search [CLR90]. An SCC S in a graph g̃ is 1-labeled when there are q, r ∈ S with an
arc 〈q, 1, r〉 ∈ g̃. We say there is a path from a state q to an SCC S when there is a path
from q to an element of S. Say that S is an SCC of a supergraph ĝ = 〈ḡ, g̃〉 when S is
an SCC of g̃. Once we partition the nodes into strongly connected components, we can
simply search for a reachable 1-labeled SCC. We codify this as the lasso-finding test.
Lemma 4.20 is proven correct later.

Definition 4.19. A weakly proper pair 〈ĝ, ĥ〉 of supergraphs passes the lasso-finding test
when there exists: q ∈ Qin

B , r ∈ QB, a ∈ {0, 1}, and S ⊆ QB such that, 〈q, a, r〉 ∈ ĝ,
there is a path from r to S in ĥ, and S is a 1-labeled SCC of ĥ.

Lemma 4.20. L(A) 6⊆ L(B) iff Q̂f
A,B contains a weakly proper pair 〈ĝ, ĥ〉 that fails the

lasso-finding test.
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We now have the machinery for Algorithm 4.4. This algorithm extends Algorithm 4.3
to exploit subsumption and avoid computing the entirety of Q̃f

B. Along the way, we look
for a counterexample to containment by checking every weakly proper pair of super-
graphs with the lasso-finding test. To make the algorithm more concrete, a worklist
is used to keep track of which graphs have yet to be considered. Further, instead of
composing arbitrary pairs of graphs, we compose each graph only with graphs from
Q̃1

B. Since every composition can be phrased as a sequence of compositions of graphs
from Q̃1

B, this is sufficient to generate the entirety of Q̃�B while reducing the size of the
worklist considerably.

Algorithm 4.4: RamseySubsumptionContainment(B)
Construct the set Q̂1

A,B of all single-letter graphs
Initialize the worklist Ŵ ⇐ Q̂1

A,B

Initialize the set Q̂� ⇐ ∅
while Ŵ 6= ∅ do

Remove an element ĝ = 〈〈q, r〉, g̃〉 from Ŵ

for ĥ ∈ Q̂� where h̄ = 〈q, r〉 do
1 if ĥ � ĝ then Discard ĝ and exit for
2 else if ĝ � ĥ then Remove ĥ from Q̂�

if ĝ has not been discarded then
if q ∈ Qin

A and r ∈ FA then
for ĥ ∈ Q̂� where h̄ = 〈r, r〉 do

if 〈ĝ, ĥ〉 fails the lasso-finding test then return Not Contained

if q = r and r ∈ FA then
for ĥ ∈ Q̂� where h̄ = 〈s, r〉 and s ∈ Qin

A do
if 〈ĥ, ĝ〉 fails the lasso-finding test then return Not Contained

Add ĝ to Q̂�

for ĥ ∈ Q̂1
A,B where h̄ = 〈r, s〉 do

Add ĝ; ĥ to Ŵ

return Contained

To achieve reasonable performance, our implementation utilizes two optimizations
not detailed in Algorithm 4.4. First, we memoize the strongly connected components
of graphs. More explicitly, we associate each graph with the set of states that lead to
1-labeled SCCs, and the set of states reachable from a state in Qin

B . This allows us to
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implement the lasso-finding test by checking for an intersection between the sets. While
both computing SCCs and testing intersection are linear-time operations, we found the
constant-time speedup to be an order of magnitude. Second, note that we iterate through
supergraphs based on their arcs. Thus an effective further optimization is to index su-
pergraphs by the two elements of their arcs. This can improve the running time by a
factor of |A|2, much smaller than 3|B|

2 , but still significant1.

Proof of Correctness: To Algorithm 4.4 correct, we begin with Lemma 4.20. We first
prove that for every weakly proper pair 〈ĝ, Ĥ〉 of supergraphs it holds that the lasso-
finding test determines if Z(ĝ, ĥ) ⊆ L(B), and that the languages of weakly proper
pairs of supergraphs covers L(A).

Lemma 4.21. For a pair 〈ĝ, ĥ〉 of supergraphs, Z(ĝ, ĥ) ⊆ L(B) iff 〈ĝ, ĥ〉 passes the
lasso-finding test.

Proof. Recall that, By Lemma 4.7.(1), either Z(ĝ, ĥ) ⊆ L(B) or Z(ĝ, ĥ) ∩ L(B) = ∅.
Thus it suffices to consider a single word w = σ0σ1 · · · ∈ Z(ĝ, ĥ). As Z(ĝ, ĥ) =

L(ĝ) · L(ĥ)ω, w can be partitioned by indices i1, i2, . . . into

w0 = σ0...σi1−1

w1 = σi1 ...σi2−1

w2 = σi2 ...σi3−1

. . .

where w0 ∈ L(ĝ) and for i > 0, wi ∈ L(ĥ).
In one direction, assume 〈ĝ, ĥ〉 passes the lasso-finding test. This implies there is a

q ∈ Qin
B , r ∈ QB, a ∈ {0, 1}, and S ⊆ QB such that: 〈q, a, r〉 ∈ ĝ, there is a path from r

to S in ĥ, and S is a 1-labeled SCC of ĥ. First, since there is a path from r to S in ĥ, and
since s is a 1-labeled SCC of ĥ, we can constructing a sequence of states r1, r2, r3, . . .
so that: r = r1; for every i > 0: 〈ri, ai, ri+1〉 ∈ ĥ; and for infinitely many i > 0, it holds
that ai = 1. Second, since w0 ∈ L(ĝ), there is a finite run p0 of B from q to r1 over
w0. Third, for every i > 0, since wi ∈ L(ĥ), there is a finite run pi of B from ri to ri+1

over wi. If ai = 1, then there is an accepting finite run. By concatenating the finite runs
p0, p1, . . ., we form an accepting infinite run of B on w.

In the other direction, assume Z(ĝ, ĥ) ⊆ L(B). This implies there is an accepting
run p of w on B. Since the run is accepting, p0 ∈ Qin

B . Since there is a finite run between
p0 and pi1 on w0, there is an arc 〈p0, a0, pi1〉 ∈ ĝ. Similarly, for every k > 0, there is a

1Neither the algorithm nor our implementation prunes Q̂1
A,B for subsumed graphs. As our alphabet

consists of two letters, this is acceptable for our use. For larger alphabets, pruning the set of initial
supergraphs is suggested.
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finite run between pik and pik+1
on wk, and therefore an arc 〈pik , ak, pik+1

〉 ∈ ĥ. Since
there are a finite number of states, there is some state t ∈ QB so that for infinite many
k > 0, pik = t. Let i′ and i′′ be the first two indices such that pi′ = pi′′ = t. The arcs
〈pi′ , a′, pi′+1〉, . . . , 〈pi′′−1, a

′′, pi′′〉 are a path in h̃ from t to itself, and thus t is part of
an SCC S. Further, the arcs 〈pi1 , a1, pi2〉, . . . , 〈pi′−1, a

′, pi′〉 are a path in h̃ from pi1 to
the SCC S. Further, as the run is accepting, for an infinite number of k, ak = 1. Thus
some arc in a path from t to itself is labeled 1, and S is a 1-labeled SCC. These are the
conditions for 〈ĝ, ĥ〉 to pass the lasso-finding test.

Lemma 4.22. L(A) =
⋃
{Z(ĝ, ĥ) | Z(ĝ, ĥ) is weakly proper}.

Proof. Since every proper pair of supergraphs is also weakly proper, Lemma 4.6 implies
L(A) ⊆

⋃
{Z(ĝ, ĥ) | Z(ĝ, ĥ) is weakly proper}. Note that the second property of weak

properness is that ḡ = 〈q, r〉 and h̄ = 〈r, r〉 where q ∈ Qin
A and r ∈ FA. By the definition

of the languages of arcs, we thus have that every weakly proper Z(ĝ, ĥ) ⊆ L(A).

Lemma 4.20. L(A) 6⊆ L(B) iff Q̂f
A,B contains a weakly proper pair 〈ĝ, ĥ〉 that fails the

lasso-finding test.

Proof. This follows from Lemma 4.22, Lemma 4.7.(1), and Lemma 4.21.

We have now shown that it is sufficient to search Q̂f
A,B for pairs of graphs that fail

the lasso finding test. In the final step of proving Algorithm 4.4 correct, we show that
it is safe to restrict our search to graphs in Q̂�: that when using the lasso finding test
Q̂f

A,B contains a counterexample if and only if Q̂� contains a counterexample. We do so
by showing that if Q̂f

B contains a pair of graphs that fails the lasso-finding test, then Q̂�

contains a pair of graphs approximating the pair in Q̂f
A,B. This pair of graphs also fails

the lasso-finding test. Recall that we say ĝ � ĥ when, for every arc 〈q, a, r〉 ∈ ĝ, there
is an arc 〈q, a′, r〉 ∈ ĥ, where if a = 1 then a′ = 1. We first state some basic properties
of approximation.

Lemma 4.23. Let ĝ, ĥ be two supergraphs where ĝ � ĥ:
(1) For q, r ∈ Q, if ĝ has a path from q to r then ĥ has a path from q to r
(2) If S is a 1-labeled SCC in ĝ, then there is 1-labeled SCC T of ĥ where S ⊆ T

Proof.
(1) Every arc in ĝ has a corresponding arc in ĥ, so a path in ĝ remains a path in ĥ.
(2) Let S be a 1-labeled SCC in ĝ. By part (1) above, all nodes in S are in the same

SCC T of ĝ. Furthermore, there must be q, r ∈ S with an arc 〈q, 1, r〉 ∈ ĝ. This
arc must also appear in ĥ. Therefore T is a 1-labeled SCC of ĥ.

Lemma 4.24. Let ĝ, ĥ, k̂, l̂ be four supergraphs. If ĝ � ĥ and k̂ � l̂, then ĝ; k̂ � ĥ; l̂.
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Proof. Take an arc 〈q, a, s〉 ∈ ĝ; k̂. First assume a is 0. This arc exists because there
is state r, an arc 〈q, 0, r〉 ∈ ĝ, and an arc 〈r, 0, s〉 ∈ k̂. As ĝ � ĥ, there is an arc
〈q, a1, r〉 ∈ ĥ. As k̂ � l̂, there is an arc 〈r, a2, s〉. Therefore the arc 〈q, a3, s〉 ∈ ĥ; l̂,
a3 ≥ max(a1, a2).

If a is 1, there is state r, an arc 〈q, a1, r〉 ∈ ĝ and an arc 〈r, a2, s〉 ∈ k̂ where a1 = 1

or a2 = 1. As ĝ � ĥ, there is an arc 〈q, a′1, r〉 ∈ ĥ. As k̂ � l̂, there is an arc 〈r, a′2, s〉 ∈ l̂.
If a1 = 1, then a′1 must be 1 and 〈q, 1, s〉 ∈ ĥ; l̂. If a2 = 1, then a′2 = 1 and the arc
〈q, 1, s〉 ∈ ĥ; l̂. We can conclude that ĝ; k̂ � ĥ; l̂.

Recall that a set, Q̂A,B, of supergraphs is �-closed under composition when, for
every two supergraphs, ĝ, ĥ ∈ Q̂A,B, there is a supergraph k̂ ∈ Q̂A,B so that k̂ � ĝ; ĥ.
Given a set Q̂1

A,B of supergraphs we show that it is sufficient to test a �-closed subset
of Q̂f

A,B, its closure under composition, so long as the subset still contains Q̂1
A,B. Let

Q̂1
A,B be a set of supergraphs, Q̂f

B the closure of Q̂1
A,B under composition, and Q̂� a set

computed during Algorithm 4.4.

Lemma 4.25.
(1) Q̂� is �-closed
(2) Q̂� ⊆ Q̂f

A,B.
(3) For every ĝσ ∈ Q̂1

A,B, at every point in the computation of Algorithm 4.4, there is
a ĥ ∈ Q̂� ∪ Ŵ such that ĥ � ĝσ.

Proof.
(1) Note that the composition of two elements is only omitted from Q̂� on lines 1

or 2 when it is approximated by an element already in Q̂�. Thus Q̂� is indeed
�-closed.

(2) As every element in Q̂� is the composition of a finite number of elements of Q̂1
A,B,

Q̂� is indeed a subset of Q̂f
A,B,

(3) At the beginning of the computation, ĝσ is in the worklist Ŵ . Since the worklist
is empty at the end of the computation, at some point we know ĝσ was removed
from the worklist. In order for ĝσ to be discarded on line 1 or removed on line 2 of
Algorithm 4.4, there must be a ĥ0 included in Q̂� such that ĥ0 ≺ ĝσ. Similarly, ĥ0

can only be removed if a supergraph ĥ1 that approximates it is included, and so on.
This allows us to conclude that at every point in the computation of Algorithm 4.4
there will be a supergraph ĥi ∈ Q̂� such that:

ĥi � ĥi−1 � · · · � ĥ0 � ĝ

As approximation is transitive, it holds that ĥi � ĝ.



37

Lemma 4.26. For every ĝ ∈ Q̂f
A,B, there is ĝ′ ∈ Q̂� such that ĝ′ � ĝ.

Proof. The supergraph ĝ is the finite composition ĝ0; ĝ1; ...; ĝn−1 of n elements of Q̂1
A,B.

Let ĝ0...i be the sequence of compositions ĝ0; ...; ĝi. We prove by induction that, for each
i, there is a supergraph ĥi ∈ Q̂� so that ĥi � ĝ0...i. Since ĝ = ĝ1...(n−1), this implies
ĥn−1 � ĝ. The base case follows immediately from the third clause of Lemma 4.25 and
the fact that the worklist is empty at the end of the computation.

Inductively, assume there is a supergraph ĥi ∈ Q̂� so that ĥi � ĝ0...i. First, as ĝi+1 ∈
Q̂1

A,B, the third clause of Lemma 4.25 implies a ĝ′i+1 ∈ Q̂� exists so that ĝ′i+1 � ĝi+1.
Second, note that by Lemma 4.24 it holds that ĥi; ĝ′i+1 � ĝ0...i; ĝi+1. Finally, as Q̂�

is �-closed under composition, either ĥi; ĝ′i+1 is in Q̂�, or it is discarded/removed on
line 1/2 when it is approximated by some k̂ ∈ Q̂�. In the former case, take ĥi+1 to be
ĥi; ĝ

′
i+1. In the later case, recall that approximation is transitive and take ĥi+1 to be k̂.

Lemma 4.27. Q̂f
A,B contains a pair of supergraphs that fails the lasso-finding test iff

Q̂� contains a pair of supergraphs that fails the lasso-finding test.

Proof. In one direction, assume Q̂� contains a pair 〈ĝ, ĥ〉 of supergraphs that fails the
lasso-finding test. By Lemma 4.25, Q̂� ⊆ Q̂f

A,B. Therefore 〈ĝ, ĥ〉 is such a pair of
supergraphs in Q̂f

A,B.
In the other direction, assume Q̂f

A,B contains a pair 〈ĝ, ĥ〉 of supergraphs that fails
the lasso-finding test. By Lemma 4.26 there must be a ĝ′, ĥ′ ∈ Q̂� such that ĝ′ � ĝ
and ĥ′ � ĥ. We show by way of contradiction that 〈ĝ′, ĥ′〉 must fail the lasso-finding
test. Presume that 〈ĝ′, ĥ′〉 passes the lasso-finding test. This implies the existence of
q ∈ Qin, r ∈ Q, a, b ∈ {0, 1} and S ⊆ Q such that 〈q, a, r〉 ∈ ĝ′, there is a path from r

to S in ĥ′, and S is a 1-labeled SCC of ĥ′. As ĝ′ � ĝ, there must be an arc 〈q, a′, r〉 ∈ ĝ.
Further, by the second half of Lemma 4.23 there must be a T ⊇ S that is a 1-labeled
SCC of ĥ. By the first half of Lemma 4.23, there must be a path from r to S, and thus
to T , in ĥ. However, as 〈ĝ, ĥ〉 fails the lasso-finding test, there can be no such q, r, and
T .

Theorem 4.28. For every two Büchi automata A and B, it holds that L(A) ⊆ L(B) iff
RamseySubsumptionContainment (A,B) returns Contained.

Proof. This follows Lemmas 4.20 and 4.27.

4.3 Empirical Comparisons: Universality Experiments
The subsumption technique employed in Algorithm 4.4 is purely a heuristic improve-
ment: the worst-case complexity of the algorithm does not change. Thus the Ramsey-
based algorithm has a worst-case running time exponentially slower than that of the



38

rank-based algorithm. Motivated by the strong performance of Ramsey-based algo-
rithms on SCT problems [FV09] and the competitive sizes of complemented automata
in Chapter 3, we compare Ramsey and rank based solvers on a terrain of random au-
tomata.

To evaluate the performance of various tools on Büchi universality problems, we
employ the random model describe in Chapter 3.1. Data points are derived from 100 or
more2 random automata with the given n, r, and f . When possible, we compute the me-
dian running time [DR09, TV07]. This allows us to plot the data on a logarithmic scale
and easily judge exponential behavior. However, in many cases interesting behavior
emerges after a significant percentage of the runs time out. In these cases we measure
the timeout percentage instead of median running time.

Our rank-based tool, simply called RANK, is our modified version of the mh tool
developed by Doyen and Raskin [DR09]. Our Ramsey-based tool, called RAMSEY, is
based on the sct/scp program– an optimized C implementation of the SCT algorithm
from Ben-Amram and Lee [BAL07]. We have rewritten the RAMSEY tool to solve
arbitrary Büchi universality problems by implementing Algorithm 4.4. Both tools can
be configured to not employ their subsumption techniques. In this case, we append (ns)
to the program name.

All experiments were performed on the Shared University Grid at Rice (SUG@R), a
cluster of Sunfire x4150 nodes, each with two 2.83GHz Intel Xeon quad-core processors
and 16GB of RAM. Each run is given a dedicated node, and each tool is given one hour
to solve each problem.

4.3.1 Subsumption

We know that subsumption is vital to the performance of rank-based solvers [DR09].
Further, we have observed subsumption’s utility on the domain of SCT problems [FV09].
This motivates us to extend the subsumption technique of [BAL07] to the case of gen-
eral Büchi universality, resulting in Algorithm 4.4. Employing observations from Sec-
tion 4.3.2 below, we check the practical utility of subsumption on the most difficult
terrain point for RAMSEY, where transition density r = 1.5 and acceptance density
f = 0.5. Figure 4.2 displays RAMSEY’s performance as size increases, on a logarithmic
scale. If more than 50% of the problems timed out, the median is displayed at 3600
seconds, which flattens the RAMSEY (ns) line at the last data point. We observe that
the RAMSEY (ns) line has a higher slope than the RAMSEY line. As this graph uses a
logarithmic scale, this difference in the slope indicates an exponential improvement in
scalability when subsumption is used. Similar results held for every terrain point we
measured, demonstrating that although a heuristic technique, subsumption is required
for the scalability of our Ramsey-based approach. We also note that the curves appear

2When the results from 100 automata appear anomalous, additional automata are generated and tested
to improve the fidelity of the results. No data are ever excluded.
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to be linear on the logarithmic scale, suggesting that the median running time for this
terrain point is 2O(n), rather than the 2O(n2) of the worst-case complexity bound.
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Figure 4.2 : Subsumption exponentially improves RAMSEY median running times (r =
1.5, f = 0.5) Note that when more than 50% of the problems timed out, the median is
displayed at 3600 seconds, which flattens the RAMSEY (ns) line at the last data point.

4.3.2 Terrain Experiments

As stated above, randomly generated automata of a given size can configured in two
parameters. To map out the behavior of the two tools over this terrain, we hold size con-
stant at n = 100, and examined a variety of terrain points. We generate data points for
each combination of transition density r ∈ {0.02, 0.26, 0.50, 0.74, 0.98} and acceptance
density f ∈ {0.5, 1.5, 2.0, 2.5, 3.0}.

Figure 4.3(a) displays the percentage of cases in which the RANK tool timed out
in each terrain point. As observed in [DR09], there is a sharp spike in timeouts at
transitions density r = 1.5, acceptance density of 0.26. This spike trails off quickly
as transition density changes, and only slightly more gradually as acceptance density
changes. There is a subtler high point at r = 2.0, f = 0.02, where the timeouts rise
to 50%. This is consistent with other rank-based tools, even those using different lasso-
finding algorithms [TV07]. Figure 4.3(b) displays the percentage of cases in which the
RAMSEY tool timed out in each terrain point. Like RANK, r = 1.5, f = 0.26 is a
difficult terrain point for RAMSEY. However, RAMSEY continues to time out frequently
along all terrain points with transition density r = 1.5, and has no significant timeouts
at other terrain points.
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Figure 4.3 : Differences in behavior between RANK and RAMSEY over problem terrain,
measured as percentage of problems that timeout when size n = 100

Simply glancing at the terrain graphs, it appears that RANK may perform better than
RAMSEY in most terrain points. On the other hand, RAMSEY does not exhibit a second
high point at r = 2.0, f = 0.02, and at least for this size of automata RAMSEY beats
RANK at the hardest point for RANK. What these graphs clearly show is that those
attributes that make a problem hard for RANK to handle are not necessarily the same as
those attributes of a problem that cause difficulty for RAMSEY.

4.3.3 Scaling Experiments

We explore some interesting terrain points by measuring the scalability of each algo-
rithm: we hold the transition and acceptance densities constant, and increase size. We
choose to investigate three terrain points: a point r = 1.5, f = 0.5, where RANK seems
to perform better than RAMSEY; the main spike r = 1.5, f = 0.26, where both tools
exhibited difficulty solving problems; and a final point r = 2.0, f = 0.05 near RANK’s
second high point, where RAMSEY seems to perform better.

Figure 4.4 displays the median running time for problems with the transition den-
sity at r = 1.5 and the acceptance density at f = 0.5, on a logarithmic scale. If more
than 50% of the problems timed out, the median is displayed at 3600 seconds, cutting
off RAMSEY’s line. As the scale is logarithmic, the difference in the slope between
RANK’s line and RAMSEY’s indicates that, on this terrain point, RANK clearly scales
exponentially better than RAMSEY. The third line, labeled “Parallel”, displays the be-
havior of running both tools in parallel on separate machines, and terminating as soon
as either tool gives an answer. Is is notable that this line, while having the same slope as
RANK’s, is lower; indicating there are a number of cases even at this terrain point where
RAMSEY terminates before RANK.
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Figure 4.4 : RANK scales exponentially better than RAMSEY at r = 1.5, f = 0.5.

