


ABSTRACT

Weighted Model Counting

with Algebraic Decision Diagrams

by

Vu Hoang Nguyen Phan

We present an algorithm to compute exact literal-weighted model counts of Boolean

formulas in conjunctive normal form. Our algorithm employs dynamic programming

and uses algebraic decision diagrams as the primary data structure. We implement

this algorithm to create ADDMC, a new model counter. We empirically evaluate

various heuristics that can be used with ADDMC. We then compare ADDMC to four

state-of-the-art exact weighted model counters (Cachet, c2d, d4, and miniC2D) on

1914 standard model counting benchmarks and show that ADDMC significantly improves

the virtual best solver.



Acknowledgments

I appreciate Dr. Moshe Vardi’s guidance as my research advisor and the chairperson

of my M.S. committee. I am grateful to Dr. Devika Subramanian and Dr. Swarat

Chaudhuri for serving on the committee and evaluating my thesis. I acknowledge

the support of my family and friends. In particular, Jeffrey Dudek coauthored my

first paper with Dr. Vardi [Dudek et al., 2020]; my thesis is based on this paper. In

addition, I appreciate feedback from Dror Fried, Aditya Shrotri, Lucas Tabajara, and

others. Also, I thank Dr. Jan Odegard for helping with my research computing and

for making this thesis template.

This work was supported in part by the NSF (grants CNS-1338099, CCF-1704883,

IIS-1527668, IIS-1830549, and DMS-1547433) as well as by Rice University.



iv

Contents

Abstract ii

Acknowledgments iii

List of Figures vii

List of Tables viii

List of Equations ix

List of Algorithms x

1 Introduction 1

2 Preliminaries 5

2.1 Weighted Model Counting . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Algebraic Decision Diagrams . . . . . . . . . . . . . . . . . . . . . . . 6

3 Using Algebraic Decision Diagrams for Weighted Model Counting 9

3.1 General Weighted Model Counting . . . . . . . . . . . . . . . . . . . 9



v

3.2 Literal-Weighted Model Counting of Conjunctive Normal Form

Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Dynamic Programming for Weighted Model Counting 16

4.1 Proof of Theorem 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 Heuristics for get-diagram-var-order and get-cluster-var-order 22

4.3 Heuristics for get-clause-rank . . . . . . . . . . . . . . . . . . . . . 24

4.4 Heuristics for choose-cluster . . . . . . . . . . . . . . . . . . . . . . 25

4.5 Similar Techniques in Model Counting and Related Problems . . . . . 26

4.5.1 Probabilistic Inference . . . . . . . . . . . . . . . . . . . . . . 26

4.5.2 Constraint Satisfaction . . . . . . . . . . . . . . . . . . . . . . 27

5 Empirical Evaluation 29

5.1 Experiment 1A: Comparing All ADDMC Heuristic Configurations . . . . 30

5.1.1 Correctness Analysis . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 Experiment 1B: Comparing Best ADDMC Heuristic Configurations . . . 33

5.2.1 Correctness Analysis . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Experiment 2: Comparing ADDMC to Weighted Model Counters . . . . 36

5.3.1 Correctness Analysis . . . . . . . . . . . . . . . . . . . . . . . 37

5.3.2 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . 37



vi

5.3.3 Predicting ADDMC Performance . . . . . . . . . . . . . . . . . . 40

5.4 Experiment 3: Comparing ADDMC to Bayesian Inference Engines . . . 43

6 Discussion 45

Bibliography 48



vii

List of Figures

1 The graph G of an ADD with variable set X = {x1, x2, x3}, carrier

set S = R, and diagram variable order π(xi) = i for i = 1, 2, 3. . . . . 7

2 Experiment 1A: a cactus plot of the numbers of benchmarks solved by

the best, second-best, median, and worst ADDMC heuristic configurations. 32

3 Experiment 1B: a cactus plot of the numbers of benchmarks solved in

1000 seconds by the five best ADDMC heuristic configurations in

Experiment 1A (10 seconds) and their virtual best solver (VBS5 ). . . 35

4 Experiment 2: a cactus plot of the numbers of benchmarks solved by

five weighted model counters and two virtual best solvers (VBS1 with

ADDMC and VBS0 without ADDMC). . . . . . . . . . . . . . . . . . . . . 39

5 A cactus plot of the number of benchmarks, in total and solved by

ADDMC, for various upper bounds for MAVCs. The MAVCs of the 1404

benchmarks solved by ADDMC within 1000 seconds range from 4 to 246. 41

6 A scatter plot of the solving time of ADDMC against the MAVC for

each of the 1404 benchmarks solved by ADDMC within 1000 seconds. . 42



viii

List of Tables

1 Experiment 1A: the numbers of benchmarks solved (of 1914) in 10

seconds by the best (1st-5th), median, and worst ADDMC heuristic

configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2 Experiment 1B: the numbers of benchmarks solved (of 1914) in 1000

seconds by the five best ADDMC heuristic configurations in Experiment

1A (10 seconds) and their virtual best solver (VBS5 ). . . . . . . . . . 36

3 Experiment 2: the numbers of benchmarks solved (of 1914) in 1000

seconds — uniquely (i.e., benchmarks solved by no other solver),

fastest, and in total — by five weighted model counters and two

virtual best solvers (VBS1 and VBS0). . . . . . . . . . . . . . . . . . . 38



ix

List of Equations

1 Equation (1): CNF literal-weighted model count . . . . . . . . . . . . . 15

3 Equation (3): Floating-point equality tolerance . . . . . . . . . . . . . . 31



x

List of Algorithms

1 CNF literal-weighted model counting with ADDs . . . . . . . . . . . . 17



1

Chapter 1

Introduction

Model counting is a fundamental problem in artificial intelligence, with applications in

machine learning, probabilistic reasoning, and verification [Domshlak and Hoffmann,

2007, Biere et al., 2009, Naveh et al., 2007]. Given an input set of constraints, with the

focus in this work on Boolean constraints, the model counting problem is to count the

number of satisfying assignments. Although this problem is #P-Complete [Valiant,

1979], a variety of tools exist that can handle industrial sets of constraints, cf. [Sang

et al., 2004, Oztok and Darwiche, 2015].

Dynamic programming is a powerful technique that has been applied across computer

science [Howard, 1966], including to model counting [Bacchus et al., 2009, Samer and

Szeider, 2010]. The key idea is to solve a large problem by solving a sequence of

smaller subproblems and then incrementally combining these solutions into the final

result. Dynamic programming provides a natural framework to solve a variety of

problems defined on sets of constraints: subproblems can be formed by partitioning

the constraints into sets, called clusters. This framework has also been instantiated

into algorithms for database-query optimization [McMahan et al., 2004] and SAT-solving

[Uribe and Stickel, 1994, Aguirre and Vardi, 2001, Pan and Vardi, 2004]. Techniques

for local computation can also be seen as a variant of this framework, e.g., in theorem
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proving [Wilson and Mengin, 1999] or probabilistic inference [Shenoy and Shafer,

2008].

