

ABSTRACT

Evaluating Performance of Automaton Universality Checking Algorithms

by

Corey Fisher

NFA universality is an important problem in formal verification, since it is an

effective proxy for complementation of NFAs - a key operation that underlies most

verification algorithms. However, because complemented automata are extremely

large, many modern tools use symbolic representations to perform complementation

and universality checking. One state-of-the-art tool for NFA universality, ALASKA,

symbolically represents automata using binary decision diagrams (BDDs) to more

efficiently complement them with the subset construction.

The algorithm usually only represents a small number of subset-constructed states

at a time, relative to the vast state space. Zero-suppressed decision diagrams (ZDDs)

have the same semantics as BDDs, but are more efficient when representing sparse so-

lution sets. We used this advantage in constructing a new ZDD-based tool, ALASKA-

ZDD, which completely replaces ALASKA’s symbolic representation with a ZDD-

based one. We then experimentally compared it with ALASKA, using random au-

tomata generated with the widely-used Tabakov-Vardi (T-V) random model due to

a lack of practical benchmarks. We found that while ALASKA is more efficient on

average, ALASKA-ZDD had fewer timeouts due to difficult problems.

But how do we know the T-V model gives robust results? The model was originally

adopted due to lack of practical benchmarks, but this also prevents checking its

iii

reliability against real examples. While it statistically guarantees certain universality

properties about the automata it produces, no further work has been done to verify

its results. Therefore, it is unclear if tests on the T-V model are sufficient. In graph

theory, many different random models are used for representing different problems

- would that be an appropriate approach for verification? We introduce three new

random models, and show that their results for the NFA universality question are the

same as T-V. We also compare multiple solutions to the Büchi universality problem on

these models, and find that their results are the same as T-V. Therefore, in addition

to showing ALASKA-ZDD is competitive, we show that T-V can be used as a robust

random model for verification, across multiple problems, verifying many previous

results with the model.

Contents

Abstract ii

1 Introduction 1

2 Background 7

2.1 Automata theory . 8

2.1.1 Types of automata . 8

2.1.2 Treating NFAs as AFAs . 10

2.1.3 Languages and complementation 11

2.1.4 Evaluating automata-theoretic algorithms 14

2.2 Decision Diagrams . 16

2.2.1 Binary Decision Diagrams (BDDs) 17

2.2.2 Zero-Suppressed Decision Diagrams (ZDDs) 18

3 ALASKA-ZDD 20

3.1 ALASKA . 21

3.1.1 Algorithm . 21

3.2 ALASKA-ZDD . 25

4 Random Models 27

4.1 Random Models . 28

4.2 Experiments - NFA . 36

4.3 Experiments - Büchi Automata . 40

4.3.1 Methodology . 40

v

4.3.2 Results . 41

5 Conclusion 47

Bibliography 50

1

Chapter 1

Introduction

2

Automata-theoretic formal verification is an approach to the problem of guar-

anteeing that a program (in software or hardware) conforms to its specification in

which conformance is reduced to the problem of language containment. By repre-

senting both programs and specifications as automata and then proving that the

specification contains the program, we can prove conformance [1]. This connection

to automata theory motivated an extensive research program into the algorithmic

theory of automata of infinite words, cf. [2], and the focus of this program is often

on algorithms that perform well in practice, cf. [3]. The popularity of this format -

due to the intuitiveness of specifications given in linear temporal logic and converted

to automata - has also led to a demand for specification of finite properties. To

accomodate this, the field has recently expanded to include finite-word automata.[4]

We focus here on the NFA universality-checking problem, a simplified case of con-

tainment checking, the canonical verification problem [1], which preserves the most

difficult part of containment checking: constructing the complement. An automaton

A is universal iff it accepts all input words; equivalently A is universal iff its com-

plement A is empty, i.e., it accepts no input words. One way to check universality

of A is to check emptiness of A, which can be reduced to reachability analysis of A’s

state-transition graphs. Such approaches have to deal with the exponential blow-up

of complementation, so extant algorithms for universality use a variety of heuristics

to check emptiness of A without constructing it in full, cf. [5].

We focus on performance in practice because of the large gap between worst-case

complexity and performance in practice for many automata-theoretic algorithms. For

example, the universality problem for NFAs is known to be worst-case PSPACE-

complete[6], but heuristic improvements allow many tools to perform much better in

practice.

3

The tool ALASKA[7] implements one such heuristic NFA universality algorithm,

using two primary techniques to efficiently represent automata complemented using

the subset construction: 1) binary decision diagrams (BDDs) and 2) subsumption.

BDDs are a heuristically compact method of representing Boolean functions - by

interpreting sets of states, or macrostates, as bitstrings, we can symbolically represent

a set of states from a subset construction as a Boolean function. Subsumption is

a process by which some ’smaller’ elements (as determined by some preorder) are

subsumed by other, ’greater’ elements, when only the greatest elements affect the

solution - allowing the algorithm to discard all but the greatest elements. In the case

of the subset construction, supersets of states are subsumed in their subsets, and

can be discarded from consideration. The overhead for subsumption is high, and the

operation is often too expensive unless removing many elements. But by discarding

large amounts of unnecessary macrostates and efficiently representing the rest in one

data structure, ALASKA performs efficient reachability analysis on NFAs.

The successful use of subsumption in ALASKA raises an interesting quetion. Since

this results in a smaller set of macrostates, more sparse relative to the exponential

complemented state space, could a symbolic representation optimized for sparse so-

lution sets perform better than BDDs?

Fortunately, such a representation already exists - zero-suppressed decision dia-

grams, or ZDDs, which share semantics with BDDs but more efficiently represent

sparse solution sets, at the cost of poorly representing dense ones. Using ZDDs, we

should be able to efficiently represent the sparse sets created by subsumption.

Therefore, we introduce ALASKA-ZDD - a complete overhaul of ALASKA’s

universality-checking tool to internally use ZDDs for symbolic representation of au-

tomata, including adding support for new ZDD operations from the EXTRA library

4

to PyCUDD. While preserving identical semantics to ALASKA, the adaption to a

ZDD-based algorithm changes the heuristics of the tool hoping to increase perfor-

mance in practice.

Unfortunately, the quest for automata-theoretic algorithms that perform well in

practice is hampered by a shortage of benchmark instances of automata that arise

in industrial verification. To overcome this challenge, Tabakov and Vardi proposed

a model for generating random automata on which different algorithms can be eval-

uated and compared [8, 9]. The model has three parameters: (1) the size (number

of states) of the automaton, (2) the density of transitions (ratio of transitions to

states), and (3) The density of accepting states (ratio of accepting to total number

of states). Subject to these parameters, the model generates automata randomly.

The Tabakov-Vardi (T-V, for short) model is attractive for NFAs [8] for two reasons:

First, the model gives rise to an interesting universality terrain, which describes the

relationship between the probability of automaton universality (which means that

all input words are accepted) and the density parameters. Second, the model gives

rise to an interesting performance terrain, which describes the relationship between

algorithmic performance and the density parameters. (We discuss these two terrains

in detail in the body of the paper.) In subsequent years, this model has become the

standard model for the evaluation of complementation tools, cf. [10, 5, 11, 12].

We compare ALASKA and ALASKA-ZDD using the T-V model, and find that

ALASKA-ZDD is slower than ALASKA, but more consistent - with a slowdown in

average time taken, but fewer results overrunning their maximum allowed time.

The T-V model, however, is just one specific random model, based on a specific,

and quite simple model of random graphs [13]. Several other models of random graphs

have been studied over the years [14, 15]. While the T-V model has the advantage

5

of simplicity, it is not a priori clear that performance analyses conducted on this

model are robust, as it is entirely possible that analogous analyses over other random

models would yield different conclusions. Since performance analyses over random

models are used in this context as a substitute to such analyses over a benchmark

suite of real-life problem instances, it is desirable at least to know whether analyses

over random models yield robust conclusions - both for our own work, and for the

entire body of other work using the Tabakov-Vardi model!

