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ABSTRACT

Domain-Driven Approaches for Constrained Counting and Sampling

by

Aditya A. Shrotri

Constrained Counting and Sampling are two fundamental problems in Computer

Science, where the task is to count the number of solutions or satisfying assignments to

a given set of constraints, or to sample a solution uniformly at random. Counting and

sampling along with their approximate and weighted variants have been extensively

studied in both theory and practice. However, this research effort has been disjointed,

resulting in significant gaps in knowledge. On one hand, algorithms with worst-case

polynomial running times are considered to be the gold standard by the theory com-

munity, but rarely scale well in practice. On the other hand, powerful general-purpose

algorithms and tools developed by the AI and Formal Methods communities often fail

to scale on ‘easy’ problems with polynomial upper bounds. The goal of this disser-

tation is to illuminate and address this disconnect. Specifically, we develop flexible

techniques that natively exploit the structure inherent in domain-specific constraints.

This often leads to significant performance gains over the popular approach which

attempts to shoehorn all constraints to fit a rigid algorithm. Motivated by numerous

practical applications and a lack of practically scalable tools with strong theoretical

guarantees, we present new solutions for the concrete problems of DNF-Counting,

conditional counting, computing the matrix permanent, sampling traces of a transi-

tion system and weighted sampling from low-treewidth CNF formulas. Our empirical



analyses reveal a nuanced picture wherein our approaches are seen to be a valuable

addition to an algorithmic portfolio.



Acknowledgments

I am deeply grateful to my adviser, Moshe Vardi, for patiently guiding me on ‘my

terms’. He gave me immense freedom to pursue research directions of my interest,

while making sure I didn’t veer too much off course. His constant support and avail-

ability for his students, despite a huge number of commitments, is extraordinary.

From him, I continue to learn how to see the big picture while being rigorous on the

details as well as ‘thinking fast and slow’. I am excited to continue exploring ideas

and directions with him.

I also want to thank my other committee members, – Supratik Chakraborty, Illya

Hicks and Devika Subramanian – for insightful feedback during my proposal and

defense. Their suggestions shaped a collection of projects into a dissertation.

I want to thank Supratik Chakraborty both as a close collaborator and mentor

as well as for hosting me as a visiting student for a semester at IIT Bombay. I am

very lucky to have found support from someone with such technical expertise as well

as the time (at the oddest hours) and patience to guide me through the trenches of

research.

I am also grateful to Kuldeep Meel and Nina Narodytska as collaborators, friends

and mentors during different stages of my Ph.D. I could not have asked for a better

officemate than Kuldeep, during the first couple of years. I enjoyed and learnt a lot

from our discussions, both technical and non-technical, and his work ethic continues

to inspire. I am grateful to Nina for taking me on as an intern at VMware Research

and for patiently guiding me through the field of explainable AI. Seasoned senior

researchers who are willing and able to delve into the nitty-gritties including coding

and experiments are rare, and I am truly lucky to have found such a mentor in



iv

Nina. I also want to thank the folks at TRDDC, especially Kumar Madhukar and R.

Venkatesh, for a great internship exploring the challenges of industrial research.

I want to thank Dror Fried and Suguman Bansal for all the fun times spent in

Duncan Hall and beyond. I would not have been half as productive if not for the

casual banter and the serious research discussions, as well as the camaraderie they

inspired in the group as a whole. I am grateful to all past, present, extended and

honorary LAPIS members, especially Abhinav, Afsaneh, Jeff, Kevin, Lucas, Shufang,

Vu, Yong and Zhiwei.

I want to thank all the friends I made in the past six years, especially the 2015 In-

dian grad-students and the badi subset, LAPIS, the Brompton folks i.e. Ayush,

Prathamesh, Vaideesh and Vivek; the poker group i.e. Eslaam, Gaurav, Kedar,

Soumya and Zaid; the Houston game group including Rutvi, Swati and Zankhana

and the large Counter Strike group. I am especially grateful to my roommate Yash

Khemka who has been the common denominator, both in many groups and in many

years of fun times. A large part of the work was done at Agora and Empire Cafes

and with the support of AWS resources. Last but not least, I am humbled to have

the support of old friends both in US and India including ‘12 che + chya’, MAVAP-

KJGANIS++ and Excelsior++.

Finally, I am eternally grateful to the extended Joshi and Shrotri families for their

continued love and support. I am grateful to Kanchan and Subhash Dandage for

being in my corner throughout these six years. I am indebted to Tanvi Modi, Trupti

Gosaliya and Smita Modi for going out of their way and for warmly welcoming me

in their lives at every possible step. I am deeply grateful to Jojo, Jiji, Mama, Mami,

Shreyas, Shashank and families, Mama Mami, Sanket and family, Aaji Ajoba and

Kaka, and in particular Atya, Kaka and family for making me feel at home in the

US. Ultimately, I would not be at this juncture today without my parents Ulka and

Aniruddha, whom I cannot begin to thank in any way.



Contents

Abstract i

Acknowledgments iii

List of Illustrations xi

List of Tables xiii

I Prologue 1

1 Introduction 2

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Counting and Sampling in Theory . . . . . . . . . . . . . . . . 3

1.1.3 Counting and Sampling in Practice . . . . . . . . . . . . . . . 4

1.2 A Knowledge-Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Preliminaries 14

II Approximate Counting and Sampling 18

3 Background 19



vi

3.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Monte Carlo Framework . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Hashing Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 DNF-Counting 25

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3 Approximation Algorithms for #DNF . . . . . . . . . . . . . . . . . . 29

4.3.1 Monte Carlo Framework . . . . . . . . . . . . . . . . . . . . . 30

4.3.2 Hashing Framework . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Reverse Search for Hashing-Based Algorithms . . . . . . . . . . . . . 34

4.5 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.2 Benchmark Generation . . . . . . . . . . . . . . . . . . . . . . 40

4.5.3 Parameters Used . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6.1 Runtime Variation . . . . . . . . . . . . . . . . . . . . . . . . 42

4.6.2 Benchmarks Solved . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6.3 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6.4 ε - δ Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Conditional Counting for Explainable AI 52

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.1.1 Conditional Counting . . . . . . . . . . . . . . . . . . . . . . . 53

5.1.2 XAI and Constraint-Driven Explanations . . . . . . . . . . . . 53

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3 Constraint-Driven Explanations . . . . . . . . . . . . . . . . . . . . . 57



vii

5.4 Certifying Explanation Quality . . . . . . . . . . . . . . . . . . . . . 60

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5.1 Efficiency of certification . . . . . . . . . . . . . . . . . . . . . 66

5.5.2 Model analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5.3 Detecting Adversarial Attacks . . . . . . . . . . . . . . . . . . 69

5.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

III Exact Counting and Sampling 74

6 Background 75

6.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2 SAT-based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.1 CDCL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2.2 Exhaustive CDCL with Component Caching . . . . . . . . . . 78

6.2.3 d-DNNF Representation . . . . . . . . . . . . . . . . . . . . . 78

6.3 ADD-based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.1 Algebraic Decision Diagrams . . . . . . . . . . . . . . . . . . . 79

6.3.2 Factored Representations and Applications to Counting . . . . 81

7 Matrix Permanent 83

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.2.1 Ryser’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.4 Representing Ryser’s Formula Symbolically . . . . . . . . . . . . . . . 88

7.4.1 Implementation Details . . . . . . . . . . . . . . . . . . . . . . 93

7.5 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . 94



viii

7.5.1 Algorithm Suite . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 96

7.5.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.6.1 ADD size vs time taken by RysersADD . . . . . . . . . . . . . 98

7.6.2 Performance on dense matrices . . . . . . . . . . . . . . . . . 99

7.6.3 Performance on sparse matrices . . . . . . . . . . . . . . . . . 99

7.6.4 Performance on similar-row matrices . . . . . . . . . . . . . . 100

7.6.5 Performance on SuiteSparse Matrix Collection . . . . . . . . . 102

7.6.6 Performance on fullerene adjacency matrices . . . . . . . . . . 102

7.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

8 Sampling Traces of a Transition System 104

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

8.2.1 Transition Systems and Traces . . . . . . . . . . . . . . . . . . 107

8.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.5 Improved Iterative Squaring . . . . . . . . . . . . . . . . . . . . . . . 116

8.6 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8.6.1 Hardness of Counting/Sampling Traces . . . . . . . . . . . . . 117

8.6.2 Random Walks and Uniform Traces . . . . . . . . . . . . . . . 119

8.6.3 Correctness of Algorithms . . . . . . . . . . . . . . . . . . . . 120

8.7 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.8 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

9 Sampling Solutions of Low-Treewidth CNF Formulas 132

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

9.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134



ix

9.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

9.4 Sampling from an ADD . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.5 Sampling from a Boolean formula . . . . . . . . . . . . . . . . . . . . 142

9.5.1 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.5.2 Compilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.5.3 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.6 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9.6.1 Distribution generated by DPSampler . . . . . . . . . . . . . . 146

9.6.2 Comparison with State-of-the-Art Tools . . . . . . . . . . . . 147

9.6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.7 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

IV Epilogue 152

10Conclusion 153

10.1 Strategies for Domain-Specific Counting and Sampling . . . . . . . . 154

10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

10.2.1 Approximate Counting and Sampling . . . . . . . . . . . . . . 156

10.2.2 Exact Counting and Sampling . . . . . . . . . . . . . . . . . . 157

Bibliography 160

A DNF-Counting 186

A.1 SampleHashFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.2 Lower and Upper Bounds . . . . . . . . . . . . . . . . . . . . . . . . 187

A.3 Extracting a prefix slice . . . . . . . . . . . . . . . . . . . . . . . . . 187

A.4 EnumerateNextSol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

A.5 ComputeIncrement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187



x

B Conditional Counting for Explainable AI 190

B.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.2 Certifying Constraint-Driven Explanations (Additional materials) . . 193

B.2.1 AA’ Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 193

B.2.2 Proof of Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 193

B.2.3 Applicability of the Estimation framework . . . . . . . . . . . 197

B.2.4 Empirical Evaluation of Estimation Algorithm . . . . . . . . . 197

B.3 Detecting Adversarial Attacks(Extended) . . . . . . . . . . . . . . . . 199

B.3.1 Practical Considerations . . . . . . . . . . . . . . . . . . . . . 202

B.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

C Sampling Solutions of Low-Treewidth CNF Formulas 205

C.1 Proofs of Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

C.2 Experiments: Additional Results and Details . . . . . . . . . . . . . . 212

C.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 212

C.2.2 Comparison of ADD-Sampling algorithms . . . . . . . . . . . 213

C.2.3 Additonal Results on Comparison with WAPS . . . . . . . . . 214



Illustrations

4.1 Comparison of Running time of SymbolicDNFApproxMC with

BinarySearch and ReverseSearch . . . . . . . . . . . . . . . . . . . . . 38

4.2 Comparison of Running time of DNFApproxMC with LinearSearch and

ReverseSearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3 Runtime Variation: DNFApproxMC is the best performer. Rest timeout. 43

4.4 Runtime Variation: DNFApproxMC and KLM Counter are the best

performers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 Runtime Variation: KLM Counter and KL Counter are the best performers 44

4.6 Runtime Variation: KLM Counter and KL Counter are the best performers 45

4.7 Runtime Variation: KLM Counter and KL Counter are the best performers 45

4.8 Benchmarks Solved: DNFApproxMC solved all benchmarks . . . . . . . 46

4.9 Runtime Variation: DNFApproxMC dominates other algorithms . . . . 46

4.10 ε Scalability: DNFApproxMC scales better than other algorithms . . . . 48

4.11 δ Scalability: Monte Carlo FPRAS scale better . . . . . . . . . . . . . 48

5.1 Scalability of Algs. 2,3 vs. ApproxMC . . . . . . . . . . . . . . . . . 67

5.2 Recidivism: Top CLIME explanation distribution vs. Hamming

Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.1 (a) fRS, (b) fRSP and (c) fRyser for a 4× 4 matrix of all 1s . . . . . . 90

7.2 Comparison of ADD Size vs. Time taken for a subset of random

benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



xii

7.3 Performance on Dense Matrices. D4, DSharp (not shown) timeout on

all instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.4 Performance on Sparse Matrices . . . . . . . . . . . . . . . . . . . . . 100

7.5 Performance on similar-rows matrices. D4, DSharp (not shown)

timeout on all instances. . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.1 (a) Sequential circuit, (b) State transition diagram . . . . . . . . . . 106

8.2 Modified Circuit for Non-Power-of-2 Trace Lengths . . . . . . . . . . 114

8.3 Distribution of benchmark sizes (number of latches) . . . . . . . . . . 126

8.4 Length of longest trace sampled vs. number of latches for each

benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.5 Performance Comparison of TraceSampler with WAPS and UniGen2. . 128

8.6 Distributions of generated samples. . . . . . . . . . . . . . . . . . . . 129

9.1 Distribution of Generated Samples . . . . . . . . . . . . . . . . . . . 147

9.2 Performance of WAPS vs DPSampler on all benchmarks . . . . . . . . . 148

9.3 Average PAR2 Score vs. Average Treewidths on Bayes . . . . . . . . 148

9.4 Average PAR2 Score vs. Average Treewidths on Pseudoweighted . . . 149

B.1 CC Dataset: Top CLIME explanation vs. Hamming Distance . . . . 204

B.2 German Dataset: Top CLIME explanation vs. Hamming Distance . . 204

C.1 Speedup offered by Top-Down Sampling over Bottom-up . . . . . . . 213

C.2 Performance comparison on ‘Bayes’ benchmark set . . . . . . . . . . 216

C.3 Performance comparison on ‘Pseudo-weighted’ benchmark set . . . . 217



Tables

4.1 Parameters used for generating random formulas and as input to

algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Accuracy of algorithms (invoked with ε = 0.8, δ = 0.36) . . . . . . . . 47

7.1 Parameters used for generating random matrices . . . . . . . . . . . . 96

7.2 Running Times on the fullerene C60. EA: Early Abstraction Mono:

Monolithic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.1 Summary of notation . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.2 Reachable sets rj that X0, X i variables of ti depend on . . . . . . . . 120

9.1 Avg. (Geometric Mean) Speedups offered by DPSampler over WAPS . . 148

B.1 Frequency of sensitive feature in top explanation . . . . . . . . . . . . 203

C.1 Number of Benchmarks Successfully Solved . . . . . . . . . . . . . . . 214

C.2 Number of Benchmarks Successfully Compiled . . . . . . . . . . . . . 215

C.3 Avg. (Geometric Mean) Speedups offered by DPSampler over WAPS . . 215



1

Part I

Prologue



2

Chapter 1

Introduction

1.1 Background

Constrained Counting and Sampling are two fundamental problems in Computer

Science. In Constrained Counting, also known as Discrete Integration, the task is

to compute the total number of solutions to a given set of constraints over discrete

variables. For Constrained Sampling, the task is to generate a solution uniformly at

random from all the solutions to the given constraints. Concrete instantiations of

these abstract problems can be defined by specifying a format for constraints.

1.1.1 Constraints

Informally, constraints are compact representations of Boolean-valued functions over

a set of discrete variables ∗. For instance, constraints specified over Boolean variables

using operators like AND (∧), OR (∨), NOT (¬) etc. are called Boolean formulas

and the corresponding problems are known as propositional model counting and sam-

pling respectively. Further restrictions on the structure of Boolean formulas give rise

to constraint languages like the Conjunctive Normal Form (CNF) and Disjunctive

Normal Form (DNF). Such constraint types have been the subject of intense study

both in theory and practice, owing to a trade-off between their expressive power and

the hardness of queries like satisfiability, optimization, counting and sampling. For

example, CNF formulas are highly expressive, in that all types of constraints over

discrete spaces can be succinctly and mechanically encoded into CNF such that the

∗See Chapter 2 for definitions and a deeper discussion
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count is preserved [1, 2]. Ready availability of efficient off-the-shelf encodings to

CNF make it an attractive constraint type. Instead of creating new algorithms and

tools for each constraint type, one can simply focus on CNF formulas and reuse CNF

counters and samplers to also count and sample from other constraint types. Unsur-

prisingly, CNF counting and sampling has myriad applications in Computer Science

and beyond [3, 4]. However, this expressivity comes at a cost. Counting and sam-

pling from CNF formulas (along with other queries) are complete for their respective

complexity classes and are difficult to solve efficiently in practice. On the other end

of the spectrum, DNF formulas are much less expressive. For example, only very

select applications like querying probabilistic databases [5] and estimating network

reliability [6] have native and efficient reductions to DNF-Counting. However, unlike

CNF, queries like satisfiability, sampling and approximate counting can be answered

very efficiently in worst-case polynomial time for DNF formulas. Thus the trade-off

between expressivity of constraint types and hardness of queries is nuanced. The

theory and AI communities have taken different approaches to exploring the divide.

1.1.2 Counting and Sampling in Theory

The theory community is primarily interested in establishing complexity lower bounds.

Counting problems belong to the complexity class #P. We refer the reader to Arora

and Barak [7] for a detailed discussion on complexity classes. The problem of counting

the solutions of Boolean formulas is the canonical #P-Complete problem, analogous

to Boolean satisfiability (SAT) being the canonical NP-Complete problem. Toda [8]

showed that it possible to solve any problem in the polynomial hierarchy within poly-

nomial time with just one call to a #P-oracle. This hints to the hardness of counting.

Interestingly, Valiant [9] showed that counting the number of perfect matchings in

a bipartite graph is also #P-Complete, despite the fact that the decision version,

i.e. finding a perfect matching can be solved in polynomial time. The complexity

landscape for counting is thus nuanced, and considerable effort has been devoted
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to delineating the boundary between problems with polynomial time algorithms vs.

those complete for some hard complexity class (c.f. [10]). Another line of work has

explored complexity of approximate counting, wherein the goal is to compute the

count up to a given multiplicative or additive factor, either deterministically or with

high probability. Some problems, such as approximate DNF-Counting can be solved

in time polynomial in both the size of the formula as well as the approximation

factors [11], while others are provably hard under mild assumptions. Thus, simi-

lar to the exact case, the primary focus of the theory community for approximation

algorithms has been to establish polynomial upper bounds for different constraint

types, where possible. Uniform sampling is intimately related to counting in many

ways [12, 13, 14, 15]. Jerrum, Valiant and Vazirani [14] demonstrated a reduction

between uniform sampling and approximate counting, as well as the inter-reducibility

between approximate counting and almost-uniform sampling. The latter is at the core

of most polynomial time approximate counting algorithms. Bellare, Goldreich and

Petrank [15] showed that uniform sampling can be done in probabilistic polynomial

time with access to an NP oracle.

It is thus clear that the theory community is concerned with tractability only from

the perspective of polynomial running time. Fine-grained analysis and algorithmic

development that also takes into account the degree of the polynomial, log-factors

and constants, has been largely absent in literature. Not surprisingly, it has been

regularly observed that many algorithms that are worst-case polynomial do not yield

tools that scale well in practice [16, 17]

1.1.3 Counting and Sampling in Practice

Interest in practical aspects of counting and sampling stems from the myriad applica-

tions in diverse domains across computer science such as probabilistic inference and

partition function estimation [18, 3], quantifying information flow [4], testing and ver-

ification [19, 20], etc. Undeterred by asymptotic worst-case complexity, researchers
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attempted to create algorithms and tools that worked well on real-world instances

which often have exploitable structure. Early work was geared towards Boolean sat-

isfiability (SAT). Beginning in the 90’s, SAT solvers saw tremendous improvements

in scalability [21, 22], and can now routinely solve formulas with millions of variables

arising from real-world applications (c.f. [23]). Inspired by this success, in the 2000’s,

researchers began looking at problems believed to be even harder than SAT, including

counting and sampling.

Today, the dominant paradigm for exact counting and sampling, is based on ex-

tending the classical SAT algorithm called CDCL [22] to exhaustively search the entire

solution space with counting-specific enhancements like component caching [18] and

special heuristics [24]. This approach requires the input constraints to be in CNF,

which naturally allows it to serve as a one-stop-shop solution for all counting and sam-

pling problems. We refer to this paradigm as the ‘SAT-based approach’ to counting

and sampling. Barring a few very recent exceptions, most existing tools for count-

ing and sampling such as sharpSAT [24], Cachet [25], C2D [26], d4 [27], Ganak [28],

SPUR [29], KUS [30], WAPS [31] etc are directly or indirectly based on this SAT-based

paradigm.

On the approximate side, the state-of-the-art tools that provide strong PAC-

style [32] guarantees with no hand-tuned parameters, such as ApproxMC [33], UniGen [16]

and their successors [34, 35, 36], all leverage universal hash functions and special SAT

solvers that can handle CNF as well as parity (XOR) constraints. Such SAT solvers,

such as CryptoMiniSAT [37], extend CDCL with XOR-reasoning to achieve better

scalability. Similar to the exact case, the SAT-based approach is thus the workhorse

in approximation tools as well.

In summary, the SAT-based approach operating on CNF formulas is by far the

most popular today for both counting and sampling. Given any application, the

pipeline is to first encode the problem into CNF using standard count-preserving en-

codings [1] and the resulting formula is given as input to a SAT-based counter or
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sampler. The advantages of this general-purpose approach are numerous. It enables

modern counters and samplers to leverage years of research in SAT solving which

had yielded spectacular improvements in scalability for the problem of satisfiabil-

ity. A standardized approach across tools encourages modularity, code reuse, fast

development and update cycles and community-building as was seen for SAT solvers.

Additionally, a wealth of efficient encodings for various types of constraints to CNF

are readily available [23]. This is especially beneficial for problems involving hetero-

geneous constraints such as those arising from planning [38], scheduling [39], model

checking [40] etc. Thus the strength of the SAT-based approach is its generality –

instead of developing new algorithms and tools from scratch for each new problem

and constraint type, one can simply use standard parsimonious (count-preserving)

encodings such as the Tsetin transformation [1], to translate the original problem in-

stance into CNF and use an existing SAT-based tool on the encoded formula. Thus,

this approach serves as a one-stop-shop solution for a variety of problems.

1.2 A Knowledge-Gap

Conventional wisdom in many disciplines favors general-purpose approaches over the

specialized ones, for many of the same reasons for preferring SAT-based approaches

just mentioned. For example, generic tools like CPLEX and Gurobi are the preferred

solution for optimization problems across many disciplines and industries, general-

purpose architectures won over special-purpose in early days of microprocessor devel-

opment [41], and (CNF) SAT solvers became the go-to solution for the problem of

Automatic Test Pattern Generation for hardware-verification over specialized circuit-

SAT [42]. This wisdom has been captured in the principle “COTS (Commodity

Off-the-Shelf) always wins”.

The holy grail for computing has been proposed as “the user states the problem;

the computer solves it” [43]. In the context of Constrained Counting and Sampling,

it seems at first glance that the SAT-based approach is well-positioned to achieve
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this goal. Domain experts can engineer good CNF-encodings, while SAT experts can

work on improving heuristics and augmenting the underlying CDCL inference engine

with more primitives.

A closer inspection, however, reveals significant obstacles in this simple story in the

context of counting and sampling. Consider the problem of computing the permanent

of a 0-1 matrix, which is equivalent to the problem of computing the number of perfect

matchings in a bipartite graph. The matrix permanent is #P-Complete [9], but in a

celebrated result, Jerrum, Sinclair and Vigoda [44] demonstrated a fully polynomial

algorithm for multiplicative approximation. However, the degree of the polynomial

is n7, coupled with prohibitively large constants, which makes it all but useless in

practice [17]. As an alternative practical approach, we experimented with state-of-

the-art exact and approximate SAT-based counting tools such as d4 and ApproxMC,

with a variety of encodings from perfect-matching constraints to CNF. Naturally,

given the benefits of generic tools backed by years of engineering effort, we expected

SAT-based approaches to do well on this problem, especially since the permanent is

in some sense easier than general CNF-Counting†. Yet, surprisingly, we consistently

observed that SAT-based counters failed to scale beyond 15× 15 size matrices, while

a brute force approach with O(n · 2n) best and worst-case complexity, could compute

the permanent of all matrices up to size 27 × 27. While domain-specific approaches

can be expected to have an edge over generic SAT-based approaches, the fact that a

naive brute force approach outperformed highly engineered state-of-the-art counters

by a wide margin is a striking result.

†While both permanent and CNF-Counting are #P-Complete under counting reductions, there

can be no parsimonious reduction from the CNF-Counting to the permanent unless P=NP. Further,

there is a poly-time approximation algorithm for the permanent [44], while no such algorithm can

exist for CNF-Counting unless NP=RP
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1.3 Contributions

Unfortunately, the situation with the matrix permanent is not a one-off exception.

We observed similar phenomena for other exact and approximate counting and sam-

pling problems such as DNF-Counting, conditional counting, sampling traces of a

transition system, and sampling for CNF formulas with low treewidth. Similar to the

permanent, these problems are not as expressive or general (and therefore ‘easier’ in

a sense) as compared to counting or sampling arbitrary CNF formulas. Nevertheless,

the prevalent SAT-based approach performed significantly poorly on these problems,

in our experiments. Further, owing to establishment of complexity bounds, these

problems are, in a sense, considered ‘solved’ by the theory community. Despite many

real-world applications, the upshot is that such problems are in academic no-man’s-

land.

The overarching contribution of this dissertation is to highlight this state-of-affairs

and to offer balanced solutions through algorithmic innovation. We observe that in

spite of all the advantages of the SAT-based approach, it fails to scale on domain-

specific problems because the translation to CNF leads to the loss of structure that is

inherent in native constraint-types [45]. Instead, in our works, we directly count and

sample from native constraints without necessarily converting them to CNF first‡. In

this endeavor, we are careful to avoid the other extreme of developing approaches for

each problem completely from scratch, which is prone to low-level inefficiencies. In-

stead, we enhance and extend existing counting and sampling techniques to suit each

problem. Leveraging proven techniques in a modular fashion allows us to reuse mature

software libraries ensuring scalability. Tailoring techniques to the native constraint

types allows us to easily exploit the problem structure. This is in stark contrast to

the SAT-based approach which attempts to tailor the constraints (i.e. converts them

to CNF) to suit the technique (exhaustive CDCL). In each case our empirical analy-

‡We operate on CNF representations only when necessary, for eg. when the underlying application

has heterogeneous constraints
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ses reveal a nuanced picture, wherein our counting and sampling techniques are seen

to be a valuable addition to the algorithmic portfolio, often yielding state-of-the-art

performance in a wide variety of scenarios. This belies the conventional belief “one

approach (viz. SAT) to rule them all”. Our results are analogous to those in the

constraint satisfaction setting, where the strengths of CP and SAT solvers are often

complementary to each other [46, 47].

Approximate Counting and Sampling In this regime, our techniques straddle

the divide between the classical Monte Carlo and hashing-based paradigms, playing on

the complementary strengths of each. We demonstrate how to tailor these techniques

to the problems of DNF-Counting and certifying Machine Learning explanations.

We first consider the problem of DNF-Counting which has applications in areas like

probabilistic databases [48] and network reliability [6]. Important questions regarding

the fine-grained complexity of existing approaches as well as their performance in

practice, were left open by prior work. Our key contributions here are two fold. First

we propose an algorithmic enhancement to the hashing framework, which makes its

complexity as good as that of the best Monte Carlo approach. Secondly, we present

an extensive empirical study evaluating the performance of different algorithms. A

nuanced picture emerges from our study, wherein worst-case complexity is seen not

to be the last word for predicting practical scalability.

Next we introduce the problem of conditional counting in the context of explain-

able AI (XAI) and Machine Learning. Intense interest in making ML fair, safe and

understandable has led to the emergence of a plethora of different tools for explaining

opaque ML models like Deep Neural Networks. Yet, balancing scalability, generality

and theoretical rigor in explanations remains an elusive goal. In our work, we seek to

remedy this through a novel explanation framework, called CLIME, which is powered

by constraints. We show that the task of certifying the correctness of explanations is

actually an instance of the problem of conditional counting. We then present a new
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approximate conditional counting algorithm that allows off-the-shelf hashing-based

constrained samplers to be used as subroutines within a Monte Carlo framework.

This novel combination yields significant improvements in scalability without sacri-

ficing generality or rigor.

Exact Counting and Sampling Here, we present a framework based on repre-

senting pseudo-Boolean functions in compact factored forms [49] using datastructures

called Algebraic Decision Diagrams (ADDs) [50]. The flexibility offered by factored

representations allows this approach to be applied to diverse counting and sampling

problems such as computing the matrix permanent, sampling traces of a transition

system, and sampling solutions of low-treewidth CNF formulas. This is in stark

contrast to the rigid SAT-based framework, which is unable to exploit the hidden

problem structure in these domains.

First we consider the problem of computing the permanent of a 0-1 matrix. This

problem has applications in a diverse areas like physics [51], organic chemistry [52],

constraint programming [53, 54] etc. Despite intense theoretical interest in the prob-

lem, there is a prominent lack of practical algorithms that can scale without compro-

mising correctness guarantees. Our key contribution is an algorithm that leverages

ADDs to exploit a very general notion of ‘structure’ in matrices, which allows it to

scale on a wide variety of benchmarks.

Next, we consider the problem of sampling traces of a transition system. This

problem is of crucial interest to the hardware design community for verifying the

behavior of large sequential circuits [55]. We present the first algorithm based on

ADDs for sampling traces i.e. runs of a transition system (such as a sequential

circuit) with global uniformity guarantees, as opposed to existing approaches which

only offer local uniformity at each time-step [56, 57, 58]. Critical to the success of

our approach is a novel ADD-pruning technique to keep memory requirements small.

Lastly, we consider the problem of sampling solutions of CNF constraints with low-
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treewidth. Careful design of algorithms to exploit this property was shown to yield

significant performance gains for counting [59], yet the same has not been replicated

for sampling. In this work, we show that an existing approach based on ADDs for

counting can also be extended to sampling resulting in significant performance gains

over existing SAT-based tools like WAPS especially in the regime of low-treewidth

formulas. A new top-down sampling framework is at the heart of practical gains in

performance.

1.4 Benchmarks

A key aspect of evaluating the performance of algorithms in practice is the quality

of the set of benchmarks used for the purpose. Ideally, the benchmark set should be

representative of the real-world use cases of the algorithm being evaluated. However,

there is often a significant gap between the time an approach is proposed and the

time it is applied in the real world. Moreover, even after an approach is used in

industry, relevant benchmarks and datasets may not be publicly available due to

their proprietary nature or simply not having been published. Given that we attempt

to tackle problems in ‘academic no-man’s-land’ in this thesis, it is not surprising that

we often face many of these issues. In fact, in some cases like DNF-Counting, there

is a chicken-and-egg problem§. The lack of benchmarks representative of real-world

applications hinders the development of practically scalable tools, which in turn makes

it difficult to find use-cases of such tools in real applications, from which benchmarks

can be derived.

In order to overcome these hurdles, we adopt the strategy of using standard bench-

mark sets where available, and augmenting them with randomly generated bench-

marks as needed. For example, in the case of trace sampling and generating ML

explanations, there are comprehensive suites of benchmarks used in prior work that

§See Sec. 4.5.
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are directly useful for our purposes, which we use with minimal modifications. In

the case of CNF sampling, we require weighted CNF formulas as input. However,

there are only a limited number of CNF benchmarks in literature that naturally in-

clude weights – vast majority of formulas used in literature are unweighted. Therefore,

along with one set of naturally weighted CNF formulas, we also use ‘pseudo-weighted’

formulas where we augment a set of unweighted CNF formulas with randomly gen-

erated weights, following [59]. In the case of the matrix permanent, we experiment

on both randomly generated as well as real-world instances. Finally, in the case of

DNF-Counting, we fully rely on randomly generated benchmarks due to a lack of

real-world, publicly available instances.

Randomly generated benchmarks must be used carefully to avoid potential pitfalls.

For example, in the case of SAT, it is well known that the state-of-the-art SAT solvers

can perform poorly on random instances, and that the structure of solution spaces of

real-world instances looks very different from that of random ones [23]. Results on

random benchmarks, therefore, may not easily generalize to real-world instances. In

our work, we take care to generate benchmarks in a principled way while avoiding

over-inference from our results. For example, in case of DNF-Counting, we generate

formulas across a broad range of parameters like cube-to-variable ratio, cube-width

etc. In other words, we make no presumptions about the type of formulas that may

be encountered in the real world, and experiment with a broad class of formulas so as

to give a bird’s-eye view of the performance landscape. Further, our results illuminate

a nuanced picture, where different algorithms are better suited for different formula-

types. We discuss these issues in more depth in the respective chapters.

1.5 Tools

The following tools have been developed as part of this dissertation:

1. SymbolicDNFApproxMC and DNFApproxMC: Implementations of hashing-based

FPRASs for approximate DNF-Counting
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2. CLIME: Constraint-driven Machine Learning explainer (based on a novel conditional-

counting algorithm)

3. RysersADD: Counting tool for the 0-1 matrix permanent

4. TraceSampler: Uniform sampler of traces of a transition system

5. DPSampler: Weighted CNF-Sampler based on dynamic programming

1.6 Organization

This dissertation is divided into 4 parts: Part I: Prologue, Part II: Approximate

Counting and Sampling, Part III: Exact Counting and Sampling, and Part IV: Epi-

logue.

In Chapter 2 (Part I) we introduce some preliminaries and notation related to

counting and sampling. Then in Part II, we first give some background related to

Approximate Counting and Sampling as well as the techniques of universal hashing

and Monte Carlo sampling (Chapter 3). We present our work on the problem of

DNF-counting in Chapter 4. Most of this work appeared in [60]. Chapter 5 presents

our work on conditional counting in the context of explaining and certifying Machine

Learning models using constraints. This work is to appear in AAAI 2022.

In Part III (Exact Counting and Sampling), we discuss background and techniques,

viz. the SAT-based and ADD-based approaches in Chapter 6. We present our work

on computing the permanent of a 0-1 matrix in Chapter 7. This chapter is based

on [61]. Chapter 8 presents our work on uniform trace sampling which appeared in

[62]. In Chapter 9 we discuss our work on the problem of weighted sampling of low

treewidth CNF formulas.

We summarize and conclude in Chapter 10 (Part IV). For improving readability

and ease of exposition, we defer some proofs, experimental results and extended

discussion to the Appendix.
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Chapter 2

Preliminaries

We take a general view of constraints in order to unify the different counting and

sampling problems we discuss in subsequent chapters. In an abstract sense, a Boolean-

valued constraint ϕ over a set of discrete variables X = {x1, x2, . . . , xn} with domain

D = d1 × d2 × . . .× dn is a representation of the function D → {0, 1} mapping each

possible variable-assignment σ ∈ D to 1 or 0 (true or false). If the same function

is represented in two different ways, say ϕ1 and ϕ2, then we write ϕ1 ≡ ϕ2. When

clear from context, we will use ϕ to represent both the constraint and the underlying

function, i.e. ϕ : D → {0, 1}. A satisfying assignment or solution of ϕ is an assignment

σ ∈ D such that ϕ evaluates to 1 under σ, which is denoted as ϕ[σ] = 1. The set of

solutions of ϕ is denoted Rϕ = {σ ∈ D | ϕ[σ] = 1}.

Definition 2.1. Given a constraint ϕ over discrete variables x1, x2, . . . xn and domain

D = d1 × d2 × . . . × dn, the problem of Constrained Counting∗ is to compute |Rϕ| =∑
σ∈D ϕ[σ]

Definition 2.2. Given a constraint ϕ over discrete variables x1, x2, . . . xn and domain

D = d1 × d2 × . . . × dn, the problem of Constrained Sampling is to return a random

assignment S such that for all σ ∈ D, we have

Pr[S = σ] =


1
|Rϕ| if σ |= ϕ

0 otherwise

∗Note that the definition of a constraint and Constrained Counting given here is more general

than the ones used in #CSP or Holant problem [10].
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It is easy to see that both counting and sampling are at least as hard as satisfi-

ability which simply asks if a solution exists. The problem of deciding satisfiability

for arbitrary constraints is NP-Complete while sampling can be done in probabilistic

polynomial time with access to an NP oracle [15], and counting is #P-Complete (a

class which contains the entire polynomial hierarchy).

Constraint types restrict structure and/or the domain of constraints. For example,

if each variable of ϕ is restricted to the Boolean domain and only Boolean operators

such as AND, OR, NOT etc. are allowed, then ϕ is simply a Boolean formula. If we

further restrict the structure of ϕ to be a conjunction of disjunctions of literals (i.e.

variables or their negations), then ϕ is said to be in Conjunctive Normal Form (CNF).

If ϕ is a disjunction of conjunctions of literals, then it is said to be in Disjunctive

Normal Form (DNF). Note that constraints may be implicitly defined, such as those

on graphs. For example, the set of all paths of length 4 in a graph can be viewed

as constraint that evaluates to true for all ordered subsets of edges that correspond

to a path of length 4. The corresponding counting problem is then to compute the

number of paths of length 4 in a given graph. Similarly, the set of perfect matchings

in a bipartite graph can also be viewed as a constraint from this lens.

The complexity of counting, sampling and satisfaction varies widely for differ-

ent constraint types. For instance, for CNF formulas, satisfiability is NP-Complete,

counting is #P-Complete and sampling can be done in probabilistic polynomial time

with access to an NP oracle. On the other hand, for DNF formulas, satisfiability and

sampling are both polynomial time, while counting is #P-Complete. For Boolean for-

mulas consisting of conjunctions of XOR constraints, all three problems can be done

in polynomial time. Charting out the complexity map for counting and sampling has

been the subject of intense research (c.f. [10]).

Apart from constraint types, it is also possible to define tractability in terms of

parameters like treewidth, cliquewidth etc. [63]. Additionally, it is also possible to

define weighted variants of counting and sampling, wherein a weight function mapping
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each variable assignment to positive weight is provided along with the constraints,

and the goal is to obtain the cumulative weight of all assignments in Rϕ or sample an

assignment from Rϕ with probability proportionate to its weight. We consider these

issues in more detail in Part III.

Researchers have also considered approximate variants of counting and sampling.

