


ABSTRACT

BDD-Based Boolean Synthesis

by

Lucas Martinelli Tabajara

Synthesizing a Boolean function satisfying a given relation between inputs and out-

puts is a problem with many applications in the verification and design of hardware

and software systems. In digital logic, Boolean synthesis can be used to automati-

cally design circuits that produce the desired behavior. In program synthesis, Boolean

functions can represent programs manipulating bit vectors and other data over finite

domains. Additionally, Boolean synthesis is an essential component of reactive syn-

thesis from temporal specifications, a problem that can be applied to automate the

design of safety-critical systems. Binary Decision Diagrams (BDDs) have historically

been popular data structures for representing Boolean functions, and BDDs are es-

pecially useful for the application of reactive synthesis, where they are particularly

well-suited for fixpoint computations over sets of states. However, recent works in

Boolean synthesis have raised concerns about the scalability of BDDs and chosen to

use alternative approaches, such as SAT solvers.

In this thesis, we show that BDDs remain viable structures for Boolean synthesis,

by developing a BDD-based synthesis framework that can in many cases outperform

alternative approaches. For cases where efficient BDD representations are hard to

construct, we demonstrate that techniques for decomposing a Boolean relation into

multiple smaller BDDs can be used to make BDD-based approaches competitive.
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Chapter 1

Introduction

Boolean functions appear in all levels of computing, and can fairly be considered one

of the most fundamental building blocks of modern digital computers. Often, the

most intuitive way of defining a Boolean function is not constructively, describing

how the outputs can be computed from the inputs, but rather declaratively, as a

relation between input and output values that must be satisfied [1]. Nevertheless, in

order to implement a function in a practical format, such as in a circuit or program, a

declarative definition is not enough, and a constructive description of how to compute

the output from the input is necessary. The process of converting a declarative

formalization to a constructive one is called functional synthesis [2].

Synthesizing a Boolean function satisfying a given relation between inputs and

outputs is a problem with applications in many areas of formal methods. Boolean

functions can both represent logical circuits and encode programs over finite domains,

and Boolean synthesis is an essential component of reactive synthesis from temporal

specifications [3, 4, 5], where the goal is to synthesize a model of a system that

interacts continuously with an environment.

When developing a Boolean-synthesis procedure, an important choice to be made

is of how to represent Boolean functions and relations, since this representation has

significant consequences on what operations can be efficiently performed. One repre-

sentation of Boolean functions that has been popular in many applications is Binary

Decision Diagrams (BDDs), data structures which represent Boolean functions as di-
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rected acyclic graphs. BDDs are widely used in existing tools for verification and

synthesis, especially in the context of reactive synthesis, where BDDs can be used to

symbolically represent sets of states of the system. One advantage of BDDs in this

context is that they are canonical, meaning that for a fixed ordering of the Boolean

variables, two BDDs representing the same function are identical. This property

makes equivalence checking extremely efficient for BDDs, making them particularly

well-suited for computing fixpoints, which are the basis for many reactive synthesis

algorithms. This fact motivates us to pursue BDD-based techniques for Boolean syn-

thesis, in order to develop Boolean-synthesis algorithms that can directly interface

with such tools, especially since Boolean synthesis has direct applications in reactive

synthesis.

However, to effectively use BDDs as tools for Boolean synthesis, it is necessary

to address some drawbacks of this data structure. In particular, the size of a BDD

is heavily dependent on the ordering chosen for the Boolean variables during its

construction, and computing an ordering that leads to an efficient representation is

not always easy, or even possible.

In this thesis, we show that when an efficient ordering for the input-output relation

is known, BDD-based Boolean synthesis excels over alternative approaches. Mean-

while, in the case when an efficient representation is not available, we demonstrate

how techniques for decomposing the relation into smaller formulas allow us to han-

dle cases that BDDs would otherwise be unable to, making BDD-based approaches

competitive with other tools. The main contributions of this thesis are as follows:

1. Introducing a technique called Self-Substitution for synthesizing functions from

Boolean formulas.
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2. Designing a Boolean synthesis framework based on Self-Substitution using BDDs

as the underlying data structures. When the synthesis problem can be efficiently

represented by a BDD, this approach outperforms non-BDD-based approaches.

3. Providing a specialization of the synthesis framework to the class of input-first

BDDs, for which we obtain significant improvements over the approach for

general BDDs.

4. Adapting techniques used in model checking for processing factored represen-

tations to synthesize cases which would otherwise be unfeasible for BDDs to

represent.

These contributions result in a flexible synthesis framework that can be applied

to automate the design of a variety of systems, including serial programs, circuits and

reactive systems.

To better understand the problem of Boolean functional synthesis and the role

played by BDDs in the context of this problem, in the next section we present an

overview of synthesis and the different variants of this problem within the area of

formal methods, starting from the origins of program synthesis from theorem-proving

procedures in first-order logic, to modern synthesis approaches focusing on specific

domains, including the synthesis of reactive systems, which forms one of the main

practical applications of Boolean synthesis.

1.1 Program Synthesis, Reactive Synthesis and Functional

Synthesis

Program synthesis is the problem of algorithmically constructing a program given

a specification of the program’s expected behavior. The roots of program synthesis
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can be traced back to deductive systems [6] where a program is constructed as a

byproduct of proving a theorem of the form ∀x.∃y.f(x, y). Such a theorem can be

interpreted as saying that for every input x there exists an output y that satisfies some

relation f(x, y). Then, from a constructive proof of the theorem it would be possible

to extract a function that, given an x, outputs a y satisfying f(x, y). Early approaches

attempted to prove general theorems in first-order logic, a problem which is in general

undecidable. Therefore, for an arbitrary theorem, there is no guarantee that such a

procedure will terminate. To be able to guarantee that the synthesis procedure will

produce a result for well-defined classes of formulas, more recent works on synthesis

tend to specialize in more restricted but decidable logic systems. We now look at

examples of such works representing different points of view on the synthesis problem

and how they relate to the work developed in this thesis.

Possibly the most prominent example of such a specialization is reactive synthe-

sis [7], which applies synthesis to specifications in temporal logic. In contrast with

the previous deductive systems, this form of synthesis does not intend to produce a

simple sequential program, but rather a system that continuously interacts with an

environment. This system can be, for example, a controller for a power plant, which

receives input signals from various sensors and responds by sending output signals to

physical actuators in order to maintain the correct operation of the plant. Reactive

synthesis has since become a well-studied problem in the field of formal methods, due

to its applicability in the automated design of safety-critical systems.

In contrast to reactive synthesis, the term functional synthesis was introduced

in [8] to denote the original application of synthesis to sequential programs. That

work avoids the incompleteness of the previous systems based on first-order logic

by proposing the development of fully decidable synthesis procedures for specific
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domains, such as Presburger arithmetic or sets with size constraints.

Following the above terminology, this thesis uses the term Boolean functional

synthesis to refer to the problem of synthesizing a function from Boolean inputs to

Boolean outputs. Since many data types can be encoded as bit vectors, including

integers, enumerations and sets, programs in a number of interesting domains can

be generated by this form of synthesis. Additionally, Boolean synthesis is equally

useful for designing logic circuits, since these are effectively physical implementations

of Boolean functions.

Furthermore, the applications of Boolean synthesis are not limited to sequential

programs and combinational circuits. In fact, Boolean functional synthesis has an

important application as a component of reactive synthesis. By encoding input and

output signals as well as the state of the system as Boolean values, a Boolean formula

can be computed that encodes the behavior of a reactive system in a single cycle,

which can then be synthesized using Boolean-synthesis techniques. A common way

of deriving this Boolean formula is through a fixpoint computation, for which BDDs

are particularly suited due to the efficiency of equivalence-checking for BDDs. With

this application in mind, BDDs are a natural choice for data structures for Boolean

synthesis.

Despite having been used in the past to synthesize Boolean functions [9, 10], more

recently BDDs have lost popularity due to the drawbacks mentioned earlier, which

often cause small BDD representations to be hard or even impossible to find for

certain formulas. For example, it has been shown that a Boolean formula encoding

the multiplication of two numbers in binary can only be represented by a BDD of

exponential size in the number of bits. In such a case, BDD-based methods might

not be applicable because the BDD for the relation cannot be constructed within
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reasonable time and memory constraints.

Given these observations, this thesis seeks to demonstrate two main claims. The

first is that for cases where an efficient representation of the relation as a BDD can

be obtained, BDD-based techniques significantly outperform alternative approaches.

The second is that when such a representation cannot be constructed, BDDs can

remain competitive by using factored representations. When employing a factored

representation, rather than using a single BDD, the relation is decomposed into mul-

tiple BDDs, such that the sum of the sizes of the individual BDDs can be much

smaller than the size of the BDD for the entire relation would be. A function that

satisfies the relation can then be synthesized by considering only some of the smaller

BDDs at a time, thus avoiding constructing the entire relation and significantly re-

ducing the size of the BDDs that must be manipulated. The next section presents a

more in-depth motivation and description of this approach.

1.2 Synthesis from Factored Formulas

The idea of decomposing, or factoring, Boolean formulas to allow for efficient repre-

sentation has been applied to a number of problems that can be solved using BDDs,

including model checking [11] and symbolic satisfiability [12]. This technique was

successful in allowing these problems to be applied to instances that would be infea-

sible when using a monolithic representation, that is, representing the entire formula

as a single BDD. By employing factored formulas, previous works were able to obtain

representations that were over 100 times smaller than the monolithic representation

would be [11].

Factored formulas take advantage of the fact that formulas used in practice often

are in the form of a conjunction (logical and) of constraints, such as f1(~x, ~y)∧f2(~x, ~y)∧
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...∧fn(~x, ~y). Instead of representing the entire formula in a single data structure, one

can instead represent each subformula fi(~x, ~y) of the conjunction individually, while

leaving the conjunction implicit. In this context, the subformulas are called factors,

and a formula is satisfied if and only if all of its factors are satisfied. For BDDs,

using factored formulas can significantly improve the efficiency of representation, since

BDDs can in the worst case have size exponential in the number of variables of the

formula. If each factor uses only a small subset of the variables, the size of each BDD

can be exponentially smaller than if all factors were combined.

However, model checking, symbolic satisfiability and synthesis all tend to process

formulas using existential quantification, which does not distribute over conjunction.

In other words, ∃~y.(f1(~x, ~y) ∧ . . . ∧ fn(~x, ~y)) is not equivalent to (∃~y.f1(~x, ~y)) ∧ . . . ∧

(∃~y.fn(~x, ~y)). In synthesis, for example, existentially quantifying a variable corre-

sponds to synthesizing a function that outputs a satisfying assignment for that vari-

able, so this limitation translates to the fact that a function that satisfies one of the

factors might not satisfy the others. This means that each factor cannot simply be

considered individually.

Following the approach employed in model checking and symbolic satisfiability, to

be able to perform synthesis using factored formulas while avoiding combining all the

factors, this thesis takes advantage of the fact that existential quantification of a vari-

able only needs to be applied to those factors in which the variable appears. Therefore,

by combining the factors one by one, a variable can be existentially quantified as soon

as all factors in which it appears have been processed. Although combining factors

tends to produce larger BDDs, existential quantification removes the variable from

the BDD, which tends to reduce its size. Therefore, if factors are processed in the

right order the size of the formula can be kept under control. Since in synthesis exis-
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tential quantification also corresponds to function construction, this also means that

it is likely that the synthesized functions will be smaller if quantification is performed

early.

1.3 Organization

In this thesis, we propose techniques for Boolean synthesis and evaluate their per-

formance using BDDs as the underlying data structure. We implement these algo-

rithms into a tool called RSynth, which we evaluate against non-BDD-based tools

for Boolean synthesis.

In Chapter 2, we introduce definitions and notation that will be used throughout

this thesis.

In Chapter 3, we review related work, survey different approaches developed for

Boolean synthesis in the past, and identify competing tools.

In Chapter 4 we formally define the Boolean functional synthesis problem and

present a technique called Self-Substitution that can be used to solve this problem.

We also provide a specialization of this technique to BDDs following a specific variable

ordering. We then compare our BDD-based implementation with pre-existing tools

and techniques.

In Chapter 5, we show how the performance of the synthesis algorithm can be

improved by applying techniques originated in the model-checking literature for fac-

toring a relation into several smaller BDDs. We extend our experimental evaluation

by comparing against other tools that operate on factored formulas.

Finally, Chapter 6 presents concluding remarks and future work.
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Chapter 2

Preliminaries

We start by presenting basic definitions and notation that will be used throughout

this work.