To address this problem, we introduce three* novel models of structured random

automata, based on existing random graph models – the vertex-copying model [14],

the Frank-Strauss model [15], and the co-accessible model [16]. These models are

based on different models that have been proposed for random graphs. While the T-

V model is uniformly random, generating unstructured automata, these new models

constrain randomness in some way to provide structural guarantees about the result-

ing automata: The vertex-copying model guarantees a power-law degree distribution,

the Frank-Strauss model restricts which transitions are valid, and the co-accessible

model guarantees that each state in the resulting automaton can reach an accepting

state.

These structural properties help the models represent a wide variety of possible

types of problem instances that might be encountered in the real world. Furthermore,

these model generate problem instances that are quite unlikely to be generated by the

T-V model. Our goal is to compare performance analysis on the T-V model against

performance analysis on the three new models. If performance analyses on the a vari-

ety of different models all reach similar conclusions, then we can conclude that these

*Preliminary results for other models deemed too similar for inclusion can be found in the ap-
pendix.

6

conclusions are likely robust. If, on the other hand, performance analyses on different

models reach different conclusions, then we would gain a deeper understanding of

how structure affects algorithmic performance and learn that the choice of algorithm

should depend on the structure of the problem instance being solved.

By generating large corpora of random automata and checking how likely they

are to produce universal automata, we first show that the new models possess the

same useful properties for universality as the T-V model. We then replicate our ear-

lier results using all four models, showing that even when tested with other models,

ALASKA-ZDD remains competitive with ALASKA for NFA universality, and the

results of the Tabakov-Vardi model are robust. Additionally, we perfom tool compar-

isons with our new models on another problem to demosntrate robustness - comparing

the tools Rank[5], Ramsey [5], and RABIT 2.3� for Büchi universality. These exper-

iments found that the robustness of Tabakov-Vardi results across models holds for

multiple problems, and that the more modern RABIT solver is vastly superior to

older options.

�http://languageinclusion.org/doku.php?id=tools

7

Chapter 2

Background

8

2.1 Automata theory

2.1.1 Types of automata

NFAs A non-deterministic finite state automaton, or NFA, is a tupleA = (Σ, Q,Q0, δ, F),

where Σ is a finite alphabet, Q is the finite set of states, Q0 ⊆ Q is the set of

initial states, δ : Q × Σ → 2Q is the transition function, and F ⊆ Q is the set

of accepting states. NFAs take words from Σ∗ as input. A run of an NFA on a

word w0, w1, ...wn ∈ Σ∗ is a finite sequence q0, q1, ...qn ∈ Q∗ such that q0 ∈ Q0, and

(δ(qi, wi) = qi+1). A run is accepting if the last state in the run is accepting - that is,

qn ∈ F . An NFA A accepts a word w if there is some run of A on w that is accepting.

The language of A, or L(A), is the set of all words that A accepts.

Büchi automata A Büchi automaton is a variant of an NFA that takes infinite

words from Σω as input. A run of a Büchi automaton is on an infinite word w0, w1, ... ∈

Σω, and is an infinite sequence q0, q1, ... ∈ Qω of states, obeying the same rules as

a run of an NFA. A run of a Büchi automaton is accepting if some accepting state

qi ∈ F occurs infinitely often in the run.

Alternating automata An alternating automaton, or AFA, is a more powerful

variant of an NFA that can visit multiple states at once, rather than only visiting one

state at a time in each run. We use a symbolic variant of AFAs, originally defined by

De Wulf et. al.[17] To accomplish this, it uses a more powerful transition function,

where the set of next states is determined using a positive Boolean formula.

Given a set of propositions P , we define Lit(P) = P ∪ {¬p | p ∈ P} to be the

set of literals over P , and B+(P) to be the set of positive boolean formulae over P -

formulae built from elements in P ∪ {true, false} using Boolean connectives ∧ and

9

∨. Given R ⊆ P and φ ∈ B+(P), we write R |= φ iff the truth assignment assigning

true to the elements of R and false to the elements of P \R satisfies φ.

An alternating automaton is a tuple A = (P,Σ, Q, I, δ, F) consisting of a set of

atomic propositions P , an alphabet Σ = 2P , a set of states Q, a set of possible

initial states I given by a logical formula in B+(Q), a transition function δ : Q →

B+(Lit(P) ∪ Q), and a set of accepting states F . A run of A on a finite word

w = σ0, σ1, σ2, . . . , σn−1 ∈ Σ∗ is a directed acyclic graph (DAG) G = (V,E) such that

-

� For each v ∈ V , Lvl(v) is the length of the path from an initial node to v.

� The set S ⊆ V of initial nodes satisfies I - i.e., S |= I.

� For each v ∈ V and the set V ′ = {v′ | (v, v′) ∈ E} of successors to V , V ′ ∪

σLvl(v) |= δ(v).

� If (v, v′) ∈ E, then Lvl(v) + 1 = Lvl(v′).

A run of A on w is accepting iff all paths p = s0, s1, . . . , si through G where s0

is an initial node and si has no successors are accepting. A path p is accepting iff

σi |= δ(si), or i = n and si ∈ F .

Intuitively, an alternating automaton takes a truth assignment as input, and ac-

cepts if certain subsets of possible nondeterministic runs through the automaton are

accepting - choosing nondeterministically on ∨, and requiring all successors to accept

on ∧. It accepts if all the nondeterministic runs considered in an alternating run

accept - with all extant runs ending in accepting states after the input, and allowing

some runs to terminate early if the input satisfies their transition.

10

2.1.2 Treating NFAs as AFAs

While we will describe ALASKA’s algorithm in Section 3.1 in terms of NFAs, ALASKA’s

algorithm accepts alternating automata, AFAs, as input. Therefore, we must convert

NFAs into AFAs to use them as input. For simplicity, we consider here the special

case where the alphabet Σ of the NFA is Σ = 2P for some set P of atomic proposi-

tions, that is, a truth assignment to P . An equivalent translation can be acquired for

other NFAs using an injective function f : Σ→ 2p.

Converting an NFA A = (2P , Q,Q0, δ, F) to an AFA A′ = (2P , Q, I, δ′, F) that

accepts the same language is fairly simple. Note that both A and A′ use 2P , Q, and

F , needing no conversion.

Recall that AFAs transition on a positive Boolean formula, rather than a direct

transition function. We convert NFAs to AFAs by making sure that for each run of

the NFA, there is a corresponding run of the AFA. To do this, we can ensure that if

q′ ∈ δ(q, τ), then τ ∪ q′ |= δ′(q), and that ∀q0 ∈ Q0 : q0 |= I. Since this ensures each

possible transition in A satisfies the transition function in A′,and that for each state

q0 ∈ Q0, q0 |= I, if a run exists in A, then it also exists as a path in a run of A′ with

only a single path. This is because, by construction of δ′, one path is sufficient to

satisfiy δ′ at each transition - more are unnecessary. We construct such an I and δ′

and as follows:

I =
∨

q0∈Q0

q0

∀q ∈ Q : δ′(q) =
∨
τ∈2P

(τ ∧
∨

qi∈δ(q,τ)

qi)

Note that if there is no transition δ(q, τ), then δ′(q) includes τ ∧ false, since
∨

becomes false when there is nothing in the disjunction.