Different notions of ‘good’ approximations have been defined in literature; in this dis-

sertation we focus on a strong notion of probabilistic approximation with guarantees

similar to those of Probabilistically Approximately Correct (PAC) learning [32].

Definition 2.3. Given a constraint ϕ over discrete variables x1, x2, . . . xn and domain

D = d1 × d2 × . . . × dn, along with two real numbers ε, δ such that 0 ≤ ε, δ ≤ 1

the problem of approximate counting is to compute an estimate C of |Rϕ| such that

Pr[(1− ε) · |Rϕ| ≤ C ≤ (1 + ε) · |Rϕ|] ≥ 1− δ

Definition 2.4. Given a constraint ϕ over discrete variables x1, x2, . . . xn and domain

D = d1×d2× . . .×dn, along with a real numbers ε such that 0 ≤ ε ≤ 1 the problem of

almost-uniform sampling is to return a random assignment S such that for all σ ∈ D,

we have

(1− ε)
|Rϕ|

≤ Pr[S = σ] ≤ (1 + ε)

|Rϕ|
if σ |= ϕ

Pr[S = σ] = 0 otherwise

The parameter ε is known as the tolerance and δ is the confidence. Note that

in the preceding two definitions, one can instead find an approximation between the

multiplicative factors of 1/(1 + ε) and (1 + ε) (instead of (1 − ε) and (1 + ε)) and

allow ε to be greater than 1 as well. The corresponding definitions are equivalent

and used interchangeably in literature. Of particular interest, are approximation al-

gorithms that run in polynomial time both in terms of the size of ϕ as well as 1/ε

and 1/δ. Such algorithms are called Fully Polynomial Randomized Approximation

Schemes (FPRAS) for counting, and Fully Polynomial Approximate Uniform Sam-

plers (FPAUS) for sampling. For instance, the algorithm by Karp and Luby [11] is
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an FPRAS for DNF counting, while an FPAUS and an FPRAS for bipartite perfect

matchings was given in [44]. In contrast, no FPRAS for CNF counting can exist,

unless NP=RP.
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Part II

Approximate Counting and

Sampling
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Chapter 3

Background

3.1 History

Approximate counting and sampling have a rich and varied history since the prob-

lems along with the first FPRAS for DNF-Counting were introduced by Karp and

Luby [11]. Their algorithm was based on the paradigm of Monte Carlo sampling,

which eventually led to the further development of the more advanced Markov Chain

Monte Carlo (MCMC) method [64], which has been used to design various FPRASs

(such as that for the matrix permanent [44]), as well as for powering many Machine

Learning algorithms by allowing sampling from complex distributions (c.f. [65]).

Nevertheless, its performance in practice leaves a lot to be desired. For instance, the

FPRAS for the matrix permanent has large degree and constants in its asymptotic

running time, and has been found to be all but useless in practice [17]. Further, for

constraints such as those imposed by Bayesian Networks, it is known that an FPRAS

is not possible unless NP=RP [66]. For such problems, MCMC requires exponen-

tially many samples to achieve mixing and yield PAC-style guarantees. Practitioners

therefore terminate the sampling before the number of steps mandated by theory have

been performed. This leads to loss of guarantees which can be unacceptable for safety-

critical applications like those in health-care. Fortunately, this gap between theory

and practice was recently addressed by a series of algorithms, viz. ApproxMC [33] for

counting and UniGen [16] for sampling, which were based on universal hashing [67]

and special SAT solvers. Building on earlier works [12, 13, 14, 15], ApproxMC and

UniGen achieved scalability on real-world CNF benchmarks arising from various prob-

lem domains without compromising on PAC-style guarantees. This was made possible
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by use of low-independence hash functions based on random XOR formulas, as well

as a specialized SAT solver called CryptoMiniSAT [37], which allowed fast solving of

CNF and XOR constraints. While the worst-case complexity is exponential, it was

observed that ApproxMC, UniGen and their successors [68, 34, 35] were successful on

real-world problem instances, thanks to the ability of the SAT solver to exploit the

structure of such problems. The latest versions of ApproxMC and UniGen are able to

scale to formulas with hundreds of thousands of variables.

This progress by ApproxMC and UniGen suggested that the SAT-based paradigm

may be powerful enough for many practical purposes. In particular, given its ability

to count complex CNF formulas, we expected ApproxMC to also do well on DNF

formulas encoded into CNF, given that DNF satisfiability is trivial. Surprisingly,

this was not the case. When we tested ApproxMC on (CNF-encodings of) DNF

benchmarks obtained from the application of probabilistic databases, we found that

it failed to count formulas in a 1000 second timeout. In contrast, a simplistic naive

Monte Carlo algorithm could solve many of these benchmarks in under a second,

but its performance was not robust. In a similar vein, in our work on certifying ML

explanations, we encountered CNF formulas with high solution density, which proved

to be very difficult for ApproxMC (and even for exact SAT-based tools). This wide

chasm in expected vs. obtained results, suggested that the SAT-based approach may

not be the be-all, end-all for approximate counting in practice, as previously thought.

It called for techniques that could combine the best of Monte Carlo and hashing-based

paradigms, without necessarily relying on SAT solving.

In our works on DNF-Counting and conditional counting, we designed count-

ing and sampling techniques leveraging the complementary strengths of hashing and

Monte Carlo paradigms. Hashing offers generality while the simplicity of Monte Carlo

can make it extremely fast when applicable. Our key contribution in this regard was

to marry these two hitherto unrelated paradigms to obtain algorithms that were ro-

bust across different problem regimes. In the rest of this chapter, we give a bird’s
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eye view of these paradigms. In the following two chapters, we discuss our works on

DNF-Counting and conditional counting respectively, that combine the strengths of

these paradigms in novel ways to obtain fast and robust performance, both in theory

and practice.

3.2 Monte Carlo Framework

Algorithms built on Monte Carlo framework are randomized algorithms whose out-

put can be wrong with a certain (usually small) probability [69]. Typically, these

algorithms rely on drawing independent random samples to obtain numerical results.

We refer the reader to [70] for further details. In the context of counting, the abstract

Monte Carlo framework for finding cardinality of a set A in the universe U is shown

in Algorithm 1.

Algorithm 1 Monte-Carlo-Count(A, U)

1: Y ← 0

2: repeat N times

3: Select an element t ∈ U uniformly at random

4: if t ∈ A then

5: Y ← Y + 1
N

6: Z ← Y × |U|

7: return Z

In Algorithm 1, Y is an unbiased estimator for ρ = |A|/|U|. ρ is called the density

of solutions. Also, Z is an unbiased estimator for |A|. If N = O( V[Z]
E[Z]2

log(1/δ)/ε2),

we have Pr[(1− ε)|A| ≤ Z ≤ (1 + ε)|A|] ≥ 1− δ.

Algorithm 1 is an FPRAS if the number of samples N , and the time taken by

line 3 and 4 are polynomial in the size of input. Note that A is typically represented

implicitly using constraints. In the context of counting, we have A = Rϕ, given an
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input constraint ϕ.

In general, it is hard to get a good estimate of N without some prior knowledge

about the problem instance. An overestimate of N can lead to poor sample complex-

ity, while an underestimate leads to loss of theoretical guarantees. Dagum et al. [71]

proposed a Monte Carlo algorithm that could compute a PAC estimate for the car-

dinality of A while estimating N on-the-fly. Their approach was general-purpose in

that it made no assumptions on the type or size of A. They also proved that their ap-

proach has sample complexity that is only a constant factor away from the theoretical

optimal, which also makes it very fast in practice.

The simplicity of the Monte Carlo framework coupled with the theoretical and

practical benefits of the approach of [71], make it a formidable tool for counting and

sampling. Nevertheless, the Achilles heel of this paradigm is the fact that the sample

complexity is proportional to the ratio of te size of A to the size of the universe U .

This makes it impractical in cases when this ratio is exponentially small, as is the

case in many real-world applications.

3.3 Hashing Framework

The USP of the hashing framework, as developed in ApproxMC and UniGen for CNF

formulas, is its ability to exploit the problem structure in a given problem instance

using SAT solvers. This ability allows for counting and sampling from exponentially

small solution spaces, and sets it apart from the previous naive Monte Carlo paradigm.

The abstract hashing framework is presented in Alg. 2. hiThresh and t are con-

stants computed based on the input values of ε and δ respectively. p and q represent

the number of constraints and variables in the hash function h ∈ H respectively. The

key idea behind hashing-based counting is to partition the solution space of a given

formula into roughly equal small cells of solutions, using randomly chosen 2-universal

hash functions [67]. The crux of the framework is a search for the right number of

hash constraints such that the number of solutions in a cell – Ycell = |Rϕ ∩ h−1| – is
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Algorithm 2 ApproxMC(ϕ, ε, δ)

1: hiThresh← O( 1
ε2

);

2: t← O(log(1
δ
));

3: EstimateList← emptyList;

4: H ← ChooseHashFamily();

5: repeat t times

6: h← SampleHashFunction(H, q);

7: Ycell, p← Search(ϕ, h, q, hiThresh);

8: AddToList(EstimateList, Ycell × 2p);

9: finalEstimate← FindMedian(EstimateList);

10: return finalEstimate

Algorithm 3 LinearSearch(ϕ, h, q, hiThresh)

1: for p ∈ {0, . . . , q} do

2: Ycell ← SaturatingCounter(ϕ, h, p, q, hiThresh)

3: if Ycell < hiThresh then

4: return Ycell, p
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not too large, yet the tolerance and confidence obtained are as required. This search

is encapsulated in a call on line 7 of Alg. 2. For ease of understanding, in Alg. 3 we

present a simple linear search starting from 0 hash constraints, as was done in [16].

Note that in [68], binary search was used in its place which reduced the number of

SAT calls to logarithmic in the number of variables, while in Chapter 4 we present yet

another ‘reverse’ search procedure that improves the complexity of the hashing-based

DNF-Counting algorithm.

In Alg. 3, to calculate Ycell, all the solutions in a randomly chosen cell are counted

up to the threshold hiThresh, using a procedure called SaturatingCounter called on

line 2. SaturatingCounter can be implemented through calls to a SAT solver that

can handle CNF and XOR constraints comprising of the input formula ϕ and the

hash constraints h respectively. In particular, a SAT solver can be used to enumerate

solutions of ϕ ∧ h, one by one, using the concept of blocking clauses [16]. This pro-

cedure is scalable in practice, as we only need to enumerate hiThresh many solutions,

which is much smaller compared to |Rϕ|. While enumerating solutions in this way,

if Ycell exceeds the threshold hiThresh ∈ O(1/ε2), then the number of constraints are

increased. The search ends when the number of hash constraints p is such that (1)

Ycell < hiThresh and (2) Ycell ≥ hiThresh when number of hash constraints is p− 1.

The usage of 2-universal hash functions guarantees that the random variable Ycell

has low variance. In Alg. 2, therefore, the estimate Ycell × 2p (line 8), where 2p is

the total number of cells, is a good approximation of |Rϕ|. The final answer is the

median (line 9) of t independent invocations of the for loop (lines 5-8), which ensures

that the confidence is amplified to the required value of 1− δ.
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Chapter 4

DNF-Counting

4.1 Introduction

DNF-Counting or #DNF is an important problem in practice, as applications such

as query evaluation in probabilistic databases [5] and failure-probability estimation

of networks [6] reduce to it. In their seminal paper, Karp and Luby [11] proposed

the first Fully Polynomial Randomized Approximation Scheme (FPRAS) for #DNF

based on Monte Carlo sampling. We will henceforth use the term KL Counter to

denote the FPRAS proposed by Karp et al. The time complexity of KL Counter is

quadratic in the number of cubes (i.e., disjuncts) and linear in the number of the

variables of the input formula ϕ. Building on KL Counter, Karp et al. [72] proposed

an improved FPRAS, henceforth denoted as KLM Counter, which has time complexity

linear in the number of cubes. Vazirani [73] proposed a variant of KL Counter (denoted

Vazirani Counter) with same time complexity as KL Counter, but combined with an

enhancement proposed in [71], it requires fewer Monte Carlo samples than KL Counter.

Besides the Monte Carlo paradigm, one can also use the hashing paradigm for

approximate DNF-Counting. A naive way to do so is to encode DNF formulas into

CNF, using Tseitin encoding∗. One can directly invoke ApproxMC on the encoded

CNF formulas, to get the count of the original DNF formula, because of the fact that

Tseitin encoding is parsimonious. In this chapter, we refer to this method simply as

ApproxMC. It is natural to expect ApproxMC to do well here, as DNF satisfiability

∗We highlight that multiplicative approximation is not closed under complement, so it is not

possible avoid using Tseitin encoding by considering the complement CNF formula of a given DNF

formula.



26

is trivial as compared to general CNF satisfiability. In preliminary experiments,

however, we observed that ApproxMC severely underperformed on formulas stemming

from probabilistic database benchmarks. In particular, ApproxMC timed out on all

benchmarks after 1000 seconds, while a naive Monte Carlo algorithm took under

a second for each. In fact, for all formulas considered in this chapter, ApproxMC

fared very poorly. Clearly, the SAT-based approach is not suited for the problem of

DNF-Counting, and we do not discuss it further.

Despite the failure of ApproxMC, it turns out that the hashing paradigm can still

be used for DNF-Counting, by operating on DNF formulas directly, instead of going

via CNF and SAT. Chakraborty et al. [68] showed that the hashing-based framework,

which was originally proposed for approximate counting of CNF formulas, lends to

an FPRAS scheme for #DNF as well. The algorithm relies on Gaussian elimination

for solving DNF+XOR formulas directly, instead of converting DNF to CNF. How-

ever, the time complexity of this hashing-based scheme of Chakraborty et al., called

DNFApproxMC, was cubic in the number of variables which is significantly worse than

that of KLM Counter. Building on Chakraborty et al., in our earlier work (not part

of this dissertation) [74], we proposed an improvement to DNFApproxMC, which we

refer to as SymbolicDNFApproxMC. The time complexity of SymbolicDNFApproxMC is

Õ(mn log(1/δ)/ε2), which is within polylog factors of that of KLM Counter. This was

made possible through the techniques of Symbolic Hashing, Stochastic Cell-Counting

and Row-Echelon hash functions. Despite being tailored for obtaining improvements

in time complexity for DNF-Counting, these techniques do not sacrifice generality.

In particular, they are enhancements of the underlying hashing framework and are

not tied to any particular constraint type. For instance, they can also be used with

vanilla ApproxMC for CNF counting. A detailed study of these techniques in alter-

native contexts is an interesting direction for future work.

Nevertheless, two key questions were left unanswered in previous work: 1) Is it

possible to remove the polylog factors in the complexity of SymbolicDNFApproxMC?
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2) How do the other approaches perform empirically? The desire to make an inquiry

into the runtime performance of different FPRAS is not just intellectual; it stems

from the fruitful results such a study has produced in the development of theory and

tools for approximate CNF-Counting [75, 76]. Despite the fact that some FPRAS

have been around for over 30 years, a comprehensive experimental evaluation has not

been performed for #DNF, to the best of our knowledge.

In this chapter, we first present a new ‘reverse search’ technique for hashing-based

algorithms that improves the complexity of SymbolicDNFApproxMC toO(mn log(1/δ)/ε2),

which is the same as KLM Counter. Similar to other techniques used in SymbolicDNFApproxMC,

reverse search also balances generality and specificity to yield theoretical and practi-

cal improvements. In particular, in the context of DNF counting, it leads to removal

of poly-log factors in complexity. At the same time, it can also be used with vanilla

ApproxMC for CNF counting, where it can result in fewer SAT solvers through so-

lution reuse. Further, we present the first empirical study of runtime behavior of

different FPRASs for #DNF. Similar to previous studies for SAT solvers, we conduct

our study on classes of randomly generated DNF formulas covering a broad range of

distribution parameters. The result of our study produces a nuanced picture. First of

all, we observe that there is no single best algorithm that outperforms all other algo-

rithms for all classes of formulas and input parameters. Second, we observe that the

algorithm with one of the worst time complexities, DNFApproxMC, solves the largest

number of benchmarks. We believe that the above two results are significant as they

demonstrate a gap between runtime performance and theoretical time complexity

of approximate techniques for #DNF. Similar to studies of #CNF, this gap should

serve as a guiding light for designing new #DNF algorithms, and for analyzing the

structure of solution space of DNF formulas.

The rest of the chapter is organized as follows: we introduce some notation in

Section 4.2 and briefly review the various approaches to approximate DNF-Counting

in Section 4.3. We present our new search procedure for hashing algorithms in Section
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4.4. We describe experimental methodology in Section 4.5 and report on the results

in Section 4.6. We offer our interpretation of these results in Section 4.7, and conclude

in Section 4.8.

4.2 Preliminaries

A literal is a variable or the negation of a variable. A formula ϕ over boolean variables

is in Disjunctive Normal Form (DNF) if it is a disjunction over conjunctions of literals.

Disjuncts in the formula are called cubes and we denote the ith cube by ϕi. Thus

ϕ = ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕm. We will use n and m to denote the number of variables and

number of cubes in the input DNF formula, respectively. The width of a cube ϕi refers

to the number of literals in cube ϕi and is denoted by width(ϕi). We use w to denote

the minimum of width over all the cubes of the formula, i.e. w = mini width(ϕi).

We use Pr[A] to denote probability of an event A. For a given random variable

Y , we use E[Y ] and V[Y ] to denote expectation and variance of Y .

We use capital boldface letters A,B, . . . to denote matrices, small boldface letters

u, v, w, . . . to denote vectors. We denote by A(p) the sub-matrix of A consisting of

the first p rows. Similarly, b(p) denotes the sub-vector of b consisting of the first p

elements of b. We refer to A(p) and b(p) as “prefix-slices” of A and b respectively.

An assignment (vector) x of truth values to variables of ϕ is called a satisfying

assignment or witness if it makes ϕ evaluate to true. Finding a satisfying assignment

if one exists can be accomplished in polynomial time for DNF formulas. We denote

the set of all satisfying assignments of ϕ by Rϕ. Given ϕ, the Constrained Counting

problem is to compute |Rϕ|. A fully polynomial randomized approximation scheme

(FPRAS) is a randomized algorithm that takes as input a formula ϕ, a tolerance

ε ∈ (0, 1) and confidence parameter δ ∈ (0, 1) and outputs a random variable Y such

that Pr[(1−ε)|Rϕ| ≤ Y ≤ (1+ε)|Rϕ|] ≥ 1−δ and the running time of the algorithm

is polynomial in |ϕ|, 1/ε, log(1/δ).

A hash function h : {0, 1}q → {0, 1}p partitions the elements of the domain
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{0, 1}q into 2p cells. h(x) = y implies that h maps the assignment x to the cell y.

h−1(y) = {x|h(x) = y} is the set of assignments that map to the cell y. We will be

interested in calculating the cardinality of Rϕ ∩ h−1(y) for a randomly chosen h.

Hash functions of the form h(x) = A(p)x⊕b(p) are commonly used in approximate

counting. A base matrix A of dimension q×q is randomly sampled from a special set

called a hash family. Similarly, base vectors b and y are chosen uniformly at random

from {0, 1}q. To obtain a hash function h : {0, 1}q → {0, 1}p and a cell in {0, 1}p,

the prefix-slices A(p), b(p) and y(p) are constructed. Thus the hash function and the

cell h(x) = y is a system of linear equations modulo 2: A(p)x ⊕ b(p) = y(p). The

solutions to this system of linear equations are the elements of the set h−1(y).

We will use the triple A(p), b(p),y(p) to denote a hash function and a cell. We

obtain different families of hash functions depending on the constraints imposed on the

structure of the matrix A. For example, if each element of A is chosen uniformly at

random, we obtain a hash function from the random XOR family [67]. If A is sampled

from the set of matrices in Reduced Row Echelon form, we obtain a hash function

from the Row Echelon XOR family [74]. The technique for enumerating solutions in

a cell also depends on the family of the hash function under consideration.

4.3 Approximation Algorithms for #DNF

Beginning with the seminal work of Karp and Luby [11], three Monte Carlo FPRASs

for #DNF have been designed over the years [72, 73]. Two more FPRASs were de-

signed using the new hashing-based approach [68, 74]. Besides developing FPRASs,

considerable effort has also gone into developing deterministic approximation algo-

rithms for #DNF [77, 78, 79] and the closely related problem of designing pseudo-

random generators with short seeds [80, 81, 82]. The development of a fully poly-

nomial time deterministic approximation algorithm for #DNF is still an open prob-

lem [79].

Motivated by applications of #DNF to probabilistic databases, several approaches
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to the design of approximate #DNF counters have been investigated from the per-

spective of query evaluation as well [83, 84, 85]. Such algorithms, however, either

take exponential time in the worst case [83, 85] or are designed to work on restricted

classes of formulas such as monotone, read-once etc. [84]. An FPRAS similar to KL

Counter was developed in the Multi-Instance Learning community for evaluating SVM

kernels [86]. The FPRAS is designed to count the number of axis-parallel boxes that

contain given points. However, the algorithm is identical to KL Counter when the

problem instance is reduced to a DNF formula.

In summary, there is intense interest in practical applications of #DNF and a

number of algorithmic schemes have been designed towards that end. The strongest

guarantees on worst-case running time are provided by FPRASs, yet there does not

exist a comprehensive experimental evaluation comparing them. In this work, we

perform the first such empirical study of runtime behavior of different FPRASs. Be-

fore delving into experimental setup, we briefly review the five FPRASs from an

algorithmic perspective. The purpose is two-fold:

1. to provide a unified overview of the state-of-the-art FPRASs for #DNF, and

2. to shed some light on the subtle differences within each variant algorithm of the

Monte Carlo and Hashing frameworks. While the differences may seem incon-

sequential from a distance, our experiments show that they make a significant

difference in practice.

4.3.1 Monte Carlo Framework

We present the different Monte Carlo-based FPRASs using the framework of Al-

gorithm 1. If ϕ is a DNF formula with n variables and m cubes, we can employ

Algorithm 1 by defining U to be the set of all assignments over n variables. A naive

lower bound on |Rϕ| is 2n−w, where w is the minimum over width of all the cubes of

ϕ. If w is a small constant, then 1
ρ
≥ 1

2w
which is polynomial in n and m and hence
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we require polynomially many samples. But if w is O(n), then the lower bound does

not polynomially bound the number of samples required which implies that this naive

Monte Carlo counter is not an FPRAS.

The key insight by Karp et al. is to transform Rϕ and U into R′ϕ and U ′ such

that 1
ρ′

= |U ′|/|Rϕ| is polynomially bounded, and it is also possible to recover |Rϕ|

from |R′ϕ|. We now discuss various transformations proposed over the years and the

FPRASs these transformations yield.

KL Counter

Karp and Luby [11] developed the first FPRAS for #DNF, which we refer to as KL

Counter. They defined a new universe U ′ = {(x, ϕi) | x |= ϕi}, and the corresponding

solution space R′ϕ as R′ϕ = {(x, ϕi) | x |= ϕi and ∀j < i,x 6|= ϕj} for a fixed ordering

of the cubes. They showed that |Rϕ| = |R′ϕ| and that the ratio |U ′|/|R′ϕ| ≤ m and is

therefore polynomially bounded. Consequently, the time complexity of the algorithm

is O(m2n log(1/δ)/ε2). For our experiments, we employ an enhancement suggested

in [71] which ensures optimal estimation of N . The enhancement is applicable, since

the estimator used by KL Counter is a 0–1 estimator.

KLM Counter

Karp et al. [72] proposed an improvement of KL Counter by employing a non 0–1 esti-

mator. To this end, the concept of ’coverage’ of an assignment x in U ′ is introduced as

cover(x) = {j|x |= ϕj}. The first key insight is that |R′ϕ| =
∑

(x,ϕi)∈U ′
1

|cover(x)| . The

second insight was to define an estimator for 1/|cover(x)| using the geometric distri-

bution. It is shown that the time complexity of KLM Counter is O(mn log(1/δ)/ε2),

which is an improvement over KL Counter.

Vazirani Counter

A variant of KLM Counter was described in Vazirani [73], where |cover(x)| is computed
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exactly by iterating over all cubes, avoiding the use of the geometric distribution. The

advantage of Vazirani Counter, is that it is able to utilize the enhancement proposed

in [71]. Consequently, Vazirani Counter requires fewer samples than KL Counter to

achieve the same error bounds. The time for generating a sample, however, can be

considerably more since the check for x |= ϕj has to be performed for all cubes.

4.3.2 Hashing Framework

We first flesh out the abstract hashing framework presented in Chapter 3, in more

detail in Algs. 4,5,6 and 7. The procedure ApproxMCCore (Algorithm 5) is invoked

t ∈ O(log(1/δ)) times in Algorithm 4, to get the required confidence 1− δ using ma-

jority vote. ApproxMCCore assumes access to a sub-procedure SampleHashFunction for

sampling the base matrix and vectors A, b,y as well as the number of variables in the

hash function q. Note that q is not necessarily the same as the number of variables

in the formula n. The procedure SampleHashFunction depends on the particular hash

family used. A search sub-procedure is invoked in line 2 which returns the correct

number of hash constraints p and the corresponding Ycell. A binary search can be

employed for this purpose, which is shown in Algorithm 6. The range of values of

p to search, is provided by the functions GetLowerBound and GetUpperBound which

depend on the input formula. The list FailRecord maintains the values of p for which

Ycell < hiThresh with FailRecord[p] = 0 and those p for which Ycell ≥ hiThresh by

FailRecord[p] = 1. The search returns when p is found such that FailRecord[p] = 0

and FailRecord[p − 1] = 1. The procedure SaturatingCounter (Algorithm 7) is in-

voked for calculating Ycell. Each time a solution is found using EnumerateNextSol,

Ycell is incremented by an amount calculated using the function ComputeIncrement,

which can be instantiated to suit the particular counting problem. The procedure

EnumerateNextSol depends on the type of formula ϕ, as well as the family of the hash

function A, b. The hash family also determines how a prefix slice is obtained from

the call to Extract.
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DNFApproxMC

Concrete counting algorithms for a class of formulas can be obtained from the above

framework by choosing an appropriate family of hash functions along with the corre-

sponding procedures SampleHashFunction, GetLowerBound, GetUpperBound, ComputeIncrement,

Extract and EnumerateNextSol. For example, Chakraborty et al. [68] obtained an

FPRAS for DNF formulas with complexity O((mn3 + mn2/ε2) log n log(1/δ)), using

Random XOR hash functions with SampleHashFunction and Extract along with Gaus-

sian Elimination for EnumerateNextSol.The upper bound, lower bound and incre-

ment were fixed to n,0 and 1 respectively. We denote the resulting algorithm as

DNFApproxMC. In our experiments, we augmented DNFApproxMC with Row-Echelon

Hash family (proposed in [74]), which improves the complexity from cubic to quadratic

in n leading to better performance on all benchmarks.

SymbolicDNFApproxMC

The algorithm SymbolicDNFApproxMC proposed in [74] achieves better worst-case

time complexity, made possible by three improvements over the original DNFApproxMC

algorithm. First, the usage of Row Echelon hash functions eliminates the need for

expensive Gaussian Elimination procedure. The concept of Symbolic Hashing en-

ables hashing over a transformed solution space without modifying the input formula.

Lastly, it was shown that a probabilistic estimate of Ycell can be used in place of an

exact count. The complexity of SymbolicDNFApproxMC is Õ(mn log(1/δ)/ε2), which

stems from the use of BinarySearch. We now present a new search technique called

ReverseSearch (Algorithm 8), that removes the polylog factors (hidden in the Õ no-

tation) from the complexity of SymbolicDNFApproxMC to make it at par with the

complexity achieved KLM Counter, and also improves its running time in practice.
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Algorithm 4 ApproxMC(ϕ, ε, δ)

1: hiThresh← O( 1
ε2

);

2: t← O(log(1
δ
));

3: EstimateList← emptyList;

4: repeat t times

5: (numCells, Ycell)←ApproxMCCore(ϕ, hiThresh);

6: AddToList(EstimateList, Ycell × numCells);

7: finalEstimate← FindMedian(EstimateList);

8: return finalEstimate

Algorithm 5 ApproxMCCore(ϕ, hiThresh)

1: A, b,y, q← SampleHashFunction();

2: Ycell, p← Search(ϕ,A, b,y, q, hiThresh);

3: return (2p, Ycell)

4.4 Reverse Search for Hashing-Based Algorithms

A close inspection of the SymbolicDNFApproxMC algorithm in [74] reveals that the

polylog factors in the complexity analysis arise due to redundancy in enumerating

solutions in successive calls to SaturatingCounter. In particular, the fact that the

set {x |A(p)x ⊕ b(p) = y(p)} is a subset of {x |A(p−1)x ⊕ b(p−1) = y(p−1)} is not

exploited. Each call to SaturatingCounter is agnostic of the previous ones, resulting in

repeated enumeration of solutions. One work-around could be to buffer solutions from

a call to SaturatingCounter in order to reuse them in the future. However, this involves

additional space overhead and is not suitable when constraints are removed during

binary search. Instead, we propose a different search technique which guarantees

that every solution to the hash function is enumerated at most once, by eliminating

redundancy during search space exploration. The technique makes use of the fact that

the set {x |A(p−1)x ⊕ b(p−1) = y(p−1)} can be partitioned into {x |A(p)x ⊕ b(p) =
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Algorithm 6 BinarySearch(ϕ,A, b,y, q, hiThresh)

1: lo← GetLowerBound(); hi← GetUpperBound();

2: FailRecord[lo]← 1; FailRecord[hi]← 0;

3: FailRecord[i]← ⊥ for all i other than lo and hi;

4: while true do

5: p← (hi + lo)/2;

6: Ap, bp,yp ← Extract(A, b,y,p);

7: Ycell ← SaturatingCounter(ϕ,Ap, bp,yp, q, hiThresh);

8: if (Ycell ≥ hiThresh) then

9: if (FailRecord[p + 1] = 0) then

10: Ycell ← SaturatingCounter(ϕ,Ap+1, bp+1,yp+1, q, hiThresh);

11: return Ycell, p + 1;

12: FailRecord[i]← 1 for all i ∈ {lo, . . . p};

13: lo← p;

14: else

15: if (FailRecord[p− 1] = 1) then return Ycell, p;

16: FailRecord[i]← 0 for all i ∈ {p, . . . hi};

17: hi← p;

Algorithm 7 SaturatingCounter(ϕ,Ap, bp,yp, q, threshold)

1: Ycell ← 0;

2: while true do

3: s← EnumerateNextSol(ϕ,Ap, bp,yp);

4: if s 6= ⊥ then

5: Ycell = ComputeIncrement(s, Ycell, threshold);

6: else

7: return Ycell;

8: if Ycell ≥ threshold then

9: return threshold;



36

y(p)} and {x |A(p)x⊕b(p) = y(∗p)}, where y(∗p) is the vector y(p) with the pth (last)

bit negated.

Algorithm 8 depicts procedure ReverseSearch. Ytotal maintains the count of all

the solutions enumerated so far. In lines 2-3, the bounds for the search for the

right p are obtained. In line 5, a prefix slice with p = hi constraints is extracted.

We assume access to a procedure ExtractSlice which requires a slight modification of

procedure Extract in [74]. ExtractSlice takes an additional Boolean argument ’flip’

which determines if the last bit of y is to be flipped or not. The details of this

procedure are provided in the Appendix. In line 8, if the cell-count obtained in line 6

is found to exceed hiThresh, then it implies that the true count is within (1+ε) factor

of 2q with high probability, and the algorithm returns (hiThresh, p). Otherwise, the

for-loop in line 9 is executed. In lines 10-11, Ycell = |Rϕ ∩ {x |A(p)x⊕ b(p) = y(∗p)}|

is evaluated by setting the ’flip’ argument to true in ExtractSlice. After execution of

line 12, we have that Ytotal = |Rϕ ∩ {x |A(p−1)x ⊕ b(p−1) = y(p−1)}|. Therefore,

when Ytotal exceeds hiThresh, the hash count along with the cell-count of the previous

iteration are returned in line 13.

Theorem 4.1. The complexity of SymbolicDNFApproxMC, when invoked with ReverseSearch

is O(mn log(1/δ)/ε2)

Proof Sketch We defer the full proof to the appendix. The core sub-procedure of

SymbolicDNFApproxMC is to obtain a probabilistic estimate of Ycell in each invocation

of SaturatingCounter. This is done as follows: 1) A solution x of the hash function is

enumerated 2) Cubes of the input formula ϕ are randomly sampled until a cube ϕi is

found such that x |= ϕi 3) The number of steps required to find such a cube is used

to calculate an estimator for Ycell. The complexity of each such sample-and-check is

O(n).

The effect of the use of binary search in [74] was two-fold. Firstly, SaturatingCounter

was invoked O(log logm) times. Secondly, each call to SaturatingCounter possibly re-

quired the sampling of m×hiThresh cubes. The use of ReverseSearch, however, ensures
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that each call to SaturatingCounter is over a previously unexplored part of the solu-

tion space. This in turn ensures that exactly m × hiThresh cubes are sampled in

total, instead of m× hiThresh× log logm as in [74]. Since sample-and-check is O(n),

hiThresh ∈ O(1/ε2) and SymbolicDNFApproxMCCore is invoked O(log(1/δ)) times, the

overall complexity is O(mn log(1/δ)/ε2).

Algorithm 8 ReverseSearch(ϕ,A, b,y, q, hiThresh)

1: Ytotal = 0;

2: hi← GetUpperBound();

3: lo← GetLowerBound();

4: p← hi;

5: A(p), b(p),y(p) ← ExtractSlice(A, b,y,p, flip = false);

6: Ycell ← SaturatingCounter(ϕ,A(p), b(p),y(p), q, hiThresh);

7: Ytotal = Ytotal + Ycell;

8: if (Ytotal ≥ hiThresh) then return hiThresh, p;

9: for p = hi; p ≥ lo; p = p− 1 do

10: A(p), b(p),y(∗p) ← ExtractSlice(A, b,y,p, flip = true);

11: Ycell ← SaturatingCounter(ϕ,A(p), b(p),y(∗p), q, hiThresh− Ytotal);

12: Ytotal = Ytotal + Ycell;

13: if (Ytotal ≥ hiThresh) then return (Ytotal − Ycell), p;

Naturally, one wonders whether employing ReverseSearch leads to gains in per-

formance in practice. We compared the running times of SymbolicDNFApproxMC

with BinarySearch and with ReverseSearch over wide classes of randomly generated

DNF formulas with 100, 000 variables, number of cubes ranging from 10, 000 to

800, 000 and cube-widths ranging from 3 to 43. Figure 4.1 shows a scatter-plot of

the results. A point (in blue) in the plot corresponds to one DNF formula in our

test set. Its y-coordinate represents the time taken by SymbolicDNFApproxMC using

ReverseSearch, while its x-coordinate represents time taken using BinarySearch. It can
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Figure 4.1 : Comparison of Run-

ning time of SymbolicDNFApproxMC with

BinarySearch and ReverseSearch
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Figure 4.2 : Comparison of Running time

of DNFApproxMC with LinearSearch and

ReverseSearch

be seen that SymbolicDNFApproxMC with ReverseSearch is roughly four or five times

faster than with BinarySearch. Therefore in the empirical study we describe next, we

use ReverseSearch in all experiments involving SymbolicDNFApproxMC. Henceforth,

we denote SymbolicDNFApproxMC with ReverseSearch as just SymbolicDNFApproxMC.

Note, however, that DNFApproxMC does not benefit from ReverseSearch (Fig. 4.2).

In fact, a simple linear search works best since our implementation uses efficient data

structures for buffering solutions that obviate the need for reverse or binary searches.

4.5 Experimental Methodology

The objective of our experimental evaluation was to seek an answer for the following

four key questions:

1. Runtime Variation: How does the running time of the algorithms vary across

different benchmarks?

2. Benchmarks Solved: How many benchmarks can the algorithms solve overall?
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3. Accuracy: How accurate are the counts returned by the algorithms?

4. ε− δ Scalability: How do the algorithms scale with the input tolerance and

confidence?

For ease of exposition, we henceforth refer to the experiments corresponding to

these questions as Runtime Variation, Benchmarks Solved, Accuracy and ε− δ Scalability

respectively. A fair comparison requires careful consideration of several parameters,

such as programming language of implementation, usage of libraries, configuration of

the cluster, benchmark suite, measures of performance, and the like. Given a long

list of parameters, performing experimental evaluation of all possible combinations

quickly becomes infeasible. Therefore, we had to arrive at choices for several param-

eters. We explain our rationale for all such choices and analyze the experimental

results obtained.

4.5.1 Experimental Setup

We ran all experiments on a cluster. Each experiment had exclusive access to a node

with Intel(R) Xeon(R) CPU E5-2650 v2 processors running at 2.60GHz. Only 1 core

out of the 16 available on each node was used with a memory limit of 4GB. All algo-

rithms were implemented in C++ and compiled with GCC version 5.4 with the O3

flag. To mitigate implementation bias, we used existing code and third-party libraries

wherever possible. For instance, we used a library called M4RI [87] for implementing

hash functions, GNU Bignum library for maintaining large counts. We adapted im-

plementations of ApproxMC and Dagum et al.’s Monte Carlo enhancement from the

ApproxMC and MayBMS [88] code-bases, respectively†. For a given algorithm and

an input formula, we set the timeout to 500 seconds.

