Differential Provenance: Better Network Diagnostics
with Reference Events

Ang Chen

University of Pennsylvania

Andreas Haeberlen
University of Pennsylvania

ABSTRACT

In this paper, we propose a new approach to diagnosing prob-
lems in complex networks. Our approach is based on the
insight that many of the trickiest problems are anomalies —
they affect only a small fraction of the traffic (e.g., perhaps
a certain subnet), or they only manifest infrequently. Thus,
it is quite common for the network operator to have “exam-
ples” of both working and non-working traffic readily avail-
able — perhaps a packet that was misrouted, and a similar
packet that was routed correctly. In this case, the cause of
the problem is likely to be wherever the two packets were
treated differently by the network.

We sketch the design of a network debugger that can lever-
age this information using a novel concept that we call dif-
ferential provenance. Like classical provenance, differen-
tial provenance tracks the causal connections between net-
work and configuration states and the packets that were af-
fected by them; however, it can additionally reason about the
causes of any discrepancies between different provenances.
We have performed a case study in the context of software-
defined networks, and our initial results are encouraging:
they suggest that differential provenance can often identify
the root cause of even very subtle network issues.

Categories and Subject Descriptors
D.2.5 [Testing and debugging]: Diagnostics

Keywords

Diagnostics, Debugging, Provenance

1. INTRODUCTION

Networks are not easy to get right. Despite the fact that re-
searchers have developed a wide range of tools for network
diagnostics [8, 16, 17, 11, 14, 15, 5], understanding the intri-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee, provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions @acm.org.

HotNets-XIV, November 16—17, 2015, Philadelphia, PA, USA.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-4047-2/15/11 ...$15.00.

DOI: http://dx.doi.org/10.1145/2834050.2834111.

Wenchao Zhou
Georgetown University

Yang Wu
University of Pennsylvania

Boon Thau Loo
University of Pennsylvania

cate relations between network events for a root-cause anal-
ysis is still challenging. This is perhaps especially true for
software-defined networks (SDNs), which offers exceptional
flexibility by introducing a programmable controller but also
further complicates reasoning about network faults.

Network provenance [21] is a promising candidate for un-
derstanding the details of network executions, as it provides
step-by-step explanations of network events. It encodes net-
work events as vertexes in a distributed database and their
causal relations as links; they form a provenance graph on
which an operator could issue queries that ask for an ex-
planation of a certain event. For example, an operator can
ask why a certain route exists in her router’s BGP table by
issuing a query on the vertex that represents this route in
the provenance graph; the answer to her query would be a
provenance tree rooted at that vertex, chronicling how the
route has been derived from other BGP events. A number of
provenance-based diagnostic tools have been developed re-
cently, including systems like ExSPAN [21], SNP [19], and
Y! [16]. Conceptually, these systems all provide variants of
the same capability: a way to ask for a comprehensive ex-
planation of a certain network event.

However, while a comprehensive explanation is certainly
useful for diagnosing a problem, it is not the same as find-
ing the actual root causes. We illustrate the difference with
an analogy from everyday life: suppose Bob wants to know
why his bus arrives at 5:05pm, which is five minutes late. If
Bob had a provenance-based debugger, he could submit the
query “Why did my bus arrive at 5:05pm?”, and he would
get a comprehensive explanation, such as “The bus was dis-
patched at the terminal at 4:00pm, and arrived at stop A at
4:13pm; it departed from there at 4:15pm, and arrived at stop
B at 4:21pm; ... Finally, it departed from stop Z at 5:01pm,
and arrived at Bob’s platform at 5:05pm”. This is very dif-
ferent from what Bob really wanted to know; the actual root
cause might be something like “At stop G, the bus had to
wait for five minutes because of a traffic jam”.