11

Since each run of A also exists in A′, and F = F ′, if there exists an accepting run

of A on a word w = τ0, τ1, . . . , τn−1, then there is an accepting run of A′ on w. By the

construction of δ′, an accepting run of A′ must always transition from a state q on

some τi to at least one q′ such that q′ ∈ δ(q, τi)). Since this holds for every transition,

there must always be at least one path in a run of A′ on w that is equivalent to a valid

run of A. Since all paths must be accepting for a run of A′ on w to accept, if A′ has

an accepting run of w, then one of its paths is an accepting run of A. Therefore, if

there is an accepting run of A′ on w, there is an accepting run of A on w. Therefore,

A accepts w iff A′ accepts w.

2.1.3 Languages and complementation

The set of all words an automaton A accepts is called the language of A, or L (A).

A complement A of an automaton A is an automaton whose language is Σω \ L (A).

Finding the complement of an automaton is called complementation.

An automaton A is contained in an automaton B when L (A) ⊆ L (B). In

automata-theoretic verification [1], we prove that a program satisfies a specification

by modeling the program as a automaton A and the specification as a automaton

B, and then proving that A is contained in B. To check this containment, we check

that the intersection of L (A) with L
(
B
)

is empty. If it is not empty, then a word

in the intersection is a trace of A that violates the specification B. In practice, ef-

ficient containment algorithms do not explicitly construct the complement B, using

instead various strategies for on-the-fly complementation and symbolic construction,

cf. [5]. Nevertheless, because these strategies are still fundamentally based on com-

plementation, there is a close link between the efficiency of complementation and the

efficiency of containment. Since the hard step in containment checking is the need to

12

construct (at least implicitly) B, papers on the subject, e.g. [5, 8, 9], usually focus

on universality checking, where L (A) = Σ∗ or Σω– that is, checking if L (B) contains

the set of all words, by checking if L(B) is empty.

Complementing alternating automata In Chapter 3, we use ALASKA’s AFA

emptiness checker to verify the universality of NFA. As described in Section 2.1.2, we

can convert NFAs to AFAs easily. However, to use an emptiness checker, we must

complement the resulting AFA. This is a fairly straightforward procedure - converting

to an AFA moves a difficult step of NFA complementation, namely determinization,

to the emptiness checking step, leaving complementation much simpler. We consider

specifically the case of an AFA constructed from an NFA, with a transition function

of the form

δ(q) =
∨
τ∈2P

(τ ∧
∨

qi∈f(q,τ)

qi)

for some function f : Q× 2P → 2Q, and an initial constraint of the form

I =
∨

q0∈Q0

q0

for some Q0 ⊆ Q.

An AFA A = (2P , Q, I, δ, F) accepts a word w iff there exists a run of A on w

such that every path is accepting. Therefore, A = (2P , Q, I, δ, F accepts w iff every

run of A on w has some path that is not accepting.

Intuitively, an ∨ in the output of the transition function represents a split into

multiple runs, and an ∧ represents the split of a run into multiple paths. By De

Morgan’s laws, by negating an ∨ we can acquire an ∧, and vice versa. Therefore, to

check some path in every run, rather than every run in some path, we negate outputs

13

of the transition function, each run of A choosing nondetermnistically between the

paths in runs of A to find paths that do not accept.

Thus, we define δ(q) = ¬δ(q) : q ∈ Q. We define ¬q = q : q ∈ Q, q ∈ Q - i.e., a

state from A becomes the equivalent state from A.* We equivalently define I = ¬I.

After fully resolving De Morgan’s, the products are of the form:

I =
∧

q0∈Q0

q0

∀q ∈ Q : δ(q) =
∧
τ∈2P

(¬τ ∨
∧

qi∈f(q,τ)

qi)

Note that ¬τ ∨
∧

qi∈f(q,τ)
qi = τ →

∧
qi∈f(q,τ)

qi - implicitly, at each point where the

original NFA ANwould have transitioned to one state, A transitions to all states.

Also, note that if f(q, τ) is empty, then
∧

qi∈f(q,τ)
= true, resulting in ¬τ ∨ true -

satisfying the formula if the input is τ , since all other components of the conjunction

are satisfied by it being a different truth assignment.

Therefore, a run of A on a word w has a path for every run of AN on w. These

paths are accepting if they end early - when they would not have been accepting

runs. However, they will end in the same states that runs of AN would have, and be

accepting if the original runs were accepting. Since we wish to accept only if no run

of AN was accepting, we define F = {q | q 6∈ F}. Thus, a run of A on w contains

a path for each run of AN on w, and accepts iff all paths either end early, or end in

states that were not accepting states in AN or in A. Therefore, L(A) = L(A).

*Recall that δ is defined over the literals of the propositions, but not of the states - states cannot
be directly negated.

14

Using AFAs in ALASKA The input format to ALASKA can be found in full

at [18]. It accepts as input a Python dictionary, with assignments to the values

automaton type, locations, propositions, initial constraint, transition function,

and accepting locations. automaton type = ”sAFW”, locations is an array of

integers which are used as the states of the automaton, propositions is an array

of strings, initial constraint is a string consisting of states separated by ‖ and &,

transition function is a second dictionary from the states to strings of states and

propositions using ˜, ‖, and &, and accepting locations is a set of integers.

2.1.4 Evaluating automata-theoretic algorithms

The quest for automata-theoretic algorithms that perform well in practice is ham-

pered by a shortage of benchmark instances of automata that arise in industrial ver-

ification. The automaton B above corresponds to a formal specification of intended

design functionality. Industrial specifications are typically proprietary and not openly

available. To overcome this challenge, Tabakov and Vardi (T-V) proposed a model

for generating random automata on which different algorithms can be evaluated and

compared [8, 9]. In subsequent years, this model has become the standard model for

the evaluation of automata-theoretic tools, cf. [10, 5, 11, 12].

The T-V model generates automata using the uniformly random choice of elements

from a set. The T-V model takes three parameters - an integral size n, a positive

real transition density r, and a real accepting-state density f between 0 and 1. The

transition density is the average out-degree of each state in the result automaton per

input symbol. The accepting-state density is the percentage of states in the result

automaton that are accepting states. Formally, a (n, r, f) T-V random automaton is

defined as follows. Each random automaton A = (Σ, Q,Q0, δ, F) has the alphabet

15

Σ = {1, 0} and set of states Q = {0, . . . , n − 1}. The set Q0 of initial states is

{0}. For each σ ∈ Σ, the model generates a digraph (directed graph) Dσ over

the nodes {0, . . . , n − 1} with n ∗ r edges chosen uniformly at random from the

set of all possible edges (u, v) ∈ Q×Q. The transition function δ is then defined as

δ(u, σ) = {v | (u, v) ∈ Dσ}. The accepting states F comprise bn ∗ fc states selected

uniformly at random from Q. Note that each element of Dσ is a random digraph -

specifically, a Karp [13] random digraph. Thus, we say that the T-V model lifts the

Karp model of random digraphs into automata.

The T-V model is attractive for performance evaluation for two reasons [8, 9]:

First, the useful properties of its universality terrain, which describes the relation-

ship between the probability of automaton universality (which means that all input

words are accepted) and the density parameters. When transition and accepting-

state densities are low, the probability for universality is low, while at higher densities

the probability steadily increases. Thus, the model provides a way to evaluate the

performance of universality-checking algorithms on both universal and non-universal

automata. We call a model “interesting” when its universality probabilities vary with

the input parameters and increase from low to high probability. Second, the model

gives rise to an interesting performance terrain, which describes the relationship be-

tween algorithmic performance and the density parameters. Specifically, at low and

high densities universality checking is easier than at intermediate densities. Thus,

the model provides a way to evaluate the performance of universality-checking tools

on both easy and hard problems. We take these two features, universality terrain

and performance terrain to be desiderata that we expect to have in other models of

random automata.