2.1 Boolean Functions

We denote by B = {0, 1} the set of Boolean values. We use the notation ~x to represent

a Boolean vector (x1, . . . , xm) ∈ Bm, for some positive integer m. For simplicity, we

often conflate a Boolean formula f over Boolean variables x1, . . . , xm with the Boolean

function f : Bm → B such that f(~x) = 1 if and only if ~x is a satisfying assignment of

formula f .

We use ¬, ∧, ∨, →, ↔ and ⊕ to denote the usual Boolean operations. Two

formulas f and f ′ are logically equivalent, denoted f ≡ f ′, if f(~x) = f ′(~x) for every

assignment ~x. Given formulas f(x1, . . . , xm) and f ′(y1, . . . , yn), we use f [xi 7→ f ′] to

denote the formula f(x1, . . . , xi−1, f
′(y1, . . . , yn), xi+1, . . . , xm), representing the func-

tional composition of f in variable xi with f ′. The sets of variables {x1, . . . , xm}

and {y1, . . . , yn} need not necessarily be disjoint. We say that a variable xi is in the

support of a formula f if xi determines the value of f , that is, f [xi 7→ 0] 6≡ f [xi 7→ 1].
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2.2 Quantified Boolean Formulas

We use ∀ and ∃ to denote universal and existential quantification over Boolean vari-

ables. A Quantified Boolean Formula, or QBF, is a Boolean formula in which some or

all of the variables are universally or existentially quantified. Unless stated otherwise,

we assume that all QBFs in this work are in prenex normal form, that is, in the form

Q1X1. . . . .QkXk.f(x1, . . . , xm), where Qi ∈ {∀,∃}, all Xi are disjoint lists over the

variables x1, . . . , xm, and f(x1, . . . , xm) is quantifier-free.

Every QBF can be converted into a logically equivalent quantifier-free formula

through a process of quantifier elimination. This is often performed through the

technique of Shannon Expansion [13], using the fact that ∀x.f ≡ f [x 7→ 0]∧f [x 7→ 1],

and ∃x.f ≡ f [x 7→ 0]∨f [x 7→ 1]. Given a QBF in prenex normal form, we can obtain

its equivalent quantifier-free formula by eliminating the quantifiers from the inside

out.

Given a formula f(~x, y), where ~x = (x1, . . . , xm), and a function g : Bm → B, if

f(~x, g(~x)) ≡ ∃y.f(~x, y), we say that g is a witness for y in f . Intuitively, if for a given ~x

there exists a y that satisfies f(~x, y), then g provides evidence of this fact by producing

such a y. In this context, witnesses are also called Skolem functions. Computing and

then substituting a Skolem function in a formula leads to an alternative method for

eliminating existential quantifiers. This technique is commonly called Skolemization.

2.3 Binary Decision Diagrams

A (Reduced Ordered) Binary Decision Diagram [13], or BDD for short, is a data

structure that represents a Boolean function as a directed acyclic graph consisting of

variable nodes and terminal nodes. A variable node is labeled by a variable in the sup-



11

port of the function and has two outgoing edges leading to different subgraphs. These

edges are respectively called the positive and negative edge, with the corresponding

subgraph being called the positive or negative child. In diagrams, we use solid edges

to denote positive edges and dashed edges to denote negative edges. Terminal nodes

are labeled by either the constant 1 or the constant 0.

To evaluate a BDD on an assignment to the variables, one starts at the root and

follows a path down the BDD by taking, at each variable node, the positive edge

if the variable is assigned 1 and the negative edge if the variable is assigned 0. The

evaluation of the assignment is given by the label of the terminal node that is reached.

Since BDDs represent Boolean functions, they can be manipulated using standard

Boolean operations. These operations can be implemented using a recursive traversal

of the DAG structure of the BDD. We overload the notation of all Boolean operators

as well as functional composition (e.g. B[xi 7→ B′]) with equivalent semantics to their

counterparts for Boolean formulas.

A BDD can be seen as a reduced representation of a binary decision tree of a

Boolean function. While the size of a binary decision tree always is always exponential

in the number of variables, a BDD can be significantly smaller. Figure 2.1 compares

the binary decision tree representation of a formula with its BDD. Like in a binary

decision tree, variables must follow the same ordering along every path of the BDD.

In a BDD, however, redundant nodes are eliminated by merging two nodes if they are

identical (same label and same children) and removing a node if both its edges point

to the same child. These compose the ordered and reduced properties of BDDs. For a

given variable ordering, the reduced BDD is canonical, meaning that two BDDs that

represent the same function are structurally identical. In practical implementations,

identical BDDs can be represented by the same object in memory, making checking



12
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x3

0 0

x2

x3

1 1

x3

1 0

(a)

x1

x2 x2

x3

0 1

(b)

Figure 2.1 : Comparison between the binary decision tree and BDD for the formula

((x1 ↔ x2) ∧ (x1 ↔ x3))⊕ x1.
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x1

x3

x5

x2 x5

x2

x2

x2

x4x4

x3

x5x5

x6

0 1

(a) x1 < x3 < x5 < x2 < x4 < x6

x1

x2

x3

x4

x5

x6

0 1

(b) x1 < x2 < x3 < x4 < x5 < x6

Figure 2.2 : BDDs for the expression (x1 ∧ x2)∨ (x3 ∧ x4)∨ (x5 ∧ x6) for two different

variable orderings. Missing positive edges are understood to lead to the terminal 1

and missing negative edges to the terminal 0.

equivalence between two BDDs very efficient.

The variable ordering used can have a major impact on the size of a BDD, and

two BDDs representing the same function but with different orderings can have an

exponential difference in size. Consequently, finding a good variable ordering is es-

sential for BDD-based Boolean reasoning. Figure 2.2 shows the difference between

two BDDs representing the same function but with different variable ordering.
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Chapter 3

Related Work

Due to its wide-ranging applications, including program synthesis, circuit design and

QBF certification, Boolean synthesis appears under many guises within and occa-

sionally outside the field of formal methods. In this chapter we present different

perspectives on the Boolean synthesis problem and identify previous approaches.

3.1 SAT-based Approaches to Boolean Synthesis

Possibly the clearest application of Boolean synthesis is in the synthesis of hardware

systems, since circuits are essentially physical realizations of Boolean functions. In

this context, it is natural for techniques commonly used for hardware verification,

such as BDDs, And-Inverter Graphs (AIGs) and SAT, to be leveraged for synthesis.

One of the main works in this vein is that of Jiang, Lin and Hung [14]. Due to

the limitations of BDDs discussed in Chapter 1, that work chooses to avoid BDDs

and instead construct Boolean functions in the form of AIGs using a SAT-based

interpolation procedure. Their experimental evaluation shows that this choice of

data structure allows functions to be constructed for cases where the relation cannot

be efficiently represented by BDDs. However, the same experiments showed that,

when the BDD for the relation could be constructed within the time and memory

constraints, the resulting functions were often smaller and had fewer logic levels. In

Chapter 4 we perform an experimental comparison with an implementation of this
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interpolation-based approach.

A more recent work by John, et al. [15] follows the previous approach by Jiang, et

al. in using SAT-based techniques and AIGs to represent Boolean functions. However,

they also attempt to take advantage of factored formulas for synthesis. Compared

to the work in this thesis, their approach uses a different solution to the problem

of performing existential quantification on factored formulas. First, functions are

synthesized independently for each factor. Although these functions satisfy the factors

from which they were extracted, they might not satisfy the entire formula. These

functions are then given as input to a counterexample-guided abstraction refinement

(CEGAR) loop, which combines the individual functions into a function satisfying the

entire formula. This CEGAR loop makes repeated calls to a SAT solver, which can

have a high cost in running time. In contrast, BDD-based approaches do not require

SAT calls, and BDDs can be very compact for small formulas, which leads to the

question of whether they can perform better and produce smaller functions than AIGs

when using factored representation. Therefore, that work forms the main baseline of

comparison in Chapter 5, where we focus on techniques for factored representation.

In their experimental comparison to other works, John, et al. also bring attention

to an alternative approach to Boolean synthesis. In this approach, Boolean functional

synthesis is interpreted as solving a quantified Boolean formula, allowing recent devel-

opments in solvers for such formulas to be leveraged for this problem. The following

section explores this connection.

3.2 Skolem Functions in QBF

The original view of synthesis as the process of deriving a constructive proof for a

theorem of the form ∀x.∃y.f(x, y) suggests a connection between Boolean synthesis
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and solving Quantified Boolean Formulas (QBF). In fact, in the same way that SAT

solvers can emit a satisfying assignment to the variables of a satisfiable formula, many

modern QBF solvers are able, when a quantified formula is true, to produce witnesses

in the form of Skolem functions [16, 17, 18]. As explained in Section 2.2, these are

functions for each of the existential variables in terms of the universal variables, such

that replacing each variable for its corresponding function satisfies the formula.

In the QBF literature, the primary importance of Skolem functions is as certifi-

cates which can be used to validate the truth of the QBF formula. However, the

ability of emitting Skolem functions allows QBF solvers to effectively be employed as

synthesizers for Boolean functions. The evaluation by John, et al. shows that when

used for this purpose they can often be very efficient. Additionally, QBF solvers are

not necessarily limited to formulas of the form ∀~x.∃~y.f(~x, ~y), but are able to solve and

construct Skolem functions for formulas with arbitrary combinations of quantifiers,

although at a higher cost as the number of quantifier alternations increases. However,

QBF solvers have the limitation that they can produce Skolem functions only if the

quantified formula is true, meaning that for every assignment of the universal vari-

ables there is a satisfying assignment to the existential variables. This is a problem

for synthesis, since specifications can often have unsatisfiable corner cases, that is,

particular inputs for which no output can satisfy the formula. For such specifications,

we would still like to construct a (partial) function that works on all satisfiable inputs.

The approach presented in this thesis has no such limitations. Rather, the relation

between inputs and outputs given as specification to the synthesis algorithm can

be unrealizable, that is, the relation can be such that for some inputs there is no

satisfying output. In this case, the synthesized function is still guaranteed to be

correct for all inputs that are satisfiable. In addition, the synthesis procedure also
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produces a precondition, a formula that defines exactly the set of inputs for which

the specification can be satisfied. This precondition can be used to test inputs before

they are passed to the function, guaranteeing that invalid cases do not occur.

QBF solvers, along with BDDs, AIGs, SAT and factored formulas, are familiar

tools in formal methods. These are techniques that are widely employed in the field

not only for synthesis but also for a number of different verification problems. How-

ever, a careful investigation reveals that the problem of finding Boolean functions

that satisfy a formula had previously appeared independently from formal methods

in the field of symbolic computation, under the name of Boolean unification. The

next section concludes this chapter by presenting this alternative point of view of the

problem, and how it can be explored for synthesis applications.

3.3 Boolean Unification

The problem of Boolean unification [19] is concerned with finding the solutions to a

Boolean equation of the form f(y1, . . . , yn) = 0. If f is allowed to contain constant

symbols x1, . . . , xm, then finding a solution is the same as synthesizing expressions for

y1, . . . , yn in terms of x1, . . . , xm. Since every Boolean formula can be written in this

equational form, Boolean unification is in a sense equivalent to Boolean functional

synthesis.

In contrast with works originating from the formal methods community, works on

Boolean unification are less concerned with scaling their techniques to large formulas

as required for practical application in circuit synthesis, for example. There have been

attempts to directly apply techniques from Boolean unification to synthesis [20], but

so far these two fields have largely remained separate.

Nevertheless, many of the basic concepts and algorithms in one field have analogs
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in the other, which makes translating between the two straightforward. Furthermore,

research in Boolean unification has revealed many theoretical insights that can be

leveraged for synthesis applications. For example, Boolean unification usually at-

tempts to generate not only one solution to a Boolean equation, but the set of all

solutions. Methods for constructing and representing such sets can be used to synthe-

size programs that enumerate all values that satisfy a Boolean expression. Boolean

unification algorithms have also been generalized beyond Boolean values to a wider

class of structures called Boolean rings. This insight might be a key for translating

Boolean-synthesis techniques to more general domains. Therefore, the theory behind

Boolean unification might lead to interesting directions of future research in Boolean

synthesis and generalizations of the problem.