In this work, we study two algorithms that follow this dynamic-programming

framework and can be adapted for model counting: bucket elimination [Dechter,

1999] and Bouquet’s Method [Bouquet, 1999]. Bucket elimination aims to minimize

the amount of information needed to be carried between subproblems. When this

information must be stored in an uncompressed table, bucket elimination will, with

some carefully chosen sequence of clusters, require the minimum possible amount of

intermediate data (as governed by the treewidth of the input formula [Bacchus et al.,

2009]). Intermediate data, however, need not be stored uncompressed. Several works

have shown that using compact representations of intermediate data can dramatically

improve bucket elimination for Bayesian inference [Poole and Zhang, 2003, Sanner

and McAllester, 2005, Chavira and Darwiche, 2007]. Moreover, it has been observed

that using compact representations – in particular, binary decision diagrams (BDDs)

– can allow Bouquet’s Method to outperform bucket elimination for SAT-solving

[Pan and Vardi, 2004]. Compact representations are therefore promising to improve

existing dynamic-programming-based algorithms for model counting [Bacchus et al.,

2009, Samer and Szeider, 2010].

In particular, we consider the use of algebraic decision diagrams (ADDs) [Bahar

et al., 1997] for model counting in a dynamic-programming framework. An ADD

is a compact representation of a real-valued function as a directed acyclic graph.
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For functions with logical structure, the ADD representation can be exponentially

smaller than the explicit representation. ADDs have been successfully used as part

of dynamic-programming frameworks for Bayesian inference [Chavira and Darwiche,

2007, Gogate and Domingos, 2012] and stochastic planning [Hoey et al., 1999]. Although

ADDs have been used for model counting outside of a dynamic-programming framework

[Fargier et al., 2014], no prior work uses ADDs for model counting as part of a

dynamic-programming framework.

The construction and resultant size of an ADD depend heavily on the choice of

an order on the variables of the ADD, called a diagram variable order. Some variable

orders may produce ADDs that are exponentially smaller than others for the same

real-valued function. A variety of techniques exist in prior work to heuristically

find diagram variable orders [Tarjan and Yannakakis, 1984, Koster et al., 2001].

In addition to the diagram variable order, both bucket elimination and Bouquet’s

Method require another order on the variables to build and arrange the clusters of

input constraints; we call this a cluster variable order. We show that the choice

of heuristics to find cluster variable orders has a significant impact on the runtime

performance of both bucket elimination and Bouquet’s Method.

The primary contribution of this work is a dynamic-programming framework

for weighted model counting that utilizes ADDs as a compact data structure. In

particular:

1. We lift the BDD-based approach for Boolean satisfiability of [Pan and Vardi,
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2004] to an ADD-based approach for weighted model counting.

2. We implement this algorithm using ADDs and a variety of existing heuristics

to produce ADDMC, a new weighted model counter.

3. We perform an experimental comparison of these heuristic techniques in the

context of weighted model counting.

4. We perform an experimental comparison of ADDMC to four state-of-the-art weighted

model counters (Cachet, c2d, d4, and miniC2D) and show that ADDMC improves

the virtual best solver on 763 benchmarks (of 1914 in total).

In Chapter 2, we formally define weighted model counting and algebraic decision

diagrams. In Chapter 3, we outline the theoretical foundation for performing weighted

model counting with ADDs. In Chapter 4, we present an algorithm for performing

weighted model counting through dynamic-programming techniques, and discuss a

variety of existing heuristics that can be used in the algorithm. In Chapter 5,

we compare the performance of various heuristics in ADDMC and demonstrate that

Bouquet’s Method is competitive with bucket elimination. Also, we compare ADDMC

against four state-of-the-art tools (Cachet, c2d, d4, and miniC2D) on 1914 standard

model counting benchmarks. Finally, we conclude in Chapter 6.
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Chapter 2

Preliminaries

In this chapter, we introduce weighted model counting, the central problem of this

work, and algebraic decision diagrams, the primary data structure we use to solve

weighted model counting.

2.1 Weighted Model Counting

The central problem of this work is to compute the weighted model count of a Boolean

formula, which we now define.

Definition 1. Let ϕ : 2X → {0, 1} be a Boolean function over a set X of variables,

and let W : 2X → R be an arbitrary function. The weighted model count of ϕ w.r.t.

W is

W (ϕ) =
∑
τ∈2X

ϕ(τ) ·W (τ).

The function W : 2X → R is called a weight function. In this work, we focus on

so-called literal-weight functions, where the weight of a model can be expressed as

the product of weights associated with all satisfied literals. That is, where the weight

function W can be expressed, for all τ ∈ 2X , as

W (τ) =
∏
x∈τ

W+(x) ·
∏

x∈X\τ

W−(x)
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for some functions W+(x),W−(x) : X → R. One can interpret these literal-weight

functions W as assigning a real number weight to each literal: W+(x) to x and W−(x)

to ¬x. It is common to restrict attention to weight functions whose range is R or just

the interval [0, 1].

When the formula ϕ is given in conjunctive normal form (CNF), computing the

literal-weighted model count is #P-Complete [Valiant, 1979]. Several algorithms and

tools for weighted model counting directly reason about the CNF representation. For

example, Cachet uses DPLL search combined with component caching and clause

learning to perform weighted model counting [Sang et al., 2004].

If ϕ is given in a compact representation (e.g., as a binary decision diagram (BDD)

[Bryant, 1986] or as a sentential decision diagram (SDD) [Darwiche, 2011]) computing

the literal-weighted model count can be done in time polynomial in the size of the

representation. One recent tool for weighted model counting that exploits this is

miniC2D, which compiles the input CNF formula into an SDD and then performs

a polynomial-time count on the SDD [Oztok and Darwiche, 2015]. Note that these

compact representations may still be exponential in the size of the corresponding

CNF formula in the worst case.

2.2 Algebraic Decision Diagrams

The central data structure we use in this work is algebraic decision diagram (ADD)

[Bahar et al., 1997], a compact representation of a function as a directed acyclic graph.



7
x1

x2

x3
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Figure 1 : The graph G of an ADD with variable set X = {x1, x2, x3}, carrier set
S = R, and diagram variable order π(xi) = i for i = 1, 2, 3.

Formally, an ADD is a tuple (X,S, π,G), where X is a set of Boolean variables, S is an

arbitrary set (called the carrier set), π : X → Z+ is an injection (called the diagram

variable order), and G is a rooted directed acyclic graph satisfying the following

three properties. First, every terminal node of G is labeled with an element of S.

Second, every non-terminal node of G is labeled with an element of X and has two

outgoing edges labeled 0 and 1. Finally, for every path in G, the labels of the visited

non-terminal nodes must occur in increasing order under π.

Figure 1 is a graphical example of an ADD. In this figure, if a directed edge from

an oval node is solid (respectively dashed), then corresponding Boolean variable is

assigned 1 (respectively 0).

ADDs were originally designed for matrix multiplication and shortest path algorithms
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[Bahar et al., 1997]. ADDs have also been used for stochastic model checking [Kwiatkowska

et al., 2007] and stochastic planning [Hoey et al., 1999]. In this work, we do not need

arbitrary carrier sets; it is sufficient to consider ADDs with S = R.

An ADD (X,S, π,G) is a compact representation of a function f : 2X → S.

Although there are many ADDs representing each such function f , for each injection

π : X → Z+, there is a unique minimal ADD that represents f with π as the diagram

variable order, called the canonical ADD. ADDs can be minimized in polynomial time,

so it is typical to only work with canonical ADDs. Given two ADDs representing

functions f and g, the ADDs representing f + g and f · g can also be computed in

polynomial time.