The most difficult terrain points for both tools lie near r = 1.5, f = 0.26. Fig-
ure 4.5(a) shows the median running time for each size n at this terrain point. Up to
n = 50, RAMSEY performs better than RANK only by a constant factor . Past this this
size, the percentage of timeouts is too high for median measurements to be meaningful.
However, a gap in the timeout percentage appears as the automata grow larger than 50
states. Figure 4.5(b) displays the percentage of runs that timed out for each size n at this
terrain point. It does appear that, past n = 50, RAMSEY begins to scale significantly
better than RANK. The behavior of running both tools in parallel on separate machines
is shown using the third line, labeled “Parallel.” We again find that even at a terrain
point that favors one tool, RAMSEY, we benefit from running both tools simultaneously.
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(a) Up to inputs of 50 states, RAMSEY performs a constant factor better than RANK
(median running time, log scale).
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Figure 4.5 : RAMSEY and RANK on the most difficult terrain point (r = 1.5, f = 0.26)
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At size n = 100, RANK exhibited difficulty when the transition density was 2.0 and
the acceptance density was low. We measured the scalability of RAMSEY and RANK on
problems with r = 2.0 and f = 0.05. At this terrain point the median running times do
not increase exponentially for either RANK or RAMSEY. As a large number of problems
still did not complete, Figure 4.6 displays the timeout percentages as size grows. At this
terrain point, RAMSEY does appear to scale better than RANK. However the gap is not
the exponential improvement we observed when RANK performed better than RAMSEY.
At this configuration, running the tools in parallel was only a slight improvement over
running RAMSEY alone.
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Figure 4.6 : RAMSEY scales much better than RANK when r = 2 and f = 0.05

4.3.4 Universal vs. Non-Universal Automata

When we reviewed the algorithms used by RANK and RAMSEY to explore the state
space of the complemented automaton, we noted that in certain cases each tools can
terminate before computing the entirety of their fixpoints: RANK on universal automata,
and RAMSEY on non-universal automata. This suggests that RANK may perform better
on universal automata, and RAMSEY may perform better on non-universal automata.

To confirm this hypothesis, we compare RANK and RAMSEY on a corpus of univer-
sal and non-universal automata. Our corpus is derived from 1000 automata with size
n = 50, transition density r = 1.8, and acceptance density f = 0.2. This point was cho-
sen because of the relatively equal proportion of universal and non-universal automata.
Table 4.1 summarizes the results. RANK does indeed perform better on universal au-
tomata. Universal automata were solved in a median time of 108.3 seconds, while on
non-universal automata, the median running time was 177.8 seconds. We observe the
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inverse behavior in RAMSEY: on non-universal automata RAMSEY had a median run-
ning time of only 33.1 seconds, while on universal automata the median running time
was 253.4 seconds. The universality or non-universality of a problem does affect the
performance of each approach.

Count RANK RAMSEY

Universal 460 108.3 253.4
Non-Universal 527 177.8 33.1
Unknown 13

Table 4.1 : RANK performs better on universal problems, RAMSEY on non-universal
problems, measured by median running time (n = 50, r = 1.8, f = 0.2)

The question naturally arises: does the difference in performance on universal vs.
non-universal automata fully explain the different behaviors of RAMSEY and RANK.
This is not the case. As previously noted in Figure 4.4, RANK performs exponentially
better than RAMSEY on automata with a transition density of 1.5 and an acceptance
density of 0.5. More than 80% of the solved automata at this terrain point are non-
universal: a distribution that should favor RAMSEY. Further, Figure 4.6 shows a terrain
point where RAMSEY scales significantly better than RANK. At this terrain point, more
than two-thirds of solved automata with n > 50 were universal, and should have favored
RANK. Therefore we cannot conclude that the difference in behavior between RANK

and RAMSEY is truly attributed to the gap in performance between universal and non-
universal automata.

4.3.5 Discussion

These experiments tell two stories. The first story is about subsumption. In general,
subsumption is a trade off: there is a benefit to reducing the working sets of the al-
gorithms, but checking for subsumed states can be computationally expensive. In the
domain of CNF satisfiability solvers, subsumption is generally regarded as an ineffective
technique: the overhead of checking for subsumed clauses outweighs any benefit gained
from removing them. For checking Büchi automata universality, it has previously been
shown that subsumption is not only useful, but vital for the scalability of the rank-based
approach [DR09]. Here, we demonstrate that this also holds for the Ramsey-based ap-
proach, which use not only a different construction but also a different algorithm to
explore the state space of this construction.

The second story is that neither the rank-based approach nor the Ramsey-based ap-
proach to Büchi universality testing is clearly superior. This is true despite the massive
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gap in worst-case complexity between the two approaches. Each approach exhibits dis-
tinct behavior on the terrain of random universality problems. Due to these differences,
we do not believe a winner takes all approach is best for universality checking. The cur-
rent best approach is to run both tools in parallel, and see which terminates first. Doing
so improves performance by a constant factor, relative to the best tool for a given terrain
point.

One point that is well demonstrated in our investigation is that theoretical worst-case
analysis often yields little information on actual algorithmic performance; an algorithm
running in 2O(n2) can perform better in practice than an algorithm running in 2O(n logn).
We do note RAMSEY, the program running in 2O(n2) time and space, sometimes con-
sumed on the order of 20 GB of memory, where RANK rarely consumed more than 300
megabytes.
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Chapter 5

Profile-Based Complementation

In an effort to unify Büchi complementation with other operations on automata, Kähler
and Wilke introduced yet another analysis of runs of nondeterministic Büchi automata
[KW08]. The analysis is based on reduced split trees, which are related to the Müller-
Schupp trees used for determinization [MS95]. A reduced split tree is a binary tree
whose nodes are sets of states as follows: the root is the set of initial states; and given a
node associated with a set of states, its left child is the set of successors that are accept-
ing, while the right child is the set of successors that are not accepting. In addition, each
state of the automaton appears at most once in each level of the binary tree: if it would
appear in more than one set, it occurs only in the leftmost one. The construction that
follows from the analysis, termed the slice-based construction, is simpler than Safra’s
determinization, but its implementation suffers from similar difficulties: the need to re-
fer to leftmost children requires encoding of a preorder, and working with reduced split
trees makes the transition relation between states awkward. Thus, as has been the case
with Safra’s construction, it is not clear how the slice-based approach can be imple-
mented symbolically. This is unfortunate, as the slice-based approach does offer a very
clean and intuitive analysis, suggesting that a better construction is hidden in it.

In this chapter we reveal such a hidden, elegant, construction, and we do so by
unifying the rank-based and the slice-based approaches. Before we turn to describe our
construction, let us point to a key conceptual difference between the two approaches.
This difference has made their relation of special interest and challenge. In the rank-
based approach, the ranks assigned to a node bound the visits to accepting states yet to
come. Thus, the ranks refer to the future of the run, making the rank-based approach
inherently nondeterministic. In contrast, in the slice-based approach, the partition of
the states of the automaton to the different sets in the tree is based on previous visits to
accepting states. Thus, the partition refers to the past of the run, and does not depend
on its future.

In order to draw parallels between the two approaches, we present a formulation of
the slice-based approach in terms of run DAGs. A careful analysis of the slice-based
approach then enables us to reduce the nondeterminism in the construction. We can then
employ this improved slice-based approach in order to define a particular odd ranking of
rejecting run DAGs, called a retrospective ranking. In addition to revealing the theoreti-

This chapter contains work published in [FKVW10].
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cal connections between the two seemingly different approaches, the new ranks lead to
a complementation construction with a transition function that is smaller and determin-
istic in the limit: every accepting run of the automaton is eventually deterministic. This
presents the first deterministic-in-the-limit complementation construction that does not
use determinization. Determinism in the limit is central to verification in probabilistic
settings [CY95] and has proven useful in experimental results [ST03]. Phrasing slice-
based complementation as an odd ranking also immediately affords us the improved
cut-point of Schewe, the subsumption operation of Doyen and Raskin, and provides an
easy symbolic encoding.

5.1 Preliminaries: The Slice-Based Approach
The paper of Kähler et al. introduces the notion of the split tree, reduced split tree, and
skeleton tree for a run of an automaton B on a word w. A binary tree is a prefix-closed
non-empty subsets of {0 . . . 1}∗. The elements v ∈ V are called nodes. The root is ε.
For a node v ∈ V , the node v0 is called the left child of v, and v1 the right child of v.
The node v is said to be on level i when |v| = i. For a set L, an L-labeled tree is a pair
〈V, l〉 where V is a tree and l : V → L is a label function. By abuse of notation, for an
L-labeled tree T = 〈V, l〉 and vertex v, say v ∈ T when v ∈ V , and let T (v) = l(v).
For two nodes v and v′, say that v′ > v when |v| = |v′| and v′ is to the right of, i.e.
lexicographically larger than, v. A tree is of bounded width when there is a constant l
such that for every i there are at most l nodes on level i.

The split tree, written T sp, is the 2Q-labeled tree defined inductively as follows1.
As a base case, ε ∈ T sp and T sp(ε) = Qin. Inductively, given a node v on level i, let
P = T sp(v). If ρB(P,wi) \ FB 6= ∅ then v0 ∈ T sp and T sp(v0) = ρB(P,wi) \ FB.
Similarly, if ρB(P,wi) ∩ FB 6= ∅, then v1 ∈ T sp and T sp(v1) = ρB(P,wi) ∩ FB. As
argued in [KW08], branches in T sp correspond to runs of B on w.

Lemma 5.1. w ∈ L(B) iff T sp(B, w) has a branch that goes right infinitely often.

The reduced split tree, written T rs, keeps only the rightmost instance of each state at
each level of the tree. This bounds the width of T rs to n. Formally, we define T rs induc-
tively as follows. As a base case, the root ε ∈ T rs, and T rs(ε) = Qin. Inductively, given
a node v ∈ T rs on level i, let P = T rs(v) and let P ′ =

⋃
{ρB(T rs(v′) | v′ ∈ T rs and v′ < v}.

If (ρB(P,wi) \FB) \P ′ 6= ∅ then v0 ∈ T rs and T rs(v0) = (ρB(P,wi) \FB) \P ′. Simi-
larly, if (ρB(P,wi)∩FB) \P ′ 6= ∅, then v1 ∈ T rs and T rs(v1) = (ρB(P,wi)∩FB) \P ′.

Lemma 5.2. T rs has a branch that goes right infinitely often iff T sp has a branch that
goes right infinitely often.

1Compared to [KW08], these definitions reverse the left and right children. This was done to match
below.
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Finally, the skeleton T sp is obtained by removing from the reduced split tree all
nodes that are finite. The slice automaton of Kähler and Wilke proceeds by tracking the
levels of T rs and guessing which nodes occur in T sp. Each level i of T rs is encoded as
a slice, a sequence 〈P0, . . . , Pm〉 of pairwise disjoint subsets of Q.

5.2 Analyzing DAGs With Profiles
In this section we present an alternate formulation of the slice-based complementation
construction of Kähler and Wilke [KW08]. Whereas Kähler and Wilke approached the
problem through reduced split trees, we derive the slice-based construction directly from
an analysis of the run DAG. This analysis proceeds by pruning G in two steps: the first
removes edges, and the second removes vertices.

5.2.1 Profiles

Consider a run DAG G = 〈V,E〉. Let l : V → {0, 1} be such that l(〈q, i〉) = 1 if
q ∈ F and l(〈q, i〉) = 0 otherwise. Thus, l labels F -nodes by 1 and all other nodes
by 0. The profile of a path in G is the sequence of labels of nodes in the path. The
profile of a node is then the lexicographically maximal profile of all initial paths to that
node. Formally, let ≤ be the lexicographic ordering on {0, 1}∗ ∪ {0, 1}ω. The profile
of a finite path b = v0, v1, . . . , vn in G, written hb, is l(v0)l(v1) · · · l(vn), and the profile
of an infinite path b = v0, v1, . . . is hb = l(v0)l(v1) · · · . Finally, the profile of a node v,
written hv, is the lexicographically maximal element of {hb | b is an initial path to v}.
The lexicographic order of profiles induces a preorder over nodes.

We define the sequence of preorders �i over the nodes on each level of the run DAG

as follows2. For every two nodes u and v on a level i, we have that u ≺i v if hu < hv,
and u ≈i v if hu = hv. For convenience, we conflate nodes on the ith level of the run
DAG with their states when employing this preorder, and say q �i r when 〈q, i〉 �i 〈r, i〉.
Note that ≈i is an equivalence relation. Since the final element of a node’s profile is 1
iff the node is an F -node, all nodes in an equivalence class must agree on membership
in F . We call an equivalence class an F -class when all its members are F -nodes, and a
non-F -class when none of its members is an F -node.

We now use profiles in order to remove from G edges that are not on lexicographi-
cally maximal paths. Let G′ be the subgraph of G obtained by removing all edges 〈u, v〉
for which there is another edge 〈u′, v〉 such that u ≺|u| u′. Formally, G′ = 〈V,E ′〉 where
E ′ = E \ {〈u, v〉 | there exists u′ ∈ V such that 〈u′, v〉 ∈ E and u ≺|u| u′}.

Lemma 5.3. For every two nodes u and v, if (u, v) ∈ E ′, then hv ∈ {hu0, hu1}.

Proof. Assume by way of contradiction that hv 6∈ {hu0, hu1}. Recall that hv is the lex-
icographically maximal element of {hb | b is an initial path to v}. Thus our assumption

2In this and the following chapter, � is not a subsumption relation.
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entails an initial path b to v so that hb > hu1. Let u′ be b|u|: the node on the same level
of G as u. Since b is a path to v, it holds that (u′, v) ∈ E. Further, hb > hu1, it must be
that hu′ > hu. By definition of E ′, the presence of (u′, v) where hu′ > hu precludes the
edge (u, v) from being in E ′ — a contradiction.

Note that while it is possible for two nodes with different profiles to share a child in
G, Lemma 5.3 precludes this possibility in G′. If two nodes join in G′, they must have
the same profile and be in the same equivalence class.

Lemma 5.4. Consider nodes u and v on level i and nodes u′ and v′ on level i + 1. If
〈u, u′〉 ∈ E ′, 〈v, v′〉 ∈ E ′, and u′ ≈i+1 v

′, then u ≈i v.

Proof. We have that u′ ≈i+1 v
′ iff hu′ = hv′ . If u′ is an F -node, then v′ must also be

an F -node, and then the last letter in both hu′ and hv′ is 1. Thus by Lemma 5.3 we
have hu1 = hu′ = hv′ = hv1. If u′ is a non-F -node, then by Lemma 5.3 we have
hu0 = hu′ = hv′ = hv0. In either case, hu = hv and u ≈i v.

Lemma 5.4 allows us to conflate nodes and equivalence classes, and for every edge
(u, v) ∈ E ′, consider [v] to be the child of [u]. Lemma 5.3 then entails that the class [u]
can have at most two children: the class of F -nodes with profile hu1, and the class of
non-F -nodes with profile hu0. We call the first class the F -child of [u], and the second
class the non-F -child of [u].

By using lexicographic ordering we can derive the preorder for each level i +1 of
the run DAG solely from the preorder for the previous level i. To determine the relation
between two nodes, we need only know whether the nodes are F -nodes and the relation
between the parents of those nodes. Formally, we have the following.

Lemma 5.5. For all nodes u, v on level i, and nodes u′, v′ whereE ′(u, u′) andE ′(v, v′):
• If u ≺i v, then u′ ≺i+1 v

′.
• If u ≈i v and both u′ and v′ are F -nodes, then u′ ≈i+1 v

′.
• If u ≈i v and neither u′ nor v′ are F -nodes, then u′ ≈i+1 v

′.
• If u ≈i v and v′ is an F -node while u′ is not, then u′ ≺i+1 v

′.

Proof. If u ≺i v, then hu < hv and, by Lemma 5.3, we know that hu′ ∈ {hu0, hu1}
must be smaller than hv′ ∈ {hv0, hv1}, implying that u′ ≺i+1 v

′. If u ≈i v, we have
three sub-cases. If v′ is an F -node and u′ is not, then hu′ = hu0 = hv0 < hv1 = hv′
and u′ ≺i+1 v

′. If both u′ and v′ are F -nodes, then hu′ = hu1 = hv1 = hv′ and u′ ≈i v′.
Finally, if neither u′ nor v′ are F -nodes, then hu′ = hu0 = hv0 = hv′ and u′ ≈i v′.

We now demonstrate that by keeping only edges associated with lexicographically
maximal profiles, G′ captures an accepting path from G.

Lemma 5.6. G′ has an accepting path iff G has an accepting path.
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Proof. If G′ has an accepting path, then its superset G has the same path.
In the other direction, assume G has an accepting path. Consider the set P of ac-

cepting paths in G. We prove that there is a lexicographically maximal element π ∈ P .
To begin, we construct an infinite sequence, P0, P1, . . ., of subsets of P such that the
elements of Pi are lexicographically maximal in the first i + 1 positions. Since no
initial states are accepting, no nodes on level 0 on G will be F nodes. Therefore let
P0 = P . Inductively, if Pi contains an element b such that bi+1 is an F -node, then
Pi+1 = {b | b ∈ Pi, bi+1 is an F -node}. Otherwise Pi+1 = Pi. Note that since G has an
accepting path, P is non-empty. Further, every set Pi is not equal to its predecessor P ′

only when there is a path in P ′ with an F -node in the ith position. In this case, that path
is in Pi. Thus every Pi is non-empty.

First, we prove that there is a path π ∈
⋂
i≥0 Pi. Consider the sequenceU0, U1, U2, . . .

where Ui is the set of nodes that occur at position i in runs in Pi. Formally, Ui =
{u | u ∈ G, b ∈ Pi, u = bi}. Each node in Ui+1 has a parent in Ui, although it may not
have a child in Ui+2. We can thus connect the nodes in

⋃
i>0 Ui to their parents, forming

a sub-DAG of G. As every Pi is non-empty, every Ui is non-empty, and this DAG has
infinitely many nodes. Since each node has at most n children, by Kon̈ig’s Lemma there
is an initial path π through this DAG, and thus through G. We now show by induction
that π ∈ Pi for every i. As a base case, π ∈ P = P0. Inductively, assume π ∈ Pi. The
set Pi+1 is either Pi, in which case π ∈ Pi+1, or the set {b | b ∈ Pi, bi+1 is an F -node}.
In this latter case, as Ui+1 consists only of F -nodes, the node πi+1 must be an F -node,
and π ∈ Pi+1.

Second, having established that there must be an element π ∈
⋂
i≥0 Pi, we prove π

is lexicographically maximal in P . Assume by way of contradiction that there exists an
accepting path π′ so that hπ′ > hπ. Let k be the first point where hπ′ differs from hπ. At
this point, it must be that πk is not an F node, while π′k is an F node. Therefore it must
be that k > 0. Further, π′ is an accepting path that shares a profile with π up until this
point. As π ∈ Pk−1 it must also be that π′ is in Pk−1. By definition, Pk then would be
{b | b ∈ Pk−1, bk is an F -node}. This would imply π 6∈ Pk, a contradiction.

Finally, we demonstrate that every edge in π occurs in G′. Assume by way of con-
tradiction that some edge (πi, πi+1) is in E but not in E ′. This implies there is a node
u on level i such that (u, πi+1) is in E and πi ≺i u. Since u ∈ G, there is an initial
path b to u. Thus, the path b, u, πi+1, πi+2 . . . is an accepting path in G. This path would
be lexicographically larger than π, contradicting the second claim above. Hence, we
conclude π is an accepting path in G′.

In the next stage, we remove fromG′ finite nodes. LetG′′ = G′ \{v | v is finite in G′}.
Note there may be nodes that are not finite in G, but are finite in G′. It is not hard to
see that G may have infinitely many F -nodes and still not contain a path with infinitely
many F -nodes. Indeed, G may have infinitely many paths each with finitely many F -
nodes. We now show that the transition from G via G′ to G′′ removes this possibility,
and the presence of infinitely many F -nodes in G′′ does imply the existence of a path
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with infinitely many F -nodes.

Lemma 5.7. G has an accepting path iff G′′ has infinitely many F -nodes.

Proof. IfG has an accepting path, then by Lemma 5.6 the DAG G′ contains an accepting
path. Every node in this path is infinite in G′, and thus this path is preserved in G′′. This
path contains infinitely many F -nodes, and thus G′′ contains infinitely many F -nodes.

In the other direction, we consider the DAG over equivalence classes induced by G′′.
Given a node u in G′′, recall that its equivalence class in G′′ contains all states v such
that v ∈ G′′ and hu = hv. Given two equivalence classes U and V , recall that V is a
child of U when there are u ∈ U , v ∈ V , and E ′′(u, v). As mentioned above, once we
have pruned edges not in G′, two nodes of different classes cannot join. Thus this DAG

is a tree. Further, as every node u in G′′ is infinite and has a child, its equivalence class
must also have a child. Thus the DAG of classes in G′′ is a leafless tree. The width of
this tree must monotonically increase and is bounded by n. It follows that at some level
j the tree reaches a stable width. We call this level j the stabilization level of G.

After the stabilization level, each class U has exactly one child: as noted above,
U cannot have zero children, and if U had two children the width of the tree would
increase. Therefore, we identify each equivalence class on level j of G′′ with its unique
branch of children in G′′, which we term its pipe. These pipes form a partition of nodes
in G′′ after j. Every node in these pipes has an ancestor, or it would not be in the DAG,
and has a child, or it would not be infinite and in G′′. Therefore each node is part of an
infinite path in this pipe. Thus, the pipe with infinitely many F -classes contains only
accepting paths. These paths are accepting in G.

In the proof above we demonstrated there is a stabilization level j at which the
number of equivalence classes in G′′ stabilized, and discussed the pipes of G′′: the
single chain of descendants from each equivalence class on the stabilization level j of
G′′.

Example 5.8. Figure 5.1 displays G′′ for the example of Figure 2.1. Edges removed
from G′ are dotted: at levels 2 and 5 where both q and r transition to r. When both r
and s transition to t, they have the same profile and both edges remain. The removed
edges render all but the first two q-node finite in G′. The stabilization level is 1.

5.2.2 Complementing With Profiles

We now complement B by constructing an NBW, CS(B), that employs Lemma 5.7
to determine if a word is in L(B). This construction is a reformulation of the slice-
based approach of [KW08] in the framework of run DAGs. The NBW CS(B) tracks
the levels of G′ and guesses which nodes are finite in G′ and therefore do not occur in
G′′. To track G′, the automaton CS(B) stores at each point in time a set S of states that
occurs on each level. The sets S are labeled with a guess of which nodes are finite and
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{q, t} �1 {p, r}

{q, t} �2 {p, r, s}

{r} �3 {q, t} �3 {p}

{r, s} �4 {q, t} �4 {p}

{r, s} �5 {q, t} �5 {p}

{t} �6 {r} �6 {q} �6 {p}

Figure 5.1 : The first seven levels ofG′′, where dashed edges were removed fromG and
dashed states were removed from G′. Nodes are superscripted with their l-labels. Bold
lines denote the pipes of G′′. The lexicographic order of equivalence classes for each
level of G′ is to the right. Edges are removed from G′ at levels 2 and 5 where both q
and r transition to r. When both r and s transition to the same state, they have the same
profile and both edges remain. The removed edges render all but the first two q-node
finite in G′. The stabilization level is 1.
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which are infinite. States that are guessed to be infinite, and thus correspond to nodes
in G′′, are labeled >, and states that are guessed to be finite, and thus omitted from
G′′, are labeled ⊥. In order to track the edges of G′, and thus maintain this labeling,
CS(B) needs to know the lexicographic order of nodes. Thus CS(B) also maintains the
preorder�i over states on the corresponding level of the run DAG. To enforce that states
labeled ⊥ are indeed finite, CS(B) employs the cut-point construction of Miyano and
Hayashi [MH84], keeping an “obligation set” of states currently being verified as finite.
Finally, to ensure the word is rejected, CS(B) must enforce that there are finitely many
F -nodes inG′′. To do so, SA uses a bit b to guess the level from which no more F -nodes
appear in G′′. After this point, F -nodes must be labeled ⊥.

