


ABSTRACT

On Hashing-Based Approaches to Approximate DNF-Counting

by

Aditya A. Shrotri

Propositional model counting is a fundamental problem in AI. For DNF formulas,

Monte Carlo-based techniques provide a fully polynomial randomized approximation

scheme (FPRAS). For CNF constraints, hashing-based techniques are highly success-

ful. It was recently shown that hashing techniques also yield an FPRAS for DNF

counting. Our analysis, however, shows that the proposed hashing approach provides

poor time complexity compared to the Monte Carlo techniques, for DNF Counting.

Given the success of hashing techniques for CNF constraints, it is natural to ask:

Can hashing techniques provide an efficient FPRAS for DNF counting? We provide

a positive answer to this question. We introduce two novel algorithmic techniques:

Symbolic Hashing and Stochastic Cell Counting, and a new family of Row-Echelon

hash functions. We design a hashing-based FPRAS of similar complexity (up to poly-

log factors) as that of prior works. We also provide an empirical comparison of the

various approaches.
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Chapter 1

Introduction

1.1 Background

Propositional model counting is a fundamental problem in artificial intelligence with

a wide range of applications including probabilistic inference, databases, decision

making under uncertainty, and the like [1, 2, 3, 4]. Given a Boolean formula φ, the

problem of propositional model counting , also referred to as #SAT, is to compute

the number of solutions of φ [5]. Depending on whether φ is expressed as a CNF or

DNF formula, the corresponding model counting problems are denoted as #CNF or

#DNF, respectively. Both #CNF and #DNF have a wide variety of applications. For

example, probabilistic-inference queries reduce to solving #CNF instances [1, 6, 7, 4],

while evaluation of queries for probabilistic database reduce to #DNF instances [2].

Consequently, both #CNF and #DNF have been of theoretical as well as practical

interest over the years [8, 9, 10, 11]. In his seminal paper, Valiant [5] showed that

both #CNF and #DNF are #P-complete, a class of problems that are believed to

be intractable in general.

Given the intractability of #CNF and #DNF, much of the interest lies in the ap-

proximate variants of #CNF and #DNF, wherein for given tolerance and confidence

parameters ε and δ, the goal is to compute an estimate C such that C is within a

(1+ε) multiplicative factor of the true count with confidence at least 1−δ. While both

#CNF and #DNF are #P-complete in their exact forms, the approximate variants
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differ in complexity: approximating #DNF can be accomplished in fully polynomial

randomized time [12, 13, 9], but approximate #CNF is NP-hard [11]. Consequently,

different techniques have emerged to design scalable approximation techniques for

#DNF and #CNF.

In the context of #DNF, the works of Karp, Luby, and Madras [13, 9] led to the

development of highly efficient Monte-Carlo based techniques, whose time complexity

is linear in the size of the formula. On the other hand, hashing-based techniques

have emerged as a scalable approach to the approximate model counting of CNF

formulas [14, 15, 16, 17, 11], and are effective even for problems with existing FPRAS

such as network reliability [18]. These hashing-based techniques employ 2-universal

hash functions to partition the space of satisfying solutions of a CNF formula into

cells such that a randomly chosen cell contains only a small number of solutions.

Furthermore, it is shown that the number of solutions across the cells is roughly equal

and, therefore, an estimate of the total count can be obtained by counting the number

of solutions in a cell and scaling the obtained count by the number of cells. Since the

problem of counting the number of solutions in a cell when the number of solutions

is small can be accomplished efficiently by invoking a SAT solver, the hashing-based

techniques can take advantage of the recent progress in the development of efficient

SAT solvers. Consequently, algorithms such as ApproxMC [14, 15] have been shown

to scale to instances with hundreds of thousands of variables.

While Monte Carlo techniques introduced in the works of Karp et al. have shown to

not be applicable in the context of approximate #CNF [9], it was not known whether

hashing-based techniques could be employed to obtain efficient algorithms for #DNF.

Recently, significant progress in this direction was achieved by Chakraborty, Meel and

Vardi [15], who showed that hashing-based framework of ApproxMC could be employed
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to obtain FPRAS for #DNF counting∗. There is, however, no precise complexity

analysis in [15]. In this paper, we provide a complexity analysis of the proposed

scheme of Chakraborty et al., which is worse than quartic in the size of formula. In

comparison, state-of- the-art approaches achieve complexity linear in the number of

variables and cubes for #DNF counting. This begs the question: How powerful is the

hashing-based framework in the context of DNF counting? In particular, can it lead

to algorithms competitive in runtime complexity with state-of-the-art?

1.2 Contributions

In this thesis, we provide a positive answer to this question. To achieve such a

significant reduction in complexity, we offer three novel algorithmic techniques: (i)

A new class of 2-universal hash functions that enable fast enumeration of solutions

using Gray Codes, (ii) Symbolic Hashing, and (iii) Stochastic Cell Counting. These

techniques allow us to achieve the complexity of Õ(mn log(1/δ)/ε2), which is within

polylog factors of the complexity achieved by Karp et al. [9]. Here, m and n are

the number of cubes and variables respectively while ε and δ are the tolerance and

confidence of approximation. Furthermore, we believe that these techniques are not

restricted to #DNF. Given recent breakthroughs achieved in the development of

hashing-based CNF-counting techniques, we believe our techniques have the potential

for a wide variety of applications. This theoretical part of the thesis is based on [20].

We also provide an empirical evaluation of the hashing-based and monte-carlo

based techniques on randomly generated DNF Formulas. Our experiments reveal

that the problem of approximate DNF-Counting is much more nuanced than what

∗It is worth noting that several hashing-based algorithms based on [16, 19] do not lead to FPRAS

for #DNF despite close similarity to Chakraborty et al.’s approach
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the worst case complexity analysis suggests. In particular, algorithms with better

worst-case complexity do not necessarily perform better than others in practice. Fur-

thermore, different algorithms perform better on different classes of benchmarks. This

suggests that the ’best’ approach to approximate DNF-Counting might be to use a

portfolio of the better-performing algorithms.

1.3 Organization

The rest of the thesis is organized as follows: we introduce notation in chapter 2 and

discuss related work in chapter 3. We describe our main contributions in chapter 4,

analyze the resulting algorithm in chapter 5, describe empirical evaluation in chapter

6 and discuss future work and conclude in chapter 7.
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Chapter 2

Preliminaries

2.1 DNF Formulas and Counting

We use Greek letters φ, θ and ψ to denote boolean formulas. A formula φ over boolean

variables x1, x2, . . . , xn is in Disjunctive Normal Form (DNF) if it is a disjunction over

conjunctions of variables or their negations. We use X to denote the set of variables

appearing in the formula. Each occurrence of a variable or its negation is called a

literal. Disjuncts in the formula are called cubes and we denote the ith cube by φCi.

Thus φ = φC1∨φC2∨ ...∨φCm where each φCi is a conjunction of literals. We will use

n and m to denote the number of variables and number of cubes in the input DNF

formula, respectively. The number of literals in a cube φCi is called its width and is

denoted by width[φCi].

An assignment to all the variables can be represented by a vector x ∈ {0, 1}n

with 1 corresponding to true and 0 to false. U = {0, 1}n is the set of all possible

assignments, which we refer to as the universe or state space interchangeably. An

assignment x is called a satisfying assignment for a formula φ if φ evaluates to true

under x. In other words x satisfies φ and is denoted as x |= φ. Note that an

assignment x will satisfy a DNF formula φ if x |= φCi for some i. The DNF-Counting

Problem is to count the number of satisfying assignments of a DNF formula.

Next, we formalize the concept of a counting problem. Let R ⊆ {0, 1}∗ × {0, 1}∗

be a relation which is decidable in polynomial time and there is a polynomial p such
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that for every (s, t) ∈ R we have |t| ≤ p(|s|). The decision problem corresponding

to R asks if for a given s there exists a t such that (s, t) ∈ R. Such a problem is in

NP. Here, s is a called the problem instance and t is called the witness. We denote

the set of all witnesses for a given s by Rs. The counting problem corresponding to

R is to calculate the size of the witness set |Rs| for a given s. Such a problem is in

#P[5]. The DNF-Counting problem is an example of this formalism: A formula φ is a

problem instance and a satisfying assignment x is a witness of φ. The set of satisfying

assignments or the solution space is denoted Rφ and the goal is to compute |Rφ|. It

is known that the problem is #P-Complete, which is believed to be intractable [21].

Therefore, we look at what it means to efficiently and accurately approximate this

problem.

