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Abstract

Büchi Complementation and Size-Change Termination

by

Seth Fogarty

We compare tools for complementing nondeterministic Büchi automata with a re-

cent termination-analysis algorithm. Complementation of Büchi automata is a well-

explored problem in program verification. Early solutions using a Ramsey-based

combinatorial argument have been supplanted by rank-based constructions with ex-

ponentially better bounds. In 2001 Lee et al. presented the size-change termination

(SCT) problem, along with both a reduction to Büchi automata and a Ramsey-based

algorithm. This algorithm strongly resembles the initial complementation construc-

tions for Büchi automata. This leads us to wonder if theoretical gains in efficiency

are mirrored in empirical performance.

We prove the SCT algorithm is a specialized realization of the Ramsey-based

complementation construction. Doing so allows us to generalize SCT solvers to han-

dle Büchi automata. We experimentally demonstrate that, surprisingly, Ramsey-

based approaches are superior over the domain of SCT problems, while rank-based

approaches dominate automata universality tests. This reveals several interesting

properties of the problem spaces and both approaches.
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automata containment problems. . . . . . . . . . . . . . . . . . . . . 49

5.3 Scaling of Ramsey and rank-based approaches on SCT problems. . . . 51
5.4 Mh program: timeout percentage vs. acceptance/final Density (200

states). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.5 SCTP program: timeout percentage vs. acceptance/final density (20

states). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.6 sct/scp program: timeout percentage vs. acceptance/final density (60

and 100 states). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.7 Scaling of Ramsey and rank-based approaches on Büchi automata uni-
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Chapter 1
Introduction

1.1 The Story So Far

The automata-theoretic approach to formal program verification reduces questions
about program adherence to a specification to questions about language containment.
Representing liveness, fairness, or termination properties requires finite automata that
operate on infinite words. One automaton, A, encodes the behavior of the program,
while another automaton, B, encodes the formal specification. To ensure that the
language of A is contained in the language of B, verify that the intersection of A
with the complement of B is empty. Unfortunately, for nondeterministic automata
computing the complementary automata B is PSPACE-hard [20]. A key problem in
this framework is finding an effective algorithm to determine the containment of finite
automata on infinite words.

Finite automata on infinite words are classified by their acceptance condition and
transition structure. We here consider nondeterministic Büchi automata, which have
a nondeterministic transition function, and in which a run is accepting when it visits
at least one accepting state infinitely often. Michel provides a lower bound of 2O(n log n)

to the complementation Büchi automata [13].
The first complementation constructions for nondeterministic Büchi automata em-

ployed a Ramsey-based combinatorial argument to partition infinite words into a finite
set of regular languages. Proposed by Büchi in 1962, the original construction involved
a doubly-exponential blowup in the state space [3]. In 1987 Sistla, Vardi, and Wopler
demonstrated a 2O(n2) implementation [15], bringing the complementation problem
into singly-exponential space but leaving a sizable gap between the solution and lower
bound.

The gap was tightened in 1988, when Safra described a determinization construc-
tion for Büchi automata that provided a nearly matching 2O(n log n) construction. Work
since then has focused on improving the practicality of 2O(n log n) constructions, either
by providing simpler constructions, further tightening the bound, or improving the
derived algorithms. In 2001 Kupferman and Vardi employed a rank-based analysis
of Büchi automata to provide a simpler complementation procedure. Gurumurthy
et al. combined this construction with minimization techniques [10]. Recently Doyen
and Raskin tightly integrated the rank-based construction with a subsumption rela-
tion and a lasso-finding algorithm to provide a complementation solver that scales to
automata several orders of magnitude larger than previous tools [6].

Separately in 2001, in the context of of program termination analysis, Lee, Jones,
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and Ben-Amram presented the size-change termination principle [12]. This principle
states that, for domains with well-founded values, if every infinite computation con-
tains an infinitely decreasing value sequence, then no infinite computation is possible.
Lee et al. describe a method of size-change termination analysis centered around a
verification problem, and reduce this problem to the containment of two Büchi au-
tomata. Stating the lack of efficient Büchi containment solvers, they also propose
a Ramsey-based combinatorial solution that captures all possible call sequences in a
finite set of graphs. This algorithm was provided as a practical alternative to reducing
the verification problem to Büchi containment, but bears a striking resemblance to
the 1987 Ramsey-based complementation construction.

1.2 Contributions

We investigate the connection between these two Ramsey-based approaches. We
first borrow from the Lee, Jones, and Ben-Amram (LJB) algorithm to provide a
concrete universality-testing algorithm based on the 1987 Ramsey-based complemen-
tation construction. Observing differences between this algorithm and the SCT al-
gorithm, we define a strong suffix closure property of languages and simplify the
universality-testing algorithm for languages with this property. We then show how
to extend this universality testing algorithm to Büchi automata containment prob-
lems. Finally we formally prove that the LJB size-change termination algorithm is a
specialized application of the 1987 Ramsey-based complementation construction.

Having shown the intimate connection between SCT analysis and Büchi automata
containment, we are presented with a rank-based containment algorithm implemented
only in the formal-verifications community, and a Ramsey-based containment algo-
rithm implemented only in the programming-languages community. To empirically
compare their performance, we level the playing field by strengthening each algo-
rithm. First, to fairly compare the two approaches on the domain of SCT problems,
we describe an improved reduction from SCT to Büchi containment and formalize a
subsumption relation presented as an optimization of the LJB algorithm in [2]. Sec-
ond, we turn our eye towards Büchi automata containment problems. We examine
some simple improvements to the Ramsey-based containment algorithm that sim-
plify the search space in the general case, and leverage this improvement to extend
the subsumption relation to arbitrary containment problems.

The practical performance of the two approaches can now be directly compared.
First, we explore Lee et al.’s intuition that Ramsey-based algorithms are more practi-
cal than Büchi complementation tools on SCT problems. We experimentally measure
the strength of existing SCT tools and best-of-breed Büchi complementation solvers
on size-change termination problems extracted from the literature. The sparsity of
such problems, and the difficulty in generating more, prevent us from developing a
clear picture of this space. What is clear is that, despite the vast chasm between
2O(n2) and 2O(n log n), Ramsey-based tools are competitive with or even superior to
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rank-based Büchi containment solvers.
To further explore this surprising development, we investigate the model of ran-

dom automata proposed by Tabakov and Vardi [17] and used to evaluate automata-
theoretic tools. We pit the same solvers against SCT tools generalized to handle arbi-
trary Büchi containment. We discover that, while Ramsey-based algorithms compare
well with rank-based algorithms, the best Ramsey-based tools do not scale as well as
the newest rank-based tools. Also notable is the observation that use of a subsump-
tion relations, especially in combination with operations specialized for this relation,
is essential to the practical implementation of either algorithm.

1.3 Outline

Chapter 2 discusses the relevant details of existing constructions and algorithms.
In Chapter 3 we prove the connection between the 1987 Ramsey-based construction
and the LJB algorithm for deciding SCT. Chapter 4 provides the foundations for
empirically testing the performance of Ramsey-based and rank-based algorithms. In
chapter 5 we compare the performance of each approach on two problem domains:
SCT problems from the literature and a space of random automata. Finally, Chapter
6 examines the discrepancy in performance between the SCT problem space and the
space of random automata.
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Chapter 2
Preliminaries

In this section we review the relevant details of the Ramsey-based complementa-
tion construction [15], rank-based complementation [11], and size-change termination
[12], introducing along the way the notation used throughout this thesis. An nonde-
terministic Büchi automaton on infinite words is a tuple B = 〈Σ, Q, Qin, ρ, F 〉, where
Σ is a finite nonempty alphabet, Q a finite nonempty set of states, Qin ⊆ Q a set of
initial states, F ⊆ Q a set of accepting states, and ρ : Q × Σ → 2Q a nondetermin-
istic transition relation. We lift the ρ function to sets of states, and then to words
of arbitrary length. For a set R ⊆ Q of states and a character a ∈ Σ, let ρ(R, a) be
{s | r ∈ R, s ∈ ρ(r, a)}. For a set of states R ⊆ Q, let ρ(R, ε) = R. For each a ∈ Σ
u ∈ Σ∗, define ρ(R, au) = ρ(ρ(R, a), u).

A run of a Büchi automaton B on a word w ∈ Σω is a infinite sequence of states
q0q1... ∈ Qω such that q0 ∈ Qin and, for every d ≥ 0, we have qd+1 ∈ ρ(qd, wd). A run
is accepting iff qd ∈ F for infinitely many d ∈ IN . A word w ∈ Σω is accepted by B
if there is an accepting run of B on w. The words accepted by B form the language
of B, denoted by L(B). A path in B from q to r over w = w0w1...wn−1 is a finite
sequence of states p0, ...., pn, such that p0 = q, pn = r, and for every 0 ≤ d < n, we
have pd+1 ∈ ρ(pd, wd). A path is accepting if pd ∈ F for some 0 ≤ d ≤ n. A state r is
reachable by a word w in an automaton B when r ∈ ρ(Qin, w). A state r is reachable
if there is a word that reaches it. We know that the language of B is non-empty iff
there are states q ∈ Qin, r ∈ F such that there is a path from q to r and an accepting
path from r to itself. The initial path is called the prefix, and the combination of the
prefix and cycle is called a lasso. Lasso finding is accomplished by either explicitly
searching the state-space, or by representing sets of states symbolically [18].

A Büchi automaton A is contained in a Büchi automaton B iff L(A) ⊆ L(B),
which can be checked by verifying that the intersection of A with the complement of
B is empty: L(A)∩L(B) = ∅. The intersection of two automata can be constructed,
having a number of states proportional to the product of the number states of the
original automata [4]. The most computationally demanding step is constructing the
complement of B.

2.1 Ramsey-Based Universality

When Büchi introduced these automata in 1962, he described a complementa-
tion construction involving a Ramsey-based combinatorial argument and a doubly-
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exponential blow-up in the state space [3]. In 1987 an improved implementation
of Büchi’s construction with only 2O(n2) states was presented [15]. We present this
improved implementation.

To construct the complement of B, where Q = {q0, ..., qn−1}, we construct a set

Q̃B whose elements capture the essential behavior of B. Each element corresponds
to an answer to the following question. Given a finite nonempty word w, for every
two states q, r ∈ Q: is there a path in B from q to r over w, and is some such path
accepting?

Define Q′ = Q × {0, 1} × Q, and Q̃B to be the subset of 2Q′

whose elements do

not contain, for every q and r, both 〈q, 0, r〉 and 〈q, 1, r〉. Each element of Q̃B is a
{0, 1}-arc-labeled graph on Q. An arc represents a path in B, and the label is 1 if

the path is accepting. Note there are k = 3n2
such graphs. With each graph g̃ ∈ Q̃B

we associate a language L(g̃), the set of words for which the answer to the posed
question is the graph encoded by g̃.

Definition 2.1.1. Let g̃ ∈ Q̃B and w ∈ Σ+. Then w ∈ L(g̃) iff, for all pairs of states
q, r ∈ Q:

(1) 〈q, a, r〉 ∈ g̃, a ∈ {0, 1}, iff there is a path in B from q to r over w.

(2) 〈q, 1, r〉 ∈ g̃ iff there is an accepting path in B from q to r over w.

The following lemma describes how the graphs g̃ capture the behavior of B.

Lemma 2.1.2. [3, 15]

(1) L(g̃), g̃ ∈ Q̃B, form a partition of Σ+

(2) If u ∈ L(g̃), v ∈ L(h̃), and uv ∈ L(k̃), then L(g̃) · L(h̃) ⊆ L(k̃)

Given this partition of Σ+, we can devise a finite family of ω-languages that cover
Σω. For every g̃, h̃ ∈ Q̃B, let Ygh be the ω-language L(g̃) ·L(h̃)ω. Ygh is proper if Ygh

is non-empty, L(g̃) · L(h̃) ⊆ L(g̃), and L(h̃) · L(g̃) ⊆ L(h̃). Say that the pair (g̃, h̃) is
proper when Ygh is proper. There is a finite, if exponential, number of such languages.
A Ramsey argument can show that every infinite string belongs to a language of this
form.

Lemma 2.1.3. [3, 15] Σω =
⋃
{Ygh | Ygh is proper}

Proof: Consider an infinite word w = a0a1... By Lemma 2.1.2, every prefix of the
word w is in some graph g̃i. Thus w defines a partition of IN into k sets D1, ..., Dk

such that i ∈ Dl iff a0...ai−1 ∈ L(g̃l). Clearly there is some m such that Dm is infinite.
Similarly, by Lemma 2.1.2 we can use the the word w to define a partition of

all unordered pairs of elements in Dm. This partition consists of k sets C1, ...Ck,
such that {i, j} ∈ Cl iff ai...aj−1 ∈ L(g̃l). Ramsey’s Theorem tells us that, given
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such a partition, there exists an infinite subset {i1, i2, ...} of Dm and a Cn such that
{ij , ik} ∈ Cn for all pairs of distinct elements ij , ik.

This implies that the word w can be partitioned into

w1 = a0...ai1−1, w2 = ai1 ...ai2−1, w3 = ai2 ...ai3−1, ...,

where w1 ∈ L(g̃m) and wi ∈ L(g̃n) for i > 1. As a0...aij−1 ∈ L(g̃m) for every ij ,
we have that w1w2 ∈ L(g̃m). As aij ...aik−1 ∈ L(g̃n) for every pair ij , ik, we have
that w2w3 ∈ L(g̃n). By Lemma 2.1.2, it follows that L(g̃m)L(g̃n) ⊆ L(g̃m) and
L(g̃n)L(g̃n) ⊆ L(g̃n) and Ygmgn

is proper.

In the proof above, we first defined a subset of indexes, Dm, and then used Ram-
sey’s Theorem to partition unordered pairs of elements from Dm. The particulars of
how the subset Dm is chosen do not affect the Ramsey argument. As we later explore
other partitions of indexes, we generalize here the essential logic of Lemma 2.1.3 for
later use.

Lemma 2.1.4. Let B be a Büchi automaton, Q̃B the associated set of graphs, w =
a0a1... an infinite word, and D an infinite set of indexes. There exists D′ ⊆ D and
g̃n ∈ Q̃B so that ai...aj−1 ∈ L(g̃n) for every i, j ∈ D′, i < j.

Lemma 2.1.5. [3, 15]

(1) For g̃, h̃ ∈ Q̃B, either Ygh ∩ L(B) = ∅ or Ygh ⊆ L(B).

(2) L(B) =
⋃
{Ygh | Ygh is proper and Ygh ∩ L(B) = ∅}.

To obtain the complementary Büchi automaton B, Sistla et al. construct a family
of deterministic automata on finite words that accept, for each g̃ ∈ Q̃B, L(g̃). The

state space of these automata is Q̃′
B = Q̃B ∪ {p0}, the set of graphs with the addition

of a start state p0. Bg is then 〈Σ, Q̃′
B, ρ̃, p0, {g̃}〉 where the deterministic transition

function ρ̃ : Q̃′
B × Σ → Q̃B is:

ρ̃(p0, a) = {〈q, 0, r〉 | r ∈ ρ(q, a), q ∈ Q, r ∈ Q \ F}

∪ {〈q, 1, r〉 | r ∈ ρ(q, a), q ∈ Q, r ∈ F}

ρ̃(g̃, a) = {〈q, 0, r〉 | 〈q, 0, s〉 ∈ g̃, r ∈ ρ(s, a) \ F}

∪ {〈q, 1, r〉 | 〈q, 0, s〉 ∈ g̃, r ∈ ρ(s, a) ∩ F}

∪ {〈q, 1, r〉 | 〈q, 1, s〉 ∈ g̃, r ∈ ρ(s, a)}

Lemma 2.1.6. [15] L(Bg) = L(g̃)

Using the automata Bg, one can construct the complementary automaton B. For
each proper Ygh, construct from Bg and Bh a Büchi automaton Bgh that accepts
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Ygh. Now find all Ygh disjoint from L(B) and construct the union automaton of the
corresponding Bgh. We can then use a lasso-finding algorithm on B to prove the
emptiness of B, and thus the universality of B.

We can avoid an explicit lasso search by employing the rich structure of the graphs
in Q̃B. For every two graphs g̃, h̃ ∈ Q̃B, determine if Ygh is proper. If Ygh is proper,
test if it is contained in L(B) by looking for a lasso with a prefix in g̃ and a cycle in

h̃. B is universal if every proper Ygh is so contained.

Lemma 2.1.7. Given an Büchi automaton B and the set of graphs Q̃B,

(1) B is a universal Büchi automaton iff, for every pair of graphs g̃, h̃ ∈ Q̃B such
that Ygh is proper, Ygh ⊆ L(B).

(2) Let g̃, h̃ ∈ Q̃B be two graphs where Ygh is proper. Ygh ⊆ L(B) iff there exists

q ∈ Qin, r ∈ Q, a ∈ {0, 1} where 〈q, a, r〉 ∈ g̃ and 〈r, 1, r〉 ∈ h̃.

Lemma 2.1.7 yields a PSPACE algorithm to determine universality [15]. Simply

check each g̃, h̃ ∈ Q̃B. If Ygh is both proper and not contained in L(B), then the pair

(g̃, h̃) provide a counterexample to the universality of B. If no such pair exists, the
automaton must be universal.

2.2 Rank-Based Complementation

If a Büchi automaton B does not accept a word w, then every run of B on w must
eventually cease visiting accepting states. The rank-based construction uses a notion
of ranks to track the progress of each possible run towards fair termination. A level
ranking for an automaton B with n states is a function f : Q → {0...2n,⊥}, such that
if q ∈ F then f(q) is even or ⊥. Let a be a letter in Σ and f, f ′ be two level rankings
f . Say that f covers f ′ under a when for all q and every q′ ∈ ρ(q, a), if f(q) 6= ⊥
then f ′(q′) ≤ f(q); i.e. no path between f and f ′ on a increases in rank. Let Fr be
the set of all level rankings.

If B = 〈Σ, Q, Qin, ρ, F 〉 is a Büchi automaton, define KV (B) to be the automaton
〈Σ, Fr × 2Q, 〈fin, ∅〉, ρ

′, Fr × {∅}〉, where

� fin(q) = 2n for each q ∈ Qin, ⊥ otherwise.

� Define ρ′ : 〈Fr × 2Q〉 × σ → 2〈Fr×2Q〉 to be

– If o 6= ∅ then ρ′(〈rf, o〉, σ) =
{〈f ′, o′ \ d〉 | f covers f ′ under σ, o′ = ρ(o, σ), d = {q | f ′(q) odd}}.

– If o = ∅ then ρ′(〈f, o〉, σ) =
{〈f ′, f ′ \ d〉 | f covers f ′ under a, d = {q | f ′(q) odd}}.

Lemma 2.2.1. [11] For every Büchi automaton B, L(KV (B)) = L(B).
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This automaton tracks the progress of B along a word w = a0a1... by attempting to
find an infinite series of level rankings f0f1.... We start with the most general possible
level ranking, and ensure that every rank fi covers fi+1 under ai. Every run has a
non-increasing rank, and so must eventually become trapped in some rank. To accept
a word, we require require that each run visit an odd rank infinitely often. For a word
rejected by B, every run can eventually become trapped in an odd rank. Conversely,
if there is an accepting run that visits an accepting node infinitely often, that run
cannot visit an odd rank infinitely often and the complementary automaton rejects
it. The subset construction is insufficient for complementing Büchi automata. Where
the Ramsey-based construction can be seen as using n parallel subset constructions,
the rank-based construction associates a monotonically decreasing rank with each
element of the subset. An algorithm seeking to refute the containment of A in B can
look for a lasso in the state-space of the intersection automaton A ∩ KV (B).

The strongest algorithm performing this search takes advantage of the presence
of a subsumption relation in the KV construction: one state 〈f, s〉 subsumes another
〈f ′, s′〉 if f(x) ≤ f ′(x) for every x ∈ Q and s′ ⊆ s. When computing the backward-
traversal lasso-finding fixed point, it is sufficient to represent a set of states with
the maximal elements under this relation. Further, the predecessor operation over a
single state and letter results in at most two incomparable elements. This algorithm
has scaled to automata an order of magnitude larger than other approaches [6].

