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Abstract

Eliminating Incoherence from Subjective Estimates of Chance

by

Spiridon Tsavachidis

Human expertise is a significant source of information about environments with inher-

ent uncertainty. However, it is well documented that subjective estimates of chance

tend to violate the mathematical axioms of probability, that is, they are incoher-

ent. This fact makes the use of such estimates problematic for statistical inference,

decision analysis, economic modelling or aggregation of expert opinions. In order

for the subjective probability estimates to be used in a correct and meaningful way,

they must be reconstructed so that they are coherent. The proposed algorithms for

coherent reconstruction are based on heuristic search methods , namely, Genetic Algo-

rithms and Simulated Annealing. These algorithms are combined with efficient data

structures that compactly represent probability distributions. The reconstructed es-

timates are coherent and close to the initial judgments with respect to some distance

measure, maintaining the insight of the expert. Empirical studies shown that the co-

herent approximations are more stochastically accurate than the original subjective

estimates.
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Chapter 1

Introduction

Probabilistic knowledge has always been an important issue in Artificial In-

telligence. The elegance of probability theory enabled it to survive and in many

cases dominate over other theories of uncertainty. In this thesis, human judgment

as a source of information about uncertain events is examined. Subjective estimates

of chance, however, often conflict with the axioms of probability when logically re-

lated events must be evaluated. Estimates that are incompatible with any probability

distribution are called incoherent. The tendency for human judgment to stray from

coherence is well documented (Yates, 1990; Osherson, 1995) and is commonly encoun-

tered when eliciting probabilities for the construction of Bayesian networks (van der

Gaag et al., 1999).

One way to ensure probabilistic consistency is to pair each query to a judge

with a precalculated response set containing all coherent possibilities (Druzdzel and

van der Gaag, 1995). Such structured elicitation can be tedious, however, since

verifying coherence may involve large calculations. The estimates of chance finally

obtained, moreover, may depend on the order in which they were generated because

later estimates are more highly constrained than earlier ones. As a complement

to structured elicitation, it is therefore desirable to possess a method for adjusting

1
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estimates of chance off line, rendering them coherent after the judge has left the scene.

An obvious constraint on the method is to return coherent estimates that are as close

as possible to the original judgments (an exact match can be achieved only if the

judgments are coherent to begin with).

The principal challenge for such a method is manipulating large probability

distributions. Recall that a distribution over n Boolean variables assigns probabilities

to 2n elementary states (called “truth assignments” in what follows). Since practical

applications can involve scores of variables, it is necessary to represent underlying

distributions in compact form. For this purpose we rely on a simple data structure

called a probability array (or array), described below. It will be shown that small

arrays suffice to optimally approximate any set of incoherent estimates of chance.

To search for an array that approximates a target set of incoherent judgments, we

rely on simulated annealing (van Laarhoven, 1988). Searching through the class of

probability arrays via simulated annealing allowed us to efficiently approximate target

sets of simulated judgments over 20 - 50 variables. The same method was applied to

sets of 46 judgments over 10 variables in five empirical studies involving 181 human

judges. Close approximations were again achieved efficiently. In the empirical studies,

the quadratic scores of the reconstructed estimates were reliably superior to the scores

of the original estimates. (The quadratic score is a familiar measure of the objective

accuracy of an estimate of chance) Even better quadratic scores resulted from pooling

the judgments of all participants in a given study into an “aggregate judge,” and

then applying our algorithm to achieve a coherent approximation. Thus, in both

the individual and aggregate sense, our correction method improves the objective

accuracy of the judgments that it renders coherent.

In place of probability arrays, we have also experimented with algebraic de-

cision diagrams, which have proven useful in other problems involving numerous

variables (Bahar et al., 1997). Similarly, we have explored genetic algorithms in place
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of simulated annealing. We consider these alternative techniques in Section 3.3.2.

To proceed, the optimization problem posed by off line reconstruction of prob-

ability estimates is specified in Chapter 2. Details about the proposed optimization

methods are presented in Chapter 3. Experimental results are described in Chapter

4. The parameter space of the proposed algorithms is explored in Chapter 5.

1.1 Related work

It is often the case in expert systems that both the knowledge as well as the

entailment rules are known with some uncertainty. For a typical expert system, facts

and rules are stated as logical sentences, thus it has been of interest to generalize

logic to engulf uncertainty.

There have been proposals that diverge from classical probability theory,

examples being the Dempster-Shafer theory (Shafer, 1976), fuzzy set theory (Zadeh,

1971), or certainty/confidence factor (Pearl, 1986). For a survey of the theories see

(Genesereth and Nilsson, 1987).

The first comprehensive attempt to combine logic and probability was Luka-

siewicz’s original work on probability logic (Lukasiewicz, 1913). His exploration of

the logical foundations of probability produced original ideas that anticipated much

of the work that followed many years later, (Halpern, 1990). Another important

moment in the history of probabilistic logic was Nilsson’s publication of his logic for

probabilistic reasoning in his paper “Probabilistic Logic” (Nilsson, 1986). In contrast

with Lukasiewicz’s work, Nillson’s approach has become integrated into AI as a logic

for probabilistic reasoning, see (Torsun, 1995). In his 1986 paper, Nilsson takes a

new approach to the semantics of probability statements. Probabilities are assigned

to sentences and a probability evaluation is made by a reference to possible worlds. In

particular, the probability of a sentence is given by summing the probabilities assigned

to all possible worlds (truth assignments of the variables) in which the sentence if true.
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Nilsson addressed the main problem of probabilistic satisfiability (PSAT), that is, the

problem of checking for the consistency of the logical sentences and their assigned

probabilities. He showed that PSAT can be expressed as a linear program with a

number of columns exponential to the number of variables (facts).

Computational complexity issues were explored in (Georgakopoulos et al.,

1988) and (Kavvadias and Papadimitriou, 1990). NP-completeness of PSAT is shown

even when all clauses contain at most two literals (2PSAT). They propose solving

PSAT by column generation and they prove that the selection of the entering column

can be done by solving an appropriate weighted maximum satisfiability (MAXSAT)

problem. Since MAXSAT is also NP-complete, they propose the use of heuristics to

solve it.

Extensions of Nilsson’s work as well as further exploration of the ideas of

(Kavvadias and Papadimitriou, 1990) can be found in (Jaumard et al., 1991). In

particular, the authors extend Nilsson’s model allowing the assignment of intervals of

probability values to the logical sentences. The second contribution is the description

of a column generation algorithm for solving PSAT for fixed or interval probability

values. Probabilistic satisfiability is referred to as generalized coherence (g-coherence)

in the literature when intervals of probability values are involved (imprecise proba-

bility assessments) instead of probability values (precise probability assessments), see

(Biazzo et al., 2001). In this paper, it is shown that coherence is equivalent to avoid-

ing uniform loss when probabilities are interpreted as random gain rates for a set of

bets between a bookmaker and a gambler. Thus, coherence prohibits the possibility

of sure loss for both the gambler and the bookmaker. Similarly, g-coherence is equiv-

alent to avoiding sure loss for both the upper and lower betting rates (corresponding

to lower and upper probabilities). A thorough exploration of the notions of coherence

and avoiding uniform loss can be found in (Shafer et al., 2002) and (Walley, 1997).



Chapter 2

Judgment reconstruction as

optimization

2.1 Formulation of the problem

Finding a coherent approximation to incoherent estimates of chance amounts

to solving an optimization problem. To state the matter formally, let v1 · · · vn be

Boolean variables, representing the occurrence or non-occurrence of n logically in-

dependent events. Syntactically, the variables give rise to an infinity of formulas

built up in the usual way from sentential connectives like ¬,∧,∨. The formulas serve

to describe absolute events whereas pairs (ϕ : ψ) of formulas describe conditional

events. Semantically, the variables yield 2n mappings (called truth assignments) from

{v1 · · · vn} to {true, false}. A truth assignment α satisfies a formula ϕ if ϕ evaluates

to true via standard propositional logic semantics. A (probability) distribution over

v1 · · · vn is a mapping of the 2n truth assignments into nonnegative numbers that sum

to unity. Distribution Pr is extended to formulas ϕ via:

Pr(ϕ) = Σ{ Pr(α) : α satisfies ϕ }.

5
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It is extended to pairs (ϕ : ψ) of formulas via:

Pr(ϕ : ψ) =
Σ{ Pr(α) : α satisfies both ϕ and ψ }

Σ{ Pr(α) : α satisfies ψ }

provided that Pr(ψ) > 0. If Pr(ψ) = 0 then Pr(ϕ : ψ) is undefined.

Consider a judge who is estimating the probabilities of some events and con-

ditional events over v1 · · · vn. We write Est(ϕ) = x to indicate the judgment that

the probability of ϕ is x, and Est(ϕ : ψ) = y for the judgment that the conditional

probability of ϕ assuming ψ is y. Est is thus a finite function from formulas and

pairs of formulas to real numbers in [0, 1]. If it coincides on its domain with some

distribution Pr over v1 · · · vn then Est is called coherent, otherwise incoherent. In the

typical case, Est is incoherent, and we seek to reconstruct it via a close distribution.

The resulting optimization problem can be stated as follows.

(1) Optimization Problem: Let Est map formulas ϕ1 · · ·ϕk, and pairs of

formulas (χ1, ψ1) · · · (χj, ψj), into numbers. Find a map Prob with the same

domain as Est such that Prob is coherent, and

∑

i≤k

| Est(ϕi)− Prob(ϕi) | p +

∑
i≤j

| Est(χi : ψi)− Prob(χi : ψi) | p

is minimized.

We examine (1) for p = 1 and p = 2, corresponding to absolute and quadratic

deviation from Est . In either case, it is evident that a solution to (1) leads to a

solution of PSAT, an NP-complete problem (Georgakopoulos et al., 1988) implying

that the existence of an efficient algorithm is highly unlikely. 1

1In addition to the problem of intractability is the possibility that there may not even be a
minimum distance between Est and a coherent approximation Prob to it. The incoherent judgments
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Note that distinct approximations Prob can yield the same deviation from Est

yet assign different probabilities to the target events ϕ1 · · ·ϕk, and (χ1, ψ1) · · · (χj, ψj).

For example, the incoherent judgments Est(p) = .3, Est(¬p) = .6 are equally well

reconstructed with respect to their absolute deviations from the given estimates as

Prob(p) = .4, Prob(¬p) = .6 or as Prob(p) = .3, Prob(¬p) = .7. Such multiplicity

invites additional desiderata in the formulation of (1), for example, maximizing en-

tropy, see (Lukasiewicz and Isberner, 1999) for entropy considerations in probabilistic

logic. For simplicity in the current investigation, only deviation from Est appears in

(1). Absolute and conditional events, moreover, are given equal weight in calculating

deviation from Est, and only point estimates of probability are considered. Obviously,

such matters can be settled differently within specific applications.

2.2 Sparse distributions

We rely the following fact (also observed by (Fagin et al., 1990), and exploited

in a similar way).