But suppose we allow Bob to instead ask about the differ-
ences between two events — perhaps “why did my bus arrive
at 5:05pm today and not at 5:00pm, like yesterday?”. Thus,
the debugger can omit those parts of the explanation that the
two events have in common, and instead focus on the (hope-
fully few) parts that caused the different outcomes. We argue

that a similar approach should work for network diagnostics
as well: reasoning about the differences between the prove-
nance of a bad event and a good one should lead to far more
concise explanations than the provenance of the bad event
by itself. We call this approach differential provenance.

Differential provenance requires some kind of “reference
event” that produced the correct behavior but is otherwise
similar to the event that is being investigated. There are sev-
eral situations where such reference events are commonly
available, such as 1) partial failures, where the problem ap-
pears in some instances of a service but not in others (Exam-
ple: DNS servers A and B are returning stale records, but
not C'); 2) intermittent failures, where a service is available
only some of the time (Example: a BGP route flaps due to a
“disagree gadget” [7]); and 3) sudden failures, where a net-
work component suddenly stops working (Example: a link
goes down immediately after a network transition). As long
as the faulty service has worked correctly at some point, that
point can potentially serve as the needed reference.

At first glance, it may seem that that differential prove-
nance merely requires finding the differences between two
provenance trees, perhaps with a tree-based edit distance al-
gorithm, such as [2]. However, this naive approach would
not work well because small changes in the network can
cause the provenance to look wildly different. To see why,
suppose that the operator of an SDN expects two packets P
and P’ to be forwarded along the same path A-B-C-D-E,
but that a broken flow entry on B causes P’ to be forwarded
along A-B-X-Y-Z instead. Although the root cause (the bro-
ken flow entry) is very simple, the provenance of P and P’
would look very different because the two packets traveled
on different paths. (We elaborate on this scenario in Sec-
tion 2.) A good network debugger should be able to pinpoint
just the broken flow entry and leave out the irrelevant conse-
quences.

In this paper, we present an initial algorithm for gener-
ating differential provenance (Section 3), we report results
from a preliminary case study in the context of SDNs that
demonstrates the potential benefits (Section 4), and we dis-
cuss some of the challenges ahead (Section 5). We believe
that differential provenance can become the basis for new,
powerful root-cause analysis tools — not only for SDNs, but
also for other types of networks and protocols.

2. OVERVIEW

We begin by explaining our high-level goals using the very
simple scenario in Figure 1, which consists of an SDN with
six switches, two web servers, and one DPI device. The
operator wants web server #2 to handle most of the web
requests; however, requests from certain untrusted subnets
should be processed by web server #1, because it is co-
located with the DPI device that is detecting malicious flows
based on the mirrored traffic from S6. To achieve this, she
configures two OpenFlow rules on switch S2: a specific rule
R; that matches traffic from the untrusted subnets and for-

Overly specific rule

‘, N s b S & Iss
\) D is }
I, [

’
Internet P E
3]
3

Web server #2

Web server #1 DPI

Figure 1: An SDN debugging example.

wards it to S6; and b) a general rule R, that matches the
rest of the traffic and forwards it to S3. However, the op-
erator made Ry overly specific by mistake (e.g., by writing
the untrusted subnet 4.3.2.0/23 as4.3.2.0/24). As
a result, only a subset of requests from this subnet arrives
at server #1 (e.g., those from 4. 3. 2. 1), whereas others ar-
rive at server #2 instead (e.g., those from 4.3.3.1). The
operator would like to use a network debugger to investigate
why requests from 4 . 3. 3.1 went to the wrong server. One
example of a suitable reference event would be a request that
arrived at the correct server —e.g., one from 4.3.2. 1.

2.1 Background: Provenance

At a high level, network provenance is a way to describe the
causal relationships between events in the network. For in-
stance, if a packet P arrives at web server #1 from Figure 1,
the direct cause is P’s transmission from a port on switch
S6. This, in turn, was caused by 1) P’s earlier arrival at S6
via some other port, in combination with 2) the fact that P
matched some particular flow entry in S6’s flow table. And
so on. The events and their causal relationships can be rep-
resented as a provenance graph, which is a DAG that has a
vertex for each event and an edge between each cause and
its direct effects. To find the provenance of a specific event,
we can simply locate the corresponding vertex in the graph
and then walk backwards along the causal edges until we
arrive at a set of “base events” that cannot be further ex-
plained, such as external inputs or configuration state. Thus,
the provenance of an event is simply the tree that is rooted at
the corresponding vertex in the provenance graph.