2.3 Size-Change Termination

In [12] Lee et al. proposed the size-change termination (SCT) principle: “If every
infinite computation would give rise to an infinitely decreasing value sequence, then
no infinite computation is possible.” The original presentation concerned a first-order
purely functional language, where every infinite computation arises from an infinite
call sequence and values are always passed through a sequence of parameters. We
here review the relevant details of the SCT principle and its algorithmic realization.

Proving that a program is size-change terminating is done in two phases. The
first extracts from a program a set of size-change graphs containing guarantees about
the size of values at each function call site. The second phase, and the phase we
focus on, analyzes these graphs to determine if every infinite call sequence has a value
that descends infinitely along a well-ordered set. For a discussion of the abstraction
of language semantics, refer to the original paper [12]. We consider here a set H

of functions and a set C of call sites, written c : f1 → f2 for a call to function f2

occurring in the body of f1. Denote the parameters of a function f as P (f).

Definition 2.3.1. A size-change graph (SCG) from f1 to f2, written G : f1 → f2, is
a bipartite {0, 1}-arc-labeled graph from the parameters of f1 to the parameters of f2,

where G ⊆ P (f1) × {0, 1} × P (f2) does not contain both x
1
→ y and x

0
→ y.

Size-change graphs capture information about a function call. An arc x
1
→ y

8
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Figure 2.1: A size-change terminating SCT problem.

indicates that the value of x in the function f1 is strictly greater than the value

passed as y to function f2. An arc x
0
→ y indicates that x’s value is greater than or

equal to the value given to y. We assume that all call sites in C are reachable from
the entry points of the program1. The first phase of proving size-change termination
abstracts from the program a size-change graph for each call site, providing an initial
set of size-change graphs G.

Definition 2.3.2. A size-change termination (SCT) problem is a tuple L = 〈H, P, C,G〉
where H is a set of functions, P a mapping from each function to its parameters, C

a set of call sites between these functions, and G a set of size-change graphs for C.

Definition 2.3.3.

(1) A call sequence in L is a infinite sequence cs = c0, c1, . . . ∈ Cω, such that there
exists a sequence of functions f0, f1, .., where c0 : f0 → f1, c1 : f1 → f2....

(2) A thread in a call sequence c0, c0, . . . is a connected path of arcs beginning at
a call ci, through the corresponding sequence of size-change graphs Gi, Gi+1 . . .

such that x
a
→ y ∈ Gi, y

b
→ z ∈ Gi+1, . . .,

(3) A SCT problem is size-change terminating if every call sequence contains a
thread with infinitely many 1-labeled arcs.

Note that a thread need not begin at the start of a call sequence. Consider
the example in Figure 2.1. This example has two functions, f1 and f2, two calls,
a : f2 → f2 and b : f2 → f2, and the corresponding size-change graphs Ga and
Gb. This problem is size-change terminating. There are two possibly infinite call
sequences, bω and abω. In the first call sequence the 1-labeled arc from z to itself
forms an infinite thread from the beginning. In the call sequence starting with a,
no source parameter in Ga has a path to the accepting cycle in Gb. None the less,
the thread that begins with z in the second graph and continues along the 1-labeled

1The reference implementation provided by Lee et al. [12] also make this assumption, and does
not explicitly check that a prefix exists for the call sequence. Thus in the presence of unreachable
functions, these tools may not be able to determine size-change termination.

9



arc ensures that non-termination can only occur if a well-founded value decreases
infinitely often. This holds in all cases: threads can begin at any function call, in
any parameter. We call this the late-start property of SCT problems, and revisit it
in Sections 3.2 and 3.5.

If we associate a letter with each call site, every call sequence can be represented as
a word in Cω, and a size-change termination problem reduced to the containment of
two ω-languages. The first language, F low(L), contains all call sequences, while the
second language Desc(L) contains all call sequences containing a thread with infinitely
many 1-labeled arcs. If F low(L) ⊆ Desc(L), then every infinite call sequence has a
value that descends infinitely.

Definition 2.3.4.

(1) F low(L) = {cs ∈ Cω | cs is a call sequence}.

(2) Desc(L) = {cs ∈ F low(L) | some thread in cs has infinitely many 1-labeled arcs}

Lemma 2.3.5. [12] A size-change problem L is size-change terminating if and only
if F low(L) ⊆ Desc(L).

Lee et al. [12] describe two Büchi automata, AF low(L) and ADesc(L), that accept
these languages. AF low(L) is simply the call graph of p, and has one state for each
function. ADesc(L) waits in a copy of the call graph and nondeterministically chooses
the beginning point of a descending thread. From there it ensures that a 1-labeled
arc is taken an infinite number of times, using two states for each parameter of each
function.

Definition 2.3.6. 2

AF low(L) = 〈C, H, H, ρF , H〉

where ρF (f1, c) = {f2 | c : f1 → f2}

ADesc(L) = 〈C, Q1 ∪ H, H, ρD, F 〉

where Q1 =
⋃

f∈H
P (f) × {1, 0}

ρD(f1, c) = {f2 | c : f1 → f2} ∪ {〈x, i〉 | c : f1 → f2, x ∈ P (f2), i ∈ {0, 1}}

ρD(〈x, r〉, c) = {〈x′, r′〉 | x
r′

→ x′ ∈ Gc}

F =
⋃

f∈H
P (f) × {1}

Lemma 2.3.7. L(AF low(L)) = F low(L), and L(ADesc(L)) = Desc(L)

2The original LJB construction [12] restricted edges from functions to parameters to the 0-labeled
parameters. This was changed to simplify Section 3.6. As outgoing transitions from 0 and 1 labeled
parameters are the same, the modification does not change the accepted language.
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Using the complementation constructions of either Section 2.1 or 2.2 and a lasso-
finding algorithm, we can determine the containment of AF low(L) in ADesc(L). Lee et
al. propose an alternative graph-theoretic algorithm, employing size-change graphs to
encode descent information about call sequences. A notion of composition is provided,
where the composition of a sequence of graphs describes the relationship of values
over that call sequence. The closure of G under the composition operation is then
searched for a counterexample describing an infinite call sequence with no path of
infinite descent.

Definition 2.3.8. Let G : f1 → f2 and G′ : f2 → f3 be two size-change graphs. Their
composition G; G′ is defined as G′′ : f1 → f3 where:

G′′ = {x
1
→ z | x

a
→ y ∈ G, y

b
→ z ∈ G′, y ∈ P (f2), a = 1 or b = 1}

∪ {x
0
→ z | x

0
→ y ∈ G, y

0
→ z ∈ G′, y ∈ P (f2), and

∀y′, r, r′ . x
r
→ y′ ∈ G ∧ y′ r′

→ z ∈ G′ implies r = r′ = 0}

Lemma 2.3.9. Graph composition is associative.

Lemma 2.3.10. A call sequence a0...an−n has a thread from x to y over its entire

length, containing at least one 1-labeled arc, if and only if x
1
→ y ∈ G0; ...Gn−1.

Call a size-change graph graph G : f → f idempotent if G = G; G, and a coun-

terexample graph if it is idempotent and does not contain an arc of the form x
1
→ x.

Theorem 2.3.11. [12] A size-change termination (SCT) problem L = 〈H, P, C,G〉 is
not size-change terminating iff the closure of G under composition contains a coun-
terexample graph.

Theorem 2.3.11 yields an algorithm that determines the size-change termination
of an SCT problem L = 〈H, P, C,G〉 by ensuring the absence of a counterexample
in the closure of G under composition. First, use an iterative algorithm to build the
closure set S: initialize S as G, and for every G : f1 → f2 and G′ : f2 → f3 in S,
include G; G′ in S. Second, check every G : f1 → f1 ∈ S to ensure that if G = G; G,
then G is not a counterexample graph.
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Chapter 3
Size-Change Termination and Ramsey-Based

Containment

The Ramsey-based test of Section 2.1 and the LJB algorithm of Section 2.3 bear a
more than passing similarity. In this chapter we bridge the gap between the Ramsey-
based universality test and the LJB algorithm. In the context of size-change termi-
nation, Lee et al. provide a strategy that trades space for time. We now apply this
strategy to the universality test of Lemma 2.1.7 and present a constructive algorithm
that builds on Lemma 2.1.7. We then examine a language property that allow us
to further simplify universality-checking algorithms. Finally, we lift the universality-
testing algorithm to containment. This allows us to prove that the LJB algorithm of
Section 2.3 is a specialized realization of the Ramsey-based universality test.

3.1 Composition: Trading Space for Time

The Ramsey-based PSPACE algorithm we obtain from Lemma 2.1.7 checks the
universality of a Büchi automaton, B = 〈Σ, Q, Qin, ρ, F 〉. To ensure B is universal,

search every two graphs g̃, h̃ ∈ Q̃B for cases where Ygh is proper. Observe, however,

that if either L(g̃) or L(h̃) is empty then Ygh is trivially not proper. Thus, this
algorithm may needlessly consider many graphs with empty languages. Further, it is
not immediately obvious how to determine if the language of a graph is empty. We
extend the notion of composition from Section 2.3 to graphs in Q̃B, allowing us to
use exponential space to compute exactly the graphs with nonempty languages. This
simplifies the test for properness. Naively checking the emptiness or containment
of languages is a PSPACE-hard problem. Using composition we provide polynomial
tests for all aspects of properness.

As defined in Section 2.1, Q̃B = 2Q×{0,1}×Q. Elements g̃ ∈ Q̃B are {0, 1}-arc-
labeled graphs over the states of B where each arc 〈q, a, r〉 ∈ g̃ represents a path in
B from q to r, with a = 1 iff some such path is accepting. Each graph g̃ has an
associated language L(g̃) of words with exactly these paths through B.

Given two graphs g̃, h̃ ∈ Q̃B, define their composition g̃; h̃ to be the graph:

{〈q, 1, r〉 | q, r, s ∈ Q, 〈q, b, s〉 ∈ g̃, 〈s, c, r〉 ∈ h̃, b = 1 or c = 1}

∪ {〈q, 0, r〉 | q, r, s ∈ Q, 〈q, 0, s〉 ∈ g̃, 〈s, 0, r〉 ∈ h̃, and

∀t ∈ Q, b, c ∈ {0, 1} . 〈q, a, t〉 ∈ g̃ ∧ 〈y, b, r〉 ∈ h̃ implies a = b = 0}
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Lemma 3.1.1. For every two graphs g̃ and h̃, L(g̃) · L(h̃) ⊆ L(g̃; h̃).

Proof: Consider two words w1 ∈ L(g̃), w2 ∈ L(h̃). By Definition 2.1.1, to prove

w1w2 ∈ L(g̃; h̃) we must show that for every q, r ∈ Q: (1) 〈q, a, r〉 ∈ g̃; h̃ iff there is a
path from q to r over w1w2, and (2) that a = 1 iff there is an accepting path.

If an arc 〈q, a, r〉 ∈ g̃; h̃ exists, then there is an s ∈ Q such that 〈q, b, s〉 ∈ g̃ and

〈s, c, r〉 ∈ h̃. By Definition 2.1.1, this implies the existence of a path x1s from q to s

over w1, and a path sx2 from s to r over w2. Thus x1sx2 is a path from q to r over
w1w2.

If a is 1, then either b or c must be 1. By Definition 2.1.1, b (resp., c) is 1 iff there
is an accepting path x′

1s (resp., sx′
2) over w1 (resp.,w2) from q to s (resp., s to r). In

this case x′
1sx2 (resp., x1sx

′
2) is an accepting path in B from q to r over w1w2.

Symmetrically, if there is a path x from q to r over w1w2, then after reading w1

we are in some state s and have split x into x1sx2, so that x1s is a path from q to s

and sx2 a path from s to r. Thus by Definition 2.1.1 〈q, b, s〉 ∈ g̃, 〈s, c, r〉 ∈ h̃, and

〈q, a, s〉 ∈ g̃; h̃.
Further, if there is an accepting path from q to r over w1w2, then after reading w1

we are in some state s and have split the path into x1sx2, so that x1s is a path from
q to s, and sx2 a path from s to r. Either x1s or sx2 must be accepting, and thus
by Definition 2.1.1 〈q, b, s〉 ∈ g̃, 〈s, c, r〉 ∈ h̃, and either b or c must be 1. Therefore a

must be 1.

For a Büchi automaton B, define the set of graphs corresponding to single letters
to be Q̃1

B = {g̃ | g̃ ∈ Q̃B, a ∈ Σ, a ∈ L(g̃)}. Let Q̃
f
B be the closure of Q̃1

B under
composition.

Lemma 3.1.2. For a Büchi automaton B, every g̃ ∈ Q̃B such that L(g̃) 6= ∅ is in

Q̃
f
B.

Proof: Take an g̃ where L(g̃) 6= ∅. This implies there is at least one word w =

a0...an−1 ∈ L(g̃). Let g̃ai
be the graph in Q̃1

B corresponding to ai, and let g̃w be
g̃a0 ; g̃a0 ; ...; g̃an−1 .

By Lemma 3.1.1, w ∈ g̃w. By Lemma 2.1.2, every word w is in the language of
exactly one graph. Therefore g̃ = g̃w, and g̃ is in Q̃

f
B.

We can now generate exactly the set of graphs with non-empty languages. From
the transition function ρ, construct the set of graphs Q̃1

B corresponding to single
characters. Using composition, iteratively compute graphs for larger words until we
reach the fixed point Q̃

f
B.

The remaining test for properness required for Lemma 2.1.7 involve the contain-
ment of languages. Given a graph g̃, we can express the condition L(g̃) ·L(g̃) ⊆ L(g̃)
in terms of composition.1 We strengthen Lemma 3.1.1 and prove composition is

1The essence of this test was described in [16].
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equivalent to language concatenation for arbitrary graphs g̃, h̃, k̃ ∈ Q̃
f
B. This allows

concatenation and language containment to be tested using composition and equality.

Lemma 3.1.3. Let g̃, h̃, k̃ be graphs in Q̃
f
B. L(g̃) · L(h̃) ⊆ L(k̃) iff g̃; h̃ = k̃

Proof: Assume g̃; h̃ = k̃. Lemma 3.1.1 implies L(g̃) · L(h̃) ⊆ L(g̃; h̃) = L(k̃).

In the other direction, if L(g̃) · L(h̃) ⊆ L(k̃), we show that g̃; h̃ = k̃. As g̃, h̃ ∈ Q̃
f
B

and are non-empty, there is a word w ∈ L(g̃) ·L(h̃). By assumption, then, w ∈ L(k̃).

By Lemma 3.1.1, w ∈ L(g̃; h̃). Finally, by Lemma 2.1.2, w is the language of exactly

one graph, so g̃; h̃ = k̃.

3.2 Strongly Suffix Closed Languages

Theorem 2.3.11 suggests that, for some languages, a cycle implies the existence
of a lasso. For Büchi automata with these languages, it is sufficient, when disproving
universality, to search for a graph h̃ ∈ Q̃B, where h̃; h̃ = h̃, with no arc 〈r, 1, r〉. Call a

graph h̃ idempotent when h̃; h̃ = h̃. This single-graph search reduces the complexity of
our algorithm significantly. What enables this in size-change termination is the late-
start property: threads can begin at any point. We define this in terms of automata
universality and define the class of automata amenable to optimization.

In size-change termination, an accepting cycle can start at any point. Thus the
arc 〈r, 1, r〉 ∈ h̃ does not need an explicit matching prefix 〈q, a, r〉 in some g̃. In the
context of universality, we can apply this method when it is safe to add or remove
arbitrary prefixes of a word. To describe these languages we extend the standard
notion of suffix closure. A language L is suffix closed when, for every w ∈ L, every
suffix of w is in L.

Definition 3.2.1. A language L is strongly suffix closed if it is suffix closed and for
every w ∈ L, w1 ∈ Σ+, we have that w1w ∈ L.

Lemma 3.2.2. Let B be an Büchi automaton where every state in Q is reachable and
L(B) is strongly suffix closed. B is not universal iff Q̃

f
B contains an idempotent graph

h̃ with no arc of the form 〈r, 1, r〉.

Proof: Assume that there is an idempotent graph h̃ ∈ Q̃
f
B with no arc of the form

〈r, 1, r〉. We show that Yhh is a proper language not contained in L(B), and therefore

that B is not universal. As h̃ ∈ Q̃
f
B, we know L(h̃) is not empty, implying Yhh is

non-empty. Along with the premise that h̃ is idempotent, i.e.h̃; h̃ = h̃, and Lemma
3.1.3, this shows that Yhh is proper. Finally, if there is no 〈r, 1, r〉 ∈ h̃, then there

certainly cannot be q, r so that 〈q, a, r〉 ∈ h̃ and 〈r, 1, r〉 ∈ h̃. By Lemma 2.1.7, Yhh is
a counterexample to B’s universality.

Conversely, assume that every idempotent graph h̃ ∈ Q̃
f
B has a arc 〈r, 1, r〉. We

prove that every word w ∈ Σω is in L(B). Take a word w. By Lemma 2.1.3, w is in
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some proper language Ygh. Thus w = w1w2, where w1 ∈ L(g̃) and w2 ∈ L(h̃)ω. Since

Ygh is proper, h̃; h̃ = h̃. By assumption, h̃ contains an arc 〈r, 1, r〉, and thus there
is an accepting run of B on w2 beginning at r. As all states are reachable, there is
q ∈ Qin and u ∈ Σ+ so that there is a path from q to r over u. By Lemma 2.1.7,
this implies uw2 is accepted by B. As L(B) is strongly suffix closed, we can conclude
w2 ∈ L(B), which implies w1w2 ∈ L(B).

3.3 Ramsey-Based Containment with Supergraphs

To test the containment of a Büchi automaton A in a Büchi automaton B, we could
construct the complement of B using either the Ramsey-based or rank-based construc-
tion, compute the intersection automaton of A and B, and search this intersection
automaton for a lasso. With universality, however, we avoided directly constructing
B by exploiting the structure of states in the Ramsey-based construction (see Lemma
2.1.7 and Section 3.1). We demonstrate a similar test for containment.

Consider two automata, A = 〈Σ, QA, Qin
A , ρA, FA〉 and B = 〈Σ, QB, Qin

B , ρB, FB〉.
When testing the universality of B, any word not in L(B) is a sufficient counterexam-
ple. To test L(A) ⊆ L(B) we must restrict our search to the subset of Σω accepted

by A. In Section 2.1, we defined a set Q̃B whose elements describe all paths in B over
a word. We now define a set Q̂A,B, each element of which simultaneously captures all

paths in B and a single path in A. Whereas Q̃B provides a family of languages that
covers Σω (see Lemma 2.1.3), Q̂A,B defines a family of languages covering L(A).

We first define Q̄A = QA × QA to capture the connectivity in QA. An element
〈q, r〉 ∈ Q̄A is a single arc asserting the existence of a path in A from q to r. Call q

the source, and r the sink. With each arc ḡ we associate a language L(ḡ), the set of
words that connect the source and sink. Let 〈q, r〉 ∈ Q̄A and w ∈ Σ+.

Definition 3.3.1. w ∈ L(〈q, r〉) iff there is a path in A from q to r over w.

Define Q̂A,B as Q̄A × Q̃B. The elements of Q̂A,B, called supergraphs, are pairs

consisting of an arc from Q̄A and a graph from Q̃B. The language L(〈ḡ, g̃〉) is then
L(ḡ) ∩ L(g̃), or the set of words for which A is correctly described by ḡ and B

is correctly described by g̃. Note that the languages L(ĝ), ĝ ∈ Q̂A,B do not form a
partition of finite substrings of L(A): a single word may be in the language of multiple
supergraphs. For convenience, we implicitly take ĝ = 〈ḡ, g̃〉, and say 〈q, a, r〉 ∈ ĝ when
〈q, a, r〉 ∈ g̃.

Lemma 3.3.2. If u ∈ L(ĝ), v ∈ L(ĥ), uv ∈ L(k̂), and L(ḡ) · L(h̄) ⊆ L(k̄), then

L(ĝ) · L(ĥ) ⊆ L(k̂)

Proof: Assume we have such an u and v. Consider a word w ∈ (L(ḡ) ∩ L(g̃)) ·

(L(h̄) ∩ L(h̃)). We show w ∈ L(k̂). First, w must be in L(ḡ) · L(h̄) and L(g̃) · L(h̃).

