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Abstract
Emerging distributed applications, such as microservices, ma-
chine learning, big data analysis, consist of both compute
and network tasks. DAG-based abstraction primarily targets
compute tasks and has no explicit network-level scheduling.
In contrast, Coflow abstraction collectively schedules network
flows among compute tasks but lacks the end-to-end view of
the application DAG. Because of the dependencies and inter-
actions between these two types of tasks, it is sub-optimal to
only consider one of them. We argue that co-scheduling of
both compute and network tasks can help applications towards
the globally optimal end-to-end performance. However, none
of the existing abstractions can provide fine-grained informa-
tion for co-scheduling. We propose MXDAG, an abstraction
to treat both compute and network tasks explicitly. It can cap-
ture the dependencies and interactions of both compute and
network tasks leading to improved application performance.
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1 Introduction
Today’s compute systems host a variety of distributed applica-
tions ranging from microservices, MapReduce, to distributed
DNN training and database systems [23, 34, 38, 39]. Due to
the distributed nature of such applications, the network can
easily become the bottleneck [26, 32, 46]. Better scheduling
decisions are key to application performance and resource
utilization. Task-level DAGs (directed acyclic graphs) are a
common abstraction for scheduling [3, 20, 33, 43], but many
such systems do not explicitly consider network resources.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets ’21, November 10-12, 2021, Virtual Event, UK
© 2021 Copyright held by the owner/author(s). Publication rights licensed to
the Association for Computing Machinery.
ACM ISBN 978-1-4503-9087-3/21/11. . . $15.00
https://doi.org/10.1145/3484266.3487384

Network-aware DAG scheduling [1, 16, 17] does take network
bandwidths into account, but in a resource packing model; it
does not explicitly schedule network communications.

Another group of work focuses on explicit network sched-
uling and job placement where the primary objective is to
localize most of the traffic flows between tasks and balance the
network utilization across the system [2, 5, 8, 11, 21, 37, 47].
Such frameworks have more fine-grained information about
the network I/O, but lack tight integration between network
flows and application-level requirements. The coflow abstrac-
tion [6] tries to bridge this gap by jointly considering col-
lections of network flows among multiple compute stages,
which enables application-aware network scheduling to some
extent [7, 9]. However, coflows do not consider a global view
of the application DAG. As we will discuss later, defining a
coflow inside an asymmetric DAG can be ambiguous. Finally,
coflow treats the internal flows based on an all-or-nothing
principle, which can obscure the critical path information and
harm application performance.

Therefore, co-scheduling of both compute and network
tasks is necessary to improve application performance and
resource utilization. Fundamentally, this explicitly considers
all kinds of dependencies from the application (compute-
network, compute-compute, network-network) in a more fine-
grained manner. This enables better critical path analysis and
scheduling strategies, e.g., by overlapping communication
with computation, chunking up data for pipelining, and pre-
empting and ordering parallel flows.

We ideally want a co-scheduler that optimally schedules
the application given the fine-grained information regarding
both the compute and network tasks with an end-to-end view.
Unfortunately, none of the existing abstractions can encode
such fine-grained information effectively. This inherent gap
between the ideal co-scheduling requirements and existing
abstractions motivates us to propose a more general and fun-
damentally different abstraction, called MXDAG. It abstracts
both the compute and network tasks in a DAG as explicit
nodes with annotations. The edges capture task/network de-
pendencies. MXDAG can potentially address several chal-
lenges related to co-scheduling system design. First, by de-
coupling compute and network tasks, MXDAG enables the co-
scheduler to treat them uniquely as they have fundamentally
different behaviors. Compute tasks are easily isolated among
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CPU/GPU cores but the performance is less predictable. Net-
work tasks are more predictable given the data size and net-
work bandwidth are known, but they cannot be isolated as
easily. Second, MXDAG enables the co-scheduler to consider
the heterogeneity in both compute (CPU, GPU) and network
resources [22, 29, 30]. Finally, with a global view, MXDAG
enables the co-scheduler to carefully analyze the impact of
pipelining between all kinds of tasks for better decisions.