19

Chapter 4

Boolean Synthesis by Self-Substitution

In this chapter, we follow a framework proposed in [14, 21] for algorithmically synthe-

sizing a correct-by-construction implementation of a desired Boolean function from a

relational specification. This relation is given as a propositional formula that relates

input and output variables. Our construction ensures that the function that we syn-

thesize produces the correct output for every input for which a corresponding output

exists. Our framework consists of two phases. The first phase is the realizability

phase, which includes the computation of the precondition p. The second phase is

the function-construction phase, in which we construct the function g implementing

the specification.

The proposed framework in [14] is based on representing Boolean functions by

means of And-Inverter Graphs (AIGs) [22]. In this work we adapt this framework to

the setting of Reduced Ordered Binary Decision Diagrams (BDDs) [13] BDDs provide

easy-to-manipulate canonical (and minimal) representations of Boolean functions in

which Boolean operations can be implemented efficiently. BDDs have found numer-

ous applications in a variety of settings, including model checking [23], equivalence

checking [24], and others. As mentioned in Chapter 1, our main motivation for using

BDDs is that Boolean functional synthesis is also a basic step in temporal synthesis,

a fundamental technique for constructing control software/hardware from temporal

specifications [7], which is most often implemented by using BDDs, cf. [25]. Thus,

our approach can be easily incorporated to temporal-synthesis tools. We discuss the
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differences between the AIG-based and BDD-based approaches below.

At the heart of our approach is a technique we call Self-Substitution, a simplifi-

cation of the Craig Interpolation-based approach that appears in [14]. A single-step

Self-Substitution enables us to extract a function g syntactically from the function

f for the case in which there is a single output variable. When there are multiple

output variables, we iterate the single-step for each of the output variables. We can

use Self-Substitution in this way both for quantifier elimination, in the realizability

phase, and for constructing the function g, one output variable at a time. We use

the CUDD [26] package for our implementation, and show that Self-Substitution can

be efficiently implemented through basic BDD operations by using the CUDD API.

Thus, Self-Substitution provides a novel way to perform quantifier elimination for

BDDs, where the standard technique has been Shannon Expansion [13].

We begin the synthesis process by converting the relational specification f into

a BDD. To obtain p we quantify out the output variables existentially one by one,

which can be done by either Shannon Expansion or Self-Substitution. Eliminating the

output variables one by one yields a realizability sequence fn, . . . , f0 of BDDs, where fn

is the specification f , and f0 is the desired precondition p. In the function-construction

phase again we use Self-Substitution, leveraging the realizability sequence f1, . . . , fn

to construct a function, represented as a BDD, for each output variable. At the

end, we obtain an n-rooted BDD for the implementation function g, where each root

represents a single output variable. Motivated by [8], we also study Self-Substitution

on a specific BDD order called input-first. In input-first BDDs, all input variables

precede output variables. We develop a novel method, TrimSubstitute, which

tailors Self-Substitution to input-first BDDs.

Our experimental evaluation relies on scalable problem instances rather than a
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random collection of problem instances, so we can evaluate the scalability of our

techniques. Our evaluations demonstrate that the proposed framework scales well

when the problem admits a good variable order, which is a well-established property

of BDDs [13]. Our comparisons also showed that our method outperforms the previ-

ous AIG-based approach and other state-of-the-art tools by orders of magnitude. We

also compare Self-Substitution as a quantifier-elimination technique against the stan-

dard Shannon-Expansion technique, and show that in many cases Self-Substitution

scales better than Shannon Expansion. In addition, we show that TrimSubstitute

outperforms Self-Substitution on input-first BDDs.

The contributions of this chapter are as follows: We offer a BDD-based approach

for Boolean Synthesis that is simple and requires only basic BDD procedures. We

show that our method outperforms other synthesis tools on scalable benchmarks. Our

method also suggests a novel way for BDD-based quantifier elimination. In addition

we also offer a technique for input-first BDD in which we tailor our method specifically

to this BDD order and show that we outperform all others tools.

4.1 Realizability and Synthesis

The problem of synthesis of Boolean functions is formally defined as follows.

Problem 4.1. Given a relation between two vectors of Boolean variables represented

by the characteristic function f : Bm × Bn → B, obtain a function p : Bm → B such

that p(~x) = 1 exactly for the inputs ~x ∈ Bm for which ∃~y.f(~x, ~y), and a function

g : Bm → Bn such that f(~x, g(~x)) = 1 if and only if p(~x) = 1.

In the context of this problem, f is called the specification, g is called the im-

plementation or witness function, and p is called a precondition. The specification
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is interpreted as describing a desired relationship between inputs and outputs of a

function, and the implementation describes how to obtain an output from an input

such that this relationship is maintained. The precondition indicates for which in-

puts the specification can be satisfied. in the expression f(~x, ~y), ~x = (x1, . . . , xm) are

called the input variables, and ~y = (y1, . . . , yn) the output variables. The function

that gives the i-th bit of g(~x) is called a witness-bit function, and is denoted by gi(~x).

A Boolean function f(~x, ~y) is said to be realizable for an input ~σ if ∃~y.f(~σ, ~y) ≡ 1.

We say that f is realizable if ∀~x.∃~y.f(~x, ~y) ≡ 1. For every assignment ~σ for ~x such

that f is realizable for ~σ we will have that p(~σ) = 1. In this case, g(~σ) is called a

witness for ~σ. In case p(~σ) = 0 we are not concerned about the output of g since f

is unrealizable for ~σ.

Following [14], the structure of our solution takes two steps, 1) Realizability, where

we obtain p by constructing a sequence of formulas with progressively fewer output

variables, and 2) Function construction, in which we synthesize a witness-bit function

from every formula in the sequence obtained in the realizability step.

To perform both steps, we suggest a novel method called Self-Substitution. In

Chapter 2 we observed that Boolean quantifier elimination is usually performed via

Shannon Expansion. More recently, it was proposed to use Craig Interpolation for

quantifier elimination (see [21]). Other quantifier elimination techniques (see [27])

require the formulas to be in CNF form, rather than the BDD representation we use.

We now introduce Self-Substitution as an alternative quantifier-elimination technique.

Lemma 4.1. (Self-Substitution for Quantifier Elimination) Let ϕ = Qy.f(~x, y) be

a QBF formula, where Q is either a universal or existential quantifier and f is

quantifier-free. Let q be 0 if Q is universal and 1 if Q is existential. Then, Qy.f(~x, y)

is logically equivalent to f(~x, f(~x, q)), and is also logically equivalent to f(~x,¬f(~x,¬q)).



23

Proof. If Q is an existential quantifier, we prove that for every assignment ~σ for

~x, ∃y.f(~σ, y) = 0 iff f(~σ, f(~σ, 1)) = 0: If ∃y.f(~σ, y) = 0, then f(~σ, y) = 0 for all

possible assignments of y. Since this includes f(~σ, 1), then f(~σ, f(~σ, 1)) = 0. On

the other hand, if f(~σ, f(~σ, 1)) = 0, then it cannot be the case that f(~σ, 1) = 1

(otherwise f(~σ, f(~σ, 1)) = f(~σ, 1) = 1). Therefore, f(~σ, 1) = 0, and so f(~σ, 0) =

f(~σ, f(~σ, 1)) = 0. Since both f(~σ, 1) = 0 and f(~σ, 0) = 0, then ∃yf(~σ, y) = 0. The

claim that for every assignment ~σ, ∃y.f(~σ, y) = 0 iff f(~σ,¬f(~σ, 0)) = 0 is proved

analogously. The proof when Q is a universal quantifier is derived by using the

identity ∀y.f(~x, y) ≡ ¬∃y.¬f(~x, y).

Following Lemma 4.1, quantifier elimination can be performed by replacing quan-

tified formulas by their quantifier-free equivalents. Table 4.1 compares the formulas

produced by quantifier elimination using Shannon Expansion and Self-Substitution.

The Self-Substitution method looks surprising at first glance. In the Shannon-

Expansion method it is easy to see that the size of the quantifier-free formula becomes

exponential compared to its quantified version, as it is a disjunction of all possible

assignments. In Self-Substitution such a blowup also takes place, but the encapsu-

lation of all assignments is more subtle. The depth of the nested functions for a

formula with n quantified variables is n + 1. Therefore all the possible assignments

for the quantified variables can be obtained recursively. For example let qi = 1 if the

quantifier Qi is existential, and qi = 0 if Qi is universal. Then a possible expansion

for two quantified variables is Q1y1.Q2y2.f(~x, y1, y2) = Q1.y1f(~x, y1, f(~x, y1, q2)) =

f(~x, f(~x, q1, f(~x, q1, q2)), f(~x, f(~x, q1, f(~x, q1, q2)), q2)).

The following lemma which appeared in many forms in various places, e.g. [28,

14, 9], is derived from Lemma 4.1 and shows how Self-Substitution can be used for

synthesis purposes.
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Table 4.1 : Equivalent formulas using each method of quantifier elimination

∀y.f(~x, y) ∃y.f(~x, y)

Shannon Expansion f(~x, 0) ∧ f(~x, 1) f(~x, 0) ∨ f(~x, 1)

Self-Substitution 1 f(~x, f(~x, 0)) f(~x, f(~x, 1))

Self-Substitution 2 f(x,¬f(~x, 1)) f(~x,¬f(~x, 0))

Lemma 4.2. (Synthesis by Self-Substitution) Let f(~x, y) be a Boolean formula with

free variables ~x and y. Then f(~x, 1) and ¬f(~x, 0) are witness functions to f(~x, y).

Proof. By Lemma 1, ∃y.f(~x, y) is logically equivalent to f(~x, f(~x, 1)) and to f(~x,¬f(~x, 0)).

Since p(~x) = 1 exactly for those ~x for which ∃y.f(~x, y) holds, both f(~x, f(~x, 1)) and

f(~x,¬f(~x, 0)) return 1 if and only if p(~x) = 1. Thus, f(~x, 1) and ¬f(~x, 0) are witness

functions to f(~x, y).

The witness f(~x, 1) is called the default-1 witness, while the witness ¬f(~x, 0) is

called the default-0 witness. The observation in [14] is that when f is realizable for all

~x, the conjunction of the two formulas ¬f(~x, 0) and ¬f(~x, 1) is unsatisfiable. From

a resolution proof of this unsatisfiability, one can extract a Craig interpolant, which

may be smaller than either f(~x, 1) or ¬f(~x, 0). Our experimental evaluation for our

benchmarks does not support this expectation, where we show the advantage of using

the witness function f(~x, 1) for synthesis and f(~x, f(~x, 1)) for existential-quantifier

elimination.
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4.2 Realizability and Function-Construction Using BDDs

Similarly to [14], we separate the synthesis approach into two phases. We call the first

the realizability phase, and the second the function construction phase. We assume

that the input is in the form of a BDD Bf that describes the function f(~x, ~y). When

f is obvious from the reference, we denote Bf by B.

4.2.1 Realizability

Our definition of p requires that p returns 1 exactly for those assignments of ~x for

which ∃~y.f(~x, ~y). This means p can be obtained by applying quantifier elimination

on the output variables. Recall that f has n output variables y1, . . . , yn. Typically,

the order of variables makes a major difference in constructing a BDD. However, in

this section we assume no specific order.

The basic idea is as follows: from the input BDD B, we construct a sequence

~B = 〈Bn, Bn−1, . . . B1, B0〉 of BDDs, where Bn = B, such that Bi−1 is logically

equivalent to ∃yi.Bi. Therefore, the BDD Bi−1 is constructed from Bi by eliminating

the existentially quantified variable yi. The elimination process guarantees that B0

represents the precondition p.

The elimination of yi from Bi can be done via either Shannon Expansion, or via

Self-Substitution. For Shannon Expansion, we define Bi−1 = Bi[yi 7→ 0]∨Bi[yi 7→ 1].

To use the Self-Substitution method, we define either Bi−1 = Bi[yi 7→ Bi[yi 7→ 1]] to

construct the default-1 witness for yi or Bi−1 = Bi[yi 7→ ¬Bi[yi 7→ 0]] to construct

the default-0 witness for yi.
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4.2.2 Function Construction

We next use the BDD sequence obtained in the realizability process to construct a

sequence of BDDs ~W = 〈Wn,Wn−1, . . . ,W1〉, each emitting an output bit.