Before we defineCS(B), we formalize preordered subsets and operations over them.
For a setQB of states, define Q = {〈S,�〉 | S ⊆ QB and � is a preorder over S} to be
the set of preordered subsets of QB. Let 〈S,�〉 be an element in Q. When considering
the successors of a state, we want to consider edges that remain in G′. For every state
q ∈ S and σ ∈ Σ, define

ρS,�(q, σ) = {r ∈ ρB(q, σ) | for every q′ ∈ S, if r ∈ ρB(q′, σ) then q′ � q}

Now define the σ-successor of 〈S,�〉 as the tuple 〈ρB(S, σ),�′〉, where for every q, r ∈
S, q′ ∈ ρS,�(q, σ), and r′ ∈ ρS,�(r, σ):
• If q ≺ r, then q′ ≺′ r′.
• If q ≈ r and q′, r′ ∈ FB, then q′ ≈′ r′.
• If q ≈ r and q′, r′ 6∈ FB, then q′ ≈′ r′.
• If q ≈ r, q′ 6∈ FB, and r′ ∈ FB, then q′ ≺′ r′.
We can now define CS(B). The states of CS(B) are tuples 〈S,�, λ, O, b〉 where:

〈S,�〉 ∈ Q is preordered subset of QB; λ : S → {>,⊥} is a labeling indicating which
states are guessed to be finite (⊥) or infinite (>); O ⊆ S is the obligation set; and
b ∈ {0, 1} is a bit indicating whether we have seen the last F -node in G′′. To transition
between states of CS(B), say that t′ = 〈S ′,�′, λ′, O′, b′〉 follows t = 〈S,�, λ, O, b〉
under σ when:

(1) 〈S ′,�′〉 is the σ-successor of 〈S,�〉.
(2) λ′ is such that for every q ∈ S:

• If λ(q) = >, then there exists r ∈ ρS,�(q, σ) such that λ′(r) = >,
• If λ(q) = ⊥, then for every r ∈ ρS,�(q, σ), it holds that λ′(r) = ⊥.

(3) O′ =

{⋃
q∈O ρS,�(q, σ) O 6= ∅,
{q | q ∈ S ′ and λ′(q) = ⊥} O = ∅.

(4) b′ ≥ b.
We want to ensure that runs of AS reach a suffix where all F -nodes are labeled finite.
To this end, given a state of CS(B) 〈S,�, λ, O, b〉, we say that λ is F -free if for every
q ∈ S ∩ F we have λ(q) = ⊥.
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Definition 5.9. For an NBW B = 〈Σ, QB, Q
in
B , ρB, FB〉, define CS(B) be the NBW

〈Σ, QS, Q
in
S , ρS, FS〉 where:

• QS = {〈S,�, λ, O, b〉 | if b = 1 then λ is F -free},
• Qin

S = {〈Qin
B ,�, λ, ∅, 0〉 | for all q, r ∈ Qin, q � r iff q 6∈ FB or r ∈ FB},

• ρS(t, σ) = {t′ | t′ follows t under σ}, and
• FS = {〈S,�, λ, ∅, 1〉}.

We divide runs of CS(B) into two parts. The prefix of a run is the initial sequence
of states in which bi is 0, and the suffix is the remaining sequence states, in which bi is
1. A run without a suffix, where b stays 0 for the entire run, has no accepting states.

Lemma 5.10. Consider a word w ∈ Σω, the run DAG G, and an infinite run t0, t1, . . .
of CS(B) on w. For every i, let ti = 〈Si,�i, λi, Oi, bi〉 and let Si = 〈Si,�i〉.

(1) The states in Si are precisely {q | 〈q, i〉 ∈ G}.
(2) The preorder �i is the projection of � onto states occurring at level i.
(3) For every p ∈ Si, q ∈ Si+1, it holds that q ∈ ρSi(p, σi) iff E ′(〈p, i〉, 〈q, i+1〉).
(4) Oi is empty for infinitely many i’s iff every state labeled ⊥ is not in G′′.

(5) Every state labeled > is in G′′.
This follows from the definition of transitions between states: every >-labeled
state must have a >-labeled child, and thus is infinite in G′ and in G′′.

Proof.
(1) This follows from the definition of σ-successors.
(2) This follows from Lemma 5.5 and the definition of one state in CS(B) following

another.
(3) This follows from the definitions of E ′ and ρS.
(4) This follows from the cut-point construction of Miyano and Hayashi. [MH84].

Theorem 5.11. For every NBW B, it holds that L(CS(B)) = L(B).

Proof. Consider a word w ∈ Σω and the run DAG G. We first make the following claims
about every infinite run t0, t1, . . ., where ti = 〈Si,�i, λi, Oi, bi〉. For convenience, de-
fine Si = 〈Si,�i〉. We exploit Lemma 5.10.(1) to conflate a state q in the ith state with
the node 〈q, i〉, and speak of states in Si being in, being finite in, and being infinite in a
graph G.

We can now prove the theorem. In one direction, assume there is an accepting run
t0, t1, . . .. As this run is accepting, infinitely often Oi = ∅. By Lemma 5.10.(4) and (5),
this implies the states in Si are correctly labeled > when and only when they occur in
G′′. Further, for this run to be accepting we must be able to divide the run into a prefix,
and suffix as specified above. In the suffix no state in F can be labeled >, and thus no
F -nodes occur in G′′ past this point. As only finitely many F -nodes can occur before
this point, by Lemma 5.6 G does not have an accepting path and w 6∈ L(B).
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In the other direction, assume w 6∈ L(B). This implies there are finitely many F -
nodes in G′′, and thus a level j where the last F -node occurs. We construct an accepting
run t0, t1, . . ., demonstrating along the way that we satisfy the requirements for ti+1 to
be in ρS(ti, σi). Given w, the sequence 〈S0,�0〉, 〈S1,�1〉, . . . of preordered subsets is
uniquely defined by ρS . There are many possible labelings λ. For every i, select λi so
that a state q ∈ Si is labeled with > when 〈q, i〉 ∈ G′′, and ⊥ when it is not. Since every
node in G′′ has a child, by Lemma 5.10.(3), for every p ∈ Si where λi(p) = >, there
exist a q ∈ ρSi(p, σi) so that λi+1(q) = >. Further, every node labeled⊥ has only finitely
many descendants, and so for every p ∈ Si where λi(p) = ⊥ and q ∈ ρSi(p, σi), it holds
that λi+1(q) = ⊥. Therefore the transition from λi to λi+1 satisfies the requirements of
ρS . The set O0 = ∅, and given the sets Si and labelings λi, the sets Oi+1, i ≥ 0 are again
uniquely defined by ρS . Finally, we choose bi = 0 when i < j, and bi = 1 for i ≥ j.
Since there are no F -nodes in G′′ past j, no F -node will be labeled > and all states past
j will be F -free. We have satisfied the last requirement for the transitions from every ti
to ti+1 to be valid, rendering this sequence a run. By Lemma 5.10.(4), infinitely often
Oi = ∅, including infinitely often after j, thus there are infinitely many states ti where
bi = 1 and Oi = ∅, and this run is accepting.

If n = |QB|, the number of preordered subsets is roughly (0.53n)n [Var80]. As
there are 2n labelings, and a further 2n obligation sets, the state space of Bs is at most
(2n)n. The slice-based automaton obtained in [KW08] coincides with CS(B), modulo
the details of labeling states and the cut-point construction. Whereas the correctness
proof in [KW08] is given by means of reduced split trees, here we proceed directly on
the run DAG.

5.3 Retrospection
Consider an NBW B. So far, we presented two complementation constructions for B,
generating the NBWsCR

m(B) andCS(B). In this section we present a third construction,
generating an NBW that combines the benefits of the two constructions above. Both
constructions refer to the run DAG of B. In the rank-based approach applied in CR

m(B),
the ranks assigned to a node bound the visits in accepting states yet to come. Thus, the
ranks refer to the future, making CR

m(B) inherently nondeterministic. On the other hand,
the NBW CS(B) refers to both the past, using profiles to prune edges from G, as well
as to the future, by keeping in G′′ only nodes that are infinite in G′. Guessing which
nodes are infinite and labeling them > inherently introduces nondeterminism into the
automaton.

Our first goal in the combined construction is to reduce this latter nondeterminism.
Recall that a labeling is F -free if all the states in F are labeled⊥. Observe that the fewer
labels of⊥ (finite nodes) we have, the more difficult it is for a labeling to be F -free and,
consequently, the more difficult it is for a run of CS(B) to proceed to the F -free suffix in
which b = 1. It is therefore safe for CS(B) to underestimate which nodes to label ⊥, as
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long as the requirement to reach an F -free suffix is maintained. We use this observation
in order to introduce a purely retrospective construction.

For a run DAG G, say that a level k is an F -finite level of G when all F -nodes after
level k (i.e. on a level k′ where k′ > k) are finite in G′. By Lemma 5.7, G is rejecting iff
there is a level after which G′′ has no F -nodes. As finite nodes in G′ are removed from
G′′, we have:

Corollary 5.12. A run DAG G is rejecting iff it has an F -finite level.

5.3.1 Retrospective Labeling

The labeling function λ used in the construction of CS(B) labels nodes by {>,⊥}, with
⊥ standing for “finite” and> standing for “infinite”. In this section we introduce a vari-
ant of λ that again maps nodes to {>,⊥} except that now > stands for “unrestricted”,
allowing us to underestimate which nodes to label ⊥. To capture the relaxed require-
ments on labelings, say that a labeling λ is legal when every ⊥-labeled node is finite in
G′. This enables the automaton to track the labeling and its effect on F -nodes only after
it guesses that an F -finite level k has been reached: all nodes at or before level k (i.e.
on a level k′ where k′ ≤ k) are unrestricted, whereas F -nodes after level k and their
descendants are required to be finite. The only nondeterminism in the automaton lies in
guessing when the F -finite level has been reached. This reduces the branching degree
of the automaton to 2, and renders it deterministic in the limit.

The suggested new labeling is parametrized by the F -finite level k. The labeling λk

is defined inductively over the levels of G. Let Si be the set of nodes on level i of G.
For i ≥ 0, the function λk : Si → {>,⊥} is defined as follows:
• If i ≤ k, then for every u ∈ Si we define λk(u) = >.
• If i > k, then for every u ∈ Si:

– If u is an F -node, then λk(u) = ⊥.
– Otherwise, λk(u) = λk(v), for a node v where E ′(v, u).

For λk to be well defined when i > k and u is not an F -node, we need to show that λk(u)
does not depend on the choice of the node v where E ′(v, u) holds. By Lemma 5.3, all
parents of a node in G′ belong to the same equivalence class. Therefore, it suffices to
prove that all nodes in the same class share a label: for all nodes u and u′, if u′ ≈|u| u
then λk(u) = λk(u′). The proof proceeds by an induction on i = |u|. Consider two
nodes u and u′ on level i where u′ ≈i u. As a base case, if i ≤ k, then u and u′ are
labeled>. For i > k, if u is an F -node, then u′ is also an F -node and λk(u) = λk(u′) =
⊥. Finally, if u and u′ are both non-F -nodes, recall that all parents of u are in the same
equivalence class V . As u ≈i u′, Lemma 5.3 implies that all parents of u′ are also in V
By the induction hypothesis, all nodes in V share a label, and thus λk(u) = λk(u′).

Lemma 5.13. For a run DAG G and k ∈ N, the labeling λk is legal iff k is an F -finite
level for G.
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Proof. If λk is legal, then every ⊥-labeled node is finite in G′. Every F -node after level
k (i.e. on a level i where i > k) is labeled ⊥, and thus k is an F -finite level for G. If λk

is not legal, then there is a ⊥-labeled node u that is infinite in G′. Every ancestor of u is
also infinite. Let u′ be the earliest ancestor of u (possibly u itself) so that λk(u′) = ⊥.
Observe that only nodes after level k can be ⊥-labeled, and so u′ is on a level i > k.
It must be that u′ is an F -node: otherwise it would inherit its parents’ label, and by
assumption the parents of u′ are >-labeled. Thus, u′ is an F -node after level k that is
infinite in G′, and k is not an F -finite level for G.

Corollary 5.14. A run DAG G is rejecting iff, for some k, the labeling λk is legal.

5.3.2 From Labelings to Rankings

In this section we derive an odd ranking for G from the function λk, thus unifying the
retrospective analysis behind λk with the rank-based analysis of [KV01]. Consider again
the DAG G′ and the function λk. Recall that every equivalence class U has at most two
child equivalence classes, one F -class and one non-F -class. After the F -finite level k,
only non-F -classes can be labeled >. Hence, after level k, every >-labeled equivalence
class U can only have a one child that is >-labeled. For every class U on level k, we
consider this possibly infinite sequence of >-labeled non-F -children. The odd ranking
we are going to define, termed the retrospective ranking, gives these sequences of >-
labeled children odd ranks. The⊥-labeled classes, which lie between these sequences of
>-labeled classes, are assigned even ranks. The ranks increase in inverse lexicographic
order, i.e. the maximal >-labeled class in a level is given rank 1. As with λk, the
retrospective ranking is parametrized by k. The primary insight that allows this ranking
is that there is no need to distinguish between two adjacent⊥-labeled classes. Formally,
we have the following.

Definition 5.15 (k-retrospective ranking). Consider a run DAG G, k ∈ N, and a label-
ing λk : G → {>,⊥}. Let m = 2|QB \ FB|. For a node u on level i of G, define
α(u) to be the number of >-labeled classes on level i lexicographically larger than u:
α(u) = |{[v] | λk(v) = > and u ≺i v}|. The k-retrospective ranking of G′ is the func-
tion rk : V → {0..m} defined for every node u on level i as follows.

rk(u) =


m if i ≤ k,
2α(u) if i > k and λk(u) = ⊥,
2α(u) + 1 if i > k and λk(u) = >.

Note that rk is tight. As defined in Section 2.2.1, a ranking is tight if there exists an
i ∈ N such that, for every level l ≥ i, all odd ranks below max rank(r, l) appear on
level l. For rk this level is k + 1, after which each >-labeled class is given the odd rank
greater by two than the rank of the next lexicographically larger >-labeled class.
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Lemma 5.16. For every k ∈ N, the following hold:
(1) If u ≺|u| u′ then rk(u) ≥ rk(u′).
(2) If (u, v) ∈ E ′, then rk(u) ≥ rk(v).

Proof. As both claims are trivial when u is at or before level k, assume u is on level
i > k. To prove the first claim, note that α(u) ≥ α(u′): every class, >-labeled or
not, that is larger than u′ must also be larger than u. If α(u) > α(u′), then (1) follows
immediately. Otherwise α(u) = α(u′), which implies that λk(u′) = ⊥: otherwise [u′]
would be a >-labeled equivalence class larger than u, but not larger than itself. Thus
rk(u′) = 2α(u), and rk(u) ∈ {2α(u), 2α(u)+1} is at least rk(u′).

As a step towards proving the second claim, we show that α(u) ≥ α(v). Consider
every >-labeled class [v′] where v ≺i+1 v

′. The class [v′] must have a >-labeled parent
[u′]. Since v ≺i+1 v

′, the contrapositive of Lemma 5.5, part 1, entails that u �i u′. By
the definition of λk, the class [u′] can only have one >-labeled child class: [v′]. We have
thus established that for every >-labeled class larger than v, there is a unique >-labeled
class larger than u, and can conclude that α(u) ≥ α(v). We now show by contradiction
that rk(u) ≥ rk(v). For rk(u) < rk(v), it must be that α(u) = α(v), that rk(u) = 2α(u),
and that rk(v) = 2α(u) +1. In this case, λk(u) = ⊥ and λk(v) = >. Since a ⊥-labeled
node cannot have a >-labeled child in G′, this is impossible.

When k is an F -finite level of G, the k-retrospective ranking is an m-bounded odd
ranking.

Lemma 5.17. For a run DAG G and k ∈ N, the function rk is a ranking bounded by m.
Further, if the labeling λk is legal then rk is an odd ranking.

Proof. There are three requirements for rk to be a ranking bounded by m:
(1) Every F -node must have an even rank. At or before level k, every node has rank

m, which is even. After k only >-labeled nodes are given odd ranks, and every
F -node is labeled ⊥.

(2) For every (u, v) ∈ E, it must hold that rk(u) ≥ rk(v). If u is at or before level
k, then it has the maximal rank of m. If u is after level k, we consider two cases:
edges in E ′, and edges in E \ E ′. For edges in E ′, this follows from Lemma 5.16
(2). For edges (u, v) ∈ E \ E ′, we know there exists a u′ where u ≺|u| u′ and
(u′, v) ∈ E ′. By Lemma 5.16, rk(u) ≥ rk(u′) ≥ rk(v).

(3) The rank is bounded by m. No F -node can be >-labeled. Thus the maximum
number of>-labeled classes on every level is |QB \FB|. The largest possible rank
is given to a node smaller than all >-labeled classes, which must be be a F -node
and ⊥-labeled. Thus, this node is given a rank of at most m = 2|QB \ FB|.

It remains to show that if λk is legal, then rk is an odd ranking. Consider an in-
finite path u0, u1, . . . in G. We demonstrate that for every i > k such that rk(ui) is
an even rank e, there exists i′ > i such that rk(ui′) 6= e. Since a path cannot in-
crease in rank, this implies rk(ui′) < e. To do so, define the sequence Ui, Ui+1, . . ., of
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sets of nodes inductively as follows. Let Ui = {v | rk(v) = e}. For every j ≥ i, let
Uj+1 = {v | v′ ∈ Uj, (v′, v) ∈ E ′}. As rk(v) is even only when λk(v) = ⊥, if λk is
legal then every node given an even rank (such as e) must be finite in G′. Therefore
every element of Ui is finite in G′, and thus at some i′ > i, the set Ui′ is empty. Since
Ui′ is empty, to establish that rk(ui′) 6= e, it is sufficient to prove that for every j, if
rk(uj) = e, then uj ∈ Uj .

To show that rk(uj) = e entails uj ∈ Uj , we prove a stronger claim: for every j ≥ i
and v on level j, if uj �j v and rk(v) = e, then v ∈ Uj . We proceed by induction over j.
For the base case of j = i, this follows from the definition of Ui. For the inductive step,
take a node v on level j+1 where rk(v) = e and uj+1 �j+1 v. We consider two cases. If
rk(uj+1) 6= e then the path from ui to uj+1 entails that rk(uj+1) < e, and this case of the
subclaim follows from Lemma 5.16 (1). Otherwise, it holds that rk(uj+1) = e, and thus
rk(uj) = e. Let u′ and v′ be nodes on level j so that (u′, uj+1) ∈ E ′ and (v′, v) ∈ E ′.
As uj+1 �j+1 v, the contrapositive of Lemma 5.5, part 1, entails that u′ �j v′. Further,
since (u′, uj+1) ∈ E ′ and (uj, uj+1) ∈ E, we know uj �j u′. By transitivity we can thus
conclude that uj �j v′, which along with Lemma 5.16 (1) entails rk(u′) = e ≥ rk(v′).
As (v′, v) ∈ E, Lemma 5.16 (2) entails that rk(v′) ≥ rk(v) = e. Thus rk(v′) = e, and
by the inductive hypothesis v′ ∈ Uj . As E ′(v′, v) holds, by definition v ∈ Uj+1, and our
subclaim is proven.

The ranking of Definition 5.15 is termed retrospective as it relies on the relative
lexicographic order of equivalence classes; this order is determined purely by the history
of nodes in the run DAG, not by looking forward to see which descendants are infinite
or F -free in some subgraph of G.

Example 5.18. Figure 5.2 displays λ2 and the 2-retrospective ranking of our running
example. In the prospective ranking (Figure 2.2), the nodes for state t on levels 3 and
4 are given rank 0, like other t-nodes. In the absence of a path forcing this rank, their
retrospective rank is 2.

We are now ready to define a new construction, generating an NBW CU(B), which
combines the benefits of the previous two constructions. The automaton CU(B) guesses
the F -finite level k, and uses level rankings to check if the k-retrospective ranking is an
odd ranking. We partition the operation of CU(B) into two stages. Until the level k, the
NBW CU(B) is in the first stage, where it deterministically tracks preordered subsets.
After level k, the NBW CU(B) moves to the second stage, where it tracks ranks. This
stage is also deterministic. Consequently, the only nondeterminism in CU(B) is indeed
the guess of k. Before defining CU(B), we need some definitions and notations.

Lemma 5.17 gives us an alternative odd ranking to the one of [KV01]. We now
provide an NBW that uses level rankings to guess this retrospective ranking. In com-
parison to the slice-based construction in Definition 5.9, employing level rankings gives
us a tighter bound and affords further improvements, discussed later. In comparison to
the rank-based construction in Definition 2.3, this automaton needs make only a single
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Figure 5.2 : The run DAG G′, where 2 is an F -finite level. Dashed edges were removed
from G′. The labels of λ2 and ranks in r2 are displayed as superscripts and subscripts,
respectively. The bold lines display the sequences of >-labeled classes in G′. The
lexicographic order of states is repeated on the right.
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guess on each accepting run: what is the F -finite level k. Before and after this guess
we proceed deterministically. Before k, our automaton tracks preordered subsets. At
level k our automaton moves to ranks, and these ranks proceed stably. We thus obtain
an automaton with a linear-sized transition relation. We now introduce the machinery to
define the automaton.

Recall that Q denotes the set of preordered subsets of QB, and Rm
T the set of tight

level rankings bounded by m. We distinguish between three types of transitions of
CU(B): transitions within the first stage, transitions from the first stage to the second,
and transitions within the second stage. The first type of transition is similar to the
one taken in CS(B), by means of the σ-successor relation between preordered subsets.
Below we explain in detail the other two types of transitions. Recall that in the retro-
spective ranking rk, each class in G′ labeled > by λk is given a unique odd rank. Thus
the rank of a node u depends on the number of >-labeled classes larger than it, denoted
α(u).

We begin with transitions where CU(B) moves between the stages: from a pre-
ordered subset 〈S,� 〉 to a level ranking. On level k + 1, a node is labeled > iff it
is an non-F -node. Thus for every q ∈ S, let β(q) = |{[v] | v ∈ S \ FB, u ≺ v}| be
the number of non-F -classes larger than q. We now define torank : Q → Rm

T . Let
torank(〈S,�〉) be the tight level ranking f where for every q:

f(q) =


⊥ if q 6∈ S,
2β(q) if q ∈ S ∩ FB,

2β(q) +1 if q ∈ S \ FB.

We now turn to transitions within the second stage, between level rankings. The rank
of a node v is inherited from its predecessor u inG′. However, λk may label a finite class
>. If a >-labeled class larger than u has no children, then α(u) ≥ α(v). In this case
the rank of v decreases. Given a level ranking f , for every q ∈ QB where f(q) 6= ⊥,
let γ(q) = |{f(q′) | q′ ∈ QB, f(q′) is odd, f(q′) < f(q)}| be the number of odd ranks
in the range of f lower than f(q). We define the function tighten : Rm → Rm

T . Let
tighten(f) be the tight level ranking f ′ where for every q:

f ′(q′) =


⊥ if f(q) = ⊥,
2γ(q) if f(q) 6= ⊥ and q ∈ FB,

2γ(q) +1 if f(q) 6= ⊥ and q 6∈ FB.