A fully polynomial randomized approximation scheme (FPRAS) is a random-

ized algorithm that takes as input a problem instance s, a tolerance ε ∈ (0, 1)

and confidence parameter δ ∈ (0, 1) and outputs a random variable c such that

Pr[ 1
1+ε
|Rs| ≤ c ≤ (1 + ε)|Rs|] ≥ 1 − δ and the running time of the algorithm is

polynomial in |s|, 1/ε, log(1/δ) [13]. Notably, while exact DNF-counting is inter-

reducible with exact CNF-counting, the approximate versions of the two problems

are not because multiplicative approximation is not closed under complementation.

2.2 Monte Carlo Algorithms

Monte Carlo algorithms are randomized algorithms whose output can be wrong with

a certain (usually small) probability [22]. They rely on drawing independent random

samples to obtain numerical results. We refer the reader to [23] for further details.

In the context of counting, the abstract Monte Carlo framework for finding |Rs| in

some universe U is shown in Algorithm 1.
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Algorithm 1 Monte Carlo Framework for Counting
1: C ← 0

2: repeat N times

3: Select an element t ∈ U uniformly at random

4: if t ∈ Rs then

5: C ← C + 1
N

6: Y ← C ∗ |U |

7: return Y

C is an unbiased estimator for µ = |Rs|/|U | which is also called the density

of solutions, and Y is an unbiased estimator for |Rs|. A concrete algorithm can be

obtained from the above framework by instantiating U and Rs for the specific problem

being solved.

Using Chebyshev’s inequality, it can be shown that if N ≥ V[C]
E[C]2

log(2/δ)/ε2 then

Pr[ 1
1+ε
|Rs| ≤ Y ≤ (1 + ε)|Rs|] ≥ 1 − δ. In general, it is usually only possible to

find a lower bound on N since V[C]
E[C]2

is not easy to compute. There are two flavors of

algorithm 1 based on how N is obtained:

2.2.1 Vanilla Monte Carlo

We refer to the standard practice of fixing N before invoking algorithm 1 as Vanilla

Monte Carlo (V-MC). As V[C] < E[C], V[C]
E[C]2

can be approximated by 1
µ
. A good lower

bound on µ, therefore, suffices to compute N . If it is not possible to obtain a tight

bound on µ or µ is very small, then the algorithm becomes slow. However, there is

no restriction to the range of values for the V-MC estimator.
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2.2.2 DKLR Monte Carlo

We refer to the sampling framework introduced by Dagum et al. [12] as DKLR Monte

Carlo (DKLR-MC), after the initials of the authors. The number of samples required

to obtain (ε, δ) guarantees is calculated as part of the algorithm. The algorithm

proceeds in 3 phases: in the first phase a loose bound on µ is obtained. In phase

2 a bound on variance is obtained using the previous bound on µ. In phase 3 the

final count is obtained based on the estimates of variance and µ obtained previously.

Dagum et al. show that their algorithm requires close to theoretically optimal number

of samples. Therefore this technique is superior to V-MC when a tight a priori bound

is not available. However, unlike V-MC, DKLR-MC only allows estimators with

values constrained to the interval [0,1]. V-MC is thus more general than DKLR-MC.

2.3 Monte Carlo for DNF

Algorithm 1 is an FPRAS if N is polynomial in size of t, and if steps 1 and 2

can be performed in polynomial time. This depends on the specific problem under

consideration. For a DNF formula φ with n variables and m cubes, we can apply the

above algorithm naively by defining U to be set of all assignments over n variables

and Rφ to be the set of satisfying assignments to φ. The best lower bound on Rφ is

2n−w, where w is the minimum width of all cubes of φ. If w is a small constant, then

1
µ
≥ 1

2w
which is polynomial in n and m and hence we get an FPRAS. If however w

is O(n), then 1
µ

becomes exponential in n and the algorithm is no longer an FPRAS.

However, by redefining U and Rφ in ways that ensure 1
µ

polynomial for all φ, Karp

et al. developed counters that are FPRAS for #DNF.
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2.3.1 KL Counter

Karp et al. [13] developed the first FPRAS for #DNF, which we refer to as KL

Counter. They defined a new universe U ′ = {(x, φCi) | x |= φCi}, and the corre-

sponding solution space R′φ as R′φ = {(x, φCi) | x |= φCi and ∀j < i,x 6|= φCj} for

a fixed ordering of the cubes. They showed that |Rφ| = |R′φ| and that the ratio

|U ′|/|R′φ| ≤ m and is therefore polynomially bounded. Their estimator is a 0/1 es-

timator and hence can be used with either the V-MC framework as in the original

paper, or also with the DKLR-MC framework. The worst case complexity of their

algorithm is O(m2n log(2/δ)/ε2).

2.3.2 KLM Counter

Karp et al. [9] improved the running time of the KL Counter in their algorithm which

we refer to as the KLM Counter. They defined ’coverage’ of an assignment x in U ′ as

cov(x) = {j|x |= φCj}. The first key insight is that |R′φ| =
∑

(x,φCi)∈U ′
1

|cov(x)| . The

second insight was to define an estimator for 1/|cov(x)| using the geometric distribu-

tion. The geometric distribution has support in (0,∞) and hence the corresponding

estimator cannot be used with the DKLR-MC framework. However, the worst case

complexity of KLM Counter is O(mn log(2/δ)/ε2) which is better than that of KL

Counter.

2.3.3 Vazirani Counter

An easy way to adapt the KLM Counter for use with the DKLR-MC framework is to

calculate |cov(x)| exactly by iterating over all cubes instead of using the geometric

estimator, since 1/|cov(x)| lies in (0, 1]. Although this adaptation of KLM Counter

is straightforward, we refer to it as the Vazirani Counter since this variant was first
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described by Vazirani [24]. Vazirani Counter has been used as a baseline for ex-

perimental evaluation of other algorithms for #DNF [25]. Its advantage is that its

variance is smaller than that of the KL Counter and so DKLR-MC requires fewer

samples to achieve the same error bounds. However, the time for generating a sample

can be considerably more since all cubes have to be checked.

2.4 Matrix Notation

We use x,y, z, . . . to denote scalar variables. We use subscripts x1, x2, . . . as required.

In this paper we are dealing with operations over the boolean ring, where the variables

are boolean, ’addition’ is the XOR operation (⊕) and ’multiplication’ is the AND

operation (∧). We use the letters i,j,k, l as indices or to denote positions. We denote

sets by non-boldface capital letters. We use capital boldface letters A,B, . . . to denote

matrices, small boldface letters u, v, w, . . . to denote vectors. A[p×q] denotes a matrix

of p rows and q columns, while u[q] denotes a vector of length q. 0[q] and 1[q] are the

all 0s and all 1s vectors of length n, respectively. We omit the dimensions when clear

from context. x[i] denotes the ith element of x, while A[i, j] denotes the element

in the ith row and jth column of A. A[r1 : r2, c1 : c2] denotes the sub-matrix of A

between rows r1 and r2 excluding r2 and columns c1 and c2 excluding c2. Similarly

v[i : j] denotes the sub-vector of v between index i and index j excluding j. The ith

row of A is denoted A[i, :] and jth column as A[:, j]. The p× (q1 +q2) matrix formed

by concatenating rows of matrices A[p×q1] and B[p×q2] is written in block notation as

[A | B], while [A
B

] represents concatenation of columns. Similarly the (q1+q2)-length

concatenation of vectors v[q1] and w[q2] is [v | w]. The dot product between matrix A

and vector x is written as A.x. The vector formed by element-wise XOR of vectors

v and w is denoted v ⊕w.
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2.5 Hash Functions

A hash function h : {0, 1}q → {0, 1}p partitions the elements of of the domain

{0, 1}q into 2p cells. h(x) = y implies that h maps the assignment x to the cell

y. h−1(y) = {x|h(x) = y} is the set of assignments that map to the cell y. In the

context of counting, 2-universal families of hash functions, denoted by H(q, p, 2), are

of particular importance. When h is sampled uniformly at random from H(q, p, 2),

2-universality entails

1. Pr[h(x1) = h(x2)] ≤ 2−p for all x1 6= x2

2. Pr[h(x) = y] = 2−p for every x ∈ {0, 1}q and y ∈ {0, 1}p.

Of particular interest is the random XOR family of hash functions, which is defined

as HXOR(q, p) = {A.x⊕b | A[i, j] ∈ {0, 1} and b[i] ∈ {0, 1} ; 0 ≤ i < p, 0 ≤ j < q}.