2 Motivation
2.1 Previous DAGs Lack Explicit Network Scheduling
DAG-based abstraction is widely used to analyze and opti-
mize parallel jobs. It captures data flows between computa-
tional tasks and indicates corresponding dependencies, which
plays a significant role in resource sharing and task scheduling.
However, most of the existing DAG-based scheduling frame-
works, including Spark, Flink, Dryad, and Tez [3, 20, 33, 43],
mainly focus on the host-level computational tasks and im-
plicitly treat the network requirements as parts of the com-
putational tasks. Several recent network-aware DAG-based
schedulers [1, 16, 17] start to consider the bandwidth resource.
Nevertheless, they only consider the bandwidth when pack-
ing different resources while no explicit flow-level resource
scheduling information is included. Thus, these DAG abstrac-
tions usually use the same type of edges, without thoroughly
distinguishing between logical dependencies and real data
transmissions, leading to inefficient scheduling results.

For example in Fig. 1(a), host A needs to send two flows
to host B and C. A network-aware scheduler would fairly
share the bandwidth resources and schedule the tasks as in
Fig. 1(b), flow 1 and flow 3 will share the NIC bandwidth
and thus extend the completion time. As a result, job X can
only complete at time T1. Instead, a network-computation
co-scheduler would schedule in a globally optimal way by
prioritizing flow 1 over flow 3 as Fig. 1(c), so that both the
flows enjoy the full bandwidth. Therefore, the task on C could
complete at time T2, much earlier than the previous case.
2.2 Coflow Abstraction Lacks Global View
The Coflow abstraction [6] was proposed a decade ago and
is widely used by many network schedulers to optimize re-
source sharing [7, 9, 24]. Such abstraction jointly considers
parallel flows between two subsets of hosts having a common
objective [6] and also contains the information about the com-
munication pattern e.g., broadcast (one-to-many), aggregation
(many-to-one), shuffle (many-to-many), etc. However, coflow
abstraction has two fundamental limitations:

Coflow abstraction implicitly assumes symmetry in the
DAG, which leads to definitional ambiguity when abstracting
asymmetric DAG. Asymmetric DAG is common in emerging
applications [4, 25, 35, 41]. From those, we primarily observe
two sources of asymmetry: 1) The asymmetry can arise from
the heterogeneity in computation time across the nodes, as

Figure 1: Comparison between network-aware schedul-
ing and network-compute co-scheduling.
shown in Fig. 2(a). The computation times for tasks on host B
and C can be unequal (𝑡1 and 𝑡2 respectively) due to the hetero-
geneity in the underlining hardware (GPU, CPU, etc.) or the
different task sizes; 2) The DAG can also have an asymmet-
ric topology as shown in Fig. 2(b) (adopted from [4]). From
which, three different coflow abstractions might be derived
as Fig. 2(b1,b2,b3). In Fig. 2(b1), we consider two coflows
i.e., broadcast from node C (𝑓3 and 𝑓4) and aggregation at node
F (𝑓5 and 𝑓6). In Fig. 2(b2), aggregation at node E (𝑓2 and 𝑓4)
is considered to be an alternative coflow. In Fig. 2(b3), all
flows between nodes {B,C} and {D,E} are considered to be
one coflow (𝑓2, 𝑓3 and 𝑓4). Despite having several options for
defining a coflow, the application programmer must commit
to a specific definition while writing the application. It cannot
be modified during runtime. Most importantly it is difficult
to predict, how a specific coflow definition would impact the
application performance.