16

2.2 Decision Diagrams

A decision diagram is a canonical method of representing Boolean functions with

rooted, edge-labelled directed acyclic graphs [19]. It consists of internal vertices,

which correspond to the variables of the function, and terminal vertices, which cor-

respond to the output values 0 and 1. A decision diagram is deterministic, and every

internal vertex v has exactly two outgoing edges - (v, 0, v0) and (v, 1, v1). We often ab-

breviated these edges as LO(v) and HI(v) respectively, and extend that abbreviation

to refer to v0 and v1 when referring to nodes instead of edges.

Let f be a Boolean function, defined over the tuple of variables var(f). A decision

diagram G is a tuple (V,E, ρ,<G). G consists of a set V = I∪{0, 1} of vertices where

I are internal vertices and { 0,1 } are terminal vertices, a set E of labelled edges

(v, σ, v′) : v, v′ ∈ V, σ ∈ {0, 1}, a labelling function ρ : V → var(f), and a total order

<G over var(f) ∪ {0, 1}�.

No terminal vertices vT have outgoing edges (vT , σ, v
′) ∈ E.

G is ordered by <G. For every (v, σ, v′) ∈ E, it holds that either v2 ∈ {0, 1}, or

ρ(v2) <G ρ(v). Thus, an edge can only progress to an internal vertex with a lower

ranked label, or a terminal vertex. Since all internal vertices must have a HI and

a LO, and rank is both finite and constantly-decreasing, every path must eventually

terminate in a terminal vertex. The variable order chosen can greatly impact the size

of the resulting decision diagram[20].

All decision diagrams use reduction rules to eliminate unnecessary vertices and

produce a canonical form. One reduction rule is shared by all decision diagrams - elim-

ination of identical nodes. If ∃v1, v2 ∈ V s.t. ρ(v1) = ρ(v2), HI(v1) = HI(v2), LO(v1) =

�We assume without loss of generality that var(f) is disjoint from {0, 1}, and that I is disjoint
from {0, 1}.

17

x1

x2

x3

01

Figure 2.1 : The DD that represents the logical or of three variables if interpreted as
a BDD, or the logical xor of three variables if interpreted as a ZDD. Note that this
means precisely that the interpretation where missing nodes are true leads to 0 in the
ZDD, but not in the BDD.

LO(v2), then remove v2 from V , and redirect all incoming edges (v, σ, v2) ∈ E to

(v, σ, v1). Other rules vary based on the decision diagram used.

Decision diagrams represent the computation of a Boolean function as paths from

the root of the diagram to a vertex. When tracing such a path through the diagram,

the set of edges followed - and thus, the states reached - yields an assignment τ

to var(f), and the terminal vertex reached yields f(τ). We interpret HI(v) as an

assignment of 1 to ρ(v) and LO(v) as assignment of 0. For example, in Figure 2.1, if

we follow the path LO, LO, HI, then we assign x1 = x2 = 0 and x3 = 1, and this is

an assignment that satisfies f .

Not all paths will have an assignment to all variables. There are multiple ways to

interpret an unassigned variable. This depends on the kind of decision diagram used.

2.2.1 Binary Decision Diagrams (BDDs)

The most common kind of decision diagram is a binary decision diagram. In a BDD,

18

1. An unassigned variable on a path is interpreted as not affecting the output on

that path - it can be freely assigned to true or false.

2. We use the new reduction rule: if HI(v) = LO(v) : v ∈ V , then remove v from

V and redirect all incoming edges (v′, σ, v) ∈ E to (v′, σ, LO(v)).

Since they eliminate nodes that are irrelevant to the outcome, BDDs are capable of

efficiently representing the ”don’t-care” literal - the fewer variable assignments need

to be known to determine the outcome, the more compact the BDD can be. A BDD

is useful when a large number of similar variable assignments result in an output of

1, allowing its heuristics to more tightly compact the representation. In 2.1, we can

see that BDDs are able to efficiently represent the or operation.

2.2.2 Zero-Suppressed Decision Diagrams (ZDDs)

Zero-suppressed decision diagrams are an alternative to binary decision diagrams,

which are more efficient with sparse solution sets. In a ZDD,

1. An unassigned variable on a path is interpreted as an assignment to 0. If the

variable would be assigned 1, then the output is 0.

2. We use the new reduction rule: if HI(v) = 0 : v ∈ V , then remove v from V

and redirect all incoming edges (v′, σ, v) ∈ E to (v′, σ, LO(v)).

Since they eliminate nodes which would falsify the output if true, ZDDs are capable

of efficiently representing the ”false” literal - if fewer variable assignments output 1,

then the ZDD can be more compact. A ZDD is most useful when very few variable

assignments result in 1, and many of them are different - satisfying assignments are

scattered sparsely across the solution space. In these cases, its heuristics can more

19

tightly compact the representation. In 2.1, we can see that ZDDs are able to efficiently

represent the xor operation.

20

Chapter 3

ALASKA-ZDD

21

3.1 ALASKA

Antichains for Logic, Automata and Symbolic Kripke Structures Analysis, or ALASKA[21],

is a broad-ranging Python tool for automata-theoretic verification, implementing a

number of algorithms including emptiness of finite and infinite word automata, satis-

fiability and validity of LTL formulae, and model checking of LTL specifications. In

this work, we focus on its tool for testing emptiness of alternating automata using

backwards reachability. We can fairly trivially use this to check the universality of

NFAs, by complementing them as alternating automata as described in Sections 2.1.2

and 2.1.3. (Recall that the complement is empty iff the automaton is universal.) A

more complete description of the algorithm and proof of it is available at [22].

3.1.1 Algorithm

Consider an AFA A = (2P , Q, I, δ, F), which we wish to check for emptiness. We

prove that A is empty by using the subset construction to show a lack of backwards

reachability - that from the final states, we cannot reach the initial states. We use

backwards reachability since previous results have found backwards reachability to

be more efficient than forward reachability[22].

We implicitly use the subset construction onA to produce an NFAA′ = (2P , 2Q, 2Q0 , δ
′, 2F),

where 2Q0 is the set of all sets of states that satisfy I, and for S ∈ 2Q and p ∈ 2P ,

δ′(S, p) = S ′ such that S ′ = {s′ | s ∈ S, s′ ∈ δ(s, p)}. It is well-known that the subset

construction does not change the language of an automaton.

Beginning in the set of macrostates 2F , we recursively visit predecessor macrostates

of our current set of macrostates SS as defined by the operation PRE(SS) : 22Q →

22Q =
⋃
S∈SS PRE(S), where PRE(S) : 2Q → 22Q =

⋃
p∈2P {{s|δ(s, p) = S}} -

that is, the union of the predecessors on each possible set of propositions for each

22

macrostate within SS.

By recursively visiting the predecessors, the algorithm will eventually visit every

backwards-reachable state within the state space. If at any point there exists a

Q0 ∈ 2Q0 s.t. Q0 ∈ SS, then the initial states are backwards-reachable from the final

states. Since every backwards transition was equivalent to some forward transition on

an assignment p to the propositions, this means the final states can also be reached

from the initial states.

By adding a history of previously-visited macrostates and removing those that

have been visited at each step, we can ensure that the algorithm eventually terminates

when all backwards-reachable states have been reached.

Subsumption The macrostate space of the subset-constructed automaton is ex-

ponential in the size of the original automaton. If many of the macrostates are

reachable, then finding the reachable macrostates becomes extremely inefficient - re-

ducing the number of macrostates under consideration can therefore offer significant

performance improvements. Other approaches attempt to minimize the size of the

automaton [21]. We instead take advantage of subsumption properties of the subset

construction - by showing that the answer does not change when considering only a

subset of the macrostates, we can discard unnecessary macrostates.