Selecting A[i, j]s and b[i]s randomly from {0, 1} is equivalent to drawing uniformly

at random from this family. A pair A and b now defines a hash function hA,b as

follows: hA,b(x) = A.x ⊕ b. This family was shown to be 2-universal in [26]. For a

hash function h ∈ HXOR(q, p), we have that h(x) = y is a system of linear equations

modulo 2: A.x ⊕ b = y. From another perspective, it can be viewed as a boolean

formula ψ =
∧p
i=1(
⊕q

j=1(A[i, j] ∧ x[j])) ⊕ b[i] = y[i]. The solutions to this formula

are exactly the elements of the set h−1(y).

2.6 Gaussian Elimination

Solving a system of linear equations over q variables and p constraints can be done by

row reduction technique known variously as Gaussian Elimination or Gauss-Jordan

Elimination. A matrix is in Row-Echelon form if rows with at least one nonzero

element are above any rows of all zeros. The matrix is in Reduced Row-Echelon form
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if, in addition, every leading non-zero element in a row is 1 and is the only nonzero

entry in its column. We refer to the technique for obtaining the Reduced Row-Echelon

form of a matrix as Gaussian Elimination. We refer the reader to any standard text

on linear algebra (cf., [27]) for details. For a matrix in Reduced Row-Echelon form,

the row-rank is simply the number of non-zero rows.

For a system of linear equations A.x ⊕ b = y, if the row-rank of the augmented

matrix is same as row-rank of A, then the system is consistent and the number of

solutions is 2q−rowrank(A) where q is the number of variables in the system of equations.

Moreover, if A is in Reduced Row-Echelon form, then the values of the variables

corresponding to leading 1s in each row are completely determined by the values

assigned to the remaining variables. The variables corresponding to the leading 1’s

are called dependent variables and the remaining variables are free. Let XF and

X \ XF denote the set of free and dependent variables respectively. Let f = |XF |.

Clearly f = q − rowrank(A). For each possible assignment to the free variables we

get an assignment to the dependent variables by propagating the values through the

augmented matrix inO(q2) time. Thus we can enumerate all 2f satisfying assignments

to a system of linear equations A.x⊕ b = y if A in Reduced Row-Echelon form.

2.7 Gray Codes

A Gray code [28] is an ordering of 2l binary numbers for some l ≥ 1 with the property

that every pair of consecutive numbers in the sequence differ in exactly one bit. Thus

starting from 0l we can iteratively construct the entire Gray code sequence by flipping

one bit in each step. We assume access to a procedure nextGrayBit that in each call

returns the position of the next bit that is to be flipped. Such a procedure can be

implemented in constant time by a trivial modification of Algorithm L in [29].
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Chapter 3

Related Work

Propositional model counting has been of theoretical as well as practical interest over

the years[8, 13, 10, 21]. Early investigations showed that both #CNF and #DNF

are #P-complete [5]. Consequently, approximation algorithms have been explored

for both problems. A major breakthrough for approximate #DNF was achieved

by the seminal work of Karp and Luby [13], which provided a Monte Carlo-based

FPRAS for #DNF. The proposed FPRAS was improved by follow-up work of Karp,

Luby and Madras [9] and Dagum et al. [12], achieving the best known complexity

of O(mn log(1/δ)/ε2). In this work, we bring certain ideas of Karp et al. into the

hashing framework with significant adaptations.

For #CNF, early work on approximate counting resulted in hashing-based schemes

that required polynomially many calls to an NP-oracle [11, 19]. No practical algo-

rithms materialized from the these schemes due to the impracticality of the underlying

NP queries. Subsequent attempts to circumvent hardness led to the development of

several hashing and sampling-based approaches that achieved scalability but provided

very weak or no guarantees [17, 30]. Due to recent breakthroughs in the design of

hashing-based techniques, several tools have been developed recently that can han-

dle formulas involving hundreds of thousands of variables while providing rigorous

formal guarantees. Overall, these tools can be broadly classified by their underlying

hashing-based technique as: (i) obtain a constant factor approximation and then use

identical copies of the input formula to obtain ε approximations [16], or (ii) directly
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obtain ε guarantees[14, 15]. The first technique when applied to DNF formulas is

not an FPRAS. In contrast, Chakraborty, Meel and Vardi [15] recently showed that

tools based on the latter approach, such as ApproxMC2, do provide FPRAS for #DNF

counting. Chakraborty et al. did not analyze the complexity of the algorithm in their

work. We now provide a precise complexity analysis of ApproxMC2 for #DNF. To

that end, we first describe the ApproxMC framework on which ApproxMC2 is built.

3.1 ApproxMC Framework

Chakraborty et al. introduced in [14] a hashing-based framework called ApproxMC

that requires linear (in n) number of SAT calls. Subsequently in ApproxMC2, the

number of SAT calls was reduced from linear to logarithmic (in n). The core idea

of ApproxMC is to employ 2−universal hash functions to partition the solution space

into roughly equal small cells, wherein a cell is called small if it has less than or equal

to hiThresh solutions, such that hiThresh is a function of ε. A SAT solver is employed

to check if a cell is small by enumerating solutions one-by-one until either there are

no more solutions or we have already enumerated hiThresh + 1 solutions. Following

the terminology of [14], we refer to the above described procedure as BSAT (bounded

SAT). To determine the number of cells, ApproxMC performs a search that requires

O(log n) steps and the estimate is returned as the count of the solutions in a randomly

picked small cell scaled by the total number of cells. To amplify confidence to the

desired levels of 1 − δ, ApproxMC invokes the estimation routine O(log 1
δ
) times and

reports the median of all such estimates. Hence, the number of BSAT invocations is

O(log n log(1
δ
)).
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3.1.1 FPRAS for #DNF

The key insight of Chakraborty et al. [15] is that the BSAT procedure can be done

in polynomial time when the input formula to ApproxMC is in DNF. The under-

lying structure of ApproxMC for DNF is the same as ApproxMC for CNF, except

for the BSAT procedure. ApproxMC2 (algorithm 2) makes t = O(log(1/δ)) calls to

ApproxMC2Core in lines 6-10 and returns the median of the invocations as the final

result in line 12.

ApproxMC2Core (algorithm 3) makes a call to LogSATSearch (algorithm 4) which

performs a binary / galloping search to find the correct number p of hashes. It then

invokes BSAT with p of hash constraints and returns the count so obtained.

BSAT (algorithm 5) receives as input the formula and p hash constraints. In line

2 a matrix A′ in Reduced Row Echelon form is obtained by performing Gaussian

Elimination over the matrix formed by concatenating a cube with the input hash

matrix. If the number of solutions is greater than hiThresh, then it returns. Otherwise,

solutions to A′ are enumerated in lines 6-8. Lines 9-10 ensure that at most mhiThresh

solutions are enumerated in an invocation of BSAT. Since Gaussian Elimination is a

polynomial-time procedure, BSAT can be accomplished in polynomial time as well.

Chakraborty et al. did not provide a precise complexity analysis of BSAT. We now

provide such an analysis. To start, the following lemma states the time complexity

of the BSAT routine.

Lemma 1. The complexity of BSAT when the input formula to ApproxMC2 is in DNF

is O(mn3 + mn2/ε2).

Proof. When the input formula φ to ApproxMC2 is in DNF, BSAT is invoked with a

formula of the form φ∧ψ where ψ is a conjunction of XOR constraints. For each cube
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φCi, BSAT proceeds by performing Gaussian Elimination (line 3) on φCi∧ψ. Since the

number of XOR constraints can be O(n), Gaussian elimination can take O(n3) time

resulting in a cumulative complexity of O(mn3) for all cubes. At most hiThresh =

O(1/ε2) solutions to each φCi ∧ψ may have to be enumerated and each enumeration

requires O(n2) time. Therefore the complexity of enumeration is O(mn2/ε2). Thus

the BSAT runs in O(mn3 + mn2/ε2) time in the worst case.

We can now complete the complexity analysis:

Lemma 2. The complexity of ApproxMC2 is O((mn3 + mn2/ε2) log n log(1/δ)) when

the input formula is in DNF.