The choice of diagram variable order can have a dramatic impact on the size of

the ADD. A variety of techniques exist to heuristically find diagram variable orders.

Moreover, since binary decision diagrams (BDDs) [Bryant, 1986] can be seen as ADDs

with carrier set S = {0, 1}, there is significant overlap with the techniques to find

variable orders for BDDs. We discuss these heuristics in more detail in Chapter 4.

Several packages exist for efficiently manipulating ADDs. Here we use the package

CUDD [Somenzi, 2015], which supports carrier sets S = {0, 1} and (using floating-point

arithmetic) S = R. CUDD implements several ADD operations, such as addition,

multiplication, and projection.
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Chapter 3

Using Algebraic Decision Diagrams for Weighted

Model Counting

An ADD with carrier set R can be used to represent both a Boolean function ϕ :

2X → {0, 1} and a weight function W : 2X → R. ADDs are thus a natural candidate

as a data structure for weighted model counting algorithms.

In this chapter, we outline theoretical foundations for performing weighted model

counting with ADDs. We consider first the general case of weighted model counting.

We then specialize to literal-weighted model counting of CNF formulas and show how

the technique of early projection can take advantage of such factored representations

of Boolean formulas ϕ and weight functions W .

3.1 General Weighted Model Counting

We assume that the Boolean formula ϕ and the weight function W are represented

as ADDs. The goal is to compute W (ϕ), the weighted model count of ϕ w.r.t. W .

To do this, we define two operations on functions 2X → R that can be efficiently

computed using the ADD representation: product and projection. These operations

are combined in Theorem 1 to perform weighted model counting.

First, we define the product of two functions.
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Definition 2. Let X and Y be sets of variables. The product of functions A : 2X → R

and B : 2Y → R is the function A ·B : 2X∪Y → R defined for all τ ∈ 2X∪Y by

(A ·B)(τ) = A(τ ∩X) ·B(τ ∩ Y ).

Note that the operator · is commutative and associative, and it has the identity

element 1 : 2∅ → R (that maps ∅ to 1). If ϕ : 2X → {0, 1} and ψ : 2Y → {0, 1} are

Boolean formulas, their product ϕ · ψ is the Boolean function corresponding to their

conjunction ϕ ∧ ψ.

Second, we define the projection of a Boolean variable x in a real-valued function

A, which reduces the number of variables in A by “summing out” x. Projection in

real-valued functions is similar to variable elimination in Bayesian networks [Zhang

and Poole, 1994]. (Variable elimination “sums out” a variable v from a set S of

potentials by: removing all potentials pi containing v from S, computing a new

potential p′ =
∑

v∈{0,1}
∏

i pi, and adding p′ to S.)

Definition 3. Let X be a set of variables and x ∈ X. The projection of A : 2X → R

w.r.t. x is the function ∃xA : 2X\{x} → R defined for all τ ∈ 2X\{x} by

(∃xA)(τ) = A(τ) + A(τ ∪ {x}).

One can check that projection is commutative, i.e., ∃x∃yA = ∃y∃xA for all

variables x, y ∈ X and functions A : 2X → R. If X = {x1, x2, . . . , xn}, define

∃XA = ∃x1∃x2 . . . ∃xnA.
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We are now ready to use product and projection to do weighted model counting,

through the following theorem.

Theorem 1. Let ϕ : 2X → {0, 1} be a Boolean function over a set X of variables,

and let W : 2X → R be an arbitrary weight function. Then

W (ϕ) = (∃X(ϕ ·W ))(∅).

Proof. Assume the variables in X are x1, x2, . . . , xn. Now, for an arbitrary function

A : 2X → R, we have:

∑
τ∈2X

A(τ) =
∑

τ∈2X\{xn}
(A(τ) + A(τ ∪ {xn})) (regrouping terms)

=
∑

τ∈2X\{xn}
((∃xnA)(τ)) (Definition 3)
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Similarly, projecting all variables in X:

∑
τ∈2X

A(τ) =
∑

τ∈2X\{xn}
(∃xnA)(τ)

=
∑

τ∈2X\{xn−1,xn}

(∃xn−1∃xnA)(τ)

...

=
∑
τ∈2∅

(∃x1 . . . ∃xn−1∃xnA)(τ)

= (∃x1 . . . ∃xn−1∃xnA)(∅)

= (∃XA)(∅)

When A is the specific function ϕ ·W : 2X → R, we have:

∑
τ∈2X

(ϕ ·W )(τ) = (∃X(ϕ ·W ))(∅)

Finally:

(∃X(ϕ ·W ))(∅) =
∑
τ∈2X

(ϕ ·W )(τ) (as above)

=
∑
τ∈2X

ϕ(τ) ·W (τ) (Definition 2)

= W (ϕ) (Definition 1)

Theorem 1 suggests that W (ϕ) can be computed by constructing an ADD for ϕ

and another for W , computing the ADD for their product ϕ ·W , and performing a
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sequence of projections to obtain the final weighted model count. Unfortunately, this

“monolithic” approach is infeasible in most interesting cases: the ADD representation

of ϕ ·W is often too large, even with the best possible diagram variable order.

Instead, we next show a technique for avoiding the construction of an ADD for

ϕ ·W by rearranging the products and projections.

3.2 Literal-Weighted Model Counting of Conjunctive Normal

Form Formulas

A key technique in symbolic computation is early projection: when performing a

product followed by a projection (as in Theorem 1), it is sometimes possible and

advantageous to perform the projection first. Early projection is possible when one

component of the product does not depend on the projected variable. Early projection

has been used in a variety of settings, including database-query optimization [Kolaitis

and Vardi, 2000], symbolic model checking [Burch et al., 1991], and satisfiability

solving [Pan and Vardi, 2005]. The formal statement is as follows.

Theorem 2 (Early Projection). Let X and Y be sets of variables, A : 2X → R, and

B : 2Y → R. For all x ∈ X \ Y ,

∃x(A ·B) = (∃xA) ·B.

As a corollary, for all X ′ ⊆ X \ Y ,

∃X′(A ·B) = (∃X′A) ·B.
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Proof. For every τ ∈ 2(X∪Y )\{x}, we have:

(∃x(A ·B))(τ)

= (A ·B)(τ) + (A ·B)(τ ∪ {x}) (Definition 3)

= A(τ ∩X) ·B(τ ∩ Y ) + A((τ ∪ {x}) ∩X) ·B((τ ∪ {x}) ∩ Y ) (Definition 2)

= A(τ ∩X) ·B(τ ∩ Y ) + A((τ ∪ {x}) ∩X) ·B(τ ∩ Y ) (as x /∈ Y )

= A(τ ∩X) ·B(τ ∩ Y ) + A(τ ∩X ∪ {x}) ·B(τ ∩ Y ) (as x ∈ X)

= (A(τ ∩X) + A(τ ∩X ∪ {x})) ·B(τ ∩ Y ) (common factor)

= (∃xA)(τ ∩X) ·B(τ ∩ Y ) (Definition 3)

= (∃xA)(τ ∩ (X \ {x})) ·B(τ ∩ Y ) (as x /∈ τ)

= ((∃xA) ·B)(τ) (Definition 2)

The use of early projection in Theorem 1 is quite limited when ϕ and W have

already been represented as ADDs, since on many benchmarks both ϕ and W depend

on most of the variables. If ϕ is a CNF formula and W is a literal-weight function,

however, both ϕ and W can be rewritten as products of smaller functions. This can

significantly increase the applicability of early projection.