For simplicity, we assume that the network already has
a way to track provenance — e.g., a system from existing
work [21, 16, 20] — and that the controller program is writ-
ten in a declarative language, specifically Network Datalog
(NDlog) [10]. In NDlog, the network states are viewed as
tables that can each contain a set of tuples. For instance, a
switch could have a table called F1owEntry, and each of
its tuples could encode a flow entry; it could also contain
tables PacketIn, PacketMatch, and PacketOut that
contain tuples for packets that have been received, matched
against a particular flow entry, and sent out to the next hop.
Tuples can either be inserted from outside the system — e.g.,
incoming packets or configuration state — or they can be de-
rived programmatically via rules of the formA:-B, C, . . .,
which essentially say that a tuple A should exist whenever tu-

(a) Provenance of packet P’ at web server #2.

(b) Provenance of packet P at web server #1.

Figure 2: Provenance of the problematic event (left) and a correct reference event (right) in the scenario from Figure 1. The
green vertexes are common to both; and the black ones are “bordering” vertexes. Details of the vertexes have been omitted.

ples B, C, . .. are present. For instance, a rule in an SDN
switch could derive PacketOut tuples from PacketIn
and PacketMatch tuples.

We use NDlog here primarily because causality is very
easy to see in a declarative program: if tuple A was derived
viarule A: -B, C, then its provenance simply consists of tu-
ples B and C. (For a more complete explanation of NDlog
provenance, please see [21, 16].) However, provenance is
not specific to a particular language and has been used with
existing languages for SDNS, such as Pyretic [16].

2.2 Why is provenance not enough?

Provenance can be helpful for diagnosing a problem, but
finding the actual root cause can require substantial addi-
tional work. To illustrate this, we used the Y! system [16] to
query the provenance of the packet P’ in our scenario after
it has been (incorrectly) routed to web server #2. The full
provenance tree, shown in Figure 2a, consists of no less than
201 vertexes, which is why we have omitted all the details
from the figure. Since this is a complete explanation of the
arrival of P’, the operator can be confident that the informa-
tion in the tree is “sufficient” for diagnostics, but the actual
root cause (the faulty rule; indicated with an arrow) is buried
deep within the tree and is quite far from the root, which
corresponds to the packet P’ itself. This is by no means un-
usual: in other scenarios that have been discussed in the lit-
erature, the provenance often contains tens or even hundreds
of vertexes [16]. Because of this, we believe that it would be
useful to offer the operator additional help with identifying
the actual root causes.

2.3 Key idea: Reference events

Our key idea is to use a reference event to improve the di-
agnosis. A good reference event is one that a) is as similar
as possible to the faulty event that is to be diagnosed, but
b) unlike that event, has produced the “correct” outcome.

Since the reference event reflects the operator’s expectations
of what the buggy network ought to have done, we must rely
on the operator to supply it together with the faulty event.

The purpose of the reference event is to show the debug-
ger which parts of the provenance are actually relevant to the
problem. If the provenance of the faulty event and the refer-
ence event have vertexes in common, these vertexes cannot
be related to the root cause and can therefore be pruned with-
out losing information. If the reference event is sufficiently
similar to the faulty event, it is likely that almost all of the
vertexes in their provenances will be shared, and that only
a very few (perhaps 3 out of 100) will be different. Thus,
the operator can focus only on those vertexes, which must
include the actual root cause.

For illustration, we show the provenance of the reference
packet P from our scenario in Figure 2b. There are quite
a few shared vertexes (shown in green), but perhaps not as
many as the reader would have expected. This is because of
an additional complication that we discuss in Section 2.5.