Proof. ApproxMC2 makes O(log n log(1/δ)) calls to BSAT. Substituting the complex-

ity of BSAT from lemma 1, we get O((mn3 + mn2/ε2) log n log(1/δ)) complexity for

ApproxMC2.
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Algorithm 2 ApproxMC2(φ, ε, δ)

1: hiThresh← 1 + 9.84
(
1 + ε

1+ε

) (
1 + 1

ε

)2
;

2: Y ← BSAT(φ, null, null, null, hiThresh, 0, n);

3: if (Y < hiThresh) then return Y ;

4: t← d17 log2(3/δ)e;

5: cellCount← 2; C ← emptyList; iter← 0;

6: repeat

7: iter← iter + 1;

8: (cellCount, solCount)←ApproxMC2Core(φ, hiThresh, cellCount);

9: if (cellCount 6= ⊥) then AddToList(C, solCount× cellCount);
(iter < t);

10: finalEstimate← FindMedian(C);

11: return finalEstimate

Algorithm 3 ApproxMC2Core(φ, hiThresh, prevCellCount)

1: Choose A at random from Hxor(n, n− 1);

2: Choose b,y at random from {0, 1}n−1;

3: Y ← BSAT(φ,A, b,y, hiThresh, n− 1, n);

4: if (Y ≥ hiThresh) then return (⊥,⊥);

5: mprev← log2 prevCellCount;

6: p← LogSATSearch(φ,A, b,y, hiThresh,mprev);

7: solCount← BSAT(φ,A, b,y, hiThresh, p, n);

8: return (2p, solCount);
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Algorithm 4 LogSATSearch(φ,A, b,y, hiThresh,mprev)

1: lowerFib← 0; upperFib← n− 1; p← mprev;

2: FailRecord[0]← 1; FailRecord[n− 1]← 0;

3: FailRecord[i]← ⊥ for all i other than 0 and n− 1;

4: while true do

5: Y ← BSAT(φ,A, b,y, hiThresh, p, n);

6: if (|Y | ≥ hiThresh) then

7: if (FailRecord[p + 1] = 0) then return p + 1;

8: FailRecord[i]← 1 for all i ∈ {1, . . . p};

9: lowerFib← p;

10: if (|p−mprev| < 3) then p← p + 1;

11: else if (2.p < |S|) then p← 2.p;

12: else p← (upperFib + p)/2;

13: else

14: if (FailRecord[p− 1] = 1) then return p;

15: FailRecord[i]← 0 for all i ∈ {p, . . . n};

16: upperFib← p;

17: if (|p−mprev| < 3) then p← p− 1;

18: else p← (p + lowerFib)/2;
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Algorithm 5 BSAT(φ,A, b,y, hiThresh, p, q)

1: Sols← ∅

2: for (j = 0; j < m; j + +) do

3: A′ ← GaussElim(A ∧ φCj)

4: if q− rank(A′) ≥ log hiThresh then return hiThresh

5: for v ∈ {0[q−rank(A′)], . . . ,1[q−rank(A′)]} do

6: A′′ ← A′[0 : q− rank(A′), q− rank(A′) : q]

7: u← A′′.v ⊕ b⊕ y

8: Sols← Sols ∪ {[u : v]}

9: if |Sols| ≥ hiThresh then

10: break

11: return |Sols|



20

Chapter 4

Efficient Hashing-based DNF Counter

We now present three key novel algorithmic innovations that allow us to design

hashing-based FPRAS for #DNF with complexity similar to Monte Carlo-based state-

of-the-art techniques. We first introduce a new family of 2-universal hash functions

that allow us to circumvent the need for expensive Gaussian Elimination. We then

discuss the concept of Symbolic Hashing, which allows us to design hash functions

over a space different than the assignment space, allowing us to achieve significant

reduction in the complexity of search procedure for the number of the cells. Finally,

we show that BSAT can be replaced by an efficient stochastic estimator. These three

techniques allow us to achieve significant reduction in the complexity of hashing-based

DNF counter without loss of theoretical guarantees.

4.1 Row-Echelon XOR Hash Functions

The complexity analysis presented in Section 3 shows that the expensive Gaussian

Elimination contributes significantly to poor time complexity of ApproxMC2. Since

the need for Gaussian Elimination originates from the usage of HXOR, we seek a family

of 2-universal hash functions that circumvents this need. We now introduce a Row-

Echelon XOR family of hash functions defined as HREX(q, p) = {A.x⊕ b | A[p×q] =

[I [p×p] : D[p×(q−p)]]} where I is the identity matrix, D and b are random 0/1 matrix

and vector respectively. In particular, we ensure that for every D[i, j] and b[i] we have
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Pr[D[i, j] = 1] = Pr[D[i, j] = 0] = 0.5 and also Pr[b[i] = 1] = Pr[b[i] = 0] = 0.5. Note

that D and b completely define a hash function from HREX . The following theorem

establishes the desired properties of universality for HREX .

Theorem 3. HREX is 2-universal.

Proof. Let h be a random hash function from HREX(q, p) with A[p×q] as its matrix.

Let x1,x2 be any two assignments such that x1 6= x2. To prove 2-universality of

HREX , we need to show that for all x and y:

Pr[h(x1) = h(x2)] ≤
1

2p
(4.1)

Pr[h(x) = y] =
1

2p
(4.2)

Equation 4.2 follows from the random choice of b. In particular, for every x and

y for a chosen A, there is a unique b such that A.x ⊕ b = y. Since there are 2p

possible choices for b, we have Pr[A.x⊕ b = y] = 1
2p

.

Let x = x1⊕x2. Note that x 6= 0[q] since x1 6= x2. We prove that Pr[h(x) = 0q] ≤

1/2p which is equivalent to 4.1. This is the same as showing Pr[A.x = 0[q]] ≤ 1/2p.

We can write A = [I [p×p] : D[p×(q−p)]] and x as x = [u[p] : v[(q−p)]] in block

notation. Then we have A.x = I.u ⊕ D.v. Since x 6= 0, either u 6= 0 or v 6= 0

leading to the following three cases:

Case 1: If u 6= 0[p] and v = 0[q−p], we get I.u 6= 0[p] and D.v = 0[p]. Therefore

A.x = I.u⊕D.v 6= 0[p].

Case 2: If u = 0[p] and v 6= 0[q−p], we get I.u = 0[p]. From the proof of Theorem 1

in [31] we have Pr[D.v = 0[p]] = 1
2p

. Therefore Pr[A.x = 0[p]] = 1
2p

Case 3: If u 6= 0[p] and v 6= 0[q−p], we get I.u 6= 0[p] and Pr[D.v = 0[p]] = 1
2p

.

Therefore Pr[A.x = 0[p]] = 1
2p
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Algorithm 6 enumNextREX(D,u,v, k)

1: v′ ← v

2: v′[k]← ¬v[k]

3: u′ ← u⊕D[., k]

4: return (u′,v′)

The naive way of enumerating satisfying assignments for a given D[p×(q−p)], b[p],

and y[p] is to iterate over all 2f assignments to the free variables in sequence starting

from 0[f ] to 1[f ], where f = (q − p). For each assignment v[f ] to the free variables,

the corresponding assignment to the dependent variables u[q−f ] can be calculated as

u = (D.v)⊕ b⊕ y, which requires O(pq) time. Can we do better?

We answer the above question positively by iterating over the 2f assignments to

the free variables out of sequence. In particular, we iterate using the Gray code

sequence for f bits. The procedure is outlined in enumNextREX (Algorithm 6). The

algorithm takes the hash matrix D, an assignment to the free variables v, and an

assignment to the dependent variables u as inputs, and outputs the next free-variable

assignment v′ in the Gray sequence and the corresponding assignment u′ to the

dependent variables. k represents the position of the bit that is changed between

v and v′. Thus enumNextREX constructs a satisfying assignment to a Row-Echelon

XOR hash function in each invocation in O(q) time.
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4.2 Symbolic Hashing

For DNF formulas, Rφ can be exponentially sparse compared to U , which is undesir-

able∗. It is possible, however, to transform U to another space U ′ and the solution

space Rφ to R′φ such that the ratio |U ′|/|R′φ| is polynomially bounded and |Rφ| = |R′φ|.

For DNF formulas, the new universe U ′ is defined as U ′ = {(x, φCi) | x |= φCi}.

Thus, corresponding to each x |= φ that satisfies cubes φCi1 , ..φCix in φ, we have

the states {(x, φCi1), (x, φCi2)..(x, φCix)} in U ′. Next, the solution space is defined

as R′φ = {(x, φCi) | x |= φCi and ∀j < i,x 6|= φCj} for a fixed ordering of the cubes.

The definition of R′φ ensures that |Rφ| = |R′φ|. This transformation is due to Karp

and Luby [13].

The key idea of Symbolic Hashing is to perform 2-universal hashing symbolically

over the transformed space. In particular, the sampled hash function partitions the

space U ′ instead of U . Therefore, we employ hash functions from HREX(q, p) over

q = n − w + logm variables instead of n variables. Note that the variables of a

satisfying assignment z ∈ {0, 1}q to the hash function are now different from the

variables to a satisfying assignment x ∈ {0, 1}n of the input formula φ. We interpret

z as follows: the last logm bits of z are converted to a number i such that 1 ≤ i ≤ m.