(2) Fact: Let formulas ϕ1 · · ·ϕk, and pairs (χ1, ψ1) · · · (χj, ψj) of formulas be

given. For every distribution Pr there is a distribution Pr’ such that:

(a) Pr’ assigns positive probability to at most k + j + 1 truth assignments;

(b) Pr’(ϕi) = Pr(ϕ) for every 1 ≤ i ≤ k;

(c) Pr’(χi : ψi) = Pr(χi : ψi) for every 1 ≤ i ≤ j with Pr(χi : ψi) defined;

Proof: Let k formulas and j pairs of formulas be given as in (2). Suppose

that all the formulas are written over the same set of n variables. Let

Pr be a probability distribution for the formulas and pairs of formulas.

Est(p : q) = .5, Est(q) = 0, for example, can be approximated by setting Prob(p : q) = .5 and
Prob(q) arbitrarily close to 0, but not 0 itself. We deal with this problem by requiring that the
probability of conditioning events is greater then a small constant
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Hence, Pr maps the 2n truth assignments τ1, τ2, ...τ2n into non-negative

real numbers x1, x2, ..., x2n such that
∑2n

i=1 xi = 1. Let

Si = {` : τ` satisfies ϕi} for i ≤ k,

Yi = {` : τ` satisfies χi} for i ≤ j,

Zi = {` : τ` satisfies ψi} for i ≤ j.

It then follows that:

Pr(ϕi) =
∑

`∈Si
x` for i ≤ k,

Pr(χi : ψi) =
P

`∈Yi∩Zi
x`∑

`∈Zi
x`

for i ≤ j.

The latter equalities imply that the following equations have a nonnegative

real solution.

∑
`∈Si

x` = Pr(ϕi) for i ≤ k,

∑
`∈Yi∩Zi

x` − Pr(χi : ψi) ·
∑

`∈Zi
x` = 0 for i ≤ j,

∑2n

i=1 xi = 1.

It is well known that if a system of m linear equations in p unknowns has

a nonnegative solution then it has a solution with at most m nonnegative

values (see, e.g., (Chvátal, 1983, Thm 9.3)). It thus follows immediately

that there is another solution to the last equations with at most k + j +

1 non-negative entries. The desired sparse probability distribution Pr’

consists of these values.

This observation allows the use of search algorithms for solving problem (1)

restricted only on sparse distributions. This fact is exploited by using efficient data

structures such as probability arrays and algebraic decision diagrams described in
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Chapter 3.

2.3 Special cases

In its general form, (1) is a nonconvex nonlinear optimization problem with

2n continuous variables, where n is the number of boolean variables. Special cases of

the problem can be solved by applying linear and quadratic programming techniques.

These cases involve only absolute judgments. Depending on the choice of absolute

or squared deviation this special family of problems can be solved using linear and

quadratic programming (LP, QP), respectively. LP and QP provide useful bench-

marks of success in simple settings but it does not embody a general solution to (1).

For one thing, LP and QP are impractical for more than 20 variables because their

running times are polynomial in the number of continuous variables which is equal to

2n. It is noted that LP can become efficient by using a column generation technique,

however, using the standard simplex algorithm is inefficient. More importantly, LP

and QP cannot be applied to judgments involving ratios of probabilities, notably,

when estimates are given for conditional events.

2.3.1 Linear Programming

If we are interested in minimizing absolute deviation (p = 1) and only absolute

judgments are involved, (1) can be solved by linear programming (LP). LP can be used

as follows to calculate the closest possible approximation. For each truth assignment

α we have a variable xα, and for each (absolute) event e we have a variable ke. For

each estimate p associated with an event e, we have two constraints. One has the form

ke + Σxα ≥ p, where the summation ranges over the truth assignments α that satisfy

e. The other one has the form −ke + Σxα ≤ p, with the same summation. A final

constraint sets the sum of all the xα’s to unity. Note that this LP formulation of (1)

has an exponential number of variables, but the number of constraints is linear in the
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number of probability estimates. The objective is to minimize the sum of the ke’s.This

formulation of the linear programming problem is often used when the objective is to

minimize the sum of the absolute values of weighted sums (Nemhauser et al., 1989).

The resulting distribution (given by the xα’s) minimizes this sum and can be shown

to yield a best approximation in the sense of (1), see (Rustagi, 1994). 2 An example

of the linear programming approach is illustrated in the following example.

Suppose there are two events, represented by the boolean variables p and q.

The following estimates are given: Est(p) = .75, Est(q) = .5, Est(p ∧ q) = .1.

The corresponding linear program is shown in Table 2.1

States
Judgment pq pq̄ p̄q p̄q̄ Slack Target

Est(p) x1 + x2 + yp ≥ .75
x1 + x2 − yp ≤ .75

Est(q) x1 + x3 + yq ≥ .5
x1 + x3 − yq ≤ .5

Est(p ∧ q) x1 + yp∧q ≥ .1
x1 − yp∧q ≤ .1
x1 + x2 + x3 + x4 = 1.0

xi ≥ 0 i = 1, .., 4

Table 2.1: Example of a linear program for reconstructing probability estimates. The
optimal solution is found by minimizing the sum of the slack variables given the above
constraints

Column generation techniques The inefficiency of the LP formulation of the

problem has been addressed to some extent by using column generation methods,

see (Chvátal, 1983). It was suggested in (Georgakopoulos et al., 1988) the use of

column generation methods for solving instances of PSAT. The problem of coherent

rectification by minimizing the absolute deviations as shown in (1) is referred to as

Restore Satisfiability (RSAT) in (Jaumard et al., 1991). The authors proposed a

2Neither the distribution nor the optimizing ke’s are unique. Many choices of the ke may produce
minimum deviation from the target estimates.
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combination of heuristic and exact algorithms for finding an entering column at each

iteration of the revised simplex method, see (Nemhauser et al., 1989) and (Chvátal,

1983). They showed that RSAT instances with up to 70 variables and 100 constraints

can be solved efficiently with their techniques. It is evident that column generation

can scale well with the number of variables contrary to the standard LP formulation.

It is noted, however, that these methods are applicable only to absolute events.

2.3.2 Quadratic Programming

If the square deviation is minimized (p = 2) then quadratic programming

(QP) can be applied to reconstruct optimally the given absolute judgments. The cost

function can be written as
∑k

i=1(pi −
∑

j∈Ai
xj)

2, where Ai = {ai1, ..aiji
} is the set

of indices that correspond to the ji truth assignments that render the ith formula

true. The constraints for the variables x1, ...x2n are xi ≥ 0 and
∑

i xi = 1. The

cost function can be trivially rewritten as a sum of quadratic, linear, and constant

terms. Its convexity is determined solely by the quadratic terms
∑k

i=1(
∑

j∈Ai
xj)

2.

It is known that a quadratic form is convex iff it is greater than or equal to zero for

all real values of its variables, see (Skutella, 2001). This is obviously the case for

the above sum of squared terms, thus the cost function is convex. It is also trivial

to see that the constraints define a convex set. Thus, the optimization problem is

convex and it can be solved in polynomial time in the number of continuous variables

x1, ...x2n , see (Vavasis, 1993).

To illustrate the difference of the QP approach to the LP approach, an exam-

ple is shown in Table 2.2. The event variables p and q and the probability estimates

are the ones used in Table 2.1
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Est(p) Est(q) Est(p ∧ q)

Minimize : (x1 + x2 − .75)2 + (x1 + x3 − .5)2 + (x1 − .1)2

x1 + x2 + x3 + x4 = 1.0 xi ≥ 0 i = 1, .., 4

Table 2.2: Example of a convex quadratic program for reconstructing probability
estimates



Chapter 3

Optimization methods

The intractability of the optimization problem (1) leads us to a strategy

involving data structures that efficiently represent probability distributions in con-

junction with heuristic search methods, namely, simulated annealing and genetic al-

gorithms.

The first approach is to represent candidate distributions using probability

arrays, and to search through them via simulated annealing. An alternative approach

it to employ genetic algorithms for searching and Algebraic Decision Diagrams to

represent efficiently probability distributions.

3.1 Data structures

3.1.1 Probability Arrays

A probability array of size (n,m) (for n,m > 0) is a set of m vectors each

of form αi
1 · · ·αi

n, βi (1 ≤ i ≤ m), where αi
k ∈ {1, 0, ∗}, βi ∈ [0, 1], and

∑m
i=1 βi =

1. Letting the vectors be columns, one array of size (3, 4) may be pictured as in

(1)a, below. The first three rows of (1)a correspond to three (Boolean) variables

v1, v2, v3, respectively. The first column represents the truth-assignment v1 = true,

v2 = false, v3 = true, and assigns it probability .2. The second column represents

13
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(1) (a)

1 0 ∗ 0
0 ∗ ∗ 0
1 0 1 0
.2 .1 .4 .3

(b)

1 1 1 1
0 0 0 0
1 1 1 1
.2 .1 .4 .3

(c)

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
.2 .1 .4 .3

two truth-assignments, namely, v1 = false, v2 = true, v3 = false, and v1 = false,

v2 = false, v3 = false. In other words, the symbol ∗ functions as “don’t care.” The

two truth-assignments represented by the second column of (1)a share the value .1,

each receiving .05. The other two columns are interpreted similarly. (Four truth-

assignments are represented in the third column, and are each assigned .3/4. The

sole truth-assignment represented by the fourth column is assigned .3.) Notice that

the same truth-assignment may appear in more than one column. The probability of

such a truth-assignment is the sum of the values it receives in each column where it

appears. For example, in (1)a, the truth-assignment v1 = true, v2 = false, v3 = true is

represented in columns 1 and 3. Its probability according to (1)a is .2+ (1
4
× .4) = .3.

Some truth-assignments may not appear anywhere in the array, and are therefore

assigned probability zero. For example, in (1)a, the probability of v1 = true, v2 =

true, v3 = false is 0. As an aid to intuition, the extreme arrays (1)b,c may be helpful.

The first represents a highly sparse distribution, placing all probability on one truth-

assignment. The second represents the uniform distribution.

It should be clear that every array of size (n,m) represents a distribution over

n variables. It should also be clear that:

(2) Fact: Every distribution over n variables that assigns positive probability to

no more than m truth-assignments is represented by some array of size (n,m).

From (2) it follows that our search for an approximating distribution [in the

sense of (1)] can be limited to sparse distributions. Hence (2) implies that the search

can be restricted to the class of probability arrays. Specifically, if the judge has

estimated probabilities for m events and conditional events over n variables, then an
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optimal coherent approximation is represented by some array of size (n,m + 1). The

optimal array need not include *, but the presence of *’s allows optimal approximation

in some cases by even smaller arrays.