2.4 Are references typically available?

To understand whether reference events are typically avail-
able in practical diagnostic scenarios, we reviewed the posts
on the Outages mailing list from 09/2014-12/2014. There
are 89 posts in total, and 64 of them are related to network
diagnostics (the rest are either irrelevant, e.g., a complaint
about iOS 8.0.1, or lacking necessary information to formu-
late a diagnosis, e.g., a piece of news reporting that a cable
was vandalized). We found that 42 of the 64 diagnostic sce-
narios we examined (66%) contain both a fault and at least
one reference event.

We further classified the 42 scenarios into three categories:
partial failures, sudden failures, and intermittent failures. The
most prevalent problems were partial failures, where oper-
ators observed functional and failed installations of a ser-
vice at the same time. For instance, one thread reported

that a batch of DNS servers contained expired entries, while
records on other servers were up to date. Another class
of problems were sudden failures, where operators reported
the failure of a service that had been working correctly ear-
lier. For instance, an operator asked why a service’s status
suddenly changed from “Service OK” to “Internal Server
Error”. The rest were intermittent failures, where a ser-
vice was experiencing instability but was not rendered com-
pletely useless. For instance, one post said that diagnostic
queries sometimes succeeded, sometimes failed silently, and
sometimes took an extremely long time.

2.5 Why not just diff the trees?

Intuitively, it may seem that the differences between two
provenance trees could be found with a conventional tree
comparison algorithm — e.g., some variant of tree edit dis-
tance algorithms [2] — or perhaps simply by comparing the
trees vertex by vertex and picking out the different ones.
However, there are at least two reasons why this would not
work well. The first is that the trees will inevitably differ
in some details, such as timestamps, packet headers, packet
payloads, etc. These details are rarely relevant for root cause
analysis, but a tree comparison algorithm would nevertheless
try to align the trees perfectly, and thus report differences al-
most everywhere. Thus, an equivalence relation is needed to
mask small differences that are not likely to be relevant.

Second, and more importantly, small differences in the
leaves (such as forwarding a packet to port #1 instead of
port #2) can create a “butterfly effect” that results in wildly
different provenances higher up in the tree. For instance, the
packet may now traverse different switches and match differ-
ent flow entries that in turn depend on different configuration
state, etc. This is the reason why the two provenances in Fig-
ures 2a and 2b have so few vertexes in common: the former
has 156 vertexes and the latter 201, but the naive “diff”’ has
as many as 278 — even though the root cause is only a sin-
gle vertex! Thus, a naive diff can actually result in a larger
provenance, which completely nullifies the potential advan-
tage from the reference events.

2.6 Approach: Differential provenance

Differential provenance takes a fundamentally different ap-
proach to identifying the relevant differences between two
provenance trees. We exploit the fact that a) each prove-
nance describes a particular sequence of events in the net-
work, and that b) given an initial state of the network, the
sequence of events that unfolds is largely deterministic. For
instance, if we inject two packets with identical headers into
the network at the same point, and if the state of the switches
is the same in each case, then the packets will (typically)
travel along the same path and cause the same sequence of
events at the controller. This allows us to predict what the
rest of the provenance would have been if some vertex in the
provenance tree had been different in some particular way.
This enables the following three-step approach for com-

paring provenance trees: First, we use standard tree com-
parisons to find a pair of vertexes close to the bottom where
the trees are different. Then we conceptually “roll back”
the state of the network to the corresponding point, make a
change that transforms the one vertex into the other, and then
“roll forward” the network again while keeping track of the
new provenance along the way. Thus, the provenance tree
for the diagnostic event will become more and more like the
provenance tree for the reference event. Eventually, the two
trees are identical. At this point we output the set of changes
(or perhaps only one change!) that transformed the one tree
into the other; this is our estimate of the “root cause”.