Assume that ϕ is a CNF formula, i.e., given as a set of clauses. For every clause

γ ∈ ϕ, observe that γ is a Boolean function γ : 2Xγ → {0, 1} (where Xγ ⊆ X is the set

of variables appearing in γ) that maps satisfying assignments to 1 and unsatisfying

assignments to 0. One can check using Definition 2 that ϕ =
∏

γ∈ϕ γ.
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Similarly, assume that W : 2X → R is a literal-weight function. For every x ∈ X,

define Wx : 2{x} → R to be the function that maps ∅ to W−(x) and {x} to W+(x).

One can check using Definition 2 that W =
∏

x∈XWx.

When ϕ is a CNF formula and W is a literal-weight function, we can rewrite

Theorem 1 as

W (ϕ) =

(
∃X

(∏
γ∈ϕ

γ ·
∏
x∈X

Wx

))
(∅). (1)

By taking advantage of the associative and commutative properties of multiplication

as well as the commutative property of projection, it is possible to rearrange Equation

1 in order to apply early projection. We present an algorithm to perform this

rearrangement in the following chapter.
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Chapter 4

Dynamic Programming for Weighted Model

Counting

We now discuss an algorithm for performing literal-weighted model counting of CNF

formulas using ADDs through dynamic-programming techniques.

Our algorithm is presented as Algorithm 1. Broadly, our algorithm partitions

the clauses of a formula ϕ into clusters. For each cluster, we construct an ADD

corresponding to the conjunction of its clauses. These ADDs are then incrementally

combined via the multiplication operator. Throughout, each variable of the ADDs

is projected as early as Theorem 2 allows (Xi is the set of variables that can be

projected in each iteration i of the second loop). At the end of the algorithm, all

variables have been projected, and the resulting ADD has a single node representing

the weighted model count. This algorithm can be seen as rearranging the terms of

Equation 1 (according to the clusters) in order to perform the projections indicated

by Xi at each step i.

The function get-clause-ADD(γ, π) constructs the ADD representing the clause

γ, using π as the diagram variable order. The remaining functions that appear in

Algorithm 1, namely get-diagram-var-order, get-cluster-var-order, get-clause-rank,

and choose-cluster, represent heuristics that can be used to tune the specifics of
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Algorithm 1: CNF literal-weighted model counting with ADDs

Input: X: set of Boolean variables

Input: ϕ: nonempty CNF formula over X

Input: W : literal-weight function over X

Output: W (ϕ): weighted model count of ϕ w.r.t. W

1 π ← get-diagram-var-order(ϕ) /* injection π : X → Z+ */

2 ρ← get-cluster-var-order(ϕ) /* injection ρ : X → Z+ */

3 m← maxx∈X ρ(x)

4 for i = m,m− 1, . . . , 1

5 Γi ← {γ ∈ ϕ : get-clause-rank(γ, ρ) = i} /* collecting clauses γ with

rank i */

6 κi ← {get-clause-ADD(γ, π) : γ ∈ Γi} /* cluster κi contains ADDs of

clauses γ with rank i */

7 Xi ← Vars(κi) \
⋃m
p=i+1 Vars(κp) /* variables already placed in Xi will

not be placed in X1, X2, . . . , Xi−1 */

8 for i = 1, 2, . . . ,m

9 if κi 6= ∅

10 Ai ←
∏

D∈κi D /* product of all ADDs D in cluster κi */

11 for x ∈ Xi

12 Ai ← ∃x (Ai ·Wx) /* Wx : 2{x} → R, represented by an ADD */

13 if i < m

14 j ← choose-cluster(Ai, i) /* i < j ≤ m */

15 κj ← κj ∪ {Ai}

16 return Am(∅) /* Am : 2∅ → R */
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the algorithm.

We assert the correctness of Algorithm 1 in the following theorem.

Theorem 3. Let X be a set of variables, ϕ be a nonempty CNF formula over X,

and W be a literal-weight function over X. Assume that get-diagram-var-order

and get-cluster-var-order return injections X → Z+. Also assume that all

get-clause-rank and choose-cluster calls satisfy the following conditions:

1. 1 ≤ get-clause-rank(γ, ρ) ≤ m,

2. i < choose-cluster(Ai, i) ≤ m, and

3. Xs ∩ Vars(Ai) = ∅ for all integers s such that i < s < choose-cluster(Ai, i).

Then Algorithm 1 returns W (ϕ).

Before giving a full proof of Theorem 3 in Section 4.1, we give a proof sketch

here. By Condition 1, we know the set {Γ1,Γ2, . . . ,Γm} forms a partition of the

clauses in ϕ. Condition 2 ensures that lines 14-15 place Ai in a cluster that has not

yet been processed. Also on lines 14-15, Condition 3 prevents Ai from skipping a

cluster κs which shares some variable y with Ai, as y will be projected at step s.

These three invariants are sufficient to prove that Algorithm 1 indeed computes the

weighted model count of ϕ w.r.t. W . All heuristics we describe in this work satisfy

the conditions of Theorem 3.
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4.1 Proof of Theorem 3

In order to prove Theorem 3, we first state and prove two invariants that hold during

the loop at line 8 of Algorithm 1.

First, we prove in the following lemma that the variables in Xi never appear in

the clusters κj for every i < j.

Lemma 1. Assume the conditions of Theorem 3. At every step of the loop at line 8

of Algorithm 1 and for every 1 ≤ i < j ≤ m, Xi ∩ Vars(κj) = ∅.

Proof. We prove this invariant by induction on the steps of the algorithm. The base

case (i.e., immediately before line 8) follows from the initial construction of Xi.

During the loop, the only potential problem is at line 15. In particular, consider an

iteration i < m where some ADDAi is added to κj (where j = choose-cluster(Ai, i))

and assume that the invariant holds before line 15. To prove that the invariant still

holds after line 15, consider some 1 ≤ s < j. We prove by cases that Xs∩Vars(Ai) =

∅:

• Case s < i. By the inductive hypothesis, we have Xs ∩ Vars(κi) = ∅. Since

Vars(Ai) ⊆ Vars(κi), it follows that Xs ∩ Vars(Ai) = ∅.

• Case s = i. All variables in Xi are projected from Ai during the loop at line

11. Thus Xi ∩ Vars(Ai) = ∅.

• Case s > i. Since s < j, it follows from Condition 3 of Theorem 3 that

Xs ∩ Vars(Ai) = ∅.
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By the inductive hypothesis, Xi ∩ Vars(B) = ∅ for all other B ∈ κj. Hence Xi ∩

Vars(κj) = ∅.

Next, we use this invariant prove that the ADDs in
⋃
j≥i κj always contain sufficient

information to compute the weighted model count at iteration i.

Lemma 2. Assume the conditions of Theorem 3 and let Yi =
⋃
j≥iXi. At the start

of every iteration i of the loop at line 8 of Algorithm 1,

W (ϕ) =

∃Yi
∏

j≥i
B∈κj

B ·
∏
x∈Yi

Wx


 (∅). (2)

Proof. We prove this invariant by induction on i.