The relationship between the macrostates of A′ and the states of A creates a

subsumption relation over the macrostates of the A′, specifically ⊆. A macrostate

S1 ∈ 2Q subsumes a macrostates S2 ∈ 2Q iff S2 ⊆ S1. This means that S2 provides

no information not provided by S1 for emptiness checking, or more specifically, about

the reachability of an accepting path. We provide a sketch of the proof, found more

completely using simulation relations in [17] and [22].

23

Consider two macrostates S1, S2 ∈ 2Q s.t. S1, S2 are backwards reachable and

S1 ⊆ 21. Then, because of the properties of the subset construction as proved in [22],

if ∃C ∈ 22Q , p ∈ 2P s.t C ∈ δ′(S3, p) and S1 ∈ C, then there exists S4 s.t. S2 ∈ C ′ for

all C ′ ∈ δ′(S4, p), and S3 ⊆ S4. By repeated application, we can show that for any

arbitrary sequence of predecessor macrostates of S1 such that Si is a predecessor of

S1, there exists a predecessor Sj of S2 such that Si ⊆ Sj.

A′ is nonempty iff 2Q0 can be reached. We show that if S1 can reach an accepting

macrostate, then so can S2.

Consider the case where Si∩2Q0 6= ∅. Since Si ⊆ Sj, Sj ∩2Q0 6= ∅. Note that Si is a

predecessor of S1, and Sj is a predecessor of S2. Therefore, if S1 can reach the initial

set, then S2 can reach the initial set. Since we only care about the presence of an

accepting path, S2 provides all the information that S1 does for emptiness checking.

Given this, we can successfully check emptiness using antichains - a canonical

maximal representation of the set of reachable macrostates, which only contains the

largest subsets. We can compute the antichain S ′ of a set R of reachable macrostates

by discarding all macrostates S1 s.t. ∃S2 ∈ R : S1 ⊂ S2. While this operation can be

very expensive, it improves efficiency of emptiness checking when discarding a large

number of macrostates. By taking the antichain of the newly-reached macrostates

each time we visit a new set of macrostates, we can improve our original algorithm.

Semi-Symbolic Representation Fully representing the antichain and performing

operations on it is still quite expensive, due to the exponential size macrostate space.

Because of this, explicitly constructing the complemented automaton is extremely

inefficient. ALASKA approaches this problem by symbolically representing sets of

macrostates using BDDs.

24

Assume without loss of generality that Q = {0, 1, . . . , n−1}. Consider a bitstring

B = b1, b2, . . . , bn−1 of length |Q|. B can be interpreted as a macrostate v ∈ 2Q,

where ∀q ∈ Q, bq = 1 ↔ q ∈ v. Call this bitstring B(v). Therefore, a Boolean func-

tion f(x1, x2, . . . , xn−1), which takes as arguments bitstrings representing macrostates,

represents a set S of macrostates - ∀v ∈ 2Q : f(B(v)) = 1↔ v ∈ S.

These functions can track the all sets of macrostates in our algorithm, such as the

initial set 2Q0 and the set of visited states. Since BDDs are semantically equivalent to

Boolean functions, we can efficiently symbolically represent these values, as well as

the transition relation, using BDDS, considerably speeding up useful set operations,

such as checking the intersection of the visited set with 2Q0 .

Nevertheless, we do not use a fully symbolic construction. We instead convert

BDDs back into states when visiting a new set of states - while the input and output

of this operation are both BDDs, we convert S into an explicit set of macrostates,

then find their successors as BDDs. This semi-symbolic is more efficient than the

fully symbolic approach, which requires the BDDs to contain variables representing

macrostates to compute the set of successors. Thus, the number of variables needed

grows logarithmically with the number of macrostates in the semi-symbolic approach,

while it grows linearly in the fully symbolic approach[17].

Using all of these, we produce the following algorithm, with the working set

FRONTIER and visited set V ISITED both initialized to 2F :

1. FRONTIER← PRE(SUBSUMPTION(FRONTIER))

2. FRONTIER← FRONTIER \ V ISITED

3. IF FRONTIER = ∅, RETURN TRUE

4. IF FRONTIER ∩ 2Q0 6= ∅, RETURN FALSE

25

5. V ISITED ← V ISITED ∪ FRONTIER

All operations are symbolic and all values are represented as BDDs, except inside

of PRE, which converts the BDD input to an explicit representation of the current

working set and finds its successors.

3.2 ALASKA-ZDD

By using subsumption, ALASKA minimizes the working set, and the number of

macrostates represented. Therefore, after subsumption, the minimum possible num-

ber of inputs to the decision diagram produce 1. ZDDs are efficient when represent-

ing functions with few outputs of 1, raising the natural question of whether ZDDs

can outperform BDDs for ALASKA. We implement a new overhaul of ALASKA,

ALASKA-ZDD, which replaces all BDD operations in ALASKA with equivalent ZDD

operations, and compare it to ALASKA. All set operations in ALASKA’s algorithm,

and all values represented with BDDs, are replaced with ZDDs. This replaces almost

every value in the algorithm, since it is symbolic except within PRE.

Like ALASKA, ALASKA-ZDD is a Python tool built on top of the DD library

PyCUDD[23], a Python wrapper for the C DD library CUDD[24]. In addition to di-

rect replacement of BDD operations with ZDD semantic equivalents, we implemented

operations that would replace BDD operations for which there was no direct ZDD

equivalent, or the ZDD equivalent was inefficient, while preserving ALASKA’s overall

semantics. We also fixed a long-standing bug preventing PyCUDD from functioning

with ZDDs, and we implemented a Python wrapper for the EXTRA ZDD extension li-

brary for CUDD[25], integrating new ZDD operations into PyCUDD when equivalent

operations existed, but were not already implemented in CUDD.

26

We compare the performance of ALASKA and ALASKA-ZDD experimentally in

Section 4.2.

27

Chapter 4

Random Models

28

4.1 Random Models

Our goal in this work is to compare the T-V model to other models of random

automata as a framework for evaluating the performance of universality-checking

algorithms. We take advantage of the fact that the Tabakov-Vardi technique of lifting

digraphs into automata is not limited to Karp random digraphs. By substituting

other random-digraph models, we can generate new models of random automata.

Since Büchi automata are identical to NFAs except for the interpretation of final

states, these models can generate both.

The Tabakov-Vardi lifting is as follows. A random automata model that lifts a ran-

dom digraph model has all of the parameters of the digraph model, plus an accepting-

state density parameter f . Each random automaton is a tuple (Σ, Q,Q0, δ, F), with

the elements defined as follows. We take the alphabet Σ = {0, 1} for all models.

For each character σ ∈ Σ, create a random digraph Dσ using the digraph parameter

values of the automaton model. The set Q of states of the random automaton is

equivalent to the set N of Dσ’s nodes, usually N = {0, . . . , n− 1}, where n is the size

parameter. The initial state set Q0 ⊆ Q is a singleton set containing one state from

Q, usually 0. The transition relation δ is the union of all sets {(q, σ, r) | (q, r) ∈ Dσ}

for σ ∈ Σ - equivalently, δ can be considered a transition function where δ(q, σ) is the

set of all r related to q by σ in the relation. Finally, the set F ⊆ Q of accepting states

consists of b|N | ∗ fc elements of Q chosen uniformly at random (without repetition).

Not all models we study use the Tabakov-Vardi lifting; see details below.

In the rest of this section, we introduce three* new models based on this lifting -

the vertex-copying model, the Frank-Strauss model, and the co-accessible model. The

first two models are based on existing models of structured random digraphs which

*Other models can be found in the appendix.