3. DIFFERENTIAL PROVENANCE

In this section, we define the problem from Section 3.1 a bit
more formally, and we sketch an initial solution that follows
the three steps discussed in Section 2.6. We use the terms
“leaves”, “base events”, and “base tuples” interchangeably
in this discussion.

3.1 Problem Statement

Differential provenance takes two inputs from the operator:
a) a faulty event € to be diagnosed, and b) a reference event e
that is considered to be correct with respect to €. It analyzes
their provenance trees T, and 7Tz, attempts to change a small
set of base tuples (and by derivation, their derived tuples) in
the faulty execution, and then replays the changes to see if
the fault disappears. Its output is a set of base tuple changes
that would correct the fault. For instance, differential prove-
nance might find that making the following changes {A1; =
T — T, ATy = T0 = Ty ATy = Ty — 7, } would
make the fault go away, where {7y,72,---,7,} and
{r{, 7%, -, 7}, } are leaves on T, and T, respectively.

3.2 Where do we start?

A trivial way to transform one provenance into another would
be to remove all the base tuples from the first and to then in-
sert all the base tuples from the second. However, in practice
we prefer transformations that a) change only base tuples
that actually can be changed in reality (e.g., configuration
state, but not incoming packets), and that b) are as small
as possible — we expect the root cause to correspond to the
“minimum” set of changes. To this end, we use the follow-
ing three heuristics to choose the order of the tuples.
Bordering vertexes first: We begin by finding all “border-
ing vertexes” from the faulty provenance tree 7;. A border-
ing vertex v is a vertex such that some, but not all, of its
children are common subtrees in 7, and 7% (e.g., the black
vertexes in Figure 2). Intuitively, this heuristic is inspired by
the observation that similarities between two trees represent
similarities in the network executions. Therefore, bordering
vertexes are important as they represent the places where two
network executions just begin to diverge. Thus, changes at
those points have a much bigger likelihood of aligning large
portions of the provenance.

We identify the bordering vertexes using a tree compari-

son algorithm based on Largest Common Subtrees (LCSes)
as a building block. Intuitively, an LCS captures the maxi-
mal amount of similarity between parts of 7, and 7%, and,
therefore, between the good and bad executions. It essen-
tially encodes the shared execution that has played a part in
causing the appearance of both e and e. To find LCS, our
algorithm first removes irrelevant differences between the
two provenance trees (currently by replacing specific fields,
such as timestamps and payloads, with zeroes) and then con-
structs a Merkle Hash Tree (MHT) [12] over each prove-
nance tree. This allows us to find the roots of all common
subtrees in one pass, by matching the values of the hashes in
the MHT. We then identify the LCSes by performing a BFS
from the roots, and reporting the first vertex with a matched
MHT top hash. If an unmatched vertex has at least one child
that is a LCS, then that vertex is a bordering vertex and we
call its subtrees Smallest Distinct Subtrees (SDSes).
Least divergence first: Second, we rank the bordering ver-
texes by the number of base tuples (i.e., leaves of the corre-
sponding subtrees) in which they differ, and we start with the
ones that have the fewest differences. The subtrees rooted
at bordering vertexes must have some distinct, unmatched
leaves, because otherwise the subtrees would have been the
same as well. We use this heuristic because, at such vertexes,
only a small number of events have caused the executions to
diverge; so they are relatively “simpler” to correct.

After we have ranked all bordering vertexes, we extract

the distinct base tuples in their SDSes (according to the order
of the bordering vertexes), i.e., tree leaves that are present in
one SDS but not the other. We then apply the last heuristic
to rank those base tuples. Those ranked tuples will then be
processed in the step for rule synthesis.
Recent events first: Finally, we prioritize the base tuples
with closer timestamps before the faulty event. This is be-
cause for many “sudden failures”, their root causes would
probably not go too far back.

Although, in our experience, these heuristics tend to work
well, they do not provide a “hard” guarantee that a working
transformation will be found. Our current algorithm reports
“no root causes found” if a) there are no bordering vertexes
to start with because the trees have zero overlap, or b) none
of the attempted changes to the base tuples work. We are
currently working on a solution for these problems, and we
provide some additional detail in Section 5.