3.1.2 Algebraic Decision Diagrams

An ADD is a generalization of a reduced, ordered, binary decision diagram or

ROBDD (Bryant, 1986). The latter structure is a DAG with terminal nodes labelled

either 0 or 1, and non-terminal nodes with out-degree two labelled by variables. One

outgoing edge from a given variable has label 0, the other 1. The DAG is ordered

in the sense that all its paths respect a fixed linear ordering of the variables. It is

reduced in the sense that (a) two nodes with the same label and having the same 0-

and 1-successors (if any) are identified, and (b) there is no nonterminal node whose 0-

and 1-successors are identical. An ADD is like an ROBDD except that its terminals

can assume any real value. See Figure 3.1. An ADD maps each truth assignment to

one of its terminal nodes in the obvious way. For example, the ADD of Figure 3.1

maps the uniform assignment of true to .15 via its rightmost edges (v2 and v3 are

treated as “don’t cares” on this path). Given an ordering of the variables, a given

mapping of truth assignments to numbers is represented by a unique ADD. See (Bahar

et al., 1997) for the theory of ADDs, and applications. (To avoid misunderstanding,

we stress that Figure 3.1 does not represent a Bayesian network.) In the present

context, we restrict attention to ADDs that yield probability distributions, namely,

whose terminals are nonnegative and such that Σ terminal (α) = 1 where the sum is

over all truth assignments α, and terminal (α) is the value of the terminal node on

the path that represents α. To manipulate ADDs, we rely on a subset of operations

defined in the software package CUDD1 from Colorado University.

The function Matrix Multiply computes the product of two ADDs with re-

1The package is available via http://vlsi.colorado.edu/∼fabio/CUDD/cuddIntro.html
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Figure 3.1: ADD representation of a probability distribution

An ADD for a distribution over the variables v1, v2, v3, v4. According to the distribution,
Pr(v̄1v̄2v̄3v̄4) = .05, Pr(v̄1v̄2v3v̄4) = .05, Pr(v1v̄2v̄3v4) = .15, Pr(v1v̄2v̄3v̄4) = .025,
etc.

spect to a set of summation variables. That is, each ADD is seen as the representation

of a rectangular matrix whose rows and columns are encoded by two subsets X1 and

X2 of the variables. It is noted that X1 and X2 constitute a partitioning of the set of

variables. In order to calculate the matrix product of two ADDs the variables that

encode the columns of the first must coincide with the ones encoding the rows of the

second. These are the summation variables. If the set of the summation variables

contains all the variables, Matrix Multiply computes the inner product of the vectors

that correspond to the two ADDs.

Inner product is used as follows to calculate the probability of a given formula

ϕ according to a given ADD A. We first represent ϕ as a Boolean function by means

of an ROBDD B (i.e, an ADD with terminals limited to 0 and 1). A and B can be

conceived as vectors over the same set of truth assignments. The desired probability

is therefore obtained via their inner product. Other important functions of the CUDD

package include the if-then-else operator ITE(f,g,h)=fg+f’h and the Apply(g,h,op) =

g op h that implements arithmetic operators on ADDs, where g, h are ADDs and f

is a BDD (kept as a 0-1 ADD in the CUDD package). These functions will be used

in the implementation of the genetic operators of the Genetic Algorithm. The time

complexity of the preceding operators is linear in the product of the number of nodes

of the operands. Thus, ADD manipulation is efficient as long as they do not grow
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too large. For more information concerning ADD manipulation and time complexity

issues see (Bahar et al., 1997).

3.2 Algorithmic schemes

3.2.1 Simulated Annealing

Simulated annealing is a general heuristic search method that has been ap-

plied successfully to several optimization problems (Davis, 1987). It is inspired by

the physical process of annealing . If the annealing process is carried out slowly

enough, the ground state of a solid can be found, that is, the molecules are arranged

in a minimum energy configuration. This phenomenon motivated people to devise

the generic method of simulated annealing. The goal is to find a configuration that

minimizes a given cost function C. First, a initial solution to the problem s0 is found

and the initial value of the control parameter T is defined. The cost function C and

control parameter T are analogous to the energy and temperature of the annealing

process. At the ith step of the algorithm, a configuration r is randomly selected from

the set of ‘neighbors’ of the current configuration si. The new configuration si+1 is

set to r if C(r) ≤ C(si) , otherwise it is set equal to r with probability e
−C(r)−C(si)

Ti .

The sequence T0, ...Ti... depends on the initial value of the control parameter T , and

the cooling schedule. The presented algorithm uses the decrement rule Ti+1 = αTi for

some constant α < 1. At each temperature step, the algorithm iterates several times

in order to let the Markov chain represented by the algorithm to converge to its limit

distribution, see (van Laarhoven, 1988) for the mathematical analysis of Simulated

Annealing.
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3.2.2 Genetic Algorithms

Genetic Algorithms are a type of stochastic search technique inspired by

evolution. They rely on the encoding of possible solutions of a problem to data

structures called chromosomes and their transformation to new improved solutions

via genetic operators. The application of a genetic algorithm to a problem requires

the following components.

• A chromosomal representation of solutions to the problem.

• A way to generate a population of initial solutions.

• An evaluation function that rates the chromosomes in terms of their fitness.

• Genetic operators that recombine the chromosomes to yield the next generation

of the population.

The representation of the chromosomes is typically bit strings but other data struc-

tures such as graphs can be appropriate for certain problems (Mitchell, 1996). The

initial population is usually randomly generated , taking into account possible con-

straints of the problem. The genetic operators typically used in genetic algorithms are

crossover and mutation. Crossover is considered the key to GA’s power. It combines

two chromosomes to produce their offspring. Typically, chromosomes with high fit-

ness tend to produce highly fit children. If bit strings are used as chromosomes, than

the one-point crossover operator works as follows. Let c1, c2 be two chromosomes.

Then we randomly partition the two strings to c1 = s1s2, c2 = s
′
1s
′
2. The results

of crossover are the two offspring c
′
1 = s1s

′
2 and c

′
2 = s

′
1s2. The mutation operator

introduces random variations to a chromosomes. In the case of bit strings, mutation

simply involves random flipping of randomly chosen bits. Occasionally, these varia-

tions are beneficial to the gene pool. For a thorough presentation of the key notions

of GAs see (Mitchell, 1996).
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3.3 The reconstruction algorithms

3.3.1 Simulated Annealing over Probability Arrays

The SIMAR algorithm uses simulated annealing to search over probability

arrays and finds one that approximates well the input estimates. It starts by gener-

ating randomly a probability array (n,m), where n is the number of variables and

m = Ncolumns, an algorithm parameter analyzed later. The entries of its first n rows

are randomly filled with 1, 0 and ∗ (don’t care). The probability of setting an entry

to ∗ is equal to Pstar. The last row of the (n,Ncolumns) array contains uniformly dis-

tributed random floating-point numbers (generated by the function random() from

the Java package Math) , normalized to sum to 1. At each step of the algorithm we

have to create ‘neighbors’ to an array A. The method we used is the following

Routine for creating neighbors to an array A: for every column in A, with

10% probability (a) randomly choose one row and replace its entry with

a randomly chosen member of {0, 1, ∗}, and (b) multiply the last row

(namely, the probability) by a random choice between 1 − ε and 1 + ε,

then renormalize across columns (so that they sum again to 1.0).

The parameter ε controls the relative change of the entries of the last columns

of A. In order to determine the initial ‘temperature’ we define the parameter initial

acceptance rate, Iar, that is, the average percentage of the accepted configurations

versus the total number of configurations generated from a run of the simulated

annealing algorithm for a fixed number of steps and constant temperature. The ini-

tial temperature is found statistically by the algorithm. A description of the exact

methodology for statistically defining the initial temperature from the initial accep-

tance rate can be found in (van Laarhoven, 1988). The parameters associated with

the running time are NT , the number of temperature decreasing steps, and Niter ,
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the number of iterations at each temperature value. The cooling schedule is defined

by the equation Ti+1 = αTi where Ti is the temperature at the ith temperature step

and α is a constant defined so that the initial temperature is 1000 times bigger than

the final temperature. Thus, α is a function of the number of temperature steps, NT .

It is easy to see that it is given by the equation α = e−ln(1000)/NT . The computation

of the cost function given by (1) requires the calculation of probabilities of events

given by formulas with respect to a given probability array. This is straightforward

for events given by simple formulas, as is the case with the experimental analysis

presented in the present paper. Specifically, the calculation of the probability of an

event associated with a formula is done by counting the number of satisfying assign-

ments of the formula for each column, multiplying with the weight of the column, and

finally, summing over all columns. The presented algorithm can run with multiple

starting points, manipulated according to the ’go with the winners’ strategy described

in (Aldous and Vazirani, 1994). An analysis of the parameter space of the algorithm

is presented in section 5.1.

3.3.2 Genetic Algorithms and ADDs

To find a coherent approximation to input judgments, we searched through

the space of ADDs using genetic algorithms (GAADD). We now provide details about

the genetic algorithm used to produce the results presented in the sequel. We describe

(a) the starting population, (b) the processes of crossover and mutation, and (c) the

construction of the next generation. The values of the parameters of the algorithm

cited below were determined by the experimental analysis described in section 5.2.

The same parameters are used in all the experiments reported later.

Initial population To form the initial population, a set of ADDs is generated ran-

domly. A given ADD is created as follows. Suppose there are n variables, v1 · · · vn.
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First, a set of Nprod ternary sequences of length n is randomly generated. The param-

eter Nprod is set equal to 50. Each coordinate of a given sequence holds either true,

false, or don’t care. For each sequence, a randomly chosen probability p is chosen.

By identifying coordinate i of a given sequence with vi, each ternary sequence repre-

sents a set of truth assignments, all with probability p. An ADD is created for each

such set of truth assignments (one ADD for each ternary sequence). The different

ADDs corresponding to the different ternary sequences are then summed into one

larger ADD whose terminal nodes are normalized to ensure that the ADD represents

a probability distribution. The random generation of an ADD can be also seen as a

conversion of a probability array to an equivalent ADD. After all the ADDs in the

starting population are created, the variables v1 · · · vn are reordered by routines in the

software package CUDD in order to minimize the storage requirements of the entire

set of ADDs. (The same variable ordering governs all the ADDs in the population.)

Genetic operators Crossover between two ADDs A1, A2 proceeds as follows. Each

truth assignment determines a base-2 numeral by associating truth with 1 and fal-

sity with 0 (the ordering of variables determined by CUDD orders the digits of these

numerals). One of these 2n numbers is chosen uniformly randomly, and two distri-

butions are created. In one distribution, the truth assignments below the chosen

point are given probabilities according to A1, the remaining truth assignments get

probabilities according to A2. The other distribution receives the complementary

probabilities. In both cases, the resulting ADDs are renormalized to sum to unity.

This procedure is described by the following CUDD commands. A
′
1 = ITE(f, A1, A2),

A
′
2 = ITE(f, A2, A1), where f is the 1-0 ADD representing the splitting function

f(v1, . . . , vn) =





1 if r < v1 · · · vn

0 otherwise
, where r is a randomly generated n-digit binary

number and v1 · · · vn is a binary number with digits determined by v1 . . . vn.

Mutation of a given ADD starts from another choice of a number between
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0 and 2n − 1. The terminal nodes of all paths in the ADD that correspond to a

truth assignment below (or above) the chosen number are multiplied by 1 + em.

The remaining terminals are multiplied by 1 − em. The ADD is then renormalized.

The parameter em is set equal to 0.1. Mutation of an ADD A is described by the

following commands. A1 = Apply(A, 1 + pem,×),A2 = Apply(A, 1 − pem,×), and

A = ITE(f,A1, A2). The number p is randomly chosen from the set {−1, 1} and

f is the splitting function described above. The mutation operation splits the 2n

probability vector represented by an ADD into 2 vectors using the function f . It

then proceeds by multiplying the elements of one vector by 1± em and the other by

1∓ em. Renormalization is finally performed to make the probabilities sum to 1.