Without a global view of the DAG, the coflow abstraction
could lead to inefficient scheduling. By enforcing all the flows
in a coflow to end at the same time, coflow can possibly ob-
scure the critical path information of the DAG, which may
lead to sub-optimal performance during scheduling, as shown
in Fig. 2(c) and (d). For the DAG with asymmetric computa-
tion time, the optimal scheduling without coflow in Fig. 2(c)
treats each flow individually and allows each flow to avoid
sharing the NIC bandwidth resources smartly. While with
the coflow abstraction, coflow {𝑓1, 𝑓2} and {𝑓3, 𝑓4} have to
share the NIC bandwidth at the same time and enlarge the
end-to-end completion time. For the DAG with asymmetric
topology, The optimal solution delays the start time for 𝑓4
and avoids NIC bandwidth sharing at host C (source). And
as a cascading effect, 𝑓5 and 𝑓6 also do not share the NIC
bandwidth at host F (destination). Whereas, the three differ-
ent solutions with coflow abstraction all have sub-optimal
scheduling. In Fig. 2(d), the coflow abstraction b1 forces the
coflows {𝑓3, 𝑓4} and {𝑓5, 𝑓6} to share the NIC bandwidth on
hosts C and F respectively, so that the execution on D will
be postponed. Meanwhile, the coflow abstractions b2 and b3
also force the scheduler to schedule 𝑓2 and 𝑓4 together as one
coflow, leading to NIC bandwidth sharing at host E.
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Figure 2: (a) DAG with asymmetric computation times; (b) DAG with asymmetric topology from Wukong [4]; (b1,b2,b3)
Three potential coflow abstractions of DAG in (b), and flows grouped with dashed ellipse are considered as a coflow; (c)
An optimal schedule without coflow for DAG in (a) and the schedule with {𝑓1, 𝑓2} and {𝑓3, 𝑓4} as coflows; (d) An optimal
schedule without coflow abstraction for DAG in (b) and schedules with different coflow abstraction.

Figure 3: Different pipelineablity choices make different impacts on application performance

2.3 Both Abstractions Lack Pipelineability Analysis
Pipelining is a promising strategy to improve the performance
of distributed applications. By chunking up the data flows, not
only the storage usage on the host can be reduced, but also
the overlap between communication with computation can
be maximized. There are two common kinds of applications
that could be optimally scheduled with efficient pipelining.
On one hand, map-reduce jobs could significantly reduce
the job completion time by pipelining the execution of the
map and reduce tasks [10]. On the other hand, distributed
deep learning, especially the gradient aggregation part, can
benefit a lot from pipelining the push and pull operations,
thereby significantly reducing the communication time and
accelerating the overall training [32].

However, none of the existing DAG-based and coflow-
based abstractions fully consider the pipelineability in their
scheduling strategies [6, 17]. Caerus [44] does consider pipelin-
eability and provides a step dependency model to capture the
pipeline information. Nevertheless, it only profiles the pipelin-
eability on the computational tasks, without any network-
level pipelining analysis. Therefore, such network-oblivious
pipelining could lead to sub-optimal scheduling decisions.
We analyze several situations where pipelineablity has dif-
ferent impacts, using a four-node DAG with A->B->C as
the critical path, as shown in Fig. 3(a). Fig. 3(b) displays the
execution timeline of the baseline situation where pipelines
are not allowed anywhere. We then illustrate three different

scenarios with different pipelineablity choices as follows to
provide insights into pipelining impacts. With these insights,
we could observe that a better scheduler should allow network
operators to choose whether to use pipeline or not and which
tasks need to be pipelined at runtime.
Case 1: Pipelining on the non-critical path makes no im-
pact on the application performance. As shown in Fig. 3(c),
pipelining flow 4 on node D will not affect the length of the
critical path since node D does not belong to it. Therefore,
the execution on C will be the same as the baseline case and
there are no changes to the overall application performance.
Case 2: Pipelining on the critical path can improve the appli-
cation performance. As shown in Fig. 3(d), besides pipelining
flow 4 as the previous case, flow 1 on node A is also chosen
to be pipelined. Since flow 3 still starts after flow 1 is com-
pleted, these two flows will not overlap and enjoy the full NIC
bandwidth of node A. Therefore, such pipelining strategies
will shorten the critical path length (A->B->C), causing the
execution on node C to start earlier than in the baseline.
Case 3: Pipelining on the critical path can degrade the ap-
plication performance. As shown in Fig. 3(e), allowing to
pipeline flow 3 along with flow 1 and flow 4, will increase
the critical path length. In this case, flow 1 and flow 3 start at
the same time and take twice the time to finish as they share
the same NIC bandwidth of node A. Therefore, the length of
the critical path (A->B->C) becomes longer that causes the
execution on node C to start later than in the baseline.
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3 MXDAG
To address the above drawbacks of the existing solutions,
we introduce the MXDAG abstraction. The construction of
MXDAG can still rely on existing solutions to get the neces-
sary information for different kinds of applications. On one
hand, there are bare-metal applications like distributed deep
learning and distributed matrix computation, where all the
necessary information (e.g., CPU/GPU cores, data size, NIC
bandwidth) can be provided explicitly before execution. On
the other hand, for the applications running on Spark, Hadoop,
Dryad etc., such information is not known a priori, because
the physical placement is decided by system schedulers (e.g.,
YARN) at runtime. For these cases, flow-level details can be
estimated from historical placement information [18, 31, 44]
and the execution time of a compute task on specific hard-
ware can be estimated by measurement-based job profiling
[36, 40, 42, 45].