Note that if f is tight, then f ′ = f , and that while tighten may merge two even
ranks, it cannot merge two odd ranks.

For a level ranking f , letter σ ∈ Σ, and state q′ ∈ QB, define pred(q′, σ, f) =
{q | f(q) 6= ⊥, q′ ∈ ρB(q, σ)} be the predecessors of q′ given a non-⊥ rank by f . The
lowest ranked element in this set corresponds to the predecessor in G with the maximal
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profile. With two exceptions, q′ will inherit this lowest rank. First, tighten might
shift the rank down. Second, if q′ is in F , it cannot be given an odd rank. For n ∈ N, let
bnceven be: n when n is even; and n−1 when n is odd. Define the σ-successor of f to
be tighten(f ′) where for every q′ ∈ QB:

f ′(q′) =


⊥ if pred(q′, σ, f) = ∅,
bmin({f(q) | q ∈ pred(q′, σ, f)})ceven if pred(q′, σ, f) 6= ∅ and q′ ∈ F ,
min({f(q) | q ∈ pred(q′, σ, f)}) if pred(q′, σ, f) 6= ∅ and q′ 6∈ F .

Definition 5.19. For an NBW B = 〈Σ, QB, Q
in
B , ρB, FB〉, let CU(B) be the NBW

〈Σ,Q ∪ (Rm
T × 2Q), Qin

U , ρU ,R
m
T × {∅}〉, where

• Qin
L = {〈Qin

B ,�in〉} where �in is such that for all q, r ∈ Qin
B , q � r iff q 6∈

FB or r ∈ FB.
• ρL(S, σ) = {S′} ∪ {〈torank(S′), ∅〉}, where S′ is the σ-successor of S.
• ρL(〈f,O〉, σ) = {〈f ′, O′〉} where f ′ is the σ-successor of f

and O′ =

{
ρB(O, σ) \ odd(f ′) if O 6= ∅,
even(f ′) if O = ∅.

Lemma 5.20. Consider a word w ∈ Σω, the run †G of B on w, and an infinite run
〈S0,�0〉, . . . , 〈Sk,�k〉, 〈fk+1, Ok+1〉, 〈fk+2, Ok+2〉, . . . of CU(B) on w. For i > k, define
Si = {q | fi(q) 6= ⊥}. The following hold:

(1) The states in Si are precisely {q | 〈q, i〉 ∈ G}.
(2) The preorder �i is the projection of � onto states occurring at level i.
(3) For every i ≤ k, state q ∈ Si, and s ∈ Si+1, it holds that s ∈ ρ〈Si,�i〉(q, σi) iff

E ′(〈q, i〉, 〈s, i+1〉).
(4) For every i > k and q, s ∈ Si, if fi(q) > fi(s), then 〈q, i〉 ≺i 〈s, i〉.
(5) For every i > k and q, s ∈ Si, if fi(s) is odd and 〈q, i〉 ≺i 〈s, i〉, then fi(q) >

fi(s).
(6) For every i ≥ k and q ∈ Si, it holds that fi(q) is even iff λk(〈q, i〉) = ⊥.

Proof.
(1) This follows by the definitions of σ-successors of preordered subsets and σ-successors

of level rankings.
(2) This follows from Lemma 5.5 and the definition of σ-successors.
(3) This follows from the definitions of E ′ and ρ〈Si,�i〉.

(4),(5) We simultaneously prove (4) and (5) by induction. As a base case, both hold
from the definition of torank. As the inductive step, assume both hold for
level i. To prove step (4), take two states q, s ∈ Si+1 where fi+1(q) > fi+1(s).
Each state has a parent in G′, i.e. a q′ and s′ so that E ′(q′, q) and E ′(s′, s). By
the inductive hypothesis, this implies fi(q′) = min({fi(q′) | q ∈ ρB(q′, σi)}) and
fi(s

′) = min({fi(s′) | s ∈ ρB(s′, σi)}). We analyze two cases. When fi(q′) >



63

fi(s
′), by the inductive hypothesis we have 〈q′, i〉 ≺i 〈s′, i〉. Since E ′(q′, q) and

E ′(s′, s), by Lemma 5.3 this implies 〈q, i+1〉 ≺i+1 〈s, i+1〉. Alternately, when
fi(q

′) = fi(s
′), then for fi+1(q) > fi+1(s) to hold, it must be that fi(q′) is odd,

s ∈ F , and q 6∈ F . Since fi(q′) = fi(s
′) is odd, by the inductive hypothesis

we have that 〈q′, i〉 ≡ 〈s′, i〉. By Lemma 5.3 we then have h〈q,i+1〉 = h〈q′,i〉0 <
h〈s,i+1〉 = h〈s′,i〉1.
To prove step (5), consider when fi+1(s) is odd and 〈q, i+1〉 ≺ 〈s, i+1〉. This
implies that h〈s,i+1〉 = h〈s′,i〉0. Thus in order for 〈q, i+1〉 ≺i+1 〈s, i+1〉 to hold,
〈q′, i〉 ≺i 〈s′, i〉 must hold. By the inductive hypothesis, this implies fi(q′) >
fi(s

′). Before the tighten function reduces ranks, since fi+1(q) = bfi(q′)ceven,
and fi+1(s) is odd, it must be that fi+1(q) > fi+1(s). The tighten function
can shift fi+1(q) down more than fi+1(s) only when an odd rank between fi+1(s)
and fi+1(q) becomes empty. Since this odd rank must be two greater than fi+1(s),
reducing fi+1(q) by 2 cannot change that fi+1(q) > fi+1(s). We now proceed
with the proof of Theorem 5.21.

(6) This follows from the definition of λk, which assigns ⊥ to F -nodes and their de-
scendants in G′, and fi, which assigns even ranks to states in F . By (4), the parent
of a node in G′ will be the parent with the lowest rank. Thus the descendants of
F -nodes in G′ will inherit the even rank of their parent.

The proof of Theorem 5.21 is based on from Lemmas 2.2, 5.17, 5.20 and Corol-
lary 5.14.

Theorem 5.21. For every NBW B, it holds that L(CU(B)) = L(B).

Proof. Consider a word w ∈ Σω and the run DAG G. In one direction, assume there
exists an accepting infinite run 〈S0,�0〉, . . . , 〈Sk,�k〉, 〈fk+1, Ok+1〉, 〈fk+2, Ok+2〉, . . . of
CU(B) on w. For every i > k, define Si = {q | fi(q) 6= ⊥}. We construct a ranking r
of G as follows. For all nodes u on level i ≤ k, r(u) = m. For all nodes 〈q, i〉 where
i > k, r(〈q, i〉) = fi(q). We note that each state is given at most the minimum rank of
all its parents, and that no state in F is given an odd rank, thus r is in fact a ranking.
That r is an odd ranking follows from the cut-point construction.

In the other direction, assume G is a rejecting run DAG. By Lemma 5.17 there exists
a k so that rk is an odd ranking. We construct a run S0, . . . , Sk, 〈fk+1, Ok+1〉, 〈fk+2, Ok+2〉, . . .,
which is uniquely defined by the transition relation of Definition 5.19. Further, the tran-
sition relation of Definition 5.19 is total, so this run is infinite. To demonstrate that this
run is accepting, we will prove below that for every i > k and q ∈ Si, it holds that
fi(q) = rk(〈q, i〉). Since rk is an odd ranking and the cut-point construction is identical
to that of Definition 2.3, this is sufficient to show the run is accepting.

Recall that if λ(〈q, i〉) = ⊥, then rk(〈q, i〉) = 2α(〈q, i〉), and otherwise rk(〈q, i〉) =
2α(〈s, i〉) +1. We can thus use Lemma 5.20.(6) to simplify our claim. It suffices to
show that for every i > k and q ∈ Si, we have α(〈q, i〉) = bfi(q)/2c. We proceed by
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induction over i > k. As the base case, consider a node 〈q, k〉. Recall that α(〈q, k〉) =
|{[v] | λk(v) = >, 〈q, k〉 ≺k v}|. By the definition of λk, a node on level k is labeled ⊥
only when it is an F -node. All other nodes inherit the label of their parents, and every
node on level k is >-labeled. From Lemma 5.20.(2), we then have that α(〈q, k + 1〉) =
|{[v] | v ∈ S \ F, u ≺ v}|, which is the definition of β(q) = bfi(q)/2c.

Inductively, assume the claim holds for every q ∈ Si. We show for every s ∈ Si+1, it
holds that α(〈s, i+1〉) = bfi+1(s)/2c. Let q be s’s parent in G′, i.e. E ′(q, s). Take
the set P = {[v] | λk(v) = >, 〈q, i〉 ≺i v} of >-labeled equivalence classes greater
than q, By the inductive hypothesis, bfi(q)/2c = α(〈q, i〉) = |P |. By the defini-
tion of rk, each [v] ∈ P has a unique odd rank assigned to each of its elements. By
Lemma 5.20.(5), for each [v] this odd rank is smaller than fi(q). Consider P ’s subset
Ps = {[v] | [v] ∈ P, [v] has >-labeled child class on level i+1}. Define Pe = P \ Ps
to be the complementary set: pipes that die on level i. By Lemma 5.20.(5), before the
tighten operation is applied, every element of Pe has a corresponding odd rank that
is unoccupied on level i +1. Since q is clearly not in an element of Pe, this odd rank
must be less than bfi(q)beven. Thus the final rank assigned to s, after tighten, is ei-
ther fi(q)− 2|Pe| or bfi(q)− 2|Pe|ceven. In both cases bfi+1(s)/2c = bfi(q)/2c − |Pe|.
By the inductive hypothesis this is equivalent to α(〈q, i〉) − |Pe| = |P | − |Pe|. By the
definition of Ps and Pe, |P | − |Pe| = |Ps|. By Lemma 5.3, every >-labeled child of
a class in Ps is lexicographically larger than 〈s, i+1〉. As every >-labeled child must
have a unique parent in Ps, we conclude that |Ps| = α(〈s, i+1〉).

Analysis: Like the tight-ranking construction in Section 2.2.1, the automaton CU(B)
operates in two stages. In both, the second stage is the set of tight level rankings and
obligation sets. The tight-ranking construction uses sets of states in the first stage, and
is bounded by the size of the second stage: (0.96n)n [FKV06]. The automaton CU(B)
replaces the first stage with preordered subsets. As the number of preordered subsets is
O(( n

e ln 2
)n) ≈ (0.53n)n [Var80], the size of CU(B) remains bounded by (0.96n)n. This

can be improved to (0.76n)n: see below. Further, CU(B) has a very restricted transition
relation: states in the first stage only guess whether to remain in the first stage or move
to the second, and have nondeterminism of degree 2. States in the second stage are
deterministic. Thus the transition relation is linear in the number of states and size of
the alphabet, and CU(B) is deterministic in the limit.

5.4 Variations on the Retrospective Construction
In this section we present two variations of CU(B): one based on Schewe’s variant
of the rank-based construction that achieves a tighter bound, and one the is amenable to
Tabakov and Vardi’s symbolic implementation of the rank-based construction. Schewe’s
construction alters the cut-point of the rank-based construction to check only one even
rank at a time. Doing so drastically reduces the size of the cut-point: intuitively, we can
avoid carrying the obligation set explicitly. Instead we could carry the current rank i we
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are checking, and add to the domain of our ranking function a single extra symbol c that
indicates the state is currently being checked, and thus is of rank i. For an analysis of the
resulting state space, please see [Sch09a]. For clarity , we do not remove the obligation
set from the construction. Instead, states in this variant of the automaton carry with them
the index i, and in a state 〈f,O, i〉, it holds that O ⊆ {q | f(q) = i}. For a level ranking
f , let mr(f) be the largest rank in f . Note that mr(f), for a tight ranking, is always odd.

Definition 5.22. For an NBW B = 〈Σ, QB, Q
in
B , ρB, FB〉, let CU

Schewe(B) be the NBW
〈Σ,Q ∪ (Rm × 2QB ×N), Qin

U , ρSch, FSch〉, where
• ρSch(S, σ) = {〈torank(S′), ∅, 0〉} ∪ {S′}, where S′ is the σ-successor of S.
• ρSch(〈f,O, i〉, σ) = {〈f ′, O′, i′〉} where

f ′ is the σ-successor of f

i′ =

{
i if O 6= ∅,
(i+2) mod (mr(f ′) +1) if O = ∅,

and O′ =

{
ρB(O, σ) \ odd(f ′) if O 6= ∅,
{q | f ′(q) = i′} if O = ∅.

• FSch = Rm × {∅} × {0}

Theorem 5.23. For every NBW B, it holds that L(CU
Schewe(B)) = L(B).

Proof. Given a word w, we relate the runs of CU
Schewe(B) and CU(B). As both au-

tomata are comprised of two internally deterministic stages, with a nondeterministic
transition, each index k defines a unique run for each automaton. As the first stage of
both automata are identical, and the second stage is deterministic, given a fixed k let
pL = 〈S0,�0〉, . . . , 〈Sk,�k〉, 〈fk+1, Ok+1〉, 〈fk+2, Ok+2〉, . . . be the run of CU(B) on w
that moves to the second stage on the kth transition, and let the corresponding run of
CU

Schewe(B) be pSch〈S0,�0〉, . . . , 〈Sk,�k〉, 〈f ′k+1, O
′
k+1, nk+1〉, 〈f

′
k+2, O

′
k+2, nk+2〉, . . .We

show that pL is accepting iff pSch is accepting, or more precisely that pL is rejecting iff
pSch is rejecting. First, we note that the level rankings fk+1, fk+2, . . . and f ′k+1, f

′
k+2, . . .

in both automata are defined by torank(〈Sk,�k〉) and the σ-successor relation, and
thus for every j > k, it holds fj = f ′j .

In one direction, assume that pSch is rejecting. This implies there is some j > k so
that for every j′ > j, O′j′ is non-empty. In turn, this implies that there is a sequence
qj, qj+1, . . . of states so that, for every j′ ≥ j, we have that qj′ ∈ O′j′ , that fj′(qj′) = nj ,
and that qj′+1 ∈ ρB(qj′ , wj′). If there is no l > j where Ol = ∅, then we have that pL is
rejecting. Alternately, if there is such a l > j, then ql+1 ∈ Ol+1, and for every l′ > l we
have ql′ ∈ Ol′ . Again, this implies pL is rejecting.

In the other direction, assume that pL is rejecting. This implies there is some j > k
so that for every j′ > j the set Oj′ is non-empty. In turn, this implies that there is an
even rank i and sequence qj, qj+1, . . . of states so that, for every j′ ≥ j, we have that
qj′ ∈ Oj′ , that fj′(qj′) = i, and that qj′+1 ∈ ρB(qj′ , wj′). We now consider the indexes
nj′ in pSch. If there is some j′ > j where nj′ = i, then for every l ≥ j′, it will hold
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that ql ∈ O′l, and pSch will be rejecting. Alternately, if there is no j′ > j where nj′ = i,
then it must be that the indexes nj′ stops cycling through the even ranks. This implies
the obligation set stops emptying, and therefore that pSch must be rejecting.

To symbolically encode a deterministic-in-the-limit automaton, we avoid storing the
preorders. To encode the preorder in a BDD as a relation would require a quadratic
number of variables, increasing the size unacceptably. Alternately, we could associate
each state with its index in the preorder. Unfortunately, calculating the index of each
state in the succeeding preorder would require a global compacting step, to remove
indices that had become empty. To handle this difficulty, we simply store only the subset
in the first stage, and transition to an arbitrary level ranking when we move to the second
stage. This maintains determinism in the limit, and cannot result in false accepting
run: we can always construct an odd ranking from the sequence of level rankings. The
construction and a small example encoding are provided below.

Definition 5.24. For an NBW B = 〈Σ, QB, Q
in
B , ρB, FB〉, let CU

Symb(B) be the NBW
〈Σ, 2QB ∪ (Rm × 2QB), Qin

B , ρSymb,R
m × {∅}〉, where

• ρSymb(S, σ) = {ρB(S, σ)} ∪
{〈f, ∅〉 | f ∈ Rm and for all q ∈ QB, f(q) 6= ⊥ iff q ∈ ρB(S, σ)}.

• ρSymb(〈f,O〉, σ) = ρL(〈f,O〉, σ)

Theorem 5.25. For every NBW B, it holds that L(CU
Symb(B)) = L(B).

Proof. In one direction, assumew ∈ L(B). This impliesw ∈ L(CU(B)), and thus there
exists an accepting run 〈S0,�0〉, . . . , 〈Sk,�k〉, 〈fk+1, Ok+1〉, 〈fk+2, Ok+2〉, . . . of CU(B)
on w. We show that S0, . . . , Sk, 〈fk+1, Ok+1〉, 〈fk+2, Ok+2〉, . . . is an accepting run of
CU

Symb(B) on w. We note that in the second stage transitions and accepting states in
CU

Symb(B) are identical to CU(B). Thus to show that this is an accepting run CU
Symb(B),

we only need show that the run is valid from 0 to k + 1,
By definition, S0 = Qin

B is the initial state of CU
Symb(B). For every i, 0 ≤ i <

k, it holds that Si+1 = ρB(Si, wi) ∈ ρSymb(Si, wi). Finally, consider the transition
from Sk to 〈fk+1, Ok+1〉. Let 〈Sk+1,�k+1〉 be the σ-successor of 〈Sk,�k〉. By def-
inition, Sk+1 = ρB(Sk, wk). By the transition relation of CU(B), we have fk+1 =
torank(〈Sk+1,�k+1〉) and Ok+1 = ∅. By the definition of torank, for every q ∈
QB it holds that fk+1(q) = ⊥ iff q 6∈ Sk+1. Thus 〈fk+1, Ok+1〉 ∈ ρSymb(Sk), and
S0, . . . , Sk, 〈fk+1, Ok+1〉, 〈fk+2, Ok+2〉, . . . is an accepting run of CU

Symb(B) on w.
In the other direction, if w ∈ L(CU

Symb(B)), this implies the existence of an accept-
ing run S0, . . . , Sk, 〈fk+1, Ok+1〉, 〈fk+2, Ok+2〉, . . . of CU

Symb(B) on w. From this run we
construct an odd ranking of G, which implies w ∈ L(B). Define the ranking function
f so that for every 〈q, i〉 ∈ G: if i ≤ k then r(〈q, i〉) = m = 2|QB \ FB|; and if i > k
then r(〈q, i〉) = fi(q). As demonstrated in the proof of Theorem 5.21, the definition of
σ-successors and G implies that when i > k, it holds that fi(q) 6= ⊥. Similarly, by the
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definition of σ-successors no path in G can increase in rank under r. We conclude that
r is a valid ranking function.

To demonstrate that r is an odd ranking, assume by way of contradiction that there
is a path 〈q0, 0〉, 〈q1, 1〉, . . . in G that gets trapped in an even rank. Let j be the point at
which this path gets trapped, or k + 1, whichever is later. If there is no j′ > j such that
Oj′ = ∅, then there is no accepting state after j, and the run would not be accepting. If
there is such a j′, then Oj′+1 would contain qj′+1, as fj′+1(qj′+1) is even. At every point
j′′ > j′ + 1, the obligation set will contain qj′′ , and thus there will be no accepting state
after j′, and the run would not be accepting. However, we have that the run is accepting
as a premise. Therefore no path in G gets trapped in an even rank, r is an odd ranking,
and by Lemma 2.2 w ∈ L(B).

As an example, Figure 5.3 is the SMV encoding of the complement of a two-state
automaton.

5.5 Discussion
We have unified the slice-based and rank-based approaches by phrasing the former in
the language of run DAGs. This enables us to define and exploit a retrospective ranking,
providing a deterministic-in-the-limit complementation construction that does not em-
ploy determinization. Experiments show that the more deterministic automata are, the
better they perform in practice [ST03]. By avoiding determinization, we reduce the cost
of such a construction from (n2/e)n to (0.76n)n [Pit06].

In addition, our transition generates a transition relation that is linear in the number
of states and size of the alphabet. Schewe demonstrated how to achieve a similar linear
bound on the transition relation, but the resulting relation is larger and is not determin-
istic in the limit [Sch09a].

The use of level rankings affords several improvements from existing research on the
rank-based approach. First, the cut-point construction of Miyano and Hayashi [MH84]
can be improved. Schewe’s construction only checks one even rank at a time, reducing
the size of the state space to (0.76n)n, only an n2 factor from the lower bound [Sch09a].
As Schewe’s approach does not alter the progression of the level rankings, it could be
applied directly to the second stage of Definition 5.19. The resulting construction inher-
its the asymptotic state-space complexity of [Sch09a]. Second, symbolically encoding
a preorder is complicated. In contrast, ranks are easily encoded, and the transition be-
tween ranks is nearly trivial to implement in SMV [TV07]. By changing the states in first
stage of CU(B) from preordered subsets to simple subsets, and guessing the appropriate
transition to the second stage, we obtain a symbolic representation while maintaining
determinism in the limit. This approach sacrifices the linear-sized transition relation,
but this is less important in a symbolic encoding. Finally, the subsumption relations of
Doyen and Raskin [DR09] could be applied to the second stage of the automaton, while
it is unclear if it could be applied at all to the slice-based construction.
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typedef STATE 0..1; /* Size for complemented automaton: 2, maximum allowed rank = 2*/
module main() {
letter: {a,b}; /* The transition letter */
rank: array STATE of 0..3; /* The value 3 represents bottom */
phase : 0..1; /* The automaton phase, ranks 2 or 3 in phase 0*/
subset: array STATE of boolean; /* The obligation set vector */
init(rank) := [2,2,2,2]; /* 2 to initial states, 3 to others */
init(subset) := [1,1,1,1]; /* initially rejecting */
init(phase) := 0;
next(phase) := {i : i=0..1, i >= phase};

/* Define the rank of states in the next time step. Cases fall through. */
/* state 0 has transition from 0 on a and b */
next(rank[0]) := case {

rank[0]=3 : 3;
next(phase)=0 : 2;
phase=0 & next(phase)=1 : {i : i=0..2, i <= rank[0]};
phase=1 : rank[0];

};

/* 1 has transition from 1 on a and from 0 on b. 1 is accepting */
next(rank[1]) := case {

letter=a & rank[1]=3 : 3;
letter=a & next(phase)=0 : 2;
letter=a & phase=0 & next(phase)=1 : {i : i=0..2, i <= rank[1] & i in {0,2}};
letter=a & phase=1 : {i : i=0..2, i in {rank[1], rank[1]-1} & i in {0,2}};
letter=b & rank[0]=3 : 3;
letter=b & next(phase)=0 : 2;
letter=b & phase=0 & next(phase)=1 : {i : i=0..2, i <= rank[0] & i in {0,2}};
letter=b & phase=1 : {i : i=0..2, i in {rank[0], rank[0]-1} & i in {0,2}};

};

/* Defining the transitions of the P-set */
if (next(phase)=0) {

forall (i in STATE) next(subset[i]) := 1;
} else {

if (subset=[0,0,0,0]) { /* The P-set is empty */
forall (i in STATE) next(subset[i]) := next(rank[i]) in {0,2};

} else { /* The P-set is non-empty */
if (letter=a) {
next(subset[0]) := (subset[0]) & next(rank[0]) in {0,2};
next(subset[1]) := (subset[1]) & next(rank[1]) in {0,2};

} else { /* letter=b */
next(subset[0]) := (subset[0]) & next(rank[0]) in {0,2};
next(subset[1]) := (subset[0]) & next(rank[1]) in {0,2};

}}}
SPEC 0;
FAIRNESS subset=[0,0,0,0];
}

Figure 5.3 : The SMV encoding of theCU
Symb(B), for the two-state automaton consisting

of states p and q of Figure 2.1.
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From a broader perspective, we find it very interesting that the prospective and
retrospective approaches are so strongly related. Odd rankings seem to be inherently
“prospective,” depending on the descendants of nodes in the run DAG. By investigat-
ing the slice-based approach, we are able to pinpoint the dependency on the future to a
single component: the F -free level.



