RICE UNIVERSITY

Evaluating Performance of Automaton
Universality Checking Algorithms

by
Corey Fisher

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Master of Science

APPROVED, THESIS COMMITTEE:

//o/u \/ﬂ\‘/"f"(

Moshe Vardi, Chair
Karen Ostrum George Distinguished
Service Professor in Computational

Engineering
ozt)

Luay Nakh{eh -
J.S Abercrombie Professor of Computer
Science

L

Swarat Chaudhuri
Associate Professor of Computer Science

Houston, Texas

March, 2019

ABSTRACT

Evaluating Performance of Automaton Universality Checking Algorithms

by

Corey Fisher

NFA universality is an important problem in formal verification, since it is an
effective proxy for complementation of NFAs - a key operation that underlies most
verification algorithms. However, because complemented automata are extremely
large, many modern tools use symbolic representations to perform complementation
and universality checking. One state-of-the-art tool for NFA universality, ALASKA,
symbolically represents automata using binary decision diagrams (BDDs) to more
efficiently complement them with the subset construction.

The algorithm usually only represents a small number of subset-constructed states
at a time, relative to the vast state space. Zero-suppressed decision diagrams (ZDDs)
have the same semantics as BDDs, but are more efficient when representing sparse so-
lution sets. We used this advantage in constructing a new ZDD-based tool, ALASKA-
ZDD, which completely replaces ALASKA’s symbolic representation with a ZDD-
based one. We then experimentally compared it with ALASKA, using random au-
tomata generated with the widely-used Tabakov-Vardi (T-V) random model due to
a lack of practical benchmarks. We found that while ALASKA is more efficient on
average, ALASKA-ZDD had fewer timeouts due to difficult problems.

But how do we know the T-V model gives robust results? The model was originally

adopted due to lack of practical benchmarks, but this also prevents checking its

il

reliability against real examples. While it statistically guarantees certain universality
properties about the automata it produces, no further work has been done to verify
its results. Therefore, it is unclear if tests on the T-V model are sufficient. In graph
theory, many different random models are used for representing different problems
- would that be an appropriate approach for verification? We introduce three new
random models, and show that their results for the NFA universality question are the
same as T-V. We also compare multiple solutions to the Biichi universality problem on
these models, and find that their results are the same as T-V. Therefore, in addition
to showing ALASKA-ZDD is competitive, we show that T-V can be used as a robust
random model for verification, across multiple problems, verifying many previous

results with the model.

Contents

Abstract
Introduction

Background

2.1 Automata theory
2.1.1 Types of automata
2.1.2 Treating NFAsas AFAs
2.1.3 Languages and complementation
2.1.4 Evaluating automata-theoretic algorithms

2.2 Decision Diagrams Lo
2.2.1 Binary Decision Diagrams (BDDs)
2.2.2 Zero-Suppressed Decision Diagrams (ZDDs)

ALASKA-ZDD

3.1 ALASKA . . .
3.1.1 Algorithm

3.2 ALASKA-ZDD e

Random Models

4.1 Random Modelso
4.2 Experiments - NFAo
4.3 Experiments - Biichi Automata

4.3.1 Methodology

11

10
11
14
16
17
18

20
21
21
25

4.3.2 Results
5 Conclusion

Bibliography

Chapter 1

Introduction

Automata-theoretic formal verification is an approach to the problem of guar-
anteeing that a program (in software or hardware) conforms to its specification in
which conformance is reduced to the problem of language containment. By repre-
senting both programs and specifications as automata and then proving that the
specification contains the program, we can prove conformance [1]. This connection
to automata theory motivated an extensive research program into the algorithmic
theory of automata of infinite words, cf. [2], and the focus of this program is often
on algorithms that perform well in practice, cf. [3]. The popularity of this format -
due to the intuitiveness of specifications given in linear temporal logic and converted
to automata - has also led to a demand for specification of finite properties. To
accomodate this, the field has recently expanded to include finite-word automata.[4]

We focus here on the NFA universality-checking problem, a simplified case of con-
tainment checking, the canonical verification problem [1], which preserves the most
difficult part of containment checking: constructing the complement. An automaton
A is universal iff it accepts all input words; equivalently A is universal iff its com-
plement A is empty, i.e., it accepts no input words. One way to check universality
of A is to check emptiness of A, which can be reduced to reachability analysis of A’s
state-transition graphs. Such approaches have to deal with the exponential blow-up
of complementation, so extant algorithms for universality use a variety of heuristics
to check emptiness of A without constructing it in full, cf. [5].

We focus on performance in practice because of the large gap between worst-case
complexity and performance in practice for many automata-theoretic algorithms. For
example, the universality problem for NFAs is known to be worst-case PSPACE-
complete[6], but heuristic improvements allow many tools to perform much better in

practice.

The tool ALASKA[7] implements one such heuristic NFA universality algorithm,
using two primary techniques to efficiently represent automata complemented using
the subset construction: 1) binary decision diagrams (BDDs) and 2) subsumption.
BDDs are a heuristically compact method of representing Boolean functions - by
interpreting sets of states, or macrostates, as bitstrings, we can symbolically represent
a set of states from a subset construction as a Boolean function. Subsumption is
a process by which some ’smaller’ elements (as determined by some preorder) are
subsumed by other, ’greater’ elements, when only the greatest elements affect the
solution - allowing the algorithm to discard all but the greatest elements. In the case
of the subset construction, supersets of states are subsumed in their subsets, and
can be discarded from consideration. The overhead for subsumption is high, and the
operation is often too expensive unless removing many elements. But by discarding
large amounts of unnecessary macrostates and efficiently representing the rest in one
data structure, ALASKA performs efficient reachability analysis on NFAs.

The successful use of subsumption in ALASKA raises an interesting quetion. Since
this results in a smaller set of macrostates, more sparse relative to the exponential
complemented state space, could a symbolic representation optimized for sparse so-
lution sets perform better than BDDs?

Fortunately, such a representation already exists - zero-suppressed decision dia-
grams, or ZDDs, which share semantics with BDDs but more efficiently represent
sparse solution sets, at the cost of poorly representing dense ones. Using ZDDs, we
should be able to efficiently represent the sparse sets created by subsumption.

Therefore, we introduce ALASKA-ZDD - a complete overhaul of ALASKA’s
universality-checking tool to internally use ZDDs for symbolic representation of au-

tomata, including adding support for new ZDD operations from the EXTRA library

to PyCUDD. While preserving identical semantics to ALASKA, the adaption to a
ZDD-based algorithm changes the heuristics of the tool hoping to increase perfor-
mance in practice.

Unfortunately, the quest for automata-theoretic algorithms that perform well in
practice is hampered by a shortage of benchmark instances of automata that arise
in industrial verification. To overcome this challenge, Tabakov and Vardi proposed
a model for generating random automata on which different algorithms can be eval-
uated and compared [8, 9]. The model has three parameters: (1) the size (number
of states) of the automaton, (2) the density of transitions (ratio of transitions to
states), and (3) The density of accepting states (ratio of accepting to total number
of states). Subject to these parameters, the model generates automata randomly.
The Tabakov-Vardi (T-V, for short) model is attractive for NFAs [8] for two reasons:
First, the model gives rise to an interesting universality terrain, which describes the
relationship between the probability of automaton universality (which means that
all input words are accepted) and the density parameters. Second, the model gives
rise to an interesting performance terrain, which describes the relationship between
algorithmic performance and the density parameters. (We discuss these two terrains
in detail in the body of the paper.) In subsequent years, this model has become the
standard model for the evaluation of complementation tools, cf. [10, 5, 11, 12].