Construction of successive generations Let Est represent the set of target es-

timates to be approximated, and let Prob be the distribution represented by a given

ADD A in our population. Define dev to be the absolute (or quadratic) deviation be-

tween Est and Prob in the sense of (1)2 . We take the fitness of A to be 1/(dev+ .01).

Thus, greater match to Est yields higher fitness. (Adding .01 prevents division by

zero.) Between two generations, the probability of being selected for mating is pro-

portional to fitness. For a population of (even) size N , N/2 pairs of ADDs are se-

lected with replacement on this basis. With probability Pc = .95 the pair undergoes

crossover. Whether crossed or not, the pair then undergoes mutation with probabil-

ity Pm = .04. The two chromosomes then enter the next generation (again yielding

a population of N). Optimal variable ordering is once again sought for the entire

population.

Across generations, the ADD with highest fitness (lowest dev) is retained,

and its distribution is used to approximate Est. The impact of the total number of

generations Gennum as well as the size of the population Popul is analyzed in section

2It can happen that there is a conditional event (ϕ : ψ) among the target estimates for which
the ADD’s distribution Prob is undefined (because Prob(ψ) = 0). In this case (which is extremely
rare), we augment dev to make the proliferation of such an ADD highly unlikely .



23

5.2.

3.3.3 Methods that did not perform well

The proposed algorithms, SIMAR and GAADD, are the amalgamation of

efficient data structures and the generic search methods of simulated annealing and

genetic algorithms. It is evident that there are two more possibilities that require in-

vestigation; genetic algorithms applied to probability arrays and simulated annealing

applied to ADDs. We call these algorithms GAAR and SIMADD.

Genetic algorithms and probability arrays The GAAR algorithm starts by

generating an initial population of probability arrays. Each member of the population

is randomly generated as described in section 3.3. The mutation operation is the same

as finding a neighbor, see section 3.3. Crossover of two (m,n) probability arrays A1

and A2 is performed as follows: A uniformly distributed random integer k between 1

and m is generated. Their offspring are two new probability arrays B1 and B2. The

first k columns of B1 are copied from the corresponding columns of A1 and the rest

from A2. The array B2 has the k first columns of A2 and the last m− k columns of

A1. Normalization is required after the application of the genetic operators.

This algorithm proved to be considerably slower than SIMAN since it in-

volves computations over a population of probability arrays. The crossover operation

requires extensive memory copying , thus increases further the running times. Typ-

ically, the running times of GAAR are 10 times bigger than those of SIMAR. It is

also noted that for several parameter value configurations we experimented with, the

accuracy of the resulting coherent approximations was significantly worse than the

accuracy achieved with SIMAR or GAADD.

Simulated annealing and ADDs Simulated annealing over ADDs uses an ADD

as a starting point. At each step, it transforms the ADD to create a ”neighbor”.
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The initial ADD is generated using the same procedure used to create a population

of ADDs for GAADD, see 3.3.2. In order to find a neighbor of the ADD we used

the mutation operator of GAADD, see 3.3.2. This implementation of SIMADD had

several problems. Failure of convergence in several cases was the most important.

Problems also arose from the repeated creation of neighbors. Even though the algo-

rithm deals with a single ADD, after a few steps the ADD grew very large to handle

efficiently. It is not clear how one should alter the ADD at each step so that its size

does not grow excessively. In the cases where the algorithm did converge, its accuracy

was very poor compared to SIMAR or GAADD.



Chapter 4

Tests of the methods

4.1 Scalability studies

As a test of the computational feasibility of our methods in large problems,

we created sets of simulated estimates of chance and tried to rectify them with our

algorithm. In some cases the target estimates were constructed to be coherent because

the ideal level of accuracy in this case is known (namely, a MAD of zero). To simulate

incoherent estimates, we started with coherent probabilities, then perturbed them

randomly by adding or subtracting a constant k < .5. (A coin toss determined

whether to add or subtract under the restriction that the resulting number remain

in the unit interval.) In different tests, k was chosen to be either .1 or .2 (or else

zero in the coherent case). Note that the value of k provides an upper bound on the

lowest MAD that can be achieved between the original judgments and their coherent

approximations.

Twelve tests were carried out, involving distributions with 20, 30, 40 and 50

variables. For each distribution, 20, 000 truth-assignments were randomly chosen to

carry positive probability. To ensure that the distribution was strongly nonuniform

(the only challenging case), we proceeded as follows. Truth assignments can be nat-

urally ordered by the binary numbers they encode (relative to a prior ordering of

25
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variables). Let αi (0 ≤ i ≤ 2n − 1) be one such ordering. For each αi obtaining pos-

itive probability, a number r was uniformly randomly selected in the interval (0, 1),

then multiplied by 1 + (.01× i) and assigned to αi. Normalization then ensured that

the distribution sums to unity. Multiplying by 1 + (.01 × i) in the prenormalization

step skews the distribution

Events were represented by randomly constructed formulas in disjunctive

normal form (DNF). Specifically, for each event, we randomly chose a number between

1 and 5 to serve as the number of conjunctions, then for each conjunction we randomly

chose between 1 and 10 variables with randomly determined polarity to serve as

conjuncts. (The variables were drawn from a set of size 20, 30, 40, or 50, depending

on the simulation.) Conditional events were constructed in the same way from pairs

of events, the second serving as conditioning event. Specifically, for a conditional

event, two formulas in DNF p, q are constructed as described above. Then,the DNF

formula p ∧ q is constructed. The conditional probability P (p|q) is calculated by the

formula. The only constraint here is that the formula of p∧ q is composed of at most

5 conjunctions. This is done because the calculation of probabilities of DNF formulas

in SIMAR is time consuming for big formulas. It is noted however, that GAADD

does not have this problem due to the efficiency of ADDs to represent and manipulate

such formulas. P (p|q) = P (p ∧ q)/P (q).

For each of the 12 tests, we generated 100 events and 100 conditional events.

Their probabilities were computed relative to a distribution of the kind described

above, then perturbed if incoherence was involved. For events involving n variables,

we performed simulated annealing over arrays of size (n, 100), with one starting point,

150 temperature steps, 25 iterations per step, and probability of * set to .6,

Results are shown in Table 4.1. To interpret the table, consider the simulation

involving coherent judgments and 50 variables. The simulated annealing algorithm

produced a coherent approximation within 140 minutes whose mean absolute devi-
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ation from the original 200 judgments was .0062. For another example, consider

again 50 variables, with probabilities that are rendered incoherent by adding or sub-

tracting .1. Within 144 minutes, the algorithm produced a coherent approximation

whose mean absolute deviation from the original 200 judgments was .0680. Table 4.2

shows the results of GAADD applied to simulated data. It is evident that GAADD

achieves accuracy similar to SIMAR with less running time. This is partially due

to the very efficient manipulation of the DNF formulas by ADDs. SIMAR suffered

from the probability calculations of 300 formulas (100 for the absolute and 200 for the

conditional events) at each step. This is not the case for the experimental data since

the formulas involved in these sets are very simple and SIMAR vastly outperforms

GAADD in terms of running time. Another important reason is that while GAADD

is written is C, SIMAR is written exclusively in Java, thus making true comparisons

difficult. These results provide evidence for the scalability of the two approaches to

reconstructing incoherent estimates of chance.
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vars. 20 30 40 50

Inc. MAD Min MAD Min MAD Min MAD Min
0 .0045 100 .0063 132 .0054 154 .0062 140

.1 .0769 64 .0638 135 .0638 140 .0680 144

.2 .1478 60 .1428 85 .1472 104 .1454 215

Table 4.1: Mean absolute deviation (MAD) and time in minutes (Min) achieved using
SIMAR on simulated data generated from sparse distributions with 20, 000 positive
states. Times are relative to a Pentium III (533 MHz) processor running the Java
Virtual Machine for Windows ’98.

vars. 20 30 40 50

Inc. MAD Min MAD Min MAD Min MAD Min
0 .0024 20 .0037 56 .0029 106 .0033 127

.1 .0858 18 .0832 43 .0826 90 .0884 139

.2 .1662 11 .1687 26 .1699 46 .1711 75

Table 4.2: Mean absolute deviation (MAD) and time in minutes (Min) achieved using
GAADD on simulated data generated from sparse distributions with 20, 000 positive
states. Times are relative to a Pentium III (533 MHz) processor running C code.

4.2 Empirical Studies

Consider the following event.

(1) The change in value of United Airlines stocks in the third quarter of 2000 will

be more favorable than the change in value of the S&P 500 composite.

Nine other events of the same form were constructed involving the companies Con-

tinental, American, Southwest, Exxon, Chevron, Texaco, British Petroleum, Enron,

and Schlumberger. The event (1) was abbreviated to “United Airlines outperforms

the S&P 500,” and similarly for the other companies.

In the summer of 2000, 26 MBA students at the Jones School of Management

(Rice University) along with 5 professional stock traders estimated the probabilities

of the ten events plus the probability of 36 complex events built from them.1 The 36

1The data from MBA students and traders were not distinguishable so they are treated together.
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complex events included an individually randomized selection of 6 events from each

of the following categories.

(a) Conditional events like “Exxon outperforms the S&P 500 assuming that

Chevron outperforms the S&P 500.”

(b) Conditional events with negation like “Exxon outperforms the S&P 500

assuming that Chevron does not outperform the S&P 500.”

(c) Conjunctive events like “Exxon outperforms the S&P 500 and Chevron out-

performs the S&P 500.”

(d) Conjunctive events with negation like “Exxon outperforms the S&P 500

and Chevron does not outperform the S&P 500.”

(e) Disjunctive events like “Exxon outperforms the S&P 500 or Chevron out-

performs the S&P 500.”

(f) Disjunctive events with negation like “Exxon outperforms the S&P 500

or Chevron does not outperform the S&P 500.”2

The six events in each category were chosen individually randomly for each participant

from the 45 nontrivial possibilities (thus, different events were chosen for different

participants). The participants first made probability estimates for the 10 variables,

then for the 36 complex events in individualized random order under the constraint

that the six events in a given category appear as a block. The 46 queries were

administered via a web interface at the participant’s convenience and required about

half an hour to collect.

We performed four other experiments of identical design. One experiment

with 38 participants concerned weather prediction and variables like:

2The inclusive meaning of or was explained to all participants prior to collecting their estimates.
Other instructions clarified the conditional reading of the expression assuming that, as well as the
exact financial significance of outperforming the S&P 500 index.
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One week from today at noon, it will be at least 58 degrees in Philadelphia.

Five cities and two weather conditions (temperature and precipitation) gave rise to

the ten variables.

Another experiment with 29 participants required predicting the outcome of a

National Basketball Association game between the Houston Rockets and the Phoenix

Suns. The ten variables included:

• The Rockets lead at halftime.

• The Rockets have fewer turnovers than the Suns.

Another experiment also involved the NBA, this time a game between the

Rockets and the Dallas Mavericks.3

The final experiment, involves predictions for the fourth quarter of 2001.