Now φCi corresponds to a partial assignment of width[φCi] variables in that cube. For

simplicity, we assume that each cube is of the same width w.† The remaining n− w

bits of z are interpreted to be the assignment to the n−w variables not in φCi giving a

complete assignment x. Thus we get a pair (x, φCi) from z such that x |= φCi. For a

fixed ordering of variables and cubes we see that there is a bijection between (x, φCi)

∗Number of steps of ApproxMC2 search procedure increases with sparsity

†We can handle non-uniform width cubes by sampling φCi with probability 2n−width[φ
Ci]∑m

j=1 2n−width[φ
Cj ]

instead of uniformly
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and z and hence the 2-universality guarantee holds over the partitioned space of U ′.

4.3 Stochastic Cell-Counting

To estimate the number of solutions in a cell, we need to check for every tuple (x, φCi)

generated using symbolic hash function as described above: if (x, φCi) ∈ R′φ. Such a

check would require iteration over cubes φCj for 1 ≤ j ≤ (i − 1) and returning no if

x |= φCj for some j and yes otherwise. This would result in procedure with O(mn)

complexity.

Our key observation is that a precise count of the number of solutions in a cell is

not required and therefore, one can employ a stochastic estimator for the number of

solutions in a cell. We proceed as follows: we define the coverage of an assignment x

as cov(x) = {j|x |= φCj}. Note that
∑

(x,φCi)∈U ′
1

|cov(x)| = |Rφ|.

We define a random variable cx as the number of steps taken to uniformly and

independently sample from {1, 2, . . . ,m}, a number j such that x |= φCj. For a

randomly chosen j, the probability Pr[x |= φCj] = |cov(x)|/m, which follows the

Bernoulli distribution. The random variable cx is the number of Bernoulli trials for the

first success, which follows the geometric distribution. Therefore, E[cx] = m/|cov(x)|,

and E[cx/m] = 1/|cov(x)|. The estimator cx/m has been previously employed by Karp

et al. [9]. Here, we show that it can also be used for Stochastic Cell-Counting: we

define the estimator for the number of solutions in a cell as Ωy =
∑

(x,φCi)∈h−1(y) cx/m.

4.4 The Full Algorithm

We now incorporate the above techniques into ApproxMC2 and call the revised algo-

rithm SymbolicDNFApproxMC, which is presented as Algorithm 7. First, note that

expression for hiThresh is twice that for ApproxMC2. Then, in line 4, a matrix D̂
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Algorithm 7 SymbolicDNFApproxMC(φ, ε, δ)

1: hiThresh← 2 ∗ (1 + 9.84
(
1 + ε

1+ε

) (
1 + 1

ε

)2
);

2: t← d17 log2(3/δ)e;

3: EstimateList← emptyList; iter← 0;

4: repeat

5: iter← iter + 1;

6: (cellCount, solCount)←SymbolicDNFApproxMCCore(φ, hiThresh);

7: if (cellCount 6= ⊥) then AddToList(EstimateList, solCount× cellCount);
(iter < t);

8: finalEstimate← FindMedian(EstimateList);

9: return finalEstimate

and vectors b̂ and ŷ are obtained, which are employed to construct an appropriate

hash function and cell during the search procedure of SymbolicDNFApproxMCCore.

SymbolicDNFApproxMC makes t = O(log(1/δ)) calls to SymbolicDNFApproxMCCore

(line 4-8) and returns median of all the estimates (lines 9-10) to boost the probability

of success to 1− δ .

We now discuss the subroutine SymbolicDNFApproxMCCore, which is an adapta-

tion of ApproxMC2Core but with significant differences. First, for DNF formulas with

cube width w, the number of solutions is lower bounded by 2n−w. Therefore, instead

of starting with 1 hash constraint, we can safely start with sI = n−w− log hiThresh

constraints (lines 3-4). Thereafter, SymbolicDNFApproxMCCore calls LogSATSearch in

line 5 to find the right number p of constraints. The cell count with p constraints is

calculated in line 6 and the estimate (2p, solCount) is returned in line 7.

SampleBase algorithm constructs the base matrix D̂ and base vectors b̂ and ŷ

required for sampling from HREX family. G is a random matrix of dimension sI ×
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Algorithm 8 SymbolicDNFApproxMCCore(φ, hiThresh)

1: w← width of cubes

2: q← n− w + logm

3: sI ← n− w − log hiThresh

4: (D̂
[(q−1)×(q−sI)]

, b̂,ŷ)← SampleBase(q, sI)

5: p← LogSATSearch(φ, D̂, b̂, ŷ, hiThresh, sI, q− 1);

6: solCount← BSAT(φ, D̂, b̂, ŷ, hiThresh, p, q, sI);

7: return (2p, solCount);

Algorithm 9 SampleBase(q, sI)

1: Sample G uniformly from {0, 1}[sI×(q−sI)]

2: Sample uniformly an upper triangular matrix E[(q−sI−1)×(q−sI)] with E[i, i] = 1 for

all i.

3: D̂← [G
E

]

4: Sample b̂ and ŷ uniformly from {0, 1}q−1

5: return D̂, b̂, ŷ

(q−sI) and E is a random upper triangular matrix of dimension (q−sI−1)×(q−sI)

with all diagonal elements 1. In line 3, D̂ is constructed as the vertical concatenation

[G
E

].

LogSATSearch (algorithm 10) performs a binary search to find the number of

constraints p at which the cell count falls below hiThresh. For DNF formula with cube

width of w, since the number of solutions is bounded between 2n−w and m ∗ 2n−w, we

need to perform search for p between n − w and n − w + logm. Therefore, binary

search can take at most O(log logm) steps to find correct p.

Symbolic Hashing is implemented in Algorithm 11 (BSAT). In line 2, we obtain
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Algorithm 10 LogSATSearch(φ, D̂, b̂, ŷ, hiThresh, low, hi)

1: lowerFib← 0; upperFib← hi− low + 1; p← low

2: FailRecord[0]← 1; FailRecord[hi− low + 1]← 0;

3: FailRecord[i]← ⊥ for all i other than 0 and hi− low + 1;

4: while true do

5: CBSAT ← BSAT(φ, D̂, b̂, ŷ, hiThresh, p, q, sI);

6: if (CBSAT ≥ hiThresh) then

7: if (FailRecord[p + 1− low + 1] = 0) then return p + 1;

8: FailRecord[i]← 1 for all i ∈ {1, . . . p− low + 1};

9: lowerFib← p− low + 1;

10: p← (upperFib + lowerFib)/2;

11: else

12: if (FailRecord[p− 1− low + 1] = 1) then return p;

13: FailRecord[i]← 0 for all i ∈ {p, . . . hi− low + 1};

14: upperFib← p− low + 1;

15: p← (upperFib + lowerFib)/2;

a hash function from HREX(q, p) over q = n− w + logm variables by calling Extract.

We assume access to a procedure nextGrayBit in line 10 that returns the position of

the bit that is flipped between two consecutive assignments. A satisfying assignment

z to the hash function is constructed in line 6. z is interpreted to generate a pair

(x, φCi) in line 7 which is checked for satisfiability in line 8. The final cell count is

returned in line 12.

In CheckSAT (algorithm 12), we implement the stochastic cell counting procedure.

The key idea is to sample cubes uniformly at random from {1, 2. . . .m} till a cube
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Algorithm 11 BSAT(φ, D̂, b̂, ŷ, hiThresh, p, q, sI)

1: count← 0;

2: D, b,y ← Extract(D̂, b̂, ŷ, p, q, sI);

3: up ← b⊕ y;

4: vq−p ← 0q−p;

5: for (j = 0; j < 2q−p; j + +) do

6: z ← [u : v];

7: (x, φCi) = interpret(z);

8: count = count+ CheckSAT(x, φCi, count, hiThresh);

9: if count ≥ hiThresh then return hiThresh;

10: k ← nextGrayBit(q− p, j);

11: (u,v)← enumNextREX(D,u,v, k);

12: return count

φCj is found such that x |= φCj (lines 2-5). The number of cubes sampled cx divided

by total number of cubes m is the estimate returned (line 6).