Second, we know that u ∈ L(g̃), v ∈ L(h̃), and uv ∈ L(k̃). Thus by Lemma 2.1.2,
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L(g̃) · L(h̃) ⊆ L(k̃) and w ∈ L(k̃). Along with the premise L(ḡ) · L(h̄) ⊆ L(k̄), we

can now conclude w ∈ L(k̄) ∩ L(k̃), and therefore (L(ḡ) ∩ L(g̃)) · (L(h̄) ∩ L(h̃)) ⊆

(L(k̄) ∩ L(k̃)).

The languages L(ĝ), ĝ ∈ Q̂A,B, cover all finite substrings of L(A). With them we

define a finite family of ω-languages that cover L(A). Given ĝ, ĥ ∈ Q̂A,B, let Zgh

be the ω-language L(ĝ) · L(ĥ)ω. Let Zgh be called proper if: (1) Zgh is non-empty;

(2) ḡ = 〈q, r〉 and h̄ = 〈r, r〉 where q ∈ Qin
A and r ∈ FA; (3) L(ĝ) · L(ĥ) ⊆ L(ĝ) and

L(ĥ) · L(ĥ) ⊆ L(ĥ). Call the pair (ĝ, ĥ) proper when Zgh is proper. We note that

Zgh is non-empty if L(ĝ) and L(ĥ) are non-empty, and that, by the second condition,
every proper Zgh is contained in L(A).

Lemma 3.3.3.

(1) L(A) =
⋃
{Zgh | Zgh is proper}

(2) For all proper Zgh, either Zgh ∩ L(B) = ∅ or Zgh ⊆ L(B)

(3) L(A) ∩ L(B) =
⋃
{Zgh | Zgh is proper and Zgh ∩ L(B) = ∅}.

Proof:
(1): We extend the Ramsey argument of Lemma 2.1.3 to supergraphs.

Consider an infinite word w = a0a1... with an accepting run p = p0p1... in A. As
p is accepting, we know that p0 ∈ Qin

A and pi ∈ FA for infinitely many i. Since FA is
finite, at least one accepting state q must appear infinitely often. Let C ⊆ IN be the
set of indexes i such that pi = q.

We pause to observe that, by Definition 3.3.1, for every i ∈ C the word a0...ai−1

is in L(〈p0, q〉), and for every i, j ∈ C, i < j, the word ai...aj−1 ∈ L(〈q, q〉). Every
language Zhk where h̄ = 〈p0, q〉 and h̄ = 〈q, q〉 thus satisfies the second requirement of
properness.

In addition to restricting our attention the subset of vertices where pi = q, we
further partition C into k sets D1, ..., Dk based on the prefix of w until that point.
By Lemma 2.1.2, every finite word is in the language of some g̃. Say that i ∈ Dl iff
a0...ai−1 ∈ L(g̃l). As k is finite, for some m Dm must be infinite. Let h̃ = g̃m.

By Lemma 2.1.4, there is a subset D′ ⊆ Dm and a graph k̃ so that, for every
ij , ik ∈ D′, aij ...aik−1 ∈ L(k̃). D′ thus partitions the word w into

w1 = a0...ai1−1, w2 = ai1 ...ai2−1, w3 = ai2 ...ai3−1, ...,

such that w1 ∈ L(h̃) and wi ∈ L(k̃) for i > 1. Let ĥ = 〈〈p0, q〉, h̃〉 and let k̂ = 〈〈q, q〉, k̃〉.
By the above partition of w, we know that w ∈ Zhk. We now show that Zhk is proper.

First, as a0...ai−1 ∈ L(h̃) for every i ∈ D′, we have that w1w2 ∈ L(h̃). As

mentioned above, w1 and w1w2 are in both L(〈p0, q〉) and so w1, w1w2 ∈ L(ĥ). By
Definition 3.3.1, L(〈p0, q〉) ·L(〈q, q〉) ⊆ L(〈p0, q〉). Thus by Lemma 3.3.2, can conclude

16



that L(ĥ) · L(k̂) ⊆ L(ĥ). Secondly, ai...aj−1 ∈ L(k̃) for every pair i, j ∈ D′, we have

that w2w3 ∈ L(k̃). As w2, w2w3 are both in 〈q, q〉, it holds that w2, w2w3 ∈ L(k̂). By
the definition of a path, L(〈q, q〉) · L(〈q, q〉) ⊆ L(〈q, q〉). By Lemma 3.3.2 we can now

conclude L(k̂) · L(k̂) ⊆ L(k̂). Therefore Zhk is proper and contains w.

(2): Consider two supergraphs ĝ, ĥ. Recall that Ygh is the language L(g̃) · L(h̃)ω.

Note that L(ĝ) ⊆ L(g̃) and L(ĥ) ⊆ L(h̃), and therefore Zgh ⊆ Ygh. By Lemma 2.1.5
either Ygh ∩ L(B) = ∅ or Ygh ⊆ L(B). Therefore Zgh ∩ L(B) = ∅ or Zgh ⊆ L(B).

(3): Immediate from (1) and (2).

Lemma 3.3.4. Let A and B be two Büchi automata, and Q̂A,B be the corresponding
set of supergraphs.

(1) L(A) ⊆ L(B) iff, for every pair of supergraphs ĝ, ĥ such that Zgh is proper,
Zgh ⊆ L(B).

(2) Let ĝ, ĥ be two supergraphs such that Zgh is proper. Zgh ⊆ L(B) iff there exists

q ∈ Qin
B , r ∈ QB, a ∈ {0, 1} such that 〈q, a, r〉 ∈ ĝ and 〈r, 1, r〉 ∈ ĥ.

Proof:

(1) Immediate from Lemma 3.3.3.

(2) Recall that Ygh is the ω-language L(g̃) · L(h̃)ω and that Zgh ⊆ Ygh. By Lemma
2.1.3 either Ygh ⊆ L(B) or Ygh ∩ L(B) = ∅. Further, by Lemma 2.1.7 Ygh ⊆

L(B) iff a q, r and a exist such that 〈q, a, r〉 ∈ g̃ and 〈r, 1, r〉 ∈ h̃. Therefore
Zgh ⊆ L(B) iff such a q, r and a exist.

Lemma and 3.3.4 provides an algorithm for testing the containment of two au-
tomata, A and B. Search all pairs of supergraphs, ĝ, ĥ ∈ Q̂A,B for a pair is both
proper and for which there does not exist a q ∈ Qin

B , r ∈ QB, a ∈ {0, 1} such that

〈q, a, r〉 ∈ ĝ and 〈r, 1, r〉 ∈ ĥ. Such a pair is a counterexample to containment. If
no such pair exists, then L(A) ⊆ L(B). In order to realize this algorithm, we need
an easy way to check if a pair of supergraphs is proper. Composition is employed
towards this end.

3.4 Composition of Supergraphs

We are again faced with the prospect of searching over supergraphs with empty
languages. Just as in universality, we can leverage the notion of composition from

17



Lee et al. [12] to compute exactly the set of supergraphs with non-empty languages,
in essence trading space for time, as well as to test the properness of a pair of graphs
in polynomial time. Define the composition of two supergraphs ĝ = 〈〈q, r〉, g̃〉, ĥ =

〈〈r, s〉, h̃〉, written ĝ; ĥ, as the supergraph 〈〈q, s〉, g̃; h̃〉. Call a supergraph ĝ = 〈〈q, q〉, g̃〉
idempotent when ĝ; ĝ = ĝ.

Lemma 3.4.1. Let ĝ, ĥ ∈ Q̂A,B be two supergraphs. If ḡ = 〈q, r〉, h̄ = 〈r, s〉, then

L(ĝ) · L(ĥ) ⊆ L(ĝ; ĥ).

Proof: Take two words u ∈ L(ĝ), v ∈ L(ĥ). Note that ĝ; ĥ = 〈〈q, s〉, g̃; h̃〉). By
construction, u ∈ L(〈q, r〉) and v ∈ L(〈r, s〉). Definition 3.3.1 therefore implies the
existence of a path from q to r over u and a path from r to s over v. Thus uv ∈
L(〈q, s〉). Similarly, u ∈ L(g̃), v ∈ L(h̃), and Lemma 3.1.1 implies that uv ∈ L(g̃; h̃).

Thus uv is in L(〈〈q, r〉, g̃; h̃〉).

For a containment problem L(A) ⊆ L(B), define the subset of Q̂A,B corresponding

to single letters to be Q̂1
A,B = {ĝ | ĝ ∈ Q̂A,B, a ∈ Σ, a ∈ L(ĝ)}. For completeness, we

present a constructive definition of Q̂1
A,B.

Definition 3.4.2.

Q̂1
A,B = {〈〈q, r〉, g̃〉 | q ∈ QA, r ∈ ρA(q, a), a ∈ Σ,

g̃ = {〈q′, 0, r′〉 | q′ ∈ QB, r′ ∈ (ρB(q′, a) \ FB)} ∪

{〈q′, 1, r′〉 | q′ ∈ QA, r′ ∈ (ρB(q′, a) ∩ FB)}}

Let Q̂
f
A,B be the closure of Q̂1

A,B under composition.

Lemma 3.4.3. For two Büchi automata A,B, every ĥ ∈ Q̂A,B such that L(ĥ) 6= ∅ is

in Q̂
f
A,B.

Proof: Let ĥ = 〈〈q, r〉, h̃〉 where L(ĥ) 6= ∅. This implies there is at least one word

w = a0...an−1 ∈ L(ĥ), which is to say w ∈ L(〈q, r〉) ∩ L(h̃). By Definition 3.3.1, there
is a path p = p0...pn in A over w such that p0 = q and pn = r.

In the context of universality, we defined g̃ai
to be the graph in Q̃1

B containing ai.

Let ĝai
be 〈〈pi, pi−1〉, g̃ai

〉, and let ĝw be ĝa0 ; ĝa1 ; ...; ĝan−1 . Note that each ĝai
∈ Q̂1

A,B.

By Lemma 3.4.1 w ∈ g̃w. By Lemma 2.1.2 w is in only one graph and g̃w = h̃. By
construction, ḡw = 〈q, r〉. Therefore 〈ḡw, g̃w〉 = 〈〈q, r〉, h̃〉 = ĥ is in the closure of Q̂1

A,B

under composition.

We also employ composition to test the containment of languages.

Lemma 3.4.4. Let ĝ, ĥ, k̂ be supergraphs in Q̂
f
A,B such that ḡ = 〈q, r〉, h̄ = 〈r, s〉, and

k̄ = 〈q, s〉. Then ĝ; ĥ = k̂ iff L(ĝ) · L(ĥ) ⊆ L(k̂)
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Proof: Take ĝ; ĥ = k̂ as a premise. By Lemma 3.4.1, L(ĝ) · L(ĥ) ⊆ L(k̂).

In the other direction, if L(ĝ) · L(ĥ) ⊆ L(k̂), we show that ĝ; ĥ = k̂. Recall that

when ḡ = 〈q, r〉 and h̄ = 〈r, s〉, the definition of ĝ; ĥ is 〈〈q, s〉, g̃; h̃〉. As ĝ, ĥ ∈ Q̂
f
A,B

and is therefore non-empty, there is a word w ∈ L(ĝ) · L(ĥ). This expands to w ∈

(L(ḡ) ∩ L(g̃)) · (L(h̄) ∩ L(h̃)), which implies w ∈ L(g̃) · L(h̃). By Lemma 3.1.1, w is

then in L(g̃; h̃). Since, by Lemma 2.1.2, w is the language of exactly one graph, we

have that g̃; h̃ = k̃, which proves ĝ; ĥ = k̂.

Lemma 3.4.5. Given two supergraphs ĝ, ĥ ∈ Q̂
f
A,B, the pair (ĝ, ĥ) is proper iff ĝ; ĥ =

ĝ, ĥ; ĥ = ĥ, ḡ = 〈q, r〉, h̄ = 〈r, r〉, where q ∈ Qin
B and r ∈ FB.

Proof: Immediate from Lemmas 3.3.4, 3.4.3, and 3.4.4.

Lemma 3.3.4 and Lemma 3.4.5 provide an algorithm for testing L(A) ⊆ L(B).

First, compute the set Q̂1
A,B ⊆ Q̂A,B. Then construct Q̂

f
A,B by iteratively computing

the closure of Q̂1
A,B under composition. Finally, search all pairs of supergraphs, ĝ, ĥ ∈

Q̂
f
A,B, for a pair that fulfills the above conditions and does not contain an s ∈ Qin

B

and t ∈ QB such that 〈s, a, t〉 ∈ ĝ and 〈t, 1, t〉 ∈ ĥ. If such ĝ, ĥ exist, then Zgh is
not contained in L(B) and is a counterexample for L(A)’s containment in L(B). The
absence of such a pair is sufficient to prove containment. We call this search the
double-graph search, to contrast algorithms in the next section that look for only a
single supergraph.

Corollary 3.4.6. Let A and B be two Büchi automata. L(A) ⊆ L(B) iff: for every

pair (ĝ, ĥ) of supergraphs in Q̂
f
A,B such that ĝ; ĥ = ĝ, ĥ; ĥ = ĥ, ḡ = 〈q, r〉, h̄ = 〈r, r〉,

where q ∈ Qin
B and r ∈ FB, there exists s ∈ Qin

B , t ∈ QB such that 〈s, a, t〉 ∈ ĝ and

〈t, 1, t〉 ∈ ĥ.

3.5 Strong Suffix Closure and Containment

In Section 3.1 we defined the strong suffix closure property of languages and used
it to simplify the Ramsey-based universality test of certain Büchi automata. We
here extend the this notion to handle containment questions L1 ⊆ L2. As in Section
3.3, we restrict our focus to words in L1. Instead of requiring L2 to be closed under
arbitrary prefixes, L2 need only be closed under prefixes that keep the word in L1.

Definition 3.5.1. A language L2 is strongly suffix closed with respect to L1 when
L2 is suffix closed and, for every w ∈ L1 ∩L2, w1 ∈ Σ+, if w1w ∈ L1 then w1w ∈ L2.

Lemma 3.5.2. Let A and B be two Büchi automata where Qin
A = QA,2 every state

in QB is reachable, and L(B) is strongly suffix closed with respect to L(A). Then

2With a small amount of work, the restriction that Qin
A

= QA can be relaxed to the requirement
that L(A) be suffix closed.
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L(A) 6⊆ L(B) iff Q̂
f
A,B contains a supergraph ĥ = 〈〈s, s〉, h̃〉 where s ∈ FA, ĥ; ĥ = ĥ

and there is no arc 〈r, 1, r〉 ∈ ĥ.

Proof: In one direction, assume Q̂
f
A,B contains a supergraph ĥ = 〈〈s, s〉, h̃〉 where

s ∈ FA, ĥ; ĥ = ĥ and there is no arc 〈r, 1, r〉 ∈ ĥ. We show that Zhh is a proper

language not contained in L(B). As ĥ ∈ Q̂
f
A,B, we know L(ĥ) is not empty, implying

Zhh is non-empty. As QA = Qin
A , s ∈ Qin

A . By Lemma 3.4.4, the premise ĥ; ĥ = ĥ

implies L(ĥ) · L(ĥ) ⊆ L(ĥ), and Zhh is proper. Finally, as there is no 〈r, 1, r〉 ∈ ĥ, by
Lemma 3.3.4, Zhh is a counterexample to L(A) ⊆ L(B).

In the opposite direction, assume that Q̂
f
A,B does not contain a supergraph ĥ =

〈〈s, s〉, h̃〉 where s ∈ FA, ĥ; ĥ = ĥ, and there is no arc 〈r, 1, r〉 ∈ ĥ. We prove that every
word w ∈ L(A) is in L(B). Take a word w ∈ L(A). By Lemma 3.3.3, w is in some

proper language Zgh and can be broken into w1w2 where w1 ∈ L(ĝ), w2 ∈ L(ĥ)ω.

Because Zgh is proper, Lemma 3.4.4 implies ĥ = 〈〈s, s〉, h̃〉 where s ∈ FA and

ĥ; ĥ = ĥ. By assumption, ĥ then must contain an arc 〈r, 1, r〉. Since all states in
QB are reachable, there is q ∈ Qin

B and u ∈ Σ+ with a path in B from q to r over
u. By Lemma 2.1.7, this implies uw2 is accepted by B. For L(B) to strongly suffix
closed with respect to L(A), it must be suffix closed. Therefore w2 ∈ L(B). Note
that as Qin

A = QA, L(A) is suffix closed, and thus the premise w1w2 ∈ L(A) implies
w2 ∈ L(A). Since L(B) is strongly suffix closed with respect to L(A), w1w2 ∈ L(B).

Lemma 3.5.2 provides a direct test for the containment of A in B when L(B)

is strongly suffix closed with respect to L(A). Search all supergraphs in Q̂A,B for

an supergraph ĥ where ĥ; ĥ = ĥ that does not contain an arc of the form 〈r, 1, r〉.
The presence of this counterexample refutes containment, and the absence of such a
supergraph proves containment. We call this search the single-graph search.

3.6 From Ramsey-Based Containment to Size-Change Ter-
mination

We can now delve into the connection between the graph-theoretic LJB algorithm
for size-change termination and the Ramsey-based containment test of F low(L) ⊆
Desc(L). Size-change graphs in the graph-theoretic solution of an SCT problem are
direct analogues of supergraphs in the Ramsey-based containment test of F low(L) ⊆
Desc(L). We define this analogy and show that the LJB algorithm presented in Sec-
tion 2.3 is a specialized realization of the Ramsey-based containment test of Lemma
3.5.2.

Noting that the LJB algorithm examines single size-change graphs G = G; G, we
show that for an SCT problem L = 〈H, P, C,G〉 the conditions of Lemma 3.5.2 are
met. First, every state in AF low(L) is an initial state. Second, every state in ADesc(L)
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corresponding to a function in ADesc(L) is initial, and every state corresponding to a
labeled parameter is reachable, and so every state in ADesc(L) is reachable.3 Finally,
we demonstrate that Desc(L) is strongly suffix closed with respect to F low(L). Recall
that F low(L) is the language of all call sequences, and Desc(L) the language of all call
sequences with a thread with infinitely many 1-labels. The suffix of a call sequence
is still a call sequence, so given a call sequence w with a such a thread, every suffix
of w will be a call sequence containing contain a suffix of that thread, and so will
remain in Desc(L). Further, for every w1 so that w1w ∈ F low(L), we know w1w is
a call sequence with the same thread, and is thus in Desc(L). Therefore Desc(L) is
strongly suffix closed with respect to F low(L).

So AF low(L) and ADesc(L) satisfy the requirements of Lemma 3.5.2, and we can use
the single-graph search. Also, observe that every state in AF low(L) is accepting. Thus

we can conclude that AF low(L) 6⊆ ADesc(L) iff there is a supergraph ĥ ∈ Q̂
f
AF low(L),ADesc(L)

so that ĥ; ĥ = ĥ and ĥ contains no arc of the form 〈r, 1, r〉.

Consider supergraphs in Q̂AF low(L),ADesc(L)
. In the context of size-change termina-

tion, a word corresponds to a call sequence. The state space of AF low(L) is the set of
functions H , and the state space of ADesc(L) is the union of H and Q1, the set of all

{0, 1}-labeled parameters. A supergraph in Q̂AF low(L),ADesc(L)
thus comprises an arc

〈q, r〉 in H and a {0, 1}-labeled graph g̃ over H ∪ Q1. The arc asserts the existence
of a call path from q to r, and the graph g̃ captures the relevant information about
corresponding paths in ADesc(L).

These supergraphs are almost the same as size-change graphs, G : q → r. Aside
from notational differences, both contain an arc asserting the existence of a call path
between two functions and a {0, 1}-labeled graph. There are vertices in both graphs
that correspond to parameters of functions, and arcs between two such vertices de-
scribe a thread between the corresponding parameters. The analogy falls short, how-
ever, on three points:

(1) In size-change graphs, vertices are unlabeled. In supergraphs, vertices are la-
beled either 0 or 1.