3.1 Definition
MXTasks are the nodes {𝑣1, 𝑣2, ..., 𝑣𝑘 } in the MXDAG 𝐺 , and
each MXTask represents either a task running on a host using
CPU/GPU/accelerator or a flow in the network with a single
sender and receiver. Note that all the MXTasks are physical
processes or flows, rather than logical tasks which usually
contain multiple physical tasks on multiple machines. Each
MXTask is a procedure that receives an input and gives an
output after being processed by a certain amount of resources.
To include more quantitative information, each MXTask has
two additional fields: 1) MXTask size 𝑆𝑖𝑧𝑒 (𝑣𝑖 ) represents
the completion time of an MXTask with the maximum re-
source assigned (computation or bandwidth), which has simi-
lar meaning with the concept of task durations in Decima [27]
and Graphene [17]. Size information can be used to estimate
the completion time when only partial resources are assigned
to the task; 2) MXTask unit𝑈𝑛𝑖𝑡 (𝑣𝑖 ) represents the size of the
smallest unit when being executed under the pipeline. Note
that for MXTasks that cannot be executed in a pipeline, its
unit size is equal to its task size.
MXDAG is a directed graph 𝐺 = (𝑉 , 𝐸) composed of MX-
Tasks 𝑉 = {𝑣𝑆 , 𝑣1, 𝑣2, ..., 𝑣𝑘 , 𝑣𝐸} and dependencies represented
as 𝐸 = {𝑒1, 𝑒2, ..., 𝑒𝑖 }. 𝑣𝑆 and 𝑣𝐸 are the dummy start and end
MXTasks in an MXDAG. An edge from 𝑣𝑖 to 𝑣 𝑗 indicates that
task 𝑣 𝑗 cannot start before 𝑣𝑖 starts. MXDAG serves as an ab-
straction for a complete application or an individual function
within an application, the latter being very common in server-
less environments. For instance, the MXDAGs for job X and
job Y are shown in Fig. 4(a) and (b). Different from existing
DAG-based systems, MXDAG elevates the network flows to
the same level as the computational tasks on the hosts. There-
fore, MXDAG can provide detailed information as well as
the importance of each network flow, figuring out the relative
priorities and achieving better scheduling strategies.

Figure 4: (a, b) MXDAGs for jobs X and Y; (c) MXDAG
with only partial parts of tasks A and B being pipelined.
Pipelineability. To include the pipelineability of MXTasks,
pipelineable MXTask divides its input and output into mini-
mum units. Namely, once an input unit is received, that MX-
Task can start processing and immediately give an output
unit as shown in Fig. 5. For the network MXTasks, as long
as the output of the predecessor CPU task can be given in
units, the pipelineability can be enabled instead of waiting
until all outputs are ready (e.g., sending serialized objects
like hash tables). While for the computational tasks, we rely
on the existing pipeline analysis works, like the per-step de-
pendency model in Caerus [44], to profile the pipelineability
in the computational tasks. For the computational tasks with
both pipelineable part and sequential-execution-only part, two
MXTasks will be derived as the task A and B in Fig. 4(c).
3.2 Properties of MXDAG
Firstly, we will introduce several notations and properties of
MXDAG that are useful for the following discussions. Path
in the MXDAG denotes a finite sequence of edges that join a
sequence of MXTasks with a head task (node) and a tail task.
Copath denotes a group of paths with the same head node and
tail node, as the path 𝐴->𝑓1->𝐵->𝑓2->𝐶 and 𝐴->𝑓3->𝐶 in job
X of Fig. 4(a). The Path Length, representing the end-to-end
computation time for a path, is calculated recursively in an
MXDAG: 1) divide a path into Copaths and normal paths
without Copath, and its length is treated as the sum of normal
path lengths and Copath lengths; 2) For a Copath, its length is
equal to the length of its longest path; 3) For a normal path, its
length can be calculated as the sum of the pipelineable-only
paths and sequential-only paths. The length of a sequential-
only path 𝑃𝑠𝑒𝑞 = {𝑣0, 𝑣1, ..., 𝑣𝑚} and a pipelineable-only path
𝑃𝑝𝑖𝑝𝑒 = {𝑣0, 𝑣1, ..., 𝑣𝑛} can be calculated as below (Given the
resource assigned to each MXTask 𝑣𝑖 as 𝑅𝑠𝑟𝑐 (𝑣𝑖 )):