Procedure LogSATSearch in SymbolicDNFApproxMC is based upon LogSATSearch

in ApproxMC2 [15]. As noted in the analysis of ApproxMC2, such a logarithmic search

procedure requires that the solution space for a hash function with p + 1 hash con-

straints is a subset of the solution space with p hash constraints. Furthermore, we

want to preserve Row-Echelon nature of the resulting hash constraints. To this end,

we first construct D[q×(q−p)] and b[q−1] as follows:

To seed the construction procedure, in SampleBase (algorithm 9) we first randomly

sample a 0/1 vector b̂ of size q−1 which is the maximum number of hash constraints

possible. We then construct a 0/1 matrix D̂ as follows: D̂
[(q−1)×(q−sI)]

= [G
E

] where
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Algorithm 12 CheckSAT(x, φCi, count, hiThresh)

1: cx ← 0;

2: while count+ cx/m < hiThresh do

3: Uniformly sample j from {1, 2, ..,m};

4: cx ← cx + 1;

5: if x |= φCj then

6: return cx/m;

7: return cx/m

matrix G[sI×(q−sI)] is a random 0/1 matrix with sI rows, and matrix E[(q−sI)×(q−sI)] is

defined as as follows:

• E[i, j] = 1 if i = j

• E[i, j] = 0 if i > j

• Pr[E[i, j] = 1] = Pr[E[i, j] = 0] = 0.5 if i < j

The reason for this definition of D̂ is that for DNF counting we have a good lower

bound on the number of hash constraints we can start with. The number of rows in

G corresponds to this lower bound. The definition of E ensures that the rows of E

are linearly independent which results in a monotonically shrinking solution space.

The Extract procedure (algorithm 13) takes D̂,b̂ and ŷ and a number p as input

and returns D,b and cell y such that (D, b) represents a hash function from HREX

with p constraints and y represents a cell. A precondition for Extract is sI ≤ p ≤ q−1.

In lines 1 and 2, the first p rows of D̂ and first p elements of b̂ and ŷ are selected as

D̂′, b and y respectively. The first sI rows of D̂′ form the matrix G in the definition

of D̂ and the remaining p− sI rows of D̂′ are the first p− sI rows of matrix E. Each
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Algorithm 13 Extract(D̂, b̂, ŷ, p, q, sI)

1: D̂′ ← D̂[0 : p, 0 : q− sI]; b← b̂[0 : p];

2: y ← ŷ[0 : p];

3: for (i = sI; i < p; i+ +) do

4: for (j = 0; j < i; j + +) do

5: if D̂′[j, (i− sI)] == 1 then

6: D̂′[j, .]← D̂′[j, .]⊕ D̂′[i, .];

7: b[j]← b[j]⊕ b[i];

8: y[j]← y[j]⊕ y[i];

9: D← D̂′[0 : p, p− sI : q− sI];

10: return D, b,y

row from sI to p is used to reduce the preceding rows in lines 5 to 8 so that the only

non-zero elements of the first p− sI columns are the leading 1s in rows sI to p. Thus

Extract ensures that for a given D̂,b and ŷ, the solution space of D[p×(q−p)],b[p] and

y[p] is a superset of solution space of D[(p+1)×(q−p−1)],b[p+1] and y[p+1] for all p.



31

Chapter 5

Analysis

In order to prove the correctness of SymbolicDNFApproxMC, we first state and prove

the following helper lemma.

Lemma 4. For every 1 ≤ p ≤ q and let µp = |Rφ|/2p. For every β > 0 and 0 < ε < 1

we have

1. Pr[|Ωy − µp| > ε
(1+ε)

µp] ≤ 2
ε2

(1+ε)2
µp

2. Pr[Ωy ≤ βµp] ≤ 2
2+(1−β2)µp

Proof. The coverage of an assignment is cov(x) = {j|x |= φCj}. We have Pr[x |=

φCj] = |cov(x)|/m when j is drawn uniformly at random from {1, 2. . . .m}. Also,∑
(x,φCi)∈U ′

1
|cov(x)| = |Rφ|, and E[cx] = m/|cov(x)| and E[cx

2] = 2m2

|cov(x)|2 −
m

|cov(x)| .

Let γ(x,φCi),y be a random variable such that γ(x,φCi),y = cx/m if h(x) = y and

(x, φCi) = interpret(z), and γ(x,φCi),y = 0 otherwise, where the number of constraints

in h is p. Let η = Pr[h(x) = y] = 1/2p. Then E[γ(x,φCi),y] = η ∗ E[ cx
m

] = η
|cov(x)| .

Now, V[γ(x,φCi),y] = E[γ2(x,φCi),y]−(E[γ(x,φCi),y])2. But E[γ2(x,φCi),y] = η∗E[(cx/m)2] =

η( 2
|cov(x)|2 −

1
m∗|cov(x)|) and (E[γ(x,φCi),y])2 = η2

|cov(x)|2 . Substituting back, we get

V[γ(x,φCi),y] = 2η−η2
|cov(x)|2 −

η
m∗|cov(x)| .

Define τy =
∑

(x,φCi)∈U ′ γ(x,φCi),y. Clearly τy = |Ωy|. We have

E[τy] =
∑

(x,φCi)∈U ′ E[γ(x,φCi),y] =
∑

(x,φCi)∈U ′
η

|cov(x)| = η|Rφ|. Also since γ(x,φCi),ys

are 2-universal, V[τy] ≤
∑

(x,φCi)∈U ′ V[γ(x,φCi),y] = (2η − η2)
∑

(x,φCi)∈U ′
1

|cov(x)|2 −
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η
m

∑
(x,φCi)∈U ′

1
|cov(x)| . But

∑
(x,φCi)∈U ′

1
|cov(x)|2 ≤ |Rφ|. Therefore V[τy] ≤ 2η|Rφ| which

implies V[τy] ≤ 2E[τy].

Applying Chebyshev’s inequality we get Pr[|Ωy − µp| ≥ ε
1+ε

µp] ≤ V[τy ]
ε2

(1+ε)2
µ2p

. Rear-

ranging the terms and simplifying, we get the first part of the lemma.

Using Paley-Zygmund inequality, we get Pr[Ωy ≤ βµp] ≤ 1 − (1−β)2µ2p
V[τy ]+(1−β2)µ2p

from

which we get the second part of the lemma.

The difference in lemma 4 and lemma 1 in [15] is that the probability bounds differ

by a factor of 2. We account for this difference by making hiThresh in

SymbolicDNFApproxMC twice the value of hiThresh in ApproxMC2. Therefore the

rest of the proof of Theorem 7 is exactly the same as the proof of Theorem 4 of [15].

For completeness, we restate lemmas 2 and 3 from [15] below.

In the following, Tp denotes the event (Ωy < hiThresh), and Lp and Up denote the

events (Ωy <
|Rφ|

(1+ε)2p
) and (Ωy >

|Rφ|
2p

(1 + ε
1+ε

)) respectively. p∗ denotes the integer⌊
log2 |Rφ| − log2(4.92(1 + 1

ε
)2)
⌋

Lemma 5. The following bounds hold:

1. Pr[Tp∗−3] ≤ 1
62.5

2. Pr[Lp∗−2] ≤ 1
20.68

3. Pr[Lp∗−1] ≤ 1
10.84

4. Pr[Lp∗ ∪ Up∗ ] ≤ 1
4.92

Let B denote the event that SymbolicDNFApproxMC returns a pair (2p, nSols)

such that 2p ∗ nSols does not lie in the interval [
|Rφ|
1+ε

, |Rφ|(1 + ε)].
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Lemma 6. Pr[B] ≤ 0.36

Proof Sketch. Pr[B] ≤ Pr[
⋃
i∈[n](Ti−1∩Ti∩(Li∪Ui))]. We first note that ∀i, |RF,hi,αi| ≤

hiThresh =⇒ |RF,hi+1,αi+1| ≤ hiThresh. Simplifying the expression for Pr[B] requires

us to note the following: (i) ∀i ≤ m∗ − 3, Ti ∩ (Li ∪ Ui) = Ti and Ti ⊆ Tm∗−3, (ii)

Pr[
⋃
i∈[m∗,n] Ti−1 ∩ Ti ∩ (Li ∪Ui)] ≤ Pr[Tm∗−1 ∩ (Lm∗ ∪Um∗)] ≤ Pr[Lm∗ ∪Um∗ ], (iii) for

i ∈ {m∗ − 2,m∗ − 1}, since hiThresh ≤ µi(1 + ε
1+ε

), we have Ti ∩ Ui = ∅ . Therefore,

Pr[B] ≤ Pr[Tm∗−3] + Pr[Lm∗−2] + Pr[Lm∗−1] + Pr[Lm∗ ∪ Um∗ ]. Using Lemmas 4, 5, we

have Pr[B] ≤ 1/63 + 1/11 + 1/21 + 1/5 ≤ 0.36

Theorem 7. Let SymbolicDNFApproxMC(φ, ε, δ) return count c. Then Pr[|Rφ|/(1 +

ε) ≤ c ≤ (1 + ε)|Rφ|] ≥ 1− δ.