(2) In size-change graphs, vertices are always parameters of functions. In super-
graphs, vertices can be either parameters of functions or function names.

(3) In size-change graphs, all vertices correspond to parameters of a two specific
functions. In supergraphs, vertices exist that correspond to all parameters of
all functions.

We show in turn that each differences is an opportunity to specialize the Ramsey-
based containment algorithm. In the end we obtain a set Ĵ of simplified supergraphs,
so that every ĥ ∈ Q̂AF low(L),ADesc(L)

that could be a counterexample has a corresponding

3In the original reduction, 1-labeled parameters may not have been reachable.
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supergraph in Ĵ . In specific Ĵf , the subset of Ĵ corresponding to Q̂
f
AF low(L),ADesc(L)

,

in one-to-one correspondence with S, the closure of the set of size-change graphs
under composition, and a counterexample exists in S iff Ĵf contains an idempotent
supergraph ĥ with no arc 〈r, 1, r〉.

(1) The labels on parameters are the result of encoding a Büchi edge acceptance
condition in a Büchi state acceptance condition automaton, and can be dropped
from supergraphs with no loss of information. Consider an arc 〈〈f, a〉, b, 〈g, c〉〉 in

a supergraph from Q̂AF low(L),ADesc(L)
. If b is 1, we know the corresponding thread

contains a descending arc. The value of c tells us if the final arc in the thread
is descending, but we do not care which arc in the thread is descending. When
constructing the initial set of supergraphs, we can look at the SCGs to discover
which threads of length one contain descent and mark the corresponding arcs with 1.
Thus it is safe to simplify supergraphs in Ĵ by removing labels on parameters.

(2) No functions in H are accepting for ADesc(L), and once we transition out of H into
Q1 we can never return to H . Therefore vertices corresponding to function names
can never be part of a descending arc 〈r, 1, r〉. Since we only search Ĵ for a cycle

〈r, 1, r〉, we can simplify supergraphs in Ĵ by removing all vertices corresponding to
functions.

(3) While all parameters are states in ADesc(L), each supergraph describes threads
in a call sequence between two functions. There are no threads in this call sequence
between parameters of other functions, and so no supergraph with a non-empty lan-
guage has arcs between the parameters of other functions. We can thus simplify
supergraphs in Ĵ by removing all vertices corresponding to other parameters.

We now define the set Ĵ for an SCT problem L = 〈H, P, C,G〉

Definition 3.6.1. ĴL = {〈〈f1, f2〉, ̃〉 | f1, f2 ∈ H, ̃ ⊆ 2P (f1)×{0,1}×P (f2)}

Say that 〈r, g̃〉 ∈ Q̂AF low(L),ADesc(L)
simplifies to 〈r, ̃〉 ∈ Ĵ when 〈q, b, r〉 ∈ ̃ iff

there exists a, c ∈ {0, 1} such that 〈〈q, a〉, b, 〈r, c〉〉 ∈ g̃. Let Ĵ1 be {̂ | ̂ ∈ Ĵ , ĝ ∈

Q̂1
AF low(L),ADesc(L)

, ĝ simplifies to ̂}, and Ĵf be the closure of Ĵ1 under composition.

We can map SCGs directly to elements of Ĵ . Say G : f1 → f2 ≡ 〈〈f1, f2〉, g̃〉 when
q

a
→ r ∈ G iff 〈q, a, r〉 ∈ g̃. Note that the composition operations for supergraphs

of this form is identical to the composition of SCGs. If G1 ≡ ĝ and G2 ≡ ĥ, then
G1; G2 ≡ ĝ; ĥ. Therefore every element of Q̂

f
AF low(L),ADesc(L)

simplifies to some element

of Ĵf .
We can thus specialize the Ramsey-based containment algorithm for AF low(L) ⊆

ADesc(L) in two ways. First, by Lemma 3.5.2 we know that F low(L) ⊆ Desc(L)

if and only if Q̂AF low(L),ADesc(L)
contains an idempotent graph ĝ = ĝ; ĝ with no arc

of the form 〈r, 1, r〉. Secondly, we can simplify supergraphs in Q̂AF low(L),ADesc(L)
by

22



removing the labels on parameters and keeping only the vertices associated with
appropriate parameters, thus obtaining a set Ĵ of supergraphs that are in one-to-one
correspondence with SCGs. As every state in F low(L) is accepting, every idempotent
supergraph can serve as a counterexample. Since the supergraphs whose languages
contain single characters are in one-to-one correspondence with G, every idempotent
graph in Ĵf contains an arc of the form〈r, 1, r〉 exactly when G is cycle terminating.

Lemma 3.6.2. Let L = 〈H, P, C,G〉 be an SCT problem.

(1) Ĵ1
L is in one-to-one correspondence with G

(2) L is not size-change terminating iff Ĵ
f
L contains a supergraph ̂ where ̂; ̂ = ̂

that contains no arc of the form 〈r, 1, r〉.

Proof:
(1): Every size-change graph G : f1 → f2 ∈ G is the SCG for a call site c from f1

to f2. This is a call sequence of length one. Thus there is a ĝ ∈ Q̂1
AF low(L),ADesc(L)

so

that c ∈ L(ĝ) and ḡ = 〈f1, f2〉. ĝ simplifies to some ̂ ∈ Ĵ . By Definition 2.3.6, the
arc 〈q, a, r〉 ∈ ̂ when q

a
→ r ∈ G. Thus ĵ ≡ G : f1 → f2.

(2): By (1), G is in one-to-one correspondence with Ĵ1. Therefore S is in one-to-one

correspondence with the Ĵf . This this follows both from Theorem 2.3.11 and from
Lemma 3.5.2.
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Chapter 4
Towards an Empirical Comparison

Having shown that the LJB algorithm for size-change termination is a special-
ized realization of the Ramsey-based containment test, we want to compare existing
SCT analysis tools to existing rank-based complementation tools. We propose two
problem domains over which we can empirically measure the scalability of Ramsey-
based and rank-based tools. The first domain consists of size-change termination
problems. To facilitate a fair comparison, we present an improved reduction from
size-change termination to Büchi automata containment and formalize a subsump-
tion relation presented by Lee and Ben-Amram in [2]. The second domain we want
to examine the behavior of Ramsey-based and rank-based tools on consists of Büchi
containment problems. To do so, we modify existing SCT tools to handle arbitrary
Büchi automata containment problems. In moving from SCT problems to contain-
ment problems, Ramsey-based algorithms must abandon the convenience of strongly
suffix-closed languages and the single-graph search, instead testing every proper pair
of supergraphs. This induces an exponential blowup in the search space. We examine
the constraints of properness to reduce this blowup. We then show how to leverage
the subsumption relation presented above for arbitrary Büchi automata containment
problem.

4.1 A Tighter Reduction from SCT to Büchi Containment

In constructing the analogy between SCGs in the LJB algorithm and supergraphs
in the Ramsey-based containment algorithm, we noticed that supergraphs contain
vertices for every parameter, while size-change graphs contain only vertices corre-
sponding to parameters of relevant functions. These vertices are states in ADesc(L).
While we can specialize the Ramsey-based test to avoid them, Büchi containment
solvers might suffer. These states duplicate information. As we already know which
functions each supergraph corresponds to, there is no need for each vertex to be
unique to a specific function.

The extra states emerge because Desc(L) only accepts strings that are contained
in F low(L), and in doing so demands that parameters only be reached by appropriate
call paths. But the behavior of ADesc(L) on strings not in F low(L) is irrelevant to
the question of F low(L) ⊆ Desc(L), and we can replace the names of parameters in
ADesc(L) with their location in the argument list. Further, we can rely on F low(L) to
verify the sequence of function calls before our accepting thread and make do with a
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single waiting state.

Definition 4.1.1. Given an SCT problem L = 〈H, P, C,G〉 and a projection Ar of
all parameters onto their positions 1..n in the argument list, define:

A′
Desc(L) = 〈C, S ∪ {q0}, {q0}, ρD, F 〉

where S = {1..n} × {1, 0}

ρD(q0, c) = {q0} ∪ {〈Ar(x), 0〉 | c : f1 → f2, x ∈ P (f2)}

ρD(〈n, a〉, c) = {〈Ar(y), a′〉 | x
a′

→ y ∈ Gc, n = Ar(x)}

F = {1..n} × {1}

Lemma 4.1.2. L(AF low(L)) ⊆ L(ADesc(L)) iff L(AF low(L)) ⊆ L(A′
Desc(L))

Proof: The languages of ADesc(L) and A′
Desc(L) are not the same. What we demon-

strate is that for each word in F low(L), we can convert an accepting run in one of
ADesc(L) or A′

Desc(L) into an accepting run in the other. Recall that the states of
AF low(L) are functions f ∈ H . States of ADesc(L) are either elements of H or elements
of

⋃
f∈H P (f) × {1, 0}, the set of labeled parameters.

Consider a word w with an accepting run r = r0r1... of A′
Desc(L) and an accepting

run s = s0s1... of AF low(L). We define an accepting run t = t0t1.. of ADesc(L) on w.
Each ti depends on the corresponding ri and si. If ri = q0 and si = f , then ti = f . If
ri = 〈k, a〉, 1 ≤ k ≤ n, and si = f , then ti = 〈x, a〉 where x is the kth parameter in
f ’s argument list.

For a call c : f1 → f2, take two labeled parameters, q a labeled parameter of f1 and
r a labeled parameter of f2. Consider the corresponding pairs 〈f1, Ar(q)〉, 〈f2, Ar(r)〉.
If 〈Ar(q), c, Ar(r)〉 is a transition in A′

Desc(L) then 〈q, c, r〉 is a transition in ADesc(L).

Therefore t is a run of ADesc(L) on w. Further, note that 〈x, a〉 ∈ FADesc(L)
and

〈Ar(x), a〉 ∈ FADesc(L)
iff a = 1. Therefore t is an accepting run.

Conversely, consider an accepting run r = r0r1... of ADesc(L) over a word w. Let
s = s0s1... be the sequence of states in A′

Desc(L) where if ri is a function then si = q0,

and si = Ar(ri) otherwise. By the definition of A′
Desc(L), q0 always transitions to q0

and a transition between ri and ri+1 implies a transition between Ar(ri) and Ar(ri+1).
As above, if 〈x, a〉 is an accepting state in ADesc(L), a = 1 and then 〈Ar(x), a〉 is an
accepting state A′

Desc(L). Thus, s is an accepting run of A′
Desc(L) over w.

4.2 Subsumption in the Single-Graph Search

In [2], Lee and Ben-Amram optimize the LJB algorithm for size-change termi-
nation by removing certain size-change graphs when computing the closure under
composition. This suggests that the algorithm afforded by Lemma 3.2.2 can benefit
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Figure 4.1: Subsumption: two supergraphs ĝ and ĥ, where ĝ � ĥ.

from a subsumption relation. We here formalize this subsumption relation on super-
graphs, showing how to discard supergraphs that are conservatively approximated by
other supergraphs. In order to do so safely, we must then replace the search for a
single arc in idempotent graphs with a search for a strongly connected component in
all graphs.

When computing the closure of a set of supergraphs under compositions, we can
ignore elements when they are conservatively approximated by other elements. Intu-
itively, a supergraph ĝ conservatively approximates another supergraph ĥ when it is
strictly harder to find a 1-labeled sequence of arcs through ĝ than through ĥ. If we
can replace ĥ by ĝ in every composition without removing arcs from the result, we
do not have to consider ĥ. When the right arc can be found in ĝ, then it also occurs
in ĥ. When ĝ does not have a satisfying arc, then we already have a counterexample
supergraph.

Formally, given two graphs ĝ, ĥ ∈ Q̂A,B where ḡ = h̄, say that ĝ conservatively

approximates ĥ, written ĝ � ĥ, when for every arc 〈q, a, r〉 ∈ ĝ there is an arc

〈q, a′, r〉 ∈ ĥ, where if a = 1 then a′ = 1. An example is provided in Figure 4.2. Note

that conservative approximation is a transitive relation. Say that ĝ ≺ ĥ when ĝ � ĥ

and ĝ 6= ĥ. Using the notion of conservative approximation, we present an algorithm
that computes a subset of Q̂

f
A,B.

Algorithm 4.2.1.

Given a set of supergraphs Q̂1
A,B, let Q̂�

A,B be a set obtained by1:

(1) Initialize Q̂�
A,B as Q̂1

A,B

(2) For every ĝ, ĥ ∈ Q̂�
A,B, if there is no k̂ ∈ Q̂�

A,B such that k̂ � ĝ; ĥ:

(a) Include ĝ; ĥ in Q̂�
A,B

1It can be proven that this set is unique, but this is not necessary for this algorithm
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(b) For every k̂ ∈ Q̂�
A,B \ Q̂1

A,B, if ĝ; ĥ ≺ k̂ then remove k̂ from Q̂�
A,B

We can now limit our search to supergraphs in Q̂�
A,B. However, we cannot re-

place Q̂
f
A,B by Q̂�

A,B and continue to test only idempotent elements. Since we are now
removing elements, it is conceivable that we might never compute the idempotent
element of Q̂

f
A,B that provides the counterexample to containment. To proceed, we

simplify Lemma 3.5.2 by removing the requirement for supergraphs to be idempo-
tent. Instead of examining only idempotent supergraphs 〈〈s, s〉, g̃〉 where s ∈ FA and
g̃; g̃ = g̃, we examine every supergraph with a reflexive arc 〈〈s, s〉, g̃〉 where s ∈ FA.
When examining such a supergraph that may not be idempotent, we must test for
a path from q to q instead of testing for a single arc 〈q, 1, q〉. We test for this path
by computing the strongly connected components of ĝ, and testing if the strongly
connected component containing q has a 1-labeled arc.

A strongly connected component (SCC) of a supergraph ĝ is a maximal set of
vertices, S, so that for every q, r ∈ S there is a path from q to r, and a path from
r to q. Computing the strongly connected components of a graph can be done in
linear time with a depth-first search [5]. Say that an SCC S is 1-labeled when there
are q, r ∈ S with an arc 〈q, 1, r〉 ∈ ĝ. Once we partition the vertices into strongly
connected components, we can simply search for a 1-labeled SCC. As we later show,
Q̂

f
A,B contains an idempotent supergraph 〈〈s, s〉, g̃〉 with an arc 〈q, 1, q〉 precisely when

Q̂�
A,B contains a supergraph 〈〈s, s〉, h̃〉 with a 1-labeled SCC containing q. This provides

a containment testing algorithm that avoids computing the entirety of the set Q̂
f
A,B.

Algorithm 4.2.2.

(1) Construct the set Q̂1
A,B of all single-character supergraphs

(2) Compute Q̂�
A,B using Algorithm 4.2.1

(3) When computing each 〈〈q, q〉, g̃〉 ∈ Q̂�
A,B, if q ∈ FA then:

� Compute the strongly connected components of g̃

� Ensure there exists a 1-labeled strongly connected component of g̃

To prove Algorithm 4.2.2 correct, we proceed in two steps. First, we demonstrate
that testing the strongly connected components of every supergraph with a reflexive
arc is equivalent to testing for 1-labeled arcs in idempotent supergraphs. Second, we
demonstrate that Q̂�

A,B contains a supergraph with a 1-labeled SCC if and only if

Q̂
f
A,B contains a supergraph with a 1-labeled SCC.

Let ĝ = 〈〈s, s〉, g̃〉 be a supergraph with a reflexive arc, where s ∈ FA. In testing
for an arc 〈q, 1, q〉 ∈ ĝ, we are asking if L(ĝ)ω has an accepting run in B starting in
each state. By ensuring that ĝ is idempotent, i.e. ĝ; ĝ = ĝ, we know that every path
in B over a word in L(ĝ)+ is described in ĝ. Thus, if there is no arc 〈q, 1, q〉 ∈ ĝ,
there cannot be an accepting path in B from q to q on a word in L(ĝ)+. If no q

27



has such an arc, we know there cannot be an accepting run beginning in any state
on a word in L(ĝ)ω. In order to remove the requirement ĝ; ĝ = ĝ, we can no longer
assume that a path in B from q to q on a word in L(ĝ)+ is matched by an arc
〈q, a, q〉 ∈ ĝ. Instead we must search for a path from q to q, i.e. a sequence of arcs in
ĝ, 〈q, a0, p1〉, 〈p1, a1, p2〉, ...〈pn−1, an−1, q〉 where ai = 1 for some i. Say a sequence of
arcs is 1-labeled when it contains at least one 1-labeled arc. Say that a supergraph
has a 1-labeled q-cyclic path when there is a 1-labeled sequence of arcs from q to q.

To discuss sequences of arcs in supergraphs, we consider exponentiation of super-
graphs. Let ĝ n be the composition of n copies of ĝ, ĝ; ...ĝ. Let ĝ ∗ be the first ĝ n

where ĝ n; ĝ n = ĝ n. We first show that ĝ ∗ is well-defined for any supergraph with a
reflexive arc.

Lemma 4.2.3. Let ĝ ∈ Q̂A,B be a supergraph with a reflexive arc. There exists an
n ∈ IN such that ĝ n; ĝ n = ĝ n

Proof: Consider the infinite sequence of supergraphs ĝ 1, ĝ 2, ĝ 3, .... As there are a
finite number of supergraphs, clearly there is a supergraph ĥ that occurs infinitely
often in this sequence.

Let a be the index of the first occurrence of ĥ, so that ĝ a = ĥ. Let b be the first
index larger than 2a so that ĝ b = ĥ. Let c be b − 2a. We prove that a + c is such an
n, i.e. ĝ a+c; ĝ a+c = ĝ a+c.

(1) As ĝ a = ĝ b, for every i > 0 it holds that ĝ a+i = ĝ b+i

(2) By the definition of exponentiation, ĝ a+c; ĝ a+c = ĝ 2a+2c

(3) By definition, 2a + c = b

(4) By (2) and (3), ĝ a+c; ĝ a+c = ĝ b+c

(5) By (1), ĝ a+c = ĝ b+c

(6) By (4) and (5), ĝ a+c; ĝ a+c = ĝ a+c

We now show that it is safe to perform the single-graph search by searching for
a supergraph with a reflexive arc but no 1-labeled q-cyclic path. We first relate a
1-labeled q-cyclic path in ĝ to the arc 〈q, 1, q〉 in ĝ ∗, and then show that checking
every supergraph with a reflexive arc for a 1-labeled q-cyclic path is equivalent to
check idempotent supergraphs for arcs of the form 〈q, 1, q〉.

Lemma 4.2.4.

For every ĝ ∈ Q̂A,B of the form 〈〈s, s〉, g̃〉:

(1) If ĝ; ĝ = ĝ and ĝ has a 1-labeled q-cyclic path, then ĝ has an arc 〈q, 1, q〉.
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(2) If ĝ ∗ has an arc 〈q, 1, q〉, then ĝ has a 1-labeled q-cyclic path.

Proof:
(1) Assume ĝ has a 1-labeled q-cyclic path. This path is a sequence of arcs in ĝ

of length n: 〈q, a0, p1〉, ...〈pn, an, q〉, where ai = 1 for some i. By the definition of
composition, 〈q, 1, q〉 ∈ ĝ n. As ĝ; ĝ = ĝ, we have that ĝ n = ĝ and 〈q, 1, q〉 ∈ ĝ.

(2) First, note that, by Lemma 4.2.3, ĝ ∗ exists. Assume ĝ ∗ has an arc of the form
〈q, 1, q〉. We show that ĝ has a 1-labeled q-cyclic path. The premise implies that, for
some n, ĝ n has an arc 〈q, 1, q〉. By the definition of composition, this implies there is
a sequence of n arcs in ĝ, 〈q, a0, r1〉, 〈r1, a1, r2〉...〈rn−1, an−1, q〉 where ai = 1 for some
i. This is a 1-labeled q-cyclic path in ĝ.

Lemma 4.2.5. Let Q̂1
A,B be a set of supergraphs, and Q̂

f
A,B the closure of Q̂1

A,B under

composition. Q̂
f
A,B contains an idempotent supergraph ĝ = 〈〈s, s〉, g̃〉 without the arc

〈q, 1, q〉 iff Q̂
f
A,B contains a supergraph ĥ = 〈〈s, s〉, h̃〉 with no 1-labeled q-cyclic path.