29

have found common use in other disciplines, and the co-accessible model guarantees

a particular automaton property. While the lack of existing benchmarks makes it

difficult to compare these models directly to industrial problem instances, we can use

a variety of structured random models to more fully explore the problem space. If

these models disagree with the Tabakov-Vardi model, then the T-V model is not rich

enough to fully represent the space on its own – if they agree, then it is likely that

the conclusions of the T-V model are quite robust.

We show each of the models to have a Büchi universality terrain that is somewhat

similar but not identical to that of the T-V model, using experiments run on the

DAVinCI cluster� at Rice University. To show that each model has an interesting

universality terrain, we present with each model a terrain plot showing how likely the

Büchi automata generated by the model are to be universal when made with certain

parameters. We generated and tested 100 automata using the parameters at each

point on the plot. The universality terrains show that that the random models we

introduce generate automata whose likelihood of being universal ranges from 0 to 1,

just as in the T-V model.

Vertex-Copying Automata The random vertex-copying model presented here is

a simplification of the model defined by Kleinberg et al. [14]. A vertex-copying di-

graph starts out as an empty set of nodes, and adds edges over time. By sometimes

choosing edges at random, and at other times copying edges from one node to an-

other, it creates a heavy-tailed distribution – a “rich get richer” effect as nodes with

many edges steadily gain more and more edges. This copying is intended to model

hyperlinks on the Web – links are often created when someone discovers a link to a

�http://www.rcsg.rice.edu/sharecore/davinci/

30

site they’re interested in on another site, then adds a link to it on their own website,

thus “copying” the link from one site to another. This approach may also model code

reuse - when a code block is reused, then calls to functions are duplicated.

An (n, b, r) vertex-copying random digraph takes as parameters the size n, the

copying probability b, and the transition density r. The vertices are {0, . . . , n − 1}.

The model begins with no edges and adds edges (u, v) to the graph one at a time

until there are bn ∗ rc edges. Each time it does so, it has a probability b of copying

an edge from one node to another, and a probability 1 − b of simply generating an

edge uniformly at random. If it copies, then it chooses an edge (u, v) ∈ E and a node

u′ ∈ V \ u uniformly at random. It then adds (u′, v) to E. If it generates the edge

at random, it acts as in the T-V model. This digraph model extends to automata by

directly using the standard lifting. Its universality terrain is given in Figure 4.1.

Frank-Strauss Automata The Frank-Strauss random graph model, based on an

approach by Frank and Strauss� [15], limits the space of possible edges. Instead

of the vertices being integers, vertices are unordered pairs of integers. The Frank-

Strauss model permits edges only between vertices that share an element – the vertex

(0, 1) can connect to (0, 3) and (1, 3), but not to (2, 3). Within this space, edges are

generated uniformly at random. The Frank-Strauss model can represent systems that

require some relationship between actors. For example, it can be used to represent

binary relationships between individuals in a social setting. Alternatively, we may

have a program such that if one module calls another, then there must be some

relation between them – for example, operating on shared data.

An (l, r) Frank-Strauss random graph takes as parameters a label size l and a

�Referred to in their paper as a “Markov graph”.

31

transition density r. The set V of vertices is the set {(i, j) | i, j ∈ 0, . . . , l − 1}

of unordered pairs of elements. Since we allow the case where i = j, there are(
l+1
2

)
= l(l+1)

2
such vertices. We generate b|V | ∗ rc edges. To generate each edge, first

choose a vertex (u1, u2) uniformly at random as the source, and then choose a vertex

(v1, v2) ∈ {u1, u2} × {0, . . . , l} uniformly at random as the destination. This digraph

model extends to automata directly by using the standard lifting. The universality

terrain is presented in Figure 4.2.

Co-accessible Automata The co-accessible model of random automata is so named

because it guarantees that the resulting automata are co-accessible, where an automa-

ton is co-accessible if all states q ∈ Q are co-accessible, that is, can reach an accepting

state. Because this property is meaningful only for automata, the co-accessible model

cannot be based on lifting a model of random digraphs. It is loosely based on Leslie’s

generation of connected automata [16]. Automata possessing this property corre-

spond to useful program properties – for example, a co-accessible automaton may

specify that the program can recover and perform its intended function from every

state.

The co-accessible model takes as parameters a size n, a transition density r, and

an accepting state density f . The co-accessible model does not define the transition

relation based on an underlying digraph. Instead, we start with a set Q = {0, . . . , n−

1} of states and initial and accepting state sets Q0 and F as in the T-V model. The

transition relation δ is initially empty.

To fill in δ, we construct a random spanning inverted forest over Q. This is a set

of trees over the automaton which contains every state, each rooted at an accepting

state, and where edges go from children to parents instead of parents to children. A

32

forest can be found as follows: make a set of co-accessible states C = F and states

that are not yet co-accessible U = Q \ F , then select some u ∈ U , c ∈ C and σ ∈ Σ

uniformly at random. Add (u, σ, c) to δ, then remove u from U and add it to C,

repeating until U is empty.

Once the spanning forest has been constructed, the model must fill in the rest of

the transition relation. It then ensures that each character σ ∈ Σ is associated with

exactly bn ∗ rc edges. If some σ0 has more than bn ∗ rc transitions, replace random

transitions (u, σ0, v) with (u, σ1, v) for σ0 6= σ1 and σ1 ∈ Σ. Then generate new edges

uniformly at random, as in the T-V model, for each character with fewer than bn ∗ rc

transitions. We assume r ≥ 1. The universality terrain is given in Figure 4.3.

33

0.2

0.5

0.8

0

0.2

0.4

0.6

0.8

1

1
1.25

1.5
1.75

2
2.25

2.5
2.75

3

P
ro

b
ab

ili
ty

 o
f

u
n

iv
e

rs
al

it
y

Vertex-Copying Model, n=20

0.2 1

Figure 4.1 : A vertex-copying Büchi universality terrain for n = 20. The transition
density r ranges from 1 to 3, and the copying probability b ranges from 0.2 to 0.8.
The accepting-state density f was set to 0.3. The universality probability is com-
parable to that of the T-V model for most values of r. Note that increasing b does
not monotonically increase universality probability – after a certain point it actually
reduces it. This may be because all transitions go to a small number of states, with
few transitions leaving them, increasing the likelihood of rejection.

34

0.2

0.5

0.8

0

0.2

0.4

0.6

0.8

1

1
1.25

1.5
1.75

2
2.25

2.5
2.75

3

P
ro

b
ab

ili
ty

 o
f

u
n

iv
e

rs
al

it
y

Frank-Strauss Model, n=21

0.2 1

Figure 4.2 : A Frank-Strauss Büchi universality terrain for l = 21. r ranges from 1 to
3 and f ranges from 0.2 to 0.8. While the universality probably scales more quickly
with r than in the T-V model, there are still a number of points where universality
is neither nearly guaranteed nor always absent.

35

0.2

0.5

0.8

0

0.2

0.4

0.6

0.8

1

1
1.25

1.5
1.75

2
2.25

2.5
2.75

3

P
ro

b
ab

ili
ty

 o
f

u
n

iv
e

rs
al

it
y

Coaccessible Model, n=20

0.2 1

Figure 4.3 : A co-accessible Büchi universality terrain for n = 20. The transition
density r ranges from 1 to 3, and f ranges from 0.2 to 0.8. Notice that the slope is
much shallower than in previous models. This gives us an extremely wide range of
useful configurations for testing.

36

4.2 Experiments - NFA

Having defined three new random models and, via universality testing, proven them

to be interesting for performance evaluation, we then use these models to run timing

experiments for ALASKA vs ALASKA-ZDD. As in the PREvious section, experi-

ments were run on the DAVinCI cluster at Rice University, which consists of many

Westmere nodes with 2.83 GHz processors and 48 GB of memory per node. We limit

each job to 30GB of memory and 10 minutes of time. Jobs that did not finish were

marked as timeouts.