We compare ALASKA and ALASKA-ZDD using the T-V model, and find that
ALASKA-ZDD is slower than ALASKA, but more consistent - with a slowdown in
average time taken, but fewer results overrunning their maximum allowed time.

The T-V model, however, is just one specific random model, based on a specific,
and quite simple model of random graphs [13]. Several other models of random graphs

have been studied over the years [14, 15]. While the T-V model has the advantage

of simplicity, it is not a priori clear that performance analyses conducted on this
model are robust, as it is entirely possible that analogous analyses over other random
models would yield different conclusions. Since performance analyses over random
models are used in this context as a substitute to such analyses over a benchmark
suite of real-life problem instances, it is desirable at least to know whether analyses
over random models yield robust conclusions - both for our own work, and for the
entire body of other work using the Tabakov-Vardi model!

To address this problem, we introduce three* novel models of structured random
automata, based on existing random graph models — the vertez-copying model [14],
the Frank-Strauss model [15], and the co-accessible model [16]. These models are
based on different models that have been proposed for random graphs. While the T-
V model is uniformly random, generating unstructured automata, these new models
constrain randomness in some way to provide structural guarantees about the result-
ing automata: The vertex-copying model guarantees a power-law degree distribution,
the Frank-Strauss model restricts which transitions are valid, and the co-accessible
model guarantees that each state in the resulting automaton can reach an accepting
state.

These structural properties help the models represent a wide variety of possible
types of problem instances that might be encountered in the real world. Furthermore,
these model generate problem instances that are quite unlikely to be generated by the
T-V model. Our goal is to compare performance analysis on the T-V model against
performance analysis on the three new models. If performance analyses on the a vari-

ety of different models all reach similar conclusions, then we can conclude that these

*Preliminary results for other models deemed too similar for inclusion can be found in the ap-
pendix.

conclusions are likely robust. If, on the other hand, performance analyses on different
models reach different conclusions, then we would gain a deeper understanding of
how structure affects algorithmic performance and learn that the choice of algorithm
should depend on the structure of the problem instance being solved.

By generating large corpora of random automata and checking how likely they
are to produce universal automata, we first show that the new models possess the
same useful properties for universality as the T-V model. We then replicate our ear-
lier results using all four models, showing that even when tested with other models,
ALASKA-ZDD remains competitive with ALASKA for NFA universality, and the
results of the Tabakov-Vardi model are robust. Additionally, we perfom tool compar-
isons with our new models on another problem to demosntrate robustness - comparing
the tools Rank[5], Ramsey [5], and RABIT 2.3" for Biichi universality. These exper-
iments found that the robustness of Tabakov-Vardi results across models holds for
multiple problems, and that the more modern RABIT solver is vastly superior to

older options.

thttp://languageinclusion.org/doku.php?id=tools

Chapter 2

Background

2.1 Automata theory
2.1.1 Types of automata

NFAs A non-deterministic finite state automaton, or NFA | is a tuple A = (3, @, Qo, 0, F),
where Y is a finite alphabet, @) is the finite set of states, ()9 C @ is the set of
initial states, 6 : Q x ¥ — 29 is the transition function, and F C @ is the set
of accepting states. NFAs take words from ¥* as input. A run of an NFA on a
word wq, wy, ...w, € X* is a finite sequence qo, q1,...q, € Q* such that ¢y € Qq, and
(0(gi, w;) = qiv1)- A run is accepting if the last state in the run is accepting - that is,
gn € F. An NFA A accepts a word w if there is some run of A on w that is accepting.

The language of A, or L(A), is the set of all words that A accepts.

Biichi automata A Biichi automaton is a variant of an NFA that takes infinite
words from X as input. A run of a Biichi automaton is on an infinite word wy, wy, ... €
>, and is an infinite sequence qg, q1,... € Q¥ of states, obeying the same rules as
a run of an NFA. A run of a Biichi automaton is accepting if some accepting state

¢; € F occurs infinitely often in the run.

Alternating automata An alternating automaton, or AFA, is a more powerful
variant of an NFA that can visit multiple states at once, rather than only visiting one
state at a time in each run. We use a symbolic variant of AFAs, originally defined by
De Wulf et. al.[17] To accomplish this, it uses a more powerful transition function,
where the set of next states is determined using a positive Boolean formula.

Given a set of propositions P, we define Lit(P) = PU{-p | p € P} to be the
set of literals over P, and B*(P) to be the set of positive boolean formulae over P -

formulae built from elements in P U {true, false} using Boolean connectives A and

V. Given R C P and ¢ € BT(P), we write R |= ¢ iff the truth assignment assigning
true to the elements of R and false to the elements of P\ R satisfies ¢.

An alternating automaton is a tuple A = (P, %, Q, [, 9, F) consisting of a set of
atomic propositions P, an alphabet ¥ = 2P a set of states Q, a set of possible
initial states I given by a logical formula in BT (Q), a transition function ¢ : Q —
Bt (Lit(P) U Q), and a set of accepting states F. A run of A on a finite word

w = 0g,01,09,...,0,_1 € X" is a directed acyclic graph (DAG) G = (V, E) such that

For each v € V', Lvl(v) is the length of the path from an initial node to v.

The set S C V of initial nodes satisfies I - i.e., S |= I.

For each v € V and the set V' = {v' | (v,v’) € E} of successors to V, V' U

ULvl(v)): (5(1))

e If (v,0') € E, then Lvl(v) + 1 = Lol(v').

A run of A on w is accepting iff all paths p = sg, $1,...,s; through G where s,
is an initial node and s; has no successors are accepting. A path p is accepting iff
o; E=0(s;),ori=nands; € F.

Intuitively, an alternating automaton takes a truth assignment as input, and ac-
cepts if certain subsets of possible nondeterministic runs through the automaton are
accepting - choosing nondeterministically on V, and requiring all successors to accept
on A. It accepts if all the nondeterministic runs considered in an alternating run
accept - with all extant runs ending in accepting states after the input, and allowing

some runs to terminate early if the input satisfies their transition.

10
2.1.2 Treating NFAs as AFAs

While we will describe ALASKA’s algorithm in Section 3.1 in terms of NFAs, ALASKA’s
algorithm accepts alternating automata, AFAs, as input. Therefore, we must convert
NFAs into AFAs to use them as input. For simplicity, we consider here the special
case where the alphabet ¥ of the NFA is ¥ = 27 for some set P of atomic proposi-
tions, that is, a truth assignment to P. An equivalent translation can be acquired for
other NFAs using an injective function f:» — 2P,

Converting an NFA A = (20,Q,Q0,6, F) to an AFA A" = (2P,Q,1,0', F) that
accepts the same language is fairly simple. Note that both A and A’ use 2¥,Q, and
F', needing no conversion.

Recall that AFAs transition on a positive Boolean formula, rather than a direct
transition function. We convert NFAs to AFAs by making sure that for each run of
the NFA, there is a corresponding run of the AFA. To do this, we can ensure that if
q € d(q,7), then T U ¢ | 0'(q), and that Vgo € Qo : qo = I. Since this ensures each
possible transition in A satisfies the transition function in A’,and that for each state
qo € Qo,qo0 = 1, if a run exists in A, then it also exists as a path in a run of A’ with
only a single path. This is because, by construction of ¢’, one path is sufficient to
satisfiy ¢’ at each transition - more are unnecessary. We construct such an I and ¢’

and as follows:

I:\/QO

q0€Qo
VeeQ: @)=\ r \V @)
Te2P q:€5(q,T)

Note that if there is no transition (g, 7), then ¢’(¢) includes 7 A false, since \/

becomes false when there is nothing in the disjunction.