3.3 How should we make the change?

Given a pair of vertexes identified by the heuristics above,
we next decide how to make changes for the subtrees rooted
at these two vertexes to be aligned. Since the reference tree
gives us an idea of what a correct execution looks like, we
have an opportunity to synthesize tentative changes by look-
ing at the reference tree. The result would be a set of addi-
tions, deletions, and changes to base tuples in the bad tree.
We find these changes using rule synthesis followed by
rule refinement, and we explain these using the running ex-

ample in Figure 1. The rule synthesis step starts with a pair
of corresponding but different tuples on the faulty tree and
the reference tree; in this case, the former will be
flowEntry (@S2, =, 2),whichsays thatswitch S2 has
a default rule that matches all packets and forwards them to
switch S3 via port 2, and the latter willbe flowEntry (@S2,
4.3.2.0/24, 1), which matches the suspicious subnet
and forwards the traffic to switch S6 via port 1. To align the
two trees, the algorithm transforms the former tuple into the
latter. In the case of base tuples, this is trivial, but in the case
of derived tuples the algorithm must find a change to the
base tuples (which are the only tuples that can be changed
directly) that causes the correct derivations. We use static
analysis on the NDlog rules to compute suitable changes.

However, at this point a subtle problem appears: the “bad”
packet was for 4.3.3.1, whereas the “good” packet was
for 4.3.2.1! Thus, a change to the “bad” tree that causes
flowEntry (@S2, 4.3.2.0/24, 1) toappear verba-
tim will not cause the correct sequence of events, since it
does not match the “bad” packet. Our current solution is to
use wildcards during rule synthesis (which would initially
result in flowEntry (@S2, x, 1) and make all pack-
ets go to web server #1) and to then refine the header space
in a subsequent step. Our goal is to find the largest header
space that will correct the problem while avoiding undesir-
able side effects that might change other parts of the tree.
To do this, our refinement technique starts with wildcards at
the base tuples and then moves up the provenance tree while
narrowing the IP ranges at each step as needed until it either
a) reaches the root of the subtree or b) the header space can-
not be refined further. In our example, this would result in
flowEntry (@S2, 4.3.3.1/24, 1).

Notice that the goal of refinement is not necessarily to find
the “correct” tuple to insert or the “correct” IP range against
which to match. While this happens to work out in our sim-
ple example, it would not be realistic to expect this in gen-
eral: since the algorithm has only one reference packet, it
would be difficult to infer the correct subnet (which could be
4.3.3.1/27, for instance). Rather, our goal is to identify
where in the network changes need to be made; it is up to the
operator to decide what the correct behavior should be.

4. CASE STUDY

We have set up the scenario from Figure 1 in RapidNet [1],
using a similar method of modeling OpenFlow switches as
in Y![16], and we have implemented an initial version of our
differential provenance algorithm. We then used this setup
to answer the following three provenance queries:

Ql: aconventional provenance query asking “why did HTTP
packet P1 appear at the web server 1?77;

Q2: aconventional provenance query asking “why did HTTP
packet P2 appear at the web server 27”’; and

Q3: adifferential provenance query asking “why did HTTP
packet P1 appear at the web server 1 but packet P2
appear at web server 2?”

Query Tree size | Base tuples
Q1 156 12

Q2 201 15
Plain diff 278 14

Q3 | 1

Table 1: Sizes of the provenance trees in our case study.

Table 1 reports the overall number of vertexes and the num-
ber of base tuples in the resulting provenance trees, as well
as in a naive diff between the trees for Q1 and Q2. We ob-
serve that the plain diff contains 278 vertexes, which is far
bigger than either Q1 or Q2 separately (and thus presum-
ably even less useful!). In contrast, the differential query Q3
was able to correctly identify the one vertex (the faulty flow
entry) that caused the discrepancy.