Theorem 7 follows from lemmas 4, 5 and 6 and noting that SymbolicDNFApproxMC

boosts the probability of correctness of the count returned by

SymbolicDNFApproxMCCore to 1− δ by using median of t = O(log(1/δ)) calls.

Theorem 8. SymbolicDNFApproxMC runs in Õ(mn log(1/δ)/ε2) time.∗

Proof. SymbolicDNFApproxMC makes O(log 1/δ) calls to SymbolicDNFApproxMCCore.

SymbolicDNFApproxMCCore samples a hash matrix D̂ in O(n(logm+ log(1/ε2))) time

and makes one call each to LogSATSearch and BSAT. LogSATSearch search in turn

makes upto O(log logm) calls to BSAT. BSAT first reduces the matrix D̂ to D in

O(n(logm + log(1/ε2)2) time by calling Extract. Next, the check in line 9 of BSAT

ensures that at most m× hiThresh calls are made to the check in line 5 of CheckSAT

during one execution of BSAT. Every assignment is enumerated in O(n) and the check

in line 5 of CheckSAT is performed in O(n) time. Therefore, the time complexity of

∗We say f(n) ∈ Õ(g(n)) if ∃k : f(n) ∈ O(g(n) logk(g(n))
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BSAT is O(n × m × hiThresh). Hence, the time complexity of each invocation of

SymbolicDNFApproxMCCore is Õ(mn/ε2), which implies that the time complexity of

SymbolicDNFApproxMC is Õ(mn log(1/δ)/ε2).
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Chapter 6

Empirical Evaluation

In order to test the performance of ApproxMC on DNF formulas in practice, we

built prototype implementations of ApproxMC as well as the Monte Carlo algorithms

described in chapter 2. In this chapter we report on our experiments comparing these

algorithms for #DNF.

6.1 Previous Experimental Work

DNF Counting finds application primarily in the areas of Probabilistic Databases and

Network Reliability [2, 18, 13, 9]. Probabilistic Databases research, in particular, has

actively focused on building and testing approximate DNF counters for answering

probabilistic queries [25, 32]. Answering probabilistic queries actually reduces to the

related problem of Weighted DNF Counting, where each literal is assigned a weight

between 0 and 1 that is interpreted as the probability of the corresponding variable

being true or false. Finding the probability of a tuple in the result of a probabilistic

conjunctive query is equivalent to calculating the weighted count of a DNF formula[2].

We refer the reader to [33] for more on the connection between DNF counting and

probabilistic query evaluation.

To the best of our knowledge there are no standard sets of benchmark formulas

that are used to test algorithms for #DNF in the probabilistic databases community.

Instead, a random data generator called TPC-H [34] which is an industry standard for
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benchmarking databases in general, is used to populate a prototype database[25]. By

running a probabilistic query in the database, the DNF formula is generated implicitly

within the query engine and the desired counting algorithm is run on it.

While comparing their new algorithms to those by Karp et al., all previous works

compared only against the Vazirani Counter with DKLR-MC. This algorithm was

chosen as the baseline over the other variants, because the variance of the related

estimator is the least, and DKLR-MC provably requires close to optimal number of

samples. However, the running time of the algorithm depends both on the number of

samples generated as well as the time it takes to generate one sample, and generating a

sample using the Vazirani Counter is much more expensive than generating one using

the KLM Counter. In fact, the worst case complexity of the Vazirani Counter is

O(m2n log(2/δ)/ε2) while that of the KLM Counter is O(mn log(2/δ)/ε2). Therefore,

discarding all other Monte Carlo algorithms in favor of the Vazirani Counter with

DKLR-MC may be ill-advised.

6.2 Algorithm Suite

We chose 2 hashing based variants of ApproxMC and 4 Monte Carlo algorithms for

empirical evaluation.

Hashing based

There can be seven versions of ApproxMC for #DNF in theory depending on which

of the three add-ons among Row Echelon Hash functions, Symbolic Hashing and

Stochastic Cell Counting are selected. Of these, we use two versions for experimental

evaluation:

1. the final algorithm described in this work which has all 3 add-ons which we will
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refer to as SymbolicDNFApproxMC in this chapter.

2. the original ApproxMC for DNF [15] with the Row Echelon Hash function add-

on which we will refer to as DNFApproxMC.

The reason for these particular choices is that using Row Echelon Hash is uncondi-

tionally faster than plain XOR hash in both time and space since Gaussian Elimi-

nation is an O(n3) operation. Furthermore, Stochastic Cell Counting can be applied

only in the context of the transformed space of Symbolic Hashing, thereby leaving

SymbolicDNFApproxMC and DNFApproxMC as the only valid choices.

Monte Carlo based

We chose 4 algorithms from the Karp et al. suite for experimental evaluation

1. KL Counter with DKLR-MC

2. KLM Counter

3. Vazirani Counter with DKLR-MC

4. Naive Counter (see section 2.3 of Chapter 2) with DKLR-MC

We use DKLR-MC instead of V-MC for the first 3 algorithms, since we assume to

have no knowledge of the solution density of our benchmarks while running the algo-

rithm, even the though the solution density is taken into account while generating the

benchmarks. DKLR-MC can thus be expected to perform better than V-MC because

of no tight bound on the number of samples required. Furthermore, as mentioned in

Chapter 2, the KLM Counter cannot be used with DKLR-MC framework.
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6.3 Implementation Details

We implemented all algorithms in C++ and are available at https://gitlab.com/

Shrotri/DNF_Counting. For the hashing-based algorithms, we used a library called

M4RI that supports fast matrix operations over GF2 [35]. M4RI uses SIMD instruc-

tions available in most modern processors to speed up computation, although it can

work without these instructions as well. The performance of both

SymbolicDNFApproxMC and DNFApproxMC, however, crucially depends on M4RI and

availability of SIMD instructions. For DNFApproxMC, we made some improvements

over the original algorithm in [15]. Besides using Row Echelon hash functions we also

buffer and reuse solutions generated in a call to BSAT which sped up the algorithm

further.

For the Monte Carlo algorithms, we adapted the implementation of DKLR-MC

in MayBMS [36] to the unweighted case. We also modified their implementation to

use only two sets of samples as outlined in the original paper instead of three, which

further improved the running time. The KLM Counter algorithm was implemented

from scratch.

6.4 Set Up

We ran the experiments on an Intel Core i7 6th Gen 2.6 GHz processor with 16GB

RAM. We used GCC version 5.4 on 64 bit Ubuntu 16.04.

6.5 Benchmarks

One possible way to obtain benchmarks for unweighted #DNF would have been to

extract DNF formulas from the query engines of databases populated by TPC-H

https://gitlab.com/Shrotri/DNF_Counting
https://gitlab.com/Shrotri/DNF_Counting
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data and to simply disregard the weights associated with the literals. However, the

width of cubes for formulas obtained this way is exactly the number of joins in the

associated query, which is typically very small (2-15) and can be treated as a constant.

Therefore, the count of such formulas is very close to 2n and the Naive Counter with

V-MC would take only a constant number of samples to estimate it. Moreover an

epsilon approximation for a count extremely close to 2n is meaningless. Lastly, future

applications of unweighted DNF counting may have formulas with large width cubes.

Hence a better approach would assume no information on the structure of benchmark

formulas.

To obtain a comprehensive picture of the relative performance of the six candidate

algorithms, we aimed to generate random formulas from the ’formula terrain’ defined

by the parameters n, m and w which is the width for all cubes. The number of samples

needed for the 4 Monte Carlo algorithms also depends on the density of solutions in

the solution space. Ergo while generating benchmarks we also take into account

the parameters µ =
|Rφ|
2n

and µ′ =
|R′φ|
U ′

which represent the density of solutions in the

original and transformed space respectively. Thus we consider the space of all formulas

to be defined by the parameters n, m, w, µ and µ′. Note that these parameters are

not independent; µ′ is determined by the remaining parameters. However, considering

them separately simplifies the presentation of results.