11

Since each run of A also exists in A, and F' = F”, if there exists an accepting run
of A on aword w =79, 7,...,T,_1, then there is an accepting run of A" on w. By the
construction of ¢, an accepting run of A" must always transition from a state ¢ on
some 7; to at least one ¢’ such that ¢’ € §(q, 7;)). Since this holds for every transition,
there must always be at least one path in a run of A" on w that is equivalent to a valid
run of A. Since all paths must be accepting for a run of A" on w to accept, if A’ has
an accepting run of w, then one of its paths is an accepting run of A. Therefore, if
there is an accepting run of A" on w, there is an accepting run of A on w. Therefore,

A accepts w iff A" accepts w.

2.1.3 Languages and complementation

The set of all words an automaton A accepts is called the language of A, or L (A).
A complement A of an automaton A is an automaton whose language is ¥ \ L (A).
Finding the complement of an automaton is called complementation.

An automaton A is contained in an automaton B when L (A) C L(B). In
automata-theoretic verification [1], we prove that a program satisfies a specification
by modeling the program as a automaton A and the specification as a automaton
B, and then proving that A is contained in B. To check this containment, we check
that the intersection of L (A) with L (E) is empty. If it is not empty, then a word
in the intersection is a trace of A that violates the specification B. In practice, ef-
ficient containment algorithms do not explicitly construct the complement B, using
instead various strategies for on-the-fly complementation and symbolic construction,
cf. [5]. Nevertheless, because these strategies are still fundamentally based on com-
plementation, there is a close link between the efficiency of complementation and the

efficiency of containment. Since the hard step in containment checking is the need to

12

construct (at least implicitly) B, papers on the subject, e.g. [5, 8, 9], usually focus
on universality checking, where L (A) = 3* or ¥~ that is, checking if L (B) contains

the set of all words, by checking if L(B) is empty.

Complementing alternating automata In Chapter 3, we use ALASKA’s AFA
emptiness checker to verify the universality of NFA. As described in Section 2.1.2, we
can convert NFAs to AFAs easily. However, to use an emptiness checker, we must
complement the resulting AFA. This is a fairly straightforward procedure - converting
to an AFA moves a difficult step of NFA complementation, namely determinization,
to the emptiness checking step, leaving complementation much simpler. We consider
specifically the case of an AFA constructed from an NFA, with a transition function

of the form

)=\ AV @

re2P qi€f(q,7)

for some function f: Q x 2P — 29, and an initial constraint of the form

I:\/CIO

q0€Qo

for some @y C Q.

An AFA A = (2P,Q, 1,6, F) accepts a word w iff there exists a run of A on w
such that every path is accepting. Therefore, A = (2, Q, 1,6, F accepts w iff every
run of A on w has some path that is not accepting.

Intuitively, an V in the output of the transition function represents a split into
multiple runs, and an A represents the split of a run into multiple paths. By De
Morgan’s laws, by negating an V we can acquire an A, and vice versa. Therefore, to

check some path in every run, rather than every run in some path, we negate outputs

13

of the transition function, each run of A choosing nondetermnistically between the
paths in runs of A to find paths that do not accept.

Thus, we define 6(¢) = =6(¢q) : ¢ € Q. We define ~q=7:¢€ Q, 7€ Q - ie., a
state from A becomes the equivalent state from A.* We equivalently define I = —I.

After fully resolving De Morgan’s, the products are of the form:

q0€Qo
vieQ:5@= N\Grv N\ @
re2P a:€f(q,7)
Note that -—7v A @G =7 — A @ - implicitly, at each point where the
2:€f(q,7) 2:€f(q,7) o

original NFA Apywould have transitioned to one state, A transitions to all states.
Also, note that if f(q,7) is empty, then A = true, resulting in —7 V true -
satisfying the formula if the input is 7, sincqeiegl(lq’;)ther components of the conjunction
are satisfied by it being a different truth assignment.

Therefore, a run of A on a word w has a path for every run of Ay on w. These
paths are accepting if they end early - when they would not have been accepting
runs. However, they will end in the same states that runs of Ay would have, and be
accepting if the original runs were accepting. Since we wish to accept only if no run
of Ay was accepting, we define F' = {G | ¢ € F}. Thus, a run of A on w contains

a path for each run of Ay on w, and accepts iff all paths either end early, or end in

states that were not accepting states in Ay or in A. Therefore, L(A) = L(A).

*Recall that d is defined over the literals of the propositions, but not of the states - states cannot
be directly negated.

14

Using AFAs in ALASKA The input format to ALASKA can be found in full
at [18]. It accepts as input a Python dictionary, with assignments to the values
automaton_type, locations, propositions, initial_constraint, transition_function,
and accepting_locations. automaton_type = "sAFW?”, locations is an array of
integers which are used as the states of the automaton, propositions is an array
of strings, initial_constraint is a string consisting of states separated by || and &,
transition_function is a second dictionary from the states to strings of states and

propositions using ~, ||, and &, and accepting_locations is a set of integers.

2.1.4 Evaluating automata-theoretic algorithms

The quest for automata-theoretic algorithms that perform well in practice is ham-
pered by a shortage of benchmark instances of automata that arise in industrial ver-
ification. The automaton B above corresponds to a formal specification of intended
design functionality. Industrial specifications are typically proprietary and not openly
available. To overcome this challenge, Tabakov and Vardi (T-V) proposed a model
for generating random automata on which different algorithms can be evaluated and
compared [8, 9]. In subsequent years, this model has become the standard model for
the evaluation of automata-theoretic tools, cf. [10, 5, 11, 12].

The T-V model generates automata using the uniformly random choice of elements
from a set. The T-V model takes three parameters - an integral size n, a positive
real transition density r, and a real accepting-state density f between 0 and 1. The
transition density is the average out-degree of each state in the result automaton per
input symbol. The accepting-state density is the percentage of states in the result
automaton that are accepting states. Formally, a (n,r, f) T-V random automaton is

defined as follows. Each random automaton A = (3, Q, Qo, 0, F') has the alphabet

15

Y = {1,0} and set of states @ = {0,...,n — 1}. The set Qo of initial states is
{0}. For each o € ¥, the model generates a digraph (directed graph) D, over
the nodes {0,...,n — 1} with n % r edges chosen uniformly at random from the
set of all possible edges (u,v) € @ x Q. The transition function § is then defined as
d(u,0) ={v| (u,v) € D,}. The accepting states F' comprise |n * f| states selected
uniformly at random from (). Note that each element of D, is a random digraph -
specifically, a Karp [13] random digraph. Thus, we say that the T-V model lifts the
Karp model of random digraphs into automata.

The T-V model is attractive for performance evaluation for two reasons [8, 9]:
First, the useful properties of its universality terrain, which describes the relation-
ship between the probability of automaton universality (which means that all input
words are accepted) and the density parameters. When transition and accepting-
state densities are low, the probability for universality is low, while at higher densities
the probability steadily increases. Thus, the model provides a way to evaluate the
performance of universality-checking algorithms on both universal and non-universal
automata. We call a model “interesting” when its universality probabilities vary with
the input parameters and increase from low to high probability. Second, the model
gives rise to an interesting performance terrain, which describes the relationship be-
tween algorithmic performance and the density parameters. Specifically, at low and
high densities universality checking is easier than at intermediate densities. Thus,
the model provides a way to evaluate the performance of universality-checking tools
on both easy and hard problems. We take these two features, universality terrain
and performance terrain to be desiderata that we expect to have in other models of

random automata.

16
2.2 Decision Diagrams

A decision diagram is a canonical method of representing Boolean functions with
rooted, edge-labelled directed acyclic graphs [19]. It consists of internal vertices,
which correspond to the variables of the function, and terminal vertices, which cor-
respond to the output values 0 and 1. A decision diagram is deterministic, and every
internal vertex v has exactly two outgoing edges - (v,0,vy) and (v, 1,v;). We often ab-
breviated these edges as LO(v) and HI(v) respectively, and extend that abbreviation
to refer to vy and v; when referring to nodes instead of edges.