†Code and results can be accessed at https://gitlab.com/Shrotri/DNF_Counting

https://gitlab.com/Shrotri/DNF_Counting
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Table 4.1 : Parameters used for generating random formulas and as input to algo-

rithms

Experiment Formula Generation Parameters Input Parameters

#Vars

n

#Cubes

m

Width

w

Tolerance

ε

Confidence

δ

Benchmarks

Solved,

Runtime

Variation

100,000

104 ≤ m < 9× 104

steps of 2× 104 &

105 ≤ m ≤ 8× 105

steps of 2× 104

3 ≤ w ≤ 43 0.8 0.36

Accuracy

100 ≤ n < 1000 &

1000 ≤ n ≤ 7000

variable step

size

30 ≤ m ≤ 7000 &

300 ≤ m ≤ 35, 000

variable step size

3 ≤ w ≤ 2450

variable step

size

0.8 0.36

ε Scalability
100,000 50,000 12

[0.04, 0.8] 0.36

δ Scalability 0.8 [0.03, 0.36]

4.5.2 Benchmark Generation

To the best of our knowledge, there are no publicly-available standardized set of

benchmarks for #DNF. We contacted the authors of works on probabilistic databases,

but were unable to obtain non-synthetic benchmarks. This is because most works

tend to rely on random data generators such as TPC-H [89] for testing prototype

implementations of probabilistic databases [83, 85].

Another approach could have been to use the complement of CNF formulas arising

from works on CNF-Counting. Such CNF formulas, however, typically have counts

that are exponentially smaller than 2n. The DNF complements of those formulas thus

have counts extremely close to 2n. So naive Monte Carlo techniques would suffice.

There is a chicken-and-egg problem – lack of real-world benchmarks for testing

prevents adoption of algorithms in practice, which in turn affects benchmark avail-
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ability. A salient goal of this work is to break this vicious cycle. A common trend

in the CSP community is to use random benchmarks for empirical studies, when

real-world problem instances are unavailable [90]. In the same vein, owing to a lack

of publicly-available meaningful benchmarks, we conduct our study on random DNF

formulas. Each formula with uniform cube-width was sampled as follows: To sample

a cube, w variables were sampled uniformly at random, out of n possible choices and

negated with probability 0.5. This process was repeated m times to get the final

formula. For formulas with non-uniform cube-widths, the width of each cube was

sampled uniformly at random between 3 and 43 in the previous procedure.

4.5.3 Parameters Used

The parameters used for generating random benchmarks for the various experiments

is shown in Table 4.1. We used a set of 1080 benchmarks for experiments on Runtime

Variation and Benchmarks Solved, covering a broad range of values of n, m, and w. We

generated a different set of 600 much smaller formulas for the Accuracy experiment,

as exact counts are needed to measure accuracy and the exact counter SharpSAT [24]

timed out on most large formulas. For ε and δ Scalability, the idea was to find a

setting of n, m, and w for which all FPRAS would take similar time with inputs

ε = 0.8, δ = 0.36, so as to provide a level playing field.

For all experiments besides Accuracy, the benchmark sets comprised of 20 random

instances for each setting of n, m, and w. This was sufficient as we observed that the

running time of all five algorithms tended to not vary much between instances. In

particular, the median coefficient-of-variation for all algorithms was less than 18%;

ergo the distribution of running times is sufficiently captured by the mean and adding

more instances would provide no further insight.

Following previous studies of approximate counting techniques [33, 68], we used

ε = 0.8 as base value for tolerance. Since the dependence of algorithms on δ is log(1
δ
),

we studied all the algorithms to find value of δ so that any value of δ smaller than
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that would simply require the algorithms more repetitions of the core algorithm. The

value of δ computed from the above was 0.36, which we use in our experiments. For

ε− δ Scalability, the respective value was varied while fixing the other to its base

value.

4.6 Results

We ran experiments on Runtime Variation, Benchmarks Solved, Accuracy and ε− δ

Scalability over a combined total of 1500+ benchmarks, requiring well over 3000 hours

of computational effort on dedicated nodes.

4.6.1 Runtime Variation

We present a graph of the running time vs. the number of cubes for w = 3, 13, 23, 33, 43

as well as for non-uniform cube-widths. This is shown in Figs. 4.3, 4.4, 4.5, 4.6, 4.7

and 4.9 respectively‡. Each data point in the graphs represents the average running

time of an algorithm over the 20 random formulas that were generated with the cor-

responding n, m and w. A note of caution should be exercised while interpreting

results for small widths, as these formulas are easy for naive Monte Carlo strategies.

For w = 3, we see that DNFApproxMC vastly outperforms other algorithms, taking

under a second to solve all formulas (see: Fig. 4.3). Rest of the algorithms time out

for formulas with number of cubes m ≥ 100, 000. For w = 13, it can be seen from

Fig. 4.4 that DNFApproxMC and KLM Counter are the best performers. However,

DNFApproxMC scales better with m. Vazirani Counter is the only algorithm to time

out. For w = 23, we see that Monte Carlo algorithms, in particular KL Counter and

KLM Counter, outperform the hashing-based algorithms. These algorithms also scale

well with respect to m for w = 23. This trend continues for w = 33 and 43. We see

that the behavior of the algorithms does not change above w = 23. For non-uniform

‡Figures are best viewed online in color
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Figure 4.3 : Runtime Variation: DNFApproxMC is the best performer. Rest timeout.

widths, we see that the DNFApproxMC is again the best performer.

In summary, the performance of the Monte Carlo algorithms and SymbolicDNFApproxMC,

improves significantly with the width of cubes, while DNFApproxMC dominates for low

and non-uniform cube-widths and is more consistent overall.

4.6.2 Benchmarks Solved

Fig. 4.8 shows the cactus plot of all the different algorithms. We present the number of

benchmarks on x–axis and the total time taken on y–axis. A point (x, y) implies that

x benchmarks took less than or equal to y seconds to solve. We see that DNFApproxMC

completes all 1080 benchmarks in under 350 seconds which is well within the time

limit of 500 seconds. All the other algorithms time out on at least 100 benchmarks.

4.6.3 Accuracy

Among the 600 formulas we generated for measuring accuracy, SharpSAT was able to

return exact counts of 228 within a timeout of 8 hours for each. The observed mean
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Figure 4.4 : Runtime Variation: DNFApproxMC and KLM Counter are the best per-
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Figure 4.6 : Runtime Variation: KLM Counter and KL Counter are the best performers
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Figure 4.7 : Runtime Variation: KLM Counter and KL Counter are the best performers
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Figure 4.8 : Benchmarks Solved: DNFApproxMC solved all benchmarks
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Table 4.2 : Accuracy of algorithms (invoked with ε = 0.8, δ = 0.36)

Algorithm Mean Error Max Error

DNFApproxMC 0.09 0.36

SymbolicDNFApproxMC 0.21 0.42

KLM Counter 0.11 0.55

KL Counter 0.007 0.20

Vazirani Counter 0.001 0.04

and max errors of the counts returned by the five FPRAS for the 228 formulas, is

shown in Table 4.2. If C is the exact count for a formula and Y is its estimate, then

the error is calculated as |C−Y |/C. The errors for all algorithms are well within the

tolerance ε = 0.8, that the algorithms were invoked with.

4.6.4 ε - δ Scalability

Fig. 4.10 shows the average time taken by the five algorithms over 20 instances when

ε is varied between 0.04 and 0.8, keeping δ fixed at 0.36. The time complexity of all

algorithms varies quadratically with 1/ε, which also can be seen in the plotted curves.

Nevertheless, DNFApproxMC scales better with 1/ε than all other algorithms.

Fig. 4.11 depicts the average time taken by the algorithms over the same 20

instances when δ is varied between 0.03 and 0.36, keeping ε fixed at 0.8. The time

complexity of all five FPRAS has a O(log(1/δ)) factor. However, the Monte Carlo

algorithms scale extremely well for small δ, while SymbolicDNFApproxMC quickly

times out, and DNFApproxMC also loses steam.
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4.7 Discussion

The experiments on Runtime Variation and Benchmarks Solved make sense in the light

of two key observations:

1. The counts of random DNF formulas tend to be extremely close to the upper-

bound, i.e. |Rϕ| ≈ min(2n,m∗2n−w), a trend which was confirmed by the exact

counts of SharpSAT

2. No. of samples required by the Monte Carlo FPRAS varies inversely with the

solution density in the transformed space, i.e. N ∝ 1
ρ′

where ρ′ = |Rϕ|
m∗2n−w

Together these imply that ρ′ is close to 1 for all random formulas with large cube-

widths. In such cases Monte Carlo FPRAS perform exceedingly well. Conversely, ρ′ is

low for small cube-widths and the Monte Carlo FPRAS time out. SymbolicDNFApproxMC

too is affected adversely by small ρ′ because of the symbolic space transform. In con-

trast, the running time of DNFApproxMC does not depend as heavily on either ρ or

ρ′, and therefore does not timeout on any formula (Fig. 4.8).Thus DNFApproxMC is

more robust across different formula types. This is also apparent in the experiment on

formulas with non-uniform cube-widths (Fig. 4.9). The presence of a few short cubes

in a formula is sufficient to make ρ′ low, which enables DNFApproxMC to significantly

dominate other algorithms.

The Monte Carlo algorithms perform substantially better than the hashing-based

approaches in terms of δ Scalability. This can be attributed to the fact that the core

sub-procedure of the hashing variants has to be repeated in order to boost confidence,

which incurs a significant overhead. In contrast, for the Monte Carlo algorithms, only

the number of samples required increases, which has low overhead. However, the

marginal utility obtained by using small values for δ is debatable, as Table 4.2 shows

that the counts returned by all five FPRAS are well within the input tolerance even

for δ = 0.36.

DNFApproxMC scales better with ε than the other FPRAS as seen in Fig. 4.10.
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We believe this is due to the use of efficient data structures for buffering solutions,

in the implementation of DNFApproxMC . Algorithmic differences preclude the use of

these data structures in the other FPRAS.

The best accuracy is obtained by Vazirani Counter (Table 4.2). However, this

comes at a price. Vazirani Counter is markedly slower than KLM Counter and KL

Counter despite requiring fewer samples. This is due to the additional time required

by Vazirani Counter to generate a sample.

In summary, KLM Counter and KL Counter are the algorithms of choice when ρ′

is known to be high. Naive Monte Carlo is sufficient when ρ is close to 1. However,

when there is no information about the formula or when ρ and ρ′ are known to be

low, DNFApproxMC is a safe bet.

4.8 Chapter Summary

Designing model counters for DNF formulas has been of practical as well as theo-

retical interest owing to applications in diverse domains in AI and beyond. It was

clear from our preliminary experiments that SAT-based approaches like ApproxMC

were not suited for this problem, owing to their inability to exploit DNF-specific op-

timizations. Taking a non-SAT-based approach, building on Chakraborty et al. [68],

we had proposed a hashing-based algorithm, SymbolicDNFApproxMC, in our previous

work [74], whose time complexity was shown to be within polylog factors of the best

known Monte Carlo schemes. However, two key questions were left unanswered: (1)

Are hashing-based techniques as powerful as Monte Carlo, i.e. is it possible to remove

the polylog factors in the complexity of SymbolicDNFApproxMC?, and (2) How do the

various approaches perform?

The present work provides positive answers to these questions. In particular, we

first introduced a new reverse-search technique that makes the time complexity of a

hashing-based FPRAS at par with the state-of-the art Monte Carlo techniques. Fur-

thermore, our proposed scheme leads to up to 4− 5× gains over the previous scheme
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proposed by Meel et al. [74]. Moreover, the reverse-search is an enhancement of

the general hashing-based counting framework, and is not limited to DNF-Counting,

thereby opening future directions of research of its application to #CNF.

We also provided the first empirical study of the various FPRASs for #DNF. We

compared three algorithms from the classical Monte Carlo framework, and two from

the recently proposed hashing-based framework. Our experimental analysis leads to

two important observations, which are not apparent from the theoretical analysis of

these algorithms:

1. There is no panacea; different algorithms are well suited for different formula

types and input parameters.

2. DNFApproxMC solves the most the number of benchmarks and is robust across

different classes of formulas, despite poor complexity. In this context, Row-

Echelon hash functions are crucial for achieving scalability by obviating the

need for expensive Gaussian Elimination
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Chapter 5

Conditional Counting for Explainable AI

5.1 Introduction

In this chapter, we introduce the problem of conditional counting and discuss our

solution from the perspective of its application in Machine Learning and eXplain-

able AI (XAI). In particular, we present a novel constraint-driven framework, called

‘CLIME’, for explaining opaque ML models like deep neural networks and random

forests. An important feature missing in previous ML explainers, is the ability to rig-

orously measure the quality of explanations they generate, in a theoretically grounded

way. Towards this end, we first identified that the problem of conditional counting

is at the heart of the task of certifying explanation quality. We proposed a novel ap-

proximation algorithm for conditional counting that combines the strengths of Monte

Carlo and hashing frameworks to achieve scalability without the loss of theoretical

guarantees of accuracy. Equipped with this new algorithm, CLIME not only generates

meaningful explanations but also provides rigorous guarantees of their quality. We

emphasize that although we present our approximate conditional counting algorithm

in the context of ML explanations, it is a general-purpose estimator and can poten-

tially be used for other probabilistic verification tasks, and conditional probability

estimation as well.

The rest of this chapter is organized as follows. We first introduce conditional

counting in Sec 5.1.1. Then in Sec 5.1.2 we give some background on the field of

XAI and introduce our framework called CLIME. We introduce some notation and

preliminaries in Sec 5.2 and discuss the explanation generation part of CLIME in

more detail in Sec. 5.3. Sec. 5.4 is devoted to explanation certification for which we
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present our algorithm for conditional counting. We present our empirical study on

CLIME in Sec. 5.5 discuss related work in Sec. 5.6 and summarize in Sec. 5.7.

5.1.1 Conditional Counting

Definition 5.1. Let ϕA and ϕB be two constraints over the same set of discrete

variables. The problem of conditional counting is to compute the ratio

ρ =
#(ϕA ∧ ϕB)

#ϕB
(5.1)

To the best of our knowledge, this problem has not been explicitly defined pre-

viously in this way, although it is frequently encountered implicitly in applications

areas like probabilistic inference and verification. In the case of probabilistic infer-

ence, the ratio ρ can be seen to be conditional probability of two events A and B in

some sample space, i.e. Pr[A|B] = ρ. In the context of verification, ϕB can encode

some ‘model’ that is to be verified against a desirable property encoded by ϕA. Then

Eqn. 5.1 gives the degree to which the model satisfies the property. In our work, we

encounter conditional counting in this latter sense, where the ‘model’ is a user-defined

sub-space of inputs, the property encodes a quality metric, and ρ gives the quality of

the explanation in the sub-space.

5.1.2 XAI and Constraint-Driven Explanations

The field of eXplainable AI (XAI) has emerged out of the need for humans to un-

derstand the complex and opaque decision processes governing modern Machine

Learning models. Researchers seek to develop both naturally interpretable mod-

els [91, 92, 93, 94] as well as post-hoc explanations for opaque models like Deep Neu-

ral Networks and ensembles [95, 96]. State-of-the-art learning approaches in most

domains, however, are uninterpretable and necessitate the latter approach.

A number of different approaches have been proposed in literature for generating

post-hoc explanations (c.f. [97]). A broad class of techniques explain individual
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predictions by capturing the behavior of the opaque model in a small neighborhood

of the input instance in two phases [95, 98, 99]. In the first phase, the input instance

is perturbed by according to some criteria and in the second phase the behavior of

the model on the perturbed instances is captured using various interpretable artifacts

such as linear classifiers [95, 96], gradients [100, 101], counterfactuals [102], subgraphs

of GNNs [103] etc.

Different choices for each phase yield different tradeoffs between flexibility, com-

putational cost and theoretical rigor. For example, one of the earliest and most

popular post-hoc explainers called LIME [95] employs a fixed heuristic perturbation

procedure, and uses a simple linear classifier trained on the perturbed instances as

the interpretable artifact. The advantages are that LIME is model-agnostic in that

it can explain predictions of any black-box model, and is reasonably fast in practice.

However, it suffers from drawbacks like lack of a strong theoretical foundation and

susceptibility to adversarial attacks [104] among others. The explainer SHAP [96]

rectified some of these issues by using Shapley values from game theory for axiomati-

cally deriving the coefficients of the linear model. While Shapley values are provably

‘ideal’ under some mild assumptions, they are expensive to compute [105, 106], and in

practice we have to resort to approximations or accept the loss of model-agnosticity.

Recently, [107] proposed to employ user-defined constraints to generate explanations.

In particular, they allow the user to supply domain knowledge through constraints

in the form of linear inequalities over the input space. These constraints guide the

perturbation procedure for generating counterfactual explanations. While constraints

provide flexibility in tailoring explanations, the modeling language (linear inequali-

ties) is restrictive and the proposed algorithm is not model-agnostic. Thus, striking

a balance between flexibility, rigor, and computational efficiency remains a major

challenge.

In this chapter, we present our work on addressing this challenge via design of

an efficient constraint-driven perturbation framework that provides robust theoreti-
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cal guarantees. In particular, we allow constraints to be expressed as Boolean for-

mulas, which are known to be expressive enough to succinctly encode all types of

constraints on discrete spaces [108]. This gives the user the flexibility to drill down

into the structure of input space. By leveraging advances in Formal Methods, we

can generate perturbed samples with strong theoretical guarantees on adherence to

the desired distribution, while scaling to large formulas in practice [35, 31]. This

allows us to rigorously measure the fidelity of the generated interpretable artifact to

the input model i.e., how closely the artifact actually explains the model. Previous

works on certifying explanation fidelity solely relied on approximate CNF counting,

and required the model to be encoded as a Boolean formula, which severely limited

their applicability and scalability. In contrast, our algorithm for conditional counting

marries the strengths of Monte Carlo and hashing frameworks to achieve scalability

while being truly model-agnostic. Our perturbation framework is decoupled from the

artifact generation phase, and the generated samples can be used to train any sur-

rogate classifier that is appropriate for the task. Following LIME, we build a linear

model over the generated samples as the interpretable artifact. We experimentally

demonstrate how the resulting tool, called CLIME, can be used for generating high

quality explanations.

In summary, our contributions are as follows:

1. Framework for precisely crafting explanations for specific subspaces of the input

domain through logical constraints

2. A theoretical framework and an efficient algorithm for conditional counting

that unifies Monte Carlo and hashing frameworks, for estimating the ‘true’

explanation fidelity up to any desired accuracy

3. Empirical study showing the efficacy of constraints in

• Efficient fidelity computation with strong guarantees

• Zooming in and refining explanations guided by fidelity
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• Detecting and foiling adversarial attacks

5.2 Preliminaries

We follow notations from [95]. Let D = (X, y) = {(x1, y1), (x2, y2), . . . , (xn, yn)}

denote the input dataset from some distribution D where xi ∈ Rd is a vector that

captures the feature values of the ith sample, and yi ∈ {C0, C1} is the corresponding

class label∗. We use subscripts, i.e. xj, to denote the jth feature of the vector x. We

denote by f : Rd → [0, 1] the opaque classifier that takes a data point xi as input

and returns the probability of xi belonging to C1. We assume that an instance x is

assigned label lf (x) = C1 if f(x) ≥ 0.5 and lf (x) = C0 otherwise.

Surrogate Linear Models. The exact problem formulation varies depending on

the choice of interpretable artifact to be generated. Following LIME, SHAP and a

host of other popular methods, we choose a simple linear model, as our explanation

artifact. Specifically, given a classifier f , the task is to learn a linear model g such that

g mimics the behavior of f in the neighborhood of some given point x. The function g

is built on an ‘interpretable domain’ of inputs rather than the original domain. To do

so, the original features (that can be continuous or categorical) are mapped to Boolean

features. While x ∈ Rd represents an instance in the original domain, we use prime-

notation, i.e. x′ ∈ {0, 1}d′ to represent an instance in the interpretable domain. Using

Boolean features is a natural choice for ‘interpretable domain’, as we can understand

explanations in terms of a presence/absence of a feature’s value. Thus g operates

in the interpretable domain {0, 1}d′ . Existing explainers differ in the way the x is

perturbed and g is trained. For instance, LIME perturbs the interpretable instance

x′ by randomly changing 1s to 0s in the binary representation. The generated samples

z′1, z′2, . . . ∈ Z ′ are mapped back to the original space as z1, z2, . . . ∈ Z, where Z and

∗We focus on binary classification; extension to multi-class classification follows by 1-vs-rest

approach.
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Z ′ are called the neighborhoods of x and x′ in the respective spaces. The instances

z′1, z′2, . . . with corresponding labels f(z1), f(z2) . . . are used as the training set along

with a heuristic loss function for building a linear model g using regression. In Sec.

5.3, we discuss the limitations of this approach and show how constraint-sampling

can mitigate some of these issues.

Boolean (logical) constraints and uniform sampling. We use notation stan-

dard in the area of Boolean Satisfiability (SAT). A Boolean formula over n variables

ϕ : {0, 1}n → {0, 1} assigns a truth value 0/1 or false/true to each of the 2n assign-

ments to it’s variables and is constructed using logical operators like AND (∧), OR

(∨), NOT (¬), XOR (⊕) etc. An assignment of truth values to variables denoted

s ∈ {0, 1}n is said to satisfy ϕ (denoted s |= ϕ) iff ϕ(s) = 1. The total number

of assignments that satisfy ϕ is denoted as #ϕ =
∑

s∈{0,1}n ϕ(s). An algorithm is

said to be a (perfectly) uniform sampler if it takes as input an arbitrary formula ϕ

and returns an assignment s∗ such that ∀s |= ϕ, we have Pr[s∗ = s] = 1
#ϕ

. An

almost-uniform sampler is an algorithm that takes, along with ϕ, a parameter ε > 0

as input and returns s∗ such that ∀s |= ϕ, we have 1
(1+ε)#ϕ

≤ Pr[s∗ = s] ≤ 1+ε
#ϕ

.

The tools WAPS [31] and UniGen3 [35] are state-of-the-art perfectly uniform and

almost-uniform samplers respectively.

Fidelity. The notion of fidelity aims to capture how closely the explainer model

‘reflects’ the behavior of the opaque model, and can be seen as a measure of the

quality of the explanation [95, 109]. The fidelity ρ̂ of the explainer model g to the

opaque model f is calculated as the precision of g [109], i.e. the fraction of the

sampled neighbors where the output class of f and g agree. Let Z and Z ′ be the

neighborhoods of x and x′ as defined above. Then,

ρ̂ =

∑
z′∈Z′ I[lf (z) = lg(z

′)]

|Z ′|
(5.2)

where I is the indicator function, and z is the preimage of z′.
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5.3 Constraint-Driven Explanations

We present our framework CLIME which belongs to a large class of post-hoc explain-

ers that operate in two-phases: in the first phase, it perturbs an input instance x and

in the second phase, it generates an interpretable model g to explain the prediction

of the opaque model f on x. The new distinctive capability of CLIME is that it lets

the user specify constraints on the input space to define the allowed perturbations of

x in a model-agnostic way. Next, we discuss our choice for the constraint modeling

language and give high-level overview of the two-phase algorithm.

Constraint modeling language. We assume that the constraints are specified in

propositional logic, i.e. as a Boolean formula ϕ . Boolean constraints are powerful

enough to represent log-linear family of distributions [110], yet allow fast sampling of

solutions either uniformly or with a user-provided bias [31], thanks to the advances

in SAT technology. Boolean constraints are also easy to use, and many toolkits for

formal analysis such as model-checkers [111] require their input to be specified using

Boolean logic.

As an example, assume that ϕ represents the constraint that at least k features

must be fixed for some user-defined k. For image data this constraint enforces the

requirement that at least k superpixels must be ‘on’, while for text it forces at least

k words from x to be present in each sample. This blocks out very sparse data

ensuring that only informative instances are used for training the explainer model.

Example 5.3.1 describes more scenarios where constraints are useful.

The first phase: sampling data points. The CLIME framework generates expla-

nations on instances sampled (almost-) uniformly from user-defined subspaces which

are defined through constraints. In this work, we employ techniques for (almost)

uniformly sampling solutions of constraints for generating explanations, but we note

that the extension to biased (weighted) sampling is straightforward [112].



59

The pseudo-code of the constrained explanation framework is presented in Alg. 9.

Along with the input instance x CLIME also takes as input a Boolean formula ϕ.

The variables of ϕ are exactly the Boolean features of the interpretable domain Z ′,

and the solutions ϕ is the user-defined subspace UZ′ i.e. UZ′ = {s ∈ {0, 1}n | s |= ϕ}.

The samples generated from ϕ determine the neighborhood Z ′ (line 1 of Alg. 9).

Note that UZ′ is the universe of all possible assignments from which Z ′ is sampled.

We assume access to a procedure getSamples that returns N independent samples

satisfying ϕ. The algorithm takes as input a parameter ε, which represents the

tolerance to deviation from perfectly-uniform sampling. If ε = 0, then the call to

getSamples in line 1 must be to a perfectly uniform sampler like WAPS [31], otherwise

an almost-uniform sampler like Unigen3 [35] suffices. We highlight that CLIME is the

first framework with a capability to incorporate constraints to generate explanations

in model-agnostic settings, to the best of our knowledge.

The second phase: learning an explainer. We adopt LIME’s method for train-

ing a linear explainer model for the second (artifact generation) phase. The samples

z′i are mapped back to the original domain, and the output of f on each zi and the

distance of each zi to x are used for training g in line 6, where at most K coefficients

are allowed to be non-zero to ensure interpretability. More formally, let the complex-

ity of an explanation g be denoted as Ω(g) (complexity of a linear model can be the

number of non-zero weights), and let πx(z) denote the proximity measure between

inputs x and z ∈ Z (πx(z) can be defined using cosine or L2 distance). The objective

function for training g is crafted to ensure that g: (1) approximates the behavior

of f accurately in the vicinity of x where the proximity measure is high, and (2)

achieves low complexity and is thereby interpretable. The explanation is obtained as

g∗ = argming∈G L(πx, g, f) + Ω(g) where G is the set of all linear classifiers and the

loss function L is defined as: L(f, g, πx) =
∑

z∈Z,z′∈Z′ [f(z)− g(z′)]2πx(z). Intuitively,

the loss function captures how unfaithful g is to f in the neighborhood of x.
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Example 5.3.1. We consider the bank dataset [113] that was also used in [107]. The

bank dataset contains bank client data that describes client characteristics as well as

their communications with a bank. The model predicts whether a client will subscribe

for the term deposit. Four integrity constraints were proposed for this dataset by [107].

Integrity constraints enforce data consistency and accuracy.

• Previous contacts with a client. Two constraints were proposed. A client

has not been contacted before iff the time since previous contact is undefined.

A client has not been not contacted before iff the previous outcome is unknown.

In terms of the features, these constraints are expressed as (‘previous’ = 0) ⇔

(‘pdays’ = undefined) ⇔ (‘poutcome’ = unknown).

• Features interdependencies. Two constraints were proposed. If a client is

a student then they are not married and younger than 35 years old. If a client

has an ‘admin’ job that their education is secondary.

We can find explanations for a random sample in two scenarios. First, we do

not supply constraints to the explainer. In this case, we get an explanation: I =

( ‘duration’, ‘housing’, ‘previous’, ‘poutcome’,‘pdays’), which consists of the 5 most

important features (by weight) that contributed to the prediction of the opaque clas-

sifier on the input instance. If we add integrity constraints then we get a different

explanation (i.e. different set of top 5 features): J = ( ‘duration’, ‘pdays’, ‘housing’,

‘campaign’, ‘loan’).

At this point, it is hard for the user to judge the quality of these explanations I

and J. In the next section, we present a technique that enables users to make this

judgement.

5.4 Certifying Explanation Quality

For increasing user trust, it is necessary to provide a measure of the quality of expla-
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Algorithm 9 ExplainWithCLIME(f, ϕ, ε,N, x, x′, πx, K)

Input: f : Opaque classifier ϕ: Boolean constraints

ε: Tolerance N : Number of samples

πx: Similarity kernel K: Length of explanation

Output: g: Interpretable linear classifier

1: Z ′ ← getSamples(ϕ, ε,N);

2: Z ← {}

3: for z′ ∈ Z ′ do

4: Z ← Z ∪ {z′, f(z), πx(z)}

5: g ← K-Lasso(Z,K)

Algorithm 10 computeFidelity(f, g, ε, δ, γ)

Input: f : Opaque Model g: Explainer Model

ε: Tolerance δ: Confidence γ: Threshold

Output: ρ̂: Estimate of ρ (see Thm. 5.2)

1: if checkThreshold(f, g, ε, δ, γ) == True then

2: return ⊥ . ρ̂ ≤ γ − ε; report failure

/*Threshold check passed; compute 2-sided bound*/

3: ρ̂← AA′(0.4 ∗ ε, 0.4 ∗ ε, δ) . See Appendix B.2.1

4: return ρ̂
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Algorithm 11 checkThreshold(f, g, ε, δ, γ)

Input: f : Opaque Model g: Explainer Model

ε: Tolerance δ: Confidence γ: Threshold

Output: True with high probability if ρ ≤ γ − ε

1: ν ← min(ε+ ε2/2− γε/2, (ε− γε/2)/(1 + ε/2))

/* compute the number of samples N based on ε, δ, γ*/

2: N ← 1
2ν2 log(1

δ
)

3: Z ′ ← getSamples(ϕ, ε/2, N)

4: C ← 0

/* compute sample fidelity */

5: for z′ ∈ Z ′ do

/*z is the preimage of z′*/

6: c← I[lf (z) = lg(z
′)]

7: C ← C + c/N

8: if C ≤ γ then

/*Value below threshold; terminate early*/

9: return True

10: else

11: return False
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nations generated. A fundamental requirement from a high-quality explainer model is

that it should closely mimic the behavior of the opaque model in the specified neigh-

borhood. This is especially important for explanations of user defined sub-spaces, as

it may be possible that no simple explanation exists for a large subspace, and further

refinements to the constraints may be required to get a high-quality explanation.

The fidelity metric, as defined in Eqn. 5.2, aims to quantify this property, in

terms of the fraction of samples in the neighborhood Z ′, on which the prediction

made by the explainer model matches the prediction of the opaque model. Two

parameters influence the accuracy of the fidelity score: the number of samples in

Z ′ and the quality of these samples, i.e. their uniformity in the universe UZ′ of all

such possible samples. Both of these parameters were chosen heuristically in prior

works [95, 109], which raises the question, is the fidelity score, as measured by Eqn.

5.2 trustworthy? Intuitively, a score measured on 10 samples will not be as accurate

as one measured on 10000 due to randomness inherent in any sampling procedure.

Such uncertainties can be unacceptable in, for instance, safety-critical applications of

XAI such as healthcare [114].

We address this gap by first rigorously defining fidelity, and then presenting an

efficient algorithm for computing it. We observe that the true fidelity score is the one

that is calculated on all possible instances belonging to a user-defined subspace of

inputs UZ′ , i.e.

ρ =

∑
z′∈UZ′ I[lf (z) = lg(z

′)]

|UZ′|
(5.3)

Relation to Conditional Counting We highlight that the task of computing

ρ as given by Eqn. 5.3 is an instance of conditional counting. To see this, notice

that R.H.S. of Eqn. 5.3 can be see to be the count of solutions for the constraint

I[lf (z) = lg(z
′)] conditioned on the count of solutions to the user-defined sub-space

ϕ, i.e. |UZ′|. In other words, we can take ϕA in Eqn. 5.1 to be the constraint

I[lf (z) = lg(z
′)] and ϕB to be the user-defined sub-space encoded by ϕ.
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In practice, ϕ can have hundreds of variables and exponentially many solutions

which makes enumerating all elements of UZ′ in the numerator of Eqn. 5.3 infeasible.

Thus, computing ρ exactly is usually intractable. Approximating ρ can be faster, but

requires formal guarantees to be meaningful. We observe that the score ρ̂, as measured

by Eqn. 5.2, is the ‘sample mean’ of the true ‘population mean’ ρ, as defined by Eqn.

5.3. This observation allows us to compute the estimate ρ̂ in theoretically grounded

way, so as to statistically guarantee its closeness to ρ.

We use a PAC-style notion of approximation [32], which provides strong proba-

bilistic guarantees on the accuracy of the output. The goal is to find an approximation

ρ that is within user-defined tolerance of the true value with high confidence. Specif-

ically, we wish to compute ρ̂ such that

Pr[(1− ε)ρ ≤ ρ̂ ≤ (1 + ε)ρ] ≥ (1− δ) (5.4)

where ε > 0, δ > 0 are user-defined tolerance and confidence.

To the best of our knowledge, no existing approach is directly applicable for finding

a good approximation of ρ, in a model-agnostic way. The technique presented by [115],

requires the opaque model to be encoded as a Boolean formula, severely limiting both

its scalability as well as the types of models that can be explained. On the other

hand, algorithms based on Monte Carlo sampling such as the AA algorithm by [71],

are known to be fast when ρ is high, but require far too many samples when ρ is

low [60]. They also require perfectly uniform samples, while it may only be feasible

to generate almost-uniform samples from the universe UZ′ .

In this section, we propose an efficient and model-agnostic estimation algorithm

based on [71], that is able to work with almost-uniform samples and also terminates

quickly if the quantity being approximated is small. Two key insights inform the

design of our approach: we first observe that ε-almost uniform sampling can change

the value of ρ at most by a factor of (1 + ε). Secondly, in typical scenarios, users

are interested in two-sided bounds on fidelity (as given by Eqn. 5.4) only if it is high

enough. If the fidelity is lower than some threshold, say 0.1, then it doesn’t matter if
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it is 0.05 or 0.01, since the explanation will be unacceptable in either case. In other

words, below a certain threshold, one-sided bounds suffice.

Procedure computeFidelity (Alg. 10) is used for computing ρ̂, given an opaque

model f , an explainer model g and three parameters ε, δ and γ that control the preci-

sion of ρ̂. computeFidelity invokes checkThreshold (Alg. 11) on line 1. checkThreshold

first computes the number of samples N required for the probabilistic guarantees,

and then invokes a sampler through getSamples as in Alg. 9. If ρ̂ ≤ γ − ε, then

checkThreshold returns True with probability at least 1−δ and computeFidelity reports

failure on line 2. This check ensures that the sample complexity remains low even if

the fidelity is very small, which is a common pitfall for Monte Carlo algorithms. If

checkThreshold returns False, then computeFidelity makes a call to procedure AA′ (line

4), which is an adaptation of the algorithm by [71] that provides the guarantees of

Eqn. 5.4 with almost-uniform samples (see Appendix B.2.1). Theorem 5.2 captures

the guarantees and the behavior of the framework.

Theorem 5.2. If ρ ≤ γ−ε, then computeFidelity returns ⊥ with high probability (i.e.

at least 1− δ). If ρ ≥ γ + ε, w.h.p., it returns an estimate ρ̂ such that Pr[(1− ε)ρ ≤

ρ̂ ≤ (1 + ε)ρ] ≥ (1− δ).

We highlight that our certification framework is more general than just fidelity

computation, and is applicable broadly to the more general problem of conditional

counting. In Appendix B.2.1, we show how Algs. 10 and 11 can be used for accurately

estimating the true mean of any 0/1 random variable with almost-uniform samples

and early termination.

Example 5.4.1. We continue with Example 5.3.1. Now, the user can use the fidelity

metric to compare quality of explanations. We compute the fidelity score for both

explanations I and J that we obtained without and with constraints, respectively. We

get that fidelity(I)= 0.91 and fidelity(J)= 0.90. First, the user notices that the fidelity

scores are the same for these explanations, so I and J can be seen as explanations of



66

the same quality. Second, these fidelity scores can be considered low, hinting the user

to refine the input space. In the next section we show, through an extensive evaluation,

how the user can perform such a refinement to obtain high quality explanations.

5.5 Experiments

We seek to answer the following research questions through our empirical study:

1. How scalable is the certification framework presented in Sec. 5.4?

2. What benefits do constraints provide for analysing ML models?

3. How susceptible are constrained explanations to adversarial attacks?

5.5.1 Efficiency of certification

A salient benefit of leveraging the AA-algorithm of [71] for the fidelity computation

approach of Sec. 5.4, is that its sample complexity is guaranteed to be close-to-

optimal. Nevertheless, the practical performance of our approach is unknown apriori,

given the added cost of generating (almost-) uniform samples from constraints. There-

fore, in this experiment, we evaluate the scalability of our framework vs. that of the

technique of [115].

We implemented and ran Algs. 10, 11 on 150 benchmarks used in [115]. The

benchmarks are CNF formulas that encode the Anchor [109] explanations of Bina-

rized Neural Networks trained on Adult, Recidivism and Lending datasets. The true

fidelity of an explanation can be computed from the count of the number of solu-

tions of the corresponding formula. We compared the running-time of our tool to the

time taken by the approach of [115], which utilizes the state-of-the-art approximate

model-counting tool called ApproxMC [35]. Note that both ApproxMC and our tool

provide the same probabilistic guarantees on the returned estimate [34]. The results

are shown as a scatter-plot in Fig. 5.1. The x-coordinate of a point in blue represents

the time taken by ApproxMC on a benchmark, while the y-coordinate represents



67

Figure 5.1 : Scalability of Algs. 2,3 vs. ApproxMC

the time taken by our approach. As all the points are far below the diagonal dot-

ted red line, we can infer that ApproxMC takes significantly longer than our tool to

compute the same estimate. In fact, on average (geometric mean), our tool is 7.5×

faster than ApproxMC. It is clear from Fig. 5.1 that our algorithm scales far better

than the alternative, despite being more general and model-agnostic. We also exper-

imentally compared the scalability of our tool to ApproxMC for different values of

input tolerance ε and confidence δ. We found that our tool scales significantly better

than ApproxMC for tighter tolerance and confidence values. Thus, our experiments

demonstrate that our tool significantly outperforms the state-of-the-art. We provide

more details and results in Appendix B.2.4.

5.5.2 Model analysis

First, we consider the bank dataset that was proposed in [107] that we describe in

Example 5.3.1. We train 10 random forest models with different random seeds and

the same hyper-parameters as in [107]. The average accuracy of these models is 90%.
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In all experiments, we compute the average fidelity scores over 100 input explanations

and 10 RF models.