We have also tested our prototype with two other scenar-
ios: one that involves a fault caused by a bad interaction
between multiple applications [5], and another that involves
a fault caused by an unexpected flow entry expiration. We
omit the details due to lack of space, but we briefly report
our key findings: the naive diffs contained 238 and 74 ver-
texes, respectively, whereas differential provenance was able
to identify a single vertex as the root cause in both cases.

5. CHALLENGES AND NEXT STEPS

In this section, we outline some interesting challenges that
we plan to address next.

Bad reference events: Differential provenance relies on the
assumption that the reference event provided by the operator
is sufficiently “comparable” to the faulty event to be diag-
nosed. However, operators can make mistakes and might
provide a reference event that is only superficially similar to
the faulty event. In this case, differential provenance would
fail to achieve alignment between two executions. We hope
to find a way to detect such failures early, and to report them
to the operator in a way that is easy to understand — perhaps
with a brief description of the dissimilarity that could help
the operator find a better reference.

Performance: The scenarios we have tried so far are rel-
atively small, but, in an enterprise setting, both the prove-
nance and the network to be “simulated” during tree align-
ment would be substantially larger. Fortunately, the tree
comparison step is easily parallelizable (e.g., by subtrees),
and for the replay step we should be able to leverage opti-
mizations from existing work in other areas. Two interesting
examples of such work are: a) work on deterministic replay
that can identify shared executions across multiple replays,
and speed things up by remembering shared states [9]; and b)
work from the database literature on incremental view main-
tenance [21], which can efficiently find the consequences of
small changes without repeating the entire computation. We
are currently exploring those directions.

Multiple references: The base differential provenance of-
fers an operator the ability to specify one reference event in

the system. It would be interesting to consider giving the
debugger multiple references when they are available; this
might be a way to infer some extra information, such as, in
Section 3.3, the correct IP range to be matched.

6. RELATED WORK

Provenance: Provenance is a concept borrowed from the
database community [3], and it captures causal relations be-
tween database tuples. Researchers have applied provenance
to distributed systems [21, 19, 16], storage systems [13], op-
erating systems [6], and mobile platforms [4]. Our work is
mainly related to projects that use network provenance for
diagnostics, such as ExXSPAN [21] that maintains network
provenance at scale, SNP [19] that secures network prove-
nance information in adversarial settings, Y! [16] that ex-
tends the provenance model to answer negative queries, etc.
All those projects use the provenance of individual events,
while we add reference events for root cause analysis.

Diagnostics: Our work is related to many existing network
diagnostics projects, including Anteater [11], Header Space
Analysis [8], OFRewind [17], Minimal Causal Sequence anal-
ysis [14], and ATPG [18]. The most closely related project is
PeerPressure [15], which diagnoses misconfigured machines
by comparing their registry values to those on a set of refer-
ence machines. However, PeerPressure uses Bayesian infer-
ence rather than provenance, so it can only compute a proba-
bility that a given configuration setting is responsible for the
observed symptoms, whereas our approach can establish a
causal connection.

7. CONCLUSION

In this paper, we have introduced a novel approach to net-
work diagnostics that is based on the observation that net-
work faults tend to be the exception rather than the norm
— they often affect only a small fraction of the traffic, and
they often manifest infrequently. Thus, operators often have
“examples” of both good traffic and bad traffic readily avail-
able. Our approach uses network provenance to find events
that are causally connected to the good and/or the bad exam-
ple, and then reasons about the differences between the two
provenances to isolate a set of root causes that is responsible
for the different outcomes. Our initial results seem encour-
aging — the final result can be as precise as a single root
cause — but some challenges remain to be addressed before
the approach can be deployed in an operational setting. We
are addressing these challenges in our ongoing work.

Acknowledgments: We thank the anonymous reviewers for
their comments and suggestions. This work was supported
in part by NSF grants CNS-1054229, CNS-1065130, CNS-
1117052, CNS-1218066, CNS-1453392, and CNS-1513734;
DARPA contract HR0011-15-C-0098; and the Intel-NSF Part-
nership for Cyber-Physical Systems Security and Privacy
(NSF CNS-1505799).