Proof: In one direction, assume Q̂
f
A,B contains an supergraph ĝ = 〈〈s, s〉, g̃〉, where

s ∈ FA and ĝ = ĝ; ĝ, that does not contain the arc 〈q, 1, q〉. By the first clause of

Lemma 4.2.4, ĝ does not contain a 1-labeled q-cyclic path. So take ĥ to be ĝ.
In the other direction, assume Q̂

f
A,B contains a graph ĥ = 〈〈s, s〉, h̃〉, where s ∈ FA,

with no 1-labeled q-cyclic path. By Lemma 4.2.3, there is an power, ĥ ∗, of ĥ such
that ĥ ∗; ĥ ∗ = ĥ ∗. Since h̄ = 〈s, s〉, by the definition of composition h̄ ∗ = 〈s, s〉. By
the second clause of Lemma 4.2.4, ĥ ∗ does not contain the arc 〈q, 1, q〉. Finally, since

Q̂
f
A,B is closed under composition, ĥ ∗ ∈ Q̂

f
A,B. So take ĝ to be ĥ ∗.

To search for a 1-labeled q-cyclic path, we partition the vertices into strongly
connected components and search for an 1-labeled SCC. Recall that we say say an
SCC S is 1-labeled when there are q, r ∈ S with an arc 〈q, 1, r〉 ∈ ĝ. Once we
partition the vertices into strongly connected components, we can simply search for
a 1-labeled SCC. Every 1-labeled q-cyclic path must go through a single strongly
connected component, and every 1-labeled strongly connected component S has a
1-labeled q-cyclic path for each state q ∈ S.

Lemma 4.2.6. For every g̃ ∈ Q̃A,B, g̃ has a 1-labeled q-cyclic path iff g̃ has a 1-labeled
SCC containing q.

Proof: Assume ĝ has a 1-labeled q-cyclic path. There is an arc 〈r, 1, s〉 somewhere
in this 1-labeled sequence. The sequence until this point is a path from q to r, and
the remainder of the sequence a path from s to q. Thus r and s belongs to the same
SCC as q, and this SCC is 1-labeled.

In the other direction, assume ĝ has a 1-labeled SCC S. S contains two vertices q

and r with an arc 〈q, 1, r〉. As q and r are in the same SCC, there is a sequence from
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r to q, and thus a 1-labeled sequence from q to itself. Therefore ĝ has a 1-labeled
q-cyclic path.

When given a potential counterexample supergraph ĝ = 〈〈s, s〉, g̃〉 where s ∈ FA,
we can examine ĝ in two ways. First, we can ensure that if ĝ; ĝ = ĝ, then ĝ has an
arc of the form 〈q, 1, q〉. Alternatively, Lemma 4.2.6 allows us to simply test ĝ for a
1-labeled strongly connected component. As the strongly connected components of
a graph can be computed in linear time, doing so is no more expensive than testing
idempotence.

Lemma 4.2.7. Let A and B be two Büchi automata where Qin
A = QA, every state

in QB is reachable, and L(B) is strongly suffix closed with respect to L(A). Then

L(A) 6⊆ L(B) iff Q̂
f
A,B contains a supergraph ĥ = 〈〈s, s〉, h̃〉, where s ∈ FA, with no

1-labeled strongly connected component.

Proof: Immediate from Lemmas 3.5.2, 4.2.5, and 4.2.6

Now that we have shown it is sufficient to search Q̂
f
A,B for supergraphs with 1-

labeled SCC’s, we show that it is safe to restrict our search to graphs in Q̂�
A,B. Recall

that we say ĝ � ĥ when, for every arc 〈q, a, r〉 ∈ ĝ, there is an arc 〈q, a′, r〉 ∈ ĥ, where
if a = 1 then a′ = 1.

Lemma 4.2.8. Let ĝ, ĥ be two supergraphs where ĥ � ĝ. If ĥ has a 1-labeled SCC,
then ĝ has a l-labeled SCC.

Proof: Let S be a 1-labeled SCC in ĥ. Note that for every two states q, r, if there
is a path in ĥ from q to r, there must also be a path in ĝ from q to r. Thus all
vertices in S are in the same SCC T of ĥ. Further, there must be q, r ∈ S with an
arc 〈q, 1, r〉 ∈ ĥ. This arc must also appear in ĝ. Therefore T is a 1-labeled SCC of
ĝ.

Lemma 4.2.9. Let ĝ, ĥ, k̂ be three supergraphs so that ĝ; k̂ and ĥ; k̂ are well defined.
If ĥ � ĝ, then ĥ; k̂ � ĝ; k̂.

Proof: Take an arc 〈q, a, s〉 ∈ ĥ; k̂. First assume a is 0. This arc exists because

there is state r, an arc 〈q, 0, r〉 ∈ ĥ, and an arc 〈r, 0, s〉 ∈ k̂. As ĥ � ĝ, there is an arc

〈q, a′, r〉 ∈ ĝ. Therefore the arc 〈q, a′, s〉 ∈ ĝ; k̂. Since a is not 1, a′ is unconstrained.

If a is 1, there is state r, an arc 〈q, a1, r〉 ∈ ĥ and an arc 〈r, a2, s〉 ∈ k̂ where

a1 = 1 or a2 = 1. As ĥ � ĝ, there is an arc 〈q, a′
1, r〉 ∈ ĝ. If a1 = 1, then a′

1 = 1 and

〈q, 1, s〉 ∈ ĝ; k̂. If a2 = 1, then regardless of a1 the arc 〈q, 1, s〉 ∈ ĝ; k̂. We can now

conclude that ĥ; k̂ � ĝ; k̂.
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Say that a set, Q̂A,B, of supergraphs is �-closed under composition when, for every

two supergraphs, ĝ, ĥ ∈ Q̂A,B, there is a supergraph k̂ ∈ Q̂A,B so that k̂ � ĝ; ĥ. Given

a set Q̂1
A,B of supergraphs we show that it is sufficient to test a �-closure subset of

Q̂
f
A,B, its closure under composition.

Lemma 4.2.10. Given a set of supergraphs Q̂1
A,B, and a set Q̂�

A,B obtained by the

procedure above, it holds that Q̂�
A,B is �-closed, Q̂�

A,B ⊆ Q̂
f
A,B, and Q̂1

A,B ⊆ Q̂�
A,B.

Proof: First, note that the composition of two elements is only omitted from Q̂�
A,B,

on line (2), when it is conservatively approximated by an element already in Q̂�
A,B.

Thus Q̂�
A,B is indeed �-closed. Second, note that that Q̂�

A,B is indeed a subset of Q̂
f
A,B,

as every element in Q̂�
A,B is the composition of a finite number of elements of Q̂1

A,B.

Third, since Q̂�
A,B begins as Q̂1

A,B, and no element of Q̂1
A,B is removed on line (2)(b),

every element of Q̂1
A,B is in Q̂�

A,B.

Lemma 4.2.11. Let Q̂1
A,B be a set of supergraphs, Q̂

f
A,B the closure of Q̂1

A,B under

composition, and Q̂�
A,B a set obtained by Algorithm 4.2.1. Then Q̂

f
A,B contains a

supergraph ĝ = 〈〈s, s〉, g̃〉 with no 1-labeled SCC iff Q̂�
A,B contains a supergraph ĥ =

〈〈s, s〉, h̃〉, with no 1-labeled SCC.

Proof: In one direction, assume Q̂�
A,B contains a supergraph ĥ = 〈〈s, s〉, h̃〉 with

no 1-labeled SCC. By Lemma 4.2.10, Q̂�
A,B ⊆ Q̂

f
A,B. Therefore take ĝ to be ĥ, and

ĝ ∈ Q̂
f
A,B.

In the other direction, assume Q̂
f
A,B contains a supergraph ĝ = 〈〈s, s〉, g̃〉 with no

1-labeled SCC. Then ĝ is the finite composition ĝ0; ĝ1; ...; ĝn−1 of n elements of Q̂1
A,B.

Let ĝ0...i be the sequence of compositions ĝ0; ...; ĝi. We prove by induction that, for
each i, there is a supergraph ĥi ∈ Q̂�

A,B so that ĥi � ĝ0...i. Since ĝ = ĝ1...(n−1), this

implies ĥn−1 � ĝ. As ĝ does not have a 1-labeled SCC, by Lemma 4.2.8, ĥn−1 cannot
have a 1-labeled SCC.

As a base case, ĝ0 is in Q̂1
A,B and thus by Lemma 4.2.10 is in Q̂�

A,B.

Inductively, assume there is a supergraph ĥi ∈ Q̂�
A,B so that ĥi � ĝ0...i. We must

show that there exists a ĥi+1 ∈ Q̂�
A,B so that ĥi+1 � ĝ0...i; ĝi+1. First, note that by

Lemma 4.2.9 ĥi; ĝi+1 � ĝ0...i; ĝi+1. Second, as ĝi+1 ∈ Q̂1
A,B, Lemma 4.2.10 implies that

ĝi+1 ∈ Q̂�
A,B. As Q̂�

A,B is �-closed under composition, either ĥi; ĝi+1 is in Q̂�
A,B, or it is

approximated by some k̂ ∈ Q̂�
A,B. In the former case, take ĥi+1 to be ĥi; ĝi+1. In the

later case, recall that conservative approximation is transitive and take ĥi+1 to be k̂.
We have shown there is there is a ĥn−1 ∈ Q̂�

A,B so that ĥn−1 � ĝ. By the definition

of conservative approximation, h̄n−1 must be 〈s, s〉. As ĝ does not have a 1-labeled
SCC, neither does ĥn−1. So let ĥ be ĥn−1, and ĥ ∈ Q̂�

A,B.
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Algorithm 4.2.2 is now proven correct.

Lemma 4.2.12. Let A and B be two Büchi automata where Qin
A = QA, every state

in QB is reachable, and L(B) is strongly suffix closed with respect to L(A). L(A) is

not contained in L(B) iff Q̂�
A,B contains a supergraph 〈〈s, s〉, g̃〉, where s ∈ FA, with

no 1-labeled strongly connected component.

Proof: Immediate from Lemmas 4.2.7 and 4.2.11.

4.3 Search Space for the Two-Graph Search

When solving problems whose languages are strongly suffix closed, such as size-
change termination problems, a Ramsey-based algorithm can employ the single-graph
search and examine only single supergraphs. In addition to allowing the use of a sub-
sumption operation, this significantly reduces the size of the search space. Consider
a containment problem, L(A) ⊆ L(B), where B has n states and A has m states.

There are potentially m23n2
supergraphs in Q̂

f
A,B. If L(B) is strongly suffix closed

with respect to L(A), a Ramsey-based algorithm needs to check every supergraph

ĝ ∈ Q̂
f
A,B. If L(B) does not have this property, the algorithm needs to use the two-

graph search and check every pair (ĝ, ĥ) of supergraphs. This blows up the search
space from m23n2

to m49n2
.

If we could avoid storing all the information about each graph, we could reduce
the search space. The second clause of Lemma 3.3.4 provides us with a test for
containment that searches for two arcs in every proper pair of supergraphs. Recall
that, by Lemma 3.4.5, a pair (ĝ, ĥ) of supergraphs from Q̂

f
A,B is proper when:

(1) ḡ = 〈p, q〉

(2) h̄ = 〈q, q〉

(3) p ∈ Qin
A

(4) q ∈ FA

(5) ĥ; ĥ = ĥ

(6) ĝ; ĥ = ĝ

Say (ĝ, ĥ) passes the two-state test when there are two states, r ∈ Qin
B , s ∈ QB,

so that 〈r, a, s〉 ∈ ĝ and 〈s, 1, s〉 ∈ ĥ. By Lemma 3.3.4, for a proper pair (ĝ, ĥ) the
two-state test determines if Zgh ⊆ L(B). That is, L(A) is not contained in L(B) if
and only if there is a proper pair of supergraphs that fails the two-state test.

We can phrase the two-state test as a set intersection problem. Let (ĝ, ĥ) be a
pair of supergraphs. Define the set R(ĝ) = {s | r ∈ Qin

B , 〈r, a, s〉 ∈ ĝ}, and the
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set S(ĥ) = {s | 〈s, 1, s〉 ∈ h̃}. (ĝ, ĥ) passes the two-state test iff R(ĝ) ∩ S(ĥ) 6= ∅.
There are only 2n subsets of QB, a far smaller search space than the space of all
supergraphs. Unfortunately, we cannot store only R(ĝ) and S(ĥ): we need to ensure
that a counterexample pair is proper. Testing properness requires testing identity
under composition.

Similar to Section 4.2, we weaken the notion of properness. By doing so we can
store some graphs as sets of states and simplify our search space. Here we consider
pairs of supergraphs that do not necessarily satisfy constraint 6, that ĝ; ĥ = ĝ. Call a
pair of supergraphs (ĝ, ĥ) weakly proper if it satisfies constraints 1-5. Given a weakly

proper pair (ĝ, ĥ) of supergraphs, we can no longer limit our search to two states r

and s with arcs 〈r, a, s〉 ∈ ĝ, 〈s, 1, s〉 ∈ ĥ . We need to search for a sequence of states,

t0, ...tn where t0 ∈ Qin
B , with an arc 〈t0, a0, t1〉 ∈ ĝ, for 0 < i < n arcs 〈ti, ai, ti+1〉 ∈ ĥ,

and the arc 〈tn, 1, tn〉 ∈ ĥ. Note that when ĥ; ĥ = ĥ, t1 must have an arc to every ti,

i > 1. In specific, there is an arc between t1 and tn in ĥ. Thus it suffices to find only
three states to fill the roles of t0, t1 and tn.

Definition 4.3.1. Let (ĝ, ĥ) be a pair of supergraphs. Say (ĝ, ĥ) passes the three-state
test iff there are three states r, s, t ∈ QB so that:

(1) r ∈ Qin
B

(2) 〈r, a, s〉 ∈ ĝ

(3) 〈s, a′, t〉 ∈ ĥ

(4) 〈t, 1, t〉 ∈ ĥ

Like the two-state test, the three-state test can be phrased as a set intersection
problem. Given a supergraph ĥ, let S ′(ĥ) = {s | 〈s, a, t〉 ∈ ĥ, 〈t, 1, t〉 ∈ ĥ}. A pair

(ĝ, ĥ) passes the three-state test iff R(ĝ) ∩ S ′(ĥ) 6= ∅. There are now no constraints
on g̃, and, so long as p ∈ Qin

A , we can represent the supergraph 〈〈p, q〉, g̃〉 as the pair

of q and R(ĥ).
Given a state q ∈ QA and set of states R ⊆ QB, call the pair [q, R] a reachable

subset of A and B when there is a word w ∈ Σ∗ so that q ∈ ρA(Qin
A , w) and R =

ρB(Qin
B , w). Let PA,B be the set of reachable subsets. For each element [q, R] ∈ PA,B,

there is a word w so that q is a state in A that can also be reached by w and R is
the set of states in B which can be reached on w. Note the size of PA,B is at most
m2n. We leverage the notion of reachable subsets to provide a containment-testing
algorithm with a reduced search space.

Algorithm 4.3.2.
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(1) Compute the set PA,B of all reachable subsets:2

(a) Initialize PA,B as Qin
A × {Qin

B }

(b) For every [q, R] ∈ PA,B and σ ∈ Σ, add every element of {[q′, R′] | q′ ∈
ρA(q, σ), R′ = ρB(R, σ)} to PA,B

(2) Compute Q̂1
A,B, the set of initial supergraphs

(3) Compute Q̂
f
A,B by taking closure of Q̂1

A,B under composition

(4) When computing each 〈〈q, q〉, g̃〉 ∈ Q̂
f
A,B, if q ∈ FA and g̃; g̃ = g̃ then:

(a) Compute the set S ′(g̃) = {s | 〈s, a, t〉 ∈ g̃, 〈t, 1, t〉 ∈ g̃}

(b) Ensure that for every reachable subset of the form [q, R] ∈ PA,B, it holds
that R ∩ S ′(g̃) 6= ∅

In order to prove Algorithm 4.3.2 correct, we first connect weakly proper super-
graphs and the three-state test to proper supergraphs and the two-state test.

Lemma 4.3.3. Let (ĝ, ĥ) be a weakly proper pair of supergraphs. If (ĝ, ĥ) passes the

three-state test, then (ĝ; ĥ, ĥ) passes the two-state test.

Proof: Assume we have a weakly proper pair (ĝ, ĥ) that passes the three-state test.

Note that, by constraints 1-2 and the definition of composition, ĝ; ĥ is well defined
and equal to 〈ḡ, g̃; h̃〉. As (ĝ, ĥ) passes the three-state test, there are three states

r ∈ Qin
B , s, t ∈ QB so that 〈r, a, s〉 ∈ ĝ, 〈s, a′, t〉 ∈ ĥ, and 〈t, 1, t〉 ∈ ĥ. By the

definition of composition 〈r, 1, t〉 ∈ ĝ; ĥ. As 〈t, 1, t〉 ∈ ĥ, (ĝ; ĥ, ĥ) passes the two-state
test.

We now prove Algorithm 4.3.2 correct, demonstrating that PA,B contains all reach-

able subsets corresponding to graphs in Q̂
f
A,B.

Lemma 4.3.4. Let A,B be two Büchi automata and Q̂
f
A,B the corresponding set of

non-empty supergraphs. L(A) 6⊆ L(B) iff Q̂
f
A,B contains a pair of supergraphs (ĝ, ĥ)

that is weakly proper and fails the three-state test.

2Note that we can also define a conservative approximation relation among reachable subsets.
One reachable subset [q, R] conservatively approximates another, [q, R′], when R ⊆ R′. For a given
set S′, if R′∩S′ 6= ∅, then certainly R∩S′ 6= ∅. Further, when computing the reachable subsets PA,B

we can safely remove reachable subsets that are conservatively approximated.
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Proof: In one direction, if L(A) 6⊆ L(B), then by Lemma 3.3.4 there is a proper

pair (ĝ, ĥ) of supergraphs in Q̂
f
A,B that fails the two-state test. Since the pair (ĝ, ĥ) is

proper, ĝ is equal to ĝ; ĥ. Thus (ĝ; ĥ, ĥ) fails the two-state test and by Lemma 4.3.3,

(ĝ, ĥ) fails the three-state test.

In the other direction, assume Q̂
f
A,B contains a pair of supergraphs (ĝ, ĥ) that is

weakly proper and fails the three-state test. Let ĝ′ = ĝ; ĥ. We show that the pair
(ĝ′, ĥ) is proper and fails the two-state test.

Since ĥ = ĥ; ĥ, it holds that ĝ′; ĥ = ĝ′. Since (ĝ, ĥ) are weakly proper, it holds

that ḡ = ḡ′ = 〈p, q〉, p ∈ Qin
A , q ∈ FA, and h̄ = 〈q, q〉. Thus, the pair (ĝ′, ĥ) are proper.

Further, as (ĝ, ĥ) fails the three-state test, there are no three states r, s, t ∈ QB so

that 〈r, a, s〉 ∈ ĝ, 〈s, a′, t〉 ∈ ĥ, and 〈t, 1, t〉 ∈ ĥ. By the definition of composition there

are no two states r ∈ Qin
B , t ∈ QB so that 〈r, a, t〉 ∈ ĝ′, and 〈t, 1, t〉 ∈ ĥ. Therefore

(ĝ′, ĥ) fails the two-state test. By Lemma 3.3.4, we infer L(A) 6⊆ L(B).

Lemma 4.3.5. Let A and B be two Büchi automata, Q̂
f
A,B the corresponding set of

non-empty supergraphs, and PA,B the reachable subsets of A and B. L(A) 6⊆ L(B) iff

there is a reachable subset [q, R] ∈ PA,B and a supergraph ĥ ∈ Q̂
f
A,B such that q ∈ FA,

h̄ = 〈q, q〉, ĥ; ĥ = ĥ and R ∩ S ′(ĥ) = ∅.