Let f be a Boolean function, defined over the tuple of variables var(f). A decision
diagram G is a tuple (V, E, p, <¢g). G consists of a set V' = IU{0, 1} of vertices where
I are internal vertices and { 0,1 } are terminal vertices, a set E of labelled edges
(v,0,V") 1 v,0" € Vo € {0, 1}, a labelling function p : V' — var(f), and a total order
<q over var(f) U {0, 1}1.

No terminal vertices vy have outgoing edges (vr,0,v’) € E.

G is ordered by <q. For every (v,0,v") € E, it holds that either v, € {0,1}, or
p(v2) <¢ p(v). Thus, an edge can only progress to an internal vertex with a lower
ranked label, or a terminal vertex. Since all internal vertices must have a HI and
a LO, and rank is both finite and constantly-decreasing, every path must eventually
terminate in a terminal vertex. The variable order chosen can greatly impact the size
of the resulting decision diagram|20].

All decision diagrams use reduction rules to eliminate unnecessary vertices and
produce a canonical form. One reduction rule is shared by all decision diagrams - elim-

ination of identical nodes. If Jvy, vy € V' s.t. p(vy) = p(ve), HI(vy) = HI(v2), LO(vy) =

TWe assume without loss of generality that var(f) is disjoint from {0, 1}, and that I is disjoint
from {0,1}.

17

Figure 2.1 : The DD that represents the logical or of three variables if interpreted as
a BDD, or the logical xor of three variables if interpreted as a ZDD. Note that this
means precisely that the interpretation where missing nodes are true leads to 0 in the
ZDD, but not in the BDD.

LO(vy), then remove vy from V| and redirect all incoming edges (v,0,v9) € E to
(v,0,v1). Other rules vary based on the decision diagram used.

Decision diagrams represent the computation of a Boolean function as paths from
the root of the diagram to a vertex. When tracing such a path through the diagram,
the set of edges followed - and thus, the states reached - yields an assignment 7
to var(f), and the terminal vertex reached yields f(7). We interpret HI(v) as an
assignment of 1 to p(v) and LO(v) as assignment of 0. For example, in Figure 2.1, if
we follow the path LO, LO, HI, then we assign z; = o = 0 and x3 = 1, and this is
an assignment that satisfies f.

Not all paths will have an assignment to all variables. There are multiple ways to

interpret an unassigned variable. This depends on the kind of decision diagram used.

2.2.1 Binary Decision Diagrams (BDDs)

The most common kind of decision diagram is a binary decision diagram. In a BDD,

18

1. An unassigned variable on a path is interpreted as not affecting the output on

that path - it can be freely assigned to true or false.

2. We use the new reduction rule: if HI(v) = LO(v) : v € V| then remove v from

V' and redirect all incoming edges (v, 0,v) € E to (v/, 0, LO(v)).

Since they eliminate nodes that are irrelevant to the outcome, BDDs are capable of
efficiently representing the ”don’t-care” literal - the fewer variable assignments need
to be known to determine the outcome, the more compact the BDD can be. A BDD
is useful when a large number of similar variable assignments result in an output of
1, allowing its heuristics to more tightly compact the representation. In 2.1, we can

see that BDDs are able to efficiently represent the or operation.

2.2.2 Zero-Suppressed Decision Diagrams (ZDDs)

Zero-suppressed decision diagrams are an alternative to binary decision diagrams,

which are more efficient with sparse solution sets. In a ZDD,

1. An unassigned variable on a path is interpreted as an assignment to 0. If the

variable would be assigned 1, then the output is 0.

2. We use the new reduction rule: if HI(v) =0 : v € V, then remove v from V

and redirect all incoming edges (v',0,v) € E to (v, 0, LO(v)).

Since they eliminate nodes which would falsify the output if true, ZDDs are capable
of efficiently representing the ”false” literal - if fewer variable assignments output 1,
then the ZDD can be more compact. A ZDD is most useful when very few variable
assignments result in 1, and many of them are different - satisfying assignments are

scattered sparsely across the solution space. In these cases, its heuristics can more

19

tightly compact the representation. In 2.1, we can see that ZDDs are able to efficiently

represent the xor operation.

Chapter 3

ALASKA-ZDD

20

21

3.1 ALASKA

Antichains for Logic, Automata and Symbolic Kripke Structures Analysis, or ALASKA[21],
is a broad-ranging Python tool for automata-theoretic verification, implementing a
number of algorithms including emptiness of finite and infinite word automata, satis-
fiability and validity of LTL formulae, and model checking of LTL specifications. In
this work, we focus on its tool for testing emptiness of alternating automata using
backwards reachability. We can fairly trivially use this to check the universality of
NFAs, by complementing them as alternating automata as described in Sections 2.1.2
and 2.1.3. (Recall that the complement is empty iff the automaton is universal.) A

more complete description of the algorithm and proof of it is available at [22].

3.1.1 Algorithm

Consider an AFA A = (2F,Q, 1,6, F), which we wish to check for emptiness. We
prove that A is empty by using the subset construction to show a lack of backwards
reachability - that from the final states, we cannot reach the initial states. We use
backwards reachability since previous results have found backwards reachability to
be more efficient than forward reachability[22].

We implicitly use the subset construction on A to produce an NFA A’ = (28,29 29§, 2F),
where QOQ is the set of all sets of states that satisfy I, and for S € 2% and p € 27,
8 (S,p) = 5" such that §" = {s' | s € S, 5" € §(s,p)}. It is well-known that the subset
construction does not change the language of an automaton.

Beginning in the set of macrostates 2, we recursively visit predecessor macrostates
of our current set of macrostates S5 as defined by the operation PRE(SS) : 22° —
22% = Ugess PRE(S), where PRE(S) : 29 — 22% = (J _,r{{5/d(s,p) = S}} -

that is, the union of the predecessors on each possible set of propositions for each

22

macrostate within S'S.

By recursively visiting the predecessors, the algorithm will eventually visit every
backwards-reachable state within the state space. If at any point there exists a
Qo € 282 s.t. Qo € SS9, then the initial states are backwards-reachable from the final
states. Since every backwards transition was equivalent to some forward transition on
an assignment p to the propositions, this means the final states can also be reached
from the initial states.

By adding a history of previously-visited macrostates and removing those that
have been visited at each step, we can ensure that the algorithm eventually terminates

when all backwards-reachable states have been reached.

Subsumption The macrostate space of the subset-constructed automaton is ex-
ponential in the size of the original automaton. If many of the macrostates are
reachable, then finding the reachable macrostates becomes extremely inefficient - re-
ducing the number of macrostates under consideration can therefore offer significant
performance improvements. Other approaches attempt to minimize the size of the
automaton [21]. We instead take advantage of subsumption properties of the subset
construction - by showing that the answer does not change when considering only a
subset of the macrostates, we can discard unnecessary macrostates.

The relationship between the macrostates of A" and the states of A creates a
subsumption relation over the macrostates of the A’, specifically C. A macrostate
S; € 2% subsumes a macrostates S, € 29 iff S, C S;. This means that S, provides
no information not provided by S; for emptiness checking, or more specifically, about
the reachability of an accepting path. We provide a sketch of the proof, found more

completely using simulation relations in [17] and [22].