As in the previous section, we run terrain experiments. In terrain experiments,

the size of the automata is held constant, and two other parameters are changed to

see the effects on running time. We generate 100 automata using each combination

of parameter values, and report median running time.

37

Figure 4.4 : For terrain experiments on the Tabakov-Vardi and coaccessible mod-
els, we tested parameter values of n = 4000, r ∈ {1, 1.5, 2, 2.5, 3}, and f ∈
{0.02, 0.26, 0.5, 0.74, 0.98}. These graphs show results for ALASKA and ALASKA-
ZDD. Note that ALASKA performs better in most, but not all, cases.

Figure 4.5 : For the Frank-Strauss model, we tested parameter values of n = 4005,
or l = 89, r ∈ {1, 1.5, 2, 2.5, 3}, and f ∈ {0.02, 0.26, 0.5, 0.74, 0.98}.

38

Figure 4.6 : For the vertex-copying model, we tested parameter values of n = 4000,
r ∈ {1, 1.5, 2, 2.5, 3}, f ∈ {0.02, 0.26, 0.5, 0.74, 0.98}, and b ∈ set0.2, 0.5, 0.8. We
combine data for all values of b in this chart, to fit it into three dimensions.

Based on Figs. 4.4 through 4.6, ALASKA-ZDD does not consistently outperform

ALASKA on random automata. However, we do find that, averaged across all models,

ALASKA-ZDD has 5.9% fewer overall timeouts than ALASKA. Every individual

model showed at least a 5.5% improvement. This suggests that ALASKA-ZDD may

perform more consistently on the most difficult subset of problems. These limited

results may because the calculation of PRE in ALASKA and ALASKA-ZDD uses

existential abstraction on the variables representing the states to determine which

predecessor macrostates a given state belongs in. Existentially abstracting out most

variables produces a Boolean function that produces true for many inputs, which are

difficult to represent with ZDDs. It may be possible to improve the algorithm for

ZDDs to avoid this construction in the future.

We also find that all random models agree extremely closely on the results for

ALASKA and ALASKA-ZDD, and which areas are easier or harder. Since many

different random models produce the same results, this strongly reinforces the hy-

pothesis that Tabakov-Vardi is a sufficiently robust random model with accurate

39

results. Nevertheless, this only shows evidence that Tabakov-Vardi is sufficient for

NFA universality. We also test with Büchi universality, another simple verification

problem that uses very different algorithms, to see whether Tabakov-Vardi is robust

across problems.

40

4.3 Experiments - Büchi Automata

4.3.1 Methodology

While Tabakov-Vardi seems to be robust on NFAs, it is not clear if this carries over

to infinite words. To examine this, we used our models to run timing experiments

for three universality checkers. We first compared the Rank and Ramsey tools§ from

[5], expanding on previous work and seeing if our new models agreed with their

results. To acquire a more recent picture of the comparison between algorithms, we

also compared these tools with the RABIT 2.3 tool¶, a more recent Ramsey-based

containment checker. As in previous sections, experiments were run on the DAVinCI

cluster at Rice University, which consists of many Westmere nodes with 2.83 GHz

processors and 48 GB of memory per node. We limited each job to 30GB of memory

and one hour of time. Jobs that did not finish were marked as timeouts.

We ran two types of experiments: terrain experiments and scaling experiments.

In terrain experiments, the size of the automata is held constant, and two other

parameters are changed to see the effects on running time. In scaling experiments,

all parameters are held constant except those affecting the size of the automaton,

and we steadily increase the size to see how the implementations respond to larger

problems. We conduct scaling experiments with parameters that are particularly

difficult for at least one tool to handle, as determined by the terrain experiments,

to test practical worst-case performance. We generated 100 automata using each

combination of parameter values in both kinds of experiments, and report median

running time.

§https://www.cs.rice.edu/CS/Verification/Software/software.html
¶http://www.languageinclusion.org/doku.php?id=tools

41

Figure 4.7 : For terrain experiments on the Tabakov-Vardi model, we tested parameter
values of n = 100, r ∈ {1, 1.5, 2, 2.5, 3}, and f ∈ {0.02, 0.26, 0.5, 0.74, 0.98}. These
graphs show results for the Rank and Ramsey tools. Note that Rank and Ramsey
are not directly comparable - Ramsey tends to be slower at points where r = 1.5 and
r = 2, while Rank tends to be slower at f = 0.02 and f = 0.26. This agrees with
previous results [5] using the Tabakov-Vardi model.

4.3.2 Results

42

Figure 4.8 : For terrain experiments on the Frank-Strauss model, we tested parameter
values of n = 105, or l = 14, r ∈ {1, 1.5, 2, 2.5, 3}, and f ∈ {0.02, 0.26, 0.5, 0.74, 0.98}.
These graphs show results for the Rank and Ramsey tools. Again, the Rank model
tends to perform the slowest at low f and low r, while Ramsey is slowest at r = 2.
This agrees with our results on the Tabakov-Vardi model, as do the terrains of other
models found in the appendix.

43

We find both that choice of model does not seriously impact tool comparisons,

and that RABIT noticeably outperforms Rank and Ramsey.

In both terrain (Figs. 4.7, 4.8, 4.9) and scaling (Fig. 4.10) experiments, we find

that the relative efficiency of tools is very similar across models. All models show

that, as in the Tabakov-Vardi model in [5], the Rank and Ramsey are not directly

comparable – which parameters are used to generate an automaton determine which

tool solves it most efficiently, as seen in the terrain experiments in Figure 4.8. Since

all models agree with T-V here, it is reasonable to use the T-V model to compare

tools. Nevertheless, while models agree on the comparison between tools, they do

not have the same running time. For example, in Figure 4.10, we see on a log scale

that there is a factor of 10 difference between the running time of Ramsey on the

Tabakov-Vardi and co-accessible models. While Tabakov-Vardi’s tool comparisons

seem to be robust in this case, its precise runtimes are not. Thus, the T-V model

should be relied on for relative comparisons, but not for predicting runtimes.

Since there was little difference in comparison between models, Rank and Ramsey

compare similarly to their results in [5]. Yet, when we compare Rank to RABIT, we

saw a massive speedup at all difficult points – sometimes thousands of times faster.

At n = 100, the terrain was flat, with most cases terminating in just over a tenth of a

second. Therefore, the improved modern Ramsey tools are more suited for practical

use than Rank-based ones. However, as seen in Figure 4.9, random models can still

provide interesting performance terrain on the more efficient tools by scaling up the

size of the problems.

There is one noticeable difference between algorithms not shown – both Ramsey-

based algorithms used much more memory than Rank did. When provided with 5

gigabytes of memory, the Rank tool performed acceptably, but Ramsey and RABIT

44

crashed regularly. 30GB of memory provided was necessary to avoid crashes due to

running out of memory.

45

Figure 4.9 : For all terrain experiments at n = 100 for RABIT, we found that the
terrain was entirely flat - very few problems took more than one second to terminate.
Therefore we show results for RABIT on n = 400, instead, with parameter values
r ∈ {1, 1.5, 2, 2.5, 3}, and f ∈ {0.02, 0.26, 0.5, 0.74, 0.98}. Note that the maximum Y-
axis value is only 800 seconds, because at no point was the median result a timeout.
RABIT has the most difficulty at high transition density and extremely low accep-
tance densities, with orders of magnitude slower performance on f = 0.02. While
it does not appear on this graph, we also find that RABIT takes about two orders
of magnitude more time at r = 2.0 and high f than other areas, and one order of
magnitude less than the extremely difficult areas. Also, we find that at r = 1.5, we
consistently had a small (5%) chance of timeouts at all values of n tested with few to
no timeouts elsewhere, though the median time taken was no higher.