70

Chapter 6

Profile-Based Determinization

This chapter presents a mathematically crisp determinization construction, based on the
notion of profiles from the previous chapter. In this chapter , we consider the equiva-
lence classes of nodes induced by profiles, in which two nodes are in the same class if
they have the same profile. We show that profiles turn the run DAG into a binary tree,
with bounded width, over the equivalence classes. (In contrast to Safra trees, this is not
a sequence of trees, each encoding the nodes of a single level of the run DAG. Rather,
this is a single tree that captures the accepting or rejecting nature of the run DAG.) We
introduce a labeling, in which labels follow lexicographically minimal infinite branches
of this binary tree. This labeling provides a Büchi determinization construction, where
a state of the deterministic automaton is a set of states of the input nondeterministic au-
tomaton, the lexicographic preorder induced by profiles, a second preorder that encodes
information about shared ancestry of nodes, and the labeling. This yields a mathemati-
cally crisp description of the deterministic automaton.

We first present some additional background material. We then describe how to
describe G′ as a tree of equivalence classes. The tree is then labeled in a way that we
can deterministically track acceptance. Finally, we demonstrate how to construct this
labeling with a bounded amount of space.

6.1 Preliminaries
6.1.1 Relations on Sets

Given a set R, a binary relation ≤ over R is a preorder if ≤ is reflexive and transitive.
If for every r1, r2 ∈ R either r1 ≤ r2 or r2 ≤ r1, then ≤ is a linear preorder. If a
preorder ≤ is antisymmetric, that is, r1 ≤ r2 and r2 ≤ r1 implies r1 = r2, then it is a
partial order. A linear partial order is a total order. Consider a partial order ≤. If for
every r ∈ R, the set {r′ | r′ ≤ r} is totally ordered by ≤, then we say that ≤ is a tree
order. The equivalence class of r ∈ R under ≤, written [r], is {r′ | r′ ≤ r and r ≤ r′}.
The equivalence classes under a linear preorder form a totally ordered partition of R.
Given a set R and linear preorder ≤ over R, define the minimal elements of R as
min≤(R) = {r1 ∈ R | r1 ≤ r2 for all r2 ∈ R}. Note that min≤(R) is either empty

This chapter contains unpublished work done with Orna Kupferman, Moshe Y. Vardi, and Thomas
Wilke.
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or an equivalence class under ≤. Given a set R and a total order ≤, we instead define
min≤ as the partial function that maps R to its unique minimal element, if exists.

Given two sets R and R′ where |R| ≤ |R′|, a linear preorder ≤ over R, and a total
order <′ over R′, define the 〈≤, <′〉-minjection from R to R′ to be the function mj that
maps all the elements in the k-th equivalence class of R to the k-th element of R′. The
number of equivalence classes is at most |R|, and thus at most |R′|. If ≤ is also a total
order, than the 〈≤, <′〉-minjection is also an injection.

Example 6.1. Let R = Q and R′ = N be the sets of rational numbers and integers,
respectively. Define the linear preorder ≤1 over Q by x ≤1 x

′ iff bxc ≤ bx′c, and the
total order <2 over N by x <2 x

′ if x < x′. Then, the 〈≤1, <2〉-minjection from Q to N
maps a rational number x to bxc.

6.1.2 Non-Büchi ω-Automata

While nondeterministic Büchi automata are ω-regular, their deterministic counterparts
are not. We thus introduce more powerful acceptance conditions that generalize Büchi
automata. A nondeterministic ω-automaton is a tuple B = 〈Σ, QB, Q

in
B , ρB, αB〉, where

Σ is a finite alphabet, QB is a finite set of states, Qin
B ⊆ QB is a set of initial states,

ρB : QB × Σ → 2QB is a nondeterministic transition relation, and α is an acceptance
condition defined below.

The acceptance condition αB determines if a run is accepting. Recall that for a
Büchi automaton, the acceptance condition is a set of states FB ⊆ QB, and a run
q0, q1, . . . is accepting iff qi ∈ FB for infinitely many i’s. For a Rabin-edge automa-
ton, the acceptance condition is a set 〈G0, B0〉, . . . , 〈Gk, Bk〉 of pairs of sets of tran-
sitions: thus Gj, Bj ⊆ Q2

B for 0 ≤ j ≤ k. A run is accepting iff there exists 0 ≤
j ≤ k so that 〈qi, qi+1〉 ∈ Gj for infinitely many i’s, while 〈qi, qi+1〉 ∈ Bj for only
finitely many i’s. For a parity-edge automaton, the acceptance condition is a par-
ity function γ : Q2

B → {0, . . . , k}, and a run is accepting if the smallest element of
{j | j = γ(qi, qi+1) for infinitely many i’s} is even. We are particularly interested in
nondeterministic Büchi automata (NBW), deterministic Rabin-edge automata (DREW)
and deterministic parity-edge automata (DPEW).

6.1.3 Safra’s Determinization Construction

This section presents a short description of Safra’s determinization construction, mod-
eled after the exposition in [Pit06]. This construction takes a nondeterministic Büchi au-
tomaton B and constructions an equivalent deterministic Rabin automaton DSafra(B)i.
Safra’s construction is based on Safra trees. Each Safra tree store one level of the run
DAG G of B on a word w, along with additional information encoding a finite amount of
the history of G. Because nodes are moved and shifted frequently in Safra trees, we will
not define them as prefix-closed sets of strings. Instead, we define V = {1 . . . |Q|B} and
use V to label nodes.
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Definition 6.2. A Safra tree is a tuple T = 〈N, r, p,≺, l〉 where:
• N ⊆ V is a set of nodes.
• r ∈ N is the root node.
• p : (N \ r)→ N is the parent function.
• ≺ is a partial order representing ’older than’ over siblings: for v, v′ ∈ N, v 6= v′,

it holds that p(v) = p(v′) iff either v′ ≺ v or v ≺ v′.
• l : N → 2QB is a labeling function from nodes to sets of states.

Further, the following three conditions hold:
(1) The label of every v ∈ N is non-empty: l(v) 6= ∅.
(2) The label of every v ∈ N is a strict superset of the union of labels of its children:

l(v) ⊃
⋃
{l(w) | p(w) = v}.

(3) The labels of the siblings are disjoint: for v, v′ ∈ N , if v 6= v′ and p(v) = p(v′)
then l(v) ∩ l(v′) = ∅.

Let T denote the set of Safra trees. Since every run begins in the initial set of states,
define the initial Safra tree to be T in = 〈{1}, 1, ∅, ∅, l(1) = Qin〉. Given a Safra tree T
and a character σ, we define the unique σ-successor of T , written T ′ = 〈N ′, r′, p′,≺′, l〉,
operationally. Intuitively, we first change the label of each node to the successors of
the current label under ρB. Then, for every node with F -states in its label, we create a
new, youngest, child of that node labeled with those F -states. Finally, we restore the
three conditions of Safra trees stated above: if the labels of two siblings share a state, we
remove the state from the label of the younger sibling; if the label of a node is no longer
a strict superset of the labels of its children, we remove all children; and if the label of a
node is empty, we remove the node. During intermediate steps, there may be more than
|QB| nodes. Thus we temporarily allow additional nodes from a set V ′ disjoint from V .
Formally, define T ′ as the result of the following sequence of operations:

(1) Initially, let N ′ = N , p′ = p, and ≺′=≺.
(2) For every v ∈ N ′, initially let l′(v) = ρB(l(v), σ)
(3) For every v ∈ N ′ where l′(v) ∩ F 6= ∅, create a new node w ∈ V ′ where:

p′(w) = v; l′(w) = l′(v) ∩ F ; and for every w′ ∈ N ′ where p(w′) = v, w ≺′ w′.
(4) For every node v ∈ N ′ and state s ∈ l′(v), if there exists v′ ∈ N ′, s ∈ l′(v′)

where v ≺ v′, then remove s from l′(v) and, for every descendant w of v under p′,
remove s from l′(w).

(5) For every node v ∈ N ′, if l′(v) =
⋃
{l′(w) | p′(w) = v} then remove all descen-

dants of v.
(6) For every node v ∈ N ′, if l′(v) = ∅, then remove v.
(7) Change all nodes in V ′ to nodes in V .

We do not formally prove that the σ-successor of a Safra tree is a Safra tree. Intu-
itively, we note that the first three steps define the elements, and the second three steps
restore the properties we demand of a Safra tree. To see that the final step is allowable,
we note that since every node must be labeled with a strict superset of the labels of its
children, there are at most n nodes. Thus we can fit all the new nodes into the set V .
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Safra’s construction allows us to check the sequence of Safra trees for properties that
are necessary and sufficient for acceptance. Given a Safra tree T and it’s σ-successor
T ′, say a node v ∈ N ′ is successful in T ′ if the descendants of v were removed in step
(5). If a node is successful infinitely often, then there is an accepting path through the
states that label that node. However, because node names are reused, we have to take
care not to consider successes on nodes that share a name, but represent different paths.
Thus say a node v ∈ V dies in T ′ if v 6∈ N ′. We use success and death to define a Rabin
condition in our deterministic automaton.

Definition 6.3. Define the DREW automaton DSafra(B) to be:
〈Σ,T × {1, . . . , |Q|B}2, 〈T in, ∅, {2, . . . |Q|B}〉, ρT, α〉, where:
• For 〈T,G,B〉 and σ ∈ Σ, let ρT(〈T,G,B〉σ) = 〈T ′, G′, B′〉 where:

– T ′ is the σ-successor of T
– G′ = {v ∈ N ′ | v is successful in T ′}
– B′ = {v ∈ V | v dies in T ′}

• α = 〈G1, B1〉, . . . , 〈G|QB|, B|QB|〉, where for every i ∈ {1, . . . , |QB|}:
– Gi = {〈T,G,B〉 | i ∈ G}.
– Bi = {〈T,G,B〉 | I ∈ B}.

Theorem 6.4. [Saf88] For a Büchi automaton B with n states, L(DSafra(B)) = L(B)
and DSafra(B) has nO(n) states.

6.2 Equivalence Classes Under Profiles
In this section we define TG′ , a binary tree of bounded width that captures the accepting
or rejecting nature of G. Nodes of this tree are equivalence classes of nodes in the run
DAG under the profiles of Chapter 5.2. We then present a method of deterministically
labeling the classes in TG′ , so we can determine if G is accepting by examining the
labels. The labels are integers, and we first allow the use of an unbounded number of
labels. Finally, we show how to determine the labeling using bounded information, and
how to use a fixed set of labels.

6.2.1 The Tree of Equivalence Classes

The nodes of TG′ are the equivalence classes {[u] | u ∈ G′} of G′. To reduce confusion,
we refer to the nodes of TG′ as classes, and use u and v for nodes in G, and U and V
for classes in TG′ . As all members of a class share a profile, we define the profile hU of
a class U to be hu for some u ∈ U . Recall that by Lemma 5.3, a class U can have at
most two children: the F -child with profile hU1, and the non-F -child with profile hU0.
A class V is a descendant of a class U if there is a, possibly empty, path from U to V in
TG

′ .

Lemma 6.5. TG′ is a binary tree of bounded width of degree |QB|.
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Proof. That TG′ has bounded width follows from the fact that a class on level i contains
at least one node on level i of G, and G is of bounded width of degree |QB|. To show
that TG′ is a tree, note that as Qin

B ∩ FB = ∅, all nodes on the first level of G have
profile 0, and every class descends from this class of nodes with profile 0. For a class
V , let U = {u | there is v ∈ V such that 〈u, v〉 ∈ E ′}. Lemma 5.4 implies that U is an
equivalence class, and is the sole parent of V . Finally, Lemma 5.3 entails that a class
U can have at most two children: the class with profile hU1, and the class with profile
hU0. Thus TG′ is binary.

A branch of TG′ is a finite or infinite initial path in TG′ . Since TG′ is a tree, two
branches share a prefix until they split. An infinite branch is accepting if it contains
infinitely many F -classes, and is rejecting otherwise. An infinite rejecting branch must
reach a suffix consisting only of non-F -classes. Note that if U ′ is a descendant of both
U and V , either U is a descendant of V , or V is a descendant of U . A class U is called
finite if it has finitely many descendants, and a finite class U dies out on level k if it has
a descendant on level k − 1, but none on level k.

We extend the function f to classes, so that f(U) = 1 if U is an F -class, and
f(U) = 0 otherwise. We define the profile of an infinite branch b = U0, U1, . . . to be
hb = f(U0), f(U1), . . .. For two classes U and V on level i, we say that U ≺i V if
hU < hV . For two infinite branches b and b′, we say that b ≺ b′ if hb < hb′ . Note that
≺i is a total order over the classes on level i, and that ≺ is a total order over infinite
branches. We now show that while G′ can have infinitely many infinite branches, this is
not possible for a tree.

Lemma 6.6. TG′ has a finite number of infinite branches.

Proof. As TG′ has bounded width |QB|, there are at most |QB| infinite branches.

Theorem 6.7. G has an accepting path iff TG
′

has an accepting branch.

Proof. If G is accepting, then by Lemma 5.6 we have that G′ contains an accepting
path u0, u1, . . .. This path gives rise to an accepting branch, [u0], [u1], . . . in TG′ . In the
other direction, if TG′ has an accepting branch U0, U1, . . ., consider the infinite subgraph
of G′ consisting only of the nodes in Ui, for i > 0. For every i, there exists ui ∈ Ui
and ui+1 ∈ Ui+1 so that E ′(ui, ui+1). Because no node is orphaned in G′, Lemma 5.4
implies that every node in Ui+1 has a parent in Ui, thus this subgraph is connected. As
each node has degree of as most n, Kon̈ig’s Lemma implies that there is an initial path
u0, u1, . . . through this subgraph. Further, at every level i where Ui is an F -class, we
have that ui ∈ Ui, and thus this path is accepting in G′ and in G.

6.2.2 Labeling TG′

We first present a labeling that uses an unbounded number of labels and global informa-
tion about TG′ . We call this labeling the global labeling, and denote it with gl. For a
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class U on level i of TG′ , and a class V , we say that V is before U if V is on level j < i
or V ≺i U . For each label m, we refer to the first class labeled m as first(m). That
is, U = first(m) if U is labeledm and for all classes V before U , the label of V is not
m. For a label m and level i, let the lexicographical minimal descendant of m on level i,
written lmd(m, i), be min�({V | V is a descendant of first(m) on level i.}). That
is, lmd(m, i) is the class with the minimal profile among all the descendants of first(m)
on level i. For a class U on level i, we define labels(U) = {m | U = lmd(m, i)},
and define ml(U) = max({gl(V ) | V is before U}) as the maximum label occurring
in TG′ before U . We define the labeling function gl as follows. For the initial class
U0 = {〈q, 0〉 | q ∈ Qin

B } with profile 0, let gl(U0) = 0. Inductively, we proceed lexico-
graphically through each level of TG′ .

Definition 6.8. gl(U) =

{
min(labels(U)) if labels(U) 6= ∅,
ml(U) + 1 if labels(U) = ∅.

Lemma 6.9 demonstrates that the labeling has some very nice properties:

Lemma 6.9. For classes U and V on level i of TG
′
, it holds that:

(1) If U 6= V then gl(U) 6= gl(V ).
(2) U is a descendant of first(gl(U)).
(3) If U is a descendant of first(gl(V )), then V �i U . Consequently, if U ≺i V ,

then U is not a descendant of first(gl(V )).
(4) first(gl(U)) is an F -class with a sibling.
(5) If gl(U) < gl(V ) then first(gl(U)) is before first(gl(V )).
(6) If U 6= first(gl(U)), then there is a class V on level i− 1 that has label m.

Intuitively, the label m is going to follow the lexicographical minimal child of
first(m) on every level. Consider the lexicographically minimal branch from first(m).
Recall that if this branch is infinite and visits infinitely many F -classes, then TG′ is ac-
cepting. The label m stands for the proposition that the lexicographically minimal infi-
nite branch going through first(m) is accepting. If a class U with label m is on the
lexicographical minimal infinite branch from first(m), then in order for m to “sur-
vive”, it is waiting for the branch to reach an F -class. If U is not on the lexicographically
minimal infinite branch from first(m), then we know that in TG′ all the paths from
U are going to be finite, Accordingly, in order for m to survive, it is waiting for U to die
out. Note that when a path leaves the lexicographically minimal infinite branch, it must
go to a non-F -child, which implies that the lexicographically minimal infinite branch,
does go through an F -child. Thus, when the non-F -child dies out, this is a supporting
evidence to the fact that the lexicographically minimal infinite branch from first(m)
is accepting.

Formally, we say that a labelm is gl-successful on level i if there is a class U on level
i − 1 and a class U ′ on level i such that gl(U) = gl(U ′) = m, and either U ′ is the F -
child of U or U ′ is not a child U . Recall that the label m represents the proposition that
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qstart p

a
a

b

b

(a) An automaton

〈q, 0〉
h = 0
labels = {}
gl = 0

〈q, 1〉
h = 00

labels = {0}
gl = 0

〈p, 1〉
h = 01
labels = {}
gl = 1

〈q, 2〉
h = 010

labels = {0, 1}
gl = 0

〈p, 2〉
h = 011
labels = {}
gl = 2

〈q, 3〉
h = 0110

labels = {0, 1, 2}
gl = 0

〈p, 3〉
h = 0111
labels = {}
gl = 3

(b) TG′
for automaton (a) on abω .

Figure 6.1 : An automaton and tree of classes. Each class is a singleton set, brackets
are omitted for brevity. Each class is labeled with its profile h, the set labels, and its
label under gl. F -classes are circled twice.

the lexicographically minimal infinite branch going through first(m) is accepting.
When a class with label m has two children, we are not certain which, if either, is part
of an infinite branch. We are thus conservative, and follow the non-F -child. If the
non-F -child dies out, we revise our guess and move to a descendant of the F -child.

Consider for example the NBW in Figure 6.1 (a), and the tree of equivalence classes
that corresponds to a run of it in the word abω. There is only one infinite branch,
{〈q, 0〉}, {〈p, 1〉}, {〈p, 2〉}, . . ., which is accepting. At level 0 this branch is labeled
with 0. At a level i > 0, we conservatively assume that an infinite branch that starts
in 〈q, 0〉 goes through {〈q, i〉}, and we thus label {〈q, i〉} by 0. As {〈q, i〉} is proven
finite on level i + 1, we revise our assumption and continue to follow the path through
{〈p, i〉}. Since {〈q, i+ 1〉} is a non-F -class, the label 0 is gl-successful on every level
i+1. Although the infinite branch is not labeled 0 after the first level, the label 0 asymp-
totically approaches the infinite branch, checking along the way that the branch is in fact
lexicographically minimal among the infinite branches through the root.

Theorem 6.10. TG′ has an accepting branch iff there is a label m that is gl-successful
infinitely often.

Proof. In one direction, let m be a label that is gl-successful infinitely often. As m can
be successful only when it occurs, m occurs infinitely often. This implies first(m)
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has infinitely many descendants and there is at least one infinite branch through first(m).
Let b = U0, U1, . . . be the lexicographically minimal infinite branch that goes through
first(m). We demonstrate that b cannot have a suffix consisting solely of non-F -
classes, and therefore is an accepting branch. By way of contradiction, assume there is
an index j so that for every k > j, the class Uk is a non-F -class. By Lemma 6.9.(4),
first(m) is an F -class, and thus occurs before level j.

Let U = {V | V ≺j Uj, V is a descendant of first(m)} be the set of descendants
of first(m) on level j that are lexicographically smaller than Uj . Since b is the lex-
icographically minimal infinite branch through first(m), every class in U must be
finite. Let j′ ≥ j be the level at which the last class in U dies out. At this point, Uj′
is the lexicographically minimal descendant of first(m). Since m occurs infinitely
often, it must be that gl(Uj′) = m. Indeed, otherwise there is no class on level j′ with
label m, and, by Lemma 6.9.(6), m would not occur after level j′. Further, for every
k > j′, the class Uk is the lexicographically minimal descendant of Uj′ on level k, and
so gl(Uk) = m. This implies that m is not successful after level j′, a contradiction.
Therefore, there is no such suffix of b, and b must be an accepting branch.

For the other direction, if there is an infinite accepting branch, then let b = U0, U1, . . .
be the lexicographically minimal infinite accepting branch. Let B′ be the set of infinite
branches that are lexicographically smaller than b. As b is the minimal infinite accepting
branch, every branch in B′ must be rejecting. Let j be the first index after which the last
branch in B′ splits from b. Note that either j = 0, or Uj−1 is part of an infinite rejecting
branch U0, . . . , Uj−1, Vj, Vj+1, . . . smaller than b. In both cases, we show that Uj is the
candidate class for a new label m that occurs on every level k > j of TG′ .

In the first case, where j = 0, let m = 0. Since m is the smallest label, and there
is a descendant of Uj on every level of TG′ , it holds that m will occur on every level of
TG

′ . In the second case, where j > 0, then Vj must be the non-F -child of Uj−1, and
so Uj is the F -child. Thus, Uj is given a new label m where Uj = first(m). For a
label m′ < m and level k > j, it cannot be that lmd(m′, k) is a descendant of Uj , as
Vk will be a descendant of first(m′), and for every descendant U ′ of Uj , it holds that
Vk �k U ′. Thus, on every level k > j, the lexicographically minimal descendant of Uj
will be labeled m, and m occurs on every level of TG′ .

We show that m is gl-successful infinitely often by defining an infinite sequence of
levels, j0, j1, j2, . . ., so that m is gl-successful on ji for all i > 0. As a base case, let
j0 = j. Inductively, at level ji, let U ′ be the class on level ji labeled with m. We have
two cases. If U ′ 6= Uji , then as all infinite branches smaller than b have already split
from b, U ′ must be finite in TG′ . Let ji+1 be the level at which U ′ dies out. At level ji+1,
m will return to a descendant of Uj0 , and m will be gl-successful. In the second case,
U ′ = Uji . Take the first k > ji so that Uk is an F -class. As b is an accepting branch, such
k must exist. If Uk is the only child of Uk−1 then let ji+1 = k: since gl(Uk) = m and Uk
is not the non-F -child of Uk−1, it holds that m is gl-successful on level k. Otherwise let
U ′k be the non-F -child of Uk−1, so that gl(U ′k) = m. Again, U ′k is finite. Let ji+1 be the
level at which U ′k dies out. At level ji+1, the label m will return to a descendant of Uk,
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and m will be gl-successful.

Determining the Lexicographically Minimal Descendant

Recall that the definition of the labeling gl involves the computation of the call lmd(m, i),
which is the class with the minimal profile among all the descendants of first(m) on
level i. Finding lmd(m, i) requires knowing the descendants of first(m) on level
i. We show how to store this information with a partial order over classes. Using
this partial order, we can determine, for every label m that occurs on level i, the class
lmd(m, i + 1) using only information about levels i and i + 1 of TG′ . Lemma 6.9. (6)
implies that we can safely restrict ourselves to labels that occur on level i. The partial
order is denoted ti and is defined below.