We first consider iteration i = 1. It follows from Condition 1 of Theorem 3

that
⋃
j≥1 Γj = ϕ. Thus Y1 = Vars(ϕ) = X and moreover

∏
j≥1
∏

B∈κj B =∏
γ∈ϕ get-clause-ADD(γ, π). Equation 2 therefore follows directly from Theorem

1.

Next, assume that Equation 2 holds at the start of some iteration i < m and

consider Equation 2 at the start of iteration i + 1. For convenience, let κj refer to

its value at the start of iteration i and let κ′j refer to the value of κj at the start of

iteration i+ 1 (for all j ≥ i).

If κi = ∅, then κi does not contribute to Equation 2, so Equation 2 remains

unchanged (and thus still holds) at the start of iteration i + 1. If κi 6= ∅, then after

lines 10-12 Algorithm 1 computes Ai = ∃Xi
(∏

D∈κi D ·
∏

x∈XiWx

)
(using Theorem 2

to rearrange terms). By Condition 2 of Theorem 3, Ai is then placed in κ′j for some
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i < j ≤ m. Therefore, at the start of iteration i+ 1 we have

∃Yi+1

 ∏
j≥i+1
B∈κ′j

B ·
∏

x∈Yi+1

Wx



=∃Yi+1

Ai · ∏
j≥i+1
B∈κj

B ·
∏

x∈Yi+1

Wx

 .

Plugging in the value of Ai, this is equal to

∃Yi+1


(
∃Xi

∏
D∈κi

D ·
∏
x∈Xi

Wx

)
·
∏
j≥i+1
B∈κj

B ·
∏

x∈Yi+1

Wx

 .

Notice Yi is the disjoint union of Yi+1 and Xi. Thus Xi ∩ Vars(Wx) = ∅ for all

x ∈ Yi+1. Moreover, by Lemma 1 Xi ∩ Vars
(∏

j≥i+1

∏
B∈κj B

)
= ∅. It thus follows

from Theorem 2 that

∃Yi+1

 ∏
j≥i+1
B∈κ′j

B ·
∏

x∈Yi+1

Wx



=∃Yi+1

∃Xi ∏
j≥i
B∈κj

B ·
∏
x∈Yi

Wx

 .

By the inductive hypothesis, this ADD is exactly W (ϕ) when evaluated at ∅. It

follows that Equation 3 holds at the start of iteration i+ 1 as well.

Given this second invariant, the proof of Theorem 3 is straightforward.

Proof. By Lemma 2, at the start of iteration m we know that

W (ϕ) =

(
∃Xm

( ∏
B∈κm

B ·
∏
x∈Ym

Wx

))
(∅).
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Since

Am = ∃Xm

( ∏
B∈κm

B ·
∏
x∈Ym

Wx

)
, (using Theorem 2 to rearrange terms)

it follows that line 16 returns W (ϕ).

In the remainder of this chapter, we discuss various existing heuristics that can be

used within Algorithm 1 to implement get-diagram-var-order (get-cluster-var-order,

get-clause-rank, and choose-cluster) as well as how our techniques are adapted

from other problem domains.

4.2 Heuristics for get-diagram-var-order and get-cluster-var-order

The heuristic chosen for get-diagram-var-order indicates the diagram variable

order to use in every ADD constructed by Algorithm 1. The heuristic chosen for

get-cluster-var-order indicates the variable order which, when combined with the

heuristic for get-clause-rank, is used to order the clauses of ϕ. (BE orders clauses

by the smallest variable that appears in each clause, while BM orders clauses by the

largest variable.) In this work, we consider seven possible heuristics for each variable

order: Random, MCS, LexP, LexM, InvMCS, InvLexP, and InvLexM.

A simple heuristic for get-diagram-var-order and get-cluster-var-order is

to randomly order the variables, i.e., for a formula over some setX of variables, sample

an injection X → {1, 2, . . . , |X|} uniformly at random. We call this the Random

heuristic. Random is a baseline for comparison of the other variable order heuristics.
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For the remaining heuristics, we must define the Gaifman graph Gϕ of a formula

ϕ. The Gaifman graph of ϕ has a vertex for every variable in ϕ. Two vertices are

connected by an edge if and only if the corresponding variables appear in the same

clause of ϕ.

One such heuristic is called Maximum-Cardinality Search [Tarjan and Yannakakis,

1984]. At each step of the heuristic, the next variable chosen is the variable adjacent

in Gϕ to the greatest number of previously chosen variables (breaking ties arbitrarily).

We call this the MCS heuristic for variable order.

Another such heuristic is called Lexicographic search for perfect orders [Koster

et al., 2001]. Each vertex of Gϕ is assigned an initially-empty set of vertices (called

the label). At each step of the heuristic, the next variable chosen is the variable x

whose label is lexicographically smallest among the unchosen variables (breaking ties

arbitrarily). Then x is added to the label of its neighbors in Gϕ. We call this the

LexP heuristic for variable order.

A similar heuristic is called Lexicographic search for minimal orders [Koster et al.,

2001]. As before, each vertex of Gϕ is assigned an initially-empty label. At each

step of the heuristic, the next variable chosen is again the variable x whose label is

lexicographically smallest (breaking ties arbitrarily). In this case, x is added to the

label of every variable y where there is a path x, z1, z2, . . . , zk, y in Gϕ such that every

zi is unchosen and the label of zi is lexicographically smaller than the label of y. We

call this the LexM heuristic for variable order.
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Additionally, the variable orders produced by each of the heuristics MCS, LexP,

and LexM can be inverted. We call these new heuristics InvMCS, InvLexP, and

InvLexM.

4.3 Heuristics for get-clause-rank

The heuristic chosen for get-clause-rank indicates the strategy for clustering the

clauses of ϕ. In this work, we consider three possible heuristics to be chosen for

get-clause-rank that satisfy the conditions of Theorem 3: Mono, BE, and BM.

One simple case is when get-clause-rank is constant on all clauses, e.g., when

get-clause-rank(γ, ρ) = m for all γ ∈ ϕ. In this case, all clauses of ϕ are placed

in Γm, so Algorithm 1 combines all clauses of ϕ into a single ADD before performing

projections. This corresponds to the monolithic approach we mentioned earlier. We

thus call this the Mono heuristic for get-clause-rank. Notice that the performance

of Algorithm 1 with Mono does not depend on the heuristic for get-cluster-var-order

or choose-cluster. This heuristic has previously been applied to ADDs in the

context of knowledge compilation [Fargier et al., 2014].

A more complex heuristic assigns the rank of each clause to be the smallest

ρ-rank of the variables that appear in the clause. That is, get-clause-rank(γ, ρ) =

minx∈Vars(γ) ρ(x). This heuristic corresponds to bucket elimination [Dechter, 1999], so

we call this the BE heuristic. In this case, notice that every clause containing x ∈ X

can only appear in Γi with i ≤ ρ(x). It follows that x has always been projected from
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all clauses by the end of iteration ρ(x) in the second loop of Algorithm 1 using BE.