By using Lemma 4.2, we perform the function-construction step as follows. Let

~B = 〈Bn, Bn−1, . . . , B1, B0〉 be the BDD sequence obtained in the realizability step,

and note that the output variables in the BDD Bi are y1, . . . , yi. We first construct

W1 from B1 by setting W1 = B1[y1 7→ 1] for a default-1 witness for y1 or W1 =

¬B1[y1 7→ 0] for a default-0 witness for y1. The structure of BDDs allows us to

define both B1 and ¬B1 without extra effort. Next, we inductively define either

Wi = Bi[y1 7→ W1, . . . , yi−1 7→ Wi−1, yi 7→ 1] for a default 1 witness for yi, or Wi =

¬Bi[y1 7→ W1, . . . , yi−1 7→ Wi−1, yi 7→ 0] for a default 0 witness for yi. Thus, every Wi

has only the input variables ~x, and represents the witness-bit function gi(~x). Thus,

the proof for the following theorem follows from Lemma 4.2.

Theorem 4.1. For every assignment ~σ for ~x, the sequence 〈g1(~σ), . . . gn(~σ)〉 is a

witness to ~σ. Thus ~W describes a witness function for B.

In practice, we chose, for simplicity, to use only the default-1 witnesses. In prin-

ciple, one could always choose the best among the default-0 and default-1 witnesses.

Since, however, we have n output variables, and the assignment of one of them affects

the others, finding the optimal combination of bit-witness functions requires optimiz-

ing over an exponentially large space, which is an expensive undertaking. Finding

such combinations of functions is a matter of future work.
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4.3 Synthesis of Input-First BDD

An input-first BDD is a BDD in which all the input variables precede all the output

variables. Synthesis using input-first BDDs was suggested in [8], but an explicit way

to do it was not provided. This specific order of variables of input-first BDDs has led

us to develop a method called TrimSubstitute for synthesis of input-first BDDs,

in which we tailor Self-Substitution specifically for the input-first order. Given the

input BDD, the running time of TrimSubstitute is at most quadratic in its size.

In Section 4.5 we show that TrimSubstitute indeed outperforms Self-Substitution

on input-first BDDs. In this section we give an outline of our method, together with a

proof of correctness and example. For simplicity TrimSubstitute produces default-

1 witnesses. With minor modification the TrimSubstitute method can produce any

desired combination of bit-witness functions.

An output node (resp. input node) in a BDD B is a node labeled with an output

(resp. input) variable. Recall that every non-terminal node in B has exactly two

children called high-child and low-child. Let B be an input-first BDD. We define

Fringe(B) to be the collection of all output nodes and terminal nodes in B that

have an input node as an immediate parent. Fringe(B) can be found by performing

standard graph-search operations (e.g. Depth-First-Search) on B. Note that every

assignment to the input variables defines a node in Fringe(B) obtained by following

that assignment. B is realizable exactly for those assignments for which the corre-

sponding node in Fringe(B) is not the terminal node 0.

Given an input-first BDD B, we assume without loss of generality that the order

of the output variables in B is y1, . . . yn. We construct a sequence of witness BDDs

~W = 〈W1, . . . ,Wn〉, in which every Wi contains only input variables, and represents

the witness-bit function gi(~x). To obtain ~W , we first construct a sequence of BDDs
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~B′ = 〈B′1, . . . , B′n〉 in which every B′i is an input-first BDD that contains all input

variables, plus only output variables from yi, . . . , yn. We obtain Wi from B′i by an

operation called “trim”, and obtain B′i+1 from B′i and W ′
i by an operation called

“substitute”, hence our method’s name TrimSubstitute. We next describe how ~B′

and ~W are obtained.

We assume by induction on i ≤ n that B′i is an input-first BDD that is realizable

for exactly the same inputs as B, and that contains input variables plus only output

variables from yi, . . . , yn. Setting B′1 = B, we already satisfy these assumptions for

the base case. We first construct Wi by “trimming” B′i, which means replacing each

node v in Fringe(B′i) with either the terminal node 0 or 1. Intuitively we construct

Wi to produce an output bit for yi in the “default-1” sense, i.e., Wi always produces

1 unless 1 is not a possible output bit for yi. Formally, this is done as follows.

Note that if a v ∈ Fringe(B′i) is the terminal node 0, then the assignment to yi is

irrelevant since the path to v corresponds to an unrealizable input, and so it can be

left as 0. If v is a variable node, it cannot be that both children of v are the terminal

node 0, as otherwise v itself would be reduced to 0. Therefore, if v is labeled by yi,

and the high-child of v is not the terminal node 0, replace v with the terminal node

1. Otherwise, if v is labeled by yi and the high-child of v is 0 (then the low-child of

v is not 0), replace v with the terminal node 0. For all other cases (v is labeled yj,

where j > i, or v is the terminal node 1), replace v with the terminal node 1. Note

that Wi has only input variables.

Finally, we use B′i and Wi to construct B′i+1. To do that, we define B′i+1 =

B′i[yi 7→ Wi]. That is, B′i+1 is constructed from B′i by “substituting” yi with Wi.

By construction we have that B′i+1 is an input-first BDD that is realizable for the

same inputs as B and that contains input variables plus only output variables from
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yi+1, . . . , yn. Therefore, the induction assumption is maintained. An example of the

construction can be found in Figure 4.1.

We now prove the correctness of the TrimSubstitute method. Let B be an

input-first BDD, and let ~B′ = 〈B′1, . . . , B′n〉 and ~W = 〈W1, . . . ,Wn〉 as defined above.

Given a BDD D, and a node v in D, let Dv be the subgraph of D rooted on v.

Assume z1, . . . zk are the variables of D. Then by following a partial assignment ~ν to

the variables of z1, . . . zi for some i, we follow a unique path in D that ends up in a

node v. Then the subgraph Dv is called the subgraph reached by following ~ν in D.

Theorem 4.2. The BDD sequence ~W = (W1, . . . ,Wn) describes a witness function

for B.

Proof. Let gi : Bm → B be the function that describes Wi. The following facts are

easily proved by induction on i.

1. Following the construction of Wi, for every realizable assignment ~σ to the input

variables, the path followed by (~σ, gi(~σ)) in B′i does not end in the terminal

node 0.

2. Following fact (1), and the construction of B′i+1, we have that for every realizable

assignment ~σ to the input variables, the subgraph reached by following ~σ in B′i+1

is identical to the subgraph reached by following (~σ, gi(~σ)) in B′i. Therefore B′i+1

is realizable for ~σ as well.

As a result, we specifically have that for every realizable assignment ~σ to the

input variables, the assignment (~σ, g1(~σ), . . . , gn(~σ)) leads to the terminal node 1.

This means that the BDD sequence ~W = (W1, . . . ,Wn) describes a witness function

for B.
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x1

x2 x2

y1 y1

y2 y2

0 1

(a) B′1 = B

x1

x2

0 1

(b) W1

x1

x2

y2 y2

0 1

(c) B′2

x1

x2

0 1

(d) W2

Figure 4.1 : Example of the TrimSubstitute method for a BDD representing the

formula (((x1 → ¬y1) ∧ (x1 ⊕ x2) ∧ (x1 ⊕ y2)) ∨ ((x1 ↔ x2) ∧ (y1 ⊕ y2))). Nodes with

bold outlines are in Fringe(B′i), and are either white if they should be replaced by

the leaf node 0 or gray if they should be replaced by the leaf node 1.
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In the last induction step we obtain an additional BDD B′n+1 which is realizable

for the same inputs as B, but contains only input variables. As such, B′n+1 encodes

the precondition p.

4.4 Benchmark Selection

Rather than using a random collection of problem instances for our experiments, we

selected a collection of scalable benchmarks, presented in Table 4.2, that operate over

vectors of Boolean variables. Each entry in the table represents a class of benchmarks

parameterized by the length n of the vectors. This allows us to produce benchmarks

of different size to measure how our techniques scale. For our experiments we vary n

in powers of 2 between 8 and 1024, totaling 42 benchmark instances. The first five

benchmark classes represent linear-arithmetic functions in which the vectors encode

the binary representation of integers in n bits, while the sixth represents the sorting

of a bit array of size n. The first column in Table 4.2 describes the function we

synthesize, where ~x and ~x ′ are vectors of input variables and ~y is a vector of output

variables. The relational specification of these functions are shown in the second

column. These specifications are translated to propositional-logic formulas and given

as input to the algorithm, which then constructs a BDD for the relational specification

and synthesizes the implementation function. All benchmarks are realizable for every

input, therefore the precondition is the constant function 1.

For completeness we show how to encode the specifications given in Table 4.2 into

propositional logic formulas (later represented as a BDD). We assume that an integer

is described by a vector of variables ~z = (zn, zn−1, . . . , z2, z1), where zn represents the

most significant bit and z1 the least significant bit. We now describe how specific

operations used in the high-level specifications are encoded in propositional logic.
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Table 4.2 : Benchmark classes used for synthesis.

Function to synthesize Specification

Subtraction ~y = ~x ′ − ~x ~y + ~x = ~x ′

Maximum ~y = max(~x, ~x ′) (~y ≥ ~x) ∧ (~y ≥ ~x ′) ∧ ((~y = ~x) ∨ (~y = ~x ′))

Minimum ~y = min(~x, ~x ′) (~y ≤ ~x) ∧ (~y ≤ ~x ′) ∧ ((~y = ~x) ∨ (~y = ~x ′))

Floor of average ~y =

⌊
~x+ ~x ′

2

⌋
(2~y = ~x+ ~x ′) ∨ (2~y + 1 = ~x+ ~x ′)

Ceiling of average ~y =

⌈
~x+ ~x ′

2

⌉
(2~y = ~x+ ~x′) ∨ (2~y = ~x+ ~x ′ + 1)

Sorting ~y = sort(~x) sorted(~y) ∧ (Σn
i=1xi = Σn

j=1yj)

4.4.1 Relational Operations

The formulas (z = z′), (z ≤ z′) and (z ≥ z′) are encoded respectively as ϕ=, ϕ≤ and

ϕ≥, as follows:

ϕ= :=
n∧
i=1

(zi ↔ z′i) (4.1)

ϕ≤ := ϕn, where ϕi := (¬zi ∧ z′i) ∨ ((zi ↔ z′i) ∧ ϕi−1) and ϕ0 := 1 (4.2)

ϕ≥ := ϕn, where ϕi := (zi ∧ ¬z′i) ∨ ((zi ↔ z′i) ∧ ϕi−1) and ϕ0 := 1 (4.3)

4.4.2 Addition

Since addition is an operation that returns an integer rather than a Boolean, it can-

not be implemented as a single Boolean formula. Rather, it produces n formulas

ϕ+
n , . . . , ϕ

+
1 representing a new integer, which can be later combined into a single for-

mula through one of the relational operators above. The encoding for the + operator
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follows the usual representation of addition in binary:

ϕ+
i := zi ⊕ z′i ⊕ ci−1

where ci := (zi ∧ z′i) ∨ (zi ∧ ci−1) ∨ (z′i ∧ ci−1).

In this encoding, ci represents the carry-out from the addition in the i-th position.

The carry-in for the first position, c0, is normally 0, but can be set to 1 to add an

extra term of 1 to the sum, which is useful in the formulas for average.

In the Subtraction benchmark class, + is interpreted as addition modulo n. On the

other hand, in the high-level formulas for average we need the result of the addition

with an extra bit added if necessary. This extra bit can be obtained by simply taking

cn. Therefore the comparisons in these formulas are actually performed over (n+ 1)-

bit integers.

4.4.3 Sorting

The specification for the Sorting benchmark class requires a more careful encoding. In

Table 4.2, its high-level specification is given as sorted(~y) ∧ (Σn
i=1xi = Σn

j=1yj) where

~x and ~y are interpreted as bit arrays. The first conjunct says that the output must

be sorted, meaning that all 0 bits must precede all 1 bits. This is defined recursively

for a range of consecutive positions yi, . . . , yj by saying that either all the variables

are assigned to 1, or the first is 0 and the rest are sorted. The function sorted(~y) is

defined as:

sorted(yi, . . . , yj) =


1, if i = j(∧j

k=i yk

)
∨ (¬yi ∧ sorted(yi+1, . . . , yj)) , if i 6= j
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The second conjunct in the Sorting specification says that the output must have

the same number of bits set to 1 as the input. In the high-level representation, this

can be represented by Σn
i=1xi = Σn

j=1yj, but in practice it is not necessary to use

summation in the encoding. Instead, the propositional logic formula for this property

can be represented by a recurrence and constructed using dynamic programming:

ϕ0,0 = 1

ϕi,0 = ¬xi ∧ ϕi−1,0

ϕ0,j = ¬yj ∧ ϕ0,j−1

ϕi,j = ((xi ↔ yj) ∧ ϕi−1,j−1) ∨ (xi ∧ ¬yj ∧ ϕi,j−1) ∨ (¬xi ∧ yj ∧ ϕi−1,j) (4.4)

In this encoding, ϕi,j means that x1, . . . , xi has the same number of 1s as y1, . . . , yj.