Let us consider a scenario where the user needs to explain why a client who has not

been contacted in the past made a decision to not subscribe for a term deposit. We

find explanations for 100 samples per model in two scenarios: (a) without constraints

and (b) with integrity constraints, as in Example 5.4.1, and average the result. We

get fidelity scores 0.90 and 0.89 for scenarios (a) and (b), respectively. These result

confirm scores that we obtain for a single instance in Example 5.4.1. However, the

obtained fidelity scores might not be acceptable for the user. A low fidelity score can

indicate either that the constrained space needs to be refined or that the interpretable

artifact needs to be changed (ex: using decision trees instead of linear classifiers to

explain non-linear decision boundaries). We highlight that unlike [107], under our

modular framework, it is easy to learn a different artifact. In this work, we focus

on constraint refinement and assume that the user intends to continue drilling down

by specifying user-defined constraints to better communicate their focus space to an

explainer.

To achieve their goal, the user can specify an additional constraint: ‘consider only

clients that have not been previously contacted’. So, the user adds this constraint

on top of integrity constraints, creating a new setup: (c) CLIME is supplied with

integrity and the user constraint. We again compute the average fidelity score that is

0.98 for the scenario (c). Clearly, adding the user-defined constraint allowed to refine

the input space to obtain high quality explanations.

Note that the user-defined constraint ‘a client has not been contacted before’

triggers integrity constraints (see Example 5.3.1 for the definition of integrity con-

straints) forcing that ‘the time since previous contact should be undefined’ and ‘the

previous outcome should be unknown’. Hence, these features, i.e. ‘previous’, ‘pdays’,

‘poutcome’ in the dataset, are fixed by the user’s constraints. Therefore, these fixed

features should not appear in the explanations. The next table shows the top 5 fea-
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Scenario Top five features (left to right) in explanations

(a) ’previous’ ’pdays’ ’duration’ ’poutcome’ ’housing’

(c) ’age’ ’contact’ ’duration’ ’personal loan’ ’month’

tures that were used in explanations for the scenarios (a) and (c) in 100 instances.

Note that three fixed features are often chosen by CLIME without constraints (sce-

nario (a)), making these explanations less useful for the user. In contrast, CLIME

with constraints (scenario (c)) never chooses these features in its explanations demon-

strating the correct behaviour.

Second, we consider the adult dataset [116], originally taken from the Census

bureau. It is used for predicting whether or not a given adult person earns more

than $50K a year depending on various attributes, e.g. race, sex, education, hours of

work, etc. We pre-processed columns with continuous features, e.g. the pre-processor

discretizes the capital gain and capital loss features into categorical features, e.g.

’Unknown’, ’Low’ and ’High’[109]. We train 10 Random Forest models with different

random seeds and 20 trees and max depth is 7. The accuracy is 83% on average.

We compute the average fidelity score of 100 inputs explanations and RF models.

Consider a scenario when the user wants to find an explanation for male individuals

without a college degree. So, the user adds a constraint (Education ∈ [dropout,

high-school, some-college] ) and (Sex = Male). Next, they find that the

average fidelity score is 0.68 for explanations in this constrained space. This indicates

a need for refining the input space. For example, they can add a constraint that

there is no information available about individuals’ Capital, i.e.: (Capital Gain

= ‘Unknown’) and (Capital Loss = ‘Unknown’). In this more constrained

space, the average fidelity score of explanations increases to 0.98. Therefore the user

can be confident that explanations are reliable.
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(a) Adversarial Classifier (b) Non-Adversarial Classifier

Figure 5.2 : Recidivism: Top CLIME explanation distribution vs. Hamming Distance

5.5.3 Detecting Adversarial Attacks

[104] presented a way to craft an adversarial attack that seeks to hide the biased pre-

dictions made by a biased classifier (eg: one that decides credit card applications solely

on a sensitive feature like race) from detection by post-hoc explainers like LIME, by

exploiting the ad-hoc perturbation procedure that can generate Out-of-Distribution

(OOD) samples. In this experiment we evaluate the suitability of constraints in foiling

such attacks.

Adversarial classifier setup. Given a biased classifier, [104] construct an ad-

versarial classifier that ‘wraps’ around the biased classifier aiming to hide its biases. It

relies on the ability to successfully train a classifier to predict whether an input sam-

ple is in- or out-of-distribution (OOD). This classifier, called the ‘OOD detector’, is

used as a submodule in the adversarial classifier to predict whether an input instance

is OOD or not. If the input instance is OOD, then the adversarial classifier outputs a

prediction based on an innocuous feature. If the instance is not OOD, then it outputs

the biased classifier’s prediction. When LIME is used for explaining a prediction made

by the adversarial classifier, almost all of LIME’s perturbed samples are detected to

be OOD, resulting in the innocuous feature appearing as the top explanation. In this
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way, the sensitive feature (eg. race), is successfully hidden, when in reality it was

the ground-truth explanation. The attack crucially relies on the ability to train an

OOD detector to tell apart LIME’s perturbed samples and instances from the original

distribution with high accuracy. Note that accurately measuring the fidelity of the

explainer model alone is not sufficient to detect such an attack as the problem lies in

the way the opaque classifier is constructed and not in the resulting explanation.

A blind spot of the OOD detector We hypothesized that for discrete data,

the OOD detector should have trouble differentiating between instances from the

original dataset and instances with low Hamming distances to points in the original

dataset. We emphasize here, that LIME almost always generates samples at a high

Hamming distance from the input instance, as it perturbs each feature independently.

Consequently, the penalization of high Hamming distance, either through the loss

function or through explicit filtering by rejection sampling, is ultimately ineffective,

as the number of samples is ad-hoc and fixed apriori. This may partly explain LIME’s

susceptibility to such attacks.

Our idea is to generate constrained samples based on their Hamming distance

h from the original input. For adversarial classifiers, for small values of h, we hit

the blind spot of the OOD detector and our sampled instances will be marked as

in-distribution. So, sensitive features will be revealed by CLIME. As we move away

from the instance, the innocuous features should dominate. Towards this end, we

constructed a formula ϕh for a given Hamming distance h and a set of instances

S, such that the solutions of ϕh are exactly those instances that are at most at a

distance h from each instance in S. We took S to be the set of 3 nearest neighbors

of the instance being explained. If our hypothesis is correct, the adversarial classifier

should have trouble hiding the sensitive features in the subspace Zϕh for low values

of h. Thus, sensitive features should appear in the top CLIME explanations when h

is small, and innocuous features when h is large.

To test our hypothesis, we generated 200 CLIME explanations using discretized
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versions of the three datasets used by [104]. We computed the relative frequency

of a feature appearing as the top explanation for different values of h. The results

for the Recidivism dataset with 1 innocuous feature are depicted in Figure 5.2a (we

defer results on other datasets and an extended discussion to Appendix B.3 for lack

of space). We plot the hamming distance h on the X-axis and the frequency of seeing

a feature as the top explanation on the Y-axis. We see the sensitive feature ‘race’

appears as the top explanation for 60% of the instances explained when h = 2. In

contrast, the innocuous feature (1st Unrelated Feature), appears almost exclusively

as the top explanation when h ≥ 5. For comparison, we depict results on CLIME

explanations for a non-adversarial classifier in Fig. 5.2b. We see that the relative

frequency with which a feature appears as the top explanation changes very little for

different hamming distances. This confirms our hypothesis. In contrast, for LIME

explanations (not shown), the innocuous feature appears as the top explanation for

all 200 instances. We thus conclude that CLIME can not only avoid being fooled, but

also potentially detect the adversarial natural of an opaque classifier by observing the

change in the top features with and without Hamming distance constraints. While it

may be possible to craft even more sophisticated attacks, these results clearly demon-

strate CLIME’s ability to detect adversarial attacks that exploit OOD sampling.

5.6 Related Work

We focus on constrained explanations in this section, and defer a fuller discussion of

other related work to Appendix B.1 for lack of space. To the best of our knowledge,

the work of [107] is the first and only approach to incorporate user-defined constraints

into the explanation process explicitly. Approaches like [117] allow some restrictions

on the types of allowed perturbations (such as rotations and deletions for images),

but are much more limited compared to the expressive power of a full-fledged formally

defined constraint language.

The approach of Deutch and Frost [107] is the closest to CLIME, yet differs in
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several ways. Firstly, they generate counterfactual explanations as the interpretable

artifact, which are defined as the smallest changes to the input instance that make

the opaque predictor label it differently. In contrast, CLIME is a feature attribution

method that directly explains the relative importance of features contributing to

a prediction. Further, [107] employ a two-step ‘perturb and project’ method for

incorporating constraints into the counterfactual generation phase, wherein the input

instance is first perturbed in the direction of the target label without constraints,

and is then projected on to the constrained space. This method is not guaranteed

to converge and also imposes restrictions on the type of models it can explain. In

contrast, CLIME directly samples perturbations satisfying the constraints, and is

completely agnostic to the model being explained.

5.7 Chapter Summary

We presented a modular model-agnostic explanation framework CLIME that is able

to operate on constrained subspaces of inputs. We introduced a new estimation

algorithm that enables computation of an explanation’s quality up to any desired ac-

curacy. XAI is inherently human-centric, and in this light, our framework empowers

the user to iteratively refine the explanation according to their needs. We demon-

strated concrete scenarios where the user can zoom in to the input space guided by

the fidelity metric.

The key contribution in the realm of Constrained Counting and Sampling is a new

approximation algorithm for the problem of conditional counting (see Eqn. 5.1). Our

approach allows the samples from ϕB to be drawn almost-uniformly instead of exactly

uniformly, as required by classical Monte Carlo. This allows approximate samplers

like UniGen to be used for generating the candidate samples to check against ϕA.

In many cases, it is only possible to generate approximately-uniform samples using

tools like UniGen due to scalability issues with exact tools. Further, our algorithm

uses the Monte Carlo based AA algorithm by Dagum et al. [71] as a building block
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which yields close-to-optimal sample complexity. Coupled with our insight for early

termination, we get a fast practical algorithm that comprehensively outperforms prior

work [115].
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Part III

Exact Counting and Sampling
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Chapter 6

Background

6.1 History

Algorithms for Boolean satisfiability, such as DPLL [118] had been proposed as far

back as the 1960s. Parallely, algorithms for exact counting such as the polynomial

time FKT algorithm [119, 120] for counting the number of perfect matchings in pla-

nar graphs were proposed around the same time. Nevertheless, despite theoretical

interest surrounding these problems, practical implementations were scarce. This sce-

nario changed in the 90s, with the introduction of GRASP [22] and Chaff [21] SAT

solvers, which first introduced the now-ubiquitous SAT techniques like CDCL, lazy

unit propagation, VSIDS heuristics and the like. The ‘SAT-revolution’ started by

these solvers prompted researchers to look at problems considered to be even harder

than SAT, among them propositional model counting.

Early exact model counters such as CDP [121], Cachet [25] and sharpSAT [24]

were based on extending the existing CDCL framework to exhaustively search the

solution space for all possible models, along with counting-specific enhancements like

component-caching, implicit Boolean Constraint Propagation etc. Simultaneously,

in the related subfield of Knowledge Compilation (KC), compact representations of

Boolean functions such as d-DNNF [122] were proposed, which turned out to be

equivalent to the trace of modern model counters. This led to synergistic development

in KC and model-counting communities, owing to the fact that compilers like C2D [26]

and d4 [27] easily doubled as model-counters. The first exact uniform sampling tool,

SPUR [29], was proposed soon after, and it extended sharpSAT to allow generating

samples on the fly using the technique of reservoir sampling. The tools KUS [30]
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and WAPS [31] took the approach of explicitly compiling and annotating the d-DNNF

representation in-memory, which allowed for very fast sampling through amortization

of the compilation cost.

Similar to the approximate case, this progress in exact counting suggested it was

a one-stop-shop for all real-world benchmarks. However, in our experiments on the

problem of computing the permanent of a 0-1 matrix, we found that all exact coun-

ters performed rather poorly even compared to a brute-force approach. Ryser’s al-

gorithm [123], which is a brute force, n× 2n-step approach, was able to compute the

permanent for all matrices up to size 27×27, while tools like d4 timed out on matrices

of size 14× 14, except when they were very sparse. Interestingly, even modern SAT

solvers like Glucose were unable to determine the existence of a solution within the

same time limit, for certain matrices above size 24 × 24, regardless of the encoding

used to for translating Exact-One constraints into CNF. Similar results were also seen

for problems like sampling traces of a transition system. These results indicated that

SAT-based exact approaches were incapable of fully exploiting the structure inherent

in such problems and that alternative techniques may be needed.

In this part of the thesis, we discuss our work in bridging this gap, by leveraging

datastructures called Algebraic Decision Diagrams (ADDs) [50] for compactly rep-

resenting the solution space using factored representations [49]. We show how this

general approach can be applied to diverse domains like computing the matrix perma-

nent (Chapter 7), sampling traces of a transition system (Chapter 8), and sampling

solutions of low treewidth CNF formulas (Chapter 9). In the rest of this chapter, we

introduce the SAT-based and ADD-based paradigms for counting and sampling.

6.2 SAT-based approach

The SAT-based approach for counting and sampling at its core, is based on the CDCL

(Conflict Driven Clause Learning) framework [22] for satisfiability. For purposes of

counting, CDCL is run exhaustively until the entire solution space is explored, instead
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of stopping at the first satisfying assignment. For sampling, the fastest SAT-based

samplers like KUS and d4 first compile a datastructure called the Decomposable Deter-

ministic Negation Normal Form (d-DNNF). This datastructure allows fast generation

of samples by performing a top-down random walk guided by the model-counts of

partial assignments. In this section, we give an overview of the common techniques

used in algorithms based on this paradigm. For a detailed exposition on the topic,

we refer the reader to [23].

6.2.1 CDCL

The CDCL algorithm is an enhancement of the DPLL algorithm [118] with clause

learning. The original DPLL algorithm is a simple backtracking search coupled with

Unit Propagation. A clause with a single literal is known as a unit clause, and the

existence of a such a clause in a formula, can be used to infer that the corresponding

variable must be assigned the polarity of the literal in order to satisfy the formula.

Thus given a CNF formula, the DPLL algorithm first carries out all possible unit

propagations and then picks a variable to assign, and recurses on the two branches

corresponding to the the positive and negative assignments to the chosen variable.

The CDCL algorithm, enhances this simple procedure, with conflict analysis and

non-chronological backtracking. A conflict is said to arise when any partial assignment

to the variables leads to the setting of all variables in a clause to false. In such a case

it is possible to both learn a clause such that adding the clause to the original formula

does not change its satisfiability, and it also prevents the algorithm from exploring

the same partial assignment that led to the conflict. Non-chronological backtracking

allows jumping back multiple levels in the search tree upon detection of a conflict, as

opposed to one level at a time.

Early SAT solvers like zChaff [21] incorporated additional techniques like lazy unit

propagation, VSIDS heuristic, learnt clause deletion strategies etc. which allowed to

it scale much better than previous tools and heralded the SAT revolution.
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6.2.2 Exhaustive CDCL with Component Caching

The same algorithm, can be easily extended to exhaustively search the entire solutions

space for satisfying assignments. However, it is necessary to tailor the algorithm for

counting in order to allow it to scale. One such critical enhancement is component

analysis and caching.

A CNF formula can be partitioned into sets of clauses such that no two sets share

any variables. Each such set is called a component, which can also be thought of

as a (smaller) CNF formula. Given such a partition of a formula, the count of the

formula is simply the product of the counts of each component. This fact can be

used to greatly speed up counting by avoiding expressly counting every combination

of partial satisfying assignments to each component. Further, it is often seen that

the same components reappear during the exhaustive search. Therefore, one can

also store and reuse the count of a component after encountering it for the first time.

Over the years, many SAT-based counters such as Cachet, sharpSAT, Ganak etc. have

refined and enhanced these basic principles to obtain extremely efficient component

analysis and caching in practice.

Besides component analysis, techniques like implicit BCP [24], VSADS heuristic

(as opposed to VSIDS for SAT), etc. have also been crucial to the success of the

SAT-based approach. A detailed discussion can be found in [23].

6.2.3 d-DNNF Representation

Darwiche and Marquis [122] pioneered the area of Knowledge Compilation (KC),

where the overarching idea is to compile a given Boolean function (generally repre-

sented as a Boolean formula), into a representation that allows for fast querying of

the function. KC is the study of different representations and queries, with a goal to

analyze time and space complexities as well as practical performance. For example,

the well-known Ordered Binary Decision Diagrams (OBDDs) [124] are one such rep-

resentation, and they allow many queries like model-counting, function equivalence,
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Prime Implicants etc. to be performed in polynomial time in the size of the OBDD.

However, there is a tradeoff between supported queries and size of the representation.

OBDDs are known to blow-up in size and are not directly useful for model counting,

as they typically do not scale beyond a roughly a hundred variables.

Darwiche [125] introduced another such representation, called the d-DNNF, which

is more compact in lieu of supporting fewer polynomial-time queries. A d-DNNF

is essentially a DAG where (1) each internal node labeled with AND or an OR,

(2) each leaf is labeled with a literal or 0/1 (false/true), (3) no two children of an

AND node share any variables (4) children of OR nodes are mutually inconsistent.

Crucially, however, it supports model counting and sampling in polynomial time

in the size of the representation. Further, Huang and Darwiche [126] showed that

the trace of modern model counters like Cachet are actually equivalent to a subset

of d-DNNF, called decision-DNNF, where each OR node has exactly two children

and is associated with a decision variable that appears in opposite polarities in each

branch. This deep connection between model-counters and d-DNNF has proven to be

mutually beneficial, and modern tools often do both counting and compilation (eg.

d4 [27], DSharp [127]). Further, tools like KUS and WAPS explicitly compile a given

CNF formula into d-DNNF to allow for fast sampling, while the tool SPUR does it

on-the-fly using the model counter sharpSAT as a backend.

6.3 ADD-based approach

6.3.1 Algebraic Decision Diagrams

Let X be a set of Boolean-valued variables. An Algebraic Decision Diagram (ADD)

is a data structure used to compactly represent a function of the form f : 2X → R as

a Directed Acyclic Graph (DAG). For functions with logical structure, an ADD rep-

resentation can be exponentially smaller than the explicit representation. Originally

designed for matrix multiplication and shortest path algorithms, ADDs have been

used for a variety of applications including Bayesian inference [128, 129], stochastic
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planning [130], and model counting [131, 49]. ADDs were originally proposed as a

generalization of Binary Decision Diagrams (BDDs), which can only represent func-

tions of the form g : 2X → {0, 1}. Formally, an ADD is a 4-tuple (X,T, ρ,G) where X

is a set of Boolean variables, the finite set T ⊂ R is called the carrier set, ρ : X → N

is the diagram variable order, and G is a rooted directed acyclic graph satisfying the

following three properties:

1. Every terminal node of G is labeled with an element of T .

2. Every non-terminal node of G is labeled with an element of X and has two

outgoing edges labeled 0 and 1. The node at the other of the 1-edge is called

the ‘then-child’ of the parent node v (denoted v.then) and the node at the other

end of the 0-edge is called the ‘else-child’ (denoted v.else).

3. For every path in G, the labels of visited non-terminal nodes must occur in

increasing order under ρ.

ADDs and BDDs differ in the carrier set T ; for ADDs T ⊂ R while for BDDs,

T = {0, 1}. We use lower case letters f, g, . . . to denote both functions from Booleans

to reals as well as the ADDs representing them. Many operations on such functions

can be performed in time polynomial in the size of their ADDs. We list some such

operations that will be used in our discussion.

• Product : The product of two ADDs representing functions f : 2X → R and

g : 2Y → R is an ADD representing the function f · g : 2X∪Y → R, where

f · g(τ) is defined as f(τ ∩X) · g(τ ∩ Y ) for every τ ∈ 2X∪Y ,

• Sum: Defined in a way similar to the product.

• If-Then-Else (ITE): This is a ternary operation that takes as inputs a BDD f

and two ADDs g and h. ITE(f, g, h) represents the function f · g+¬f · h, and

the corresponding ADD is obtained by substituting g for the leaf ’1’ of f and h

for the leaf ’0’, and simplifying the resulting structure.
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• Additive Quantification: The existential quantification operation for Boolean-

valued functions can be extended to real-valued functions by replacing disjunc-

tion with addition as follows. The additive quantification of f : 2X → R

is denoted as ∃x.f : 2X\{x} → R and for τ ∈ 2X\{x}, we have ∃x.f(τ) =

f(τ) + f(τ ∪ {x}).

ADDs share many properties with BDDs. For example, there is a unique minimal

ADD for a given variable order ρ, called the canonical ADD, and minimization can be

performed in polynomial time. Similar to BDDs, the variable order can significantly

affect the size of the ADD. Hence heuristics for finding good variable orders for BDDs

carry over to ADDs as well. ADDs typically have lower recombination efficiency, i.e.

number of shared nodes, vis-a-vis BDDs. Nevertheless, sharing or recombination of

isomorphic sub-graphs in an ADD is known to provide significant practical advantages

in representing matrices, vis-a-vis other competing data structures. The reader is

referred to [124, 132] for more details on these decision diagrams.

6.3.2 Factored Representations and Applications to Counting

While ADDs can be used for representing pseudo-Boolean functions as-is, it has been

observed that for various functions arising from practical applications, the correspond-

ing ADD representation quickly exceeds memory requirements. For example, typical

CNF benchmarks arising from domains like probabilistic inference, logic circuits etc.

consist of thousands of variables and clauses, and representing such functions using

monolithic ADDs is nigh impossible [49].

However, it has been observed that it is possible to get around this issue by ef-

fectively factoring such large functions in smart ways, and representing each factor

separately using an ADD. While the benefits of factored representations had been

identified in the context of MDPs in the late 90s [133], it was recently shown that the

same principle can also yield significant improvements in scalability in the context of

model counting [49]. Dudek et al. [49, 59] proposed a 2-phase algorithm for model
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counting based on factoring the given formula smartly and using ADDs to represent

and operate on intermediate functions. In the first phase, a plan for the model count-

ing query is generated, either using tree decomposition solvers or special heuristics.

In the second phase, the plan so constructed is used for performing a series of project

and join (i.e. additive quantification and product) operations, which finally yields the

model count. Dudek et al. showed that this approach can be competitive with the

SAT-based one, especially in cases when the treewidth is low.

It is known that (singular) OBDDs are less compact than d-DNNF representa-

tions [122]. However, a Tree-of-BDDs [134, 135] representation was shown to be

incomparable in terms of succinctness to d-DNNF [136]. In other words, there exist

functions for which Tree-of-BDDs is more compact than d-DNNF and vice versa. In

this context, the Tree-of-ADDs representation, as compiled implicitly by model coun-

ters like ADDMC and DPMC [49, 59] is seen as a viable alternative to the SAT-based

approach. In our works, we illuminated the fact that the Tree-of-ADDs representa-

tion underlies the approach of Dudek et al. We leveraged this idea for constructing

the first weighted sampler to expressly target low-treewidth CNF formulas. Further,

we come up with domain-specific factorization methods (as opposed to the generic

ones employed previously) for effectively solving problems like computing the matrix

permanent, and sampling traces of a transition system. In fact, the contrast between

the SAT-based and ADD-based approaches in these problems is more vast, as com-

pared to the results of Dudek et al.; we often see that our ADD-based algorithms far

outperform competing SAT-based tools.
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Chapter 7

Matrix Permanent

7.1 Introduction

Many Constrained Counting problems reduce to counting problems on graphs. For

instance, learning probabilistic models from data reduces to counting the number

of topological sorts of directed acyclic graphs [137], while computing the partition

function of a monomer-dimer system reduces to computing the number of perfect

matchings of an appropriately defined bipartite graph [138]. In this chapter, we

focus on the last class of problems – that of counting perfect matchings in bipartite

graphs. It is well known that this problem is equivalent to computing the permanent

of the 0-1 bi-adjacency matrix of the bipartite graph. We refer to these two problems

interchangeably in the remainder of this chapter.

Given an n×n matrix A with real-valued entries, the permanent of A is given by

perm(A) =
∑

σ∈Sn
∏n

i=1 ai,σ(i), where Sn denotes the symmetric group of all permu-

tations of 1, . . . n. This expression is almost identical to that for the determinant of

A; the only difference is that the determinant includes the sign of the permutation in

the inner product. Despite the striking resemblance of the two expressions, the com-

plexities of computing the permanent and determinant are vastly different. While the

determinant can be computed in time O(n2.4), Valiant [139] showed that computing

the permanent of a 0-1 matrix is #P-Complete, making a polynomial-time algorithm

unlikely [8]. Further evidence of the hardness of computing the permanent was pro-

vided by Cai, Pavan and Sivakumar [140], who showed that the permanent is also

hard to compute on average. Dell et al. [141] showed that there can be no algorithm

with sub-exponential time complexity, assuming a weak version of the Exponential
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Time Hypothesis [7] holds.

The determinant has a nice geometric interpretation: it is the oriented volume

of the parallelepiped spanned by the rows of the matrix. The permanent, however,

has no simple geometric interpretation. Yet, it finds applications in a wide range of

areas. In chemistry, the permanent and the permanental polynomial of the adjacency

matrices of fullerenes [142] have attracted much attention over the years [143, 52, 144].

In constraint programming, solutions to All-Different constraints can be expressed as

perfect matchings in a bipartite graph [53]. An estimate of the number of such

solutions can be used as a branching heuristic to guide search [54, 145]. In physics,

permanents can be used to measure quantum entanglement [51] and to compute the

partition functions of monomer-dimer systems [138].

Since computing the permanent is hard in general, researchers have attempted to

find efficient solutions for either approximate versions of the problem, or for restricted

classes of inputs. In this chapter, we restrict our attention to exact algorithms for

computing the permanent. The asymptotically fastest known exact algorithm for

general n×n matrices is Nijenhuis and Wilf’s version of Ryser’s algorithm [123, 146],

which runs in time Θ(n · 2n) for all matrices of size n. For matrices with bounded

treewidth or clique-width [147, 148], Courcelle, Makowsky and Rotics [149] showed

that the permanent can be computed in time linear in the size of the matrix, i.e.,

computing the permanent is Fixed Parameter Tractable (FPT). A large body of work

is devoted to developing fast algorithms for sparse matrices, i.e. matrices with only

a few entries set to non-zero values [150, 52, 151, 152] in each row. Note that the

problem remains #P-Complete even when the input is restricted to matrices with

exactly three 1’s per row and column [153].

An interesting question to ask is whether we can go beyond sparse matrices in our

quest for practically efficient algorithms for the permanent. For example, can we hope

for practically efficient algorithms for computing the permanent of dense matrices,

i.e., matrices with almost all entries non-zero? Can we expect efficiency when the
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rows of the matrix are “similar”, i.e. each row has only a few elements different from

any other row (sparse and dense matrices being special cases)? Existing results do not

seem to throw much light on these questions. For instance, while certain non-sparse

matrices indeed have bounded clique-width, the aforementioned result of Courcelle

et al [63, 149] does not yield practically efficient algorithms as the constants involved

are enormous [154]. The hardness of non-sparse instances is underscored by the fact

that SAT-based model counters do not scale well on these, despite the fact that years

of research and careful engineering have enabled these tools to scale extremely well

on a diverse array of problems. We experimented with a variety of CNF-encodings of

the permanent on state-of-the-art counters like D4 [27]. Strikingly, no combination

of tool and encoding was able to scale to matrices even half the size of those solved

by Ryser’s approach in the same time, despite the fact that Ryser’s approach has

exponential complexity even in the best case.

We now present our work where we demonstrate that practically efficient algo-

rithms for the permanent can indeed be designed for large non-sparse matrices if

the matrix is represented compactly and manipulated efficiently using a special class

of data structures. Specifically, we propose using Algebraic Decision Diagrams [50]

(ADDs) to represent matrices, and design a version of Ryser’s algorithm to work on

this symbolic representation of matrices. This effectively gives us a symbolic version of

Ryser’s algorithm, as opposed to existing implementations that use an explicit repre-

sentation of the matrix. ADDs have been studied extensively in the context of formal

verification, and sophisticated libraries are available for compact representation of

ADDs and efficient implementation of ADD operations [155, 156]. The literature also

contains compelling evidence that reasoning based on ADDs and variants scales to

large instances of a diverse range of problems in practice, cf. [50, 157]. Our use of

ADDs in Ryser’s algorithm leverages this progress for computing the permanent. Sig-

nificantly, there are several sub-classes of matrices that admit compact representations

using ADDs, and our algorithm works well for all these classes. Our empirical study
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provides evidence for the first time that the frontier of practically efficient permanent

computation can be pushed well beyond the class of sparse matrices, to the classes of

dense matrices and, more generally, to matrices with “similar” rows. Coupled with

a technique known as early abstraction, ADDs are able to handle sparse instances as

well. In summary, the symbolic approach to permanent computation shows promise

for both sparse and dense classes of matrices, which are special cases of a notion of

row-similarity.

The rest of this chapter is organized as follows: in Section 7.2 we introduce Ryser’s

original algorithm and other concepts that we will use in this chapter. We discuss

related work in Section 7.3 and present our algorithm and analyze it in Section 7.4.

Our empirical study is presented in Sections 7.5 and 7.6 and we conclude in Section

7.7.

7.2 Preliminaries

We denote by A = (aij) an n × n 0-1 matrix, which can also be interpreted as the

bi-adjacency matrix of a bipartite graph GA = (U ∪ V,E) with an edge between

vertex i ∈ U and j ∈ V iff aij = 1. We will denote the ith row of A by ri. A

perfect matching in GA is a subset M ⊆ E, such that for all v ∈ (U ∪ V ), exactly

one edge e ∈ M is incident on v. We denote by perm(A) the permanent of A, and

by #PM(GA), the number of perfect matchings in G. A well known fact is that

perm(A) = #PM(GA), and we will use these concepts interchangeably when clear

from context.

7.2.1 Ryser’s Formula

The permanent of A can be calculated by the principle of inclusion-exclusion using

Ryser’s formula: perm(A) = (−1)n
∑

S⊆[n](−1)|S|
∏n

i=1

∑
j∈S aij. Algorithms imple-

menting Ryser’s formula on an explicit representation of an arbitrary matrix A (not

necessarily sparse) must consider all 2n subsets of [n]. As a consequence, such algo-
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rithms have at least exponential complexity. Our experiments show that even the best

known existing algorithm implementing Ryser’s formula for arbitrary matrices [146],

which iterates over the subsets of [n] in Gray-code sequence, consistently times out

after 1800 seconds on a state-of-the-art computing platform when computing the

permanent of n× n matrices, with n ≥ 35.

7.3 Related Work

Valiant showed that computing the permanent is #P -complete [139]. Subsequently,

researchers have considered restricted sub-classes of inputs in the quest for efficient

algorithms for computing the permanent, both from theoretical and practical points

of view. We highlight some of the important milestones achieved in this direction.

A seminal result is the Fisher-Temperly-Kastelyn algorithm [119, 120], which com-

putes the number of perfect matchings in planar graphs in PTIME. This result was

subsequently extended to many other graph classes (c.f. [158]). Following the work of

Courcelle et al., a number of different width parameters have been proposed, culmi-

nating in the definition of ps-width [159], which is considered to be the most general

notion of width [160]. Nevertheless, as with clique-width, it is not clear whether it

lends itself to practically efficient algorithms. Bax and Franklin [161] gave a Las

Vegas algorithm with better expected time complexity than Ryser’s approach, but

requiring O(2n/2) space.

For matrices with at most C ·n zeros, Servedio and Wan [150] presented a (2−ε)n-

time and O(n) space algorithm where ε depends on C. Izumi and Wadayama [151]

gave an algorithm that runs in time O∗(2(1−1/(∆ log ∆))n), where ∆ is the average degree

of a vertex. On the practical side, in a series of papers, Liang, Bai and their co-

authors [52, 162, 152] developed algorithms optimized for computing the permanent

of the adjacency matrices of fullerenes, which are 3-regular graphs.

In recent years, practical techniques for propositional model counting (#SAT)

have come of age. State-of-the-art exact model counters like DSharp [127] and D4 [27]
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also incorporate techniques from knowledge compilation. A straightforward reduction

of the permanent to #SAT uses a Boolean variable xij for each 1 in row i and column

j of the input matrix A, and imposes Exact-One constraints on the variables in

each row and column. This gives the formula Fperm(A) =
∧
i∈[n] ExactOne({xij :

aij = 1}) ∧
∧
j∈[n] ExactOne({xij : aij = 1}). Each solution to Fperm(A) is a perfect

matching in the underlying graph, and so the number of solutions is exactly the

permanent of the matrix. A number of different encodings can be used for translating

Exact-One constraints to Conjunctive Normal Form (see Section 7.5.1). We perform

extensive comparisons of our tool with D4 and DSharp with six such encodings.

7.4 Representing Ryser’s Formula Symbolically

As noted in Sec. 7.2, an explicit implementation of Ryser’s formula iterates over

all 2n subsets of columns and its complexity is in Θ(n · 2n). Therefore, any such

implementation takes exponential time even in the best case. A natural question to

ask is whether we can do better through a careful selection of subsets over which

to iterate. This principle was used for the case of sparse matrices by Servedio and

Wan [150]. Their idea was to avoid those subsets for which the row-sum represented

by the innermost summation in Ryser’s formula, is zero for at least one row, since

those terms do not contribute to the outer sum in Ryser’s formula. Unfortunately,

this approach does not help for non-sparse matrices, as very few subsets of columns

(if any) will yield a zero row-sum.

It is interesting to ask if we can exploit similarity of rows (instead of sparsity)

to our advantage. Consider the ideal case of an n × n matrix with identical rows,

where each row has k (≤ n) 1s. For any given subset of columns, the row-sum is

clearly the same for all rows, and hence the product of all row-sums is simply the nth

power of the row-sum of one row. Furthermore, there are only k + 1 distinct values

(0 through k) of the row-sum, depending on which subset of columns is selected.

The number of r-sized column subsets that yield row-sum j is clearly
(
k
j

)
·
(
n−k
r−j

)
, for
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0 ≤ j ≤ k and j ≤ r ≤ n − k + j. Thus, we can directly compute the permanent of

the matrix via Ryser’s formula as perm(A) = (−1)n
∑k

j=0

∑n−k+j
r=j (−1)r

(
k
j

)
·
(
n−k
r−j

)
·jn.

This equation has a more compact representation than the explicit implementation

of Ryser’s formula, since the outer summation is over (k+1).(n−k+1) terms instead

of 2n terms.

Drawing motivation from the above example, we propose using memoization to

simplify the permanent computation of matrices with similar rows. Specifically, if

we compute and store the row-sums for a subset S1 ⊂ [n] of columns, then we can

potentially reuse this information when computing the row-sums for subsets S2 ⊃ S1.

We expect storage requirements to be low when the rows are similar, as the partial

sums over identical parts of the rows will have a compact representation, as shown

above.

While we can attempt to hand-craft a concrete algorithm using this idea, it turns

out that ADDs fit the bill perfectly. We introduce Boolean variables xj for each col-

umn 1 ≤ j ≤ n in the matrix. We can represent the summand (−1)|S|
∏n

i=1

∑
j∈S aij

in Ryser’s formula as a function fRyser : 2X → R where for a subset of columns τ ∈ 2X ,

we have fRyser(τ) = (−1)|τ |
∏n

i=1

∑
j∈τ aij. The outer sum in Ryser’s formula is then

simply the Additive Quantification of fRyser over all variables in X. The permanent

can thus be denoted by the following equation:

perm(A) = (−1)n . ∃x1, x2, . . . xn.(fRyser) (7.1)

We can construct an ADD for fRyser incrementally as follows:

• Step 1: For each row ri in the matrix, construct the Row-Sum ADD f riRS such

that f riRS(τ) =
∑

j:aij=1 1τ (xj), where 1τ (xj) is the indicator function taking the

value 1 if xj ∈ τ , and zero otherwise. This ADD can be constructed by using

the sum operation on the variables xj corresponding to the 1 entries in row ri.

• Step 2: Construct the Row-Sum-Product ADD fRSP =
∏n

i=1 f
ri
RS by applying

the product operation on all the Row-Sum ADDs
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(a) (b) (c)

Figure 7.1 : (a) fRS, (b) fRSP and (c) fRyser for a 4× 4 matrix of all 1s

• Step 3: Construct the Parity ADD fPAR = ITE(
⊕n

j=1 xj,−1,+1), where⊕
represents exclusive-or. This ADD represents the (−1)|S| term in Ryser’s

formula.

• Step 4: Construct fRyser = fRSP .fPAR using the product operation.

Finally, we can additively quantify out all variables in fRyser and multiply the

result by (−1)n to get the permanent, as given by Equation 7.1.

The size of the ADD fRSP will be the smallest when the ADDs f riRS are exactly

the same for all rows ri, i.e. when all rows of the matrix are identical. In this case,

the ADDs f riRS and fRSP will be isomorphic; the values at the leaves of fRSP will

simply be the nth power of the values at the corresponding leaves of f riRS. An example

illustrating this for a 4 × 4 matrix of all 1s is shown in Fig. 7.1. Each level of the

ADDs in this figure corresponds to a variable (shown on the left) for a column of

the matrix. A solid edge represents the ’true’ branch while a dotted edge represents

the ’false’ branch. Observe that sharing of isomorphic subgraphs allows each of these

ADDs to have 10 internal nodes and 5 leaves, as opposed to 15 internal nodes and 16

leaves that would be needed for a complete binary tree based representation.

The ADD representation is thus expected to be compact when the rows are “sim-

ilar”. Dense matrices can be thought of as a special case: starting with a matrix of
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all 1s (which clearly has all rows identical), we change a few 1s to 0s. The same idea

can be applied to sparse matrices as well: starting with a matrix of all 0s (once again,

identical rows), we change a few 0s to 1s. The case of very sparse matrices is not

interesting, however, as the permanent (or equivalently, count of perfect matchings in

the corresponding bipartite graph) is small and can be computed by naive enumera-

tion. Interestingly, our experiments show that as we reduce the sparsity of the input

matrix, constructing fRSP and fRyser in a monolithic fashion as discussed above fails

to scale, since the sizes of ADDs increase very sharply. Therefore we need additional

machinery.

First, we rewrite Equation 7.1 in terms of the intermediate ADDs as:

perm(A) = (−1)n . ∃x1, x2, . . . xn.