A closely related heuristic assigns the rank of each clause to be the largest ρ-rank of

the variables that appear in the clause. That is, get-clause-rank(γ, ρ) = maxx∈Vars(γ) ρ(x).

This heuristic corresponds to Bouquet’s Method [Bouquet, 1999], so we call this the

BM heuristic. Unlike the BE case, we can make no guarantee about when each

variable is projected in Algorithm 1 using BM.

4.4 Heuristics for choose-cluster

The heuristic chosen for choose-cluster indicates the strategy for combining the

ADDs produced from each cluster. In this work, we consider two possible heuristics

to use for choose-cluster that satisfy the conditions of Theorem 3: List and Tree.

One heuristic is when choose-cluster selects to place Ai in the closest cluster

that satisfies the conditions of Theorem 3, namely the next cluster to be processed.

That is, choose-cluster(Ai, i) = i+1. Under this heuristic, Algorithm 1 equivalently

builds an ADD for each cluster and then combines the ADDs in a one-by-one, in-order

fashion, projecting variables as early as possible. In every iteration, there is a single

intermediate ADD representing the combination of previous clusters. We call this the

List heuristic.

Another heuristic is when choose-cluster selects to place Ai in the furthest

cluster that satisfies the conditions of Theorem 3. That is, choose-cluster(Ai, i)

returns the smallest j > i such that Xj ∩ Vars(Ai) 6= ∅ (or returns m, if Vars(Ai) =
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∅). In every iteration, there may be multiple intermediate ADDs representing the

combinations of previous clusters. We call this the Tree heuristic.

Notice that the computational structure of Algorithm 1 can be represented by a

tree of clusters, where cluster κi is a child of cluster κj whenever the ADD produced

from κi is placed in κj (lines 14-15). These trees are always left-deep under the List

heuristic, but they can be more complex under the Tree heuristic.

A clustering heuristic is a valid combination of a get-clause-rank heuristic and

a choose-cluster heuristic. The five clustering heuristics are: Mono, BE − List,

BE−Tree, BM− List, and BM−Tree.

4.5 Similar Techniques in Model Counting and Related Problems

Algorithm 1 performs weighted model counting with some techniques borrowed from

probabilistic inference and constraint satisfaction. Although these techniques are

well-known, their application to ADD-based model counting as presented in this thesis

is novel.

4.5.1 Probabilistic Inference

We employ dynamic programming by caching intermediate results to avoid recomputation.

This technique has previously been used in symbolic probabilistic inference in belief

networks [Shachter et al., 1990].

Algorithm 1 performs model counting with early projection: iteratively eliminating
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variables which do not appear in future computations. Variable elimination, a related

technique, has been applied earlier to compute a posterior probability given a Bayesian

network: summing out a variable from a potential at each step [Zhang and Poole,

1994]. Additional inference tasks (such as updating beliefs and finding most probable

explanations) can be performed with generalized variable elimination [Dechter, 1999]

using a framework similar to nonserial dynamic programming [Bertele and Brioschi,

1973]. Notice that finding an optimal order for variables to be eliminated is NP-complete

[Hojati et al., 1996]. On another related note, the recursive conditioning algorithm

for Bayesian inference allows time-space tradeoffs, providing more flexibility than

traditional algorithms based on variable elimination and clustering [Allen and Darwiche,

2002].

In addition, both model counting and Bayesian inference can apply factorization

techniques to keep intermediate computations small. In particular, Algorithm 1 takes

advantage of the factored representation of a CNF formula ϕ as a product of the

clauses in ϕ. Similarly, in Bayesian inference, the joint potential of a set S of potentials

can be computed by multiplying all potentials in S [Zhang and Poole, 1994].

4.5.2 Constraint Satisfaction

To solve the model counting problem, we adopt some techniques from the constraint

satisfaction problem (CSP) as well. For example, the Gaifman graph of a Boolean

formula corresponds to the primal constraint graph of a high-order CSP instance
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[Dechter and Pearl, 1989].

Also, in Algorithm 1, the function choose-cluster effectively creates a tree of

clusters (sets of clauses) to guide the recombination of subproblems in our dynamic

programming framework. In CSP, a counterpart is the tree-clustering procedure for

constraint networks [Dechter and Pearl, 1989].
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Chapter 5

Empirical Evaluation

We implement Algorithm 1 using the ADD package CUDD [Somenzi, 2015] to produce

ADDMC, a new weighted model counter. ADDMC supports all heuristics described in

Chapter 4. The ADDMC source code can be found in a public repository (https:

//github.com/vardigroup/ADDMC).

We aim to:

• find good heuristic configurations for our tool ADDMC, and

• compare ADDMC against four state-of-the-art exact model counters: Cachet [Sang

et al., 2004], c2d [Darwiche, 2004], d4 [Lagniez and Marquis, 2017], and miniC2D

[Oztok and Darwiche, 2015].

To accomplish this, we evaluate on a set of 1914 literal-weighted CNF model

counting benchmarks. These benchmarks were gathered from two sources: 1091

benchmarks with literal weights given in the interval [0, 1] (https://www.cs.rochester.

edu/u/kautz/Cachet/Model_Counting_Benchmarks/) [Sang et al., 2005], and 823

benchmarks that are originally unweighted (http://www.cril.univ-artois.fr/KC/

benchmarks.html) [Clarke et al., 2001, Sinz et al., 2003, Palacios and Geffner, 2009,

Klebanov et al., 2013]. As we focus in this work on weighted model counting, we

https://github.com/vardigroup/ADDMC
https://github.com/vardigroup/ADDMC
https://www.cs.rochester.edu/u/kautz/Cachet/Model_Counting_Benchmarks/
https://www.cs.rochester.edu/u/kautz/Cachet/Model_Counting_Benchmarks/
http://www.cril.univ-artois.fr/KC/benchmarks.html
http://www.cril.univ-artois.fr/KC/benchmarks.html
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generate weights for these unweighted benchmarks by, for each variable x, randomly

assigning either weights W+(x) = 0.5 and W−(x) = 1.5, or W+(x) = 1.5 and

W−(x) = 0.5. Generating weights in this particular way results in a reasonably

low amount of floating-point underflow and overflow for all model counters. (For

each variable x in a formula ϕ, Cachet requires W+(x)+W−(x) = 1 unless W+(x) =

W−(x) = 1. So we use weights 0.25 and 0.75 for Cachet and multiply the model

count by 2|Vars(ϕ)| as a postprocessing step.)

5.1 Experiment 1A: Comparing All ADDMC Heuristic Configurations

ADDMC heuristic configurations are constructed from five clustering heuristics (Mono,

BE-List, BE-Tree, BM-List, and BM-Tree) together with seven variable order

heuristics (Random, MCS, InvMCS, LexP, InvLexP, LexM, and InvLexM).

Using one variable order heuristic for the cluster variable order and another for

the diagram variable order gives us 245 configurations in total. We compare these

configurations to find the best combination of heuristics.

On a Linux cluster with Xeon E5-2650v2 CPUs (2.60-GHz), we run each combination

of heuristics on each benchmark using 24 GB of memory and a 10-second timeout.