This is obtained by matching each bit that is set to 1 in the input with a bit that is

set to 1 in the output, and skipping bits that are set to 0.

Note that some of these encodings can be optimized, for example the specification

for Sorting can be reduced by testing at the same time if the input is sorted and it

has the same number of 1s as the output. This can shorten the construction time,

but since it is logically equivalent to the original formula, by the canonicity property

of BDDs, the resulting BDD for the specification will be the same.

4.5 Experimental Evaluation

We compare our approach with two current state-of-the-art methods: the Craig

Interpolation-based approach [14] and Sketch [29]. In addition, we compare be-

tween Shannon Expansion and Self-Substitution as quantifier-elimination methods

to be used for the realizability phase. Finally, we see how the TrimSubstitute

method, specialized to input-first BDDs, compares with the generic Self-Substitution
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method when using this type of BDD.

For purposes of evaluation we have constructed a tool, called RSynth, imple-

mented in C++11 using the CUDD BDD library [26]. Self-Substitution was imple-

mented using the built-in method Compose for BDD composition. That way, for a

BDD B representing a function f(~x, y), the BDD for f(~x, f(~x, 1)) is computed as

B.Compose(i, B.Compose(i, bddOne)), where bddOne is the BDD for the constant

1 and i is the index of variable y. All the experiments in this paper were carried

out on a computer cluster consisting of 192 Westmere nodes of 12 processor cores

each, running at 2.83 GHz with 4 GB of RAM per core, and 6 Sandy Bridge nodes

of 16 processor cores each, running at 2.2 GHz with 8 GB of RAM per core. Since

the algorithm has not been parallelized, the cluster was used solely to run different

experiments simultaneously. The execution of each benchmark for a given n had a

maximum time limit of 8 hours.

4.5.1 Scalability Comparison with Previous Approaches

We compared the performance of RSynth with the Craig Interpolation approach

from [14] that synthesizes functions in the format of AIGs, and the Sketch synthesis

tool [29] that uses syntax-guided search-based synthesis. The original tool for Craig

Interpolation from [14] was not available, therefore we used an implementation of the

same method, which is called MonoSkolem, from [15].

Since BDD sizes can blow up if a poor variable order is chosen, causing initial

BDD construction time to dominate the overall running time, we selected a variable

order that can be expected to produce efficient BDDs for our benchmarks. For that,

we chose an order called fully interleaved, in which the variables are ordered according

to their index, alternating input and output variables.
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Figure 4.2 : Comparison of running time of RSynth against MonoSkolem

We show the results of the comparison for the Subtraction, Maximum and Ceiling

of Average benchmark classes in Fig. 4.2. Similar results were obtained for the other

arithmetic benchmarks. Recall that n is the number of variables in each vector ~x,

~x ′ and ~y, therefore the total number of variables in each case is 3n, with 2n input

variables and n output variables.

Sketch is omitted from Fig. 4.2 because it was unable to synthesize the bench-

marks for any n greater than 3, in all cases either timing out or running out of mem-

ory. For the two remaining approaches, it is noticeable that RSynth outperformed

MonoSkolem by orders of magnitude, and scaled significantly better.

Although these results seem to lean considerably in favor of our approach, note

that the benchmark classes used so far are deterministic (relations that have a unique

implementation), while Craig Interpolation is reported to produce better results for
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Table 4.3 : Non-deterministic benchmark classes

Input Output Specification

Decomposition ~x ~y, ~y ′ ~x = ~y + ~y ′

Equalization ~x, ~x ′ ~y, ~y ′ ~x+ ~y = ~x ′ + ~y ′

Intermediate value ~x, ~x ′ ~y (~x ≤ ~y ∧ ~y ≤ ~x ′) ∨ (~x ′ ≤ ~y ∧ ~y ≤ ~x)

non-deterministic relations by exploiting the flexibility in the choice of witness. To

address these factors, we added to the same setting an additional collection of lin-

ear arithmetic operations, represented in Table 4.3, this time of non-deterministic

benchmarks.

Contrary to expectations, as Fig. 4.3 shows, our method gives better performance

for the non-deterministic benchmark classes as well. From this we can conclude that

despite the flexibility that Craig Interpolation provides, it does not necessarily exploit

the don’t-cares of the input specification efficiently. These results are supported by

the ones obtained in [15], which reported that the quality of the results obtained when

using Craig Interpolation depended strongly on the interpolation procedure of finding

good interpolants, something which is not guaranteed to happen. Comparison of the

size of the implementation between RSynth and MonoSkolem also showed that

the functions constructed by Craig Interpolation are much larger.

These results allow us to conclude that with a good variable order to the function

being synthesized, our method scales well and outperforms previous approaches. For

linear arithmetic operations, we can identify fully-interleaved to be such an order.
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Figure 4.3 : Comparison of running time using non-deterministic benchmarks.

4.5.2 Shannon Expansion vs. Self-Substitution

As mentioned in Section 4.2, the first step of the synthesis, realizability, requires

quantifier elimination, which can be performed by either Shannon Expansion or Self-

Substitution. We compared these two techniques by measuring the running time of

the realizability phase using each of them. Our experiments show that the realizabil-

ity step is responsible for only a small fraction of the running time of the synthesis.

For the arithmetic benchmarks with fully-interleaved order, this step is performed in

under 1s in all cases, even for n = 1024. In order to better observe the difference be-

tween the two quantifier-elimination techniques, we measured them using the Sorting

benchmark class, for which the BDD representation is not as efficient.

As can be seen in Fig. 4.4, as n grows Self-Substitution tends to perform bet-
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Figure 4.4 : Comparison of Shannon Expansion and Self-Substitution, for the realiz-

ability step of the Sorting benchmark class.

ter than Shannon Expansion, taking approximately 30% less time to perform the

realizability step for n = 256 (the same behavior was observed on the arithmetical

benchmarks, using different variable orders). Thus, our experiments show an ad-

vantage in using Self-Substitution for quantifier elimination in the realizability step.

Note that both Self-Substitution and Shannon Expansion are semantically equivalent,

and thus produce identical BDDs. Therefore, the difference in performance between

the two methods originates solely from the application of the CUDD operation itself

over the constructed BDD. One reason for this might be because Shannon Expan-

sion produces two indermediate BDDs for the cofactors f(~x, 0) and f(~x, 1), while

Self-Substitution produces only one for f(~x, 1). Shannon Expansion is currently the

standard way of performing quantifier elimination on Boolean formulas, but our ex-
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Figure 4.5 : Comparison of Self-Substitution and CUDD’s native quantifier-

elimination method, for the realizability step of the Sorting benchmark class.

periments indicate that Self-Substitution can be often more efficient and should be

considered for practical applications.

In practice, however, the CUDD package includes a native implementation of

quantifier elimination tailored specifically for BDDs, in the form of a method called

ExistAbstract. The logic behind this method follows similar principles to Shannon

Expansion and Self-Substitution. However, it performs quantifier elimination by di-

rectly manipulating the internal structure of the BDD, allowing better performance

than implementations which have to go through the CUDD API. Fig. 4.5 shows the

comparison of Self-Substitution and ExistAbstract for the realizability step, and un-

surprisingly we can see that the native implementation is able to achieve significantly

better running time.
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Sorting benchmark class

4.5.3 Synthesis for Input-First BDDs

Following a suggestion in [8] for synthesis of propositional logic, we presented in Sec-

tion 4.3 the TrimSubstitute method for BDDs that follow an input-first order. We

compared the performance of TrimSubstitute with Self-Substitution (using Self-

Substitution for both realizability and function construction) on input-first BDDs.

We first observed that construction time of the input-first BDD for the arithmetic

benchmark classes scales poorly and was very large even for a relatively small n.

The reason is that in the input-first order, the BDD is forced to keep track of all

relevant information about the input before looking at the output variables. Thus,

the constructed BDD must have a path for every possible output of the function being
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synthesized. Since in the arithmetic benchmarks, the number of such paths is 2n, it

does not pay off to use an input-first order for these benchmarks, regardless of the

efficiency of the synthesis algorithm used.

On the other hand, for other classes of specifications the amount of information

that must be memorized about the input can be polynomial or even linear in size.

An example for that is the Sorting benchmark class, in which it is only necessary to

keep track of the number of 1s in the input; thus, only n paths are required in the

constructed BDD. In this case, although the construction time of the initial BDD

still dominates the running time (experiments showed construction to take around

1200s for n = 256), the size of the constructed BDD scales much better and makes

synthesis feasible for a larger number of bits. The development of techniques to lessen

the impact of construction time is a matter of future work.

Fig. 4.6 shows a comparison of running time between the Self-Substitution and

TrimSubstitute methods for Sorting. We can see that TrimSubstitute greatly

improves over Self-Substitution, performing around 50 times faster for n = 256. These

results imply that when the specification can be efficiently represented as an input-

first BDD, TrimSubstitute can be used to obtain a significant improvement in

synthesis time.

4.6 Experimental Comparison with CUDD v3.0.0

The results from the previous section were published in the 28th International Confer-

ence on Computer-Aided Verification (CAV 2016) [30]. It later came to our attention

that the latest version of the CUDD package (3.0.0), released shortly before the work’s

submission, includes a method called SolveEqn for solving Boolean equations, based

on techniques for the problem of Boolean unification discussed in Section 3.3. Because
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Figure 4.7 : Comparison of running time of RSynth and the CUDD implementation

SolveEqn on deterministic benchmarks.

of the relationship between Boolean unification and synthesis, this operation can be

used to perform Boolean synthesis, and although developed independently it corre-

sponds in a way to a package-level implementation of the techniques presented in this

chapter. Since SolveEqn is implemented at a lower level, it can exploit the internal

structure of the BDD representation and perform optimizations in the algorithm that

our implementation cannot.

With that in mind, we perform an additional experimental comparison, between

the Self-Substitution approach implemented in RSynth and the SolveEqn method

from CUDD. We use the same arithmetic benchmarks from Section 4.5. Fig. 4.7 shows

the results for the deterministic benchmarks, while Fig. 4.8 shows the results for the

non-deterministic benchmarks. As expected, the CUDD implementation outperforms
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RSynth in most of the benchmarks. The Intermediate-value benchmark was the only

one for which RSynth is able to obtain a slightly better performance. These results

are not surprising, and match the ones for quantifier elimination in Section 4.5.2.

Methods implemented at the package level can make better use of the structure of

BDDs to improve performance.

However, the picture changes when we focus on input-first BDDs, in which case

RSynth can use the TrimSubstitute method. Fig. 4.9 shows a comparison of

SolveEqn and TrimSubstitute for the Sorting benchmark using input-first BDDs,

where we can see that TrimSubstitute is able to outperform the CUDD implemen-

tation by a full order of magnitude. This shows that the specialized nature of Trim-

Substitute is able to produce a non-trivial improvement in performance, enough to
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SolveEqn using input-first BDDs for the Sorting benchmark class

surpass the native implementation. Differently from Self-Substitution, TrimSubsti-

tute makes use of the BDD structure, which might have also contributed to being

able to outperform a package-level method.

4.7 Conclusion

In this chapter we introduced BDD-based methods for synthesizing Boolean functions

from relational specifications. We suggested a method called Self-Substitution for

both quantifier elimination and function construction. We also suggested a method

called TrimSubstitute, which outperforms Self-Substitution on input-first BDDs.

We demonstrated that our methods scale well for benchmarks for which we have good
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BDD variable order, and outperform prior techniques.

Although our implementation of Self-Substitution is outperformed by the native

implementation of SolveEqn in the latest version of the CUDD package, the theory

behind it still holds value, and because it does not depend on the structure of the

representation it can be easily applied to other data structures, including the large

number of existing BDD variants and alternative representations such as AIGs.

The performance of the synthesis methods for BDDs depends crucially on the

choice of variable order. However, finding a good variable order is not only hard in

general, but also impossible for some specifications. It is know that there exist formu-

las for which there is no order that produces a polynomial-size BDD [13]. Therefore,

a key challenge is to lessen the impact of the BDD size in the synthesis process. For

this purpose, in the next chapter we explore the use of factored formulas, which have

been successfully used in both symbolic model checking [11] and satisfiability testing

[12], and which are able to produce significantly more compact representations of

specifications.
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Chapter 5

Synthesis from Factored Formulas

In Chapter 4, we presented a framework for performing Boolean synthesis using Bi-

nary Decision Diagrams (BDDs). The efficiency of BDDs, however, is highly de-

pendent on finding a good variable ordering, which is a hard optimization problem.