One way of generating random DNF formulas is to randomly sample w variables

out of n, without replacement for each of the m cubes and to negate each one with

probability 0.5. However, in our experiments we found that formulas generated this

way invariably have µ and µ′ extremely close to their respective upper bounds. There-

fore, another process for random benchmark generation is required, which can provide

benchmarks with the densities closer to the their lower bound.
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Figure 6.1 : Solution density µ (estimated) vs #link variables for n = m = 30000, w =
100

While 2n−w ≤ |Rφ| ≤ m ∗ 2n−w, controlling |Rφ| within this range without using

a degenerate formula with repeated cubes is non-trivial. We achieved coarse control

over the |Rφ| and by extension µ and µ′, that was sufficient to demonstrate our

experimental results by generating monotone formulas using the following high level

idea:

1. the first cube is generated by randomly picking w variables out of possible n.

2. A literal in the cube generated in step 1 is selected at random. Then η new

cubes are generated from the cube by swapping the chosen literal with η other

literals one at a time.

3. Steps 1 and 2 are repeated by using a cube picked at random from the ones

generated so far, until the desired number of cubes m is reached.

The number of ’link variables’ η controls the densities of the formula obtained.
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If η is close to m, then almost all cubes differ from each other in at most one literal

resulting in a large intersection of their solution spaces. Consequently, |Rφ| which

is the union of the solution spaces of all cubes is small which makes µ′ close to the

lower bound. On the other hand, if η is close to 1 then because of the random choice

of literal to be swapped, most cubes have few literals in common leading to a large

union and µ′ close to the upper bound. η is thus a proxy for solution density. We

demonstrate the effectiveness of this method in figure 6.1, which shows the solution

density µ of benchmarks generated using the above process versus the number of link

variables, while keeping all other parameters fixed. Link variables thus enable the

generation of random benchmarks with solution densities closer to the lower bound.

6.6 Experimental Results

Our experiments show that worst case theoretical analysis does not provide a complete

picture of which algorithm is the best for approximating #DNF. Even algorithms like

KL Counter and Vazirani Counter which have the same worst case complexity per-

formed very differently in our experiments as did SymbolicDNFApproxMC and KLM

Counter. Preliminary exploratory experiments had showed us that the formula ter-

rain as defined in the previous sections, is very heterogeneous; different algorithms

perform well in different parts of the terrain and predicting the regions where a par-

ticular algorithm does well is non-trivial. Instead of attempting the unmanageable

and uninformative task of benchmarking the entire terrain, we choose to provide

snapshots of interesting features instead:
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Figure 6.2 : DNFApproxMC is the best performer when n = m = 30000, 15 ≤ w ≤
40, η = 20000, ε = 0.8, δ = 0.36, 300s timeout. (All algorithms except DNFApproxMC
and KLM Counter timed out)

6.6.1 DNFApproxMC outperforms SymbolicDNFApproxMC on the benchmarks

we tested

This is evident from figure 6.2. DNFApproxMC performs better than

SymbolicDNFApproxMC despite the worst case complexity of SymbolicDNFApproxMC

being better than that of DNFApproxMC by a factor of O(m). This can be attributed

to the fact that hiThresh for SymbolicDNFApproxMC is twice that for DNFApproxMC

and also the additional step of translating z to (σ, φCi), though inexpensive in theory,

takes non-negligible time in practice. However there is a caveat: the running time of

DNFApproxMC scales linearly with the width of cubes while SymbolicDNFApproxMC is

unaffected. Conceivably SymbolicDNFApproxMC may outperform DNFApproxMC for

very large cube widths, though all benchmarks we tried to generate to demonstrate

this timed out.
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6.6.2 No algorithm consistently outperforms all other algorithms

This is evident from figures 6.2,6.4,6.3 and 6.5. Each data point in the plots corre-

sponds to the average time taken by an algorithm on 3 formulas generated randomly

with the parameters specified in the plots, using the link variable process described

above. We found that the times for each of the three formulas corresponding to a

data point were almost the same, for all algorithms. Each of DNFApproxMC, KLM

Counter, Naive Counter with DKLR-MC, and KL Counterwith DKLR-MC were best

performers in at least one part of the formula terrain. KL Counter is the best per-

former when number of link variables η is small (µ′ is close to the upper bound) and ε

is small. KLM Counter performs well when η is large (µ′ is close to the lower bound)

and w is large. NaiveCounter fares well when w is very small, while DNFApproxMC

does well for intermediate values of w. We do not claim to have completely charted

the entire space of formulas. Nevertheless, we were unable to find instances where

Vazirani Counterwith DKLR-MC was the best performer. This warrants more com-

prehensive experimentation in the weighted case as well, as Vazirani Counterwith

DKLR-MC may not be the best baseline as assumed in some prior work [25].

6.6.3 DNFApproxMC outperforms all other algorithms on certain bench-

marks

This can be seen in figure 6.2. DNFApproxMC is a best performer for benchmark

formulas with low density of solutions in the transformed space and when the cube

width is not too large. This result cements the claim of hashing-based techniques

as a powerful approach for counting boolean formulas, not just in theory but also in

practice.
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Figure 6.3 : KLM Counter is the best performer when n = m = 30000, w =
100, 2000 ≤ η ≤ 26000, ε = 0.8, δ = 0.36, 300s timeout.

Figure 6.4 : Naive Counter w/ DKLR-MC is the best performer when n = m =
30000, 2 ≤ w ≤ 9, η = 400, ε = 0.8, δ = 0.36, 300s timeout.
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Figure 6.5 : KL Counter w/ DKLR-MC is the best performer when n = m =
30000, w = 100, η = 1, ε ≤ 0.3, δ = 0.36, 300s timeout.

6.7 Other techniques

A more meaningful estimate can be obtained for DNF formulas with small cubes

and counts close to 2n, by counting the negative space i.e. the complementary CNF

formula instead. Note that a count of the negative space with multiplicative error

bounds only makes sense when the negative space is equal or smaller than the original

space. Given the success of ApproxMC for CNF formulas, it was an interesting

question to see how ApproxMC fared against the six candidate algorithms above.

Therefore, we used ApproxMC2 for CNF to count the complement of DNF formulas

with large counts. ApproxMC2, however, timed out on all benchmarks with more

than 10000 variables.

Another method for approximate #DNF is to first convert the DNF formula to

CNF using Tseitin encoding. The resultant CNF formula can the be counted using

ApproxMC2. However this method too failed to scale beyond small formulas.
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Summary We compared SymbolicDNFApproxMC and DNFApproxMC to the state-

of-the-art Monte Carlo algorithms. Our results show that DNFApproxMC outperforms

all other algorithms on certain benchmarks. Hashing is thus an important tool not

only for #CNF but also #DNF. Significantly, no algorithm was the undisputed win-

ner, which leads us to recommend using an algorithmic portfolio for approximate

#DNF of which DNFApproxMC is an important member. We leave the problem of

quickly finding the best algorithm to approximately count a given formula using

heuristics as future work. Until a fast heuristic for selecting the best algorithm for

the job is found, a multi-algorithm approach may be used where all algorithms are

run in parallel and the result from the first one to terminate is returned.
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Chapter 7

Conclusion

Hashing-based techniques have emerged as a promising approach to obtain counting

algorithms and tools that scale to large instances while providing strong theoretical

guarantees. This has led to an interest in designing hashing-based algorithms for

counting problems that are known to be amenable to fully polynomial randomized

approximation schemes. The prior hashing-based approach [15] provided FPRAS for

DNF but with complexity much worse than state-of-the-art techniques. In this work,

we introduced (i) Symbolic Hashing, (ii) Stochastic Cell-Counting, and (iii) a new 2-

universal family of hash functions, and obtained a hashing-based FPRAS for #DNF

with complexity similar to state-of-the-art. Our experiments demonstrate that there

is currently no single best algorithm for approximate DNF counting; nevertheless

hashing-techniques are important members of the algorithmic portfolio.

Given the recent interest in hashing-based techniques and generality of our contri-

butions, we believe concepts introduced in this paper can lead to design of hashing-

based techniques for other classes of constraints. For example, all prior versions of

ApproxMC relied on deterministic SAT solvers for exactly counting the solutions in a

cell for #CNF. The technique of Stochastic Cell-Counting opens up the door for the

usage of probabilistic SAT solvers for #CNF. Furthermore, a salient feature of the

HREX family is the sparsity of its hash functions. In fact, the sparsity increases with

the addition of constraints. Sparse hash functions have been shown to be desirable

for efficiently solving CNF+XOR constraints [37, 38, 39]. An interesting direction for



48

future work is to test HREX family with CNF formulas. On the experimental side, it

would be interesting to develop fast heuristics for selecting the best algorithm for a

given formula.
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