Due to the large number of ADDMC heuristic configurations (245), it is difficult to use

a longer timeout.
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5.1.1 Correctness Analysis

To compare model counts produced by different heuristic configurations of ADDMC (in

the presence of imprecision from floating-point arithmetic), we consider non-negative

real numbers a ≤ b equal when:
b− a ≤ 10−3 if a = 0 or b ≤ 1

b/a ≤ 1 + 10−3 otherwise

(3)

Even with the equality tolerance in Equation (3), different ADDMC heuristic configurations

still produce different answers on two benchmarks, due to 64-bit floating-point imprecision.

5.1.2 Performance Analysis

Table 1 reports the best (first through fifth), median, and worst combinations across

all 245 ADDMC heuristic configurations. See Figure 2 for a more detailed analysis of

the runtime of some of these configurations. Evidently, a number of configurations

perform quite well while others perform poorly. The wide range of performance

indicates that the choice of heuristics is essential to the competitiveness of ADDMC. We

also observe that Bouquet’s Method and bucket elimination have similar-performing

best configurations (Best1 and Best2 ). This shows that Bouquet’s Method is competitive

with bucket elimination.

Best1 (BM-Tree clustering with LexP cluster variable order and MCS diagram

variable order) is the heuristic configuration able to solve the most benchmarks in 10
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Figure 2 : Experiment 1A: a cactus plot of the numbers of benchmarks solved by the
best, second-best, median, and worst ADDMC heuristic configurations.
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Table 1 : Experiment 1A: the numbers of benchmarks solved (of 1914) in 10 seconds
by the best (1st-5th), median, and worst ADDMC heuristic configurations.

Clustering Cluster variable order Diagram variable order Solved Name

BM-Tree LexP MCS 1202 Best1

BE-Tree InvLexP MCS 1200 Best2

BM-List LexP MCS 1200 Best3

BM-Tree LexP InvMCS 1199 Best4

BM-List LexP InvMCS 1197 Best5

BE-List LexP LexP 504 Median

BE-List Random Random 53 Worst

seconds. To see how the five best configurations here perform in a longer timeout, we

conduct Experiment 1B.

5.2 Experiment 1B: Comparing Best ADDMC Heuristic Configurations

Previously, Experiment 1A compares 245 ADDMC heuristic configurations in 10 seconds

(Table 1). Now, Experiment 1B selects the five best configurations in Experiment 1A

and compares them in 1000 seconds. On a Linux cluster with Xeon E5-2650v2 CPUs

(2.60-GHz), we run each of these five configurations on each benchmark using 24 GB

of memory.
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5.2.1 Correctness Analysis

Even with the aforementioned floating-point equality tolerance in Equation (3), different

ADDMC heuristic configurations still produce different answers on seven benchmarks (of

1914), due to 64-bit floating-point imprecision.

5.2.2 Performance Analysis

Previously, Table 1 shows the performance of the five best ADDMC heuristic configurations

in 10 seconds (245 configurations are evaluated in total). Now, Table 2 compares those

five configurations in 1000 seconds as well as their virtual best solver (VBS5). For

each benchmark, the runtime of VBS5 is the shortest runtime across the five actual

configurations.

Interestingly, there are several inversions between Table 1 and Table 2. For

instance, Best1 (the configuration that solves the most benchmarks in Experiment

1A) only solves the fourth-most benchmarks in Experiment 1B. If we compare all 245

configurations in an even longer timeout (e.g., 10000-second), then the result may

change again. Therefore, we decide use Best1 as the default configuration for ADDMC

in Experiment 2, as Experiment 1A compares all configurations whereas Experiment

1B only compares five.

See Figure 3 for a more detailed analysis of the runtime of these five configurations

and VBS5. We see that Best2 performs similarly to VBS5 on the first 1000 benchmarks.

But after that, VBS5 is significantly better than all actual configurations.
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Figure 3 : Experiment 1B: a cactus plot of the numbers of benchmarks solved in
1000 seconds by the five best ADDMC heuristic configurations in Experiment 1A (10
seconds) and their virtual best solver (VBS5 ).
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Table 2 : Experiment 1B: the numbers of benchmarks solved (of 1914) in 1000 seconds
by the five best ADDMC heuristic configurations in Experiment 1A (10 seconds) and
their virtual best solver (VBS5 ).

Clustering Cluster variable order Diagram variable order Solved Name

– – – 1489 VBS5

BM-List LexP InvMCS 1430 Best5

BM-List LexP MCS 1427 Best3

BE-Tree InvLexP MCS 1413 Best2

BM-Tree LexP MCS 1403 Best1

BM-Tree LexP InvMCS 1396 Best4

5.3 Experiment 2: Comparing ADDMC to Weighted Model Counters

In Experiment 1A, the ADDMC heuristic configuration able to solve the most benchmarks

is Best1 (BM-Tree clustering with LexP cluster variable order and MCS diagram

variable order). Using this as the default configuration, we now compare ADDMC to

four state-of-the-art weighted model counters: Cachet, c2d, d4, and miniC2D. We note

that Cachet uses long double precision, whereas all other model counters use double

precision. Also, c2d does not natively support weighted model counting. In order to

compare c2d to weighted model counters, we constructed a simple weighted model

counter that uses c2d to compile CNF into d-DNNF and then uses d-DNNF-reasoner

(http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html) to compute the

weighted model count. On average, c2d’s compilation time is 81.65% of the total

http://www.cril.univ-artois.fr/kc/d-DNNF-reasoner.html
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time.

On a Linux cluster with Xeon E5-2650v2 CPUs (2.60-GHz), we run each counter

on each benchmark using 24 GB of memory and a 1000-second timeout.

5.3.1 Correctness Analysis

Even with the aforementioned floating-point equality tolerance in Equation (3), weighted

model counters still sometimes produce different answers for the same benchmark due

to floating-point effects. In particular, of 1008 benchmarks that are solved by all five

model counters, ADDMC produces 7 model counts that differ from the output of all

four other tools. For Cachet, c2d, d4, and miniC2D, the numbers are respectively 55,

0, 42, and 0. To improve ADDMC’s precision, we plan as future work to integrate a

new decision diagram package, Sylvan [van Dijk and van de Pol, 2015], into ADDMC.

Sylvan can interface with the GNU Multiple Precision library to support ADDs with

higher-precision numbers.

5.3.2 Performance Analysis

As described earlier, we use 1914 benchmarks to compare five weighted model counters

(ADDMC, Cachet, c2d, d4, and miniC2D). We also report the performance of the virtual

best solver (VBS1). For each benchmark, the runtime of VBS1 is the shortest runtime

across all five actual solvers. To quantify how much ADDMC improves the portfolio of

actual solvers, we additionally introduce VBS0, whose runtime for each benchmark

is the shortest runtime across four existing tools (Cachet, c2d, d4, and miniC2D)
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Table 3 : Experiment 2: the numbers of benchmarks solved (of 1914) in 1000 seconds
— uniquely (i.e., benchmarks solved by no other solver), fastest, and in total — by
five weighted model counters and two virtual best solvers (VBS1 and VBS0).

Solvers
Benchmarks solved

Unique Fastest Total

VBS1 (with ADDMC) – – 1771

VBS0 (without ADDMC) – – 1647

d4 12 283 1587

c2d 0 13 1417

miniC2D 8 61 1407

ADDMC 124 763 1404

Cachet 14 651 1383

without ADDMC. Table 3 summarizes the performance of five weighted model counters,

VBS1, and VBS0. ADDMC is fastest on 763 benchmarks, including 124 benchmarks

solved by no other tool.