Furthermore, it is well-known that there are interesting Boolean formulas that can-

not be represented by a polynomial-sized BDD. This is part of the reason why recent

works have avoided BDDs in favor of approaches using SAT solvers, such as the

Craig-Interpolation approach from [14].

Nevertheless, the evaluation that we presented in Section 4.5 shows that BDD-

based techniques can be very competitive when the specification can be efficiently

represented by a BDD and a good variable ordering is known. This raises the question

of whether it is possible to find a way to employ BDD-based techniques even in

cases when a BDD for the specification cannot be constructed. In other applications

where the use of BDDs is common, the solution to this problem came in the form of

factored representations of formulas, which allow a much wider range of instances to

be effectively computed [11].

Factored representations are based on the fact that it is common for Boolean

formulas of practical importance to be represented by conjunctions of constraints. In

other words, a Boolean formula f(~x, ~y) might be written in the format f1(~x, ~y)∧ . . .∧

fk(~x, ~y). In this case, rather than constructing a single monolithic BDD B for f , we

can instead represent the formula as a collection of BDDs B1, . . . , Bk for each of the
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factors f1, . . . , fk, implicitly interpreted as a conjunction. Since conjoining multiple

BDDs can lead to a combinatorial explosion, the factored representation is usually

significantly more compact.

In symbolic model checking, where the idea of factored BDD representations orig-

inated, this approach was able to reduce the size of representations of transition

relations by an order of magnitude [11]. Since then, different techniques have been

developed for further improving performance, including heuristics for clustering and

reordering factors [31]. Similar techniques have been used for processing factored

formulas in the context of symbolic satisfiability [12]. In this approach to the satis-

fiability problem, a CNF formula is encoded by partitioning the set of clauses and

representing each partition as a BDD. Then, symbolic quantifier elimination is used

to find if there is a satisfying assignment to the formula. In this paper we show

how techniques and heuristics used in these applications can be adapted to perform

synthesis from factored specifications.

Other approaches have been developed for synthesis of factored formulas that do

not employ BDDs. A recent work [15] uses And-Inverter Graphs (AIGs) for represent-

ing Boolean formulas and a counterexample-guided abstraction refinement (CEGAR)

loop for synthesizing the function. A downside to this approach is that the CEGAR

loop requires repeated calls to a SAT solver, which can have a high cost in run-

ning time. Furthermore, BDDs can be very compact for small formulas, which poses

the question of whether they can produce smaller functions than AIGs when using

factored representation.

A different synthesis approach is based on the close relation between Boolean

synthesis and QBF solving. The CNF formulas given as input to QBF solvers are

special cases of factored formulas, and a number of modern solvers are capable of
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computing Skolem functions for the existential variables in terms of the universal

variables [16, 17]. Therefore, by writing a specification f(~x, ~y) in CNF, the synthesis

problem can be encoded as a QBF ∀~x.∃~y.f(~x, ~y).

Although QBF solvers can be very efficient in solving these formulas, they are

able to synthesize Skolem functions only when the QBF ∀~x.∃~y.f(~x, ~y) evaluates to

true. This corresponds to the case when the specification f(~x, ~y) is realizable, that

is, when every input ~x has an output ~y that satisfies f , and consequently p(~x) ≡ 1.

In many applications of Boolean synthesis we are interested, however, in unrealizable

specifications as well. One such a case is LTLf synthesis using DFA games [32], in

which a winning strategy might not exist for every state of the automaton, but we

would like to synthesize this strategy for all states for which it exists.

In our experimental evaluation, we first compare our implementation using fac-

tored representation with the monolithic approach, allowing us to confirm that indeed

factoring the specification allows us to synthesize a number of instances that would

be otherwise intractable. We then compare our implementation using BDDs to two

other tools: CegarSkolem [15, 33], which uses the CEGAR-based approach, and the

QBF solver CADET [17]. The results show that no approach is universally better,

and every tool outperforms the others in some subset of the benchmarks. Although

the QBF approach has a clear advantage for realizable specifications, being unable to

handle unrealizable instances limits its applicability in a number of practical cases.

Beyond performance, an advantage of using BDDs is that this makes the approach

easier to integrate in temporal synthesis applications, such as [32]. This is because

such applications usually employ some kind of fixpoint computation, for which BDDs

are particularly suited due to the ease of checking if two BDDs are equivalent. Using

other representations for Boolean formulas, such as AIGs or CNF, it becomes harder
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to perform such computations.

5.1 Synthesis from Factored Formulas

In this section, we start by formally defining the notion of factored representations

and present some of their properties. We then describe a method for performing

synthesis over factored representations.

5.1.1 Factored Representation of Boolean Formulas

Let the specification f for an instance of the Boolean synthesis problem be of the

form f(~x, ~y) = f1(~x, ~y) ∧ f2(~x, ~y) ∧ . . . ∧ fk(~x, ~y). Each formula fi is called a factor

of f . The sequence of BDDs 〈B1, B2, . . . , Bk〉, where Bi is the BDD encoding of fi,

is called the factored representation of f . In contrast, the representation of f as a

single BDD B is called the monolithic representation.

Note that it is possible for a formula to have an exponential monolithic represen-

tation and a polynomial factored representation. In particular, the factored represen-

tation of a formula in CNF can always be linear, since the BDD of a single clause is

linear in size.

Although factored representations can be exponentially more compact than mono-

lithic representations, they introduce complications into the synthesis procedure. To

understand why, first note from the definition of Boolean synthesis that there is a close

connection between Boolean synthesis and quantifier elimination. In fact, substitut-

ing the implementation g(~x) in the specification f(~x, ~y) is equivalent to existentially

quantifying ~y, and the precondition p(~x) is exactly the result of this quantification.

Then, recall that existential quantifiers do not distribute over conjunction. That is,
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in general

∃y1, . . . , yn.
k∧
i=1

fi(~x, ~y) 6≡
k∧
i=1

∃y1, . . . , yn.fi(~x, ~y)

More precisely, as pointed out in [15], the right-hand side is an over-approximation

of the left-hand side, meaning that every assignment of ~x that satisfies the left-hand

side satisfies the right-hand side, but not vice-versa.

As a consequence, if we are given a factored representation of a Boolean formula,

it is not clear how to perform existential quantifier elimination, and consequently

synthesis, without conjoining the factors. However, the insight first employed in [11]

is that it is possible to move conjuncts outside an existential quantifier if the quantified

variable does not appear in the support of the conjunct. Formally, let Fj ⊆ {1, . . . , k}

be the set of indices i such that yj is in the support of fi. Then,

∃y1, . . . , yn.
k∧
i=1

fi(~x, ~y)

≡ ∃y1, . . . , yn−1.

(
∃yn.

∧
i∈Fn

fi(~x, ~y)

)
∧
∧
i 6∈Fn

fi(~x, ~y)

Using the relation between synthesis and existential quantification, we obtain the

following result:

Lemma 5.1. Let f(~x, ~y) = f1(~x, ~y) ∧ f2(~x, ~y) ∧ . . . ∧ fk(~x, ~y) be a specification and

gj(~x) be a witness to yj in
∧
i∈Fj fi(~x, ~y). Then, gj(~x) is a witness to yj in f(~x, ~y).

Proof. Since gj(~x) is a witness to yj in
∧
i∈Fj fi(~x, ~y), then by definition∧

i∈Fj

fi(~x, ~y)

 [yj 7→ gj(~x)] ≡ ∃yj.
∧
i∈Fj

fi(~x, ~y)

To prove that gj(~x) is also a witness of f(~x, ~y), it needs to be shown that f(~x, ~y)[yj 7→
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gj(~x)] ≡ ∃yj.f(~x, ~y). But

f(~x, ~y)[yj 7→ gj(~x)]

≡

∧
i∈Fj

fi(~x, ~y) ∧
∧
i 6∈Fj

fi(~x, ~y)

 [yj 7→ gj(~x)]

≡

∧
i∈Fj

fi(~x, ~y)

 [yj 7→ gj(~x)] ∧
∧
i 6∈Fj

fi(~x, ~y)

≡

∃yj. ∧
i∈Fj

fi(~x, ~y)

 ∧ ∧
i 6∈Fj

fi(~x, ~y)

≡ ∃yj.

∧
i∈Fj

fi(~x, ~y) ∧
∧
i 6∈Fj

fi(~x, ~y)


≡ ∃yj.f(~x, ~y)

Therefore, gj(~x) is a witness of f(~x, ~y).

From Lemma 5.1 we have that a witness for a variable in a factored formula

can be constructed from only the factors in which that variable appears. Since in

practice each variable will only be in the support of a small subset of the factors,

this insight means that it is possible to perform synthesis without converting entirely

from the factored to the monolithic representation. Instead, we can design a strategy

for synthesis directly over factored formulas.

5.1.2 Synthesis from Factored Specifications

Algorithm 5.1 presents a synthesis framework that takes advantage of the factored

representation of the specification, using the insight from Lemma 5.1 to avoid con-

joining all factors at once. Instead, we conjoin the factors one-by-one, and after each

conjunction synthesize and eliminate the variables that do not appear in the support
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of any of the remaining factors. This strategy is similar to the ones followed in model

checking [11] and symbolic satisfiability [12] from factored representations.

We assume the existence of a monolithic Boolean synthesis procedure, such as

the ones presented in Chapter 4, denoted by synth(B,X, Y ), which receives a BDD

B, a set of input variables X and a set of output variables Y , and returns a BDD

P representing the precondition and a sequence of BDDs (Wj)yj∈Y representing the

implementation.

We start, in line 2, by partitioning the output variables into sets Y1, . . . , Yk such

that yj ∈ Yi if and only if Bi is the last factor where yj appears. In other words,

yj ∈ Yi if and only if maxFj = i. We maintain a BDD B which accumulates the

factors. In line 3, B is initialized to the empty conjunction, which is equivalent to the

constant 1. We then iterate over the factors, conjoining the next factor to B at every

iteration in line 5. Once Bi is conjoined, none of the output variables in Yi appear

in any of the remaining factors. The monolithic synthesis procedure is then called in

line 6 to synthesize witnesses for every variable in Yi, in terms of the input variables

x1, . . . , xm and the output variables in Yi+1, . . . , Yk. Then, in line 7, B is updated to

the precondition Pi, which corresponds to the conjunction of the first i factors with

the output variables in Y1 ∪ . . . ∪ Yi existentially quantified.

After the end of the loop, every witness Wj for yj ∈ Yi has the variables from

Yi+1, . . . , Yk in its support set. In the last step, performed by the loop in lines 9-13,

these extra variables are eliminated by substituting their respective witnesses, making

every Wj dependent only in the input variables x1, . . . , xm.

The following theorem states the correctness of Algorithm 5.1, which follows from

the correctness of the monolithic synthesis procedure and Lemma 5.1.
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Figure 5.1 : Synthesis from Factored Specifications

Input: Factored representation 〈B1, . . . , Bk〉 of the specification.

Output: Precondition BDD P , witness BDDs 〈W1, . . . ,Wn〉.

1: X ← {x1, . . . , xm}

2: Yi ← {yj | Bi is the last factor where yj appears}

3: B ← 1

4: for i← 1 . . . k do

5: B ← B ∧Bi

6: Pi, (Wj)yj∈Yi ← synth(B,X ∪ Yi+1 ∪ . . . ∪ Yk, Yi)

7: B ← Pi

8: end for

9: for i← 1 . . . k do

10: for i′ ← (i+ 1) . . . k do

11: W` ← W`[yj 7→ Wj], for all y` ∈ Yi, yj ∈ Yi′

12: end for

13: end for

14: P ← B

15: return P,W1, . . . ,Wn
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Theorem 5.1. If P,W1, . . . ,Wn are computed according to Algorithm 5.1, then

∃y1, . . . , yn.(B1 ∧ . . . ∧Bk) ≡ P ≡ (B1 ∧ . . . ∧Bk)[y1 7→ W1, . . . , yn 7→ Wn]

Proof. We assume the correctness of the monolithic synthesis procedure synth, mean-

ing that synth(B,X, Y ) returns a precondition P , and a witness Wj for each variable

yj ∈ Y in terms of the variables in X, such that ∃Y.B ≡ P ≡ B[yj 7→ Wj]yj∈Y .