8. REFERENCES

[1] RapidNet.

http://netdb.cis.upenn.edu/rapidnet/.

[2] P. Bille. A survey on tree edit distance and related
problems. Theor. Comput. Sci., 337(1-3):217-239,
June 2005.

[3] P. Buneman, S. Khanna, and W.-C. Tan. Why and

where: A characterization of data provenance. In Proc.

ICDT, Jan. 2001.

[4] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S.
Wallach. Quire: Lightweight provenance for smart
phone operating systems. In Proc. USENIX Security,
2011.

[5] R. Durairajan, J. Sommers, and P. Barford.
Controller-agnostic SDN debugging. In Proc.
CoNEXT, 2014.

[6] A. Gehani and D. Tariq. SPADE: Support for
provenance auditing in distributed environments. In
Proc. Middleware, 2012.

[7] T. G. Griffin, F. B. Shepherd, and G. Wilfong. The
stable paths problem and interdomain routing.
IEEE/ACM Trans. Netw., 10(2):232-243, Apr. 2002.

[8] P. Kazemian, G. Varghese, and N. McKeown. Header
space analysis: Static checking for networks. In Proc.
NSDI, 2012.

[9] T. Kim, R. Chandra, and N. Zeldovich. Efficient
patch-based auditing for web application
vulnerabilities. In Proc. OSDI, 2012.

[10] B. T. Loo, T. Condie, M. Garofalakis, D. E. Gay, J. M.
Hellerstein, P. Maniatis, R. Ramakrishnan, T. Roscoe,
and I. Stoica. Declarative networking.
Communications of the ACM, 52(11):87-95, Nov.
2009.

[11] H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. B.
Godfrey, and S. T. King. Debugging the data plane
with Anteater. In Proc. SIGCOMM, 2012.

[12] R. Merkle. Protocols for public key cryptosystems. In

Proc. IEEE Symposium on Security and Privacy, 1980.

[13] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland,
P. Macko, D. Maclean, D. Margo, M. Seltzer, and
R. Smogor. Layering in provenance systems. In Proc.
USENIX Annual Technical Conference, 2009.

[14] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or,
J. Lai, E. Huang, Z. Liu, A. El-Hassany, S. Whitlock,
H. Acharya, K. Zarifis, and S. Shenker.
Troubleshooting blackbox SDN control software with
minimal causal sequences. In Proc. SIGCOMM, 2014.

[15] H.J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M.
Wang. Automatic misconfiguration troubleshooting
with PeerPressure. In Proc. OSDI, 2004.

[16] Y. Wu, M. Zhao, A. Haeberlen, W. Zhou, and B. T.
Loo. Diagnosing missing events in distributed systems
with negative provenance. In Proc. SIGCOMM, 2014.

[17] A. Wundsam, D. Levin, S. Seetharaman, and
A. Feldmann. OFRewind: Enabling record and replay
troubleshooting for networks. In Proc. USENIX
Annual Technical Conference, 2011.

[18] H. Zeng, P. Kazemian, G. Varghese, and
N. McKeown. Automatic test packet generation. In
Proc. CoONEXT, 2012.

[19] W. Zhou, Q. Fei, A. Narayan, A. Haeberlen, B. T. Loo,
and M. Sherr. Secure network provenance. In Proc.
SOSP, Oct. 2011.

[20] W. Zhou, S. Mapara, Y. Ren, Y. Li, A. Haeberlen,

Z. Ives, B. T. Loo, and M. Sherr. Distributed
time-aware provenance. In Proc. VLDB, Aug. 2013.

[21] W. Zhou, M. Sherr, T. Tao, X. Li, B. T. Loo, and
Y. Mao. Efficient querying and maintenance of
network provenance at Internet-scale. In Proc.
SIGMOD, 2010.