(
fPAR ·

n∏
i=1

f riRS

)
(7.2)

We then employ the principle of early abstraction to compute fRyser incrementally.

Note that early abstraction has been used successfully in the past in the context of

SAT solving [163], and recently for weighted model counting using ADDs in a tech-

nique called ADDMC [49]. The formal statement of the principle of early abstraction

is given in the following theorem.

Theorem 7.1. [49] Let X and Y be sets of variables and f : 2X → R, g : 2Y → R.

For all x ∈ X \ Y , we have ∃x(f · g) = (∃x(f)) · g

Since the product operator is associative and additive quantification is commuta-

tive, we can rearrange the terms of Equation 7.2 in order to apply early abstraction.

This idea is implemented in Algorithm RysersADD, which is motivated by the weighted

model counting algorithm in [49].

Algorithm RysersADD takes as input a 0-1 matrix A, a diagram variable order ρ

and a cluster rank-order η. η is an ordering of variables which is used to heuristically

partition rows of A into clusters using a function clusterRank, where all rows in a

cluster get the same rank. Intuitively, rows that are almost identical are placed in

the same cluster, while those that differ significantly are placed in different clusters.
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Algorithm 12 RysersADD(A, ρ, η)

1: m← maxx∈X η(x);

2: for i = m,m− 1, . . . , 1 do

3: κi ← {f rRS : r is a row in A and clusterRank(r, η) = i};

4: fRyser ← fPAR; . fPAR and each f rRS are constructed using the diagram variable

order ρ

5: for i = 1, 2, . . . ,m do

6: if κi 6= ∅ then

7: for g ∈ κi do

8: fRyser ← fRyser · g;

9: for x ∈ V ars(fRyser) do

10: if x 6∈ (V ars(κi+1) ∪ . . . ∪ V ars(κm)) then

11: fRyser ← ∃x(fRyser)

12: return (−1)n × fRyser(∅)
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Furthermore, the clusters are ordered such that there are non-zero columns in cluster

i that are absent in the set of non-zero columns in clusters with rank > i. As we will

soon see, this facilitates keeping the sizes of ADDs under control by applying early

abstraction.

Algorithm RysersADD proceeds by first partitioning the Row-Sum ADDs of the

rows A into clusters according to their cluster rank in line 3. Each Row-Sum ADD is

constructed according to the diagram variable order ρ. The ADD fRyser is constructed

incrementally, starting with the Parity ADD in line 4, and multiplying the Row-Sum

ADDs in each cluster κi in the loop at line 7. However, unlike the monolithic approach,

early abstraction is carried out within the loop at line 9. Finally, when the execution

reaches line 12, all variables representing columns of the input matrix have been

abstracted out. Therefore, fRyser is an ADD with a single leaf node that contains the

(possibly negative) value of the permanent. Following Equation 7.2, the algorithm

returns the product of (−1)n and fRsyer(∅).

The choice of the function clusterRank and the cluster rank-order η significantly

affect the performance of the algorithm. A number of heuristics for determining

clusterRank and η have been proposed in literature, such as Bucket Elimination [164],

and Bouquet’s Method [165] for cluster ranking, and MCS [166], LexP [167] and

LexM [167] for variable ordering. Further details and a rigorous comparison of these

heuristics are presented in [49]. Note that if we assign the same cluster rank to all

rows of the input matrix, Algorithm RysersADD reduces to one that constructs all

ADDs monolithically, and does not benefit from early abstraction.

7.4.1 Implementation Details

We implemented Algorithm 12 using the library Sylvan [156] since unlike CUDD [155],

Sylvan supports arbitrary precision arithmetic – an essential feature to avoid over-

flows when the permanent has a large value. Sylvan supports parallelization of ADD

operations in a multi-core environment. In order to leverage this capability, we cre-
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ated a parallel version of RysersADD that differs from the sequential version only in

that it uses the parallel implementation of ADD operations natively provided by Syl-

van. Note that this doesn’t require any change to Algorithm RysersADD, except in

the call to Sylvan functions. While other non-ADD-based approaches to computing

the permanent can be parallelized as well, we emphasize that it is a non-trivial task

in general, unlike using Sylvan. We refer to our sequential and parallel implementa-

tions for permanent computation as RysersADD and RysersADD-P respectively, in the

remainder of the discussion. We implemented our algorithm in C++, compiled under

GCC v6.4 with the O3 flag. We measured the wall-times for both algorithms. Sylvan

also supports arbitrary precision floating point computation, which makes it easy to

extend RysersADD for computing permanent of real-valued matrices. However, we

leave a detailed investigation of this for future work.

7.5 Experimental Methodology

The objective of our empirical study was to evaluate RysersADD and RysersADD-P

on randomly generated instances (as done in [162]) and publicly available structured

instances (as done in [52, 152]) of 0-1 matrices.

7.5.1 Algorithm Suite

As noted in Section 9.3, a number of different algorithms have been reported in the lit-

erature for computing the permanent of sparse matrices. Given resource constraints,

it is infeasible to include all of these in our experimental comparisons. This is fur-

ther complicated by the fact that many of these algorithms appear not to have been

implemented (eg: [150, 151]), or the code has not been made publicly accessible (eg:

[52, 152]). A fair comparison would require careful consideration of several parame-

ters like usage of libraries, language of implementation, suitability of hardware etc.

We had to arrive at an informed choice of algorithms, which we list below along with

our rationale:
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• RysersADD and RysersADD-P: For the dense and similar rows cases, we use the

monolithic approach as it is sufficient to demonstrate the scalability of our ADD-

based approach. For sparse instances, we employ Bouquet’s Method (List) [165]

clustering heuristic along with MCS cluster rank-order [166] and we keep the

diagram variable order the same as the indices of columns in the input matrix

(see [49] for details about the heuristics). We arrived at these choices through

preliminary experiments. We leave a detailed comparison of all combinations

for future work.

• Explicit Ryser’s Algorithm: We implemented Nijenhuis and Wilf’s version [146]

of Ryser’s formula using Algorithm H from [168] for generating the Gray code

sequence. Our implementation, running on a state-of-the-art computing plat-

form (see Section 7.5.2), is able to compute the permanent of all matrices with

n ≤ 25 in under 5 seconds. For n = 30, the time shoots up to approximately

460 seconds and for n ≥ 34, the time taken exceeds 1800 seconds (time out for

our experiments). Since the performance of explicit Ryser’s algorithm depends

only on the size of the matrix, and is unaffected by its structure, sparsity or

row-similarity, this represents a complete characterization of the performance

of the explicit Ryser’s algorithm. Hence, we do not include it in our plots.

• Propositional Model Counters : Model counters that employ techniques from

SAT-solving as well as knowledge compilation, have been shown to scale ex-

tremely well on large CNF formulas from diverse domains. Years of careful en-

gineering have resulted in counters that can often outperform domain-specific

approaches. We used two state-of-the-art exact model counters, viz. D4 [27] and

DSharp [127], for our experiments. We experimented with 6 different encodings

for At-Most-One constraints: (1) Pairwise [23], (2) Bitwise [23], (3) Sequential

Counter [169], (4) Ladder [170, 171], (5) Modulo Totalizer [172] and (6) Itera-

tive Totalizer [173]. We also experimented with ADDMC, an ADD-based model
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Table 7.1 : Parameters used for generating random matrices

Experiment
Matrix Size

n
Cf , where Cf · n matrix entries flipped

Starting Matrix

Row Density ρ
#Instances

Total

Benchmarks

Dense 30, 40, 50, 60, 70 1, 1.1, 1.2, 1.3, 1.4 1 20 500

Sparse 30, 40, 50, 60, 70 3.9, 4.3, 4.7, 5.1, 5.5 0 20 500

Similar 40, 50, 60, 70, 80 1, 1.1, 1.2, 1.3, 1.4 0.7, 0.8, 0.9 15 1125

counter [49]. However, it failed to scale beyond matrices of size 25; ergo we do

not include it in our study.

We were unable to include the parallel #SAT counter countAtom [174] in our experi-

ments, owing to difficulties in setting it up on our compute set-up. However, we could

run countAtom on a slightly different set-up with 8 cores instead of 12, and 16GB

memory instead of 48 on a few sampled dense and similar-row matrix instances. Our

experiments showed that countAtom timed out on all these cases. We leave a more

thorough and scientific comparison with countAtom for future work.

7.5.2 Experimental Setup

Each experiment (sequential or parallel) had exclusive access to a Westemere node

with 12 processor cores running at 2.83 GHz with 48 GB of RAM. We capped memory

usage at 42 GB for all tools. We implemented explicit Ryser’s algorithm in C++,

compiled with GCC v6.4 with O3 flag. The RysersADD and RysersADD-P algorithms

were implemented as in Section 7.4.1. RysersADD-P had access to all 12 cores for

parallel computation. We used the python library PySAT [175] for encoding matrices

into CNF. We set the timeout to 1800 seconds for all our experiments. For purposes

of reporting, we treat a memory out as equivalent to a time out.

7.5.3 Benchmarks

The parameters used for generating random instances are summarized in Table 7.1.

We do not include matrices with n < 30 since the explicit Ryser’s algorithm suffices

(and often performs the best) for such matrices. The upper bound for n was chosen
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such that the algorithms in our suite either timed out or came close to timing out. For

each combination of parameters, random matrix instances were sampled as follows:

1. We started with an n× n matrix, where the first row had ρ · n 1s at randomly

chosen column positions, and all other rows were copies of the first row.

2. Cf · n randomly chosen entries in the starting matrix are flipped i.e. 0 flipped

to 1 and vice versa.

For the dense case, we start with a matrix of all 1s while for the sparse case, we start

with a matrix of all 0s, and used intermediate row density values for the similar-rows

case. We chose higher values for Cf in the sparse case because for low values, the

bipartite graph corresponding to the generated matrix had very few perfect matchings

(if any), and these could be simply counted by enumeration. We generated a total of

2125 benchmarks covering a broad range of parameters. For all generated instances,

we ensured that there was at least one perfect matching, since the case with zero

perfect matchings can be easily solved in polynomial time by algorithms like Hopcroft-

Karp [176]. In order to avoid spending inordinately large time on failed experiments, if

an algorithm timed out on all generated random instances of a particular size, we also

report a time out for that algorithm on all larger instances of that class of matrices.

We also double-check this by conducting experiments with the same algorithm on a

few randomly chosen larger instances.

The SuiteSparse Matrix Collection [177] is a well known repository of structured

sparse matrices that arise from practical applications. We found 26 graphs in this suite

with vertex count between 30 and 100, of which 18 had at least one perfect matching.

Note that these graphs are not necessarily bipartite; however, their adjacency matrices

can be used as benchmarks for computing the permanent. A similar approach was

employed in [178] as well.

Fullerenes are carbon molecules whose adjacency matrices have been used ex-

tensively by Liang et al. [52, 178, 152] for comparing tools for the permanent. We
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Figure 7.2 : Comparison of ADD Size vs. Time taken for a subset of random bench-

marks

were able to find the adjacency matrices of C60 and C100, and have used these in our

experiments.

7.6 Results

We first study the variation of running time of RysersADD with the size of ADDs

involved. Then we compare the running times of various algorithms on sparse, dense

and similar-row matrices, as well as on instances from SuiteSparse Matrix Collection

and on adjacency matrices of fullerenes C60 and C100. The total computational effort

of our experiments exceeds 2500 hours of wall clock time on dedicated compute nodes.

7.6.1 ADD size vs time taken by RysersADD

In order to validate the hypothesis that the size of the ADD representation is a crucial

determining factor of the performance of RysersADD, we present 3 scatter-plots (Fig.

7.2) for a subset of 100 instances, of each of the dense, sparse and similar-rows cases.

In each case, the 100 instances cover the entire range of Cf and n used in Table 7.1,

and we plot times only for instances that didn’t time out. The plots show that there

is very strong correlation between the number of nodes in the ADDs and the time

taken for computing the permanent, supporting our hypothesis.
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Figure 7.3 : Performance on Dense Matrices. D4, DSharp (not shown) timeout on all

instances

7.6.2 Performance on dense matrices

We plot the median running time of RysersADD and RysersADD-P against the matrix

size n for dense matrices with Cf ∈ {1, 1.1, 1.2, 1.3} in Fig. 7.3. We only show the

running times of RysersADD and RysersADD-P, since D4 and DSharp were unable to

solve any instance of size 30 for all 6 encodings. We observe that the running time of

both the ADD-based algorithms increases with Cf . This trend continues for Cf = 1.4,

which we omit for lack of space. RysersADD-P is noticeably faster than RysersADD,

indicating that the native parallelism provided by Sylvan is indeed effective.

7.6.3 Performance on sparse matrices

Fig. 7.4 depicts the median running times of the algorithms for sparse matrices with

Cf ∈ {3.9, 4.3, 4.7, 5.1}. We plot the running time of the ADD-based approaches with

early abstraction (see Sec. 7.5.1). Monolithic variants (not shown) time out on all
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Figure 7.4 : Performance on Sparse Matrices

instances with n ≥ 40. For D4 and DSharp, we plot the running times only for Pairwise

encoding of At-Most-One constraints, since our preliminary experiments showed that

it substantially outperformed other encodings. We see that D4 is the fastest when

sparsity is high i.e. for Cf ≤ 4.3, but for Cf ≥ 4.7 the ADD-based methods are the

best performers. DSharp is outperformed by the remaining 3 algorithms in general.

7.6.4 Performance on similar-row matrices

Fig. 7.5 shows plots of the median running time on similar-row matrices with Cf =

{1, 1.1, 1.2, 1.3}. We only present the case when ρ = 0.8, since the plots are similar

when ρ ∈ {0.7, 0.9}. As in the case of dense matrices, D4 and DSharp were unable

to solve any instance of size 40, and hence we only show plots for RysersADD and

RysersADD-P. The performance of both tools is markedly better than in the case of

dense matrices, and they scale to matrices of size 80 within the 1800 second timeout.



102

40 50 60 70 80

Matrix Size

100

101

102

103

T
im

e
 (

s
e
c
o
n
d
s
)

Similar Rows Matrices (Cf = 1)

RysersADD

RysersADD-P

40 50 60 70 80

Matrix Size

100

101

102

103

T
im

e
 (

s
e
c
o
n
d
s
)

Similar Rows Matrices (Cf = 1.1)

RysersADD

RysersADD-P

40 50 60 70 80

Matrix Size

100

101

102

103

T
im

e
 (

s
e
c
o
n
d
s
)

Similar Rows Matrices (Cf = 1.2)

RysersADD

RysersADD-P

40 50 60 70 80

Matrix Size

100

101

102

103

T
im

e
 (

s
e
c
o
n
d
s
)

Similar Rows Matrices (Cf = 1.3)

RysersADD

RysersADD-P

Figure 7.5 : Performance on similar-rows matrices. D4, DSharp (not shown) timeout

on all instances.
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Table 7.2 : Running Times on the fullerene C60. EA: Early Abstraction Mono:

Monolithic

Tool D4 DSharp RysersADD RysersADD-P

Encoding /

Mode
1 2 3 4 5 6 1 2 3 4 5 6 EA Mono EA Mono

Time (sec) 94.8 150.5 150.6 136 158 156 TimeOut 96.4 TimeOut 57.1 TimeOut

7.6.5 Performance on SuiteSparse Matrix Collection

We report the performance of algorithms RysersADD, RysersADD-P, D4 and DSharp on

13 representative graphs from the SuiteSparse Matrix Collection in Fig. 7.6. Except

for the first 4 instances, which can be solved in under 5 seconds by all algorithms, we

find that D4 is the fastest in general, while the ADD-based algorithms outperform

DSharp. Notably, on the instance ”can 61”, both D4 and DSharp time out while

RysersADD and RysersADD-P solve it comfortably within the alloted time. We note

that the instance ”can 61” has roughly 9n 1s, while D4 is the best performer on

instances where the count of 1s in the matrix lies between 4n and 6n.

7.6.6 Performance on fullerene adjacency matrices

We compared the performance of the algorithms on the adjacency matrices of the

fullerenes C60 and C100. All the algorithms timed out on C100. The results for C60

are shown in Table 7.2. The columns under D4 and DSharp correspond to 6 dif-

ferent encodings of At-Most-One constraints (see Sec. 7.5.1). It can be seen that

RysersADD-P performs the best on this class of matrices, followed by D4. The utility

of early abstraction is clearly evident, as the monolithic approach times out in both

cases.

Discussion: Our experiments show the effectiveness of the symbolic approach on

dense and similar-rows matrices, where neither D4 nor DSharp are able to solve even

a single instance. Even for sparse matrices, we see that decreasing sparsity has lesser
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effect on the performance of ADD-based approaches as compared to D4. This trend

is confirmed by ”can 61” in the SuiteSparse Matrix Collection as well, where despite

the density of 1s being 9n, RysersADD and RysersADD-P finish well within timeout,

unlike D4. In the case of fullerenes, we note that the algorithm in [52] solved C60

in 355 seconds while the one in [152] took 5 seconds, which are in the vicinity of

the times reported in Table 7.2. While this is not an apples-to-apples comparison

owing to differences in the computing platform, it indicates that the performance

of general-purpose algorithms like RysersADD and D4 can be comparable to that of

application-specific algorithms.

7.7 Chapter Summary

In this work we introduced a symbolic algorithm called RysersADD for permanent com-

putation based on augmenting Ryser’s formula with Algebraic Decision Diagrams. We

demonstrated, through rigorous experimental evaluation, the scalability of RysersADD

on both dense and similar-rows matrices, where existing approaches fail. Coupled with

the technique of early abstraction [49], RysersADD performs reasonably well even on

sparse matrices as compared to dedicated approaches. Our key contribution in the

context of Constrained Counting is to comprehensively demonstrate the versatility of

ADDs and factored representations for solving combinatorial problems, vis-a-vis the

rigidity of the SAT-based approach.



105

Chapter 8

Sampling Traces of a Transition System

8.1 Introduction

Simulation-based functional verification is a crucial yet time-consuming step in mod-

ern electronic design automation flows [55]. In this step, a design is simulated with a

large number of input stimuli, and signals are monitored to determine if coverage goals

and/or functional requirements are met. For complex designs, each input stimulus

typically spans a large number of clock cycles. Since exhaustive simulation is imprac-

tical for real designs, using “good quality” stimuli that result in adequate coverage

of the system’s runs in targeted corners is extremely important [179]. Constrained

random verification, or CRV, [180, 181, 182, 20] offers a practical solution to this

problem. In CRV, the user provides constraints to ensure that the generated stimuli

are valid and also to steer the system towards bug-prone corners. To ensure diversity,

CRV allows randomization in the choice of stimuli satisfying a set of constraints. This

can be very useful when the exact inputs needed to meet coverage goals or to test

functional requirements are not known [182, 183]. In such cases, it is best to generate

stimuli such that the resulting runs are uniformly distributed in the targeted corners

of its behavior space. Unfortunately, state-of-the-art CRV tools [56, 57, 58, 184, 185]

do not permit such uniform random sampling of input stimuli. Instead, they allow in-

puts to be assigned random values from a constrained set at specific simulation steps.

This of course lends diversity to the generated stimuli. However, it gives no guaran-

tees on the distribution of the resulting system runs. In this chapter, we present our

work on remedying this problem. Specifically, we present a technique for generating

input stimuli that guarantees uniform (or user-specified bias in) distribution of the
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resulting system runs. Note that this is significantly harder than generating any one

run satisfying a set of constraints.

We represent a run of the system by the sequence of states through which it

transitions in response to a (multi-cycle) input stimulus. Important coverage met-

rics (viz. transition coverage, state sequence coverage, etc. [186]) are usually boosted

by choosing stimuli that run the system through diverse state sequences. Similarly,

functional requirements (viz. assertions in SystemVerilog [185], PSL [187], Specman

E [57], UVM [56] and other formalisms [188]) are often stated in terms of temporal

relations between states in a run of the system. Enhancing the diversity of state

sequences in runs therefore improves the chances of detecting violations, if any, of

functional requirements. Consequently, generating input stimuli such that the result-

ing sequences of states, or traces, are uniformly distributed among all traces consistent

with the given constraints is an important problem. Significantly, given a sequence of

states and the next-state transition function, the input stimuli needed to induce the

required state transitions at each clock cycle can be easily obtained by independent

SAT/SMT calls for each cycle. Hence, our focus in the remainder of the chapter is

the core problem of sampling a system’s traces uniformly at random from the set of

all traces (of a given length) that satisfy user-specified constraints.

To see why state-of-the-art CRV techniques [56, 57, 58, 184, 185] often fail to

generate stimuli that produce a uniform distribution of traces, consider the sequen-

tial circuit with two latches (x0 and x1) and one primary input, shown in Fig. 8.1a.

The state transition diagram of the circuit is shown in Fig. 8.1b. Suppose we wish

to uniformly sample traces that start from the initial state s0 = (x1 = 0, x0 = 0)

and have 4 consecutive state transitions. From Fig. 8.1b, there are 7 such traces:

ω1 = s0s1s1s1s1, ω2 = s0s1s1s1s2, ω3 = s0s1s1s2s2, ω4 = s0s1s2s2s2, ω5 = s0s3s1s1s1,

ω6 = s0s3s1s1s2 and ω7 = s0s3s1s2s2. Hence, each of these traces must be sampled

with probability 1/7. Unfortunately, the state transition diagram of a sequential

circuit can be exponentially large (in number of latches), and is often infeasible to
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Figure 8.1 : (a) Sequential circuit, (b) State transition diagram

construct explicitly. Hence we must sample traces without generating the state tran-

sition diagram explicitly. The primary facility in existing CRV techniques to attempt

such sampling is to choose values of designated inputs randomly at specific steps of

the simulation. In our example, without any information about the state transition

diagram, the primary input of the circuit in Fig. 8.1a must be assigned a value 0 (or

1) with probability 1/2 independently in each of the 4 steps of simulation. This pro-

duces the traces ω1 and ω2 with probability 1/16 each, ω3, ω5 and ω6 with probability

1/8 each, and ω4 and ω7 with probability 1/4 each. Notice that this is far from the

desired uniform distribution. In fact, it can be shown that for every choice of bias

for sampling 0/1 values of the primary input at each state, we get a non-uniform

distribution of ω1 through ω7.

The trace-sampling problem can be shown to be at least as hard as uniformly

sampling satisfying assignments of Boolean formulas. The complexity of the lat-

ter problem has been extensively studied [12, 14, 15], and no efficient algorithms

are known. Therefore, efficient algorithms for sampling traces are unlikely to exist.

Nevertheless, a trace sampling technique that works efficiently in practice for many

problem instances is likely to be useful even beyond CRV, viz. in test generation
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using Bounded Model Checking [189].

The primary contributions of the work presented in this chapter are as follows:

1. A novel algorithm for sampling fixed-length traces of a transition system using

Algebraic Decision Diagrams (ADDs) [132], with provable guarantees of uni-

formity (or user-provided bias). The following are distinctive features of our

algorithm.

(a) It uses iterative squaring, thereby requiring only log2N ADDs to be pre-

computed when sampling traces of N consecutive state transitions. This

allows our algorithm to scale to traces of a few hundred transitions in our

experiments.

(b) It is easily adapted when the trace length is not a power of 2, and also when

implementing weighted sampling of traces with multiplicative weights.

(c) It pre-compiles the i-step transition relation for log2N different values of i

to ADDs. This allows it to quickly generate multiple trace samples once the

ADDs are constructed. Thus the cost of ADD construction gets amortized

over the number of samples, which is beneficial in CRV settings.

2. A comparative study of an implementation of our algorithm (called TraceSampler)

with alternative approaches based on (almost)-uniform sampling of proposi-

tional models, that provide similar uniformity guarantees. Our experiments

demonstrate that our approach offers significant speedup and is the fastest over

90% of the benchmarks.

8.2 Preliminaries

8.2.1 Transition Systems and Traces

A synchronous sequential circuit with n latches implicitly represents a transition sys-

tem with 2n states. Hence, synchronous sequential circuits serve as succinct represen-
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tations of finite-state transition systems. We use “sequential circuits” and “transition

systems” interchangeably in the remainder of the paper to refer to such systems.

Formally, a transition system with k Boolean state variables X = {x0, . . . , xk−1}

and m primary inputs is a 5-tuple (S,Σ, t, I, F ), where S = {0, 1}k is the set of states,

Σ = {0, 1}m is the input alphabet, I ⊆ S is the set of initial states, F ⊆ S is the set

of target (or final) states, and t : S×Σ→ S is the state transition function such that

t(s, a) = s′ iff there is a transition from state s ∈ S on input a ∈ Σ to state s′ ∈ S.

We view each state in S = {0, 1}k as a valuation of (xk−1 . . . x0). For notational

convenience, we use the decimal representation of the valuation of (xk−1 . . . x0) as

a subscript to refer to individual states. For instance, s0 and s2k−1 are the states

with all-zero and all-one assignments to xk−1 . . . x0 respectively. We refer to multiple

versions of the state variables X as X0, X1, . . .

Given a transition system, a trace ω of length N (> 0) is a sequence of N+1 states

such that ω[0] ∈ I, ω[N ] ∈ F and ∀i ∈ {0, . . . , N−1} ∃a ∈ Σ s.t. t(ω[i], a) = ω[i+1],

where ω[i] represents the ith state in the trace. We denote the set of all traces of

length N by ΩN . Given a trace ω ∈ ΩN , finding an input sequence α ∈ ΣN such that

the ith element, viz. α[i], satisfies ω[i + 1] = t(ω[i], α[i]) for all i ∈ {0, . . . N − 1},

requires N independent SAT solver calls. With state-of-the-art SAT solvers [37], this

is unlikely to be a concern with the number of primary inputs m ranging upto tens of

thousands. Therefore, finding a sequence of inputs that induces a trace is relatively

straightforward, and we will not dwell on this any further. Our goal, instead, will be

to sample a trace ω ∈ ΩN uniformly at random. Formally, if the random variable Y

corresponds to a random choice of traces, we’d like to have ∀ω ∈ ΩN Pr[Y = ω] =

1
|ΩN |

. Given a weight function w : ΩN → R+, the related problem of weighted trace

sampling requires us to sample such that ∀ω ∈ ΩN Pr[Y = ω] = w(ω)∑
ω∈ΩN

w(ω)
.

Since we are concerned only with sequences of states, we will henceforth assume

that transitions of the system are represented by a transition relation t̂ : S × S →

{0, 1}, where t̂(s, s′) ⇔ ∃a ∈ Σ s.t. t(s, a) = s′. For notational convenience, we
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Symbol Meaning

X Set of Boolean variables x1, x2, . . . , xk

S Set of states s1, s2, . . . , s2k−1

ΩN Set of all traces ‘ω’, of length N

t Transition function

w Weight function

Πv Set of all paths ‘π’ in a DD starting at node v

Table 8.1 : Summary of notation

abuse notation and use t(s, s′) for t̂(s, s′), when there is no confusion.

A multiplicative weight function assigns a weight to each state transition, and

defines the weight of a trace as the product of weights of the transitions in the trace.

Formally, let ŵ : S × S → R≥0 be a weight function for state transitions, where

ŵ(si, sj) > 0 if t(si, sj) holds, and ŵ(si, sj) = 0 otherwise. Then, the multiplicative

weight of a trace ω ∈ ΩN is defined as w(ω) =
∏N−1

i=0 ŵ(ω[i], ω[i+1]). The unweighted

uniform sampling problem can be seen to be the special case where ŵ(si, sj) = 1

whenever t(si, sj) holds.

We denote the set of leaves of a decision diagram (DD) t by leaves(t), and the

root of the DD by root(t). We denote the vertices of the DAG by v, set of parents

of v in the DAG by P (v), and value of a leaf v by val(v). A path from a node v to

root(t) in a DD t, denoted as π = v0v1 . . . vh, is defined to be a sequence of nodes

such that v0 = v, vh = root(t) and ∀i vi+1 ∈ P (vi). We use Πv denote the set of

all paths to the root starting from some node v in the DD. For a set V of nodes, we

define ΠV = ∪v∈V Πv. The special set Π represents all paths from all leaves to the

root of a DD. Our notational setup is briefly summarized in Tab. 8.1.
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8.3 Related Work

We did not find any earlier work on sampling traces of sequential circuits with prov-

able uniformity guarantees. As mentioned earlier, constrained random verification

tools [184, 185, 57, 56, 58] permit values of selected inputs to be chosen uniformly (or

with specified bias) from a constrained set at some steps of simulation. Nevertheless,

as shown in Section 8.1, this does not necessarily yield uniform traces.

Arenas et al. [190] gave a fully-polynomial randomized approximation scheme

for approximately counting words of a given length accepted by a Non-deterministic

Finite Automaton (NFA). Using Jerrum et al’s reduction from approximate counting

to sampling [14], this yields an algorithm for sampling words of an NFA. Apart from

the obvious difference of sampling words vs. sampling traces, Arenas et al’s technique

requires the state-transition diagram of the NFA to be represented explicitly, while our

focus is on transition systems that implicitly encode large state-transition diagrams.

Given a transition system, sampling traces of length N can be achieved by sam-

pling satisfying assignments of the propositional formula obtained by “unrolling” the

transition relation N times. Technique for sampling models of propositional formulas,

viz. [29, 30, 31] for uniform sampling and [16, 191, 192] for almost uniform sampling,

can therefore be used to sample traces. The primary bottleneck in this approach is the

linear growth of propositional variables with the trace length and count of Boolean

state variables. We compare our tool with state-of-the-art samplers WAPS [31] and

UniGen2 [192], and show that our approach performs significantly better.

8.4 Algorithms

For clarity, we assume that the length of traces, i.e. N , is a power of 2; the case when

N is not a power of 2 is discussed later. A naive approach would be to use a single

BDD to represent all traces of length N , by appropriately unrolling the transition

system, and then sample traces from the BDD. Such monolithic representations,

however, are known to blow up [49]. Therefore, we use log2N ADDs, where the ith
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ADD (1 ≤ i ≤ log2N) represents the count of 2i-length paths between different states

of the transition system. The ith ADD is constructed from the (i − 1)th ADD by a

technique similar to iterative squaring [193, 194]. A trace is sampled by recursively

sampling states from each ADD according to the weights on the leaves.

The detailed algorithm for constructing ADDs is presented in Algorithm 13. We

assume that the transition relation is defined over 2 copies, viz. X0 and X1, of the

state variables, and that an additional log2N copies, viz. X2 . . . X(log2N)+1, are also

available. In each step of the for loop on line 2, the (i−1)th ADD is squared to obtain

the ith ADD after additively abstracting out X i in line 4. Each ADD ti(X
0, X i, X i+1)

represents the count of 2i-length traces from X0 to X i+1 that pass through X i at the

half-way point. Note that g(X i−1, X i) and g(X i, X i+1) in line 3 are the same ADD,

but with variables renamed. Finally, in line 5, we take the product of the log2N
th

ADD with the characteristic functions for the initial and final states, represented as

ADDs. Although Algorithm 13 correctly computes all ADDs, in practice, we found

that it often scaled poorly for values of N beyond a few 10s. On closer scrutiny, we

found that this was because the ADD t0 (and other ADDs derived from it) encoded

information about transitions from states unreachable in N steps (and hence of no

interest to us). Therefore, we had to aggressively optimize the ADD computations by

restricting (see [195]) each ADD ti with an over-approximation of the set of reachable

states relevant to that ti. We discuss this optimization in detail in Sec. 8.5.

Once the ADDs are constructed, the sampling of the N + 1 states of the trace is

done by Algorithm 22. States ω[0], ω[N/2] and ω[N ] are sampled from the log2N
th

ADD in a call to Algorithm 19 in line 2. Then Algorithm 15 is recursively called to

sample the first and second halves of the trace in lines 3 and 4. In each recursive

call, Algorithm 15 invokes the procedure in Algorithm 19, to sample the state at the

mid-point of the current segment of the trace under consideration, and recurses on

each of the two halves thus generated.

In sampleFromADD (Algorithm 19), the log2N
th ADD is used as-is for sampling



113

(lines 1,2), while other ADDs are first simplified by substituting the values of state

variables in ω[lo] and ω[hi], that have been sampled previously and provided as inputs

to sampleFromADD (lines 3,4). The role of the rest of the algorithm is to sample a

path from a leaf to the root in a bottom-up fashion, with probability proportional

to the value of the leaf. Towards this end, a leaf is first sampled in lines 5-8. We

assume access to a procedure weighted sample that takes as input a list of elements

and their corresponding weights, and returns a random element from the list with

probability proportional to its weight. Once a leaf is chosen, we traverse up the DAG

in the loop on line 9. This is done by iteratively sampling a parent with probability

proportional to the number of paths reaching the parent from the root (lines 10-12).

The quantity |Πv| denotes the number of paths from a node v to the root, and can be

easily computed by dynamic programming. If some levels are skipped between the

current node v and its parent p, then the number of paths reaching the current node

from the parent are scaled up by a factor of 2level(p)−level(v)−1 (line 12). This is because

each skipped level contributes a factor of 2 to the number of paths reaching the root.

Once a parent is sampled, the value of the corresponding state variable is updated in

the trace in lines 13-17, where the procedure getTracePosition is assumed to return

the index of the state (in the trace ω) and the index of the state variable (in the

set X of state variables) corresponding to the parent node. getTracePosition can

be implemented by maintaining a map between the state variables and the variable

order in the DD. The random values for variables in the skipped levels between the

parent and the current node are sampled in lines 18 and 19.

Non Power-of-2 trace lengths When the trace length N is not a power of two,

we modify the given sequential circuit so that the distribution of traces of length

N ′ (> N) of the modified circuit is identical to the distribution of length-N prefixes

of these traces. Conceptually, the modification is depicted in Fig. 8.2. Here, the

“Saturate-at-N” counter counts up from 0 to N and then stays locked at N . Once
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the count reaches N , the next state and current state of the original circuit are forced

to be identical, thanks to the multiplexer. Therefore, the modified circuit’s trace,

when projected on the latches of the original circuit, behaves exactly like a trace of

the original circuit up to N steps. Subsequently, the projection remains stuck at the

state reached after N steps. Hence, by using the modified circuit and by choosing

N ′ = 2d(log2N)e, we can assume w.l.o.g. that the length of a trace to be sampled is

always a power of 2.

Weighted Sampling A salient feature of Algorithms 1-4 is that the same frame-

work can be used for weighted sampling (instead of uniform) as defined in Section 8.2,

with one small modification: if the input t0 to Algorithm 13 is an ADD instead of

a BDD, where the values of leaves are the weights of each transition, then it can

be shown that drawSample will sample a trace with probability proportional to its

weight, where the weight of a trace is define multiplicatively as in Section 8.2.

Algorithm 13 makeADDs(t0, N, f, I)

Input: t0: 1-step transition relation

N : trace length

f : characteristic function of target states

I: characteristic function of initial states

Output: ADDs t1 . . . tlog2 N : 2i-step transition relations ti

1: g ← t0;

2: for i = 1, 2, . . . , log2N do

3: ti(X
0, X i, X i+1)← g(X0, X i)× g(X i, X i+1);

. × is ADD multiplication

4: g ← ∃X i ti; . Additively abstract vars in X i

5: tlog2N ← tlog2N ∧ f(X(log2 N)+1) ∧ I(X0)

6: return t1 . . . tlog2N
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Algorithm 14 drawSample(t1, . . . , tlog2 N)

1: ω ← [] . Initialize empty trace

/* Sample 0, N/2 and N th states from log2N
th ADD */

2: ω[0], ω[N/2], ω[N ]← sampleFromADD(log2N, tlog2 N , 0, N, ω);

/* Sample states 0 . . . N/2 */

3: ω[0 . . . N/2]← drawSample rec((log2N)− 1, 0, N/2, ω);

/* Sample states N/2 . . . N */

4: ω[N/2 . . . N ]← drawSample rec((log2N)− 1, N/2, N, ω);

5: return ω

Algorithm 15 drawSample rec(i, lo, hi, ω, t1, .., tlog2N)

1: mid← (lo+ hi)/2;

2: ·, ω[mid], · ← sampleFromADD(i, ti, lo, hi, ω);

. Sample ω[mid]. (ω[lo], ω[hi] unchanged)

3: ω[lo . . .mid]← drawSample rec(i− 1, lo,mid, ω);

4: ω[mid . . . hi]← drawSample rec(i− 1,mid, hi, ω);

5: return ω

Figure 8.2 : Modified Circuit for Non-Power-of-2 Trace Lengths
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Algorithm 16 sampleFromADD(i, ti, lo, hi, ω)

1: mid← (lo+ hi)/2;

2: if i == log2N then . Use whole ADD for sampling

3: t̂← ti;

4: else . Reduce ADD with states previously sampled

5: t̂← Substitute(ti, ω[lo], ω[hi])

6: wtList← []; . Array for weights

/*Sample a leaf*/

7: for vl ∈ leaves(t̂) do

8: wtList[l]← val(vl) ∗ |Πvl |

9: v ← weighted sample(wtList, leaves(t̂))

/*Sample parents up to root*/

10: while v 6= root(t̂) do

11: for p ∈ P (v) do . Find weights of all parents

12: wtList[p]← 2level(p)−level(v)−1 ∗ |Πp|;

. Weight adjusted for skipped levels

13: p∗ ← weighted sample(wtList, P (v));

14: js, jb ← getTracePosition(p∗, i, lo, hi);

. js is state index, jb is variable bit index

15: if then child(p∗) == v then

16: ω[js][jb]← True

17: else

18: ω[js][jb]← False

19: for each vskipped between p∗ and v do

20: js, jb ← getTracePosition(vskipped, i, lo, hi);

21: ω[js][jb]← random bit() . For skipped vars

22: v ← p∗

23: return ω[lo], ω[mid], ω[hi]



117

8.5 Improved Iterative Squaring

In this section, we present a more efficient version of Alg. 29. To see where gains in

efficiency can be made, note that the tis generated using Alg. 29, encode transitions

that are never used during sampling. For instance, the ADD t(log2N)−1 as constructed

by Alg. 29, is only used by the procedure drawSample for sampling states ω[N/4]

(given ω[0] and ω[N/2]) and ω[3N/4] (given ω[N/2] and ω[N ]). Thus, t(log2N)−1

should only be concerned with states reachable in exactly 0,N/4, N/2, 3N/4 or N

steps from the initial set. However, the t(log2N)−1 constructed by Alg. 29 also contains

information about other 2(log2 N)−1-step transitions from states not reachable in those

many step from the initial set. This information is clearly superfluous and only serves

to increase the size of the ADD. Such information is present in all tis and exists

because the iterative squaring framework of Alg. 29 squares all transitions in the

loop on lines 2-4 regardless of the initial state, final state and reachability conditions.