Consider the loop in lines 4-8. We will first prove that if at the start of the i-th

iteration B ≡ ∃Y1, . . . , Yi−1.(B1∧ . . .∧Bi−1), then at the end of the i-th iteration B ≡

∃Y1, . . . , Yi.(B1∧. . .∧Bi). We will use this to prove that P ≡ ∃y1, . . . , yn.(B1∧. . .∧Bk)

Assume that at the start of the i-th iteration B ≡ ∃Y1, . . . , Yi−1.(B1 ∧ . . .∧Bi−1).

Then, after line 5, B ≡ (∃Y1, . . . , Yi−1.(B1 ∧ . . . ∧ Bi−1)) ∧ Bi. Since Y1, . . . , Yi−1

do not appear in Bi, the quantifier can be moved outside the conjunction, so B ≡

∃Y1, . . . , Yi−1.(B1 ∧ . . . ∧Bi−1 ∧Bi).

Then, in line 6 the monolithic synthesis procedure is called on B, with input

variables X ∪ Yi+1 ∪ . . . ∪ Yk and output variables Yi. By the correctness of the

monolithic procedure, Pi ≡ ∃Yi.B ≡ ∃Y1, . . . , Yi−1, Yi.(B1 ∧ . . . ∧ Bi−1 ∧ Bi). Then,

after line 7, when B is updated to Pi, B ≡ ∃Y1, . . . , Yi−1, Yi.(B1 ∧ . . . ∧Bi−1 ∧Bi).

Therefore, if B ≡ ∃Y1, . . . , Yi−1.(B1 ∧ . . .∧Bi−1) at the start of the i-th iteration,

B ≡ ∃Y1, . . . , Yi.(B1 ∧ . . . ∧ Bi) at the end of the i-th iteration. Taking i = 1, this

means that if B ≡ 1 (the empty conjunction) before the loop then at the end of

the first iteration B ≡ ∃Y1.B1. Since the invariant B ≡ ∃Y1, . . . , Yi.(B1 ∧ . . . ∧ Bi) is

maintained, at the end of the last iteration B ≡ ∃Y1, . . . , Yk.(B1∧. . .∧Bk). Therefore,

after line 14, P ≡ ∃Y1, . . . , Yk.(B1 ∧ . . . ∧Bk), as desired.

We now prove that (B1 ∧ . . . ∧ Bk)[y1 7→ W1, . . . , yn 7→ Wn] ≡ ∃Y1, . . . , Yk.(B1 ∧

. . . ∧ Bk). In iteration i, we construct Wj for every yj ∈ Yi. Since at this time
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B ≡ ∃Y1, . . . , Yi−1.(B1∧ . . .∧Bi−1∧Bi), by the correctness of the monolithic synthesis

procedure, (∃Y1, . . . , Yi−1.(B1∧. . .∧Bi−1∧Bi))[yj 7→ Wj]yj∈Yi ≡ ∃Y1, . . . , Yi−1, Yi.(B1∧

. . . ∧Bi−1 ∧Bi). Then, since no variables in Y1, . . . , Yi−1 appear in Bi,

∃Y1, . . . , Yi.(B1 ∧ . . . ∧Bi)

≡ (∃Y1, . . . , Yi−1.(B1 ∧ . . . ∧Bi))[yj 7→ Wj]yj∈Yi

≡ ((∃Y1, . . . , Yi−1.(B1 ∧ . . . ∧Bi−1)) ∧Bi)[yj 7→ Wj]yj∈Yi

Applying this transformation recursively to ∃Y1, . . . , Yk.(B1 ∧ . . . ∧ Bk) results in

(. . . (B1[yj 7→ Wj]yj∈Y1 ∧ B2)[yj 7→ Wj]yj∈Y2 ∧ . . . ∧ Bk)[yj 7→ Wj]yj∈Yk . Applying

Lemma 5.1, we can move the composition operators outside the conjunction, giving

∃Y1, . . . , Yk.(B1 ∧ . . . ∧Bk)

≡ (B1 ∧ . . . ∧Bk)[yj 7→ Wj]yj∈Y1 . . . [yj 7→ Wj]yj∈Yk

Recall that each Wj for yj ∈ Yi might contain variables from Yi+1, . . . , Yk in its

support set. Because of this, we cannot change the order of the composition operators.

However, the loop in lines 9-13 performs the composition of each witness with the

ones that succeed it, making every Wj dependent only on x1, . . . , xm. This allows

the compositions to be performed in any order, so that ∃Y1, . . . , Yk.(B1 ∧ . . .∧Bk) ≡

(B1 ∧ . . . ∧Bk)[y1 7→ W1, . . . , yn 7→ Wn].

A problem with Algorithm 5.1 is that performance will be very dependent on the

order of the factors. Consider for example a specification in which for every i, the

output support of fi is {y1, . . . , yi}. Then, Y1 = Y2 = . . . = Yk−1 = {} and Yk =

{y1, . . . , yn}. Processing the factors in order will result in all factors being conjoined

before any witness can be synthesized, thus degenerating into the monolithic synthesis

procedure. On the other hand, processing the factors in the reverse order would allow

one variable to be synthesized immediately after each conjunction. Therefore, it is
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clear that the algorithm can benefit from reordering the factors before starting the

synthesis. Finding the optimal order is a combinatorially hard problem, but a number

of heuristics can be used instead. Another possible improvement in the algorithm

is clustering, a technique that has been employed in other applications which use

factored representations of formulas [34, 35, 12]. In clustering, the set of factors

is first partitioned, and the factors in each partition are conjoined into monolithic

clusters. The algorithm is then applied over the clusters rather than the individual

factors. The next section explores different heuristics for clustering and reordering.

5.1.3 Clustering and Reordering

As noted in [34], if the individual BDDs for each factor are small, it is often better to

combine different factors into monolithic clusters. If the clusters are constructed so

that they remain of reasonable size, clustering reduces the number of iterations while

not excessively increasing the cost in space.

Formally, given a factored formula f(~x, ~y) = f1(~x, ~y)∧f2(~x, ~y)∧. . .∧fk(~x, ~y) a clus-

tering heuristic partitions the set of factors {f1, f2, . . . , fk} into κ disjoint non-empty

subsets C1, . . . , Cκ, called the clusters. In practice, each cluster Cι is represented by

a BDD Bι encoding the formula
∧
fi∈Cι fi(~x, ~y). Since conjunction is associative and

commutative, 〈B1, . . . ,Bκ〉 is itself a factored representation of the original formula

f . Therefore, Algorithm 5.1 can be applied normally to this representation.

The goal of clustering is to create a balance between the number of factors and size

of the factors. An example of clustering strategy is rank-based clustering, employed

in [12]. In this strategy, for every variable yj, cluster Cj = {fi | rank(fi) = j}, where

rank(fi) is the highest index among the variables in the support of fi.

Rank-based clustering naturally gives rise to some reordering heuristics, in which
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clusters are ordered either by increasing or decreasing rank. Two more options for

reordering factors appear in the context of model checking in [31]. In that work,

factored formulas are used to represent transition relations, and different reordering

heuristics are used in the forward and backward simulation steps. The following are

the four heuristics used in this work:

Bouquet’s method [12] Order clusters by increasing rank.

Bucket elimination [12] Order clusters by decreasing rank.

Forward [31] Greedily order factors by number of variables that can be eliminated

once the factor is conjoined. In other words, at every step choose the factor that has

the greatest number of output variables that do not appear in any of the remaining

factors.

Backward [31] Order factors such that at every step the next factor will be the one

that has the fewest new variables, that is, variables that have not appeared in any of

the previous factors. This heuristic tries to avoid as much as possible increasing the

size of the conjoined BDD.

All of the above heuristics for clustering and reordering can be applied to synthe-

sis from factored representations, but it is unclear which would give better results.

Section 5.2 describes an experimental evaluation of the different techniques.

5.1.4 BDD Variable Ordering

The size of BDDs is strongly influenced by the ordering of the variables. Part of

the goal of using factored representations is to be able to represent specifications
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for which a good variable ordering is not known beforehand. Rather than using an

arbitrary variable ordering for these cases, it would be good to be able to compute

one by analyzing the structure of the formula. Similarly to clustering, finding the

optimal variable ordering is a hard combinatorial problem, but numerous heuristics

have been developed to find good enough approximations.

One such heuristic is the inverse maximum cardinality search (MCS) ordering [36].

This variable ordering is constructed based on the Gaifman graph of the formula

f(~x, ~y) = f1(~x, ~y)∧. . .∧fk(~x, ~y), defined asG = (V,E), where V = {x1, . . . , xm, y1, . . . , yn}

and E = {(v1, v2) | there exists an i such that v1 and v2 are in the support of fi}. In

other words, the Gaifman graph of a factored formula has one vertex for each variable

and has an edge between every pair of variables that share a factor.

The inverse MCS order can be computed from the Gaifman graph by the following

procedure:

1. Initialize an empty list L.

2. At each step, select the vertex v ∈ V not in L with the largest number of

neighbors in L. Add v to L.

3. After all vertices have been added, reverse L, so that vertices added later come

first in the ordering.

Other heuristics for variable ordering were studied in [12], but among them the

inverse MCS heuristic had the best results in that work. Therefore, this heuristic was

chosen for the experiments in this paper.
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5.2 Experimental Evaluation

We performed the experiments using QBF benchmarks taken from the QBFLIB col-

lection [37]. All benchmarks selected were of the form ∀~x.∃~y.f(~x, ~y), where f(~x, ~y) is

a CNF formula. In this case, synthesis corresponds to finding a Skolem function to

the existential variables. Every clause in f(~x, ~y) can be considered one factor.

We implemented the factored algorithm from Section 5.1 and the various heuristics

for clustering and reordering factors in our tool RSynth, implemented in C++11

using the CUDD package. As mentioned in Section 4.6, the most recent version of

CUDD includes a monolithic Boolean synthesis procedure SolveEqn, which uses a

similar algorithm as the one presented in Section 4.2. We used this procedure in our

implementation as the synth subroutine.

All experiments were executed in the DAVinCI cluster at Rice University, consist-

ing of 192 Westmere nodes of 12 processor cores each, running at 2.83 GHz with 4

GB of RAM per core, and 6 Sandy Bridge nodes of 16 processor cores each, running

at 2.2 GHz with 8 GB of RAM per core. The algorithm has not been parallelized, so

the cluster was solely used to run multiple experiments simultaneously.

Besides comparing the monolithic and factored algorithms and evaluating different

reordering heuristics, we also compare our tool RSynth with two existing tools for

Boolean synthesis. The first is the CegarSkolem tool from [15], which uses a SAT-

based CEGAR loop and AIGs to perform synthesis from factored formulas. The

second is the 2QBF solver CADET [17].

All plots in this section are shown in log scale. Each benchmark was given a time

limit of two hours. Only a subset of the total set of benchmarks is included in the

plots. Benchmarks for which the results were similar to already-included benchmarks

were omitted, as well as benchmarks for which all or almost all of the methods timed
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out.

5.2.1 Heuristics for Factor Reordering

We first measure the performance of the factored algorithm using different reordering

heuristics. The bar plots on Figure 5.2 show the running time of each heuristic

on different benchmarks. Figure 5.2a shows the results for Bouquet’s Method and

Bucket Elimination, while Figure 5.2b shows the results for the Forward and Backward

heuristics. The bars labeled None show the running time when no heuristic is used

and the factors are simply processed in the order they are given in the input file.

Surprisingly, the results show that using no reordering is often preferable. In most

of the instances, the best running time was achieved with no reordering. In fact, there

are some benchmarks which none of the heuristics were able to synthesize in the time

limit, but which succeeded when no reordering was used.

This result leads to the conclusion that for these benchmarks the clauses of the

CNF formulas were already in a good order. This might be due to the fact that often

CNF formulas are constructed in a way that places clauses with the same variables

close to each other. To confirm that indeed the original clause order was a good one,

we also ran experiments where the clauses were reordered randomly. In this case,

all benchmarks from Figure 5.2 except for mutex2, qshifter3 and qshifter4 timed

out. Considering that using the original ordering given in the input file allowed all

benchmarks to be synthesized, we conclude that the order of the clauses in a typical

CNF benchmark is not arbitrary, and rather it is often a very natural order for them

to be processed. Additionally, although not performing as well as the original order,

the performance of heuristics such as Bouquet’s Method and Bucket Elimination show

that they already bring significant improvements to an arbitrary ordering.
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Figure 5.2 : Performance of the factored algorithm using different reordering heuris-

tics, in log scale. The values include both the time spent reordering the factors and

time running the algorithm. Bars of maximum height indicate instances that timed

out. Bars not displayed mean that the instance took less that 1ms.
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The performance of the other heuristics varied depending on the type of bench-

mark. Every heuristic performed better than all the others on at least one case.