There are 30 variables in total, but each of the participants was asked to estimate

probabilities of 46 simple events on 10 randomly chosen variables. The 30 variables

included:

• The NASDAQ Composite Index increases.

• Amazon.com’s stock price increases.

Let us call the five experiments stocks, weather, Suns, Mavericks, and finance

respectively. There were 38 participants in weather, 29 in Suns, 36 in Mavericks, and

47 in finance . All were Rice undergraduates with the exception of finance in which

26 participants were undergraduates and the rest were graduate students. Except

for some overlap between Suns and Mavericks, the sets of participants in the four

experiments were disjoint.

3Monetary incentives were offered for accurate probabilities in the two basketball experiments.
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4.2.1 Incoherence

Not one of the participants of the five experiments offered a coherent set

of estimates. The average number of violations (out of 6 possible) of the following

constraint on the probabilities of conjunctions of form (c) are shown in the first row

of Table 1.

(2) Pr(p) + Pr(q)− 1 ≤ Pr(p ∧ q) ≤ min{Pr(p), Pr(q)}.

Similarly, the average number of violations of the following constraint on disjunctions

of form (e) are shown in the second row of Table 1.

(3) max{Pr(p), Pr(q)} ≤ Pr(p ∨ q) ≤ Pr(p) + Pr(q).

Simple constraints corresponding to (a), (b), (d), and (f) yielded comparable rates of

violation.

Data stocks weather Suns Mavericks finance

(6) 3.0 2.92 4.21 3.64 3.0
(7) 3.23 2.16 3.86 2.67 3.13

Table 4.3: Average number of violations of (6) and (7) for the five data sets

4.2.2 Approximation via SIMAR and GAADD

We applied our algorithms to each participant separately, represented by

his/her data set of 46 judgments. For both algorithms, we used the best parameter

values we found, see Appendices I and II. It is noted that SIMAR required 15-20

seconds per dataset , while GAADD requires 40-60 minutes for the same task. Table

4.4 shows the results for SIMAR and GAADD. The first and last two rows of the

table show the achieved average MAD and MQD respectively.

The difference in speed is due to the overhead of operating on a population of

ADDs in GAADD. However, GAADD achieves smaller running times when complex
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Data stocks weather Suns Mavericks finance

SIMAR/MAD .095 .085 .115 .092 .088
GAADD/MAD .102 .090 .124 .095 .092
SIMAR/MQD .021 .019 .025 .020 .019
GAADD/MQD .023 .021 .029 .023 .022

Table 4.4: Average MAD and MQD for the 5 data sets achieved by SIMAR and
GAADD

judgments on many variables are considered, see Table 4.2. From Table 4.4, it is evi-

dent that SIMAR outperforms GAADD in the sense that it achieves lower deviations

from the input judgments.

4.2.3 Comparison to linear and quadratic programming

Perfect approximation (MAD or MQD equal to 0) by a probability distri-

bution is ruled out because of the incoherence that characterizes the estimates. For

just the 34 estimates of absolute events the closest possible approximation can be

calculated using linear or quadratic programming (LP/QP) as discussed in Section 2

above. In particular, LP is used for minimizing the MAD, while QP is used to find

the optimum MQD. We applied LP and QP to the individual data of each participant

in all five data sets. Then, SIMAR and GAADD were applied only on the absolute

judgments for each data set. The first two rows of Table 4.5 compare the optimum

MAD values found via LP with the results achieved by SIMAR and GAADD applied

on absolute judgments only. The last two rows show how well SIMAR and GAADD

performed on minimizing the MQD. Here, the benchmark is the optimum MQD val-

ues found by QP. In both tables only relative differences are shown. Again, SIMAR

outperforms GAADD and comes as close as 106.5% to the optimum.
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Data stocks weather Suns Mavericks finance

SIMAR/LP 10.5% 11.5% 6.5% 9.2% 8.9%
GAADD/LP 12% 13.5% 8% 10% 10.5%
SIMAR/QP 11% 7% 7% 12.5% 11%
GAADD/QP 12% 8.5% 9% 13% 14.5%

Table 4.5: Performance of SIMAR and GAADD relative to LP and QP

4.2.4 Impact on accuracy

We desire to improve the estimates of a judge by making them coherent. But

if the process robs the judgments of their accuracy, the judge might prefer that we

left her estimates in their original state. Two measures of accuracy are considered.

Brier (quadratic) score and slope.

Quadratic score as a measure of accuracy The accuracy in a judgment can

be measured via its quadratic score, defined as follows (see (von Winterfeldt and

Edwards, 1986) for general discussion of scoring rules). It is noted that the results

of this section were based on SIMAR minimizing absolute and quadratic deviation.

Suppose that Est represents the estimates of a given judge. Let E be an event in the

domain of Est, and let (G : F ) be a pair of events in the domain of Est.

• The quadratic score incurred by Est for E is (1 − Est(E))2 if E is true. It is

Est(E)2 if E is false.

• The quadratic score incurred by Est for the pair (G : F ) is (1−Est(G : F ))2 if

both G and F are true. It is Est(G : F )2 if G is false and F is true. It is not

defined if F is false.

The overall quadratic score of Est is the average of all the scores incurred by Est for

events and pairs of events in its domain. (Pairs of events for which the quadratic

score is not defined do not figure in this average.) Notice that the quadratic score



34

is best interpreted as a penalty; low scores signal accurate judgment. The follow-

ing analysis refers to the stocks experiment. The results for all five data sets are

summarized in Table 4.6. After the facts were established about the third quarter

performance of the 10 stocks, we computed the overall quadratic score for each of the

31 participants separately. The average, overall score was .254 (S.D. = .056). For

each participant, we then computed the overall quadratic score associated with the

reconstructed (coherent) estimates achieved by our algorithm minimizing the MAD.

(The same events and conditional events figure in the scores associated with the origi-

nal estimates and with their coherent reconstruction.) The average, overall quadratic

score for the coherent approximations was .232 (S.D. = .057), which is reliably lower

than the original scores (p < .001 by correlated t test). The scores for 23 of the 31

participants was lower when computed with the coherent approximation rather than

the original estimates. A majority of this size is unlikely to arise by chance (p < .01

by a binomial test). When MQD is minimized by our algorithm, the resulting co-

herent approximations have a quadratic score of .226 (S.D. = .055), which again is

reliable lower than the original scores. Improvement in quadratic score was achieved

for 24 of the 31 participants.

Overall, the participants of the stocks experiment seem not to have enjoyed

much insight into the stock market. (Thus, their average quadratic score was worse

than what could be achieved by responding with .5 to each query.) It is nonetheless

clear that our method of coherent reconstruction did not make their judgment worse.

Rather, it produced a reliable increase in accuracy. Similar results were found by

analyzing the other four data sets.

An interesting result concerning absolute events is the following theorem due

to de Finetti, (de Finetti, 1972).

(4) For every incoherent set I of probability estimates over absolute events (no

conditional probabilities) there is a coherent set C of estimates over the same
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Data stocks weather Suns Mavericks finance

Est. .254 .232 .237 .228 .309
Model/MAD .232 .201 .203 .200 .285
Model/MQD .226 206 196 .198 .284

Table 4.6: Quadratic score comparison. Original estimates (Est.) vs. coherent
approximations via minization of MAD (Model/MAD) and MQD (Model/MQD)

events such that the quadratic penalty for C is lower than the penalty for I

no matter which state is true.

In other words, de Finetti showed that incoherent estimates over a set of

absolute events can always be replaced by coherent estimates that have lower penalties

in every state. The following example clarifies the meaning of the theorem. Consider

the incoherent estimates in (a), below, and the coherent replacements (b).

(a) Est(p ∧ q) = .5, Est(p : q) = .9, Est(q) = .75

(b) Est(p ∧ q) = .564, Est(p : q) = .802, Est(q) = .703

Since only two variables occur in these events, four states represent all possibilities.

We see from the following calculations that the quadratic penalty for the corpus (b)

is lower than the penalty for (a) in all cases. (The last line in each table gives the

two quadratic penalties.)

p true

q true

(a) (b)

108 .106

p true

q false

(a) (b)

271 .270

p false

q true

(a) (b)

374 .350

p false

q false

(a) (b)

271 .270

Theorem (4) can be extended to some sets of estimates involving conditional

events; see, for example, (Bernardo and Smith, 1994) . The theorem cannot be

extended, however, to every corpus of estimates because of examples like the following.

(5) Est(r : p ∧ q) = .8, Est(p) = .5, Est(p ∧ ¬q) = .5
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The second and third estimates in (5) imply that the conditioning event p ∧ q has

probability zero. So no distribution that satisfies the last two equalities assigns any

probability to the conditional event at the left. Hence, the three estimates are in-

coherent. A simple argument shows that no coherent estimates lower the quadratic

score in all states. The example thus demonstrates that no method of coherent ap-

proximation uniformly lowers the quadratic score of judgments involving arbitrary

conditional events.

Returning to absolute events, de Finetti’s (1974) proof of Theorem (4) de-

scribes a method for constructing coherent approximations for incoherent estimates

of absolute events that lowers the quadratic penalty in all states. It turns out that

the method of de Finetti computes a set of coherent probabilities whose Euclidean

distance from the original estimates is minimum. Thus, the problem is equivalent to

problem (1) when quadratic deviation is considered (p = 1). Since we are dealing only

with absolute judgments, quadratic programming can be used, as shown in subsection

2.3.2.

Note that even for absolute events, quadratic programming is not guaranteed

to deliver lower quadratic penalties than a rival method like SIMAR. Theorem (4)

only guarantees lower quadratic penalties than the incoherent target.

Slope as a measure of accuracy Accurate judgment corresponds to low quadratic

penalties. A contrasting measure of stochastic accuracy (for which accuracy is re-

flected in high scores) is also employed. Following the discussion in (Yates, 1990,

Ch. 3), we define the slope of a corpus of judgments to be the average probability

assigned to events that come true minus the average probability assigned to events

that do not come true. In this definition, a conditional event (A : B) is considered to

be undefined if B does not occur. Otherwise, it is considered to occur if and only if

A occurs. The average slope for the 31 participants of the stocks experiment was .129
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(S.D. = .176) whereas the average slope for the 31 coherent approximations was .180

(S.D. = .156), when SIMAR is set to minimize MAD. Similar results were obtained

when MQD was minimized. Once again, this difference is reliable (p < .001, by cor-

related t test). The slope for 26 of the 31 participants improved in the transition

from raw to reconstructed estimates. As in the case of using quadratic penalty as

a measure of accuracy, the lack of insight of the participants into the stock market

is evident. However, coherent reconstruction produced a reliable increase in accu-

racy. Similar results were produced for the other four experiments. The results are

summarized in Table 4.7. It is noted that the improvements of the slope in all cases

are reliable (p < .001, by correlated t test). It is worth noting that there is not a

theorem for slope equivalent to Theorem (4). That is, there are cases where uniform

improvement of slope for all possible outcomes is not possible.