Proof: Assume there is such a reachable subset [q, R] and supergraph ĥ ∈ Q̂
f
A,B,

where q ∈ FA. There is an w ∈ Σ∗ and p ∈ Qin
A so that q ∈ ρA(p, w) and R =

ρB(Qin
B , w). By Lemma 2.1.1, w is in the language some graph g̃. Therefore w ∈ L(ĝ),

where ĝ = 〈〈p, q〉, g̃〉, and R(ĝ) = R. As p ∈ Qin
A , q ∈ FA, and ĥ; ĥ = ĥ, (ĝ, ĥ) are a

weakly proper pair. Since R(ĝ) and S ′(ĥ) are disjoint, (ĝ, ĥ) must fail the three-state
test. By Lemma 4.3.4, L(A) 6⊆ L(B).

Conversely, assume L(A) 6⊆ L(B). Then, by Lemma 4.3.4, there is a pair of

supergraphs (ĝ, ĥ) ∈ Q̂
f
A,B that is weakly proper and fail the three-state test. Let

ḡ = 〈p, q〉. Since the two supergraphs are weakly proper, p ∈ Qin
A and q ∈ FA.

Further, as L(ĝ) is non-empty, there is a word w that reaches both q in A and R(ĝ)

in B. Thus [q, R(ĝ)] is a reachable subset in PA,B. Since ĝ, ĥ fail the three-state test,

R(ĝ) ∩ S ′(ĥ) = ∅.

4.4 Grounded Supergraphs: Single-Graph Containment Test
for Arbitrary Languages

It would be convenient to apply the containment test and subsumption relation
of Algorithm 4.2.2 to Büchi automata containment problems without strongly suffix-
closed languages. To enable this, we construct a set of graphs that requires only
the single-graph search to determine containment. Once we demonstrate that the
single-graph search determines containment of arbitrary languages, we can use the

35



subsumption relation of Section 4.2 directly. The idea is to replace the arcs in super-
graphs, which are pairs of states in QA, with pairs of reachable subsets of A and B.
Whereas Lemma 4.3.5 computes separately the reachable subsets and supergraphs
of an automaton, here we construct supergraphs that describe only paths that share
the common prefix word of some reachable subset. Doing so comes at the expense
of increasing the size of the closure set, but allows us to avoid storing the reachable
subsets PA,B. While this does not improve the theoretical complexity of Lemma 4.3.5,
the resulting algorithm is amenable to simpler implementation and the subsumption
relation of Section 4.2

Define an extension of supergraphs called grounded supergraphs. In a grounded
supergraph, we pair a graph g̃ in Q̃B with a pair 〈p[R], q[S]〉 of reachable subsets in
PA,B. Further, we restrict g̃ to arcs between R and S. Formally, define the set of

grounded supergraphs Q̈A,B to be {〈〈[p, R], [q, S]〉, ˜̃g〉 | p, q ∈ QA, R, S ⊆ QB, 〈r, a, s〉 ∈

g̃ only if r ∈ R and s ∈ S}. Given a grounded supergraph 〈〈[p, R], [q, S]〉, ˜̃g〉, call R

the source nodes and S the sink nodes.
We offer an intuition of the meaning of grounded supergraphs. A graph in Q̃B

encodes information about all paths in B over a set of words. Supergraphs pair an
arc in Q̄A with a graph over QB. A supergraph asserts the existence of a path in
A over a set of words, and describes all corresponding paths in B over the same set
of words. In contrast, grounded supergraphs contain a pair of reachable subsets of
A and B. Like a supergraph, a grounded supergraph asserts the existence of a path
in A over a set of words, and describes some paths in B over the same set. Unlike
supergraphs, a grounded supergraph also asserts that the path in A is reachable by
some word, and only describes paths in B that share this prefix word.

Using grounded supergraphs we can employ the single-graph search to determine
the containment of the languages of two arbitrary automata, A and B. This algo-
rithm proceeds in three steps. We start with a base set of grounded supergraphs Q̈0

A,B

covering transition out of start states. We then define an extension operation and
proceed outwards to find Q̈1

A,B by taking the iterative closure of Q̈A,B under exten-

sion. The set Q̈1
A,B is analogous to Q̂1

A,B and describes all paths of length 1, i.e. all

transitions in A and B. Finally, we define composition and create Q̈
f
A,B, the closure

of Q̈1
A,B under composition.

Recall that for each a ∈ Σ, g̃a is the graph in Q̃B whose language contains a. It
is useful to restrict a graph in Q̃B to arcs that lay between two reachable subsets.
Given an graph g̃ ∈ Q̃B and two reachable subsets [p, R], [q, S] ∈ PA,B let Π([p,R],[q,S])g̃

be the grounded supergraph 〈〈[p, R], [q, S]〉, g̃′〉 where g̃′ = {〈r, a, s〉 | 〈r, a, s〉 ∈ g̃,
r ∈ R, s ∈ S}.

Definition 4.4.1. Given two Büchi automata A and B, define Q̈0
A,B to be {Π([p,Qin

B
],[q,S])g̃a | a ∈

Σ, p ∈ Qin
A , q ∈ ρA(p, a), S = ρB(Qin

B , a)}.

Now that we have Q̈0
A,B, we can construct Q̈1

A,B. Let g̈ = 〈〈[q1, R], [q2, S]〉, g̃〉 be a
grounded supergraph. Define the extension of g̈ to be the set of grounded supergraphs
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{Π([q2,S],[q3,T ])g̃a | a ∈ Σ, q3 ∈ ρA(q2, a), T = ρB(S, a)}. This set is empty if q2 has no

outgoing transition. Let Q̈1
A,B be fixed point obtained by taking the union of Q̈0

A,B

and the extension of all its elements. (Is it better to say: Let Q̈1
A,B be the iterative

closure of Q̈0
A,B under extension?)

We have now obtained a set Q̈1
A,B describing all transitions in A and the corre-

sponding transitions in B. To complete the construction of Q̈
f
A,B, we define composi-

tion. Composition of grounded supergraphs is nearly identical to composition of su-
pergraphs, save the type of object contained in the arcs. Let g̈ = 〈〈[q1, R], [q2, S]〉, g̃〉

and ḧ = 〈〈[q2, S], [q3, T ]〉, h̃〉. Their composition g̈; ḧ is the grounded supergraph

〈〈[q1, R], [q3, T ]〉, g̃; h̃〉. Notice that composition of two supergraphs g̈, ḧ, requires that
the second element of g̈’s arc be identical to the first element of ḧ’s arc. This implies
that g̈; g̈ is only well-defined if g̈’s arc is reflexive. We now define a single-pass algo-
rithm that uses subsumption to determine the language containment of two arbitrary
automata.

Algorithm 4.4.2.

(1) Construct the set Q̈0
A,B using Definition 4.4.1

(2) Construct the set Q̈1
A,B by taking the closure of Q̈0

A,B under extension

(3) Compute Q̈�
A,B using the procedure of Algorithm 4.2.1

(4) When computing each 〈〈q[R], q[R]〉, g̃〉 ∈ Q̂�
A,B, if q ∈ FA then:

� Compute the strongly connected components of g̃

� Ensure there exists a 1-labeled strongly connected component of g̃

To prove Algorithm 4.4.2 correct, and to capture this intuition about grounded su-
pergraphs, we associate two languages of finite words with each grounded supergraph.
The prefix language, Lp(〈〈[p, R], [q, S]〉, g̃〉) ⊆ Σ∗, is the set of words w that reach ev-
ery state in R in B and reach p in A. The suffix language, Ls(〈〈[p, R], [q, S]〉, g̃〉) ⊆ Σ+

is the set of words y with a path in A from p to q, and whose paths from R to S are
described by g̃. Formally,

Definition 4.4.3. Let 〈〈[p, R], [q, S]〉, g̃〉 be a grounded supergraph in Q̈A,B.

(1) Let w ∈ Σ∗. Then w ∈ Lp(〈〈[p, R], [q, S]〉, g̃〉) when:

(a) p ∈ ρA(Qin
A , w)

(b) R = ρB(Qin
B , w)

(2) Let y ∈ Σ+. Then y ∈ Ls(〈〈[p, R], [q, S]〉, g̃〉) when:

(a) q ∈ ρA(p, y)
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(b) S = ρB(R, y)

(c) For every r ∈ R, s ∈ S, a ∈ {0, 1}

i. 〈r, a, s〉 ∈ g̃ iff there is a path in B from r to s over y

ii. 〈r, 1, s〉 ∈ g̃ iff there is an accepting path in B from r to s over y

Lemma 4.4.4. Let 〈〈[p, R], [q, S]〉, g̃〉 and 〈〈[p, R], [q, S]〉, h̃〉 be two grounded super-

graphs. If Ls(〈〈[p, R], [q, S]〉, g̃〉) ∩ Ls(〈〈[p, R], [q, S]〉, h̃〉) 6= ∅ then g̃ = h̃.

Proof: As the arc 〈[p, R], [q, S]〉 is the same in both grounded supergraphs, only arcs

between R and S can occur in g̃ or h̃. Definition 4.4.3 completely specifies which arcs
between R to S must occur in g̃ and h̃.

First we relate the languages of graphs to the language of supergraphs. Re-
call that given a graph g̃ ∈ Q̃B and two reachable subsets [p, R], [q, s] ∈ PA,B,
we define Π([p,R],[q,S])g̃ to be the grounded supergraph 〈〈[p, R], [q, S]〉, g̃′〉 where g̃′ =
{〈r, a, s〉 | 〈r, a, s〉 ∈ g̃, r ∈ R, s ∈ S}.

Lemma 4.4.5. Let g̃ ∈ Q̃B, [p, R], [q, s] ∈ PA,B, and w ∈ L(g̃). If q ∈ ρA(p, w) and
S = ρB(R, w), then w ∈ Ls(Π([p,R],[q,S])g̃).

Proof: Note that by Definition 2.1.1, if the arc 〈r, a, s〉 is in ĝ and r ∈ R, it must
be the case that s ∈ S.

For every two states r, s ∈ QB, by construction the arc 〈r, a, s〉 ∈ Π([p,R],[q,S])g̃ iff
r ∈ R and 〈r, a, s〉 ∈ g̃. By Definition 2.1.1, 〈r, a, s〉 ∈ g̃ iff there is a path in B
from r to s on w. Similarly, 〈r, 1, s〉 ∈ Π([p,R],[q,S])g̃ iff 〈r, 1, s〉 ∈ g̃, which is the case
iff there is an accepting path from r to s on w. By Definition 4.4.3, this implies
w ∈ Ls(Π([p,R],[q,S])g̃).

The following lemma shows how the suffix languages of grounded supergraphs are
related by concatenation.

Lemma 4.4.6. Let g̈ = 〈〈[q1, R], [q2, S]〉, g̃〉, ḧ = 〈〈[q2, S], [q3, T ]〉, h̃〉, and k̈ = 〈〈[q1, R], [q3, T ]〉, k̃〉
be three grounded supergraphs in Q̈A,B, and x, y ∈ Σ+. If x ∈ Ls(g̈), y ∈ Ls(ḧ), and xy ∈
Ls(k̈), then Ls(g̈) · Ls(ḧ) ⊆ Ls(k̈)

Proof: By assumption there exists an x, y ∈ Σ+, x ∈ Ls(g̈), y ∈ Ls(ḧ) and xy ∈
Ls(k̈).

We first observe that arcs in k̈ have matching pairs of arcs in g̈ and ḧ. To show
this, note that for every two states r ∈ R, t ∈ T , the arc 〈r, a, t〉 ∈ k̈ iff there is a
path in B from r to t on xy. By the definition of a path, this is the case iff there is
an s ∈ S so that there is a path from r to s on x, and a path from s to t on y. These
paths exist iff there are arcs 〈r, a′, s〉 ∈ g̈ and 〈s, a′′, t〉 ∈ ḧ.
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Similarly, we know a is 1 iff there is an accepting path from r to t on xy. There
is an accepting path iff there is a state s ∈ c so that there is a path from r to s, a
path from s to t, and at least one of the paths is accepting. These paths exist exactly
when there are arcs 〈r, a′, s〉 ∈ g̈ and 〈s, a′′, t〉 ∈ ḧ, and at least one of a′ and a′′ is
1. We can therefore conclude that an arc 〈r, a, t〉 ∈ k̈ iff there is an s ∈ S, and arcs
〈r, a′, s〉 ∈ g̈ and 〈s, a′′, t〉 ∈ ḧ. Further, a is 1 iff there is an s so that a′ or a′′ is 1.

We use this observation to show that Ls(g̈) · Ls(ḧ) ⊆ Ls(k̈). Let x′ ∈ Ls(g̈), y′ ∈
Ls(ḧ). We show x′y′ ∈ Ls(k̈). By Definition 4.4.3, S = ρB(R, x′) and T = ρB(S, y′),
and so T = ρB(R, x′y′). For every two states r ∈ R, t ∈ T , there is a path in B from
r to t on x′y′ iff there is a state s ∈ S, a path from r to s on x′, and a path from s

to t on y′. This holds iff there are arcs 〈r, a′, s〉 ∈ g̈ and 〈s, a′′, t〉 ∈ ḧ. By the above
observation, this is the case exactly when there is an arc 〈r, a, t〉 ∈ k̈. Similarly, an
accepting path implies and is implied by the arc 〈r, 1, t〉 ∈ k̈. Therefore x′y′ ∈ L(k̈).

In analogy to to Section 4.3, say that a grounded supergraph g̈ = 〈〈[p, R], [p, R]〉, g̃〉
is weakly proper when p ∈ FA, Lp(g̈) 6= ∅, Ls(g̈) 6= ∅, and Ls(g̈) · Ls(g̈) ⊆ Ls(g̈). For
each g̈ ∈ Q̈A,B, let the ω-language Lω(g̈) be Lp(g̈) · Ls(g̈)ω. The ω-languages of Q̈A,B

cover L(A).

Lemma 4.4.7.

(1) L(A) =
⋃
{Lω(g̈) | g̈ ∈ Q̈A,B, g̈ is weakly proper}

(2) For all weakly proper grounded supergraphs g̈, either Lω(g̈) ∩ L(B) = ∅, or
Lω(g̈) ⊆ L(B)

(3) L(A) ∩ L(B) =
⋃
{Lω(g̈) | g̈ is weakly proper and Lω(g̈) ∩ L(B) = ∅}.

Proof:
(1) First, for a weakly proper grounded supergraph the state p in A is reachable and
an accepting state. Thus there is an accepting path of A on every word in Lω(g̈).

We extend the Ramsey-based argument of Lemma 3.3.3 to grounded supergraphs.
Recall that there are k = |QA|

23|QB|
2

supergraphs in Q̂A,B. Let ĝ1...ĝk be an ordering
of these.

Take an infinite word w = a0a1... with an accepting run in A p = p0p1.... The
argument for Lemma 3.3.3 observes that some accepting state q must occur infinitely
often, and defines a subset of indexes i where pi = q.

Consider the sequence R = R0R1... of subsets of QB, where where R0 = Qin
B and

Ri+1 = ρB(Ri, ai). We similarly observe that some subset of QB must occur infinitely
often. Since FA and 2QB are finite, there is an accepting state q ∈ FA and a set
Ra ⊆ QB so that pi = q and Ri = Ra for infinitely many i. Let C be the set of such
indexes i.
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By Lemma 2.1.4, there is a subset D ⊆ C and a graph h̃ so that ai...aj−1 ∈ L(h̃)

for every i, j ∈ D, i < j. D partitions the word w into w1w2... so that wi ∈ L(h̃) for
i > 1.

Let ḧ be Π([q,Ra],[q,Ra])h̃, the restriction of h̃ to the states in Ra. We now show that

w ∈ Lω(ḧ) and that ḧ is weakly proper. First, as ρB(Qin, w1) = Ra and pi = q, by

Lemma 4.4.5 the word w1 ∈ Lp(ḧ). Secondly note that as for every i > 1, wi ∈ L(h̃),
Ra = ρB(Ra, wi) and pi = q, by Definition 4.4.3 and Lemma 4.4.5 it holds that for
every i > 1 wi ∈ Ls(ḧ). Since w1 ∈ Lp(ḧ) and for every i > 1, wi ∈ Ls(ḧ), it holds
that w ∈ Lω(ḧ).

Finally, as ai...aj ∈ L(h̃) for i, j ∈ D′, we have w2, w3, w2w3 ∈ L(h̃). By Lemma
4.4.6 this implies Ls(ḧ) · Ls(ḧ) ⊆ Ls(ḧ), and ḧ is weakly proper.

(2) Let g̈ be a grounded supergraph 〈〈[q, R], [q, R]〉, g̃〉. We prove that if one word in
Lω(g̈) is in L(B), then every word in Lω(g̈) is in L(B). A word w ∈ Lω(g̈) can be
decomposed into w1w2w3... where w1 ∈ Lp(g̈) and, for every i > 1, wi ∈ Ls(g̈). If
w ∈ L(B), then there is an accepting run p. Let ri be the state of B in this accepting
run after reading w1...wi. Since w1 ∈ Lp(〈〈[q, R], [q, R]〉, g̃〉), we know r1 ∈ R. Since
every wi, i > 1, is in Ls(〈〈[q, R], [q, R]〉, g̃〉), we know every ri ∈ R. If r is an accepting
run, then there is an accepting state in the path between infinitely many ri and ri+1.

Any other word w′ ∈ Lω(g̈) can be similarly decomposed into w′
1w

′
2... where w′

1 ∈
Lp(g̈) and w′

i ∈ Ls(g̈) for every i > 1. By Definition 4.4.3, there is a path from an
initial state to p1 over w′

1 in B. Similarly, there is a path between pi and pi+1 over
every wi+1, and there is a path with an accepting state over w′

i when there is a path
with an accepting state over wi. Infinitely many such paths over substrings of w

contain an accepting state, and w′ is accepted by B.

(3) Immediate from (1) and (2).

Lemma 4.4.8. Given Büchi automata A and B and the set of grounded supergraphs
Q̈A,B,

(1) L(A) ⊆ L(B) iff, for every weakly proper grounded supergraph g̈, Lω(g̈) ⊆ L(B).

(2) For every weakly proper g̈ ∈ Q̈A,B, Lω(g̈) ⊆ L(B) iff there exists an arc 〈r, 1, r〉 ∈
g̈.

Proof: (1) Immediate from Lemma 4.4.7.

(2) Take let g̈ = 〈〈[q, R], [q, R]〉, g̃〉 and w ∈ Lω(g̈). By the definition of Lω, w can
be broken up into w0w1w2..., where w0 ∈ Lp(g̈) and wi ∈ Ls(g̈) for i > 0.
In one direction, assume an arc 〈r, 1, r〉 ∈ g̈. By the definition of grounded
supergraphs, r ∈ R. As w0 ∈ Lp(g̈), Definition 4.4.3 implies there is a path in B
from an initial state to r on w0. Further, as wi ∈ Ls(g̈) for i > 0, for i > 0 there
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is an accepting path in B from r to r on wi. Concatenating these paths creates
a run of B on w that contains infinitely many accepting states, and therefor
w ∈ L(B).

In the other direction, assume w ∈ L(B). This implies there is an accepting
run q = q0q1... of B on w. Let ri be the state this run is in after read w0...wi.
By Definition 4.4.3 each ri ∈ R. Clearly some r ∈ R occurs infinitely often.
As there are infinitely many accepting states, this implies there is an accepting
state on a path between ri = r and rj = r. This path is a path in B on wi+1...wj .
As g̈ is weakly proper, Ls(g̈) · Ls(g̈) ⊆ Ls(g̈). Therefor wi+1...wj ∈ Ls(g̈). By
Definition 4.4.3, the arc 〈r, 1, r〉 ∈ g̈.

We now prove that Q̈
f
A,B is the set of all grounded supergraphs with non-empty

prefix and suffix languages. Recall we began with a base set of grounded super-
graphs Q̈0

A,B covering transition out of start states. We first prove Q̈0
A,B describes

grounded supergraphs where the prefix language contains the empty string and the
suffix language a single letter.

Lemma 4.4.9. For every g̈ ∈ Q̈A,B, if there exists a ∈ Σ so that ε ∈ Lp(g̈) and
a ∈ Ls(g̈), then g̈ ∈ Q̈0

A,B.