We give an improved squaring framework, presented in Algs. 17 and 18. The idea is

to first compute (over-approximations of) sets of states reachable in exactly i steps

from the initial set, for 1 ≤ i ≤ N (Alg. 18). We then restrict each ADD ti by the

over-approximations of only those reachable state sets it depends on (Alg. 17).

The set α[i− 1] for 1 ≤ i ≤ log2N in Alg. 18 represents the set that will be used

for restricting the X0 variable set of ti, while the set β[i−1] will be used for restricting

the X i variable set of ti. The (over-approximate) set of states reachable after exactly

j steps from the initial state, denoted rj, is computed in line 5 starting from the initial

set by taking the (over-approximate) image under t0 of the reachable set after j − 1

steps. Computing an exact image is often difficult for large benchmarks, hence an

over-approximation of the image can be used. The literature contains a wide spectrum

of heuristic techniques that can be used to trade-off space for time of computation.

Once rj is computed, we disjoin the appropriate elements of α and β with r in lines

7-11. The special case of (N/2)th reachable set is handled separately in lines 12-13.

After α and β sets are computed, we use them to restrict g and ĝ in lines 3-4 of
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Alg. 17. The restrict operation is the one proposed in [195]. If f = Restrict(g, h)

then f = g wherever h is true, and f is undefined otherwise. This operation can

be more efficient than conjunction, and is sufficient for our purposes as we explicitly

enforce initial state condition in Line 7 of Alg. 17.

Algorithm 17 makeADDs(t0, N, α, β, f, I)

Input: t0: 1-step transition function

N : trace length

f : final-state function

I: initial-state function

α, β: reachable state-sets

Output: ADDs t1 . . . tlog2 N : 2i-step transition relations ti

1: g ← t0;

2: for i = 1, 2, . . . , log2N do

3: ĝ(X i, X i+1)← Restrict(g(X i, X i+1), β[i− 1](X i))

4: g(X0, X i)← Restrict(g(X0, X i), α[i− 1](X0));

5: ti(X
0, X i, X i+1)← g(X0, X i)× ĝ(X i, X i+1);

6: g ← ∃X i ti; . Additively abstract vars in X i

7: tlog2N ← tlog2N ∧ f(X(log2 N)+1) ∧ I(X0)

8: return t1 . . . tlog2N

8.6 Analysis

8.6.1 Hardness of Counting/Sampling Traces

Counting and sampling satisfying assignments of an arbitrary Boolean formula, say ϕ,

can be easily reduced to counting and sampling, respectively, of traces of a transition

system. From classical results on counting and sampling in [9, 13, 14, 15], it follows
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Algorithm 18 computeReachableSets(t0, I)

1: r0 ← I; . Initialize r to be the initial state set

2: α← [I, . . . , I];

. Initialize array of (log2N) initial state functions.

3: β ← [0, . . . , 0];

. Initialize array of (log2N) Boolean 0 functions.

4: for j ∈ {1, . . . , N} do

5: rj ← Im(rj−1, t0) . Find (over approx.) image of r under t0

6: for each i ∈ {0, 1, 2, . . . (log2N)− 2} do

7: if j%(2i+1) == 0 then

8: α[i]← α[i] ∨ rj
9: else

10: β[i]← β[i] ∨ rj
11: break;

12: if j == N/2 then

13: β[(log2N)− 1] = β[(log2N)− 1] ∨ rj

14: return α, β
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that counting traces is #P-hard and uniformly sampling traces can be solved in

probabilistic polynomial time with access to an NP-oracle.

To see how the reduction works, suppose the support of ϕ has n variables, say

x1, . . . xn. We construct a transition system (S,Σ, t, I, F ), where S = {0, 1}n and the

set of state variables is X = {x1, . . . xn}. We let Σ = {0, 1} and define the transition

function t : {0, 1}n×{0, 1} → {0, 1}nas follows: t(x1, . . . , xn, a)[0] = ϕ(x1, . . . , xn) and

t(x1, . . . , xn, a)[1] = t(x1, . . . , xn, a)[2] = . . . = t(x1, . . . , xn, a)[n] = 0, for a ∈ {0, 1}.

In other words, the 0th next-state bit is determined by ϕ regardless of the input

a, while the rest of the next-state bits are always 0. We define I = {0, 1}n and

F = {1000 · · · 0}. It is easy to see that counting/sampling traces of length 1 of this

transition system effectively counts/samples satisfying assignments of ϕ.

8.6.2 Random Walks and Uniform Traces

It is natural to ask if uniform trace-sampling can be achieved by a Markovian random

walk, wherein the outgoing transition from a state is chosen according to a probability

distribution specific to the state. Unfortunately, we show below that this cannot

always be done. Since uniform sampling is a special case of weighted sampling, the

impossibility result holds for weighted trace sampling too.

Consider the transition system in Fig. 8.1. We’ve seen in Section 8.1 that there

are 7 traces of length 4. Hence a uniform sampling would generate each of these

traces with probability 1/7. Suppose, the probability of transitioning to state sj from

state si is given by Pr[(si, sj)]. For uniform sampling, we require Pr[(si, sj)] > 0

if ∃a ∈ Σ. sj = t(si, a), and also
∑

sj : ∃a, sj=t(si,a) Pr[(si, sj)] = 1. Now, consider

the traces ω1 = s0s1s1s1s1 and ω2 = s0s1s1s1s2. Let Pr[(s0, s1)] = c (> 0) and

Pr[(s1, s1)] = d (> 0). This implies that Pr[(s1, s2)] = 1 − d (> 0). Thus, the

probability of sampling ω1 is c.d3. For uniformity, c.d3 = 1/7. Similarly, from ω2, we

get c.d2.(1 − d) = 1/7. From these two equations, we obtain c.d2 = 2/7. Therefore,

d = cd3

cd2 = 1/2. It follows from the equation cd3 = 1/7 that c = 8/7. However, this
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X0 X i

t1 j ∈ {0, 2, 4, 6, ...} j ∈ {1, 3, 5, 7, ...}

t2 j ∈ {0, 4, 8, 12, ...} j ∈ {2, 6, 10, 14, ...}

t3 j ∈ {0, 8, 16, ...} j ∈ {4, 12, 20, ...}

... ... ...

Table 8.2 : Reachable sets rj that X0, X i variables of ti depend on

is not a valid probability measure. Therefore, it is impossible to uniformly sample

traces of this transition system by performing a Markovian random walk.

8.6.3 Correctness of Algorithms

We now turn to proving the correctness of algorithms presented in the previous sec-

tion. We first prove the correctness of the improved iterative squaring framework

(Sec. 8.5). Alg. 18 (lines 8-10) ensures that α[i− 1] is computed as a disjunction of

rj’s for values of j given in the first column and row i of Tab. 8.2, while β[i − 1] is

computed from rj’s for values of j given on the ith row and second column. Therefore,

to show the correctness of Algs. 17 and 18, we show in Lemma 8.1 that the X0 and

X i variable sets of ti will only be instantiated with (over-approximations of) sets of

states reachable in the number of steps given in the appropriate column of Tab. 8.2.

Lemma 8.1. Let Spq denote the set of states that the variable set Xp of tq will be

instantiated with by Alg. 22, when used in conjunction with Algs. 18 and 17. Then

∀s ∈ S0
i , we have s ∈ rj for some j given in column 1 and row i of Tab. 8.2, and

∀s ∈ Sii , we have s ∈ rj for some j given in column 2 and row i of Tab. 8.2.

Proof. We show by induction on i from log2N down to 1. The base case is shown

by the fact that tlog2N is used exactly once by drawSample and the X0 variables are

used only for sampling the initial state while X i is used for sampling ω[N/2]. Thus

S0
log2N

⊆ r0 and S
log2 N
log2 N

⊆ rN/2. The former condition is satisfied by the limits of the
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for-loop in Line 6 of Alg. 18, while the latter condition is satisfied by lines 12-13 of

Alg. 18. This completes the base case.

Now assume that the lemma holds for some i. We will prove that the lemma holds

for i−1 as well. First note that ti is used by sampleFromADD for sampling some state

ω[m] given states ω[m− 2i−1] and ω[m+ 2i−1]. Thereafter, ti−1 is used in 2 cases: (1)

for sampling ω[m+2i−2] given ω[m] and ω[m+2i−1]; and (2) for sampling ω[m−2i−2]

given ω[m] and ω[m − 2i−1]. Thus the X0 variables of ti−1 will be instantiated with

the same states as for X0 variables of ti in case (1). In case (2), X0 vars of ti−1 will be

instantiated with the same states as for X i vars of ti. Thus the states instantiating

X0 vars of ti−1 are the union of the states instantiating X0 and X i variables of ti,

i.e., S0
i−1 = S0

i ∪ Sii . The values in Tab. 8.2 reflect this fact, and by our inductive

assumption S0
i and Sii were computed correctly. This proves that ∀s ∈ S0

i , s ∈ rj for

some j given in column 1 and row i of Tab. 8.2. To complete the inductive argument

we still need to show that ∀s ∈ Sii , s ∈ rj for some j given in column 2 and row i of

Tab. 8.2. To see this, first note that the X i variables of ti will only be instantiated

with states reachable in 2i−1 steps from the states instantiating the X0 variables of ti.

This is reflected in Tab. 8.2. For instance, in row 3 (i = 3), r4, r12, r20 . . . in column 2

are exactly the set of states reachable in 2i−1 = 4 steps from r0, r8, r16 . . . respectively,

in column 1. Since we showed that S0
i has been computed correctly, this completes

the proof.

Let c(l, si, sj) denote the number of traces of length 2l starting in state si and

ending in state sj. Note that c(l, si, sj) =
∑

sk∈S c(l − 1, si, sk) × c(l − 1, sk, sj). We

use the fact that sampleFromADD ensures that the parent of a node v is sampled

independently of the path from an ADD leaf to v chosen so far. Conditional indepen-

dence also holds for whole traces; given the states at two indices in a trace, the states

within the trace segment delineated by the indices are sampled independently of the

states outside the trace segment. The following lemmas characterize the behavior of

the sampling framework (Algs. 22–19).
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Lemma 8.2. For 1 ≤ i ≤ log2N , the ADD ti computed by makeADDs is such that

∀sj1 , sj2 , sj3 ∈ S, we have ti(sj1 , sj2 , sj3) = c(i− 1, sj1 , sj2)× c(i− 1, sj2 , sj3)

Proof. We will prove by induction on i.

Base case: We have ∀sj1 , sj2 ∈ S t0(sj1 , sj2) = c(0, sj1 , sj2) by definition. From line

3 of Alg. 29, we then have ∀sj1 , sj2 , sj3 ∈ S, t1(sj1 , sj2 , sj3) = c(0, sj1 , sj2)×c(0, sj2 , sj3))

Induction step: Assume the lemma holds up to some i, i.e. ∀sj1 , sj2 , sj3 ∈ S ti(sj1 , sj2 , sj3) =

c(i − 1, sj1 , sj2) × c(i − 1, sj2 , sj3). After execution of line 4 of Alg. 29, we will

have ∀sj1 , sj3 ∈ S g(sj1 , sj3) =
∑

sj2
c(i − 1, sj1 , sj2) × c(i − 1, sj2 , sj3) = c(i, sj1 , sj3).

Then in the next iteration of the loop after line 3, we will have ∀sj1 , sj2 , sj3 ∈

S ti+1(sj1 , sj2 , sj3) = c(i, sj1 , sj2)× c(i, sj2 , sj3).

Lemma 8.3. Let Z denote the random path from a leaf to the root of ADD t̂ (see

Alg. 4) chosen by sampleFromADD. Then

∀π ∈ Π Pr[Z = π] =
val(π[0])∑

v∈leaves(t̂) val(v) · |Πv|
(8.1)

Proof. The leaf vl is sampled with probability Pr[π[0] = vl] =
val(vl)·|Πvl |∑

v∈leaves(t̂) val(v)·|Πv | .

Thereafter, each parent p∗ is sampled with probability Pr[π[i] = p∗|π[i − 1] = v] =

|Πp∗ |·2γ∑
p∈P (v) |Πp|·2γ

, where γ = level(p)−level(v)−1. But note that Πv =
∑

p∈P (v)(|Πp|·2γ).

Then, substituting in the identity Pr[Z = π] =
(

Pr
[
π[0]

]
·
∏

i Pr
[
π[i]
∣∣π[i−1]

])
, gives

the lemma.

In the next two lemmas, ‘lo’ and ‘hi’ refer to trace indices passed as arguments to

sampleFromADD, and mid = (lo+ hi)/2.

Lemma 8.4. Suppose sampleFromADD is invoked with i < log2N , ω[lo] = sj1

and ω[hi] = sj3. Let M denote the random state returned by sampleFromADD for

ω[mid]. Then for all sj2 ∈ S, we have Pr
[
M = sj2

∣∣ ω[lo] = sj1 , ω[hi] = sj3
]

=
c(i−1,sj1 ,sj2 )×c(i−1,sj2 ,sj3 )

c(i,sj1 ,sj3 )



124

Proof. We note that for any ADD ti s.t. i < log2N , we reduce the ADD by sub-

stituting ω[lo], ω[hi] in line 4 of Alg. 19. In the resultant ADD t̂, each paths from

root to leaf yields a valuation for ω[mid]. Therefore, if π is the path traversed in

t̂ corresponding to some state sj2 , then Pr
[
ω[mid] = sj2

∣∣ω[lo] = sj1 , ω[hi] = sj3
]

=

Pr[Z = π]. We now need to prove that the R.H.S. of Eqn. 8.1 is the same as the

desired conditional probability expression. In Eqn. 8.1, the numerator val(π[0]) =

ti(sj1 , sj2 , sj3) = c(i−1, sj1 , sj2)× c(i−1, sj2 , sj3), by Lemma 8.2. The denominator of

Eqn. 8.1 is
∑

v∈leaves(t̂)(val(v) ∗ |Πv|) =
∑

sj2
c(i− 1, sj1 , sj2)× c(i− 1, sj2 , sj3) which

is c(i, sj1 , sj3).

Lemma 8.5. Let sampleFromADD be invoked with i = log2N , and let L, M and

H denote the random states returned for ω[lo], ω[mid] and ω[hi] respectively. Then

for all sj1 , sj2 , sj3 ∈ S s.t. I(sj1) and f(sj3) hold, we have Pr
[
(L = sj1) ∧ (M =

sj2) ∧ (H = sj3)
]

=
c(i−1,sj1 ,sj2 )×c(i−1,sj2 ,sj3 )

|ΩN |

Proof. By definition, |ΩN | =
∑

sj1 ,sj3
c(N, sj1 , sj3), when sj1 |= I and sj3 |= f . The

rest of the proof is similar to that of Lem. 8.4.

Theorem 8.6. Let Y be a random trace returned by an invocation of drawSample.

For all ω ∈ ΩN , we have Pr[Y = ω] = 1
|ΩN |

.

Proof. Recursively halving ω, we get Pr[Y = ω] = Pr[(ω[0] = sj1) ∧ (ω[N/2] =

sj2) ∧ (ω[N ] = sj3)] · Pr[(ω[N/4] = sj4)|(ω[0] = sj1) ∧ (ω[N/2] = sj2)] · Pr[(ω[3N/4] =

sj5)|(ω[N/2] = sj2) ∧ (ω[N ] = sj3)] . . . Substituting values in the RHS from Lemmas

8.4 and 8.5, we get the result by noting that ∀sj1 , sj2 ∈ S c(0, sj1 , sj2) ∈ {0, 1} since

the transition system is deterministic.

8.7 Empirical Evaluation

We have implemented our algorithms in a tool called TraceSampler. The objective
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of our empirical study was to compare TraceSampler∗ with other state-of-the-art ap-

proaches in terms of number of benchmarks solved as well as speed of solving.

Experimental Setup As noted in Section 8.3, UniWit [16], UniGen [191] and

UniGen2 [192] are state-of-the-art tools for almost uniform sampling and SPUR [29],

KUS [30] and WAPS [31] are similar tools for uniform sampling of SAT witnesses.

We compare TraceSampler with UniGen2 and WAPS in our experiments, since these

are currently among the best almost-uniform and uniform samplers respectively, of

SAT witnesses. We invoke both WAPS and UniGen2 with default settings. Although

UniGen2 is capable of operating in parallel, we invoke it in serial mode to ensure

fairness of comparison.

We ran all our experiments on a high performance cluster. Each experiment had

access to one core on an Intel Xeon E5-2650 v2 processor running at 2.6 GHz, with

4GB RAM. We used GCC 6.4.0 for compiling TraceSampler with O3 flag enabled,

along with CUDD library version 3.0 with dynamic variable ordering enabled. We

set a timeout of 7200 seconds for each experiment. For experiments that involved

converting benchmarks in Aiger format to BDD (explained below), we allotted 3600

seconds out of 7200 exclusively for this conversion. We attempted to generate 5000

samples in each instance. We called an experiment successful or completed, if the

sampler successfully sampled 5000 traces within the given timeout.

Benchmarks We used sequential circuit benchmarks from the Hardware Model

Checking Competition [40] and ISCAS89 [196] suites. Each benchmark represents

a sequential circuit in the And-Inverter Graph (AIG) format. In general, primary

outputs of such a circuit can indicate if target states have been reached, and can

be used to filter the set of traces from which we must sample. In our experiments,

however, we ignored the primary outputs, and sampled from all traces of a given

∗Code available at https://gitlab.com/Shrotri/tracesampler

https://gitlab.com/Shrotri/tracesampler
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length N starting from the all-zero starting state. We attempt uniform sampling of

traces in our experiments, as the benchmarks do not provide weights for transitions.

As mentioned in Section 8.2, we need to existentially quantify the primary inputs

from the transition functions to get the transition relations. This is done either

explicitly or implicitly depending on the sampler to be used. TraceSampler requires

the transition relation t in the form of a BDD while WAPS and UniGen2 require a

CNF formula. We used a straightforward recursive procedure for converting t (as

AIG) to a BDD. We then quantified out the primary inputs using library functions in

CUDD. For converting t to CNF there were two choices: (1) by obtaining the prime

cover using a built-in operation in CUDD, or (2) using Tseitin encoding to convert

the AIG to CNF by introducing auxiliary variables. The CNF obtained from the first

method has no auxiliary variables that need to be existentially quantified; hence it

can be used with WAPS and the D4 compiler, which does not support existential

quantification.† In contrast, the second method can be used in conjunction with

UniGen2, since the auxiliary variables need to be projected out.

Within the available time and memory, we obtained a total of 310 pre-processed

AIG files, out of which 102 could be converted to BDDs with primary inputs existen-

tially quantified out. The number of latches for these 102 benchmarks ranged between

5 and 175, and the median number of latches was 32. The distribution of number of of

latches is depicted in Fig. 8.3. We restricted the start state to be all-zeros since this

is implicit in the AIG format. For each benchmark, we attempted to sample traces

with lengths 2, 4, 8, 16, 32, 64, 128 and 256. We chose this range of trace lengths

since a vast majority of benchmarks in HWMCC-17 (particularly, benchmarks in

the DEEP category) required bounds within 256 [197]. Further, we observed that

none of the tools were able to consistently scale beyond traces of length 256. We

refer to a benchmark and a given trace length as an ’instance’. We thus generated

†WAPS also can work with the DSharp compiler, which supports existential quantification. How-

ever, in our experiments we found that DSharp provided incorrect answers.
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Figure 8.3 : Distribution of benchmark sizes (number of latches)

102 × 8 = 816 instances for BDD based approaches. For CNF based approaches,

the unrolling was done by appropriately unrolling the transition relation. Note that

the first CNF-based approach was applicable to only 102 benchmarks that could be

converted to BDDs, while the direct conversion from AIG to CNF was technically

possible for all 310 benchmarks. However, we primarily report on the 816 instances

even for AIG-encoded CNFs. We discarded formulas with more than 106 clauses, as

the files became too large.

Results In our experiments we found that UniGen2 fared better with formulas en-

coded from BDDs, vis-a-vis formulas encoded directly from AIGs. All reported results

are, therefore, on BDD-encoded formulas. We only report on instances with at least

100 distinct traces of the given length, since trace sampling can be trivially imple-

mented by enumerating traces, if the trace-count is small.

We consistently found that TraceSampler outperformed both WAPS and UniGen2

by a substantial margin. We present a comparison of the performance of the 3 tools

on the 816 instances where BDD construction succeeded. Figure 8.5 shows a cactus

plot of the number of experiments completed in the given time, with the number of



128

0 50 100 150

Number of latches

2

4

8

16

32

64

128

256

M
a
x
 S

a
m

p
le

 L
e
n
g
th

UniGen2

WAPS

TraceSampler

Figure 8.4 : Length of longest trace sampled vs. number of latches for each benchmark

instances on x–axis and the total time taken on y–axis. A point (x, y) implies that

x instances took less than or equal to y seconds to solve. TraceSampler is able to

complete 502 experiments out of 816 – almost 200 more than WAPS and 350 more

than UniGen2.

TraceSampler was also fastest on the majority of instances. Among a total of 503

instances on which at least one sampler succeeded, TraceSampler was fastest on 446

(88.7%) while WAPS and UniGen2 were fastest on 33 (6.5%) and 24 (4.8%) respec-

tively. For instances on which both tools were successful, we found that on average

(geometric mean) TraceSampler offered a speedup of 25× compared to UniGen2 and 3

relative to WAPS. Overall, TraceSampler was able to sample traces 3.5 times longer

on average (geometric mean) as compared to WAPS and 10 times longer as compared

to UniGen2. Further, TraceSampler is able to sample traces of length 256 from 52

benchmarks, while WAPS and UniGen2 are able to sample 256-length traces from 12

and 3 benchmarks respectively. Fig. 8.4 depicts the distribution of the maximum

length of traces each algorithm is able to sample from, relative to the size (number

of latches) of the corresponding benchmarks. It can be seen that TraceSampler is



129

0 200 400 600 800

Number of benchmarks solved

0

1000

2000

3000

4000

5000

6000

7000

T
im

e
 (

in
 s

e
c
o
n
d
s
)

TraceSampler

WAPS

UniGen2

Figure 8.5 : Performance Comparison of TraceSampler with WAPS and UniGen2.

generally able to sample longer traces from larger benchmarks.

WAPS and TraceSampler proceed in two phases — the compilation phase where

a d-DNNF or ADDs are constructed, and the sampling phase where the constructed

structures are traversed. When only considering the time required for compilation,

TraceSampler offered speedup factor of 16 compared to WAPS.

Output Distribution While Theorem 8.6 guarantees uniformity of distribution of

traces generated by TraceSampler, we performed a simple experiment to compare the

actual distribution of traces generated by TraceSampler with that generated by WAPS

– a perfectly uniform sampler. The instance we selected had 8192 distinct traces.

We generated 106 traces samples using both TraceSampler and WAPS, computed

the frequency of occurrence of each trace, and grouped traces occurring with the

same frequency. This is shown in Fig. 8.6 where a point (x, y) indicates that x

distinct traces were generated y times. It can be seen that the distributions generated

by TraceSampler and WAPS are practically indistinguishable, with Jensen-Shannon

distance 0.003. Similar trends were observed for other benchmarks as well.
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Comparison with ApproxMC3 The UniGen series of samplers are based on the

approximate counting tool ApproxMC. At the time of writing this paper, the latest

version of ApproxMC, called ApproxMC3, had not been incorporated into UniGen. In

order to obtain an idea of the kind of performance gains one can expect from UniGen

with updated counting sub-modules, we ran experiments to count the number of traces

of a given length with ApproxMC3. TraceSampler was able to sample traces 5× longer

than what ApproxMC3 could count, while providing 17× speedup, on average. Thus,

on benchmarks where BDD construction was successful, TraceSampler was clearly the

best choice. However, ApproxMC3 was able to count the number of 8-long traces in

62 cases out of 208 in which BDD construction failed. Yet, the time required for

sampling using UniGen2 usually far exceeds that required to count, as the counting

subroutine is invoked multiple times for obtaining the desired number of samples. The

times reported for ApproxMC3 therefore, are a generous lower-bound on the times that

would be required for sampling.

Discussion Our experiments show that TraceSampler is the algorithm of choice for

uniformly sampling traces and is even able to outperform the state-of-the-art model
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counter. We consistently observed that most of the time used for ADD construction is

spent in dynamic variable reordering; given a good variable order, ADD construction

is usually very fast. In industrial settings, a good variable order may be available for

the circuits of interest. In addition, compilation can often be done ’off-line’ resulting

in its cost getting amortized over the generated samples. In this light, the compilation

time speedup of TraceSampler relative to WAPS is encouraging.

A drawback of using BDDs and ADDs is that they often blow-up in size. Indeed,

we found that conversion of AIG to BDD failed on 208 benchmarks. Nevertheless, we

found that UniGen2 was also unable to finish sampling a single instance (with trace

length 8) of these 208 benchmarks, as well. This indicates that the problem may lie

deeper in the transition structure, rather than in the variable order.

It is worth noting that CRV runs typically span hundreds of thousands of clock cy-

cles, while we (and other approaches that provide uniformity guarantees) can sample

traces of a few hundred transitions at present. This is because trace sampling requires

solving global constraints over the entire length of the trace, while in CRV, local con-

straints over short segments of an otherwise long trace need to be solved. We believe

these are complementary strengths that can be used synergistically. Specifically, a

CRV tool can be used to drive a system into a targeted (possibly bug-prone) corner

over a large number of clock cycles. Subsequently, one can ensure provably good

coverage of the system’s runs in this corner by uniformly sampling traces for the next

few hundred cycles. We believe this synergy can be very effective in simulation-based

functional verification.

8.8 Chapter Summary

In this paper, we introduced a symbolic algorithm based on ADDs for sampling traces

of a transition system (sequential circuit) with provable uniformity (or bias) guaran-

tees. We demonstrated its scalability vis-a-vis competing SAT-based approaches that

provide similar guarantees, through an extensive empirical study. Our main contribu-
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tion related to Constrained Sampling is to demonstrate domain-specific factorization,

coupled with ADD-compilation to yield fast amortized solution sampling. Specifically,

our idea of enhanced iterative squaring implicitly encodes a factored representation

for the problem of trace sampling, thereby underscoring the benefits domain-driven

approaches.



133

Chapter 9

Sampling Solutions of Low-Treewidth CNF

Formulas

9.1 Introduction

Given a Boolean formula ϕ over n variables and a user-defined weight function w

assigning a non-negative real weight to all 2n assignments, the problem of weighted

sampling is to randomly generate an assignment that satisfies ϕ with probability

proportional to the weight of the assignment. If the weight function is uniform over all

assignments, then the problem is called uniform sampling. The problems of uniform

and weighted sampling have diverse applications in various domains like probabilistic

inference [18], testing and verification [19, 20, 62].

As noted in Chapter 6, there is a deep connection between sampling and the

problem of model counting: given an algorithm for counting the number of solutions

of a given formula, it is possible to generate uniform samples with polynomially

many queries to the counter [14]. Consequently, a number of sampling tools have

been developed in recent years leveraging advances in model counting [29, 30, 31].

For example, the state-of-the-art sampling tool, WAPS [31], is based on knowledge

compilation (KC) approaches to model counting. The key idea of KC approaches

is to compile the input formula into a succinct data structure (e.g., a d-DNNF for

WAPS) which allows for fast sampling (e.g., through a Markovian random walk on a

d-DNNF).

Recently, a line of model counting work that leverages dynamic programming has

evolved in parallel to KC approaches [198, 49, 59, 199]. It was shown that by lever-

aging tree decompositions and datastructures known as Algebraic Decision Diagrams
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(ADDs) [50], it is possible to perform model counting extremely efficiently on formulas

with low treewidth [200, 59]. This property of having low treewidth has been noted

to be common in many real-world benchmarks [201]. For low-treewidth instances,

the tool DPMC was shown [59] to outperform state-of-the-art d-DNNF-based tools like

d4 [27]. d4 is also the d-DNNF compiler used in the sampler WAPS.

While this synergistic interplay between counting, sampling and KC has been

profitable for d-DNNF-based tools, this interplay has not been leveraged for ADD-

based dynamic programming algorithms like DPMC. The question left unanswered is:

can we perform sampling by exploiting treewidth using dynamic programming and

ADDs?

In this chapter, we present our work where we answered this question in the pos-

itive. Our algorithm, DPSampler, operates in three phases. In the first phase an

execution plan in the form of a project-join tree is computed, based on the tree de-

composition of the input formula. In second phase, DPSampler compiles the input

CNF into a succinct Tree-of-ADDs representation based on the plan generated in first

phase. In third phase, the tree is traversed to generate a random sample. This decou-

pling of planning, compilation and sampling phases enables usage of various libraries

for each purpose in a black-box fashion and makes it trivial to parallelize. Further,

our novel ADD-sampling algorithm avoids the need for expensive dynamic memory

allocation required in previous work [62]. Extensive experiments over diverse sets

of benchmarks arising from applications in AI show DPSampler is more scalable and

versatile than existing approaches. The contributions of our work can be summarized

as follows:

1. DPSampler, the first weighted and uniform sampler based on dynamic program-

ming that is able to exploit tree decompositions;

2. An “in-place” ADD-sampling algorithm that avoids dynamic memory allocation

and deallocation; and
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3. An empirical study that demonstrates that DPSampler has strong performance

on diverse benchmarks.

9.2 Preliminaries

Boolean formulas and Pseudo-Boolean Functions. A pseudo-Boolean function

over a set X of Boolean variables is a function f : {0, 1}X → R, where {0, 1}X

denotes the set of all possible assignments to the variables in X. For notational

convenience, we sometimes denote an assignment ω ∈ {0, 1}X to be a set of literals

i.e., ω =
⋃
x∈X{litx} where litx is either x (x assigned to true) or ¬x (x assigned to

false). If Y ⊂ X, and ω ∈ {0, 1}X then we denote the restriction of ω to the variables

in Y as ωY .

A Boolean formula ϕ over variables X represents a pseudo-Boolean function over

X, denoted [ϕ] : {0, 1}X → R, where for all ω ∈ {0, 1}X , if ω satisfies ϕ i.e. ω |= ϕ,

then [ϕ](ω) ≡ 1 else [ϕ](ω) ≡ 0. In a Boolean formula, a clause is a non-empty

disjunction of literals. A CNF formula is a Boolean formula consisting of a non-

empty set (conjunction) of clauses.

Operations on pseudo-Boolean functions include product and projections. We

define product as follows.

Definition 9.1 (Product). Let X and Y be sets of Boolean variables. The product of

functions f : {0, 1}X → R and g : {0, 1}Y → R is the function f · g : {0, 1}X∪Y → R

defined for all ω ∈ {0, 1}X∪Y by (f · g)(ω) ≡ f(ωX) · g(ωY ).

Product generalizes conjunction: if ϕ and ψ are propositional formulas, then

[ϕ] · [ψ] = [ϕ ∧ ψ].

Next, we define (additive) projection, which marginalizes a single variable.

Definition 9.2 (Projection). Let X be a set of Boolean variables and x ∈ X. The

projection of a function f : {0, 1}X → R w.r.t. x is the function
∑

x f : {0, 1}X\{x} →

R defined for all ω ∈ {0, 1}X\{x} by (
∑

x f) (ω) ≡ f(ω ∪ {¬x}) + f(ω ∪ {x}).
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Note that projection is commutative, i.e.,
∑

x

∑
y f =

∑
y

∑
x f for all variables

x, y ∈ X and functions f : {0, 1}X → R. Given a set X = {x1, x2, . . . , xn}, define∑
X f ≡

∑
x1

∑
x2
. . .
∑

xn
f . Our convention is that

∑
∅ f ≡ f .

Weighted Sampling and Counting This paper is concerned with the problem

of weighted sampling:

Definition 9.3 (Weighted Sample). Let X be a set of Boolean variables, ϕ be a

Boolean formula over X, and w : {0, 1}X → R≥0 be a pseudo-Boolean function (called

the weight function).

A random variable S with sample space {0, 1}X is a w-weighted sample of ϕ if,

for all ω ∈ {0, 1}X ,

Pr[S = ω] =

w(ω)/w(ϕ) if ω |= ϕ

0 if ω 6|= ϕ

where w(ϕ) ≡
∑

ω|=ϕw(σ) is a normalization factor.

If w is a constant function, then a w-weighted sample of ϕ is also called a uniform

sample of ϕ. The normalization factor w(ϕ) =
∑

ω|=ϕw(σ) is well-studied indepen-

dently and is known as the weighted model count of ϕ w.r.t. w.

We focus on sampling with respect to literal-weight functions, which are weight

functions that can be expressed as products of weights associated with each literal:

Definition 9.4 (Literal-Weight Function). A pseudo-Boolean function w : {0, 1}X →

R≥0 is a literal-weight function (over X) if there exist w(x), w(¬x) ∈ R≥0 for each

x ∈ X such that, for all ω ∈ {0, 1}X ,

w(ω) =
∏
x∈X
ω(x)=1

w(x) ·
∏
x∈X
ω(x)=0

w(¬x).

For ease of exposition, we assume that all literal weights are normalized so that

w(x) + w(¬x) = 1 for all x, which does not affect the sampling probabilities.
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If w : {0, 1}X → R≥0 is a literal-weight function and X ′ ⊆ X, we use w(X ′) as

shorthand for the pseudo-Boolean function w(X ′) : {0, 1}X′ → R≥0 defined for all

ω ∈ {0, 1}X′ by w(X ′)(ω) =
∏

x∈X′
ω(x)=1

w(x) ·
∏

x∈X′
ω(x)=0

w(¬x).

Graphs For a graph G, we denote the set of vertices/nodes by V(G) and set of

edges by E(G). We denote graphs which are trees by T and the leaves of T as L(T ).

A rooted tree (T, r) is a tree T together with a distinguished root node r ∈ V(T ).

The children of a node n ∈ V(T ) in a rooted tree are denoted C(n), and C(n) = ∅

if n ∈ L(T ). The set of ancestors of n are denoted as A(n). Note that the nodes in

C(n) are necessarily adjacent to n in T , while a node in A(n) is adjacent to n only if

it is the (unique) parent of n.

9.3 Related Work

[14] showed a deep connection between counting and sampling; in particular they

showed that uniform sampling can be polynomially reduced to exact and approxi-

mate counting. [15] demonstrated a technique to generate uniform samples related

to an NP-Oracle in probabilistic polynomial time. These approaches, however, are

known to scale poorly on real world instances [76]. Similarly, BDD-based sampling

techniques [202] have also been shown to suffer from scalability issues [203].

The first exact uniform sampling tool to scale on non-trivial benchmarks was

SPUR [29], which generated samples on-the-fly without explicit compilation. Subse-

quently, the sampler KUS [30], which relied on d-DNNF compilation was shown to

significantly outperform SPUR. The tool WAPS [31] extended KUS to support weighted

and projected sampling, and was shown to convincingly outperform even the approx-

imate weighted sampling tool WeightGen [192]. To the best of our knowledge, WAPS

is currently the state-of-the-art exact weighted sampler. In Sec. 9.6 we perform an

extensive empirical comparison between DPSampler and WAPS.

There is also an extensive line of work on approximately-uniform sampling, in
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which the sampling probability approximates the uniform one. The UniGen line of

algorithms [191, 192, 35] provides strong guarantees on the “almost-uniformity” of

generated samples, while tools such as QuickSampler [204] and XOR-Sample [205]

provide weak or no guarantees on the output distribution. In this work, we focus

exclusively on perfect (that is, no approximation) sampling.

Starting with the seminal work of [122], a wide variety of tractable representa-

tions of Boolean functions such as d-DNNFs and SDDs [206], along with variants of

OBDDs [124], have been explored in literature under the umbrella of Knowledge Com-

pilation. Additionally, [131] analyzed pseudo-Boolean representations including Alge-

braic Decision Diagrams [50]. A number of compilers have also been developed such

as d4 [27], C2D [26], dSharp [127] etc. The compiled form generated by DPSampler

is closely related to the Tree-of-BDDs (ToB) language developed in [134, 135] and

further analyzed in [136]. We note, however, that DPSampler actually compiles a

Tree-of-ADDs with some stark differences to the variants of ToB anaylzed in [136]:

(1) ToBs are compiled by a two-pass algorithm, while DPSampler requires only one

pass; and (2) Model counting query can be performed in polynomial time on Tree-of-

ADDs as generated by DPSampler, while it is unknown whether model counting can

be performed in polynomial time for ToBs. A complete analysis of Tree-of-ADDs á

la [136] is an interesting direction for fuutre work.

9.4 Sampling from an ADD

We first consider the problem of sampling an assignment to the variables of a single

ADD, given a partial assignment to some of its variables, with probability proportion-

ate to the weight of the assignment. We use this as a subprocedure in the sampling

phase of DPSampler.

Such an ADD-sampling algorithm was previously presented in [62], in the con-

text of a different problem of trace-sampling, as discussed in the previous chapter.