23

Consider two macrostates S, Sy € 29 s.t. S;,55 are backwards reachable and
S1 C 2;. Then, because of the properties of the subset construction as proved in [22],
if3Ce2® pe2fstCe 0'(Ss3,p) and Sy € C, then there exists Sy s.t. Sy € C” for
all C" € §'(S4,p), and S3 C S;. By repeated application, we can show that for any
arbitrary sequence of predecessor macrostates of S; such that S; is a predecessor of
S1, there exists a predecessor S; of S, such that S; C 5.

A’ is nonempty iff 282 can be reached. We show that if S; can reach an accepting
macrostate, then so can Sj.

Consider the case where S; ﬂ282 # (. Since S; C S;, S; ﬁ20Q # (). Note that S; is a
predecessor of Si, and S; is a predecessor of Sy. Therefore, if S; can reach the initial
set, then S5 can reach the initial set. Since we only care about the presence of an
accepting path, Sy provides all the information that S; does for emptiness checking.

Given this, we can successfully check emptiness using antichains - a canonical
maximal representation of the set of reachable macrostates, which only contains the
largest subsets. We can compute the antichain S” of a set R of reachable macrostates
by discarding all macrostates S7 s.t. 45 € R : S; C Sy. While this operation can be
very expensive, it improves efficiency of emptiness checking when discarding a large
number of macrostates. By taking the antichain of the newly-reached macrostates

each time we visit a new set of macrostates, we can improve our original algorithm.

Semi-Symbolic Representation Fully representing the antichain and performing
operations on it is still quite expensive, due to the exponential size macrostate space.
Because of this, explicitly constructing the complemented automaton is extremely
inefficient. ALASKA approaches this problem by symbolically representing sets of

macrostates using BDDs.

24

Assume without loss of generality that @) = {0,1,...,n—1}. Consider a bitstring
B = by,bo,... b, 1 of length |Q|. B can be interpreted as a macrostate v € 29,
where Vg € @, by, =1 <> ¢ € v. Call this bitstring B(v). Therefore, a Boolean func-
tion f(z1,xe,...,T,—1), which takes as arguments bitstrings representing macrostates,
represents a set S of macrostates - Vo € 29 : f(B(v)) =1+ v € S.

These functions can track the all sets of macrostates in our algorithm, such as the
initial set 282 and the set of visited states. Since BDDs are semantically equivalent to
Boolean functions, we can efficiently symbolically represent these values, as well as
the transition relation, using BDDS, considerably speeding up useful set operations,
such as checking the intersection of the visited set with 2§.

Nevertheless, we do not use a fully symbolic construction. We instead convert
BDDs back into states when visiting a new set of states - while the input and output
of this operation are both BDDs, we convert S into an explicit set of macrostates,
then find their successors as BDDs. This semi-symbolic is more efficient than the
fully symbolic approach, which requires the BDDs to contain variables representing
macrostates to compute the set of successors. Thus, the number of variables needed
grows logarithmically with the number of macrostates in the semi-symbolic approach,
while it grows linearly in the fully symbolic approach[17].

Using all of these, we produce the following algorithm, with the working set

FRONTIER and visited set VISITED both initialized to 2%
1. FRONTIER < PRE(SUBSUMPTION(FRONTIER))
2. FRONTIER + FRONTIER\VISITED
3. IF FRONTIER =0, RETURN TRUE

4. IF FRONTIERDZ?#@,RETURN FALSE

25

5. VISITED <~ VISITED U FRONTIER

All operations are symbolic and all values are represented as BDDs, except inside
of PRE, which converts the BDD input to an explicit representation of the current

working set and finds its successors.

3.2 ALASKA-ZDD

By using subsumption, ALASKA minimizes the working set, and the number of
macrostates represented. Therefore, after subsumption, the minimum possible num-
ber of inputs to the decision diagram produce 1. ZDDs are efficient when represent-
ing functions with few outputs of 1, raising the natural question of whether ZDDs
can outperform BDDs for ALASKA. We implement a new overhaul of ALASKA,
ALASKA-ZDD, which replaces all BDD operations in ALASKA with equivalent ZDD
operations, and compare it to ALASKA. All set operations in ALASKA’s algorithm,
and all values represented with BDDs, are replaced with ZDDs. This replaces almost
every value in the algorithm, since it is symbolic except within PRE.

Like ALASKA, ALASKA-ZDD is a Python tool built on top of the DD library
PyCUDDI23], a Python wrapper for the C DD library CUDD[24]. In addition to di-
rect replacement of BDD operations with ZDD semantic equivalents, we implemented
operations that would replace BDD operations for which there was no direct ZDD
equivalent, or the ZDD equivalent was inefficient, while preserving ALASKA’s overall
semantics. We also fixed a long-standing bug preventing PyCUDD from functioning
with ZDDs, and we implemented a Python wrapper for the EXTRA ZDD extension li-
brary for CUDDI25], integrating new ZDD operations into PyCUDD when equivalent

operations existed, but were not already implemented in CUDD.

26

We compare the performance of ALASKA and ALASKA-ZDD experimentally in

Section 4.2.

Chapter 4

Random Models

27

28
4.1 Random Models

Our goal in this work is to compare the T-V model to other models of random
automata as a framework for evaluating the performance of universality-checking
algorithms. We take advantage of the fact that the Tabakov-Vardi technique of lifting
digraphs into automata is not limited to Karp random digraphs. By substituting
other random-digraph models, we can generate new models of random automata.
Since Biichi automata are identical to NFAs except for the interpretation of final
states, these models can generate both.

The Tabakov-Vardi lifting is as follows. A random automata model that lifts a ran-
dom digraph model has all of the parameters of the digraph model, plus an accepting-
state density parameter f. Each random automaton is a tuple (X, @, Qo, 9, F), with
the elements defined as follows. We take the alphabet ¥ = {0,1} for all models.
For each character o € 3, create a random digraph D, using the digraph parameter
values of the automaton model. The set () of states of the random automaton is
equivalent to the set N of D,’s nodes, usually N = {0,...,n— 1}, where n is the size
parameter. The initial state set Qg C @ is a singleton set containing one state from
@, usually 0. The transition relation J is the union of all sets {(¢,0,7) | (¢,7) € Dy}
for 0 € ¥ - equivalently, § can be considered a transition function where 6(q, o) is the
set of all r related to ¢ by ¢ in the relation. Finally, the set F' C @) of accepting states
consists of [|N]* f] elements of @) chosen uniformly at random (without repetition).
Not all models we study use the Tabakov-Vardi lifting; see details below.

In the rest of this section, we introduce three* new models based on this lifting -
the vertez-copying model, the Frank-Strauss model, and the co-accessible model. The

first two models are based on existing models of structured random digraphs which

*Other models can be found in the appendix.

29

have found common use in other disciplines, and the co-accessible model guarantees
a particular automaton property. While the lack of existing benchmarks makes it
difficult to compare these models directly to industrial problem instances, we can use
a variety of structured random models to more fully explore the problem space. If
these models disagree with the Tabakov-Vardi model, then the T-V model is not rich
enough to fully represent the space on its own — if they agree, then it is likely that
the conclusions of the T-V model are quite robust.

We show each of the models to have a Biichi universality terrain that is somewhat
similar but not identical to that of the T-V model, using experiments run on the
DAVinCI cluster’ at Rice University. To show that each model has an interesting
universality terrain, we present with each model a terrain plot showing how likely the
Biichi automata generated by the model are to be universal when made with certain
parameters. We generated and tested 100 automata using the parameters at each
point on the plot. The universality terrains show that that the random models we
introduce generate automata whose likelihood of being universal ranges from 0 to 1,

just as in the T-V model.