𝐿𝑒𝑛(𝑃𝑠𝑒𝑞) =
𝑚∑
𝑖=0

𝑆𝑖𝑧𝑒 (𝑣𝑖 )
𝑅𝑠𝑟𝑐 (𝑣𝑖 )

(1)

𝐿𝑒𝑛(𝑃𝑝𝑖𝑝𝑒 ) =
𝑛∑
𝑖=0

𝑈𝑛𝑖𝑡 (𝑣𝑖 )
𝑅𝑠𝑟𝑐 (𝑣𝑖 )

+max
𝑖

{ 𝑆𝑖𝑧𝑒 (𝑣𝑖 )
𝑅𝑠𝑟𝑐 (𝑣𝑖 )

} −max
𝑖

{𝑈𝑛𝑖𝑡 (𝑣𝑖 )
𝑅𝑠𝑟𝑐 (𝑣𝑖 )

}

(2)
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Figure 5: Example pipeline for two pipelineable MX-
Tasks with different task sizes and task unit sizes.

Equation (2) implies that the length of a pipelineable-only
path is dominated by the pipelineable task with the longest ex-
ecution time as shown in Fig. 5. Also, the maximum through-
put of the flow can be restricted by the CPU processing speed
when the pipeline is used.

Another important property is that the paths within any
Copath have the same barriers so that every Copath has a
critical path. With these barriers, only all of the paths within
that Copath have finished execution, or given the first unit
of result in a pipeline, that tail node can start the execution.
We define the path with the longest length in a Copath as its
critical path, then the length of the critical path determined
the overall execution time of a Copath.

4 Using MXDAG
MXDAG provides essential network task information to more
precisely reveal the end-to-end critical path, with which better
scheduling decisions become possible. Applications whose
critical paths contain many network tasks or large network
transfers, and applications where paths have similar lengths
but some can become bottlenecks due to network transfers,
would benefit most from MXDAG.

A richer abstraction raises concerns with respect to sched-
uling latency. For many applications, MXDAG only adds a
modest number of nodes for data transfers in the DAGs. In
the case of an all-to-all shuffle traffic pattern, there could be
a sizeable number of network task nodes. To control sched-
uling latency, we plan to investigate several approaches: 1)
Prune unimportant paths to focus on the most plausible critical
paths, since the critical path determines the end-to-end com-
pletion time for the job; 2) Solve the full scheduling problem
optimally only when necessary, and incrementally optimize
scheduling at runtime based on the resource usage changes
and the remaining tasks as in [14]; 3) Use a data-driven ap-
proach with the help of machine learning, inspired by [27],
which could potentially give a good scheduling plan within
a short time. 4) Reuse scheduling solutions for recurring ap-
plications [44] so that the overhead introduced by scheduling
only affects the first iteration. We leave the concrete sched-
uling algorithms as future work and focus on formulating a
more powerful abstraction, the MXDAG, in this paper.

4.1 Schedule a Single MXDAG
Single MXDAG scheduling aims to minimize the job comple-
tion time (JCT) considering both computational and network
tasks. The collective objective of all the paths in the MXDAG
can be expressed as:

Figure 6: MXDAG for Distributed Machine Learning

minmax
𝑃 ∈P

{𝐿𝑒𝑛(𝑃)}

where P = {𝑃 |𝐻𝑒𝑎𝑑 (𝑃) = 𝑣𝑆 ,𝑇𝑎𝑖𝑙 (𝑃) = 𝑣𝐸}
(3)

To achieve the above objective, we will use MXDAG to an-
alyze the inherent dependencies and resource sharing between
the MXTasks. Since the optimal scheduling for MXDAG is an
NP-hard problem [12, 17, 28], we will give several principles
to guide the scheduling and inspire new heuristics, leaving
the detailed algorithm as future work.
Principle 1: Prioritize the critical path over non-critical paths
within any Copath, without letting the non-critical paths
have a longer completion time than the critical path.