Data stocks weather Suns Mavericks finance

Est. .129 .154 .138 .133 .053
Model/MAD .180 .199 .224 .216 .115
Model/MQD .177 .197 .226 .224 .106

Table 4.7: Slope comparison. Original estimates (Est.) vs. coherent approximations
via minization of MAD (Model/MAD) and MQD (Model/MQD)

4.2.5 Selective reconstruction of judgments and accuracy

This section explores the accuracy of the original and reconstructed judg-

ments with respect to their types for the 5 data sets Suns, Mavericks, stocks, weather,

and finance. In particular, we wanted to examine the accuracy of the probabilities

assigned to simple events (represented by single variables) versus the accuracy of

the probabilities assigned to complex events (conditional events, conjunctions and

disjunctions of variables). We performed two experiments. First, SIMAR was ap-

plied only on the 36 complex events per participant (46 total minus 10 estimates for

the basic variables). The algorithm constructed a probability distribution that ap-
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proximated well only the complex events, and this probability distribution produced

probabilities for the simple events. The accuracy of these probabilities was examined

(10 per data set, Mod-simple-complex in Table 4.8). The corresponding quadratic

scores of the original estimates (Sub-simple in Table 4.8 ), as well as the quadratic

scores of the probabilities of the simple events produced by SIMAR approximating

all 46 judgments (Mod-simple-all in Table 4.8) were calculated for comparison. By

applying correlated t-test, we found that the only cases where we had significant

statistical differences the following. For Mavericks, the significant differences were

between Mod-simple-complex and Sub-Simple (t(35)=2.22, p < 0.04) and between

Mod-simple-complex and Mod-simple-all (t(35)=2.11, p < 0.05). In these two cases,

the quadratic scores deteriorated for 22 and 19 out of 36 participants, respectively

(not significant by binomial test). For finance, Sub-simple-all was better than Sub-

Simple (t(46)=3.13, p < 0.003), as was Mod-simple-complex (t(46)=2.78, p < 0.01).

The number of participants for which there was improvement were 35 (p < 0.001)

and 33 (p < 0.004) respectively.

Data stocks weather Suns Mavericks finance

Sub-simple .255 .247 .239 .235 .363
Mod-simple-all .262 .245 .240 .241 .341

Mod-simple-complex .268 .261 .238 .258 .329

Table 4.8: Quadratic score comparison. Original simple event estimates (Sub-simple)
vs. simple event probabilities from SIMAR applied on all judgments (Mod-simple-all)
and simple event probabilities from SIMAR applied only on complex events (Mod-
simple-complex)

The second experiment concentrated on the accuracy of the complex event

estimates and their coherent approximations. Similarly, SIMAR was applied on all

judgments and then on the complex judgments only. The corresponding quadratic

scores are named Mod-complex-all and Mod-complex-complex in Table 4.9. In this

experiment, the differences between Mod-complex-all and Mod-complex-complex are
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not statistically significant (by correlated t-test.

However, in all cases, both are reliably better than Sub-complex. For stocks, we have

t(30)=3.56 (p < 0.002) and t(30)=3.77 (p < 0.001). Improvement was seen in 24

participants out of 31 in both cases (p < 0.002).

For weather, we have t(37)=8.53 (p < 0.0001) and t(37)=6.39 (p < 0.0001). Improve-

ment was seen in 36 and 33 participants out of 38, respectively (p < 0.0001).

For Suns, we have t(28)=5.95 (p < 0.0001) and t(28)=5.92 (p < 0.0001). Improve-

ment was seen in 20 and 24 participants out of 29, respectively (p < 0.03, p < 0.001).

For Mavericks, we have t(35)=7.64 (p < 0.0001) and t(35)=7.16 (p < 0.0001). Im-

provement was seen in 31 and 34 participants out of 36, respectively (p < 0.0001).

For finance, we have t(46)=5.16 (p < 0.0001) and t(46)=7.01 (p < 0.0001). Im-

provement was seen in 33 and 39 participants out of 47, respectively (p < 0.004,

p < 0.0001).

Data stocks weather Suns Mavericks finance

Sub-complex .254 .226 .237 .226 .288
Mod-complex-all .228 .198 .196 .189 .257

Mod-complex-complex .227 .202 .196 .199 .253

Table 4.9: Quadratic score comparison. Original complex event estimates (Sub-
complex) vs. complex event probabilities from SIMAR applied on all judgments
(Mod-complex-all) and complex event probabilities from SIMAR applied only on
these complex events (Mod-complex-complex)

From Table 4.8, it is evident that, in most cases, there is a small deteri-

oration of the quadratic scores of the reconstructed probabilities compared to the

original estimates of the basic variables. On the other hand, Table 4.9 shows a uni-

form improvement of the quadratic scores after reconstruction. However, selective

reconstruction of the estimates of only the complex events produced identical results

to reconstructing the estimates of both complex and simple events.
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4.3 Aggregation of opinion

4.3.1 The aggregation problem, and one approach

Suppose that geopolitical experts employed by the U.S. State Department

were willing to express themselves by assigning point probabilities to events. One

expert might be knowledgeable about oil production, another about Middle Eastern

politics, and a third about foreign military potential. Each would assign probabilities

to events over distinct sets of variables representing their individual expertise. Yet

there would likely be overlap. The first two experts, for example, might both consider

events involving the variable oil prices fall by at least 10% next quarter. The second

and third might both consider the Saudi dynasty collapses next year. The Secretary

of State receives from each expert a list of events (absolute and conditional) with

probabilities attached. In exploiting these reports, the Secretary will need to confront

three potential problems:

(a) Individual reports might be probabilistically incoherent.

(b) Different experts evaluating the same event might assign it different probabilities

(inconsistency among experts).

(c) Different experts evaluating logically related events might assign probabilities

that cannot all be coherently accepted. For example, one expert might assign

an event of form p ∧ q a higher probability than the other expert assigns to p.

In this case, there is incoherence among experts.

A potential solution is to pool the experts’ reports to create a single set of estimates

over all the variables and then apply SIMAR to ensure consistency and coherence.

The individual reports will have thus been aggregated into one coherent corpus of

opinion. The present section examines the consequences of this aggregation strategy

on stochastic accuracy.
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Our perspective differs from earlier work on aggregation inasmuch as a mul-

tiplicity of complex events are considered at once. The usual goal is to aggregate

opinions about the same event, or about the same partition of events. The ma-

jor schemes for aggregation in the latter contexts involve Bayesian models (Morris,

1977), (Clemen et al., 1996) and linear averaging (Wagner, 1984). Literature reviews

in this area include (Clemen, 1989), and (Genest and Zidek, 1986). These approaches

seem not to apply straightforwardly to the situation envisioned here, where events

relate to each other in complex ways, are evaluated by partially overlapping sets of

judges, and are plagued by intra- and inter-judge incoherence. For this reason, we

rely on the optimization strategy summarized in (1), which seeks the closest coherent

approximation to all of the events in play.

The question immediately arises how to weight individual judges when ap-

proximating the pooled estimates. Perhaps some opinions should be more closely

approximated than others because the judge who offered them is more reliable. Al-

ternative schemes for weighting judges are reviewed in (Ferrell, 1985). Here we adopt

the simple strategy of weighting everyone equally. Similarly, all events will be treated

equally, in conformity with statement (1) of our optimization problem. One detail

merits clarification, however. If two judges estimate the probability of an event ϕ,

then both estimates of ϕ will appear in the pooled list of all estimates. Coherent

approximation must produce a unique probability for the two copies of ϕ, and the

absolute deviation between this probability and both of the original estimates will

figure in the overall MAD achieved by the algorithm. Thus, ϕ will be doubly impor-

tant to the optimization process since it occurs twice (and similarly for conditional

events). Our approach may thus be summarized as follows.

(6) To aggregate the opinions of a collection of judges, pool their estimates to form

a single corpus, then apply SIMAR to create a coherent set of probabilities

that approximate all the original judgments at once.1 The latter probabilities
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are taken to be the group opinion.

This procedure will be called simaragg in what follows.

Before examining simaragg empirically, we observe that its use potentially

allows every judge to influence the coherent probabilities constructed for every other

judge. To illustrate, consider three judges, the first of whom faces events over the

variables p, q, the second over q, r, and the third over r, s. Suppose that they offer

the following estimates.

(7)

Judge 1: Pr(p ∧ q) ≈ 1

Judge 2: Pr(r : q) ≈ 1

Judge 3: Pr(s : r) ≈ 1

Suppose also that Judge 3 offers an estimate of the probability of the variable s. Then,

if the estimates (7) are retained in the aggregate, coherence requires that Pr(s) ≈ 1.

There is no such constraint on the probability of s in the absence of the estimate

offered by Judge 1. Thus, in the aggregate, the estimates offered by Judge 1 influence

the approximation of the estimates of Judge 3 even though the two judges face events

over disjoint sets of variables.

4.3.2 SIMARAGG in the stocks, weather, Suns, Mavericks, and finance exper-

iments

For each of the five data sets, we pooled all estimates of chance offered by

any of the participants in each experiment. The resulting sets of judgments may be

called the aggregate judges. Recall that each participant made estimates for events

defined from ten variables (in the finance experiment, these variables were randomly

chosen for him or her from a stock of thirty). The aggregate judge therefore works

in a probability space built from thirty variables. SIMAR was used to find a close

approximation in this space to all judgments at once. The computation required

about an hour on average.
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For each of the judges in a data set, we compared the quadratic penalties

arising from:

(i) the judge’s original estimates;

(ii) the judge’s estimates after revision by individual application of SIMAR; and

(iii) the judge’s estimates after revision by simaragg, as in (6).

For (iii), the judge’s estimate of the probability of an event ϕ was replaced by the

estimate of ϕ obtained by applying SIMAR to the aggregate judge (and similarly for

conditional events).

For the finance experiment, the average quadratic penalty for simaragg is

.254, as seen in line (c) of Table 4.10 (finance part). This is lower than the average

penalties for raw estimates and SIMAR; see line (a) of Table 4.10. The differences are

reliable by correlated t test [t(46) = 5.84, respectively]. For 32 out of the 47 subjects,

the penalty is lower if their estimates were corrected as part of the group (simaragg)

compared to individually (SIMAR) (p < .01 by a binomial test). So it seems that

coherent approximation squeezes more information out of human judgment if opinion

is pooled rather than left atomized.

Fifteen pooled judges seem to be enough to get all the benefit of aggregation,

at least in these data. When random subsets of 15 are drawn from our pool of

47 participants, we observe lower quadratic penalties for the aggregate compared to

the 15 individuals. Beyond 15, further improvement for the aggregate judge is not

detectable. This finding is consistent with other experimental studies on quantitative

estimates; small panels suffice to obtain most of the benefit of aggregated judgment,

see (Ashton and Ashton, 1985).

The foregoing results concern quadratic penalty. When slope is used as a

measure of accuracy there is only small benefit of aggregation. As shown in Table

4.11, line (c) (finance part), the average slope after application of simaragg is .123.
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This is superior to slopes from raw estimates and SIMAR, but the difference is

reliable by correlated t-test only in the comparison to raw estimates [t(46) = 4.37, .53].