Definition 6.11. For two classes U and V on level i of TG′ , we have that U ti V iff V
is a descendant of first(gl(U)). Also, U ⋖i V when U ti V and U 6= V .

Lemma 6.12. For a class U on level i,

lmd(gl(U), i+ 1) = min�i+1
({V ′ | for some V, U ti V, V ′ is a child of V }).

Proof. We prove that the set {V ′ | V ′ is a child of V, U ti V } contains every descendant
of first(gl(U)) on level i+ 1, and thus that its minimal element is lmd(gl(U), i+ 1).
Let V ′ be a class on level i+1, with parent V on level i. If U ti V , then V is a descendant
of first(gl(U)) and V ′ is likewise a descendant of first(gl(U)). Conversely, as
gl(U) exists on level i, if V ′ is a descendant of first(gl(U)), then its parent V must
also be a descendant of first(gl(U)) and U ti V .

We have thus shown that for a label m and level i, we can determine lmd(m, i+ 1)
given only the classes on levels i and i+1 and the partial order ⋖i . We now demonstrate
how to determine the partial order ti+1 from the same information.

Lemma 6.13. Let U ′ and V ′ be two classes on level i + 1, so that U ′ 6= V ′. Let V be
the parent of V ′. We have that U ′ ti+1 V

′ iff there exists a class U on level i so that
gl(U) = gl(U ′) and U ti V .

Proof. If there is no classU on level i so that gl(U) = gl(U ′), thenU ′ = first(gl(U ′)).
Since V ′ is not a descendant of U ′, this would preclude U ′ ti+1 V

′. Therefore such a
class U must exist, and U ti V iff V is a descendant of first(gl(U)), which is true iff
V ′ is a descendant of first(gl(U ′)): the definition of U ′ ti+1 V

′.

Using A Fixed Set of Labels

As defined, the labeling function l uses an unbounded number of labels. We here induc-
tively define a sequence of labelings, li, each from the ith level of TG′ to {0, . . . , 2|QB|}.
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We thus demonstrate how to use a bounded number of labels, each defined with respect
to a bounded amount of information about TG′ . Formally, we define a sequence of func-
tions li from the classes on level i of TG′ to {0, . . . , 2|QB|}, exploiting the relation ti
between classes. As a base case, there is only one equivalence class U on level 0 of TG′ ,
and define l0(U) = 0.

Inductively, given the set of classes Ui on level i, the function li, and the set of classes
Ui+1 on level i + 1, we define li+1 as follows. Since labels can be reused, we can no
longer simply rely on numerical order among labels. For U ∈ Ui, define the ti -nephew
ofU as nephi(U) = min�i+1({V ′ | for some V, U ti V, and V ′ is a child of V }). Note
that, by Lemma 6.12, it holds that lmd(gl(U), i + 1) = nephi(U). For U ′ ∈ Ui+1,
we define the ti -uncles of U ′ as unci(U ′) = {U | U ′ = nephi(U)}. As we prove
below, unci corresponds to labels. Recall that the set of unused labels FL(li) is
{m | m is not in the range of li}. As TG′ has bounded width |QB|, we have that |QB| ≤
|FL(li)|. Let mji+1 be the 〈�i+1, <〉-minjection from {U ′ on level i+1 | unci(U ′) = ∅}
to FL(li). Finally, define the labeling li+1 as

li+1(U ′) =

{
li(min�i

(unci(U ′))) if unci(U ′) 6= ∅,
mji+1(U ′) if unci(U ′) = ∅.

Say that a label m dies in li if m 6∈ FL(li−1), but m ∈ FL(li). Adjusting the
definition of success to the new labeling, we say that a label m succeeds in li if there is
a class U on level i− 1 and a class U ′ on level i such that li−1(U) = li(U

′) = m and U ′

is either the F -child of U or is not a child of U .
To show a correlation between the labeling in Section 6.2.2 and the labeling here,

we define a mapping, g, from the labels of l to {0, . . . , 2|QB|}. For a label m, where
first(m) occurs on level i, let g(m) = li(first(m)).

Lemma 6.14. Consider a class U ′ on level i+ 1. The following hold:
(1) labels(U ′) ∩ {gl(V ) | V on level i} = {gl(U) | U ∈ unci(U ′)}.
(2) labels(U ′) = ∅ iff unci(U ′) = ∅.

Proof. (1) Let U be a class on level i. By definition, gl(U) ∈ labels(U ′) iff U ′ =
lmd(gl(U), i + 1). By Lemma 6.12, it holds that lmd(gl(U), i + 1) = nephi(U). By
the definition of unci, we have that U ′ = nephi(U) iff U ∈ unci(U ′). Thus every
label in labels(U ′) that occurs on level i labels some node in unci(U ′).

(2) If unci(U ′) 6= ∅, then (1) implies labels(U ′) 6= ∅. In other direction, let
m = min(labels(U ′)). By Lemma 6.9(6), there is a U on level i so that gl(U) = m,
and by part (1) U ∈ unci(U ′).

Lemma 6.15. For classes U on level i and U ′ on level i + 1, if gl(U) = gl(U ′), then
li(U) = li+1(U ′) = g(gl(U)).

Proof. Let k be the number of levels between U and first(gl(U)). We prove this
lemma by induction over k. As a base case, if k = 0, then U = first(gl(U)) and by
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definition g(gl(U)) = li(U). Inductively, assume k > 0, and assume this lemma holds
for every V at most k − 1 steps removed from first(gl(V )). Since k > 0, then U 6=
first(gl(U)). Let V be the node on level i − 1 such that gl(V ) = gl(U). By the in-
ductive hypothesis, li−1(V ) = li(U). Further, since first(gl(V )) = first(gl(U)),
we have li(U) = g(gl(U)). We now show that U = min�i

(unci(U ′)).
As gl(U) = gl(U ′), we have that gl(U) ∈ labels(U ′). By Lemma 6.14, this

implies U ∈ unci(U ′). To prove that U = min�i
(unci(U ′)), let V ∈ unci(U ′) be

another class on level i. By Lemma 6.14, this implies gl(V ) ∈ labels(U ′), and thus
gl(U) < gl(V ). As U ′ is a descendant of both first(gl(U)) and first(gl(V )),
one is a descendant of the other. Since gl(U) < gl(V ), by Lemma 6.9.(5) it must
be that first(gl(V )) is a descendant of first(gl(U)). Thus V is a descendant of
first(gl(U)), and by Lemma 6.9.(3) we haveU � V . ThereforeU = min�i

(unci(U ′)),
and li+1(U ′) = li(U).

Corollary 6.16. For every class U on level i, it holds that li(U) = g(gl(U)).

Theorem 6.17. TG′ has an accepting branch iff there is a labelmwhere {i | m dies in li}
is finite, and {i | m succeeds in in li} is infinite.

Proof. We prove a relation with Theorem 6.10. For the first direction, let m be a label
that is gl-successful infinitely often. We prove that g(m) dies in only finitely many li,
and succeeds in infinitely many lj . Let U on level j be first(m). First, as m occurs
on every level k > j, Lemma 6.15 implies g(m) occurs on k, and thus g(m) does not
die in lk. Second, let k > j be a level on which m is gl-successful. This implies there
exist classes U on level k − 1 and U ′ on level k, so that gl(U) = gl(U ′) = m and U ′ is
not the non-F -child of U . Lemma 6.15 implies that lk−1(U) = lk(U

′) = g(m), and thus
that g(m) succeeds in lk. We thus conclude g(m) succeeds in infinitely many lk.

For the other direction, let m′ be a label that dies in li for finitely many i, and suc-
ceeds in li for infinitely many i. Since m′ dies only finitely often, there is some level
after which m′ does not die. Let j be the first level after which m′ ceases dying, on
which m′ occurs. This implies m′ occurs on ever level k > j. Let U on level j be such
that lj(U) = m′. Since m′ does not occur on j − 1, it must be that uncj(U) = ∅. Thus
labels(U) = ∅, and there is a label m in l so that U = first(m), and g(m) = m′.
By assumption, there are infinitely many k > j so that m′ succeeds in lk. On each of
these k’s, there is a class U on level k − 1 and U ′ on level k so that lk−1(U) = m′,
lk(U

′) = m′, and U ′ is not the non-F -child of U . By Corollary 6.16, m = gl(U) is
gl-successful on level k, and m is gl-successful infinitely often.

6.3 The Determinization Construction
We now demonstrate a determinization construction for Büchi automata. Let B =
〈Σ, QB, Q

in
B , ρB, FB〉 be an NBW. For clarity, we call the states of our deterministic au-
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tomaton macrostates. Each macrostate encodes one level of TG′ . Macrostates are four-
tuples 〈S,�, l, t〉, where 〈S,�〉 is a preordered subset of QB, l : S → {0, . . . , 2|QB|} is
a labeling, and t ⊆ � is another preorder over S. For two states q and r in QB, we say
that q ≈ r if q � r and r � q. We constrain the labeling l so that it characterizes the
equivalence classes of S under �. That is, q ≈ r iff l(q) = l(r). Further, we constrain
t to be a partial order over the equivalence classes of �. That is, if q ≈ r, s ≈ t, and
q t s, then r t t.

Transitions: Recall that we define transitions with respect to preordered subsets as
follows: ρS,�(q, σ) = {r ∈ ρB(q, σ) | for every q′ ∈ S, if r ∈ ρB(q′, σ) then q′ � q}.
When a state has multiple incoming σ-transitions from S, the relation ρS,� keeps only
the transition from states maximal under the � relation. For every q′ ∈ ρB(S, σ),
the set {q ∈ S | q′ ∈ ρS,�(q, σ)} is an equivalence class under �. Further, ρB(S, σ) =
ρS,�(S, σ) =

⋃
q∈S ρS,�(q, σ); thus, for every q′ ∈ ρB(S, σ), there exist q ∈ S such that

q′ ∈ ρS,�(q, σ).
For σ ∈ Σ, we define the σ-successor of 〈S,�, l, t〉 to be 〈S ′,�′, l′, t′〉, as follows.

First, let 〈S ′,�′〉 be the σ-successor of 〈S,�〉, as defined in 5.2.2. Second, define
the labeling l′ as follows. For q ∈ S, define the t-nephews of q to be neph(q, σ) =
min�′({r′ | exists r ∈ S such that q t r and r′ ∈ ρS,�(r, σ)}). Conversely, for r′ ∈ S ′

let the t-uncles of r′ be unc(r′, σ) = min�({q | r′ ∈ neph(q, σ)}). Intuitively, we
want to give the label of a state in S to its nephews, so a state in S ′ inherits the label
from its uncles. If a state in S ′ does not have uncles, it should get a fresh label. Let
FL(l) = {m | m not in the range of l} be the free labels in l, and let mj be the 〈�′, <〉-
minjection from {r′ ∈ S ′ | unc(r′, σ) = ∅} to FL(l), where < is the standard order on
{0, . . . , 2|QB|}. For a r′ ∈ S ′, let

l′(r′) =

{
l(q), q ∈ unc(r′, σ) if unc(r′, σ) 6= ∅,
mj(r′) if unc(r′, σ) = ∅.

Third, define the preorder t′ as follows. For states q′, r′ ∈ S ′, define q′ t′ r′ iff q′ ≈′
r′ or there exists q, r ∈ S so that r′ ∈ ρS,�(r, σ), q ∈ unc(q′), and q t r. Intuitively,
the labeling l′ depends on recalling which states descend from the first equivalence class
with a given label, and t′ keeps track of these descendants.

Lemma 6.18, proven in Section 6.3.1, demonstrates that σ-successors of macrostates
are macrostates.

Lemma 6.18. For a macrostate 〈S,�, l, t〉 and σ ∈ Σ, the σ-successor 〈S ′,�′, l′, t′〉
of 〈S,�, l, t〉 is a macrostate.

Acceptance Condition: Let Q be the set of macrostates. For σ ∈ Σ, label m ∈
{0, . . . , 2|QB|}, macrostate q = 〈S,�, l, t〉 ∈ Q, and its σ-successor q′ = 〈S ′,�′, l′, t′〉,
let R = {r ∈ S | l(r) = m} and R′ = {r′ ∈ S ′ | l′(r′) = m}. We say that m dies in
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〈q,q′〉 when R 6= ∅ but R′ = ∅. We say that m succeeds in 〈q,q′〉 when R 6= ∅, R′ 6= ∅,
and either R′ ⊆ FB or ρS,�(R, σ) ∩ R′ = ∅. Intuitively, m succeeds either when the
branch it is following visits F -states, or the branch dies and it moves to another branch.

Definition 6.19. Define the DREW automaton DR(B) to be 〈Σ,Q,Qin, ρQ, α〉, where:
• Qin = {〈Qin,�0, l0, t0 〉}, where:

– �0= t0 = Qin ×Qin.
– l0(q) = 0 for all q ∈ Qin.

• For q ∈ Q and σ ∈ Σ, let ρQ(q, σ) = {q′}, where q′ is the σ-successor of q.
• α = 〈G0, B0〉, . . . , 〈G2|QB|, B2|QB|〉, where for a label m ∈ {0, . . . , 2|QB|}:

– Gm = {〈q,q′〉 | m succeeds in 〈q,q′〉}.
– Bm = {〈q,q′〉 | m dies in 〈q,q′〉}.

6.3.1 Correctness and Blow-up

We now prove the correctness of the construction and demonstrate its blowup is com-
parable with known determinization constructions. First, we demonstrate that the σ-
successors of macrostates are macrostates.

Lemma 6.18. For every macrostate 〈S,�, l, t〉, its σ-successor 〈S ′,�′, l′, t′〉 is also a
macrostate.

Proof. As 〈S,�, l, t〉 is a macrostate, we have � is a linear preorder, t ⊆�, and for
every q, r, s, t ∈ S: q ≈ r iff l(q) = l(r); q ≈ r iff q t r and r t q; and if q ≈ r,
s ≈ t, and q t s, then r t t. We must prove this also holds for t′, �′, and l′ over states in
S ′. Below, let q′, r′, s′, t′ be states in S ′, and q, r, s, t ∈ S be such that q′ ∈ ρS,�(q, σ),
r′ ∈ ρS,�(r, σ), s′ ∈ ρS,�(s, σ), and t′ ∈ ρS,�(t, σ).

To demonstrate that �′ is a linear preorder, we show it is reflexive, relates every two
elements, and is transitive. That�′ is reflexive follows from the definition. To show that
�′ relates every two elements, note that as � is a linear preorder, either q ≺ r, r ≺ q,
or q ≈ r. By the definition of �′, either q′ ≺′ r′, q′ ≈′ r′, or r′ ≺′ q. To show that �′
is transitive, assume q′ �′ r′ �′ s′. By definition of �′ we then have q � r and r � s.
Since� is transitive, we have q � s. In order for q′ 6�′ s′, it would need to be that q ≈ s,
q′ ∈ FB, and s′ 6∈ FB. If q ≈ s, then q ≈ r and r ≈ s. Thus if r′ ∈ FB, we would have
s′ � r′, a contradiction. If r′ 6∈ FB, we would have r′ � q′, a contradiction. Thus it
cannot be the case that q ≈ s, q′ ∈ FB, and s′ 6∈ FB, and either q′ ≈′ s′, or q′ ≺′ s′, and
�′ is transitive and a linear preorder.

Next, we prove the labeling must give unique labels to the equivalence classes of
S ′ under �’: that q′ ≈′ r′ iff l′(q′) = l′(r′). By the above properties, if q ≈ r, then
neph(q, σ) = neph(r, σ). Further, neph(q, σ) is an equivalence class under �′ or is
empty. In one direction, let q′ ≈′ r′ and let m = l′(q′). That q′ ≈ r′ implies for every
q ∈ unc(q′, σ) that q′ ≈′ r′, and thus unc(q′, σ) = unc(r′, σ). If unc(q′, σ) = ∅, then
unc(r′, σ) = ∅. As a minjection maps equivalent elements to the same value, we have
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l(q′) = mj(q′) = mj(r′) = l(r′). Alternately, if unc(q′, σ) 6= ∅ then m = l(q) for
q ∈ unc(q′, σ), and q ∈ unc(r′, σ), and l(r′) = m.

Finally, we must demonstrate two things about t′: that t′ ⊆�′, and that t′ is a partial
order over the equivalence classes of �′. Assume q′ t′ r′. If q′ ≈′ r′, then q′ �′ r′.
Otherwise there exists a q2 ∈ unc(q′) so that l(q2) = l(q′) and q2 t r. This implies
both r′, q′ ∈ neph(q2, σ). Since l(q′) = l(q2), it must be that q2 ∈ unc(q′, σ) and thus
q′ ∈ neph(q2, σ). Thus q′ �′ r′, and t′ ⊆�′. This implies q′ ≈′ r′ iff q′ t′ r′ and r′ t′ q′

It remains to show if q′ ≈′ r′, s′ ≈ t′, and q′ t′ s′, then r′ t′ t′. If q′ ≈′ s′, then r′ ≈′ t′
and r′ t′ t′. Otherwise there exists a q2 so that l(q2) = l(q′) and q2 t s. Since r′ ≈′ q′, it
holds that l(r′) = l(q2). Since s′ ≈′ t′, it holds that s ≈ t and q2 t t. Thus r′ t′ t′, and
we have satisfied all requirements for 〈S ′,�′, l′, t′〉 to be a macrostate.

We now link the macrostates of DR(B) to the various relations over classes of TG′ .
We can already use Lemma 5.10 to assert that, in a macrostate, the set of states S and
the linear preorder � correspond to the nodes on a level i of G′ and the preorder �i.
Further, the edges in G′ correspond to transitions in ρS,�.

Lemma 6.20. Let G be the run DAG of B on w and let qi = 〈S,�, l, t〉 be the i-th
macrostate in the run of DR(B) on w:

(1) S = {q | 〈q, i〉 ∈ G}
(2) For q, r ∈ S, it holds that q � r iff 〈q, i〉 �i 〈r, i〉.
(3) For q ∈ S and q′ ∈ QB, it holds that q′ ∈ ρS,�(q, σi) iff 〈〈q, i〉, 〈q′, i+1〉〉 ∈ E ′.

Proof. These follow from, and actually simply restate, Lemma 5.10.(1), (2), and (3).

Lemma (1) shows that the partial order ti over classes corresponds to the preorder
t in macrostates of DR(B), and the labeling l over classes corresponds to the labeling li
in macrostates of DR(B).

Lemma 6.21. Let G be the run DAG of B on w and qi = 〈S,�, l, t〉 be the ith
macrostate in the run of DR(B) on w.

(1) For q, r ∈ S it holds that q t r iff [〈q, i〉] ti [〈r, i〉]
(2) For q ∈ S, it holds that l(q) = li([〈q, i〉]).

Proof. We prove this by induction over i. As a base case, for i = 0, we have S = Qin
B ,

t = Qin
B × Qin

B , and l(q) = 0 for every q ∈ S. By definition, the 0th level of G′ is
{〈q, 0〉 | q ∈ Q∈B}. As Qin

B ∩ FB = ∅, for every u, v on level 0 of G′ hu = 0 = hv and
u �0 v. Since there is only one equivalence class U , we have U t0 U , and l(U) = 0.

Inductively, assume this holds for qi = 〈S,�, l, t〉, and let qi+1 = 〈S ′,�′, l′, t′〉 be
the σ-successor of qi. Note by Lemma 6.18 that l′ gives unique labels to the equivalence
classes of �′, and t′ is a partial order over the equivalence classes of �′.

Proof of (2) For q′ ∈ S ′, we prove l′(q′) = li+1([〈q′, i + 1〉]) as follows. First, by
definition for q ∈ S and r′ ∈ S ′, r′ ∈ neph(q, σ) if there exists r ∈ S so that q t r and
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r′ ∈ ρS,�(r, σi). By Lemma 6.20(3), the inductive hypothesis, and the definition of TG′ ,
this holds if there is a V so that [〈r′, i+1〉] is a child of V and [〈q, i〉] ti V : the definition of
[〈r′, i+1〉] ∈ nephi([〈q, i〉]). Thus nephi([〈q, i〉]) = {[〈r′, i+1〉] | r′ ∈ neph(q, σ)}. By
Lemma (2) this implies for every r′ ∈ S ′, unci([〈r′, i+1〉]) = {[〈q, i〉] | q ∈ unc(r′, σ)}.
We have two cases. If unc(q′, σ) 6= ∅, then unci([〈q′, i+1〉]) 6= ∅, and l′(q′) = l(q) for
q ∈ unc(q′, σ). By the inductive hypothesis and Lemma 6.20(2) this implies [〈q, i〉] =
min�i

(unci([〈q′, i + 1〉])) and li+1([〈q′, i + 1〉]) = li([〈q, i〉]) = l(q). Alternately, if
unc(q′, σ) = ∅, then unci([〈q′, i + 1〉]) = ∅. The inductive hypothesis implies that
FL(li), the set of unused labels in li, is identical to FL(l), the set of unused labels
in l. Thus the 〈�i+1, <〉-minjection from the classes on level i +1 of TG′ to FL(li)
corresponds to the 〈�′, <〉-minjection from S ′ to FL(l), and mj(q′) = mji+1([〈q, i+1〉]).

Proof of (1) There are two cases in which q′ t′ r′. First, if q′ ≈′ r′, then by Lemma 6.20(2)
[〈q′, i+1〉] = [〈r′, i+1〉] and, as ti+1 is reflexive, [〈q′, i+1〉] ti+1 [〈r′, i+1〉]. Otherwise
q′ 6≈′ r′ and q′ t′ r′ iff there exists r, q2 ∈ S so that q2 ∈ unc(q′), r′ ∈ ρS,�(r, σi), and
q2 t r. By Lemma 6.20.(2) and (3) this entails q′ t′ r′ iff there exists U and V so that V
is the parent of [〈r′, i +1〉], li(U) = li+1([〈q′, i +1〉]), and U ti V . By Lemmas 6.13 and
6.15, this is precisely the condition under which [〈q′, i+1〉] ti+1 [〈r′, i+1〉].

Lemma 6.22 demonstrate the correlation between li and the labelings in macrostates
of DR(B), and show that success of a label in li corresponds to success of that label in
the run of DR(B).

Lemma 6.22. Let G be the run DAG of B on w and let qi and qi+1 be two consecutive
macrostates in the run of DR(B) on w. For every label m, we have that m dies in li+1

iff m dies in 〈qi,qj〉, and m succeeds in li+1 iff m succeeds in 〈qi,qj〉.

Proof. Let qi = 〈S,�, l, t〉 and qi+1 = 〈S ′,�′, l′, t′〉. Recall that, with respect to i,
R = {r ∈ S | l(r) = m} and R′ = {r′ ∈ S ′ | l′(r′) = m}. By Lemma 6.18, we have
that R is an equivalence class under � and R′ is an equivalence class under �′. By
definition, m dies in li when m is in the range of li, but not in the range of li+1. By
Lemma 6.21(2) this is true iff R 6= ∅, but R′ = ∅: the definition of m dies in 〈qi,qi+1〉.