Vertex-Copying Automata The random vertex-copying model presented here is
a simplification of the model defined by Kleinberg et al. [14]. A vertex-copying di-
graph starts out as an empty set of nodes, and adds edges over time. By sometimes
choosing edges at random, and at other times copying edges from one node to an-
other, it creates a heavy-tailed distribution — a “rich get richer” effect as nodes with
many edges steadily gain more and more edges. This copying is intended to model

hyperlinks on the Web — links are often created when someone discovers a link to a

thttp://www.rcsg.rice.edu/sharecore/davinci/

30

site they’re interested in on another site, then adds a link to it on their own website,
thus “copying” the link from one site to another. This approach may also model code
reuse - when a code block is reused, then calls to functions are duplicated.

An (n,b,r) vertex-copying random digraph takes as parameters the size n, the
copying probability b, and the transition density r. The vertices are {0,...,n — 1}.
The model begins with no edges and adds edges (u,v) to the graph one at a time
until there are [n x| edges. Each time it does so, it has a probability b of copying
an edge from one node to another, and a probability 1 — b of simply generating an
edge uniformly at random. If it copies, then it chooses an edge (u,v) € E and a node
' € V' \ u uniformly at random. It then adds (u/,v) to E. If it generates the edge
at random, it acts as in the T-V model. This digraph model extends to automata by

directly using the standard lifting. Its universality terrain is given in Figure 4.1.

Frank-Strauss Automata The Frank-Strauss random graph model, based on an
approach by Frank and Strauss* [15], limits the space of possible edges. Instead
of the vertices being integers, vertices are unordered pairs of integers. The Frank-
Strauss model permits edges only between vertices that share an element — the vertex
(0,1) can connect to (0,3) and (1, 3), but not to (2,3). Within this space, edges are
generated uniformly at random. The Frank-Strauss model can represent systems that
require some relationship between actors. For example, it can be used to represent
binary relationships between individuals in a social setting. Alternatively, we may
have a program such that if one module calls another, then there must be some
relation between them — for example, operating on shared data.

An (I,r) Frank-Strauss random graph takes as parameters a label size | and a

fReferred to in their paper as a “Markov graph”.

31

transition density r. The set V of vertices is the set {(i,7) | 4,7 € 0,...,1 — 1}

of unordered pairs of elements. Since we allow the case where ¢ = j, there are

(l;l) _ l(l;—l)

such vertices. We generate ||V|* 7| edges. To generate each edge, first
choose a vertex (ug, us) uniformly at random as the source, and then choose a vertex
(v1,v2) € {uy,us} x {0,...,l} uniformly at random as the destination. This digraph
model extends to automata directly by using the standard lifting. The universality

terrain is presented in Figure 4.2.

Co-accessible Automata The co-accessible model of random automata is so named
because it guarantees that the resulting automata are co-accessible, where an automa-
ton is co-accessible if all states g € @) are co-accessible, that is, can reach an accepting
state. Because this property is meaningful only for automata, the co-accessible model
cannot be based on lifting a model of random digraphs. It is loosely based on Leslie’s
generation of connected automata [16]. Automata possessing this property corre-
spond to useful program properties — for example, a co-accessible automaton may
specify that the program can recover and perform its intended function from every
state.

The co-accessible model takes as parameters a size n, a transition density r, and
an accepting state density f. The co-accessible model does not define the transition
relation based on an underlying digraph. Instead, we start with a set @ = {0,...,n—
1} of states and initial and accepting state sets @)y and F' as in the T-V model. The
transition relation ¢ is initially empty.

To fill in §, we construct a random spanning inverted forest over (). This is a set
of trees over the automaton which contains every state, each rooted at an accepting

state, and where edges go from children to parents instead of parents to children. A

32

forest can be found as follows: make a set of co-accessible states C' = F' and states
that are not yet co-accessible U = @ \ F', then select some u € U, ¢ € C' and 0 € &
uniformly at random. Add (u,o,c) to §, then remove u from U and add it to C,
repeating until U is empty.

Once the spanning forest has been constructed, the model must fill in the rest of
the transition relation. It then ensures that each character ¢ € ¥ is associated with
exactly [n % r]| edges. If some oy has more than |n *r| transitions, replace random
transitions (u, 0, v) with (u, o1,v) for o9 # 01 and o7 € ¥. Then generate new edges
uniformly at random, as in the T-V model, for each character with fewer than |n |

transitions. We assume r > 1. The universality terrain is given in Figure 4.3.

33

Vertex-Copying Model, n=20

o o
S o

Probability of universality
o
=

0.2

Figure 4.1 : A vertex-copying Biichi universality terrain for n = 20. The transition
density r ranges from 1 to 3, and the copying probability b ranges from 0.2 to 0.8.
The accepting-state density f was set to 0.3. The universality probability is com-
parable to that of the T-V model for most values of r. Note that increasing b does
not monotonically increase universality probability — after a certain point it actually
reduces it. This may be because all transitions go to a small number of states, with
few transitions leaving them, increasing the likelihood of rejection.

34

Frank-Strauss Model, n=21

o
o

o
o

I
»

0.2

Probability of universality

Figure 4.2 : A Frank-Strauss Biichi universality terrain for [= 21. r ranges from 1 to
3 and f ranges from 0.2 to 0.8. While the universality probably scales more quickly
with r than in the T-V model, there are still a number of points where universality
is neither nearly guaranteed nor always absent.

35

Coaccessible Model, n=20

o
o

o
o

I
»

0.2

Probability of universality

Figure 4.3 : A co-accessible Biichi universality terrain for n = 20. The transition
density r ranges from 1 to 3, and f ranges from 0.2 to 0.8. Notice that the slope is
much shallower than in previous models. This gives us an extremely wide range of
useful configurations for testing.

36

4.2 Experiments - NFA

Having defined three new random models and, via universality testing, proven them
to be interesting for performance evaluation, we then use these models to run timing
experiments for ALASKA vs ALASKA-ZDD. As in the PREvious section, experi-
ments were run on the DAVinCI cluster at Rice University, which consists of many
Westmere nodes with 2.83 GHz processors and 48 GB of memory per node. We limit
each job to 30GB of memory and 10 minutes of time. Jobs that did not finish were
marked as timeouts.

As in the previous section, we run terrain experiments. In terrain experiments,
the size of the automata is held constant, and two other parameters are changed to
see the effects on running time. We generate 100 automata using each combination

of parameter values, and report median running time.

37

Tabakov-Vardi BDD Median Time n=4000 Tabakov-Vardi ZDD Median Time n=4000
z =
@ o o
E 300 E
e F
0.98 . \‘\
Ccept 05
ance 5 O
dep.. . .
e"s/l'y (0 on ("“\5\ e"s/ty (f) o ,‘(3“
Coaccessible BDD Median Time n=4000 Coaccessible ZDD Median Time n=4000
z 500
@ a0
E 300
E

Ac
ce”ta,,c 0s
e

026

dep,,
e"s/ ty, (f) on .“’d“

ep.,
ens; ty, (" on 1‘(’“‘

Figure 4.4 : For terrain experiments on the Tabakov-Vardi and coaccessible mod-

els, we tested parameter values of n = 4000, r € {1,1.5,2,2.5,3}, and f €

{0.02,0.26,0.5,0.74,0.98}. These graphs show results for ALASKA and ALASKA-
ZDD. Note that ALASKA performs better in most, but not all, cases.

Frank-Strauss BDD Median Time n=4000 Frank-Strauss ZDD Median Time n=4000

Time (s)
Time (s)

e"sity " on “'(3“ nsi ty, n on ,‘(A‘\

Figure 4.5 : For the Frank-Strauss model, we tested parameter values of n = 4005,
orl =89, r¢e{1,1.5,2,2.5,3}, and f € {0.02,0.26,0.5,0.74,0.98}.