See Figure 4 for a detailed analysis of the solvers’ runtime. Although solving fewer

benchmarks overall than d4, our tool ADDMC improves the VBS on 763 benchmarks.

Moreover, ADDMC is able to solve 124 benchmarks that no other weighted model

counter we consider can solve. We conclude that ADDMC is a useful addition to the

portfolio of weighted model counters.
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Figure 4 : Experiment 2: a cactus plot of the numbers of benchmarks solved by five
weighted model counters and two virtual best solvers (VBS1 with ADDMC and VBS0

without ADDMC).
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5.3.3 Predicting ADDMC Performance

Generally, ADDMC can solve a benchmark quickly if all intermediate ADDs constructed

during the model counting process are small. An ADD is small when it achieves high

compression under a good diagram variable order; predicting this a priori is difficult

and is an area of active research. However, an ADD also tends to be small if it has

few variables, which occurs when an ADDMC heuristic configuration results in many

opportunities for early projection. Moreover, the number of variables that occur in

each ADD produced by Algorithm 1 can be computed much faster than computing

the full model count (since we do not need to actually construct the ADDs).

Formally, fix an ADDMC heuristic configuration. For a given benchmark, define

the maximum ADD variable count (MAVC) to be the largest number of variables

across all ADDs that would be constructed when running Algorithm 1. Using the

heuristic configuration of Experiment 2 (Best1 ), we were able to compute the MAVCs

of 1906 benchmarks (of 1914 in total). We were unable to compute the MAVCs of the

remaining 8 benchmarks within 10000 seconds due to the large number of variables

and clauses; these benchmarks were also not solved by ADDMC.

Figure 5 shows the number of benchmarks solved by ADDMC in Experiment 2 for

various upper bounds on the MAVC. Generally, ADDMC performed well on benchmarks

with low MAVCs. In particular, ADDMC solved most benchmarks (1345 of 1425) with

MAVCs less than 70 but solved solved few benchmarks (12 of 379) with MAVCs

greater than 100.
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Figure 5 : A cactus plot of the number of benchmarks, in total and solved by ADDMC,
for various upper bounds for MAVCs. The MAVCs of the 1404 benchmarks solved
by ADDMC within 1000 seconds range from 4 to 246.
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Figure 6 : A scatter plot of the solving time of ADDMC against the MAVC for each of
the 1404 benchmarks solved by ADDMC within 1000 seconds.
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Figure 6 shows the runtime of ADDMC on the 1404 benchmarks ADDMC was able

to solve in Experiment 2. In general, ADDMC was slower on benchmarks with higher

MAVCs.

From these two observations, we conclude that the MAVC of a benchmark (under

a particular heuristic configuration) is a good predictor of ADDMC performance.

5.4 Experiment 3: Comparing ADDMC to Bayesian Inference

Engines

Our experiments use 1914 model counting benchmarks from two classes. In particular,

the Bayes benchmark class contains 1091 Bayesian inference instances encoded as

CNF literal-weighted model counting instances [Sang et al., 2005].

For future work, using these Bayes benchmarks, we plan to compare two approaches

to Bayesian inference:

1. using specialized Bayesian inference engines

2. reducing Bayesian inference to model counting then using model counters

For the first approach, there are some dedicated Bayesian network solvers:

• JavaBayes (https://www.cs.cmu.edu/~javabayes/)

• Netica (https://www.norsys.com/netica.html)

• SamIam (http://reasoning.cs.ucla.edu/samiam/)

https://www.cs.cmu.edu/~javabayes/
https://www.norsys.com/netica.html
http://reasoning.cs.ucla.edu/samiam/
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• Valelim (no longer available)

For the second approach, we can first convert Bayesian networks to CNF formulas

using the tool bif2cnf (https://www.cs.rochester.edu/u/kautz/Cachet/Model_

Counting_Benchmarks/). Then we can use ADDMC to compute weighted model counts

of the formulas.

Performing Bayesian inference via reduction to weighted model counting can be

faster than directly solving Bayesian networks. In particular, the model counter

Cachet outperforms dedicated Bayesian solvers Netica, SamIam, and Valelim in

certain cases [Sang et al., 2005]. As our model counter ADDMC has better performance

than Cachet in Experiment 2, we expect ADDMC to be competitive with Bayesian

inference engines as well.

https://www.cs.rochester.edu/u/kautz/Cachet/Model_Counting_Benchmarks/
https://www.cs.rochester.edu/u/kautz/Cachet/Model_Counting_Benchmarks/
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Chapter 6

Discussion

We developed a dynamic-programming framework for weighted model counting that

captures both bucket elimination and Bouquet’s Method. We implemented this

algorithm in ADDMC, a new weighted model counter. We used ADDMC to compare

bucket elimination and Bouquet’s Method across a variety of variable order heuristics

on 1914 standard model counting benchmarks and concluded that Bouquet’s Method

is competitive with bucket elimination.

Moreover, we demonstrated that ADDMC is competitive with existing state-of-the-art

weighted model counters on these 1914 benchmarks. In particular, adding ADDMC

allows the virtual best solver to solve 124 more benchmarks. Thus ADDMC is valuable

as part of a portfolio of solvers, and ADD-based approaches to model counting in

general are promising and deserve further study. One direction for future work is to

investigate how benchmark properties (e.g., treewidth) correlate with the performance

of ADD-based approaches to model counting. Predicting the performance of tools on

CNF benchmarks is an active area of research in the SAT solving community [Xu

et al., 2008].

Bucket elimination has been well-studied theoretically, with close connections to

treewidth and tree decompositions. For instance, it is widely known that bucket
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elimination’s time and space consumption is exponential in the treewidth of a Bayesian

network [Dechter, 1999, Chavira and Darwiche, 2007]. On the other hand, Bouquet’s

Method is much less well-known. One of the few related studies observes that

Bouquet’s Method can outperform bucket elimination [Pan and Vardi, 2004]. Another

direction for our future work is to develop a theoretical framework to explain the

relative performance between bucket elimination and Bouquet’s Method.

In this work, we focused on ADDs implemented in the ADD package CUDD [Somenzi,

2015]. There are other ADD packages that may be fruitful to explore in the future.

For example, Sylvan supports multicore operations on ADDs, which would allow us

to investigate the impact of parallelism on our techniques. Moreover, Sylvan supports

arbitrary-precision arithmetic [van Dijk and van de Pol, 2015].

Other compact representations have been used in dynamic-programming frameworks

for related problems. For example, AND/OR multi-valued decision diagrams [Mateescu

et al., 2008], probabilistic sentential decision diagrams [Shen et al., 2016], and probabilistic

decision graphs [Jaeger, 2004] have all been used for Bayesian inference. Moreover,

weighted decision diagrams have been used for optimization [Hooker, 2013], and affine

ADDs have been used for planning [Sanner and McAllester, 2005]. It would be

interesting to see if these compact representations also improve dynamic-programming

frameworks for model counting.

Another future research direction is to explore new ways to build and combine

clusters in Algorithm 1. A promising technique is to use tree decompositions, which
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have been shown to work for the #P-hard problem of tensor-network contraction

[Dudek et al., 2019].
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