Similarly, m succeeds in li+1 if there are classes U on level i − 1 and U ′ on level i
so that li(U) = li+1(U ′) = m, and U ′ is not the non-F -child of U . By Lemmas 6.20(1)
and 6.21(2), a U and U ′ exist so that li(U) = li+1(U ′) = m, iff U = {〈r, i〉 | r ∈ R} and
U ′ = {〈r′, i+ 1〉 | r′ ∈ R′}. This entails that m succeeds in li+1 iff R 6= ∅ and R′ 6= ∅,
and either U ′ is an F -class, or U ′ is not a child of U . If U ′ is an F -class then R′ ⊆ F . If
U ′ is not a child of U , then by the definition of TG′ and Lemmas (3) there is no r ∈ R,
r′ ∈ R′ where r′ ∈ ρS,�(r, σi). This entails {ρS,�(r, σ) | r ∈ R} ∩R′ = ∅. We conclude
that m succeeds in li+1 iff m succeeds in 〈qi,qi+1〉.

The correctness of DR(B) can now be proven with existing machinery, but we must
first bound the number of preorders t to bound the size of the automaton.
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Lemma 6.23. For a level i, the preorder ti is a tree order over the classes on level i of
TG

′
.

Proof. Let U be the set of classes on level i of TG′ . By definition, ti is a tree or-
der if for every V ∈ U, the {U | U ≤ V } is totally ordered by ti . Consider two
classes U ti V and W ti V . By definition, V is a descendant of both first(gl(U))
and first(gl(W )). Since TG′ is a tree, one of first(gl(U)) or first(gl(W )) is a
descendant of the other. Without loss of generality, assume first(gl(U)) is a descen-
dant of first(gl(W )). In this case, W is a descendant of first(gl(U)), so U tiW .

Theorem 6.24. For a Büchi automaton B with n states, L(DR(B)) = L(B) andDR(B)
has nO(n) states.

Proof. That L(DR(B)) = L(B) follows from Theorem 6.17 and Lemma 6.22. To
bound the number of macrostates 〈S,�, l, t〉, we observe that the number of subsets S
and linear orders � is nO(n) [Var80]. The number of labelings is likewise nO(n). By
Lemma 6.23 and Lemma 6.21(1), t is a tree-order over the equivalence classes of S
under �. By Cayley’s formula, the number of tree orders is bounded by nn−2. Thus the
number of macrostates is bounded by nO(n).

6.3.2 Compact Determinization Constructions

We here present two variants of Definition 6.19, both of which only use a variation of
macrostates where labels are restricted to {0, . . . , |QB| − 1}. The first still uses a Rabin
condition, the second a parity condition. Define the sight of tight macrostates to be four-
tuples 〈S,�, l, t〉, where S, �, and t are defined as for normal macrostates, and where
l : S → {0, . . . , |QB| − 1} is a tighter labeling. Let Qt be the set of tight macrostates.

Tight Rabin Variant: Given a tight macrostate q ∈ Qt and σ ∈ Σ, define the Rabin
σ-successor of q to be q′ = 〈S ′,�′, l′, t′〉 where S ′, �′, and t′ are defined as in Section
6.3, and l′ is defined as follows:

(1) For q ∈ S, let neph(q, σ) = min�′({r′ | exists r ∈ S, q t r, r′ ∈ ρS,�(r, σ)}),
as in Section 6.3.

(2) For r′ ∈ S ′, let unc(r′, σ) = min�({q | r′ ∈ neph(q, σ)}), as in Section 6.3.
(3) FL(l) = {m | m not in the range of l} ∪ {l(q) | for every r′ ∈ S ′, q 6∈ unc(r′, σ)}.
(4) mj is the 〈�′, <〉-minjection from {r′ ∈ S ′ | unc(r′, σ = ∅} to FL(l).

(5) For r′ ∈ S ′, let l′(r′) =

{
l(q), q ∈ unc(r′, σ) if unc(r′, σ) 6= ∅,
mj(r′) if unc(r′, σ) = ∅.

For σ ∈ Σ and labelm ∈ {0, . . . , |QB| − 1}, given a tight macrostate q = 〈S,�, l, t〉 ∈
Qt and its Rabin σ-successor q′ = 〈S ′,�′, l′, t′〉 let R = 〈r ∈ S | l(r) = m〉 and R′ =
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〈r′ ∈ S ′ | l′(r′) = m〉. Say that m Rabin-dies in 〈q,q′〉 when R 6= ∅ and m ∈ FL(l).
Say that m Rabin-succeeds in 〈q,q′〉 when it does not die in 〈q,q′〉, R 6= ∅, R′ 6= ∅,
and either R′ ⊆ FB or ρS,�(R, σ) ∩R′ = ∅.

Definition 6.25. Define the DREW automaton DT (B) to be 〈Σ,Qt,Qin, ρQ, α〉 where:
• Qin is as defined in Definition 6.19
• For q ∈ Qt and σ ∈ Σ, ρQ(q, σ) = {q′} where q′ is the Rabin σ-successor of q.
• α = 〈G0, B0〉, . . . , 〈G|QB|−1, B2|QB|−1〉 where for a label m ∈ {0, . . . , 2|QB|}:

– Gm = {〈q,q′〉 | m Rabin-succeeds in 〈q,q′〉}.
– Bm = {〈q,q′〉 | m Rabin-dies in 〈q,q′〉}

Theorem 6.26. For a Büchi automaton B, L(DT (B)) = L(B)).

Proof. For every word w, we show that the run q0,q1, . . . of DR(B) on w is accept-
ing iff the run qp0,q

p
1, . . . of DP (B) on w is accepting. For convenience, let qi =

〈Si,�i, li, ti 〉. We first note that for every i, it holds that qpi == 〈Si,�i, lpi , ti 〉: that
that is to say qi and qpi match on Si, �i, and ti . For S and �, this is easy to see: the
definitions of S ′ and �’ are identical in σ-successors and Rabin-σ-successors. For t,
this follows from the fact that t′ is defined solely with respect to ρS,� and unc, which do
not change from σ-successors to Rabin-σ-successors. We pause to note that, for every i
and q ∈ Si, q′ ∈ Si+1, we have that li+1(q′) = li(q), iff q ∈ unc(q′, σi), which holds iff
both lpi+1(q′) = lpi (q) and lpi (q) 6∈∈ FL(lpi ).

In one direction, assume there is a label m that dies in finitely many 〈qi,qi+1〉, and
succeeds in infinitely many 〈qi,qi+1〉. We pause to note that, for every i and q ∈ Si,
q′ ∈ Si+1, we have that li+1(q′) = li(q), iff q ∈ unc(q′, σi), which holds iff both
lpi+1(q′) = lpi (q) and lpi (q) 6∈∈ FL(lpi ). Let j be the first index so that m occurs in qj ,
but for every k > j, m does not die in 〈qk,qk+1〉. Let q ∈ Sj be such that lj(q) =
m, and let m′ = lpj (q). For k > j, define Rk = {r ∈ Sk | lk(r) = m}, and Rp

k =
{r ∈ Sk | lpk(r) = m′}. Since m does not die in 〈qk,qk+1〉, Rk and Rk+1 are both non-
empty, and by our above observations m′ does not Rabin-die in 〈qpk,q

p
k+1〉. Further,

Rp
k = Rk, and Rp

k+1 = Rk+1. This implies that if m succeeds in 〈qk,qk+1〉, then m′

Rabin-succeeds 〈qpk,q
p
k+1〉. Thus m′ Rabin-dies in finitely many 〈qpi ,q

p
i+1〉, and Rabin-

succeeds in infinitely many 〈qpi ,q
p
i+1〉, and DT (B) accepts w.

In the other direction if DT (B) accepts w, this implies is a label m that Rabin-dies
in finitely many 〈qpi ,q

p
i+1〉, and Rabin-succeeds in infinitely many 〈qpi ,q

p
i+1〉. Let j be

the first index so that m occurs in qpj , but for every k > j, m does not Rabin-die in
〈qpk,q

p
k+1〉. Let q ∈ Sj be such that lpj (q) = m, and let m′ = lj(q). For k > j, define

Rp
k = {r ∈ Sk | lpk(r) = m}, andRk = {r ∈ Sk | lk(r) = m′}, Sincem does not Rabin-

die in 〈qpk,q
p
k+1〉,m 6∈ Flpk andRk,Rk+1 are both non-empty. By our above observations

m′ does not die in 〈qk,qk+1〉. Further, Rp
k = Rk, and Rp

k+1 = Rk+1. This implies that if
m Rabin-succeeds in 〈qpk,q

p
k+1〉, then m′ succeeds 〈qk,qk+1〉. Thus m′ dies in finitely

many 〈qi,qi+1〉, and succeeds in infinitely many 〈qi,qi+1〉, and DR(B) accepts w.
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Parity Variant The parity variation simply shifts labels down, instead of giving arbitrary
free labels to new nodes. This means labels in the automaton are no longer consistent
with with the labels li over TG′ . To simplify this, we use an intermediate labeling that
keeps labels consistent between two levels, but can use the labels {|QB|, . . . 2|QB|}.
Given a tight macrostate q ∈ Qt and σ ∈ Σ, define the parity σ-successor of q to be
q′ = 〈S ′,�′, l′, t′〉 where S ′, �′, and t′ are defined as in Section 6.3, and l′ is defined
as follows:

(1) For q ∈ S, let neph(q, σ) = min�′({r′ | exists r ∈ S, q t r, r′ ∈ ρS,�(r, σ)})
(2) For r′ ∈ S ′, let unc(r′, σ) = min�({q | r′ ∈ neph(q, σ)})
(3) mj is the 〈�′, <〉-minjection from {r′ ∈ S ′ | unc(r′, σ = ∅} to {|QB|, . . . , 2|QB|}
(4) For r′ ∈ S ′, define the intermediate labeling

lint(r′) =

{
l(q), q ∈ unc(r′, σ) if unc(r′, σ) 6= ∅,
mj(r′) if unc(r′, σ) = ∅.

(5) For r′ ∈ S ′, define the final labeling l′(r′) = |{lint(q′) | lint(q′) < lint(r′)}|

For σ ∈ Σ and labelm ∈ {0, . . . , |QB| − 1}, given a tight macrostate q = 〈S,�, l, t〉
and its parity σ-successor q′ = 〈S ′,�′, l′, t′〉 let lint be the intermediate labeling defined
above. Let R = 〈r ∈ S | l(r) = m〉 and R′ = 〈r′ ∈ S ′ | lint(r′) = m〉. Note that R′

is defined with respect to the intermediate labeling. Say that a label m parity-dies in
〈q,q′〉 if m ∈ R, but m 6∈ R′. Say that m parity-succeeds in 〈q,q′〉 when R 6= ∅,
R′ 6= ∅, and either R′ ⊆ FB or ρS,�(R, σ) ∩ R′ = ∅. Define the priority function
γ : Qt ×Qt → {1, . . . , 2|QB|} so that γ(〈q,q′〉) is:

min({2m+ 2 | m parity-succeeds in 〈q,q′〉} ∪ {2m+ 1 | m parity-dies in 〈q,q′〉})

Definition 6.27. Define the DPEW automaton DP (B) to be 〈Σ,Qt,Qin, ρQ, γ〉 where:
• Qin is as defined Definition 6.19
• For q ∈ Q and σ ∈ Σ, ρQ(q, σ) = {q′} where q′ is the parity σ-successor of q.

Theorem 6.28. For a Büchi automaton B, L(DP (B)) = L(B)).

Proof. As above, for every word w, we show that the run q0,q1, . . . of DR(B) on w
is accepting iff the run qp0,q

p
1, . . . of DP (B) on w is accepting. For convenience, let

qi = 〈Si,�i, li, ti 〉. Again, it holds that for every i qpi == 〈Si,�i, lpi , ti 〉: qi and qpi
match on Si, �i, and ti . For every i, let linti be the intermediate labeling defined above.
However, it is no longer that case that the labels of a branch will be consistent from qpi to
qpi+1. Instead, we must look for consistency in the intermediate labeling. For every i and
q ∈ Si, q′ ∈ Si+1, we have that li+1(q′) = li(q) iff linti+1(q′) = lpi (q). If lpi+1(q′) 6= linti+1(q′),
this implies there was a label n < lpi (q) that occurs in the range of lpi , but not in the range
of linti+1.

In one direction, assume there is a label m that dies in finitely many 〈qi,qi+1〉, and
succeeds in infinitely many 〈qi,qi+1〉. Let j be the first index so that m occurs in qj ,
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but for every k > j, m does not die in 〈qk,qk+1〉. For every j′ > j, let q′j ∈ §j′ be such
that lj′(qj′) = m. Note that the values of lpj′(qj′) can only decrease: new labels are only
introduced above |QB|, and lpj (qj) < |QB|. Thus at some point the labels of qj′ cease
decreasing, and reach a stable point. Let k be this point, and let m′ = lpk(qk). For a level
k′ > k, defineRk′ = {r ∈ Sk′ | lk′(r) = m}, andRp

k′ = {r ∈ Sk′ | lintk′ (r) = m′}. Since
the labels of qk′ have stopped decreasing, we have that Rp

k′ = Rk′ . For every k′ > k, it
holds that m′ does not parity-die in 〈qpk′ ,q

p
k′+1〉. Further, every label n < m′ must occur

on every level k′ > k: otherwise lpk′(qk′) would not equal lintk′ (qk′). Thus for every k′ > k,
there is no label n < m′ that parity-dies in 〈qpk′ ,q

p
k′+1〉. Therefore γ(qpk′ ,q

p
k′+1) ≥

2m′ + 1. Now consider a level k′ > k where m succeeds in 〈qk′ ,qk′+1〉. By the note
above, Rp

k′ = Rk′ , and m′ parity-succeeds in 〈qpk′ ,q
p
k′+1〉, and γ(qpk′ ,q

p
k′+1) = 2m′ + 2.

We have thus shown that the smallest priority occurring infinitely often in 2m′ + 2, and
thus w is accepted by DP (B).

In the other direction if DP (B) accepts w, this implies is a label m and level j so
that for every k > j, it holds γ(qpk,q

p
k+1) ≥ 2m + 2, and for infinitely many k > j it

holds γ(qpk,q
p
k+1) = 2m+ 2. As noted above, this implies for every k > j and n ≤ m,

n does not parity-die in 〈qpk,q
p
k+1〉, and for infinitely many k > j, m parity-succeeds

in 〈qpk,q
p
k+1〉. Thus we conclude that for every k > j and q ∈ Sk, l

p
k(q) = m iff

lintk (q) = m. Let q ∈ Sj be such that lpj (q) = m, and let m′ = lj(q). For every k > j, let
Rp
k = {r ∈ Sk | lpk(r) = m}, and let Rk = {r ∈ Sk | lk(r) = m′}. Again, we have that

Rp
k = Rk, thus for every k > j, m′ does not die in 〈qk,qk+1〉, and for infinitely many

k > j we have m′ succeeds in 〈qk,qk+1〉. Thus w is accepted by and DR(B).
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Chapter 7

Conclusion and Future Work

Reactive systems are increasingly pervasive, and their correctness is of increasing im-
portance. Formal verification for reactive systems is a vigorous field of research in com-
puter science. Central to this is the creation of specifications that describe the properties
we wish to verify. This work addresses the algorithmic limitations to using nondeter-
ministic Büchi automata as specifications. In Chapter 3, we demonstrated the necessity
of specializing complementation constructions into containment checking algorithms.
Direct complementation is not viable. However, optimizations for the constructions do
significantly reduce both the size of the complemented automaton and the time required
to compute it. For the rank-based approach, the naive approach, which lacked tight
rankings or Schewe’s improved cut-point, is orders of magnitude larger on automata of
size 6. Ramsey-based complementation does not have the same history of optimization.
Only very recently did work begin on improving Ramsey-based complementation, in-
stead of the containment checking procedure [BLO12]. Further investigations into the
scalability of complementation constructions may provide surprising results.

In Chapter 4, we showed that neither the rank nor Ramsey-approach dominates on
all problem configurations. Given the cheap availability of processing power, the best
way to solve a problem would thus be to run both algorithms simultaneously. Prefer-
able to running the algorithms in parallel would be to employ a portfolio approach. A
portfolio approach attempts to predict which algorithm would perform better on a given
problem [LBNA+03]. To do this, we would have to examine the space of containment
problems and discover significant attributes of problems. Transition and acceptance den-
sity are not the only observable attributes of an automaton, or even necessarily the most
important ones. While they are significant for randomly generated problems, there is no
reason to expect that transition and acceptance density are good indicators of difficulty
for real-world problems. In the case of SAT solvers, over ninety pertinent attributes were
found [NLBD+04]. Machine-learning techniques were used to identify which features
suggest which approach to SAT solving. The challenge that now faces us is discover-
ing a similar body of features with which to characterize Büchi automata, and to create
a corpus of automata to characterize. In addition to transition and acceptance density,
attributes could include the density of initial states, the number of strongly connected
components in the automata, and the density of strongly connecting components con-
taining an accepting state.

Both Chapter 3 and 4 provide strong evidence that both worst-case complexity and
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examinations of the size of complemented automata are poor predictors of an algorithms
performance, and no substitute for empirical analysis of derived algorithms. The mas-
sive gap in complexity between the rank and Ramsey-based approach did not manifest
in any experiment. Further, complementation and universality testing exhibiting differ-
ent behaviors over the terrain. While Ramsey-based complementation found transition
densities of 1 to be the most difficult, Ramsey-based universality testing found transi-
tion densities of 1.5 to be harder, and had no problem with transition densities of 1.
Similarly, rank-based complementation was more sensitive to acceptance density, and
less sensitive to transition density, than rank-based universality checking. When dealing
with problems where heuristics and optimizations are necessary for scalability, worst-
case analysis simply does not provide a good metric on which to compare algorithms.
Experimental analysis must be performed. To further the validity of the experimental
analysis, we must develop better models on which to perform experiments. Random
examples provide only so much insight, especially when we start considering advanced
heuristics based on simulations relations in the input automata [ACC+11]. These sim-
ulations relations reflect structure in the input automata, and it is known in the case
of SAT problems that far more structure can be exploited in real-world than random
problems [NLBD+04].

The profile-based complementation construction of Chapter 5 provides exciting the-
oretical results and restricted nondeterminism. The ability to unify these two seem-
ingly disparate approaches suggests it may be possible to use odd rankings for deter-
minization, automata with other accepting conditions, and automata on infinite trees.
Further, [BLO12] suggest that the Ramsey-based approach might also be unified with
the rank and slice-based approaches. Doing so might yield further insights into what
makes the Ramsey-based approach so surprisingly competitive. Profile-based comple-
mentation must also be extended into more concrete algorithms. As we demonstrated
on the Ramsey and rank based approaches, explicit complementation does not scale
as well as heuristically-improved containment-checking algorithms. Thus the reduced
determinism of the profile-based approach can only be exploited by developing contain-
ment checking algorithms based on the profile-based complementation constructions.
Heuristics then need to be develop for these containment checking algorithms, includ-
ing perhaps a subsumption relation extending the work of Doyen and Raskin [DR07].
Further, our empirical analysis demonstrate that theoretical results, such as worst-case
complexity, are not always reflected in real-world performance. Thus to truly evalu-
ate the real-world effects of restricting nondeterminism, we must empirically test the
algorithms we derive from the profile-based complementation construction.

Despite decades of improvement on Safra’s original construction, every existing
Büchi determinization construction employs trees to encode macrostates. Chapter 6
describes a relational approach to determinization, using labeled preorders to encode
macrostates. There is a connection between our macrostates and Safra trees. A step in
the transition between Safra trees is to remove states if they appear in more than one
node. This is analogous to the pruned transition relation ρS,�. We also identified what
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additional information, namely the relation t, is encoded in Safra trees. This provides us
with a mathematically crisp determinization construction that can be seen as an augmen-
tation of the subset construction for automata on finite words. However, this approach
is still nascent, and the bounds on the resulting deterministic automata are still loose.
In the future, a more thorough analysis, perhaps leveraging recent work on Safra-tree
based determinization [Sch09b], could likely improve the upper bound on the size of
our construction. Although the current use of profiles for determinization does not ad-
mit the same relation with odd rankings that we employed for complementation, further
work may yet permit the use of odd rankings for determinization. More practically, de-
spite their combinatorial complexity, complementation based on Safra trees has proven
very for automata with a small number of states [TFVT11]. It remains to be seen if the
approach taken here will provide benefits in practice.

One limiting factor for research in this area is the paucity of real-world examples.
Most existing systems use logical, instead of Büchi, specifications. These specifica-
tions are negated and then translated into Büchi automata, avoiding the necessity of
complementation. Even systems that allow automata as specifications do not allow
nondeterministic Büchi automata, requiring either pre-complemented automata or de-
terministic automata. Thus the generation of Büchi specifications remains an outstand-
ing problem, both for practical use and to provide a better experimental base. Such
specifications could be written by hand or automatically extracted. In Size-Change
Termination, proofs of termination are derived from programs in the form of Büchi
automata [LJBA01]. This technique has been extended from first-order functional pro-
grams to imperative programs [ZGSV11] and even the untyped lambda calculus [JB04].
One could also imagine using Büchi specifications to prove variants of a system equiv-
alent, for instance sequential and concurrent interpretations of the same program, or a
model and it’s refinement. However, until we have tools that can handle Büchi specifi-
cations, we are stuck in a chicken-and-egg paradox, and Büchi specifications will not be
generated.
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Appendix A

Symbolic Subsumption

For the explicit approach, subsumption has proven to be very effective. It remains an
open question as to whether subsumption would also benefit the symbolic approach.
Recall that automata-theoretic algorithms, such as Algorithms 4.2 and 4.4, often con-
struct and manipulate sets of states. In the explicit approach, these sets are stored as a
collection of the individual states. With subsumption, only the minimal elements under
the subsumption relation are stored. Since these sets can be exponentially sized, in the
90’s attention turned towards alternatives to the explicit approach to representing sets.
When humans represent sets, we avoid explicitly listing all the elements. Instead, we
use symbolic representations like set comprehensions, which use a characteristic func-
tion to define a set. In [BCM+92], Burch et al. defined a similar method of using a
characteristic function to symbolically represent a set. The function is represented using
ordered binary decision diagrams (BDDs) [Ake78]. While in the worst case BDDs are
as large as explicit representations, in many cases they are exponentially smaller. The
size of a BDD is not necessarily related to the number of elements in the represented
set: intuitively, it is related to the number of bits that must be checked to determine if an
element is in the set. Thus it is not at all obvious that removing subsumed elements from
a set results in a BDD with smaller size. None the less, in many cases the size of a BDD
is related to the number of elements in the represented set, and it is worth investigating
subsumption’s effect on symbolic algorithms.

Symbolic algorithms have never found much traction in the realm of ω-automata.
However, for automata over finite words, symbolic algorithms have proven very effec-
tive [TV05]. In these experiments, we check the universality of an automaton over
finite words. This chapter investigates the effectiveness of subsumption on universality-
checking algorithms for classical automata over finite words. We discover that, in initial
experiments, subsumption did not improve the running time of symbolic approaches,
and that in fact improvements in BDD-based packages have rendered them faster than
explicit approaches.