46

0.001

0.01

0.1

1

10

100

1000

10 20 30 40 50 60 70 80 90 100

Ti
m

e
ta

ke
n

(s
)

Size (n)

Scaling experiments, r = 1.5, f = 0.98

TV Rank Coaccess Rank F-S Rank VC Rank

TV Ramsey Coaccess Ramsey F-S Ramsey VC Ramsey

TV RABIT Coaccess RABIT F-S RABIT VC RABIT

Figure 4.10 : For this set of scaling experiments, we set r = 1.5 and f = 0.98, and
scale n from 10 to 100. In the Frank-Strauss model, l scales from 4 to 14. This
point was chosen for scaling because it is particularly difficult for Ramsey. On this
log-scale plot, different tools (indicated by shared color and marker shape) tend to
have similar slopes regardless of model (indicated by shared line style). Notably, an
obvious exponential gap exists between other models and Ramsey at these parameters
for every model except the trivally-easy vertex-copying model. Since f is high, this is
an easy point for Rank. The relationship between tools found by T-V is also reflected
in the other random models shown here.

47

Chapter 5

Conclusion

48

ALASKA provides a powerful tool for NFA universality based on subsumption

and symbolic representation with BDDs. Since subsumption reduces the space being

considered, it seemed plausible that ZDDs, useful for representing sparse functions,

could be more effective than BDDs for symbolically solving NFA universality. This

did not result in a general improvement in median time taken over BDDs in practice.

However, using ZDD-based approaches, we found a noticeable decrease in the number

of timeouts, suggesting that ZDDs avoid worst-case behavior in some scenarios.

While formal verification provides important software tools, it has been unclear

whether these tools are efficient enough to be used in practice. The Tabakov-Vardi

random model is a powerful tool for automata-theoretic formal verification, allowing

us to test the efficiency of algorithms for determining conformance to a specification.

Due to concerns about whether the model accurately reflected real-world performance,

we tested other models to see if the structure of a problem would influence the results;

we found that it did not, on both NFA unversality and Büchi universality. Future

work in the area can proceed to test algorithms and tools on the T-V model, more

confident that it is robust and that its results are widely applicable. This work gives

reason to believe that the Tabakov-Vardi model is a robust model with results that

are likely to be close to the real-world. Complementation, and thus containment

checking, should be practical on real-world problems.

We also discovered an improvement of many orders of magnitude in modern

Büchi containment checkers using a Ramsey-based approach. RABIT outperformed

both older Ramsey and rank-based tools significantly, and can scale to much higher

input sizes. Since little work has been done on rank-based solvers since 2010, cur-

rent heuristics-driven Ramsey-based approaches are the best available options for

containment checking for Büchi automata.

49

Acknowledgements Work supported in part by NSF grants CCF-1319459 and

IIS-1527668, by NSF Expeditions in Computing project ”ExCAPE: Expeditions in

Computer Augmented Program Engineering”, as well as the Data Analysis and Visu-

alization Cyberinfrastructure funded by NSF grant OCI-0959097 and Rice University.

50

Bibliography

[1] M. Vardi and P. Wolper, “An automata-theoretic approach to automatic pro-

gram verification,” in Proceedings of the First Symposium on Logic in Computer

Science, pp. 322–331, IEEE Computer Society, 1986.

[2] M. Y. Vardi, “The Büchi complementation saga,” in Proc. 24th Sympo. on The-

oretical Aspects of Computer Science, vol. 4393 of Lecture Notes in Computer

Science, pp. 12–22, Springer, 2007.

[3] M. Tsai, S. Fogarty, M. Vardi, and Y. Tsay, “State of Büchi complementation,”

in Implementation and Application of Automata, pp. 261–271, Springer, 2011.

[4] G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear dynamic

logic on finite traces.,” in IJCAI, vol. 13, pp. 854–860, 2013.

[5] S. Fogarty and M. Vardi, “Efficient Büchi universality checking,” in Tools and

Algorithms for the Construction and Analysis of Systems, pp. 205–220, Springer

Berlin Heidelberg, 2010.

[6] J. E. Hopcroft, Introduction to automata theory, languages, and computation.

Pearson Education India, 2008.

[7] L. Doyen, J. Raskin, K. Chatterjee, L. Doyen, T. Henzinger, and J. Raskin,

“Alaska: Antichains for logic, automata and symbolic kripke structures analysis,”

ATVA: Automated Technology for Verification and Analysis, vol. 3, pp. 153–168,

51

2008.

[8] D. Tabakov and M. Vardi, “Experimental evaluation of classical automata con-

structions,” LPAR, pp. 396–411, 2005.

[9] D. Tabakov and M. Vardi, “Model checking Büchi specifications,” in Proc. 1st

Int’l Conf. on Language and Automata Theory and Applications, pp. 565–576,

2007.

[10] L. Doyen and J. Raskin, “Antichains for the automata-based approach to model-

checking,” arXiv preprint arXiv:0902.3958, 2009.

[11] M. De Wulf, L. Doyen, T.A. Henzinger, and J. Raskin, “Antichains: A new

algorithm for checking universality of finite automata,” in Computer Aided Ver-

ification, pp. 17–30, Springer, 2006.

[12] P.A. Abdulla, Y. Chen, L. Clemente, L. Hoĺık, C. Hong, R. Mayr, and T. Voj-

nar, “Advanced Ramsey-based Büchi automata inclusion testing,” in CONCUR

2011–Concurrency Theory, pp. 187–202, Springer, 2011.

[13] R. M. Karp, “The transitive closure of a random digraph,” Random Structures

& Algorithms, vol. 1, no. 1, pp. 73–93, 1990.

[14] J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, “The

web as a graph: Measurements, models, and methods,” in Computing and com-

binatorics, pp. 1–17, Springer, 1999.

[15] O. Frank and D. Strauss, “Markov graphs,” Journal of the American Statistical

Association, vol. 81, no. 395, pp. 832–842, 1986.

52

[16] T. Leslie, “Efficient approaches to subset construction,” tech. rep., University of

Waterloo, Canada, 1995.

[17] M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin, “Antichains: Alternative

algorithms for ltl satisfiability and model-checking,” in International Conference

on Tools and Algorithms for the Construction and Analysis of Systems, pp. 63–

77, Springer, 2008.

[18] “ALASKA user manual.” http://web.archive.org/web/20161009183809/

http://lit2.ulb.ac.be/alaska/usermanual.html. Accessed: 2018-06-12.

[19] R. E. Bryant, “Symbolic boolean manipulation with ordered binary-decision di-

agrams,” ACM Computing Surveys (CSUR), vol. 24, no. 3, pp. 293–318, 1992.

[20] K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation of

a bdd package,” in Design Automation Conference, 1990. Proceedings., 27th

ACM/IEEE, pp. 40–45, IEEE, 1990.

[21] M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin, “Alaska,” in International

Symposium on Automated Technology for Verification and Analysis, pp. 240–245,

Springer, 2008.

[22] L. Doyen and J.-F. Raskin, “Antichain algorithms for finite automata,” in Inter-

national Conference on Tools and Algorithms for the Construction and Analysis

of Systems, pp. 2–22, Springer, 2010.

[23] S. Haynal, “Pycudd, python wrapper for cudd.” http://web.archive.org/

web/20171210091429/https://bears.ece.ucsb.edu/pycudd.html. Accessed:

2018-06-15.

53

[24] F. Somenzi, “CUDD package, release 2.4.1.” http://vlsi.colorado.edu/

~fabio/CUDD/.

[25] A. Mishchenko, “Extra, zdd extension package for cudd.” http:

//web.archive.org/web/20180615161227/https://people.eecs.berkeley.

edu/~alanmi/research/extra/. Accessed: 2018-06-15.