Thirty-six of the 47 participants have higher slopes after simaragg compared to their

raw estimates (p < .001 by binomial test). Only 26 of 47 have higher slopes after

simaragg compared to SIMAR (not significant).

The same pattern emerges when data from the other four experiments are

aggregated, see Tables 4.10 and 4.11. Again we compare simaragg estimates with

raw estimates and with SIMAR. In Suns, simaragg penalties are reliably lower than

for both raw estimates and SIMAR [t(28) = 7.30, 5.09]. Improvement is seen for 28

and 26 of the 29 participants, respectively (p < .001). Similarly, simaragg slopes

are reliably higher than for raw estimates and SIMAR [t(28) = 6.13, 3.3]. For slope,

improvement is seen for 26 and 25 of the 29 participants, respectively.

In Mavericks, simaragg quadratic penalties are again reliably lower than for

raw estimates and SIMAR [t(35) = 4.80, 2.18]. Improvement is seen for 27 and 24 of

the 36 participants, respectively (p < .03). simaragg slopes are reliably higher than

raw slopes [t(35) = 4.59 and the improvement is seen in 26 of the 36 participants (p <

.006). There is no reliable slope advantage, however, when simaragg is compared to

SIMAR. The difference between average slopes in these two cases yields t(35) = 1.07,

and is seen in only 20 of the 36 participants (not significant).

In stocks, simaragg quadratic penalties are once more reliably lower than

for raw estimates and SIMAR [t(30) = 5.36, t(30) = 3.54]. Improvement is seen

for 26 and 24 of the 31 participants, respectively (p < .001). simaragg slopes

are reliably higher than for raw estimates [t(30) = 2.14 and is seen in 21 of the

31 participants (p < .04). Again, however, there is no reliable slope advantage for

simaragg compared to SIMAR, and the advantage is seen in only 19 of the 31

participants (not significant).

In weather, simaragg quadratic penalties are again reliably lower then for
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the raw estimates and SIMAR[t(37) = 5.17, t(37) = 4.81]. Improvement is seen

for 35 and 33 out of 38 participants, respectively (p < .001). simaragg slopes are

reliably higher than for raw estimates [t(37) = 2.25] and there is improvement in 27

of the 38 participants (p < .04). Again, however, there is no reliable slope advantage

for simaragg compared to SIMAR, and the advantage is seen in only 21 of the 38

participants (not significant).

Overall, the data show reliable improvement in quadratic penalty when coher-

ent approximation is applied to estimates in the aggregate rather than individually.

The same tendency is consistently seen for slope, but the effect is smaller and usually

not statistically significant.

4.3.3 Comparison to linear pooling of probability arrays

A plausible alternative to the aggregation strategy (6) is to average the prob-

ability arrays that emerge from use of SIMAR on individual participants. Techni-

cally, the weighted average of n probability arrays (over the same set of variables) is

achieved by concatenating them then renormalizing the probabilities in the last row

by dividing by n. (The number of columns in the resulting array can be somewhat

reduced by merging columns that agree at every row corresponding to a variable, then

assigning it the sum of the probabilities in the last row of the merged columns.) This

procedure assigns a given state the average probability it receives in the n probability

arrays. Such concatenated probability arrays represent the simplest linear pool of

opinion. Linear pooling has been analyzed in several axiomatic studies, see (Wagner,

1984), (Genest and Zidek, 1986). Its use here may be summarized as follows.

(8) To aggregate the opinions of a collection of judges, concatenate the probability

arrays that result from applying SIMAR to each judge separately, and renor-

malize. Then use the concatenated probability array to assign probabilities to

each of the estimated events.
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Quadratic penalty computed for: Mean (S.D.)
finance (N = 47)

(a) raw estimates .314 .077
(b) after individual approximation by SIMAR .285 .076
(c) after aggregate approximation by simaragg .254 .042

Suns (N = 29)
(a) raw estimates .237 .053
(b) after individual approximation by SIMAR .205 .042
(c) after aggregate approximation by simaragg .167 .021
(d) after aggregate approximation by linpool .190 .023

Mavericks (N = 36)
(a) raw estimates .228 .064
(b) after individual approximation by SIMAR .200 .067
(c) after aggregate approximation by simaragg .176 .020
(d) after aggregate approximation by linpool .199 .021

stocks (N = 31)
(a) raw estimates .254 .057
(b) after individual approximation by SIMAR .232 .055
(c) after aggregate approximation by simaragg .199 .025
(d) after aggregate approximation by linpool .209 .028

weather (N = 38)
(a) raw estimates .232 .053
(b) after individual approximation by SIMAR .201 .051
(c) after aggregate approximation by simaragg .178 .033
(d) after aggregate approximation by linpool .185 .035

Table 4.10: Quadratic penalty comparisons for SIMAR and SIMARAGG

We denote the technique in (8) by linpool in what follows.

Observe that linpool cannot be applied to the data in finance since differ-

ent participants evaluated events over distinct sets of variables (each was randomly

assigned 10 variables from a starting set of 30). This obstacle to linpool would be

typical in the kind of application discussed at the beginning of the present section

(involving judges with overlapping expertise). Linear pooling does apply to Suns,

Mavericks stocks and weather, however, since each was based on a single set of 10

variables. It is therefore instructive to compare the stochastic accuracy of linpool

to simaragg.
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Slope computed for: Mean (S.D.)
finance (N = 47)

(a) raw estimates .053 .130
(b) after individual approximation by SIMAR .115 .129
(c) after aggregate approximation by simaragg .123 .092

Suns (N = 29)
(a) raw estimates .138 .133
(b) after individual approximation by SIMAR .221 .106
(c) after aggregate approximation by simaragg .276 .057
(d) after aggregate approximation by linpool .208 .053

Mavericks (N = 36)
(a) raw estimates .133 .130
(b) after individual approximation by SIMAR .214 .131
(c) after aggregate approximation by simaragg .237 .049
(d) after aggregate approximation by linpool .180 .048

stocks (N = 31)
(a) raw estimates .129 .176
(b) after individual approximation by SIMAR .179 .154
(c) after aggregate approximation by simaragg .196 .053
(d) after aggregate approximation by linpool .156 .058

weather (N = 38)
(a) raw estimates .053 .120
(b) after individual approximation by SIMAR .134 .112
(c) after aggregate approximation by simaragg .155 .064
(d) after aggregate approximation by linpool .150 .056

Table 4.11: Slope comparisons for SIMAR and SIMARAGG

Comparison of lines (c) and (d) in Table 4.10, and (c) and (d) in Table 4.11

shows that linpool is inferior to simaragg. In all four experiments, linpool has

higher quadratic penalty and lower slope compared to simaragg. The difference

in quadratic penalty is reliable in all four studies [t(28) = 11.04, t(35) = 14.70,

t(30) = 4.54, and t(37) = 6.72], and is seen in 28/29, 36/36, , 24/31 and 32/38

participants, respectively (p < .001). The difference in slope is also reliable in all

three studies [t(28) = 14.2, t(35) = 15.03, t(30) = 8.14, and t(37) = 10.32], and is

seen in 29/29, 36/36, 29/31 and 37/38 participants (p < .001).

What accounts for the superiority of simaragg compared to linpool? It

may be that individual estimates are too anonymous when whole distributions are av-
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eraged. In such a procedure, estimates made by different judges interact only through

their impact on the distributions (probability arrays) computed for the judges sepa-

rately. In contrast, pooling all the judgments before coherent approximation allows

more direct confrontation between estimates of logically related events, including

events evaluated by different judges.

4.4 Discussion

4.4.1 Coherent approximation and stochastic accuracy

What explains the improvement in stochastic accuracy following coherent

approximation by SIMAR? As a preliminary remark, let us recall that simulated

annealing is a randomized algorithm so SIMAR’s behavior depends on its random

seed. We have therefore applied SIMAR to our data multiple times starting from

alternative seeds. All the results in this paper are stable through change in seed.

It can also be seen more directly why coherent approximation will often reduce

quadratic penalty. Suppose that the judge offers Pr(p) = .6 and Pr(p ∧ q) = .8. The

closest coherent approximation revises both estimates to .7, which lies between the

two original estimates. Since quadratic penalty is a convex function, the penalty is

guaranteed to be lower for the two copies of .7 compared to .6 and .8. The foregoing

explanation does not extend to improvements seen in slope.

Improvement in stochastic accuracy when opinion is aggregated presumably

results from reduction of error variance through averaging. A rigorous formulation of

this phenomenon (which we do not attempt here) is complicated by (a) the presence

of incoherence within and between judges and (b) variability regarding which events

were evaluated by different judges.



Chapter 5

Parameter space analysis of the

algorithms

5.1 Parameter analysis of SIMAR

In this section an analysis of the parameter space of SIMAR is presented. It

is important to know not only parameter values leading to increased accuracy, but

also the robustness of the algorithm when one tries input data of various types as well

as different penalty functions (i.e. absolute or quadratic deviation). The parameters

of the algorithm are described in section 3.3.1 and are listed below.

• NT is the number of temperature decreasing steps.

• Niter is the number of iterations per temperature step.

• Iar is the initial acceptance rate.

• Ncolumns is the number of columns of the probability array.

• Pstar is the probability of don’t care for the probability array.

• ε determines the relative change of the probability assigned to a column of the

array.

49
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5.1.1 Experimental Data

First, the study is based on the 5 sets of experimental data , Suns, Mavericks,

stocks, weather, and finance. The results shown below are the average MADs among

the 5 sets. Since it is impractical to perform analysis by trying out all possible values of

the parameters, we group certain parameters and keep the rest constant. First we set

Ncolumns = 50, ε = 0.1, Pstar = 0.0, Iar = 0.9 and we try different values for NT and

Niter. It is evident from Table 5.1 that the results are quite insensitive to changes to

the parameters NT and Niter. It is noted that the running time is proportional to the

product NT Niter, thus one reasonable choice is NT = 150, Niter = 25. These values are

used for the rest of the analysis. Table 5.2 shows the effect of the parameters Ncolumns

and Pstar. The rest of the parameters are fixed to NT = 150, Niter = 25, ε = 0.1,

Iar = 0.9. The running time is proportional to the number of columns Ncolumns and

independent of Pstar, thus a good choice is Ncolumns = 50 and Pstar = 0.0.

The parameter Iac has limited effect to the performance as shown in Table

5.3. The parameter ε is set equal to 0.1 as indicated by Table 5.4. The results of

Table 5.5 show the optimal values of Ncolumns and Pstar for the aggregate data. Here

we have a big number of judgments, thus it is expected that the best results will be

obtained by probability arrays representing dense distributions and the use of many

columns is justified. It is finally noted, that the use of multiple starting points in

conjunction with the ”Go-with-the-winners” strategy, further reduced the best MAD

2.5% for 5 starting points and 3% for 10. It noted however that the running time are

increased linearly with the number of starting points, thus we use 1 starting point in

all experiments.

5.1.2 Simulated Data

Similarly, experiments have been performed to see the effect of Ncolumns and

Pstar when simulated data are considered, see Tables 5.6-5.9. In this case, the results
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are quite robust and one can select the smallest possible value for Ncolumns to achieve

fastest running times. Roughly, the running time is linear to the product of the num-

ber of variables and the number of columns Ncolumns. It is noted that the algorithm

did not converge for some data sets when Pstar = 0.0 and Ncolumns = 100, 200. It

is evident, that the best compromise between running time and performance of the

minimization is to choose a large value for Pstar (.6) and use as few as 100 columns.