A.1 Symbolic Subsumption for NFAs
A nondeterministic finite automaton (NFA) is a tuple B = 〈Σ, Q,Qin, ρ, F 〉, where Σ
is a finite nonempty alphabet, Q a finite nonempty set of states, Qin ⊆ Q a set of initial
states, F ⊆ Q a set of accepting states, and ρ : Q × Σ → 2Q a nondeterministic



100

transition function. In a deterministic finite automaton (DFA), the transition function is
deterministic: ρ : Q× Σ→ Q.

Much like automata on infinite words, a run of an NFA B on a word w ∈ Σ? is a
sequence of states q0...qn ∈ Q∗ such that q0 ∈ Qin and, for every i, 0 ≤ i ≤ (n− 1), we
have qi+1 ∈ ρ(qi, wi). A run is accepting iff qn ∈ F . A word w ∈ Σ? is accepted by B

if there is an accepting run of B on w. The words accepted by B form the language of
B, denoted by L(B). We generalize the notion of a run to a path: we say there is a path
from a sate q to a state r if there is a sequence of states q0...qn ∈ Q∗ such that q0 = q,
qn = r, and for every i, 0 ≤ i ≤ (n − 1) there is a wi ∈ Σ so that qi+1 ∈ ρ(qi, wi).
Say that a state r in an automaton is reachable where there is a state q ∈ Qin and a path
from q to r. We know that the language of an automaton on finite words is non-empty
iff there is a reachable accepting state: there are states q ∈ Qin, r ∈ F such that there is
a path from q to r.

To determine the universality of an NFA, we must first complement it. We use the
Rabin-Scott subset construction [RS59]. Given an NFA B = 〈Σ, Q,Qin, ρ, F 〉, define
the subset complement of B to be the DFA B̄ = 〈Σ, Qs, Q

in
s , ρs, Fs〉 where Qs = 2Q

is the set of subsets of Q, Qin
s is the singleton set {Qin}, ρs(R, σ) =

⋃
r∈R ρ(r, σ), and

F = {R ∈ Qs | F ∩R = ∅}.

Lemma A.1. [RS59] L(B̄) = L(B)

Given an automaton B, define Qr
s to be the set of all reachable states in B̄.

Lemma A.2. B is universal iff Qr
s does not include an element R such that F ∩R = ∅.

Proof. If such a set exists, then there is a path from the start state of B̄ to this set. Thus
L(B̄) is non-empty, and L(B) is non-universal. If no such set exists, then there is no
reachable accepting state in B̄, L(B̄) is empty, and L(B) is universal.

For the subset construction, the subset relation is a subsumption relation [WDHR06].
Thus we now discuss minimal elements in a set, under the subset relation. Given a set
of sets S, say that an element s ∈ S is minimal in S if there does not exist an s′ ∈ S
such that s′ ( s. We now us define Q⊂s = {R | R ∈ Qr

s, R is minimal in Qr
s} to be the

set of all minimal elements of Qr
s. Say that a set S is subset-minimal if every s ∈ S is

minimal in S.

Lemma A.3. B is universal iff Q⊂s does not include an element R such that F ∩R = ∅.

Proof. In one direction, assume B is not universal. Lemma A.2 implies there exists an
R ∈ Qr

s such that F ∩ R = ∅. This set can only fail to occur in Q⊂s if there is some
R′ ∈ Qr

s, R
′ ( R. However, if F ∩ R = ∅, then surely F ∩ R′ = ∅, and in fact every

subset of R is disjoint from F . Since ( is transitive, some such subset of R is minimal
in Qr

s, and occurs in Q⊂s .
In the other direction, assume such anR such that F∩R = ∅ exists. SinceQ⊂s ⊆ Qr

s,
Lemma A.2 implies B is not universal.
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We now present an algorithm that checks universality by computing the set Q⊂s and
checking for an element that is disjoint from F . For convenience, given a set S ⊆ Qr

s

of states in the subset construction, define Post(S) = {R′ | R ∈ S, R′ ∈ Qr
s, σ ∈

Σ, R′ = ρs(R, σ)} and Min(S) = {R | R is minimal in S}

Algorithm A.1: SubsumptiveUniversality(B)
Data: A NFA B = 〈Σ, Q,Qin, ρ, F 〉
Result: Whether L(B) = Σ?.

1 Frontier⇐ {Qin}
2 Reachable⇐ {Qin}
3 while Frontier 6= ∅ do
4 AlreadyReachable⇐ Reachable
5 Image⇐ Post (Frontier)
6 Reachable⇐ Reachable ∪ Image
7 Reachable⇐ Min (Reachable)
8 Frontier⇐ Reachable \ AlreadyReachable
9 if There exists R ∈ Reachable such that F ∩R = ∅ then

10 return Not Universal

11 return Universal

Lemma A.4. At every point, Frontier = Min (Frontier).

Proof. When initially assigned, Frontier is a singleton. On line 8, Frontier is assigned
a subset of Reachable, which by line 7 contains only elements minimal in Reachable.
A subset of a subset-minimal set is also subset-minimal.

Lemma A.5. If an element R is ever added to Reachable, when Algorithm A.1 termi-
nates there is an element R′ ∈ Reachable, R′ ⊆ R.

Proof. Note that Reachable is changed only on lines 6 and 7. Line 6 only adds el-
ements to Reachable. By the definition of Min, an element R can only be removed
from Reachable on line 7 if another element R′, R′ ( R, is added to Reachable.

Lemma A.6. When Algorithm A.1 terminates, Reachable = Q⊂s

Proof. Normally this would be proven by demonstrating that every R ∈ Reachable
is also in Q⊂S , and the converse. Instead, we relax this claim and show that for every
element R ∈ Reachable (resp. Q⊂s ), there is an element R′ ∈ Q⊂s (resp. Reachable)
where R′ ⊆ R. After this is proven in both directions, we demonstrate that for subset-
minimal sets, this claim is sufficient to prove equality.
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In one direction, assume a state R ∈ Reachable. R is reachable, as it was added
to Reachable by some sequence of Post operations, and so R ∈ Qr

s. Either there
exists an R′ ∈ Q⊂s such that R′ ( R, or there does not. If such an R′ exists, we have
satisfied our claim. If such an R′ does not exist, then R must be minimal in Q⊂s and, by
the definition of Q⊂s , it holds that R ∈ Q⊂s .

In the other direction, assume a state R ∈ Q⊂s . The fact that R ∈ Q⊂s implies R can
be reached by some path Q0...Qn ∈ Q∗ where Q0 = {Qin}, Qn = R and, for every
i, 0 ≤ i ≤ n − 1 there exists a σi such that Qi+1 = ρs(Qi, σi). We demonstrate by
induction that for every i, 0 ≤ i ≤ n there must exist a Q′i ∈ Reachable, Q′i ⊆ Qi. As
Qn = R, this implies there exists an R′ ∈ Reachable, R′ ⊆ R.

As a base case, Q0 = {Qin}. At the beginning of the algorithm, the only ele-
ment in Reachable is {Qin}. By Lemma A.5, at the end of the algorithm there is
a Q′0 ∈ Reachable, Q′0 ⊆ Q0. As the inductive step, we assume there exists a
Q′i ∈ Reachable, Q′i ⊆ Qi. By the definition of ρs, Qi+1 =

⋃
r∈Qi

ρ(r, σi). De-
fine Qnext to be ρs(Q′i, σi) =

⋃
r∈Q′i

ρ(r, σi). Note that Qnext ⊆ Qi+1. In the iteration of
the loop where Q′i was first added to Reachable, line 8 includes Q′i in Frontier. Thus
in the following iteration, line 6 adds Qnext to Reachable. By Lemma A.5, at the end
of the algorithm there exists a Q′next ∈ Reachable, Q′next ⊆ Qnext ⊆ Qi+1. Take Q′i+1

to be this Q′next.
We have now established that for every R ∈ Reachable, there is an R′ ∈ Q⊂s

such that R′ ⊆ R, and the converse. We also note that both Reachable and Q⊂s are
subset-minimal. We can now prove equality. For every R ∈ Reachable (resp. Q⊂s ),
there is a R′ ∈ Q⊂s (resp. Reachable) and an R′′ ∈ Reachable (resp. Q⊂s ), such that
R′′ ⊆ R′ ⊆ R. However, as Reachable (resp. Q⊂s ) contains only minimal elements,
R′′ ⊆ R implies R′′ = R, and thus R′ = R. Therefore every element in Reachable
(resp. Q⊂s ) is also in Q⊂s (resp. Reachable), and the two sets are equal.

Theorem A.7. B is universal iff SubsumptiveUniversality (B) returns Univer-
sal.

Proof. Immediate from Lemma A.3, Lemma A.6, and lines 9 through 11 of Algorithm
A.1.

A.2 Implementation and Experimentation
To test the effectiveness of Algorithm A.1, we implemented the algorithm symbolically
in NuSMV and ran some experiments. This required modifying the NuSMV algorithms
for checking safety properties to use the Min function. Upon reading in the specifica-
tion, we have NuSMV define and store a strict superset relation over states symbolically.
The strict superset relation is be defined as Superset(R,R′) = (

∧
q∈Q q ∈ R → q ∈

R′) ∧ (
∨
q∈Q q 6∈ R ∧ q ∈ R′). If we then have a set S of states of the subset construc-

tion, the image of S under the Superset relation are all states in S that are strict supersets
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of another state in S. Call this image of S under the Superset relation Simg. The set
Min(S) is then S \ Simg. We compared the default NuSMV on-the-fly invariant check-
ing algorithm, our symbolic implementation of Algorithm A.1, and the semi-symbolic
approach of Wulf et al. [WDHR06]. We note that the semi-symbolic approach, which
does use subsumption, was built on NuSMV 2.3, while our implementations were built
on NuSMV 2.5.

The automata are derived from the random model of Chapter 3. However, instead
of viewing the resulting five-tuples as Büchi automata, we view them as automata over
finite words. This model was used in [TV05] and [WDHR06]. We initially performed
terrain experiments over automata of of size 200. Note that both emptiness checking and
complementation is easier for NFA than for Büchi automata, and thus we can scale to
larger universality problems. Figure A.1 displays the behavior of our three algorithms.
Since the timeout is 3600 seconds, the picture is flattened for Algorithm A.1. The overall
hardest configuration seems to be at transition density 2 and acceptance density 0.9.
However, with more moderate acceptance densities, all approaches also have difficulty
with transition density 2.25. While we cannot draw conclusions about scalability from
terrain experiments, these experiments are at the least not promising for subsumption.

To compare the scalability of these three approaches, we chose two configurations.
The most difficult point was with transition density 2.0 and acceptance density 0.9.
Figure A.2(a) displays the running time for the default NuSMV algorithm and Algo-
rithm A.1 at the first configuration. Unfortunately, data for the semi-symbolic approach
is not available at this configuration. Because a huge number of problems timed out
for Algorithm A.1, we measure the timeout percentage. At this configuration, it is clear
that subsumption is a dramatically poor choice of optimization. Figure A.2(b) shows
the scalability of all three approaches at an easier configuration with transition density
1.75 and acceptance density 0.3. Here we see that, again, subsumption does not improve
the symbolic approach. Perhaps more surprisingly, the semi-symbolic approach scales
much worse than either symbolic approach. This may be due to updates in the NuSMV
code base between versions 2.3 and 2.5. However, conclusions gained from this data
must be tempered by the fact that this configuration is not very difficult: median run-
ning times never topped eight seconds. Paired with the other scalability results, we can
still conclude that subsumption does not improve scalability for symbolic algorithms for
NFA universality.



104

1.5
1.75

2
2.25

2.5

0

2

4

6

8

10

12

14

16

18

20

0.1

0.3

0.5

0.7

0.9M
e

d
ia

n
 R

u
n

n
in

g 
Ti

m
e

s 
(s

) 

Default (No Subsumption) 

1.5
1.75

2
2.25

2.5

0

500

1000

1500

2000

2500

3000

3500

0.1

0.3

0.5

0.7

0.9M
e

d
ia

n
 R

u
n

n
in

g 
Ti

m
e

s 
(s

) 
 

Algorithm A.1 (Subsumption) 

1.5
1.75

2
2.25

2.5

0

10

20

30

40

50

60

70

0.1

0.3

0.5

0.7

0.9M
e

d
ia

n
 R

u
n

n
in

g 
Ti

m
e

s 
(s

) 

Semi-Symbolic (subsumption) 

Figure A.1 : Differences in behavior between universality checking algorithms for non-
deterministic finite automata, over a terrain of random automata with 200 states, mea-
sured as the median running time. Times are cut off at 3600 seconds.
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Figure A.2 : Subsumption does not improve symbolic NFA universality testing.
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Appendix B

Experimental Documentation

A key element of science is repeatability. Repeatability poses a particular challenge
in computer science: our experiments rely on underlying architectures and frameworks
that are constantly changing. This appendix documents all of the software tools em-
ployed. Copies of all software can be found at http://www.cs.rice.edu/CS/
Verification/ under the ’Theses’ link.

B.1 Framework for Experiments
As mentioned above, All experiments were performed on the Shared University Grid at
Rice (SUG@R), a cluster of Sunfire x4150 nodes, each with two 2.83GHz Intel Xeon
quad-core processors and 16GB of RAM. As of 6/13/2012, SUG@R nodes are running
Red Hat Enterprise Linux Server release 5.6. Each experiment partitions the set of
experimental cases, and hands each partition to a compute node in the cluster. The node
then runs each tool on each case in turn, devoting the full resources of the compute
node to the task for 3500 seconds. Timeouts were handled using the custom-written and
very simple timedrun tool, with the invocation timedrun -q -csv -t 3500.
The bash builtin time is used to calculate the elapsed wall time of each run. We use
wall time to equalize memory-intensive and memory-sparing approaches, so that tools
that thrash on disk or suffer many page faults are appropriately penalized. Since each
node is dedicated to the job currently running on it, we are not worries about other
tasks consuming CPU time that our experiment could be using. Of course, on a modern
operating systems there are dozens of background processes running at all times, but
we expect their impact to be vanishingly small. In addition to median running time and
timeout status, we collect the output of each tool, to ensure consistency between results,
as well as the CPU and memory usage profiles derived from the top command at 30-
second intervals. These profiles give us some insight into the memory or CPU-bound
nature of each tool and problem.

To generate automata in the Tabakov-Vardi model, which can be viewed either as
Büchi automata (as in the bulk of this work) or as NFA (as in Appendix A), we use
the tool dk, written by Deian Tabakov. To generate automata, edit the create.sh
file in the extra directory. This file defines the starting, ending, and step size in the
parameters size n, transition density r, and acceptance density f . When generating
Büchi automata, the ”initTrans” option is selected, which ensures that the initial state has

http://www.cs.rice.edu/CS/Verification/
http://www.cs.rice.edu/CS/Verification/
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outgoing transitions on all characters. This avoids trivial cases of non-universality. For
NFA, we also select the ”initAcpt” option, which ensures the initial state is accepting.
This ensures the empty word is accepted, avoiding a trivial case of non-universality for
NFA. The resulting automata are in the .aut file format, defined below.

B.2 Complementation of Automata
To complement automata, we used the 2012-04-03 version of the GOAL tool. Docu-
mentation, downloads, and a description of the gff file format can be found at http:
//goal.im.ntu.edu.tw. We used the flags -tr -cp -ro -macc for rank-based
complementation, and -macc for Ramsey-based complementation.

B.3 Büchi Universality and Containment Checking
There are two tools we used to check the universality and containment in Chapter 4.
The first is RANK, our modified version of the mh tool developed by Doyen and Raskin
[DR09]. The mh tool can be found at http://www.lsv.ens-cachan.fr/˜doyen/
antichains/antichains.html. The RANK tool supports the one-way catch-them-
young modification to the Emerson-Lei algorithms, but this modification was not used
in our experiments, as it proved ineffective. Unfortunately, the RANK tool does not
generate counterexamples. Input, in the .aut format, can either be given as a file name
or piped through stdin. Finally, the maximum rank can be set artificially. If the rank is
set too low, RANK may incorrectly report containment or universality.

The second tool, RAMSEY, is based on the sct/scp program– an optimized C imple-
mentation of the SCT algorithm from Ben-Amram and Lee [BAL07]. We have rewritten
the RAMSEY tool to solve arbitrary Büchi universality problems by implementing Al-
gorithm 4.4. By default, RAMSEY does output counterexamples. However, these coun-
terexamples are very difficult to interpret. The RAMSEY tool accepts input in the .svw
format.

B.4 NFA Universality
In Appendix A, we modified NuSMV 2.5.0 to implement symbolic subsumption. The
modified code is available at http://www.cs.rice.edu/CS/Verification/. To
activate the symbolic subsumption, invoke NuSMV with the -sub flag. The automaton
is fully complemented and symbolically represented in the subset construction before
being given to NuSMV. For details of the encoding, see the section on file formats be-
low. Symbolic subsumption may only be used with two kinds of specifications. The first
are CTL specifications of the form AG: safety properties. It is necessary to use the -AG
flag for these properties, or they will be checked using the quadratic CTL algorithm.
With the -AG flag, NuSMV instead computes the reachable states and checks to ensure
they satisfy the safety property. Note, however, that by computing the reachable states

http://goal.im.ntu.edu.tw
http://goal.im.ntu.edu.tw
http://www.lsv.ens-cachan.fr/~doyen/antichains/antichains.html
http://www.lsv.ens-cachan.fr/~doyen/antichains/antichains.html
http://www.cs.rice.edu/CS/Verification/
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NuSMV is not operating on the fly, and thus is not fully implementing Algorithm A.1.
To search on the fly, we must use the INVARSPEC specification format provided in
NuSMV to enforce an invariant. This invokes a separate NuSMV function that searches
for a counterexample as the set of reachable states grows. Subsumption has been imple-
mented in both functions.

B.5 File Formats
This section describes the file formats used for each tool, and presents the trivial au-
tomaton over an alphabet of two characters, consisting of one initial, accepting, state
that transitions to itself on each character. For formats that only support containment,
we look at the containment of this automaton in itself.

To translate between these formats, we use the sctp tool, which is written in
Haskell. While this tool does perform Ramsey-based containment checking, the im-
plementation is not written with an eye towards efficiency. However, it is very flexible
in file formats, and has become a general-purpose conversion and sanity checking tool.

B.5.1 aut

The .aut file format is used by dk and rank. To translate automata to the .aut
format with sctp, use the -oa flag. This format uses newlines and spaces for delim-
iters and # to begin comment lines. Empty lines and comments are ignored, and do not
matter for the count below. The first line is a sentinel: 2 for for a single automaton, suit-
able for universality checking; 3 for two automata representing a containment problem.
The second line delineates the number of letters in the alphabet: for the Tabakov-Vardi
model, this is always 2. With k characters, the characters are always {0 . . . k − 1}. The
third line denotes the number of states in the first (and perhaps only) automaton. As
with characters, with n states the states are always {0 . . . n− 1}. The fourth line is a
list of initial states, separated by spaces. After the fourth line begins a list of transitions.
Each transition is of the form state character state, with the transition being
from the first state to the second on the character. The list of transitions is ended with
the single line containing -. The final line describing the first automaton is the list of
accepting states, which is separated by spaces like the list of initial states. If the sentinel
was 3, then a second automaton is described, identical to lines three and below from the
first automaton. The two automata share the same alphabet size. An example of this
format can be found in Figure B.1.

B.5.2 svw

The .svw format directly represents supergraphs, hiding which characters are respon-
sible for which supergraphs. To translate automata to the .svw format with sctp,
use the -oasn flag. Note that the number of supergraphs for a containment problem
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#Arc List Universality
2
#Language size
2
#Automaton size
1
#Initial states:
0
#Transitions
0 0 0
0 1 0
-
#Accepting states:
0

Figure B.1 : Example Automaton in the aut format

L(A) ⊆ L(B) is equal to the number of transitions in A. However, the number of
unique graphs is equal to the size of the alphabet. Since this format does not easily al-
low for memory-sharing between supergraphs, it is unsuitable for containment problems
with large left-hand automata. The format does not allow comments. The svw format
has three sections: the states of A, the states of B, and the supergraphs. Each section
is enclosed in curly brackets and separated by a newline. Other than this requirement,
newlines are ignored. The states of A are given as a space-separated list, in which each
state is given as a space-separated triple enclosed in parens. The first word is the state
name, the second is a bit indicating the state is initial, and the third is a bit indicating if
the state is accepting. The states of B are likewise given as a space-separated list, where
each state is a space-separated tuple enclosed in parens. The first word is the state name,
and the second is a bit indicating if the state is initial. Since tests on supergraphs do
not rely on checking if states in Bare accepting, this information is not encoded. Fi-
nally, the last section describes supergraphs. Each supergraph is contained in parens,
and comprises of three parts: the source state from A, the second state from A, and the
graph over states in B. The graph is surrounded by curly braces, and consists of a list of
space-separated arcs. Each arc is a space-separated triple enclosed in parents. The first
word in the triple is the source state of B. The second word the label of the arc, either 0
or 1. The third bit is the destination state of B. Figure B.2 displays the encoding of our
sample automaton, which results in a file with two supergraphs.

B.5.3 gff

The gff file format, used in the GOAL tool The format uses XML to verbosely describe
an automaton. We will not describe the format in detail here, simply provide an example
in Figure B.3. A detailed description is available at http://goal.im.ntu.edu.tw.
To translate automata to the .gff format with sctp, use the -oagff flag.

http://goal.im.ntu.edu.tw
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{
(astate 1 1)
}
{
(bstate 1)
}
{
(astate astate {(bstate 1 bstate) })
(astate astate {(bstate 1 bstate) })
}

Figure B.2 : Example Automaton in the svw format

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<structure label-on="transition" type="fa">

<alphabet type="classical">
<symbol> 0</symbol>
<symbol> 1</symbol>

</alphabet>
<stateSet>

<state sid="0"></state>
</stateSet>
<transitionSet>

<transition tid="0">
<from>0</from>
<to>0</to>
<read>0</read>

</transition>
<transition tid="1">

<from>0</from>
<to>0</to>
<read>1</read>

</transition>
</transitionSet>
<initialStateSet>

<stateID>0</stateID>
</initialStateSet>
<acc type="buchi">

<stateID>0</stateID>
</acc>

</structure>

Figure B.3 : Example Automaton in the gff format

B.5.4 NuSMV

sctp supports three different encodings of NFA as NuSMV files. In all cases the
NuSMV file encodes the subset construction. The three formats differ in how the ac-
ceptance condition is encoded. Thus all three formats begin the same, as shown in
Figure B.4.

The simplest encoding, using an AG spec, uses the -osmv flag in sctp. This
encodes the acceptance condition as a CTL specification.
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MODULE main
VAR
state: array 0..0 of boolean;

IVAR
input: boolean;

ASSIGN
init(state[0]) := 1;

next(state[0]) := (
( state[0] & (! input) )|
( state[0] & (input) ) );

Figure B.4 : The automaton encoding, without acceptance condition, in the NuSMV
format.

SPEC
AG (state[0]);

In order to perform on-the-fly universality checking, we must encode the automaton
with the -ofsmv flag in sctp. This encodes the acceptance condition as an invariant
specification.

INVARSPEC
(state[0]);

Finally, the semi-symbolic approach of [WDHR06] required the acceptance condi-
tion to be given as an invariant. Note that this does not line up with the normal NuSMV
meaning of an invariant, and only works with the semi-symbolic approach of Wulf et al.
To encode automata in this way, use the -oismv flag in sctp.

INVAR
(state[0]);
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