Proof: Let g̈ = 〈〈[p, R], [q, S]〉, g̃〉. By Definition 4.4.3, since ε ∈ Lp(g̈), it holds that
p ∈ Qin

A and R = Qin
B . Further, since a ∈ Ls(g̈) it holds that q ∈ ρA(p, a) and S =

ρB(R, a). Therefor by Definition 4.4.1 the grounded supergraph Π([p,R],[q,S])g̃a) is in

Q̈0
A,B. By Lemma 4.4.5 a ∈ Ls(Π([p,Qin

B
],[q,S])g̃a). Thus, by Lemma 4.4.4 Π([p,Qin

B
],[q,S])g̃a) =

g̈.

Above, the extension operation is used to define the set Q̈1
A,B, which we show to

be the set of all grounded supergraphs with a suffix language of a single letter.

Lemma 4.4.10. For every g̈ ∈ Q̈A,B, if there exists an w ∈ Σ∗ and a ∈ Σ so that
w ∈ Lp(g̈) and a ∈ Ls(g̈), then g̈ ∈ Q̈1

A,B.

Proof: We prove this lemma by induction on the length of w. As a base case, by
Lemma 4.4.9 all graphs g̈ where w = ε are in Q̈0

A,B.
For the inductive step, let w = w0...wn−1 be a word in Σn, a a letter in Σ, and

g̈ ∈ Q̈A,B a supergraph where w ∈ Lp(g̈) and a ∈ Ls(g̈). Let g̈ = 〈〈[q2, S], [q3, T ]〉, g̃〉.
Since w is in the prefix language of g̈, it holds that there is a path from some initial
state in Qin

A to q2 over w. Given a this path to q2, after reading w0...wn−2, we must
be in some state q1. Define the set R to be ρB(Qin

B , w0...wn2). We now consider the
grounded supergraph ḧ = Π([q1,R],[q2,S])g̃wn−1 By the above observations, w0...wn−2 ∈

Lp(ḧ). By definition of q1, q2 ∈ ρA(q1, wn−1). Similarly, S = ρB(R, wn−1). Therefor
by Lemma 4.4.5, wn−1 ∈ Ls(ḧ). By the inductive hypothesis, ḧ ∈ Q̈1

A,B.
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We now show that that g̈ is the extension of ḧ by a, and thus in Q̈1
A,B. Note

that as q3 ∈ ρA(q2, a) and T = ρB(S, a), Π([q2,S],[q3,T ])g̃a is in the extension of ĝ by
a. By Lemma 4.4.5, a ∈ L(Π([q2,S],[q3,T ])g̃a). Since a is also in Ls(g̈), by Lemma 4.4.4

Π([q2,S],[q3,T ])g̃a = g̈ and g̈ is in the extension of ḧ by a.

Next, we demonstrate that composition is strongly related to language concate-
nation.

Lemma 4.4.11. Let g̈ = 〈〈[q1, R], [q2, S]〉, g̃〉, ḧ = 〈〈[q2, S], [q3, T ]〉, h̃〉, and k̈ = 〈〈[q2, S], [q3, T ]〉, k̃〉
be three grounded supergraphs in Q̈A,B with non-empty prefix and suffix languages.

(1) Lp(g̈) = Lp(g̈; ḧ)

(2) Ls(g̈) · Ls(ḧ) ⊆ Ls(g̈; ḧ)

(3) Ls(g̈) · Ls(ḧ) ⊆ Ls(k̈) iff g̈; ḧ = k̈

Proof:
(1) Immediate from Definition 4.4.3.

(2) Given x ∈ Ls(g̈) and y ∈ Ls(ḧ). we show xy ∈ Ls(〈〈[q1, R], [q2, S]〉, g̃〉; 〈〈[q2, S], [q3, T ]〉, h̃〉),

By definition, 〈〈[q1, R], [q2, S]〉, g̃〉; 〈〈[q2, S], [q3, T ]〉, h̃〉 = 〈〈[q1, R], [q3, T ]〉, g̃; h̃〉. So to

prove xy ∈ Ls(〈〈[q1, R], [q2, S]〉, g̃〉; 〈〈[q2, S], [q3, T ]〉, h̃〉), we first prove that for every

r, t ∈ QB, an arc 〈r, a, t〉 ∈ g̃; h̃ iff r ∈ R and there is a path in B from r to t over xy.
Secondly, we show that that a = 1 iff there is an accepting path. Finally, we show
that T = ρB(R, xy) and note that q3 ∈ ρA(q1, xy). By Definition 4.4.3, this shows

that xy ∈ Ls(〈〈[q1, R], [q2, S]〉, g̃〉; 〈〈[q2, S], [q3, T ]〉, h̃〉).
First, let r, t be two states in Q. If r 6∈ R, then no arc from r can be in g̃, and

〈q, a, t〉 6∈ g̃; h̃. So assume r ∈ R. By the definition of a path, there is a path from r

to t over xy iff there exists s ∈ Q, a path from r to s over x, and a path from s to
t over y. In this case, since S = ρB(R, x), s ∈ S. Since x ∈ Ls(g̈), Definition 4.4.3
implies there is a path from r to s over x iff 〈r, a′, s〉 ∈ g̃. Similarly there is a path

from s to t over y iff 〈s, a′′, t〉 ∈ h̃. By the definition of composition, 〈r, a, t〉 ∈ g̃; h̃

exactly when there exists an s ∈ QB so that 〈r, a′, s〉 ∈ g̃ and 〈s, a′′, t〉 ∈ h̃. Therefore

there is a path from r to t over xy iff 〈r, a, t〉 ∈ g̃; h̃.

Secondly, a = 1 iff there is an s ∈ Q so that 〈r, 1, s〉 ∈ g̃ or 〈s, 1, t〉 ∈ h̃. This is
the case iff there is an accepting path from r to s over x or an accepting path from s

to t over y. There is an accepting path from r to t over xy precisely when such an s

exists. Therefore a = 1 if there is an accepting path.
Finally, we know that T is the correct sink. Since x ∈ Ls(g̈), we know that

S = ρ(R, x). Thus every state reachable from R on x is in S. Similarly, every state
reachable from S on y is in T . Therefore T = ρ(R, xy).

(3) Assume Ls(g̈) · Ls(ḧ) ⊆ Ls(k̈). By hypothesis there is a word x ∈ Ls(g̈) and a
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word y ∈ Ls(ḧ). By clause (2) above, we know that xy ∈ Ls(〈〈[q1, R], [q3, T ]〉, g̃; h〉).

By assumption, xy ∈ Ls(k̈). By Lemma 4.4.4, 〈〈[q1, R], [q3, T ]〉, g̃; h〉 = k̈.

In the other direction, assume 〈〈[q1, R], [q2, S]〉, g̃〉; 〈〈[q2, S], [q3, T ]〉, h̃〉 = 〈〈[q1, R], [q3, T ]〉, k̃〉.
Then by clause (2) above, every word x ∈ Ls(g̈) · Ls(ḧ) is also in Ls(k̈).

Recall that Q̈
f
A,B is defined to be the closure of Q̈1

A,B under composition. We now

prove that Q̈
f
A,B contains every grounded supergraph with non-empty prefix and suffix

languages, and thus every weakly proper grounded supergraph.

Lemma 4.4.12. For every g̈ with non-empty prefix and suffix languages, g̈ ∈ Q̈
f
A,B.

Proof: Let g̈ be a grounded supergraph with a word x ∈ Lp(g̈) and y ∈ Ls(g̈).

Let y = y1...yn, and g̈ = 〈〈[p, R], [q, S]〉, h̃〉. By Definition 4.4.3 there is a path in A,
p1p2p3...pn from p to q on y. Similarly, let R1R2R3...Rn be the sequence of sets of
states of B, Ri ⊆ QB, so that R1 = R and Ri+1 = ρB(Ri, yi−1).

By Definition 4.4.3, for every 1 ≤ i ≤ n there is a grounded supergraph g̈i =
〈〈[pi, Ri], [pi+1, Ri+1]〉, g̃i〉 so that xy1...yi−1 ∈ Lp(g̈i) and the character yi ∈ Ls(g̈i).

By Lemma 4.4.10, we know these graphs are in H1. Let g̈y be g̈y1; ...; g̈yn
. By

definition, the source nodes of g̈i are the vertices reachable from a start state on
xy1...yi−1. The sink nodes of g̈i are all states reachable from the source nodes on yi.
These are the source nodes of g̈i+1. Therefore the composition g̈i; g̈i+1 is well defined.

By the first clause of Lemma 4.4.11, x ∈ Lp(g̈y). By the second clause, y ∈ Ls(g̈y).

Since Q̈
f
A,B is closed under composition, g̈y ∈ Q̈

f
A,B. Since y ∈ Ls(g̈y) and y ∈ Ls(g̈),

by Lemma 4.4.4 g̈y = g̈ and g̈ ∈ Q̈
f
A,B.

Lemma 4.4.12 implies that every grounded supergraph with a non-empty prefix
and suffix language is in Q̈

f
A,B. Thus every weakly proper grounded supergraph is in

Q̈
f
A,B. By Lemma 4.4.8, we can verify L(A) ⊆ L(B) by searching Q̈

f
A,B for a single

〈〈[q, R], [q, R]〉, g̃〉, g̃; g̃ = g̃ that does not contain an arc 〈r, 1, r〉.

Lemma 4.4.13. Let A and B be two Büchi automaton and Q̈
f
A,B the corresponding set

of grounded supergraphs. L(A) is not contained in L(B) iff there is 〈〈[q, R], [q, R]〉, g̃〉 ∈

Q̃
f
A,B so that q ∈ FA, g̃; g̃ = g̃, and there is no arc of the form 〈r, 1, r〉 ∈ g̃.

Proof: By the third clause of Lemma 4.4.11, g̃; g̃ = g̃ implies Ls(〈〈[q, R], [q, R]〉, g̃〉) ·
Ls(〈〈[q, R], [q, R]〉, g̃〉) ⊆ Ls(〈〈[q, R], [q, R]〉, g̃〉). The rest is immediate from Definition
4.4.3 and Lemmas 4.4.8 and 4.4.12.

After Q̈1
A,B has been computed, the algorithm suggested by Lemma 4.4.13 is anal-

ogous to the single-graph search proposed by Lemma 3.5.2. Lemma 3.5.2 takes a set
Q̂1

A,B and determines containment as follows. First, compute Q̂
f
A,B, the closure of Q̂1

A,B
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under composition. Second, search Q̂
f
A,B for an idempotent supergraph ĝ = 〈〈s, s〉, g̃〉

where s ∈ FA that contains no arc of the form 〈q, 1, q〉.
In Section 4.2 we defined a subsumption relation on supergraphs, so that 〈ḡ, g̃〉 �

〈h̄, h̃〉 implies ḡ = h̄. We then showed how to determine containment by computing a

subset Q̂�
A,B of Q̂

f
A,B using Algorithm 4.2.1, and then searching Q̂�

A,B for a supergraph
with a reflexive arc, ĝ = 〈〈s, s〉, g̃〉, where s ∈ FA that contains no 1-labeled strongly
connected component.

Analogously, Lemma 4.4.2 takes a set Q̈1
A,B and determines containment as follows.

First, compute Q̈
f
A,B, the closure of Q̈1

A,B under composition. Second, search Q̈
f
A,B for

an idempotent grounded supergraph g̈ = 〈〈[q, R], [q, R]〉, g̃〉 where [q, R] ∈ FA × 2QB

that contains no arc of the form 〈q, 1, q〉. We can thus generalize the subsumption
relation on supergraphs to grounded supergraphs and determine containment by com-
puting a subset Q̈�

A,B of Q̈
f
A,B using Algorithm 4.2.1, and then searching Q̈�

A,B for a

grounded supergraph with a reflexive arc, ĝ = 〈〈q[R], q[R]〉, g̃〉, where [q, R] ∈ FA×2QB

that contains no 1-labeled strongly connected component.

Lemma 4.4.14. Let A and B be two Büchi automata and Q̈1
A,B the corresponding set

of initial grounded supergraphs. Then L(A) 6⊆ L(B) iff Q̂
f
A,B contains a supergraph

ĥ = 〈〈s, s〉, h̃〉, where s ∈ FA, with no 1-labeled strongly connected component.

Proof: This follows from Lemma 4.4.13, an analogue of Lemma 4.2.5, and Lemma
4.2.6. Lemma 4.2.5 does not rely on the contents of the arcs of supergraphs, only on
their reflexivity, and so can be applied to a set of grounded supergraphs under the
same logic used to apply Lemma 4.2.5 to a set of supergraphs

Lemma 4.4.15. Let A,B be two Büchi automata and Q̈1
A,B the corresponding set of

initial grounded supergraphs. L(A) 6⊆ L(B) iff the Q̈�
A,B does not contain a grounded

supergraph g̈ = 〈〈[q, R], [q, R]〉, g̃〉 where q ∈ FA and g̈ has no 1-labeled SCC.

Proof: This proof of this lemma proceeds from Lemma 4.4.14 analogously to the
manner in which the proof of Lemma 4.2.12 proceeds from Lemma 4.2.7. The proof
of Lemma 4.2.12 builds on Lemmas 4.2.9, 4.2.8, and 4.2.10. These three lemmas are
concerned with the arcs of supergraphs only in terms of composition, equality and
reflexivity. The arcs of grounded supergraphs are used in the same manner, and are
composed in the same way as the arcs of supergraphs.
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Chapter 5
Experimental Results

All the Ramsey-based algorithms presented in Chapter 4 and Section 2.3 have
worst-case running times exponentially slower than the rank-based algorithms. All
existing SCT solvers use these Ramsey-based algorithms, begging comparison with
rank-based tools. We first compare rank-based and Ramsey-based approaches on the
domain of size-change termination problems. Surprisingly, despite the exponential
gap in running time the Ramsey-based tools perform better than rank-based tools
on SCT problems. This leads us to examine the performance of Ramsey-based al-
gorithms on Büchi universality problems. Our results indicate that, while the use of
optimizations such as subsumption is vital to either approach, rank-based solvers do
scale better on random Büchi universality problems.

5.1 Tools:

The formal-verification community has implemented rank-based tools in to mea-
sure the scalability of various approaches. The programming-languages community
has implemented several Ramsey-based size-change termination tools. To compare
the two approaches, we used the best-of-breed rank-based tool, and have lifted two
SCT tools to handle general Büchi containment problems.

Mh: Mh is a tool, developed by Doyen and Raskin [6], that tests Büchi automata
universality using the rank-based complementation construction of Section 2.2 and a
subsumption relation on ranks. Mh combines a lasso-finding fixed-point computation,
which requires only the union and predecessor operations, with a subsumption relation
and specialized implementations of those operations. In doing so it can solve some
problems with an exponential number of states by manipulating a polynomial number
of representative states. Mh can test the universality of a single Büchi automaton
with a language of two characters.

We expanded the Mh tool to handle Büchi containment problems with arbitrary
languages, using the fixed-point and subsumption operation defined by Doyen and
Raskin [6]. This required implementing a intersection operation specialized with
respect to the subsumption relation, making it the first

implementation of the containment-checking algorithm presented in their paper.

SCTP: A direct implementation of the Ramsey-based size-change termination algo-
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rithm, written by Carl C. Frederiksen in Haskell [8], SCTP solves size-change termi-
nation problems using the single-graph search of Theorem 2.3.11.

We have generalized SCTP to handle all Büchi containment problems. To handle
problems L(A) ⊆ L(B) where A contains non-accepting states, SCTP was modified
to track accepting states and check the arcs of potential counterexamples. This allows
SCTP to test the containment L(A) ⊆ L(B) as long as L(B) is strongly suffix closed
with respect to L(A). In order to handle the containment of arbitrary automata,
SCTP can use either the double-graph search over supergraphs, or the single-graph
search over grounded supergraphs. SCTP implements a straightforward double-graph
search, as described in Corollary 3.4.6, without the reachable subset optimization
of Lemma 4.3.5. When using grounded supergraphs, SCTP implements the single-
graph search without the use of subsumption or strongly connected components, as
in Lemma 4.4.13.

SCTP was also used as the front-end for the sct/scp containment solver described
below. Given a containment problem L(A) ⊆ L(B), SCTP can create the initial set of
grounded supergraphs, Q̈1

A,B, specified in Section 4.4. Finally, we have extended SCTP
to reduce SCT problems to Büchi containment problems, using either Definition 2.3.6
or Definition 4.1.1.

sct/scp: A C implementation of the Ramsey-based size-change termination algo-
rithm by Ben-Amram and Lee, sct/scp uses the subsumption relation proven in Sec-
tion 4.2. When generating a size-change graph, sct/scp avoids considering it further if
it is conservatively approximated by a size-change graph that has already been seen.
This implements most of the optimizations afforded by the subsumption operation in
Section 4.2, but does not remove existing graphs that are approximated by a newly
generated graph. The sct/scp program also divides the initial set of supergraphs into
strongly connected components, based on the arc of each supergraph, and considers
each SCC separately.

We extended sct/scp to implement the single-graph search of Algorithm 4.2.2,
which solves containment problems with strongly suffix-closed languages. In order to
solve arbitrary Büchi containment problems using Algorithm 4.4.2, sct/scp uses SCTP
as a front-end to generate the initial set of grounded supergraphs, Q̈1

A,B, from the two
automata A and B. Optionally, sct/scp can avoid discarding subsumed grounded
supergraphs, allowing a direct observation of the effectiveness of subsumption.

5.1.1 Notation

In the following graphs, programs and settings are identified by the following
labels.

(1) SCTP: SCTP solver using the double-graph search to find and test proper pairs
of supergraphs, as in Corollary 3.4.6.
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(2) SCTP(GSG): SCTP solver using the single-graph search to find and test
weakly proper grounded supergraphs, as in Lemma 4.4.13.

(3) sct/scp: sct/scp solver using the single graph search with subsumption to test
the strongly connected components of grounded supergraphs, as in Algorithm
4.4.2.

(4) sct/scp(N): sct/scp solver using the single-graph search without subsumption,
to test the strongly connected components of grounded supergraphs, as proven
in Lemma 4.4.14.

(5) Mh: Mh solver using the rank-based algorithm of [6], based on Lemma 2.2.1,
that leverages subsumption.

5.2 Size-Change Termination

All experiments on SCT problems were performed on a Dell Optiplex GX620 with
a single 3.2Ghz Intel Pentium 4 CPU and 1 GB of RAM.

Because of the exponential gap in running time between Ramsey-based and rank-
based approaches, one might expect rank-based containment solvers to outperform
Ramsey-based SCT solvers on size-change termination problems. Since using rank-
based containment solvers requires reducing size-change termination problems to
Büchi containment problems, we first compare the original LJB reduction to the more
compact reduction of Definition 4.1.1. Discovering that the new reduction produces
easier Büchi containment problems, we then compare existing, Ramsey-based, SCT
tools tools to rank-based Büchi containment solvers on the domain of SCT problems,
with surprising results.

5.2.1 Experimental Setup:

Problem Space: Existing experiments on the practicality of SCT solvers focus on
examples extracted from the literature [2]1. We combine examples from Arne Glen-
strup’s Master’s thesis [9], the benchmarks performed by Ben-Amram and Chin Soon
Lee [2], and a variety of other sources [1, 8, 12, 14, 19]. Each tool was given a little
under an hour, 3500 seconds, to solve each problem. The time spent reducing SCT
problems to Büchi automata never took longer than 0.1 seconds and was dominated
by I/O. Thus this time was not counted2

1We note that this thesis considers the number of initial size-change graphs to indicate the size
of a problem. However, the Ramsey-based SCT algorithm is not exponential in the number of
size-change graphs, rather it is exponential with regard to the largest number of parameters in any
graph.

2Experimenting reveals that reading in pre-generated automata obtains a statistically insignifi-
cant slowdown when compared with reading the SCT problem and performing the reduction.
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Procedure: The problem space was examined in two ways. First, for each SCT
problem we compared the difficulty of the Büchi containment problem produced by
each reduction from the SCT problem. Each SCT problem was converted into a
Büchi containment problem using both the original reduction of Definition 2.3.6 and
the revised reduction of Definition 4.1.1. The difference in size was measured, and the
resulting Büchi automata containment problems were passed as input the Mh and
SCTP tools. Second, we compared the performance of the rank-based Mh solver on
the derived Büchi containment problem to the performance of the existing SCT tools
on the original SCT problem. If a SCT problem was solved in all incarnations and
by all tools in 0.01 seconds or less, the problem was discarded as uninteresting.