5.2 Parameter analysis of GAADD

In this section an analysis of the parameter space of GAADD is presented.

Similarly to the analysis of section 5.1, several experiments have been performed to

achieve best accuracy and to examine the robustness of the algorithm. The parame-

ters of the algorithm are described in section 3.3.2 and are listed below.

• Gennum is the number of generations.

• Popul determines the size of the population.

• Pc is the probability of crossover.

• Pm is the probability of mutation.

• Nprod controls the number of products that are added to form an ADD of the

initial population.

• Pdc the probability of don’t care while forming the products that constitute the

initial ADDs.

• εm is a constant used to perturb probabilities during mutation.

5.2.1 Experimental data

Similarly to the analysis of SIMAR, the 5 sets of experimental data , Suns,

Mavericks, stocks, weather, and finance are considered. The results shown in Table
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5.10 are the average MAD and MQD among the 5 sets. First we set Nprod = 50,

ε = 0.1, Pdc = 0.0, and we try different values for Pc and Pm. Table 5.11 shows

the effect of the parameters Nprod and Pdc. The rest of the parameters are fixed to

Popul = 200, Gennum = 200, Pc = 0.95, Pm = 0.04, εm = 0.1. The impact of the

population size Popul is demonstrated in Table 5.12. A population of 400 chromosome

yields considerable improvement but the penalty is excessively large running times.

Typical running times for populations of 100, 200 and 400 chromosomes are 1,2 and

7 minutes per individual (46 judgments) respectively. The effect of the parameter

εm that controls the magnitude of mutation is shown in Table 5.13. The algorithm

is insensitive to that parameter and we set it to .1 for all experiments. The results

in Table 5.14 show the optimal values of Nprod and Pdc for the aggregate data. Here

we have a big number of judgments, thus it is expected that the best results will be

obtained by probability arrays representing dense distributions, see (2).

5.2.2 Simulated data

Similarly, experiments have been performed to see the effect of the popula-

tion size Popul as well as of the parameters Nprod and Pdc when simulated data are

considered. In this case, the results are quite robust and one can select the smallest

possible value for Popul and Nprod to achieve fastest running times. From Tables

5.15-5.18, it is evident that it is sufficient to have as few as 25 products/ADD and

to have a population between 100 and 200. It is noted that the running times vary

significantly. For Popul = 100, Nprod = 25 running times vary from 20 minutes for 20

variables to 140 for 50 variables. On the other hand for Popul = 200, Nprod = 50 the

running times vary from 200 minutes for 20 variables to 2000 minutes for 50 variables.

It is evident that one should use small populations with few products per initial ADD.

The robustness of the results with respect to these parameters will ensure no loss in

accuracy.
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NT 100 150 200 250 300

Niter MAD MAD MAD MAD MAD
10 .0981 .0942 .0937 .0930 .0918

25 .0926 .0914 .0910 .0909 .0910

50 .0926 .0918 .0934 .0926 .0942

Niter MQD MQD MQD MQD MQD
10 .0220 .0207 .0202 .0196 .0195

25 .0196 .0191 .0190 .0189 .0190

50 .0191 .0189 .0187 .0187 .0188

Table 5.1: Average MAD and MQD achieved for various values of NT and Niter

Ncolumns 25 50 100 200

Pstar MAD MAD MAD MAD
0.0 .0941 .0914 .0911 .0915

0.2 .0940 .0923 .0920 .0924

0.4 .0974 .0955 .0944 .0958

Pstar MQD MQD MQD MQD
0.0 .0198 .0191 .0189 .0187

0.2 .0200 .0194 .0193 .0190

0.4 .0202 .0201 .0199 .0196

Table 5.2: Average MAD and MQD achieved for various values of Ncolumns and Pstar

Iac .95 .9 .8 .7 .6 .5

MAD .0932 .0914 .0915 .0914 .0914 .0914

MQD .0210 .0201 .0196 .0191 .0192 .0191

Table 5.3: Average MAD and MQD achieved for various values of Iac

ε .05 .1 .2 .3

MAD .0922 .0914 .0920 .0931

MQD .0192 .0191 .0202 .0215

Table 5.4: Average MAD and MQD achieved for various values of ε
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Ncolumns 50 100 200 400

Pstar MAD MAD MAD MAD
0.0 .1916 .1913 .1913 .1912

0.2 .1915 .1913 .1912 .1912

0.4 .1921 .1922 .1914 .1913

Pstar MQD MQD MQD MQD
0.0 .0595 .0594 .0590 .0589

0.2 .0594 .0590 .0583 .0584

0.4 .0591 .0590 .0589 .0590

Table 5.5: Average MAD and MQD achieved for various values of Ncolumns and Pstar

for aggregate data

vars. 20 30 40 50

Inc. MAD MQD MAD MQD MAD MQD MAD MQD
0 .0045 .0033 .0063 .0037 .0054 .0029 .0062 .0042

.1 .0769 .0289 .0638 .0276 .0638 .0269 .0680 .0277

.2 .1478 .0389 .1428 .0398 .1472 .0378 .1454 .0386

Table 5.6: SIMAR on simulated data, Pstar = 0.6, num of columns = 100

vars. 20 30 40 50

Inc. MAD MQD MAD MQD MAD MQD MAD MQD
0 .0056 .0035 .0044 .0038 .0053 .0027 .0056 .0025

.1 .0734 .0285 .0648 .0294 .0656 .0277 .0677 .0291

.2 .1536 .0387 .1506 .0371 .1473 .0383 .1457 .0390

Table 5.7: SIMAR on simulated data, Pstar = 0.6, num of columns = 200

vars. 20 30 40 50

Inc. MAD MQD MAD MQD MAD MQD MAD MQD
0 .0036 .0028 .0046 .0021 .0048 .0029 .0062 .0034

.1 .0715 .0267 .0641 .0263 .0671 .0275 .0707 .0270

.2 .1525 .0366 .1509 .0371 .1419 .0357 .1391 .0349

Table 5.8: SIMAR on simulated data, Pstar = 0.6, num of columns = 400
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vars. 20 30 40 50

Inc. MAD MQD MAD MQD MAD MQD MAD MQD
0 .0104 .0037 .0103 .0045 .0113 .0044 .0129 .0041

.1 .0636 .0287 .0587 .0271 .0570 .0266 .0597 .0277

.2 .1397 .0368 .1302 .0371 .1269 .0357 .1245 .0365

Table 5.9: SIMAR on simulated data, Pstar = 0.0, num of columns = 400

Pc .8 .9 .95 1

Pm MAD MAD MAD MAD
.02 .1008 .0998 .0994 .0994

.03 .1005 .0995 .0985 .0987

.04 .0996 .1015 .0983 .0984

.05 .0997 .1017 .0985 .0984

Pm MQD MQD MQD MQD
.02 .0242 .0231 .0234 .0240

.03 .0237 .0231 .0227 .0226

.04 .0229 .0220 .0218 .0219

.05 .0233 .0223 .0220 .0220

Table 5.10: Average MAD and MQD achieved by GAADD for various values of Pc

and Pm

Nprod 25 50 100

Pdc MAD MAD MAD
0.0 .1010 .0984 .0993

0.2 .1021 .1001 .0996

0.4 .0995 .1012 .1002

Pdc MQD MQD MQD
0.0 .0227 .0218 .0211

0.2 .0226 .0225 .0215

0.4 .0227 .0231 .0227

Table 5.11: Average MAD and MQD achieved by GAADD for various values of Nprod

and Pdc

Popul 50 100 200 400

MAD .1024 .1011 .0983 .0935

MQD .0234 .0228 .0218 .0194

Table 5.12: Average MAD and MQD achieved by GAADD for various population
sizes
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εm .05 .1 .2 .3

MAD .0982 .0983 .0989 .0993

MQD .0221 .0218 .0218 .0224

Table 5.13: Average MAD and MQD achieved by GAADD for various values of εm

Nprod 50 100 200 400

Pdc MAD MAD MAD MAD
0.0 .1923 .1920 .1931 .1937

0.2 .1926 .1927 .1933 .1938

0.4 .1931 .1937 .1933 .1941

Pstar MQD MQD MQD MQD
0.0 .0601 .0591 .0596 .0588

0.2 .0607 .0601 .0598 .0591

0.4 .0605 .0596 .0591 .0595

Table 5.14: Average MAD and MQD achieved for various values of Nprod and Pdc for
aggregate data

vars. 20 30 40 50

Inc. MAD MQD MAD MQD MAD MQD MAD MQD
0 .0054 .0067 .0057 .0072 .0090 .0077 .0072 .0062

.1 .0751 .0317 .0755 .0328 .0766 .0314 .0822 .0333

.2 .1481 .0407 .1482 .0411 .1472 .0408 .1468 .0397

Table 5.15: GAADD on simulated data, Popul = 200, Nprod = 25

vars. 20 30 40 50

Inc. MAD MQD MAD MQD MAD MQD MAD MQD
0 .0055 .0085 .0074 .0091 .0114 .0082 .0088 .0073

.1 .0803 .0335 .0826 .0315 .0856 .0326 .0898 .0349

.2 .1491 .0428 .1494 .0431 .1510 .0417 .1507 .0410

Table 5.16: GAADD on simulated data, Popul = 100, Nprod = 25

vars. 20 30 40 50

Inc. MAD MQD MAD MQD MAD MQD MAD MQD
0 .0036 .0035 .0046 .0033 .0048 .0027 .0062 .0021

.1 .0715 .0289 .0641 .0297 .0671 .0301 .0707 .0273

.2 .1525 .0417 .1509 .0428 .1419 .0413 .1391 .0409

Table 5.17: GAADD on simulated data, Popul = 200, Nprod = 50
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vars. 20 30 40 50

Inc. MAD MQD MAD MQD MAD MQD MAD MQD
0 .0104 .0085 .0103 .0083 .0113 .0077 .0129 .0079

.1 .0636 .0342 .0587 .0344 .0570 .0331 .0597 .0337

.2 .1397 .0434 .1302 .0417 .1269 .0429 .1245 .0421

Table 5.18: GAADD on simulated data, Popul = 100, Nprod = 50



Chapter 6

Concluding remarks

The problem of restoring coherence of subjective estimates of chance has

been addressed. It is formulated as an optimization problem and two heuristic-based

algorithms have been introduced. They are combined with data structures that en-

able the compact representation of joint probability distribution on several variables.

This leads to scalable methods that efficiently reconstruct estimates of both absolute

and conditional events. The proposed methods produce coherent approximations

of the input judgments that maintain the insight of the expert(s). In addition ,

it is shown, through empirical studies, that the stochastic accuracy (measured by

quadratic penalty and slope) of the reconstructed probabilities is reliably better than

that of the original estimates. Aggregation of opinion was explored and it is shown

that aggregation improves stochastic accuracy. Comparisons with the standard ap-

proach of linear pooling were presented.
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