While the algorithm of [62] could be used as-is for our purpose, it suffers from serious
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Algorithm 19 sampleFromADD(f, w, ω)

Input: f : An ADD (X,S, ρ,G)

Input: w: A literal-weight function over X

Input: ω: An assignment to Z ⊆ X

Output: ω′: An assignment to Y = X \ Z

1: v ← root(f)

2: computeWeights(f, w, v, ω,∅)

3: ω′ ← ∅

4: while v 6∈ leaves(f) do

5: if xv ∈ ω then . xv ∈ Z and assigned True

6: vnext ← v.then

7: else if ¬xv ∈ ω then . xv ∈ Z and assigned False

8: vnext ← v.else

9: else . xv ∈ Y i.e. unassigned

10: t wt← v.then.wt× w(xv)

11: e wt← v.else.wt× w(¬xv)

12: rand bit← weighted sample(t wt, e wt)

13: if rand bit == True then

14: ω′ ← ω′ ∪ {xv} . Assign xv to True

15: vnext ← v.then

16: else

17: ω′ ← ω′ ∪ {¬xv} . Assign xv to False

18: vnext ← v.else

19: for x ∈ X \ Z s.t. ρ(xv) < ρ(x) < ρ(xvnext) do

20: rand bit← weighted sample(w(x), w(¬x))

21: if rand bit == True then

22: ω′ ← ω′ ∪ {x} . Assign x to True

23: else

24: ω′ ← ω′ ∪ {¬x} . Assign x to False

25: v ← vnext

26: return ω′
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Algorithm 20 computeWeights(f, w, v, ω, visited)

Input: f : An ADD (X,S, ρ,G)

Input: w: A literal-weight function over X

Input: v: A node in f

Input: ω: An assignment to Z ⊆ X

Input: visited: Set of ADD nodes previously visited by this function; visited is

modified in each recursive call.

Output: v.wt: The weight of v (see Lemma 9.5)

1: if v ∈ visited then

2: return v.wt

3: visited← visited ∪ {v}

4: if v ∈ leaves(f) then

5: return v.val

/* xv is the variable labeling node v */

6: if xv ∈ ω then . xv ∈ Z and assigned True

7: v.wt← computeWeights(f, w, v.then, ω, visited)

8: else if ¬xv ∈ ω then . xv ∈ Z and assigned False

9: v.wt← computeWeights(f, w, v.else, ω, visited)

10: else . xv is unassigned

11: t wt← computeWeights(f, w, v.then, ω, visited)

12: e wt← computeWeights(f, w, v.else, ω, visited)

13: v.wt← t wt× w(xv) + e wt× w(xv)

14: return v.wt
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drawbacks in practice, in the context of CNF-sampling. In particular, that algorithm

traversed the ADD from leaves to root in order to compute the sampling probabilities

for each variable. For this, it was necessary to first eliminate all the variables from

the input ADD that were already assigned, through an operation called cofactor-

ing [207]. Although cofactoring is linear in the size of the ADD in theory, it entails

the construction of a separate ADD, which may incur significant overhead in prac-

tice. In the present context, this operation would have to be performed hundreds to

thousands of times per sample, depending on the size of the project-join tree, making

sampling expensive and negating the benefits of cost amortization through compila-

tion. We highlight that in the context of trace-sampling, this slow down was vastly

overshadowed by the time taken to compile the ADDs. As a result, the performance

of TraceSampler was not affected adversely.

We present here a faster top-down algorithm for ADD-sampling. Procedure

sampleFromADD (Alg. 19), takes as input an ADD f along with a partial assign-

ment ω to some variables in the support of f , and randomly samples values for the

unassigned variables in f ’s support. In the next section, we show how the same

algorithm can be used to sample an assignment from a Tree-of-ADDs recursively.

sampleFromADD first calls procedure computeWeights (line 2 of Alg. 19) for com-

puting the sampling weights for each variable, and then performs a root-to-leaf ran-

dom walk using the computed weights, sampling values for unassigned variables in

the process. We assume that each node v of an ADD has an additional variable v.wt,

for storing weights.

Procedure computeWeights (Alg. 20) computes, for each node v in an ADD f ,

the cumulative weight of all the partial assignments in the sub-ADD rooted at v.

This cumulative weight is computed recursively using the values of v’s children (see

Lemma 9.5). This weight is stored in the variable v.wt for retrieval later. Lines 1-3

ensure that each node in the ADD is processed only once, thereby ensuring running

time linear in the size of the ADD. If a variable xv at a node v is already assigned,
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then the checks on lines 6 and 8 ensure that only the branch corresponding to the

assigned value is explored. If xv has not been previously assigned then both branches

are recursively explored (lines 10-13). In this case, the weight of branch is computed

as the weight of the child node scaled by the corresponding literal-weight of xv.

Lemma 9.5. Let wt be the return value of computeWeights invoked on an ADD

f = (X,S, ρ,G) with weight function w, an unvisited node v and an assignment

ω to the variables Z ⊆ X. Let Y = X \ Z be the set of unassigned variables,

Y≥v = {x ∈ Y | ρ(x) ≥ ρ(xv)}, and Z≥v = {x ∈ Z | ρ(x) ≥ ρ(xv)}. Then we have

wt =
∑
Y≥v

w(Y≥v) · fv[ωZ≥v ] (9.1)

The weights computed by computeWeights are used for performing a top-down

random walk on the ADD in procedure sampleFromADD in lines 3-27. If the variable

xv at a node v has already been assigned, then in lines 5-8, the appropriate branch

is taken. Otherwise, in lines 9-18, a value for xv is sampled. We assume access to

a procedure weighted sample that takes two positive real numbers, say a and b as

parameters, and returns a random bit c such that Pr[c = true] = a
a+b

. In lines 15

and 18, the appropriate branch is chosen, depending on the value just sampled for

xv. Lines 19-26 sample values for skipped variables between v and the chosen child

vc, using the corresponding literal weights.

Lemma 9.6. Let sampleFromADD be invoked on an ADD f = (X,S, ρ,G), weight

function w, and an assignment ω to the variables Z ⊆ X. Let Y = X \ Z be the

set of unassigned variables. Then sampleFromADD returns an assignment ω′ to the

variables in Y with probability

Pr[Y = ω′|Z = ω] =
w(ω′) · f [ω′, ω]∑
Y w(Y ) · f [ω]

(9.2)
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Algorithm 21 DPSampler(X,ϕ,w, n)

Input: X: A set of variables

Input: ϕ: A CNF formula over X

Input: w: A literal-weight function over X

Input: n: The number of weighted samples to generate

Output: ω1, · · · , ωn: for each 1 ≤ i ≤ n, ωi is an independent w-weighted sample

of ϕ.

1: T ← Plan(ϕ) . See Sec. 9.5.1

2: S ← Compile(T ) . See Sec. 9.5.2

3: for each i in 1 ≤ i ≤ n do

4: ωi ← drawSample(T , root(T ), S, w,∅) . Alg. 22; see Sec. 9.5.3

5: return ω1, · · · , ωn

9.5 Sampling from a Boolean formula

We now present our algorithm DPSampler, a three-phase algorithm for exact weighted

sampling, in Alg. 21. While we use existing techniques [59] for the first phase (plan-

ning), the other phases of DPSampler (compilation and sampling) are novel.

First, in the planning phase, a data-structure known as a project-join tree [59]

is computed which serves as a blueprint for subsequent computations. Next, in the

compilation phase, a Tree-of-ADDs is computed through a sequence of product and

additive quantification, as prescribed by the project-join tree. Lastly, in the sampling

phase a random assignment to all variables is sampled by recursively invoking the

ADD-sampling algorithm from Section 9.4 on each ADD in the tree.

The following theorem asserts the correctness of Alg. 21.

Theorem 9.7. Let X be a set of Boolean variables, ϕ be a CNF formula over X, w

be a literal-weight function over X, and n be a positive integer. If σ1, · · · , σn is the

sequence of random assignments returned by DPSampler(X, ϕ, w, n), then σ1, · · · , σn
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are i.i.d. w-weighted samples of ϕ.

A full proof of Theorem 9.7 appears in the appendix.

9.5.1 Planning

In the planning phase, the goal is to compute a project-join tree from an input CNF

formula.

Project-join trees were originally used in [59] as part of a unifying framework

called DPMC for model counting. The key idea is to represent the model counting

computation as a rooted tree, called a project-join tree, where leaves correspond to

clauses, and internal nodes correspond to projections. Formally:

Definition 9.8 (Project-Join Tree). Let ϕ be a CNF formula over a set of variables

X. A project-join tree of ϕ is a tuple T = (T, r, γ,X) where

• T is a tree with root r ∈ V(T ),

• γ : L(T )→ ϕ is a bijection from the leaves of T to the clauses of ϕ, and

• X : {Xc | ∀c ∈ V(T ) \ L(T ), Xc ⊆ X} labels each internal node c with subsets

of X.

T must satisfy the following two properties.

1. The set X is a partition of X.

2. Let n ∈ V(T ) be an internal node, x be a variable in Xn ∈ X, and c be a clause

of ϕ. If x ∈ Vars(c), then the leaf node γ−1(c) is a descendant of n.

The model counting algorithm DPMC that was presented by [59] for model counting

of an input CNF formula ϕ is similarly modular to our algorithm and consists of two

phases. Firstly, in the planning phases DPMC constructs a project-join tree T of ϕ.

Secondly, in the execution phases DPMC computes the model count of ϕ by traversing T
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from leaves to root, multiplying clauses according to the tree structure and additively

projecting out variables according to X. We use the same planning phase from DPMC as

the first phase of DPSampler. Since we are not interested in computing the complete

model count, we do not need the execution phase of DPMC for DPSampler.

DPMC supports two major ways to construct project-join trees in the planning

phase: either from tree-decompositions of the primal graph, or from various heuristics.

Since [59] found that tree decompositions of the primal graph were the most efficient

technique in practice for the planning phase in the case of model counting, we also

use tree decompositions to generate project-join trees in DPSampler.

9.5.2 Compilation

In the compilation phase, we assume that a project-join tree T has already been

constructed using any of the methods presented in [59]. Our goal is to construct a a

tree-of-ADDs using T .

A tree-of-ADDs is a compiled representation of ϕ from which solutions of ϕ can

be sampled. Formally:

Definition 9.9. Let T = (T, r, γ,X) be a project-join tree and let w be a literal-weight

function. A tree-of-ADDs for T is a set of pseudo-Boolean functions S = {fn : n ∈

V(T )} defined recursively by, for each n ∈ V(T ):

fn ≡

[γ(n)] if n ∈ L(T )∏
c∈C(n)

∑
Xc f c · w(Xc) if n ∈ V(T ) \ L(T )

To ease notation, within Def. 9.9 we define X` ≡ ∅ for each ` ∈ L(T ). Recall

that [γ(n)] is the pseudo-Boolean function where [γ(n)](ω) = 1 if ω |= γ(n) and 0

otherwise.

Note that, in contrast to the w-evaluation of [59] used for model counting, at

each internal node n ∈ V(T ) \ L(T ) the variables in Xn are not abstracted out at
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the function fn within the tree-of-ADDs. This is because we use fn in the sampling

phase in order to sample values for the variables in Xn.

We define a procedure Compile(T , w) following Def. 9.9. Compile takes a project-

join tree T as input and recursively applies product and projection operations to

construct a tree-of-ADDs for T . The full algorithm for Compile appears in Appendix

C.1. While we represent the functions fn as ADDs in our implementation, one could

in principle use any data-structure that can represent pseudo-Boolean functions and

supports product and projection operations (including tensors, as was done in [59].

9.5.3 Sampling

Finally, in the sampling phase we assume that a tree-of-ADDs has been previously

constructed. Our goal is to use these ADDs in order to generate samples.

Alg. 22 presents a procedure drawSample that generates samples from a tree-of-

ADDs. drawSample is invoked in DPSampler with parameters that include an empty

assignment ω, and the root node of the project-join tree. A full assignment ω to all

variables in X (the variable set of the input formula) is recursively sampled piece-

wise by drawSample, through a top-down traversal of the project-join tree. At each

node n in the tree, the values for the variables Xn are sampled using the variable

values already sampled at the ancestors of n. Since X = {Xc | c ∈ V(T ) \ L(T )} is a

partition of X, this samples a value for every variable exactly once.

9.6 Empirical Evaluation

The objective of our empirical study was to answer the following questions

1. How close is the distribution generated by DPSampler to that of an ideal sam-

pler?

2. How does the new top-down ADD-sampling algorithm (Alg. 19) perform com-

pared to the bottom-up procedure of [62]?
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Algorithm 22 drawSample(T , n, S, w, ω)

Input: T = (T, r, γ, π): A project-join tree

Input: n: A node in V(T )

Input: S: A map from each n ∈ V(T ) to ADD fn

Input: w: A literal-weight function

Input: ω: A preexisting assignment to some variables

Output: ω′: A sampled assignment to all variables

1: fn ← S[n]

2: ω ← ω ∪ sampleFromADD(fn, w, ω)

3: for c ∈ C(n) do

4: ω ← ω ∪ drawSample(T , c, S, w, ω)

5: return ω

3. How does DPSampler perform compared to the state-of-the-art sampling tools?

We defer a detailed discussion of results as well as an exposition on question (2) to

Appendix C.2. We report that the ‘in-place’ top-down sampling approach presented

in Sec. 9.4 comprehensively outperformed the bottom-up approach of [62].

Experimental Setup We ran all experiments on a high performance cluster. Each

experiment had exclusive access to one node comprising of 16 cores (32 threads) with

an Intel Xeon E5-2650 v2 processor running at 2.6 GHz, with memory capped at 30

GB. We used GCC 9.4.0 for compiling DPSampler with ‘Ofast’ flag enabled, along

with CUDD library version 3.0. WAPS as well as DPSampler with CUDD are single

threaded.

9.6.1 Distribution generated by DPSampler

While Thm. 9.7 guarantees that the output of DPSampler adheres to the desired dis-

tribution, we performed an experiment to compare the actual distribution of samples
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Figure 9.1 : Distribution of Generated Samples

generated by DPSampler with that generated by an ideal sampler. For this compar-

ison we selected the unweighted CNF benchmark ‘blasted case110.cnf’ with 16384

solutions and added random weights to a small subset of literals. We implemented a

simple ideal sampler that first enumerates all solutions of the input CNF and samples

assignments proportionate to the weight of each assignment. We generated 5 × 105

samples using both DPSampler and the ideal sampler, computed the frequency of

occurrence of each of the 16384 assignments, and grouped samples occurring with

the same frequency. This setup is similar to that used in previous works on sam-

pling [192, 31]. The result is shown in Fig. 9.1 where a point (x, y) indicates that

x distinct traces were generated y times. It can be seen that the distributions gen-

erated by DPSampler and the ideal sampler are practically indistinguishable, with

Jensen-Shannon distance 0.003.

9.6.2 Comparison with State-of-the-Art Tools

We compared the performance of DPSampler with the state-of-the-art weighted sam-

pling tool WAPS [31], which has been shown to significantly outperform other samplers
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Figure 9.2 : Performance of WAPS vs DPSampler on all benchmarks
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Figure 9.3 : Average PAR2 Score vs. Average Treewidths on Bayes

Compile Time Total Time

Bayes 11.86 31.78

Pseudo-weighted 0.89 4.81

All 4.8 15.8

Table 9.1 : Avg. (Geometric Mean) Speedups offered by DPSampler over WAPS
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Figure 9.4 : Average PAR2 Score vs. Average Treewidths on Pseudoweighted

(see Sec. 9.3). We use the benchmark sets of weighted CNF formulas “Bayes” and

“Pseudo-weighted” for this comparison, which were also used in previous works [49,

59]. A benchmark is considered “solved” by a tool if the tool is able to generate 5000

samples within a timeout of 1000 seconds. We treat both timeouts and memouts as

failures.

The results are shown in Fig. 9.2. A point (x, y) in the plot, implies that x

instances took less than or equal to y seconds to solve. DPSampler is able to solve 144

more instances as compared to WAPS. On instances where both WAPS and DPSampler

succeeded, we found the average (geometric mean) speedup offered by DPSampler

over WAPS was a factor of 31 for Bayes benchmarks, and a factor of 4 for Pseudo-

weighted (see Tab. 9.1). Further for benchmarks that were solved by at least one

tool, DPSampler was faster than WAPS on all 943 such Bayes benchmarks, while for

Pseudo-weighted benchmarks, DPSampler was faster on 418 benchmarks, while WAPS

was faster on 221.

Scalability wrt Treewidths Similar to [199], we plot mean PAR-2 scores (in

seconds) against mean project-join tree widths in Fig. 9.3 and 9.4. A point (x, y)
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indicates that x is the central moving average of 10 consecutive project-join tree

widths 1 ≤ w1 < w2 < . . . < w10 ≤ 99, and y is the average PAR-2 score of the

benchmarks whose project-join trees have widths w s.t. w1 ≤ w ≤ w10. We observe

that the performance of DPSampler degrades as the project-join tree width increases

in general as expected. Nevertheless, it is the best performer on average, for all

treewidths we encountered for the Bayes set, and for treewidths upto roughly 50

for Pseudo-weighted set. Further, on the Pseudoweighted set, from 50 to 100, the

performance is only marginally worse than that of WAPS.

9.6.3 Discussion

DPSampler comprehensively outperforms WAPS on Bayes benchmarks, as evident from

Fig. C.2 and from the fact that DPSampler is more than 31× faster on average on

benchmarks that were solved by both. On Pseudoweighted benchmarks, the differ-

ences in performance are less pronounced. WAPS is able to solve more benchmarks

while DPSampler is more than 4× faster on average (see Tab. 9.1).

Figs. 9.3 and 9.4 confirm our hypothesis that DPSampler performs extremely well

in the regime of low treewidths, and is thus a valuable addition to a portfolio of

samplers. Surprisingly however, it was also faster than WAPS on Bayes benchmarks

with treewidths upto 80. This indicates that treewidth alone is not a good predictor of

performance, which is similar to what was observed in [59]. It is known that diagram

variable order also adversely affects running times of ADD-based algorithms [49]. In

the context of a different problem of trace-sampling, [62] reported dynamic variable

ordering for ADDs to improve both memory requirements and running times. A

comprehensive evaluation of different variable ordering techniques is beyond the scope

of this work, but we hypothesize both dynamic variable ordering as well as instance-

specific variable ordering to significantly impact the performance of DPSampler.
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Limitations WAPS is based on the d-DNNF compiler d4, which is a well-engineered

and mature tool written in C++. The code for annotating and sampling the d-DNNF

is, however, written in Python, involves expensive disk-reads and writes, and is not as

efficient as well-written C++ code. Therefore it is possible that the preceding results

may not be truly reflective of the true capabilities of the d-DNNF approach. In

order to level the playing field, we also compared the times taken for compiling the d-

DNNF and Tree-of-ADDs (including project-join tree construction). The performance

of WAPS (i.e. d4) showed marked improvement, as expected. Nevertheless, DPSampler

was still competitive, with a 12× avg. speedup on Bayes benchmarks, and was able

to compile 25 instances from Pseudoweighted that d4 timed-out on. We give more

details in Appendix C.2.

9.7 Chapter Summary

We presented a modular algorithm, DPSampler, for weighted sampling of CNF for-

mulas which leverages and extends the dynamic programming framework of [59].

Our algorithm employs a novel top-down and ’in-place’ ADD-sampling sub-procedure

that convincingly outperforms the existing bottom-up SAT-based approach. In the

broader context of Constrained Sampling, the success of our algorithm demonstrates

that SAT-based samplers like WAPS may not be the last word, and that ADD-based

approaches that exploit factored representations are an important part of the portfo-

lio.
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Part IV

Epilogue



154

Chapter 10

Conclusion

Constrained Counting and Sampling are two fundamental problems intersecting a

variety of areas in computer science such as complexity theory, AI and Formal Meth-

ods. Research in the theory and practice of these problems has come a long way since

the formal definition of the counting class #P by Valiant [9]. Significant advances

have been made in both theory and practice, such as the resolution of the dichotomy

conjecture for #CSPs [208, 209, 210] and latest iteration of counting and sampling

tools scaling to constraints with tens of thousands of variables [35]. Nevertheless,

this research effort is splintered across disjoint communities and directions, leading to

large gaps in literature. Research into the practice of counting and sampling is nar-

rowly focused on general-purpose approaches, while on the theoretical side there is an

overemphasis on establishing polynomial upper bounds at the expense of fine-grained

analysis. Consequently, many domain-specific problems are left in no-man’s-land:

poly-time algorithms from the theory community often fail to scale in practice, while

purportedly powerful general-purpose counting and sampling tools are surprisingly

unable to exploit the hidden structure in these problems.

The primary contributions of this dissertation are to illuminate this gap in liter-

ature, and offer balanced algorithmic solutions for both the exact and approximate

counting and sampling problems. Unlike the generic SAT-based approach, we pro-

posed to tailor powerful but flexible techniques to each constraint type instead of

tailoring constraints to suit rigid techniques. On the approximation front, our tech-

niques combined the strengths of Monte Carlo and hashing-based frameworks yielding

improved theoretical and practical performance over the state-of-the-art in the con-



155

text of the problems of DNF-Counting and conditional counting. In the context of

exact counting and sampling, we showed novel ways of applying an ADD-based count-

ing and sampling framework to the problems of computing the permanent of a 0-1

matrix, sampling traces of a transition system and weighted sampling solutions of

low-treewidth CNF formulas. Our works represent a first-step towards the goal of

obtaining fast practical algorithms for different constraint types, without sacrificing

theoretical guarantees. We are optimistic that this dissertation will serve as a starting

point for more research into techniques that balance generality of the constraint types

and the specificity of the problem structure.

10.1 Strategies for Domain-Specific Counting and Sampling

In this dissertation, we designed solutions for five domain-specific counting and sam-

pling problems. For this, we tailored general techniques like hashing, and factored

ADDs to operate directly on domain-specific constraint types so as to better exploit

the problem structure. This yielded significant gains in performance over existing

approaches. This is in stark contrast to the general-purpose SAT-based pipeline,

where all constraint types are first converted to CNF and then given as input to a

SAT-based counter or sampler. The conversion to CNF often leads to loss of struc-

ture inherent in the native constraints [45], which hampers the performance of the

SAT-based approach. Nevertheless, the translation to CNF can be done mechan-

ically using standard encodings which allows the SAT-based approach to be used

as-is without explicit knowledge of its inner workings. In contrast, our approach

requires some domain knowledge and familiarity with counting and sampling tech-

niques. This begs the question of how the lessons learnt from our work can be applied

to new domain-specific counting and sampling problems, such as counting the num-

ber of linear extensions of posets [211]. In this section we outline some high-level

strategies that may be useful for this purpose.

A good starting point and baseline for any such endeavor is to use the SAT-based



156

approach, making full use of the wealth of CNF encodings available in literature (c.f.

[23]) as well as experimenting with the various tunable parameters of each tool. In a

wide variety of domains, especially those with heterogeneous constraints, the efficiency

of modern SAT-based counters and samplers cannot be overstated [35]. Given that

the startup cost of using this pipeline is low and the potential benefits are high, it is

advisable to start here.

If the resulting performance is not acceptable, the next step can be to tailor

other existing techniques to the specific problem. We highlight that we found it best

to meld a general flexible technique having high-performance implementations with

known problem-specific approaches. The benefits of doing this are twofold. Using a

flexible technique with mature implementations ensures that there are no low-level

inefficiencies that often plague new hand-crafted code. Leveraging problem-specific

approaches allows the exploitation of the hidden structure in each instance. We found

this strategy to be fruitful for both approximate and exact scenarios. On the approx-

imate side, we melded the techniques of hashing and Monte Carlo to achieve better

performance for both DNF-Counting and conditional counting. On the exact side

we melded the general technique of factored ADDs with problem-specific approaches

viz., Ryser’s formula for the matrix permanent, iterative-squaring for trace sampling

and tree decomposition tools for low-treewidth CNF sampling.

Finally, it may be necessary to make low-level algorithmic improvements to fully

realize the gains from the previous step. For example, in the case of trace sampling,

we augmented the naive iterative squaring procedure with pruning (encapsulated in

the procedure computeReachableSets), while the novel top-down ADD sampling sub-

procedure was crucial for DPSampler. In each of these cases, practice informed the

theory, i.e., we identified practical inefficiencies in the algorithm through experimen-

tation and devised new techniques to circumvent the bottlenecks. It is worth noting

that worst-case complexity analysis alone would have been insufficient to illuminate

these issues.
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10.2 Future Work

We now discuss potential research directions that can potentially yield further im-

provements in both approximate and exact scenarios.

10.2.1 Approximate Counting and Sampling

In our works we enhanced and extended the techniques of naive Monte Carlo sam-

pling and hashing for DNF-Counting and conditional counting. It will be interesting

to see if the powerful technique of Markov Chain Monte Carlo (MCMC) can yield

similar benefits for other approximation problems. The theory behind MCMC has

been extensively researched [212], and majority of polynomial-time approximation

algorithms from the theory community are based on it. However, it is known that

these algorithms often do not scale well in practice [211, 17]. Generic MCMC-based

approaches like Gibbs sampling that do scale well often give up theoretical guarantees

in the process. Thus more work needs to be done to achieve scalability without losing

PAC-style guarantees.

DNF-Counting

The Reverse Search technique presented in this work is an enhancement of the

hashing-based framework and is not tied to the DNF constraint language in any way.

For general CNF benchmarks, the number of XOR constraints required is typically

too low to justify searching in the reverse direction. Nevertheless, with increasing

applications of approximate counting, it would be interesting to investigate other po-

tential application domains where reverse search could yield theoretical or practical

improvements.

To the best of our knowledge, our work was the first explicit investigation into the

practical aspects of DNF-Counting. It would be interesting to see how our results

inform the design choices for future algorithms on DNF-Counting, especially once

real-world benchmarks from applications areas like probabilistic databases become
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available.

Conditional Counting and Explainable AI

The need for making explainable AI more rigorous and evidence-based has been high-

lighted in the past [213], and we believe our constraint-driven framework takes a

concrete step in this direction. Our tool, CLIME, can also be readily extended in nu-

merous ways. Helping the user with defining relevant subspaces by mining constraints

from data is an interesting direction. Richer constraint languages like SMT [214] can

provide even more flexibility, once sampling technology matures. Construction of

CLIME’s explainer model can also potentially be extended to incorporate Shapley

values as in [96]. It will also be interesting to investigate other applications of our

approximate conditional counting algorithm such as in the areas of verification and

probabilistic inference.

10.2.2 Exact Counting and Sampling

We leveraged factored ADDs to tackle the problems of computing the matrix per-

manent, sampling traces of a transition system and weighted sampling from low-

treewidth CNF formulas. It will be interesting to explore what other general tech-

niques besides factored ADDs can lend themselves to exact domain-specific problems.

For instance, Affine Algebraic Decision Diagrams (AADDs) [215] offer better com-

pression compared to ADDs with little overhead. However, currently there is a lack

of mature libraries implementing AADDs. Another potential direction is to extend

existing tools from Constraint Programming to counting and sampling. Solvers from

the CP community such as Picat [216] and Gecode [217] offer a lot of flexibility in

tuning the constraint solving framework to each constraint type, and are not limited

to CNF formulas. This framework, once extended to exhaustively explore the solu-

tion space, is thus likely to be beneficial for domain-specific counting and sampling

as well.
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0-1 Matrix Permanent

Our algorithm for the matrix permanent was shown to scale on matrices with ‘similar

rows’, which includes both dense and sparse matrices as special cases. It is an inter-

esting open problem to obtain a complete characterization of the class of matrices for

which ADD representation of Ryser’s formula is succinct. Our experimental results

for dense matrices hint at the possibility of improved theoretical bounds similar to

those obtained in earlier work on sparse matrices. Developing an algorithm for general

matrices that is exponentially faster than Ryser’s approach remains a long-standing

open problem [151], and obtaining better bounds for non-sparse matrices would be

an important first step in this direction. For sparse matrices, using a factored rep-

resentation was crucial to the success of our approach. In fact, it may be possible

to optimize the algorithm in this regime even further, by evaluating other heuristics

used in [49].

Sampling Traces of a Transition System

Our experience indicates that there is significant potential to improve the perfor-

mance of TraceSampler through engineering optimizations, as ADDs offer a lot of

trade-offs between space and time. For instance, in out current implementation, all

the ADDs are part of a single manager since it saves space by enabling sharing of

nodes. However, this makes it harder to find a good variable order, and we observed

that most of the time spent during ADD construction was on dynamic variable re-

ordering. Another interesting direction for further research is to combine the strengths

of decision diagram based techniques (like TraceSampler) with SAT-based techniques

(like UniGen2) to build trace samplers that have the best of both worlds.

Weighted Sampling of Low-Treewidth CNF Formulas

Sampling plays a crucial role in many applications in AI and Machine Learning.

In this context, the speedups offered by DPSampler over the current state-of-the-
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art sampler, especially on benchmarks encoding Bayesian networks, are encouraging

and warrant further investigation. The Tree-of-ADDs datastructure compiled by

DPSampler may be useful in other applications of Knowledge Compilation as well,

and a full investigation as in [131] is likely to be fruitful.
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Appendix A

DNF-Counting

For obtaining a concrete algorithm from the framework described in Algorithm 4, we

need to instantiate the sub-procedures SampleHashFunction, GetLowerBound, GetUpperBound,

EnumerateNextSol, ExtractSlice and ComputeIncrement for a particular counting prob-

lem. We now show how SymbolicDNFApproxMC [74], which uses Row Echelon XOR

hash functions, and the concepts of Symbolic Hashing and Stochastic Cell-Counting,

can be obtained through such instantiations. Then we prove that by substituting the

BinarySearch procedure by ReverseSearch, the complexity of the resulting algorithm is

improved by polylog factors.

A.1 SampleHashFunction

One can directly invoke the procedure SampleBase described in Algorithm 4 of [74]

with minor modifications. This is shown in Algorithm 23. Note that the hash function

A, b,y so obtained belongs to the Row Echelon XOR family.

Algorithm 23 SampleHashFunction()

1: q← n− w + logm;

2: sI ← n− w − log hiThresh;

3: A, b,y ← SampleBase(q, sI);

4: return A, b,y, q;
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A.2 Lower and Upper Bounds

As shown in [74], it suffices to search between n − w − log hiThresh and n − w +

logm − log hiThresh hash constraints. Therefore the functions GetLowerBound and

GetUpperBound return these values respectively.

A.3 Extracting a prefix slice

Procedure ExtractSlice required for ReverseSearch is shown in Algorithm 24. If flip

is false, ExtractSlice returns the result of the procedure Extract (described in [74])

directly. Otherwise, the p-th bit of y is negated before being passed to Extract.

Algorithm 24 ExtractSlice(A, b,y, p, f lip)

1: if flip = true then

2: y[p] = ¬y[p];

3: lo← GetLowerBound;

4: return Extract(A, b,y, p, q, lo);

A.4 EnumerateNextSol

SymbolicDNFApproxMC enumerates solutions in the cell, in the order of a Gray code

sequence, for better complexity. This is achieved by invoking the procedure enumREX

(Algorithm 1 in [74]).

A.5 ComputeIncrement

Procedure CheckSAT (Algorithm 26 adapted from [74]) can be used to compute the

increments to Ycell as shown in Algorithm 25. The assignment s is divided into a

solution x and a cube ϕi using the same Interpret function used in line 7 of Algorithm

6 in [74]. CheckSAT samples a cube at random in line 3 and checks if the assignment
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x satisfies it in line 5. The returned value follows the geometric distribution [72], and

can be used to compute an accurate probabilistic estimate Ycell of the true number of

solutions in the cell [74].

Algorithm 25 ComputeIncrement(s, Ycell, threshold)

1: x, ϕi ← interpret(s);

2: return Ycell + CheckSAT(x, ϕi, Ycell, threshold);

Algorithm 26 CheckSAT(x, ϕi, Ycell, threshold)

1: cx ← 0;

2: while Ycell + cx/m < threshold do

3: Uniformly sample j from {1, 2, ..,m};

4: cx ← cx + 1;

5: if x |= ϕj then

6: return cx/m;

7: return cx/m

Lemma A.1. The complexity of SaturatingCounter is O(m · n · threshold).

Proof: Ycell is incremented by cx/m in line 5 of SaturatingCounter after a call to

ComputeIncrement and CheckSAT. Since SaturatingCounter returns after Ycell reaches

threshold, the sum of cx over all invocations of CheckSAT is m · threshold. Every time

cx is incremented, the check in line 5 of CheckSAT is performed which takes O(n)

time. Moreover, EnumerateNextSol also takes O(n) time as enumREX in [74] takes

O(n) time. As a result, the complexity of SaturatingCounter is O(m ·n · threshold).

Lemma A.2. The complexity of ReverseSearch is O(m · n · hiThresh).
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Proof: In ReverseSearch, SaturatingCounter is invoked with different thresholds

(say T1, T2, T3 . . .) in each iteration of the for loop in line 9 (Algorithm 8) depending

on the value of Ytotal. As a result of the check in line 13, it follows that T1 + T2 +

T3 + . . . = hiThresh. Therefore the complexity of all invocations of SaturatingCounter

is O(m · n · (T1 + T2 + T3 + . . .)) = O(m · n · hiThresh). The complexity of ExtractSlice

in line 12 is O(n(logm + log(1/ε2))2) [74], and the loop in line 9 can be executed at

most O(log logm) times. Therefore, the complexity of ReverseSearch is O(log logm ·

(n(logm + log(1/ε2))2) + m · n · hiThresh), which is O(m · n · hiThresh).

We are now ready to prove Theorem 4.1.

Theorem 4.1. The complexity of SymbolicDNFApproxMC, when invoked with ReverseSearch

is O(mn log(1/δ)/ε2)

Proof: In Algorithm 4, ApproxMCCore is invoked O(log(1/δ)) times, which in turn

makes a call to ReverseSearch. The complexity of SampleHashFunction is O(n(logm+

log(1/ε2))) [74]. Since hiThresh = O(1/ε2), the complexity of Algorithm 4 is O(m · n ·

(1/ε2) · log(1/δ) + n(logm + log(1/ε2)), which is O(m · n · (1/ε2) · log(1/δ)).
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Appendix B

Conditional Counting for Explainable AI

B.1 Related work

Model explainability is one of the most important problems in machine learning.

Therefore, there are a large number of recent surveys on the topic, e.g. [218, 219, 220,

97, 221, 93]. To overview, we partition approaches to generate explanations for ML

models into two groups based on whether they provide theoretical guarantees on the

quality of the generated explanations.

Explanations without theoretical guarantees. There were a number of ap-

proaches proposed to compute (model-agnostic) local explanations. We have overviewed

LIME [95] in Section 5.2. Anchor is a successor of LIME [109]. The main contribution

of Anchor is to produce explanations that hold globally, for the entire distribution

of inputs. SHAP [96] is another popular model-agnostic explainer to produce local

explanations. Similar to other explainers, SHAP does not provide any theoretical

justification for the sampling procedure. However, SHAP employs game theoretic

principles to produce an explainable model. Our work focuses on model-agnostic,

local explanations, however, we produce explanations with provable guarantees. CX-

Plain proposes to train an additional ‘explanation model’ to provide explanations for

a given ML model [222]. Learning of the explanation model involves an estimation

of feature importance using a causal objective. The causal objective captures how

input features cause a marginal improvement in the predictive performance of the

ML model. In our work, we do not consider each feature individually and reason

about the space of features as a whole. Moreover, our framework allows us to work
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with constrained spaces. Finally, works such as [223] provide limited capabilities for

customizing global explanations by letting the user supply a set of features that the

they deem important. Similar to [224], they avoid sampling a neighbourhood around

a given point by using original data points to construct an explainer. While avoid-

ing sampling helps scalability, it also undermines applicability. For instance, dealing

with user-defined constraints, as well as unbalanced or skewed input datasets can be

problematic. In both cases, the input data may be too sparse to yield meaningful

explanations. Recently, [225] demonstrated that these explanations are less robust

compared to LIME, for example.

Another line of work in on gradient-based explainers, for example, saliency maps [100],

Integrated Gradient [101], DeepLIFT [98]. Gradient-based methods assume full

knowledge about the ML model and, also, require these models to be differentiable.

While these methods are very efficient, they do not provide theoretical guarantees on

the produced explanations. On top of that these approaches are not model-agnostic.

Explanations with theoretical guarantees. Recently, a formal approach to an-

alyze explanation of ML models was proposed. If an ML model allows a formal

representation in restricted fragment of the first order logic, then one can (a) define a

formal notion of an explanation and (b) design an algorithm to produce these expla-

nations [226, 227, 228, 229, 230]. One of the formal approaches is built on powerful

knowledge compilation techniques, e.g. [226, 227]. The other approach employees

very efficient formal reasoners, like SAT, SMT or ILP solvers, as a part of explana-

tion generation algorithms [228, 115]. If the process of ML model compilation into a

tractable structure is feasible then the first approach is very effective and allows the

user to analyse the ML model efficiently. However, the compilation can be computa-

tionally expensive and resource demanding, so the second approach is more efficient

in some applications. There are some limitations of these approaches. First, similar

to gradient-based methods, they require full knowledge of the original ML model.
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Second, in practice, these approaches face scalability issues as reasoning about ML

models formally is computationally expensive.

Quality of the explanations. Finally, we consider a recent line of work on anal-

ysis of the quality of explanations. [109] proposed several heuristic measures to eval-

uate quality of explanations including fidelity and coverage, but do not provide a

way to estimate the true value of these metrics. In [231, 232], it was shown us-

ing perturbation-based methods that explanations are susceptible to adversarial at-

tacks and lack robustness property. For example, [233] investigated several sources

of uncertainty in LIME, like sampling variance in explaining a sample. The authors

experimentally demonstrated that LIME often fails to capture the most important

features locally. However, the paper does not propose a solution to remedy identified

issues. Moreover, [104] showed that it is easy to fool an explainer, like LIME and

SHAP, as we discussed in detail in Section 5.5.3. [115] presented a technique for eval-

uation quality of explanations based on model counting, but their approach suffers

from scalability issues (as shown in Sec. 5.4) and is only applicable to BNNs. [225]

proposed to use adversarial training [234] to improve robustness of the explanations.