38

Vertex-Copying BDD Median Time n=4000 Vertex-Copying ZDD Median Time n=4000

Time (s)
Time (s)

om
Ace, s
e, 0s
ptaflCe de 026
Nsity, P w0

Figure 4.6 : For the vertex-copying model, we tested parameter values of n = 4000,
r € {1,1.5,2,2.5,3}, f € {0.02,0.26,0.5,0.74,0.98}, and b € set0.2,0.5,0.8. We
combine data for all values of b in this chart, to fit it into three dimensions.

Based on Figs. 4.4 through 4.6, ALASKA-ZDD does not consistently outperform
ALASKA on random automata. However, we do find that, averaged across all models,
ALASKA-ZDD has 5.9% fewer overall timeouts than ALASKA. Every individual
model showed at least a 5.5% improvement. This suggests that ALASKA-ZDD may
perform more consistently on the most difficult subset of problems. These limited
results may because the calculation of PRE in ALASKA and ALASKA-ZDD uses
existential abstraction on the variables representing the states to determine which
predecessor macrostates a given state belongs in. Existentially abstracting out most
variables produces a Boolean function that produces true for many inputs, which are
difficult to represent with ZDDs. It may be possible to improve the algorithm for
ZDDs to avoid this construction in the future.

We also find that all random models agree extremely closely on the results for
ALASKA and ALASKA-ZDD, and which areas are easier or harder. Since many
different random models produce the same results, this strongly reinforces the hy-

pothesis that Tabakov-Vardi is a sufficiently robust random model with accurate

39

results. Nevertheless, this only shows evidence that Tabakov-Vardi is sufficient for
NFA universality. We also test with Biichi universality, another simple verification
problem that uses very different algorithms, to see whether Tabakov-Vardi is robust

across problems.

40
4.3 Experiments - Biichi Automata
4.3.1 Methodology

While Tabakov-Vardi seems to be robust on NFAs, it is not clear if this carries over
to infinite words. To examine this, we used our models to run timing experiments
for three universality checkers. We first compared the Rank and Ramsey tools® from
[5], expanding on previous work and seeing if our new models agreed with their
results. To acquire a more recent picture of the comparison between algorithms, we
also compared these tools with the RABIT 2.3 tooll, a more recent Ramsey-based
containment checker. As in previous sections, experiments were run on the DAVinCI
cluster at Rice University, which consists of many Westmere nodes with 2.83 GHz
processors and 48 GB of memory per node. We limited each job to 30GB of memory
and one hour of time. Jobs that did not finish were marked as timeouts.

We ran two types of experiments: terrain experiments and scaling experiments.
In terrain experiments, the size of the automata is held constant, and two other
parameters are changed to see the effects on running time. In scaling experiments,
all parameters are held constant except those affecting the size of the automaton,
and we steadily increase the size to see how the implementations respond to larger
problems. We conduct scaling experiments with parameters that are particularly
difficult for at least one tool to handle, as determined by the terrain experiments,
to test practical worst-case performance. We generated 100 automata using each
combination of parameter values in both kinds of experiments, and report median

running time.

Shttps://www.cs.rice.edu/CS/Verification/Software/software.html
Thttp://www.languageinclusion.org/doku.php?id=tools

T-V Ramsey Median Time n=100

074 3

(f) 098 «(bo

Ac °
CethHCQ density

T-V Rank Median Time n=100

i (f) 0.98

41

Figure 4.7 : For terrain experiments on the Tabakov-Vardi model, we tested parameter
values of n = 100, r € {1,1.5,2,2.5,3}, and f € {0.02,0.26,0.5,0.74,0.98}. These
graphs show results for the Rank and Ramsey tools. Note that Rank and Ramsey
are not directly comparable - Ramsey tends to be slower at points where » = 1.5 and
r = 2, while Rank tends to be slower at f = 0.02 and f = 0.26. This agrees with

previous results [5] using the Tabakov-Vardi model.

4.3.2 Results

42

Frank-Strauss Ramsey Median Time n=105

0.5

A
cceptance density

074 3

(f) 0.98 <<

A
cceptance density

Frank-Strauss Rank Median Time n=105

0.5

074 3

(f) 0.98 «‘$°

Figure 4.8 : For terrain experiments on the Frank-Strauss model, we tested parameter
values of n = 105, or I = 14, r € {1,1.5,2,2.5,3}, and f € {0.02,0.26,0.5,0.74,0.98}.
These graphs show results for the Rank and Ramsey tools. Again, the Rank model
tends to perform the slowest at low f and low r, while Ramsey is slowest at r = 2.
This agrees with our results on the Tabakov-Vardi model, as do the terrains of other

models found in the appendix.

43

We find both that choice of model does not seriously impact tool comparisons,
and that RABIT noticeably outperforms Rank and Ramsey.

In both terrain (Figs. 4.7, 4.8, 4.9) and scaling (Fig. 4.10) experiments, we find
that the relative efficiency of tools is very similar across models. All models show
that, as in the Tabakov-Vardi model in [5], the Rank and Ramsey are not directly
comparable — which parameters are used to generate an automaton determine which
tool solves it most efficiently, as seen in the terrain experiments in Figure 4.8. Since
all models agree with T-V here, it is reasonable to use the T-V model to compare
tools. Nevertheless, while models agree on the comparison between tools, they do
not have the same running time. For example, in Figure 4.10, we see on a log scale
that there is a factor of 10 difference between the running time of Ramsey on the
Tabakov-Vardi and co-accessible models. While Tabakov-Vardi’s tool comparisons
seem to be robust in this case, its precise runtimes are not. Thus, the T-V model
should be relied on for relative comparisons, but not for predicting runtimes.

Since there was little difference in comparison between models, Rank and Ramsey
compare similarly to their results in [5]. Yet, when we compare Rank to RABIT, we
saw a massive speedup at all difficult points — sometimes thousands of times faster.
At n = 100, the terrain was flat, with most cases terminating in just over a tenth of a
second. Therefore, the improved modern Ramsey tools are more suited for practical
use than Rank-based ones. However, as seen in Figure 4.9, random models can still
provide interesting performance terrain on the more efficient tools by scaling up the
size of the problems.

There is one noticeable difference between algorithms not shown — both Ramsey-
based algorithms used much more memory than Rank did. When provided with 5

gigabytes of memory, the Rank tool performed acceptably, but Ramsey and RABIT

44

crashed regularly. 30GB of memory provided was necessary to avoid crashes due to

running out of memory.

45

Tabakov-Vardi RABIT Median Time n=400

600 E

so0 @

400 .g

300 h

200

100

10
\\\

&

0.02

0.26
0.5

0.74

ACCEpt .
ance .
dens,ty {f) 0.98 «*’bo

Figure 4.9 : For all terrain experiments at n = 100 for RABIT, we found that the
terrain was entirely flat - very few problems took more than one second to terminate.
Therefore we show results for RABIT on n = 400, instead, with parameter values
re{1,1.5,2,2.5,3}, and f € {0.02,0.26,0.5,0.74,0.98}. Note that the maximum Y-
axis value is only 800 seconds, because at no point was the median result a timeout.
RABIT has the most difficulty at high transition density and extremely low accep-
tance densities, with orders of magnitude slower performance on f = 0.02. While
it does not appear on this graph, we also find that RABIT takes about two orders
of magnitude more time at r = 2.0 and high f than other areas, and one order of
magnitude less than the extremely difficult areas. Also, we find that at r = 1.5, we
consistently had a small (5%) chance of timeouts at all values of n tested with few to
no timeouts elsewhere, though the median time taken was no higher.