5.2.2 Experiment Results:

The sample space of SCT problems is very small and hand constructed. This
makes it difficult to draw firm conclusions. Of the 242 SCT problems derived from
the literature, only 62 provided interesting results as defined above. We measure
performance as a percentage of the interesting problems completed in a given time,
and scaling by increasing the allotted time.

Reduction Comparison: On SCT problems of a single function, the revised reduc-
tion of Definition 4.1.1 produces identical automata to the original reduction of Def-
inition 2.3.6. On other problems the revised reduction produces consistently smaller
automata. Measuring the size of the output file in kilobytes, Figure 5.1 shows the
percentage decrease in size the revised reduction obtained with respect to the original
reduction. Larger files benefited from a more significant decrease in size, most likely
due to an increase the number of functions. While size may not be correlated with
difficulty, this does confirm that the revised reduction produces smaller automata
containment problems.

To compare the difficulty of the problems produced by the two reductions, the
SCTP and Mh tools were run on the automata containment problem each reduction
produced from each size-change termination problem. Figure 5.2 charts the percent-
age of interesting problems that could be completed in a given time, using each tool
and each reduction. The smaller state space and, to a lesser extent, transition func-
tion significantly improved the scalability of the rank-based Büchi containment tool,
Mh, on the given SCT problems. The Ramsey-based containment tool noticed less
of a difference: although it was able to solve certain problems faster, all problems
that could be solved using the revised reduction could be solved using the original
reduction in only slightly more time.

One factor in the difference may be that the rank-based tool uses an encoding
of states that is dense. States in the rank-based complementation construction are
rankings: a subset of the states in the original automaton, each associated with a
logarithmically sized rank. Mh stores these ranking by using an array to hold the
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Figure 5.1: Improvement in size obtained with revised reduction of SCT problems to
Büchi automata.
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Figure 5.2: Scaling of original and revised reductions from SCT problems to Büchi au-
tomata containment problems.
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rank of each state. If the state does not appear in the subset, it is given a invalid
rank. Therefore increasing the number of states increases the size of this array and the
amount of space required to store each ranking, even if the new states do not appear
in the ranking. In contrast the Ramsey-based tool uses an encoding of supergraphs
that is sparse, storing only the arcs present in each supergraph. Thus increasing
the number of transitions does increase the amount of space required to store a
supergraph, but increasing only the number of states does not. Since switching to
the new reduction decreases the number of states more drastically than the number
of transitions, we believe the difference in performance to be more related to the
encoding style than the algorithm used.

As noted, for a problem with a single function there is no difference between the
automata produced by Definitions 2.3.6 and 4.1.1. Most of the interesting problems
have one or two functions, and were constructed to be difficult for the number of
parameters. For these cases there is a relatively small difference between the number
of states in ADesc(L) and A′

Desc(L). Results from this experiment might not generalize
to the behavior of real-life problems containing a larger number of functions, but with
simpler size-change graphs.

Ramsey-based vs. Rank-based Solutions: Figure 5.3 compares the performance
of the rank-based Mh solver against the performance of the existing SCT tools, dis-
playing the percentage of problems each tool could complete in a given time. Note
that SCTP was used here to solve the original size-change termination problem, not
the derived automata containment problem. Time taken to reduce SCT problems to
automata containment problems, using Definition 4.1.1, was not counted.

Table 5.1 displays the maximum percentage handled by each tool, and the time at
which all solvable problems were completed. The test suite was very sparse: despite
the hour-long timeout given, only one problem that was solved required more than
one minute.

Tool % Completed Time (s)
sct/scp 100% 92.36
SCTP 94.1% 7.42
Mh 94.1% 8.83

Table 5.1: Percentage of SCT problems completed by tool.

The small problem space makes it difficult to draw firm conclusions, but it is
clear that Ramsey-based tools are comparable to rank-based tools on size-change
termination problems. In fact, the only tool able to solve all problems in an hour
was Ramsey-based. This is surprising given the significant difference in worst-case
complexity. By way of explanation, we note that all problems in this experiment have
size-change graphs whose vertices have an in-degree of at most 1. In the presence of
this property, a size-change graph can have no more than n arcs, one entering each
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Figure 5.3: Scaling of Ramsey and rank-based approaches on SCT problems.

vertex. This reduces the number of possible size-change graphs to 2O(n log n), reducing
the worst-case complexity of the Ramsey-based solutions to roughly the same as the
worst-case complexity of rank-based solutions. In the automata corresponding to
a SCT problem, this property emerges as reverse determinism: no state has two
incoming arcs labeled with the same character.

5.3 Büchi automata

All experiments on Büchi automata were performed on the Ada Cray XD1 Re-
search Cluster3, a cluster 158 nodes, each with two dual-core 2.2 GHz AMD Opteron
CPUs, 1 MB L2 cache and 8 GB of RAM.

It is apparent that Ramsey-based tools are competitive with or even superior to
rank-based tools on SCT problems. Unfortunately the sample space is very small and
artificially constructed. This leads us to wonder about the utility of Ramsey-based
tools on Büchi universality problems. Is the massive gap in the theoretical running
times of the two algorithms reflected in actual performance?

5.3.1 Experiment Setup

Problem Space: To evaluate the performance of various tools on Büchi universality

3http://rcsg.rice.edu/ada/
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problems, we employed the random model proposed by Tabakov and Vardi and later
used by Doyen and Raskin [17, 6]. This model fixes the input alphabet as Σ = {0, 1},
and considers the containment of Σω in, and thus the universality of, the language
of a random automata. Each automaton A = 〈Σ, Q, Qin, ρ, F 〉 is constructed with
a given size n, transition density r, and acceptance density f . Q is simply the set
{0..n}, and Qin = {0}. For each letter σ ∈ Σ, n ∗ r pairs of states (s, s′) ∈ q2 are
chosen uniformly at random and the transition 〈s, σ, s′〉 is include in ρ. We imposed
one exception for the initial state: when building the random graphs we ensure that
the initial node has an outgoing transition for each letter of the alphabet, which helps
us avoid trivial cases of non-universality. The set F of accepting states comprises n∗f

states, likewise chosen uniformly at random. Data points are the mean of a hundred
random automata with the given n, r, and f . The value of n ranges from 10 to 200,
r from 1 to 3, and f from near 0 to near 1.

Procedure: We conducted two experiments over this space of automata. First, we
held size constant and varied the acceptance and transition density. Doing so al-
lowed us to discover which configurations are difficult for which tools. Second, we
took the most difficult parameters and compare Ramsey and rank-based Büchi uni-
versality solvers, with and without subsumption, on problems with these parameters.
All Ramsey-based solvers handle only containment problems, and thus universality
problems were converted to containment problems by adding a universal automaton.
Each problem was given 3500 seconds, nearly one hour, to complete.

Mh was used as the rank-based solver with subsumption. We used both SCTP and
sct/scp as subsumption-free Ramsey-based solvers, and sct/scp as the Ramsey-based
solver with subsumption. As sct/scp only implements the single-graph search over
grounded supergraphs, Büchi universality problems must first be reduced to initial
sets of grounded supergraphs by SCTP. This is a potentially exponential reduction.

There are a couple important procedural notes. First, when subsumption is not
used in sct/scp the program still suffers the overhead associated with comparing
states. While this does not increase the theoretical complexity, sct/scp still payed the
cost of subsumption even when not reaping the benefits. Second, as mentioned above
the sct/scp program requires the SCTP front-end to convert automata into an initial
set of grounded supergraphs, which are closed under extension. The sct/scp tool then
performs the single-graph search on this initial set of grounded supergraphs. The
front-end conversion exponentially increases the number of graphs by a factor of up
to 2O(n). However, the number of vertices per graph does not increase. As the single-
graph search is exponential in the number of vertices, the blowup is not compounded
and the 2O(n2) single-graph search theoretically dominates. Because SCTP is not
implemented efficiently, however, in practice the front-end can consume a significant
amount of time. To be as charitable as possible to Ramsey-based approaches the time
consumed by the front-end is not counted towards the timeout period.
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Figure 5.4: Mh program: timeout percentage vs. acceptance/final Density (200 states).

5.3.2 Experiment Results

Structural Parameters To measure the scalability of each algorithm on random
automata, we first established which structural parameters induce the most difficult
problems. Previous research has shown that for rank-based solvers a transition density
(r) of 2 is vastly more difficult than problems with r = 1 or r = 3 [17]. Acceptance
density (f) has had less effect on performance, but problems become more difficult for
existing tools as f nears 0.3 [17]. The goal of these measurements is not to compare
performance between tools, but to measure the difficulty of various transition and
acceptance densities within a tool.

As shown in Figure 5.4, and consistent with the results of [17], Mh has the most
difficulty with random problem of transition density 2. Unlike the results in [17],
Mh encountered difficulty only with acceptance densities of 0.005 and 0.25. Mh’s
subsumption operation groups all accepting states under one chain, and so appears
to handle problems with many accepting states very well.

Figure 5.5 describes the behavior of the SCTP solver. Figure 5.5(a) shows the diffi-
culty encountered using the double-graph search algorithm: create all supergraphs by
composition, and then search pairs of supergraphs for a counterexample. With some
slight increase in timeouts towards problems with few accepting states, the SCTP
solver demonstrates the same behavior described in [17]: problems with a transition
density (r) of r = 2 are by far the most difficult. Figure 5.5(b) displays the character-
istics SCTP when using the single-graph search based on the grounded supergraphs
of Section 4.4. Although it performs slightly better on the hardest problems where
r = 2, we draw attention to the behavior of the single-graph search on problems with a
transition density (r) of 1. While the double-graph search timed out in roughly 30%
of these cases, the single-graph search using grounded supergraphs timed out more
than 50% of the time. This behavior can be explained by observing that the number
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Figure 5.5: SCTP program: timeout percentage vs. acceptance/final density (20 states).
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Figure 5.6: sct/scp program: timeout percentage vs. acceptance/final density (60 and 100
states).

of grounded supergraphs is dependent on the number of reachable subsets of states.
With low transitions densities, reachable subsets can grow more slowly and remain
more numerous. On smaller problems, this behavior dominates and the single-graph
search over grounded supergraphs is slower on problems with r = 1. This behavior
suggests that unlike other approaches, the single-graph search does find problems
with a transition density of 1 to be difficult. It is an open question if the algorithm
of Lemma 4.3.5, which searches pairs of reachable subsets and supergraphs, suffers
from the same problem.

The picture for sct/scp in Figure 5.6 is less clear. As sct/scp only implements
the algorithm using grounded supergraphs, we observe difficulty with low transition-
density (r) problems. This is exacerbated by the fact that sct/scp relies on SCTP as
a front-end. As SCTP is not written with efficiency in mind, scaling in the front-end

54



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80
Size

%
 T

im
eo

u
ts

SCTP (GSG)
SCTP
sct/scp (N)
sct/scp
 mh

Figure 5.7: Scaling of Ramsey and rank-based approaches on Büchi automata universality
problems.

becomes a problem with larger automata. On problems with a low transition density,
r = 1, the front-end task of generating the initial set of grounded supergraphs can
take as much time as performing the single-graph search on this set. Cases where
the front-end consumed more than one hour were considered unsolvable, otherwise
the time taken by the front-end is discounted. Even disregarding the time taken by
the front-end, it can be seen that problems with an r = 1 and acceptance density (f)
of 0.25 are the most difficult, while problems with a r of 2 remain problematic. By
comparing the graphs for two different sizes, we can observe that the gap in difficulty
between r = 1 and r = 2 is inversely proportional to the size of the automata,
but even at the limit of what sct/scp can handle problems with r = 1 remain the
most difficult. It is possible that, as with SCTP, the double-graph search is better
equipped to handle problems with low transition density. Given the current tools,
however, Ramsey-based approaches cannot compete with rank-based approaches on
problems with r = 1.

Scalability The comparison we are most interested in is the scalability of Ramsey-
based algorithms versus rank-based algorithms, and the effect of subsumption on
both. As reported in [6], subsumption is critical to the performance of rank-based
algorithms. We want to investigate the utility of subsumption in Ramsey-based ap-
proaches. The tools were compared on problems where r = 2 and f = 0.25, structural
parameters that every tool has difficulty with. The results of this experiment are re-
ported in Figure 5.7.
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With regard to SCTP, while the algorithm using grounded supergraphs and the
single-graph search performs worse, it appears to have roughly the same slope as the
algorithm using supergraphs and the double-graph search. This conclusion supports
the intuition that, as the two algorithms have the same worst-case complexity, they
will scale similarly.

Observing the data on sct/scp, however, it appears that subsumption does increase
the scalability of Ramsey-based algorithms. Even though sct/scp only implements
half of the subsumption relation on grounded supergraphs, it scales significantly better
when this subsumption operation is used. It is very interesting to note that, for
large automata, the benefits of using subsumption appear to vanish. With automata
of 84 states, sct/scp can solve no more problems with subsumption than without
subsumption.

To explain this behavior, we note that when given automata with more than 52
states, sct/scp without subsumption only terminated on non-universal automata. For
automata with 52 or more states, roughly 30% were proven to be non-universal, 67%
universal, and 2% could not be solved using any tool. The sct/scp solver was able to
complete testing every known non-universal automata whether or nor subsumption
was used. These automata were declared non-universal as soon a counterexample
grounded supergraph was discovered. Many of these counterexamples were already
present in the initial set of grounded supergraphs provided by SCTP, which comprise
of all grounded supergraphs that have a single character in their suffix language. With
automata of size 84, 22 of the 24 known non-universal automata had a counterexample
grounded supergraph in this initial set. In these cases subsumption was never a factor:
composition was never required to find the counterexample. Even the remaining two
counterexamples required only the composition of two to four grounded supergraphs.
In fact, subsumption was most useful in sct/scp lies when proving automata universal:
with subsumption, sct/scp discovered 72 universal automata of with 52 or more states.
Without subsumption, sct/scp could only discover 4.

In comparing Ramsey and rank-based approaches, first recall that sct/scp uses
the SCTP program as a front-end to produce an initial set of grounded supergraphs.
Doing so can take up to eight minutes on large problems, and this time was not
counted towards the timeout. Even when not counting this time the rank-based
Mh solver scales significantly better than Ramsey-based approaches. In the absence
of reverse determinism, it appears that the exponential gap in theoretical worst-
case running time between rank-based and Ramsey-based approaches to universality
checking is mirrored in empirical performance on the domain of random problems.

It is interesting to note that the rank-based solution outperformed the Ramsey-
based solution only on universal automata. The rank-based tool, Mh, terminated
on all 337 known universal automata with 52 or more states, while the Ramsey-
based sct/scp tool solved only 72. However, Mh was only able to solve 148 of the
152 automata with 52 or more states that sct/scp determined were non-universal. To
explain this behavior, we note that Mh searches for a lasso through the complementary
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automaton, and so can terminate before computing the entire fixed point in cases
where the automaton can be proven universal. To prove an automaton non-universal,
Mh must compute the entire fixed point. By contrast, the Ramsey-based solution
searches for a counterexample grounded supergraph, and so can terminate as soon as
such a grounded supergraph is found and the automaton is proven non-universal. To
prove an automaton universal, however, sct/scp must compute the entire fixed point
and check every grounded supergraph.
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Chapter 6
Conclusion

In this thesis we demonstrate that the Ramsey-based size-change termination algo-
rithm proposed by Lee, Ben-Amram, and Jones is a specialized realization of the 1987
Ramsey-based complementation construction by SVW. With this link established, we
compare rank-based and Ramsey-based tools on the domain of SCT problems. De-
spite the presence of new constructions with exponentially better worst-case bounds,
we discover to our surprise that size-change termination problems are best solved using
Ramsey-based approaches. This prompts us to, for the first time, empirically inves-
tigate the viability of Ramsey-based tools on Büchi universality problems. Despite
a valiant effort, in the end Ramsey-based tools cannot compete with best-of-breed
rank-based tools on the domain of Büchi universality problems. We hypothesize that
the presence of reverse determinism in all existing size-change termination problems
is responsible for difference between the two problem domains.

Our experiments yield two other interesting observations. First, subsumption ap-
pears to be critical to the performance of Büchi complementation tools using both
rank and Ramsey based algorithms. It has already been established that rank-based
tools benefit strongly from the use of subsumption [6]. Our results demonstrate that
Ramsey-based tools also benefit strongly from subsumption, as sct/scp scales bet-
ter when conservatively approximated graphs are ignored. Second, we note that
rank-based tools seem better suited to proving automata universality and contain-
ment problems, and Ramsey-based tools seem slightly better suited to disproving
automata universality and containment problems. In application, disproving a au-
tomata containment problem corresponds to discovering a bug in the program. Thus
Ramsey-based tools may find more bugs than their rank-based counterparts.

It is also worth observing that importance of implementation details on scalability.
We find that the different in scalability between SCTP and sct/scp is as great, if not
greater, than the difference imposed by subsumption. While some of this can be
attributed to sct/scp’s use of strongly connected components in both dividing the
problem and testing graphs, we believe that the method of implementation is also
significant. While Haskell is a compiled language, the SCTP program is intended
as a reference implementation. Many operations that might be better handled by
hashtables, trees, or arrays are instead managed by lists. The sct/scp tool is written
in C, and uses low-level and concrete code.
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6.1 Future Work

Experimental: There are several experimental paths suggested by these results.
Improving the front-end for sct/scp, either by more efficient implementation or by use
of a subsumption relation, could significantly improve the final performance. Further,
every tool used in this thesis is non-symbolic. Previous research [17] has indicated
that symbolic approaches may scale better. A symbolic implementation of Doyen and
Raskin’s algorithm might prove interesting.

Theoretical: On the theoretical side, we are very interested in extending the sub-
sumption relation present in sct/scp. The requirement that automata containment
problems be phrased as a single-graph search over grounded supergraphs in order to
leverage subsumption imposes additional complexity. Extending the subsumption re-
lation to the double-graph search of Lemma 4.3.5 would simplify the implementation
greatly. Further, the subsumption relation is not fully integrated into the sct/scp
solver. Mh demonstrates the benefits of a strong theoretical basis for subsumption,
and a similar treatment to Ramsey-based solvers might yield improvements.

On another track, the effects of reverse determinism on the complementation of
automata bear study. Reverse determinism is not an obscure property, it is known
that automata derived from LTL formula are reverse deterministic [7]. As noted
above, the Ramsey-based approach improves exponentially when operating on re-
verse deterministic automata. It can also be shown that the rank-based approach can
be improved exponentially, to 2O(n), when it is guaranteed to receive reverse determin-
istic automata. Further, Ben-Amram and Lee have defined SCP, a polynomial-time
approximation algorithm for size-change termination. For a wide subset of SCT prob-
lems, including the set used in this thesis, SCP is exact. SCP is exact in cases where
graphs have restricted in degrees. In terms of automata, this property is similar,
although perhaps not identical, to reverse determinism. The presence of an exact
polynomial algorithm for the SCT case suggests a subset of Büchi containment prob-
lems may be solvable in polynomial time. The first step in this direction would be to
determine what properties a containment problem must have to be solved exactly in
this fashion.

Utility: Considering the scalability and the newly implemented ability to solve Büchi
containment problems, the Mh tool could be considered for use in actual applications.
In the case of the satisfiability problem for first-order logic, tools can solve problems
resulting from applications that are larger, by several orders of magnitude, than
solvable random problems. This might also occur in the space of Büchi containment
problems. The possibility of using a Büchi containment solver for actual verification
is intriguing.



Bibliography

[1] Daedalus. Available on: http://www.di.ens.fr/~cousot/projects/

DAEDALUS/index.shtml.

[2] Amir M. Ben-Amram and Chin Soon Lee. Program termination analysis in

polynomial time. ACM Trans. Program. Lang. Syst, 29(1), 2007.
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