While the proposed approach improves robustness to adversarial attacks it cannot be

easily extended to work in constraint environments and does not provide theoretical

guarantees on the fidelity of the explanations. A related line of work on probabilistic

verification of ML models has seen a surge in interest. [235] encoded the underlying

model and fairness properties as formulas in SMT over real arithmentic, and relied

on symbolic integration techniques. However, this approach is known not to scale, eg.

it can only handle neural networks with a single hidden layer containing just three

hidden units. [236] present an alternative approach that uses Monte Carlo sampling

and adaptive concentration inequalities. However, unlike Alg. 10, their method only

returns a yes/no answer and does not provide a quantitative estimate. Further, their

algorithm may fail to terminate on some inputs, and the sample complexity is not



194

proven to be close-to-optimal.

B.2 Certifying Constraint-Driven Explanations (Additional

materials)

B.2.1 AA’ Algorithm

In this section, we present our proofs for Thm. 5.2, in the context estimation frame-

work of Algs. 10 and 11, but we use a more general setting. In particular, we observe

that our technique is abstract in the sense that it can estimate the density of samples

satisfying any property (not just fidelity), in any given domain (not just Boolean),

so long as it is possible to sample (almost) uniformly from the domain (encapsulated

in the procedure getSamples). We assume access to a procedure checkProperty, that

given a sample s, returns 1 if the property of interest is satisfied by s and 0 oth-

erwise. This entails, that the check on line 6 of Alg.11 will be replaced by a call

to checkProperty, and that for measuring fidelity, the procedure checkProperty will

simply return the value of I[lf (z) = lg(z
′)].

For completeness, we first present the AA′ algorithm in full, which is a simple

adaptation of AA algorithm by [71] which uses almost-uniform samples instead of

perfectly uniform. AA′, takes as input 3 parameters, ε1,ε2 and δ. It uses ε2 as the

tolerance parameter in calls to an almost-uniform sampler (encapsulated in proce-

dure getSamples). For ease of exposition, we use ϕ to denote the subspace that

getSamples generates samples from.

Pr[
(1− ε1)

1 + ε2

ρ ≤ ρ̂ ≤ (1 + ε1)(1 + ε2)ρ] ≥ (1− δ) (B.1)

The guarantees provided by AA′ are similar to Eqn. 5.4 and are precisely captured

in Eqn. B.1. See Lemmas B.1 and B.4 for the proof.
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Algorithm 27 AA′(ε1, ε2, δ)

Output: ρ̂: Estimate of ρ satisfying

Eqn. B.1

1: τ ← 4(e− 2) ln(2/δ)/ε2
1

2: τ2 ← 1.1τ

3: ρ̊← stoppingRule(1/2, ε2, δ/3, τ)

4: N ← τ2 · ε1/ρ̊

5: a← 0

6: for i ∈ {1, . . . , N} do

7: s1 ← getSamples(ϕ, ε2, 1)

8: c1 ← checkProperty(s1)

9: s2 ← getSamples(ϕ, ε2, 1)

10: c2 ← checkProperty(s2)

11: a← a+ (c1 − c2)2/2

12: ξ ← max(a/N, ρ̊ · ε1)

13: N ← τ2 · ξ/ρ̊2

14: a← 0

15: for i ∈ {1, . . . , N} do

16: s← getSamples(ϕ, ε2, 1)

17: c← checkProperty(s)

18: a← a+ c

19: ρ̂← a/N

20: return ρ̂

Algorithm 28

stoppingRule(ε1, ε2, δ, τ)

Output: ρ̊ (weak estimate)

1: τ1 ← 1 + (1 + ε1)τ

2: N ← 0

3: a← 0

4: while a < τ1 do

5: s← getSamples(ϕ, ε2, 1)

6: a← a+ checkProperty(s)

7: ρ̊← τ1/N

8: return ρ̊
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B.2.2 Proof of Theorem

Mean deviation due to almost uniform sampling

Lemma B.1. Let ρ be the density of instances that satisfy some property P in a

universe UZ′, that is,

ρ =

∑
z′∈UZ′ I[P (z, z′)]

|UZ′|

Suppose we sample each instance z ∈ UZ′ almost-uniformly, that is

1

(1 + ε)|UZ′ |
≤ Pr[z∗ = z′] ≤ 1 + ε

|UZ′ |

Then we have

ρ

(1 + ε)
≤
∑
z′∈UZ′

I[P (z, z′)] · Pr[z∗ = z′] ≤ (1 + ε) · ρ

Proof. In the worst cases, each sample z′ s.t. I[P (z, z′)] = 1 will be sampled with

1. probability 1+ε
|UZ′ | , in which case

∑
z′∈UZ′ I[P (z, z′)] · Pr[z∗ = z′] = (1 + ε) · ρ

2. probability 1
(1+ε)|UZ′ | in which case

∑
z′∈UZ′ I[P (z, z′)] · Pr[z∗ = z′] = ρ

(1+ε)

Lemma B.2. Let ρ ≤ γ− ε. Then the probability that checkThreshold returns True

is at-least 1− δ.

Proof. Note that µC ≤ (1 + ε/2)ρ as getSamples may return almost uniformly dis-

tributed samples in line 3 of checkThreshold. We will first prove that µC + ν ≤ γ.

We have

γ ≤ γ

=⇒ γ (1 + ε/2− ε/2) ≤ γ

=⇒ γ (1 + ε/2)− γε/2 ≤ γ
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But we have γ ≥ ρ+ ε. Therefore,

(ρ+ ε) (1 + ε/2)− γε/2 ≤ γ

=⇒ ρ+ ρε/2 + ε+ ε2/2− γε/2 ≤ γ

=⇒ µC + ν ≤ γ

The last equation follows from the fact that µC ≤ (1 + ε/2)ρ and ν ≤ ε+ ε2/2− γε/2

from line 1 of checkThreshold. Now since µC + ν ≤ γ, we have Pr[C ≤ γ] ≥ Pr[C ≤

µC + ν] = 1 − Pr[C ≥ µC + ν]. C is the average of N independent 0/1 random

variables c (line 6). Therefore applying Chernoff bound,

Pr[C ≥ µC + ν] ≤ exp{−2ν2N}

But N = 1
2ν2 log(1

δ
). Therefore, Pr[C ≥ µC + ν] ≤ δ. Substituting back, we get

Pr[C ≤ γ] ≥ 1− δ. Therefore, in line 8, the probability that checkThreshold returns

True, is at least 1− δ.

Lemma B.3. Let ρ ≥ γ+ ε. Then the probability that checkThreshold returns False

is at-least 1− δ.

Proof. Similar to preceding Lemma.

Lemma B.4. Algorithm AA′ returns an estimate ρ̂ such that Pr[(1 − ε)ρψ ≤ ρ̂ψ ≤

(1 + ε)ρψ] ≥ (1− δ)

Proof. Algorithm AA′ takes as input 3 parameters, ε1, ε2 and δ. It invokes the AA

Algorithm by Dagum et al. with parameters ε1 and δ on samples generated by an

almost-uniform sampler with parameter ε2. By Lemma B.1, the population mean

can shift at most by a factor of (1 + ε2) due to almost-uniform sampling (instead of

perfectly uniform). Combined with the approximation guarantees of AA algorithm,

the resulting tolerance has an upper-bound of (1 + ε1)× (1 + ε2) and a lower bound
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of (1− ε1)/(1 + ε2). In line 4 of Alg. 10, the AA′ algorithm is invoked with ε1 = ε2 =

0.4 ∗ ε. Substituting these values in the expressions for the upper and lower bounds

on tolerance, we get the result.

Theorem 5.2. If ρ ≤ γ−ε, then computeFidelity returns ⊥ with high probability (i.e.

at least 1− δ). If ρ ≥ γ + ε, w.h.p., it returns an estimate ρ̂ such that Pr[(1− ε)ρ ≤

ρ̂ ≤ (1 + ε)ρ] ≥ (1− δ).

Proof. Follows from preceding lemmas.

Note that the bounds and number of samples used for proving the preceding the-

orem were computed assuming we only have access to Almost-Uniform samples. The

bounds can be made significantly tighter or the number of samples can be reduced,

if we have access to perfectly uniform samples.

B.2.3 Applicability of the Estimation framework

We emphasize that our estimation framework is general enough to compute any metric

for any universe (so long as one can sample from it almost uniformly) according to the

guarantees provided by Thm. 5.2 in any setting (not just explainability). Further,

for the specific application explainability, our estimation framework can be used for

measuring properties like fidelity of any explainer model (not just the ones crafted

by CLIME), and on any subspace of inputs (not just the one that the explainer

was trained on). For example, the fidelity of a CLIME explainer model trained on

a subspace defined by one set of constraints (say ϕ) maybe evaluated on another

subspace defined by ψ. If the fidelity on ψ is found to be high enough, it can save

the cost of having to generate a separate explanation for ψ. This can be especially

useful in model debugging where users may refine constraints frequently.

B.2.4 Empirical Evaluation of Estimation Algorithm

In order to test the scalability of our estimation algorithm (Algs. 10, we evaluated
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its performance on the same set of benchmarks used by [115].

Benchmarks The benchmarks are CNF formulas that encode fidelity of Anchor [109]

explanations for Binarized Neural Networks with upto 3 hidden layers and 100 neu-

rons in total, and are generated from Adult, Recidivism and Lending datasets. There

were 50 CNF formulas from each dataset, for a total of 150 benchmarks, with number

of variables ranging between 20,000 to 80,000 and number of clauses ranging between

80,000 and 290,000. The projected model count of each formula represents the num-

ber of inputs on which the class-label for Anchor’s explanation matches the true label

of the instance being explained. The fidelity of an explanation can thus be computed

as the ratio of the solution-count of the formula, to the size of the universe.

Parameters We used the same tolerance (ε = 0.8) and confidence (δ = 0.2) used

in [115], for the main experiment. Additionally, we set the threshold to γ = 0.05. We

also compared the running times for tighter tolerance and confidence (see Discussion

below).

Experimental Setup We set a time out of 3 minutes (180 seconds), and ran each

experiment on Intel Xeon E5-2650 CPU running at 2.20GHz, with 4GB main memory.

We compiled our code using GCC 6.4 with O3 flag enabled. For ApproxMC we used

the latest publicly available version (4.01).

Results The results are presented in Fig. 5.1. Each point in blue corresponds to

one benchmark, and the x-coordinate represents the time taken by ApproxMC while

the y-coordinate represents the time taken by our approach. It can be seen that our

approach completes all benchmarks in under 25 seconds with majority taking less

than 10 seconds. In contrast, ApproxMC is able to finish only 10 benchmarks out

of 150 in under 25 seconds, with a majority taking around 75 seconds. The average

(geometric mean) speedup factor offered by our tool relative to ApproxMC was 7.5.
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Discussion Fig. 5.1 conclusively demonstrates the efficiency of our approach as

compared to hashing and SAT based approaches like ApproxMC. Our tool was able

to return estimates with two-sided bounds for all benchmarks. Our tool offers an

average (geometric mean) speedup by a factor of 7.5 relative to ApproxMC. In ad-

dition, our approach is able to scale far better than ApproxMC for tighter tolerance

and confidence parameters. For a representative benchmark, we evaluated the time

taken by our tool and ApproxMC for the default tolerance (ε = 0.8) and confidence

(δ = 0.2). We then computed the slow-down in both tools after setting ε = 0.05 and

confidence δ = 0.1. We found that our tool slowed down by a factor of 10 while Ap-

proxMC slowed down by a factor of 30. Lastly, we computed the error in the estimate

returned by our algorithm (with default tolerance and confidence) on small bench-

marks where it was possible to compute the true count. We consistently observed

that the error was less than 0.1, which is much smaller than the specified tolerance

of 0.8. Thus our approach is both sound and efficient in practice.

B.3 Detecting Adversarial Attacks(Extended)

Suppose a biased classifier makes decisions solely based on some sensitive feature; for

ex: a classifier for accepting / rejecting loan applications that decides purely based

on an individual’s race. LIME’s explanations for the predictions made by such a

classifier would clearly indicate race to be a major deciding factor. [104] devised

a technique that takes such an arbitrary biased classifier and constructs another

classifier that closely mimics the biased classifier on in-distribution data, yet is able

to evade bias-detection by preventing the sensitive feature from appearing in post-

hoc explanations. Note that accurately measuring the fidelity of the explainer model

alone is not sufficient to detect such an attack as the problem lies in the way the

opaque classifier is constructed and not in the resulting explanation. We first discuss

the construction of the adversarial classifier, and then see how constraints can help

in foiling it.
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Background

The attack makes use of the fact that LIME’s perturbation procedure creates samples

that are distinguishable from those of the original distribution. The first step is to

train a classifier such as a Random Forest to detect whether a given sample is in or out

of distribution. This classifier is trained on a synthetic data-set consisting of instances

from the original data-set labeled as in-distribution and LIMEs perturbations of each

of those instances as OOD. This OOD detecting classifier is able to achieve very good

accuracy, which is a testament to the severity of the OOD problem of LIME.

The next step in the adversarial attack is to create an innocuous classifier that

makes decisions based on some unrelated feature. For example, in case of credit card

applications, the innocuous classifier could make decisions based on either an existing

unimportant feature such as card number or on a new feature added to the dataset

whose values are randomly sampled. This unrelated feature will be made to appear

in place of the sensitive feature in explanations.

The last step of the attack is construct the adversarial classifier which first applies

the OOD-detecting classifier on a given instance x. If the OOD-detecting classifier

predicts x to be in-distribution, the the adversarial classifier outputs the prediction of

the biased classifier on x. If x is predicted to be OOD, then the adversarial classifier

outputs the prediction of the innocuous classifier on x.

Clearly, the predictions made by the adversarial classifier on in-distribution in-

stances are biased, as the adversarial classifier simply outputs the biased classifiers

prediction. Suppose LIME is used for explaining the prediction made by the adver-

sarial classifier on some in-distribution instance x. LIME first perturbs x. However,

due to LIME’s OOD sampling problem, most of the perturbed samples are OOD and

are detected by the OOD-detecting classifier as such. Therefore, the output of the

adversarial model on the perturbed samples is that of the innocuous classifier. Thus

for vast majority of the samples on which LIME’s explainer model is trained, the un-

related feature appears as the deciding factor for the adversarial model’s prediction,
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whereas the sensitive feature is successfully hidden.

Experimentally, the authors generated explanations for the adversarial model on

multiple test instances belonging to Recidivism, Communities and Crime and German

datasets. They showed that the sensitive features appeared with very low frequency

among the top 3 explanations for all the test points, which indicates that the attack

was successful.

Experimental Setup

We hypothesized that for discrete data, instances with low Hamming distance to

points in the given dataset should tend to be in-distribution, whereas instances with

a high hamming distance should tend to be OOD. Note that the recommended way

for using LIME is on data which is discretized. LIME itself uses Hamming distance

as a distance metric for weighting the samples it generates. However, it is unable to

specifically sample proportionately from high-weight regions which leads to a lot of

samples with low weights. With CLIME one can, however, use constraints to generate

samples that would be weighted highly by LIME. For a given Hamming distance h

and a set of instances S, a formula ϕh can be constructed such that the the solutions

of ϕh are exactly those instances that are at most at a distance h from each instance

in S. If our hypothesis is correct, the sensitive features should appear as the top

CLIME explanation of the adversarial classifier for low values of h, while innocuous

features should dominate for larger h.

Note that the Hamming distance between two instances doesn’t take into ac-

count the degree to which the value of a feature in one instance differs from the

other. Specifically, for discrete features that are the quantized versions of continuous

features, values of adjacent quantiles are clearly ‘closer’ that those of non-adjacent

quantiles. This is also true for natively discrete features like the star rating of a

product. One can design metrics smarter than the hamming distance, that also take

into account these differences in values and are even more robust against adversar-
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ial attacks. In this work however, we focus on the Hamming distance as a proof of

concept and leave experimentation with other metrics to future work.

B.3.1 Practical Considerations

The tool by [104], as of the time of writing this paper, was only able to create an

adversarial attack on continuous features (for LIME), and did not have the ability

to train the OOD-detecting classifier on discrete data. For our experiments, we aug-

mented their tool to handle purely discrete data by using LIME’s native perturbation

procedure for generating training data for the OOD-detecting classifier. For discrete

data, the parameter ‘perturbation multiplier’ in their tool plays an important role.

Its default value of 30 creates a very imbalanced dataset and the accuracy of the

OOD-detector is dramatically affected and it classifies most instances as OOD. We

found that a value of 2 led to the best test accuracy for the OOD-detector.

With discrete data, we also observed that the efficacy of the adversarial attack

on LIME was drastically reduced. The sensitive feature appeared as the 2nd from

top explanation almost 100% of the time. Additionally, for attacks that used 2 un-

correlated features, the sensitive feature also appeared as the top explanation with a

considerable frequency. However, for attacks that used 1 uncorrelated feature, the top

explanation was the uncorrelated feature with almost 100% frequency. Hence in our

experiments, we focus on the top explanation ([104] considered top 3 explanations)

and use only one unrelated feature. For CC and German experiments, we selected the

top 12 most important features of the 3 datasets using scikit-learn’s Random Forest

classifier, as there were far too many features in the original datasets (100 for CC and

28 for German). The test accuracy of the Random Forest with 100 estimators was

0.83 and 0.75 for CC and German respectively even after restriction to 12 features,

down from 0.875 and 0.82, respectively, before removing features.
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Recidivism CC German

OOD detector trained on

LIME’s samples
0.635 0.32 0.42

OOD detector trained on samples

from Hamming-constraints
0.63 0.1 0.42

Table B.1 : Frequency of sensitive feature in top explanation

B.3.2 Results

The results for the Recidivism dataset were depicted in Figure 5.2. The results for

CC dataset are depicted in Fig. B.1 and those for German in Fig. B.2. It can be seen

that the sensitive feature appears prominently for low hamming distance while the

unrelated feature dominates higher for higher distance, which confirms the efficacy of

CLIME.

In general, it is harder to craft attacks similar to [104] against CLIME explana-

tions, as the sampling procedure is dependent on user-provided constraints and is not

fixed like LIME. However, for the current experiment, an adversary could conceivably

train the OOD-detector on instances with low hamming distance from the original

dataset to specifically foil our method. We tested whether the sensitive feature still

appeared in the top CLIME explanation when the OOD-detector was trained in this

manner (instead of being trained on LIME generated perturbations). We compare

the frequency of seeing the sensitive feature as the top CLIME explanation of the ad-

versarial classifier in the two scenarios in Table B.1. While the frequency of seeing the

sensitive feature drops as compared to the case when the OOD detector is trained on

LIME perturbations, the drop is not very steep and the sensitive feature still figures

prominently as the top explanation. This shows that our hamming distance based

technique is not only able to detect attacks, but is also robust against attacks itself.
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(a) Adversarial Classifier (b) Non-Adversarial Classifier

Figure B.1 : CC Dataset: Top CLIME explanation vs. Hamming Distance

(a) Adversarial Classifier (b) Non-Adversarial Classifier

Figure B.2 : German Dataset: Top CLIME explanation vs. Hamming Distance
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Appendix C

Sampling Solutions of Low-Treewidth CNF

Formulas

C.1 Proofs of Correctness

We introduce some additional notation for ease of exposition.

We define the level of a node v in an ADD f as follows:

Definition C.1. Let v be a node in an ADD f = (X,S, ρ,G) with associated variable

xv. Then the level of v in f , denoted as levelf (v) is defined as

levelf (v) =

0 if v is a leaf node

i if |S| = i− 1 where S = {x ∈ X | ρ(x) > ρ(xv)}

We drop f and simply write level(v) when clear from context. Intuitively, level(v)

is the height at which v appears in the DAG, assuming that leaves are at the bottom

and the root node is at the top. Note that all nodes labeled with the same variable

in f have the same value of level, level’s are numbered sequentially from leaves to

root, and that for a node v and child vc, it is possible that level(v) > level(vc) + 1 as

there may be skipped nodes between v and vc, under the semantics of ADDs.

For an ADD f = (X,S, ρ,G), a node v in f and an assignment ω to the variables

Z ⊆ X, and Y = X \ Z i.e. the set of unassigned variables, we define the following

sets:

• Y≥v = {x ∈ Y | ρ(x) ≥ ρ(xv)}

• Y<v = {x ∈ Y | ρ(x) < ρ(xv)}
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Algorithm 29 Compile(T , w)

Input: T = (T, r, γ, π): a project-join tree

Input: w: A literal-weight function w : {0, 1}X → R

Output: S: a map from each n ∈ V(T ) to ADD fn

1: S ← empty map

2: procedure Compile rec(T, n, S, w)

Input: n: A node in V(T )

Output: fn: an ADD corresponding to n ∈ V(T )

3: if n ∈ L(T ) then

4: fn ← [γ(n)]

5: else

6: fn ← >

7: for c ∈ C(n) do

8: f c ← Compile rec(T , c, S, w)

9: fn ← fn ×
∑

Xc f c · w(Xc)

10: S[n]← fn . S is modified here

11: return fn

12: end procedure

13: Compile rec(T , r, S, w)

14: return S
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• Y>v = {x ∈ Y | ρ(x) > ρ(xv)}

The sets Z≥v, Z<v and Z>v are defined analogously. Intuitively, the set Y≥v consists of

unassigned variables in the support of f that label nodes ‘at or below’ the level of node

v in f , while Y>v and Y<v are strictly ‘below’ and ‘above’ v. We use the shorthand vt

and ve to denote the then and else children i.e. v.then and v.else respecitvely.

Lemma 9.5. Let wt be the return value of computeWeights invoked on an ADD

f = (X,S, ρ,G) with weight function w, an unvisited node v and an assignment

ω to the variables Z ⊆ X. Let Y = X \ Z be the set of unassigned variables,

Y≥v = {x ∈ Y | ρ(x) ≥ ρ(xv)}, and Z≥v = {x ∈ Z | ρ(x) ≥ ρ(xv)}. Then we have

wt =
∑
Y≥v

w(Y≥v) · fv[ωZ≥v ] (9.1)

Proof. We will prove by induction on level(v).

Base case: If v is a leaf then Z≥v = ∅ and Y≥v = ∅. Therefore,
∑

Y≥v
w(Y≥v) ·

fv[ωZ≥v ] = fv = value(v). In line 5 in Alg. 20, the value of v is returned which agrees

with Eqn. 9.1.

Assume Eqn. 9.1 holds for all v such that level(v) ≤ k.

We now prove that Eqn. 9.1 also holds when level(v) = k + 1. Two cases arise:

(1) xv ∈ Y (2) xv ∈ Z.

Case 1: xv is assigned under ω. W.L.O.G. assume that ω(xv) = 1 (the analysis

is similar for when ω(xv) = 0). Let vt be the ’then’ child of v. Then by inductive

assumption, we have that the value ( vt.wt) returned by the call to computeWeights

with argument vt on line 7 of Alg. 20 is vt.wt =
∑

Y≥vt
w(Y≥vt) · fvt [ωZ≥vt ]. Note that

this value is directly stored as v.wt on line 7, and is also returned as the weight for

node v on line 14. Therefore, we need to show that v.wt =
∑

Y≥vt
w(Y≥vt)·fvt [ωZ≥vt ] =∑

Y≥v
w(Y≥v) · fv[ωZ≥v ] to complete the proof for this case. To see this, first note that

since xv ∈ Z, and xv is assigned True, we have fv[ωZ≥v ] ≡ fv[ωZ≥vt , ω(xv) = 1] ≡



209

fvt [ωZ≥vt ]. Then we have,

v.wt =
∑
Y≥vt

w(Y≥vt) · fvt [ωZ≥vt ] (from line 7 of Alg. 20)

=
∏

x∈Y≥v\Y≥vt

(w(x) + w(¬x))
∑
Y≥vt

w(Y≥vt) · fvt [ωZ≥vt ]

=
∑

Y≥v\Y≥vt

w(Y≥v \ Y≥vt)
∑
Y≥vt

w(Y≥vt) · fvt [ωZ≥vt ]

=
∑

Y≥v\Y≥vt

∑
Y≥vt

w(Y≥v \ Y≥vt) · w(Y≥vt) · fvt [ωZ≥vt ]

=
∑
Y≥v

w(Y≥v) · fv[ωZ≥v ]

where the second equality follows from the fact that w(x) +w(¬x) = 1 for all x, from

our definition of literal-weight functions. This completes the proof for Case 1.

Case 2: xv ∈ Y . Similar to the analysis in Case 1, using the inductive assumption

we get from lines 10-13 of computeWeights that

v.wt =

w(xv)
∑
Y≥vt

w(Y≥vt) · fvt [ωZ≥vt ]


+

w(¬xv)
∑
Y≥ve

w(Y≥ve) · fve [ωZ≥ve ]



Note, as in Case 1, that
∑

Y>v\Y≥vt
w(Y>v \ Y≥vt) = 1 because literal weights sum to
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1, and similarly
∑

Y>v\Y≥ve
w(Y>v \ Y≥ve) = 1. Therefore, we get

v.wt =

w(xv)
∑

Y>v\Y≥vt

w(Y>v \ Y≥vt)
∑
Y≥vt

w(Y≥vt) · fvt [ωZ≥vt ]


+

w(¬xv)
∑

Y>v\Y≥ve

w(Y>v \ Y≥ve)
∑
Y≥ve

w(Y≥ve) · fve [ωZ≥ve ]


=

(∑
Y>v

w(xv)w(Y>vt) · fvt [ωZ≥vt ]

)

+

(∑
Y>v

w(¬xv)w(Y>ve) · fve [ωZ≥ve ]

)

Note that fve [ωZ≥ve ] = fv[ωZ≥v , ω(xv) = 0] since all variables in Z≥ve appear at a lower

level than xv, and only the variables below the level of xv matter in the function fve .

Similarly fvt [ωZ≥vt ] = fv[ωZ≥v , ω(xv) = 1]. Therefore, we get

v.wt =

(∑
Y>v

w(xv)w(Y>vt) · fv[ωZ≥v , ω(xv) = 1]

)

+

(∑
Y>v

w(¬xv)w(Y>ve) · fv[ωZ≥v , ω(xv) = 0]

)

=
∑
xv

∑
Y>v

w({xv})w(Y>v) · fv[ωZ≥v ]

=
∑
Y≥v

w(Y≥v) · fv[ωZ≥v ]

Lemma 9.6. Let sampleFromADD be invoked on an ADD f = (X,S, ρ,G), weight

function w, and an assignment ω to the variables Z ⊆ X. Let Y = X \ Z be the

set of unassigned variables. Then sampleFromADD returns an assignment ω′ to the

variables in Y with probability

Pr[Y = ω′|Z = ω] =
w(ω′) · f [ω′, ω]∑
Y w(Y ) · f [ω]

(9.2)
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Proof. First, note that the conditions on lines 5 and 7 ensure that the assignment

ω to the variables Z is followed while traversing the ADD f . On line 10, similar to

the analysis in Lem. 9.5, we can infer that t wt = w(xv)
∑

Y≥vt
w(Y≥vt) · fvt [ωZ≥vt ],

and correspondingly for e wt. On lines 13-18, xv is set to True with probability

t wt/(t wt + e wt). We note that the denominator (t wt + e wt) can be simplified

(similar to Lem. 9.5) to
∑

Y≥v
w(Y≥v) · fv[ωZ≥v ]. Thus, in general, for a node v with

child vc corresponding to the assingment ω′(xv) of variable xv, with variables in Y<v

already sampled, we have

Pr[xv = ω′(xv)|Z = ω(Zn), Y<v = ω′(Y<v)] =

w(ω′(xv)) ·
∑

Y>v
w(Y>v) · fvc [ωZ≥vc ]∑

Y≥v
w(Y≥v) · fv[ωZ≥v ]

(C.1)

Similar to Lemma 9.5, we can infer the term in the numerator of Eqn. C.1∑
Y>v

w(Y>v) · fvc [ωZ≥vc ] =
∑
Y≥vc

w(Y≥vc) · fvc [ωZ≥vc ] (C.2)

Let vω,ω′ be the leaf node in f reached after following assignments ω and ω′. Let

L be the set of all skipped level’s when traversing f under ω, ω′ and for all l ∈ L let

xl denote the variable at that level. Note that in lines 19-25, each xl is set to ω′(xl)

with probability w(ω(xl))/(w(ω(xl)) + w(¬ω(xl))) = w(ω′(xl)) since literal weights

sum to 1. Then, LHS of Eqn. 9.2 can be written as

Pr[Y = ω′|Z = ω] =

vω,ω′∏
v=root(f)

Pr[xv = ω′(xv)|Z = ω(Zn), Y<v = ω′(Y<v)]

×
∏
l∈L

w(ω′(xl)) (C.3)

We can substitute Eqn. C.1 in Eqn. C.3 and infer from Eqn. C.2 that the

summation in the numerator of the term in Eqn. C.1 corresponding to a node v, will

cancel out with the denominator of the term corresponding to its child vc reached
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under the assignments ω, ω′ to xv. Thus the residual equation will be

Pr[Y = ω′|Z = ω]

=
fvω,ω′ ·

∏
l∈Lw(ω′(xl))

∏vω,ω′

v=root(fn) w(ω′(xv))∑
Y≥root

w(Y≥root) · froot[ωZ≥root ]

=
w(ω′) · f [ω′, ω]∑
Y w(Y ) · f [ω]

(C.4)

Theorem 9.7. Let X be a set of Boolean variables, ϕ be a CNF formula over X, w

be a literal-weight function over X, and n be a positive integer. If σ1, · · · , σn is the

sequence of random assignments returned by DPSampler(X, ϕ, w, n), then σ1, · · · , σn
are i.i.d. w-weighted samples of ϕ.

Proof. First note, that there are no shared variable values between calls to drawSample

and sampleFromADD, and that computeWeights computes all weights afresh in each

call. Therefore the samples generated are i.i.d. It remains to be shown, from the

definition of weighted sampling, that Pr[X = ω] = w(ω)
w(ϕ)

. We can write LHS using

chain rule as:

Pr[X = ω] =
∏

n∈V (T )

Pr[Xn = ωXn|Zn = ωZn ]

where the variables Zn =
⋃
a∈A(n) X

a is the set of all variables labeling the ances-

tors of n in T , and are already have an assignment under ω, when sampleFromADD

is called on fn by drawSample rec.

By Lemma 9.6, an assignment for Xn is sampled in Alg. 19 with probability

Pr[Xn = ωXn|Zn = ωZn ] =
w(ωXn) · fn[ωXn , ωZn ]∑

Xn w(Xn) · fn[ωZn ]

Substituting back, we get

Pr[X = ω] =
∏

n∈V (T )

w(ωXn) · fn[ωXn , ωZn ]∑
Xn w(Xn) · fn[ωZn ]

(C.5)
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By Definition of Tree-of-ADDs, we have

fn[ωXn , ωZn ] =
∏

c∈C(n)

∑
Xc

f c[ωZc ] · w(Xc)

Thus in Eqn. (C.5), in the numerator the term corresponding to a node n with non-

empty set of children C(n) cancels out with the product of the denominators of the

terms for the children. Also, Zr = ∅. Noting that Xn = ∅ for all n ∈ L(T ), the

residual equation is thus

Pr[X = ω] =
w(ω) ·

∏
n∈L(T ) f

n[ωZn ]∑
Xr w(Xr) · f r

(C.6)

A leaf node n in the project-join tree corresponds to a clause. If ω∗ 6|= ϕ, then at least

one clause will be violated, i.e. fn[ωZn ] = 0, yielding Pr[X = ω] = 0. But for all ω

such that ω |= ϕ, each term fn[ωZn ] = 1 in the numerator of Eqn. (C.6). Therefore,

we get

Pr[X = ω] =
w(ω)∑

Xr w(Xr) · f r

But we have
∑

Xr w(Xr) · f r = w(ϕ) (Theorem 2 in [59]). The result follows.

C.2 Experiments: Additional Results and Details

C.2.1 Experimental Setup

A comprehensive experimental comparison of all algorithm parameters requires sig-

nificant computation time. Due to limited resources, we had to arrive at informed

choices for various settings which we outline here. We invoked DPSampler with the

following parameters, which were seen yield the best performance in the context of

model-counting [59]. We used the MCS variable order as the diagram variable order

and used arbitrary join priority. We used the treedecomposing tool LG with Flow-

cutter in the planning phase. These are anytime tools, in that they are capable of

generating trees with lower treewidths the longer they run. However, we used the

first project-join tree returned, in all experiments.
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Figure C.1 : Speedup offered by Top-Down Sampling over Bottom-up

We also implemented a parallel version of DPSampler using the Sylvan library

version 1.5. By plugging in Sylvan instead of CUDD as the ADD library, we get

parallelization for ‘free’, which is a benefit derived from the modular nature of our

algorithm. Note that only the Tree-of-ADD compilation phase was parallelized; the

plannin and sample generation phases were still single-threaded. DPSampler with Syl-

van was configured to use 15 threads. We used log-counting during ADD-compilation

for both CUDD and Sylvan, as well as for computing sampling weights. DPMC with

log-counting was seen to yield accurate model counts in the Model Counting Compe-

tition, and we did not encounter underflows in our experiments.

C.2.2 Comparison of ADD-Sampling algorithms

The aim of this experiment was to quantify the benefits of the new top-down ADD-

sampling approach as described in Sec. 9.4, to the bottom-up sampling approach of

[62]. In particular, we tested the hypothesis that the performance of the bottom-up

procedure would degrade significantly as the number of nodes in the project-join tree

increased, owing to the need for cofactoring the ADD at each node of the project-



215

Both Only WAPS Only DPSampler

Bayes 679 0 264

Pseudoweighted 399 180 60

Total 1078 180 324

Table C.1 : Number of Benchmarks Successfully Solved

join tree, for each sample. We implemented two versions of DPSampler – one with

the top-down subprocedure and another with the bottom-up one. For each tool, we

attempted to generate 5000 samples in 1000 seconds. We computed the speedup

offered by top-down sampling relative to bottom-up, i.e. the ratio of the time taken

by bottom-up to the time taken by top-down. A ratio greater than 1 indicates that

top-down is faster than bottom-up by that factor, and vice versa. In Fig. C.1, we plot

the speedpup against the number of nodes in the project-join tree of 5 representative

benchmarks. It can be seen that top-down sampling is faster than bottom-up by a

factor ranging from 15 to 140, strongly depending on the size of project-join tree, as

hypothesized.

These results clearly show the efficiency of top-down sampling vis-a-vis bottom-

up. We observed a similar correlation between speedup and size of project-join tree

on other benchmarks as well. Coupled with the fact that the median number of nodes

in all the project-join trees constructed for Bayes benchmarks is 666, and 2656 for

Pseudo-weighted, it is clear that bottom-up sampling is prohibitively expensive in

practice.

C.2.3 Additonal Results on Comparison with WAPS

The individual cactus plots for Bayes and Pseudo-weighted benchmarks are shown in

Figs. C.2 and C.3 respectively. A point (x, y) in the plot, implies that x instances

took less than or equal to y seconds to solve. DPSampler is able to solve 264 more
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Both Only WAPS Only DPSampler

Bayes 838 19 122

Pseudoweighted 451 221 25

Total 1289 240 147

Table C.2 : Number of Benchmarks Successfully Compiled

Compile Time Total Time

Bayes 11.86 31.78

Pseudo-weighted 0.89 4.81

All 4.8 15.8

Table C.3 : Avg. (Geometric Mean) Speedups offered by DPSampler over WAPS

instances from the Bayes set as compared to WAPS, while WAPS is able to solve 120

more instances from the Pseudo-weighted set, as compared to DPSampler.

Tables C.1 and C.2 depict the number of benchmarks each sampler was successfully

able to solve and compile respectively. Recall that we consider a benchmark to be

solved, if the sampler is able to generate 5000 samples within a timeout of 1000s, and

a benchmark is considered successfully compiled, if the sampler finishes constructing

the d-DNNF (WAPS or d4) or the Tree-of-ADDs (DPSampler) from the input formula.

We highlight that the compilation time includes the time taken for constructing the

project-join tree. It can be seen that DPSampler is significantly superior to WAPS

on Bayes benchmarks both in terms of compilation and completion times. This

is also evident from the speedups offered by DPSampler (Table 9.1) For Pseudo-

weighted benchmarks, WAPS and d4 are able to solve and compile more benchmarks

than DPSampler, but the speedups (which are computed on benchmarks that both

samplers could solve/compile), are not very pronounced.
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Figure C.2 : Performance comparison on ‘Bayes’ benchmark set

Out of the 221 Pseudo-weighted benchmarks that WAPS (d4) was able to com-

pile but DPSampler could not, DPSampler failed on 165 because a project-join could

not be constructed. Further, on the 1663 total benchmarks where a project-join tree

could be computed, DPSampler succeeded in compilation on 84.7% of the benchmarks,

and fully solved 82.7%. Project-join tree computation failed on 282 Pseudo-weighted

benchmarks and 0 Bayes benchmarks. This shows that for DPSampler, the plan-

ning phase is the biggest bottleneck, and that finding better heuristics and tools for

constructing project-join trees is likely to yield significant gains in the future. For

instance, finding the right trade-off between waiting for a better tree-decomposition

vs. spending that time on ADD construction is an interesting direction for future

work.

In terms of compile time, DPSampler with Sylvan offered an average speedup of

1.99× on Bayes and 2.75× on Pseudo-weighted relative to DPSampler with CUDD.

DPSampler with Sylvan was able to solve 5 more benchmarks from Pseudo-weighted

as compared to DPSampler with CUDD, but failed on 1 Bayes benchmark that

DPSampler with CUDD was able to solve.
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Figure C.3 : Performance comparison on ‘Pseudo-weighted’ benchmark set

Other observations We observed consistently that node-sharing among the differ-

ent ADDs in a Tree-of-ADDs was very low. This indicates that using different variable

orders for each ADD is likely to yield benefits. We note that the benefits from paral-

lelization, while present (speedup by a factor of 2) are not very pronounced especially

in terms of number of benchmarks solved. This was because most benchmarks that

timed out for CUDD ended up running out of memory for Sylvan. Thus also indicates

that more research into variable ordering and even using dynamic variable ordering

can potentially help the parallelized a lot.
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