46

Scaling experiments, r = 1.5, f = 0.98

Time taken (s)

0.001

Size (n)
—— TV Rank --k--Coaccess Rank — A— F-SRank -k VC Rank
—&— TV Ramsey --m-- Coaccess Ramsey — B~ F-SRamsey ---#--- VC Ramsey
TV RABIT Coaccess RABIT F-SRABIT VC RABIT

Figure 4.10 : For this set of scaling experiments, we set r = 1.5 and f = 0.98, and
scale n from 10 to 100. In the Frank-Strauss model, [scales from 4 to 14. This
point was chosen for scaling because it is particularly difficult for Ramsey. On this
log-scale plot, different tools (indicated by shared color and marker shape) tend to
have similar slopes regardless of model (indicated by shared line style). Notably, an
obvious exponential gap exists between other models and Ramsey at these parameters
for every model except the trivally-easy vertex-copying model. Since f is high, this is
an easy point for Rank. The relationship between tools found by T-V is also reflected
in the other random models shown here.

Chapter 5

Conclusion

47

48

ALASKA provides a powerful tool for NFA universality based on subsumption
and symbolic representation with BDDs. Since subsumption reduces the space being
considered, it seemed plausible that ZDDs, useful for representing sparse functions,
could be more effective than BDDs for symbolically solving NFA universality. This
did not result in a general improvement in median time taken over BDDs in practice.
However, using ZDD-based approaches, we found a noticeable decrease in the number
of timeouts, suggesting that ZDDs avoid worst-case behavior in some scenarios.

While formal verification provides important software tools, it has been unclear
whether these tools are efficient enough to be used in practice. The Tabakov-Vardi
random model is a powerful tool for automata-theoretic formal verification, allowing
us to test the efficiency of algorithms for determining conformance to a specification.
Due to concerns about whether the model accurately reflected real-world performance,
we tested other models to see if the structure of a problem would influence the results;
we found that it did not, on both NFA unversality and Biichi universality. Future
work in the area can proceed to test algorithms and tools on the T-V model, more
confident that it is robust and that its results are widely applicable. This work gives
reason to believe that the Tabakov-Vardi model is a robust model with results that
are likely to be close to the real-world. Complementation, and thus containment
checking, should be practical on real-world problems.

We also discovered an improvement of many orders of magnitude in modern
Biichi containment checkers using a Ramsey-based approach. RABIT outperformed
both older Ramsey and rank-based tools significantly, and can scale to much higher
input sizes. Since little work has been done on rank-based solvers since 2010, cur-
rent heuristics-driven Ramsey-based approaches are the best available options for

containment checking for Biichi automata.

49

Acknowledgements Work supported in part by NSF grants CCF-1319459 and
I1S-1527668, by NSF Expeditions in Computing project ”ExCAPE: Expeditions in
Computer Augmented Program Engineering”, as well as the Data Analysis and Visu-

alization Cyberinfrastructure funded by NSF grant OCI-0959097 and Rice University.

1]

20

Bibliography

M. Vardi and P. Wolper, “An automata-theoretic approach to automatic pro-
gram verification,” in Proceedings of the First Symposium on Logic in Computer

Science, pp. 322-331, IEEE Computer Society, 1986.

M. Y. Vardi, “The Biichi complementation saga,” in Proc. 24th Sympo. on The-
oretical Aspects of Computer Science, vol. 4393 of Lecture Notes in Computer

Science, pp. 1222, Springer, 2007.

M. Tsai, S. Fogarty, M. Vardi, and Y. Tsay, “State of Biichi complementation,”

in Implementation and Application of Automata, pp. 261-271, Springer, 2011.

G. De Giacomo and M. Y. Vardi, “Linear temporal logic and linear dynamic

logic on finite traces.,” in IJCAI vol. 13, pp. 854-860, 2013.

S. Fogarty and M. Vardi, “Efficient Biichi universality checking,” in Tools and
Algorithms for the Construction and Analysis of Systems, pp. 205-220, Springer

Berlin Heidelberg, 2010.

J. E. Hopcroft, Introduction to automata theory, languages, and computation.

Pearson Education India, 2008.

L. Doyen, J. Raskin, K. Chatterjee, L. Doyen, T. Henzinger, and J. Raskin,
“Alaska: Antichains for logic, automata and symbolic kripke structures analysis,”

ATVA: Automated Technology for Verification and Analysis, vol. 3, pp. 153-168,

[10]

[11]

[12]

[13]

[14]

o1

2008.

D. Tabakov and M. Vardi, “Experimental evaluation of classical automata con-

structions,” LPAR, pp. 396411, 2005.

D. Tabakov and M. Vardi, “Model checking Biichi specifications,” in Proc. 1st
Int’l Conf. on Language and Automata Theory and Applications, pp. 565-576,
2007.

L. Doyen and J. Raskin, “Antichains for the automata-based approach to model-

checking,” arXiv preprint arXiw:0902.3958, 2009.

M. De Wulf, L. Doyen, T.A. Henzinger, and J. Raskin, “Antichains: A new
algorithm for checking universality of finite automata,” in Computer Aided Ver-

ification, pp. 17-30, Springer, 2006.

P.A. Abdulla, Y. Chen, L. Clemente, L. Holik, C. Hong, R. Mayr, and T. Voj-
nar, “Advanced Ramsey-based Biichi automata inclusion testing,” in CONCUR

2011-Concurrency Theory, pp. 187-202, Springer, 2011.

R. M. Karp, “The transitive closure of a random digraph,” Random Structures

& Algorithms, vol. 1, no. 1, pp. 73-93, 1990.

J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins, “The
web as a graph: Measurements, models, and methods,” in Computing and com-

binatorics, pp. 1-17, Springer, 1999.

O. Frank and D. Strauss, “Markov graphs,” Journal of the American Statistical

Association, vol. 81, no. 395, pp. 832-842, 1986.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

52

T. Leslie, “Efficient approaches to subset construction,” tech. rep., University of

Waterloo, Canada, 1995.

M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin, “Antichains: Alternative
algorithms for 1tl satisfiability and model-checking,” in International Conference

on Tools and Algorithms for the Construction and Analysis of Systems, pp. 63—
77, Springer, 2008.

“ALASKA wuser manual.” http://web.archive.org/web/20161009183809/

http://1it2.ulb.ac.be/alaska/usermanual.html. Accessed: 2018-06-12.

R. E. Bryant, “Symbolic boolean manipulation with ordered binary-decision di-

agrams,” ACM Computing Surveys (CSUR), vol. 24, no. 3, pp. 293-318, 1992.

K. S. Brace, R. L. Rudell, and R. E. Bryant, “Efficient implementation of
a bdd package,” in Design Automation Conference, 1990. Proceedings., 27th
ACM/IEEE, pp. 40-45, IEEE, 1990.

M. De Wulf, L. Doyen, N. Maquet, and J.-F. Raskin, “Alaska,” in International
Symposium on Automated Technology for Verification and Analysis, pp. 240-245,
Springer, 2008.

L. Doyen and J.-F. Raskin, “Antichain algorithms for finite automata,” in Inter-
national Conference on Tools and Algorithms for the Construction and Analysis

of Systems, pp. 2-22, Springer, 2010.

S. Haynal, “Pycudd, python wrapper for cudd.” http://web.archive.org/
web/20171210091429/https://bears.ece.ucsb.edu/pycudd.html. Accessed:

2018-06-15.

23

[24] F. Somenzi, “CUDD package, release 2.4.1.” http://vlsi.colorado.edu/

~fabio/CUDD/.

[25] A. Mishchenko, “Extra, zdd extension package for cudd.” http:
//web.archive.org/web/20180615161227 /https://people.eecs.berkeley.

edu/~alanmi/research/extra/. Accessed: 2018-06-15.