Overall, however, the Forward heuristic seems to have the worst scalability, timing

out for most of the instances. This is likely due to it being a greedy heuristic which

tries to synthesize as many variables as possible at each step, causing the size of the

BDDs to quickly increase.

5.2.2 Factored vs. Monolithic

Next, we compare the running time of the factored algorithm with synthesis using

the monolithic procedure. In the latter, the running time includes the time necessary

to conjoin all the factors to create the monolithic representation. Given the previous

results, no reordering was used for the factored approach. Results are shown in the

bar plot on Figure 5.3.

It is immediately noticeable that the monolithic approach in most cases displays a

much poorer performance compared with the factored one. In the few cases where the

monolithic algorithm outperforms the factored algorithm, it is only by a small margin.

On the other hand, there are several cases where the factored algorithm outperforms

the monolithic one by an order of magnitude or more. There are additionally a number

of cases synthesized by the factored algorithm which the monolithic algorithm is not

able to solve in the time limit. This indicates that it is worthwhile to take advantage

of factored representation for synthesis, and that it allows a number of instances to

become feasible compared to a monolithic representation.

These results raise the question of whether one should always give preference to

a factored algorithm, even when it is known that the specification can be efficiently

represented by a monolithic BDD. To try to answer this question, we repeated the
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Figure 5.3 : Performance of the monolithic and factored synthesis algorithms, in log

scale. Bars of maximum height indicate instances that timed out.

experiments performed in the previous chapter using the Subtraction, Maximum, Min-

imum, Floor of Average and Ceiling of Average classes of benchmarks, all of which

have linear-sized monolithic BDD representations. This time, we ran each benchmark

on both the monolithic and factored synthesis algorithms.

The results for these experiments can be found in Figure 5.4, which shows the

running time of each algorithm on the Subtraction, Maximum and Ceiling of Average

classes as a function of the length n of the vectors of Boolean variables. Although both

algorithms scale similarly, for the Subtraction and Maximum classes the monolithic

algorithm outperformed the factored algorithm by a significant margin, while for

the Ceiling of Average class the factored algorithm performed slightly better. This

demonstrates that it is not always preferable to use a factored algorithm when an
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Figure 5.4 : Comparison of running time for monolithic and factored algorithms on

the deterministic benchmarks of Section 4.5.

efficient monolithic representation is known. Note that the values of the running

time are higher than the ones obtained in Section 4.5. This is due to the fact that

the specifications were converted to CNF in order to obtain a factored representation.

This conversion leads to the introduction of a high number of fresh variables which

have to be existentially quantified during the algorithm, adding to the running time.

5.2.3 Comparison with CegarSkolem and CADET

Finally, we compare the performance of RSynth with the CEGAR-based approach

used in the CegarSkolem tool and the QBF solver CADET. Given the results

of previous experiments, we select the factored algorithm with no reordering for the

comparison.
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Figure 5.5 : Comparison of running time between RSynth, CegarSkolem and

CADET, in log scale. Bars of maximum height indicate instances that timed out.

Figure 5.5 shows a comparison of running time between RSynth, CegarSkolem

and CADET on the same benchmarks used in the previous experiments. All of the

benchmarks are realizable, allowing CADET to be used for them. Out of 161 total

benchmarks, RSynth was able to synthesize 87 and CegarSkolem 52. There were

only 6 benchmarks in which CegarSkolem outperformed RSynth, all from the

rankfunc class. However, CADET had by far the best performance in almost all

instances, usually by orders of magnitude, and was able to synthesize all but one of

the 161 benchmarks. This leads to the conclusion that the QBF approach is preferable

when the specification is realizable.

Figure 5.6 shows a comparison of the size of the synthesized functions between the

three tools. RSynth produces functions in the form of BDDs, while CegarSkolem

and CADET produce functions in the form of AIGs, therefore the comparison is in
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Figure 5.6 : Comparison of function size, in number of nodes, between RSynth, Ce-

garSkolem and CADET, in log scale. The size is not displayed for those instances

in which the tool timed out.

number of nodes of these data structures. Missing bars mean that the tool timed

out for that particular instance. RSynth produced smaller functions for about half

of the benchmarks, while CADET had smaller functions for the other half. This

demonstrates that in many cases BDDs are indeed able to produce a more compact

representation than the one obtained by AIGs.

The main conclusion that we can draw from this comparison is that, for realizable

specifications, synthesis approaches based on QBF will likely dominate in terms of

running time. In general, however, QBF solvers do not support the generation of

Skolem functions when the formula ∀~x.∃~y.f(~x, ~y) evaluates to false, i.e., f(~x, ~y) is

unrealizable. Therefore, for unrealizable specifications it becomes necessary to turn
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Figure 5.7 : Comparison of running time between RSynth and CegarSkolem

tools, in log scale, over unrealizable benchmarks. Bars of maximum height indicate

instances that timed out.

to other synthesis approaches. This brings up the question of how RSynth and

CegarSkolem perform in synthesizing unrealizable instances. The next section

presents an evaluation dedicated to answering this question.

5.2.4 Unrealizable Specifications

For the next comparison, we also used QBF benchmarks of the form ∀~x.∃~y.f(~x, ~y)

from QBFLIB. This time, however, the quantified formulas evaluate to false, meaning

that f(~x, ~y) is unrealizable. Since CADET is unable to handle such cases, we only

perform a comparison between RSynth and CegarSkolem for these formulas.

Figure 5.7 shows the running time of each tool in a set of unrealizable benchmarks.
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Comparing RSynth and CegarSkolem, we see that the results vary depending on

the instance, with either tool outperforming the other on a subset of the benchmarks.

There are also many cases which one of the tools is able to synthesize while the other

times out. In total, 227 benchmarks were solved by at least one of the tools, with

CegarSkolem performing best in 118 cases, and RSynth performing best in the

remaining 109. This result suggests that no approach is strictly better than the other,

and the best choice will likely depend on the specific instance of the problem.

5.2.5 QBF for Unrealizable Formulas

The performance of QBF solvers when the specification is realizable invites the

question of whether we can find a way to exploit them in synthesizing unrealiz-

able formulas as well. It turns out that it is possible to transform an unrealiz-

able formula into a realizable one with the same witnesses by adding an additional

quantifier alternation. This idea is well known in the context of arithmetic real-

izability [38]. In our case, given a quantified formula ∀~x.∃~y.f(~x, ~y), we can con-

struct a formula ∀~x.∃p.(p ↔ ∃~y.f(~x, ~y)), which is always true. By a few simple

transformations, we obtain ∀~x.∃p.(¬p ∨ ∃~y.f(~x, ~y)) ∧ (p ∨ ∀~y.¬f(~x, ~y)), and by re-

naming variables and moving the quantifiers to the front, the resulting formula is

∀~x.∃p.∃~y.∀~z.((¬p ∨ f(~x, ~y)) ∧ (p ∨ ¬f(~x, ~z)). Note that the Skolem function for the

additional existentially quantified variable p now corresponds exactly to the precon-

dition. Although this produces a QBF that is guaranteed to evaluate to true, note

that the resulting formula is not in CNF. In particular, if f is originally in CNF, its

negation in the second conjunct is now in DNF. Converting the formula back to CNF,

as required by most modern QBF solvers, requires extra existential variables, which

results in an additional quantifier alternation.
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Because of the additional quantifiers, the formula is no longer in 2QBF, and there-

fore can no longer be handled by CADET. Therefore, to evaluate the feasibility of

this method, we instead employed the DepQBF [18] solver, which accepts formulas

of arbitrary quantification depth. In an attempt to make solving the formulas easier

for DepQBF, we first ran them through the Bloqqer preprocessor [39], which uses

a number of rewriting techniques to simplify the formula. Despite these efforts, for

almost all benchmarks in Fig. 5.7, DepQBF was unable to synthesize an implemen-

tation in the time limit. The only exception was the rankfunc37s benchmark, which

was solved already in the preprocessing stage by Bloqqer, in about 1.3s.

This result suggests that the translation to realizable formulas is not an efficient

way of using QBF solvers to perform synthesis of unrealizable specifications. A better

approach would likely be to modify current QBF-solving algorithms, such as the one

used by CADET, to also produce (partial) Skolem functions when the input formula

is false. Further exploring QBF solving as a means for Boolean synthesis is left for

future work.

5.3 Conclusion

In this chapter, we adapted techniques for processing factored representations of

Boolean formulas using BDDs to the problem of Boolean functional synthesis. We

show that these techniques allow synthesis from a number of specifications which

cannot be handled when using a monolithic representation.

We performed an experimental comparison of our tool RSynth with other tools

for Boolean synthesis, namely the CEGAR-based tool CegarSkolem [15] and the

QBF solver CADET [17]. Our experiments show the QBF approach to be very

efficient when the specification is realizable, significantly outperforming the others.
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However, QBF solvers are not generally able to synthesize functions for unrealizable

specifications, which motivates the use of alternative approaches such as the one pre-

sented in this paper. For unrealizable specifications, the results of the comparison

between RSynth and CegarSkolem vary, with the best tool depending on the spe-

cific instance. Therefore, we conclude that there is no single approach that dominates

over all cases, rather every tool is able to handle some specifications that the others

cannot.
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Chapter 6

Conclusion and Future Work

This thesis presented an exploration of Binary Decision Diagrams as data structures

for Boolean functional synthesis. Our first contribution, in Chapter 4, was the in-

troduction of the Self-Substitution technique, which can be used for both quantifier

elimination and extraction of witnesses of Boolean functions. Using Self-Substitution

as a foundation, we designed a Boolean synthesis framework using BDDs as the un-

derlying data structure. Chapter 4 also introduced the TrimSubstitute method,

which gives rise to a more efficient synthesis algorithm for BDDs following a specific

variable ordering that we call input-first. The synthesis framework presented in this

thesis was implemented in a tool called RSynth. Through our experimental evalu-

ation, we showed that when an efficient variable ordering is available for the BDDs,

RSynth outperforms tools based on alternative approaches.

However, computing an efficient variable ordering is not always feasible. To handle

such cases, in Chapter 5 we adapted techniques for manipulating factored represen-

tations of Boolean relations, originated in the context of model checking, to Boolean

functional synthesis. By extending RSynth to handle factored representations, we

were able to synthesize a number of cases for which the monolithic approach fails,

showing that BDDs can be competitive with other approaches.

An advantage of BDD-based techniques lies on their applicability to reactive syn-

thesis, which is one of the main applications of Boolean synthesis. BDDs are a popular

symbolic representation for sets of states in this problem, since they allow for easy
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equivalence checking when performing the fixpoint computations that are usually em-

ployed in reactive-synthesis algorithms. Furthermore, the Boolean formulas obtained

in the context of this problem are often unrealizable, meaning that they define partial

functions. This makes other approaches which do not handle unrealizable formulas,

such as QBF-based ones, harder to apply. Finally, temporal specifications are often

given as conjunctions of constraints, which might indicate that techniques based on

factored representations could be applicable. These points suggest that a synthe-

sis approach using a factored BDD representation might be a good choice for this

problem. Therefore, our main direction for future research is in pursuing forms of

integrating the techniques presented here in frameworks for reactive synthesis.

At the same time, the use of QBF-solving techniques for Boolean synthesis requires

further exploration. QBF solvers give excellent results for realizable specifications, but

current algorithms do not handle specifications that are unrealizable. How to modify

these algorithms so they can be used for synthesizing unrealizable specifications is

still an open question.

The Self-Substitution method also calls for further research. This technique can

be of interest both in applied settings that make use of quantifier elimination, for

example in symbolic model checking [11], and in theoretical settings. For example,

the relation between Self-Substitution and function composition suggests that it might

be relevant for the study of Post classes and algebraic clones [40], which relate to the

result of composing Boolean functions.

It would also be interesting to find options for generalizing Boolean synthesis and

the techniques used in this thesis to other domains and logic systems. As mentioned

in Section 3.3, delving deeper into the problem of Boolean unification might be rel-

evant for this goal, as from theoretical results from this area it can be derived that
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Self-Substitution can be generalized to arbitrary Boolean rings. Results from Boolean

unification also give rise to other kinds of generalization, such as finding alternative

witnesses to the default-1 and default-0 ones presented in Chapter 4, or even synthe-

sizing procedures for enumerating all possible outputs rather than computing a single

one.
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