If the different paths within a Copath share some resources,
like the NIC bandwidth or the CPU cores, delaying the re-
source allocation for the non-critical paths or allocating fewer
resources to the non-critical paths could help shrink the criti-
cal path completion time. By ensuring the non-critical paths
have a shorter or equal completion time with the critical
path, over-optimization can be avoided. Notably, though the
pipeline can be used to shrink the delay between two tasks,
it also enforces the resources to be occupied right after the
precedent task begins processing, which may contend with
the tasks on the critical path. Thus, even for pipelineable MX-
Tasks, the pipelines will only be applied when they can shrink
the overall execution time.

Example Case: Distributed Deep Learning. We take a
widely-used and increasing-important application as an exam-
ple, the data-parallel distributed deep learning. The communi-
cation overhead of synchronizing the parameters on different
machines is significant to the data-parallel distributed learning
workloads, but transmitting the parameter in layers can shrink
the overall completion time. To explain the idea of layer-wise
parameter synchronization, Fig. 6 shows the MXDAG for that
process: the parameters of each layer are generated after the
back-propagation (BP) process on the GPU, and the synchro-
nized parameters will be used by the forward-propagation
(FP) process in the next iteration. For neural networks with
multiple layers, the FP processes are executed from the lower
layer to the higher layer, and the BP processes are executed
in a reverse manner.

Take path 0 and path 1 for example, the MXTasks 𝑝𝑢𝑠ℎ𝑖
and 𝑝𝑢𝑙𝑙𝑖 (𝑖 ∈ {0, 1}) share the same bandwidth resources over
the network. Consider the Copath between 𝐵𝑃1 and 𝐹𝑃1, if
path 0 is the critical path, then all the bandwidth resource
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Figure 7: Schedule multiple Map-Reduce Jobs. MXTasks
𝑏 and 𝑑 share the same computational resource and MX-
Tasks 𝑓2 and 𝑓3 share the same NIC bandwidth resource.

should be allocated to path 0 to achieve the shortest comple-
tion time. Whereas, if the path 1 is the critical path, as long
as the 𝐹𝑃0 finishes earlier than the 𝑝𝑢𝑙𝑙1, there is no strict
ordering for the resource allocation between path 0 and path
1. (Note that strictly prioritizing the path 0 is optimal sched-
uling within the above solution space.) ByteScheduler [32]
rearranged the tensor transmission order—i.e., strictly priori-
tize the parameters in the lower layers over those in the upper
layers, which accelerates the training process. Our analysis
over MXDAG exactly echoes their solution.

4.2 Schedule Multiple MXDAGs
Besides minimizing the JCT, scheduling multiple MXDAGs
has more objectives, such as meeting the deadline of each job
and ensuring fairness among all the MXDAGs. Since the key
of multiple MXDAG scheduling is also resource sharing, here
we give our second principle to guide the resource allocation
over multiple MXDAGs.
Principle 2: Let each MXDAG be altruistic by delaying its
resource allocation on non-critical paths to benefit other
MXDAG’s critical path, without increasing its own JCT.

Once the resource allocation for the critical path has been
determined inside the MXDAG, the overall JCT is certainly
bounded with the execution time of the critical path. Thus,
as long as other MXTasks on the non-critical path finish
earlier than the critical path, the shortest JCT is preserved.
With this idea, we allow the scheduler to delay the resource
allocation for those non-critical MXTasks, since the resources
saved during those waiting times, can be allocated to other
application’s critical MXTasks for a shorter JCT.

Example Case: MapReduce Applications. For the exam-
ple MapReduce jobs in Fig. 7, MXTasks 𝑎 and 𝑓1 have longer
computation time than MXTask 𝑏 and 𝑓2. While the MXTask
𝑑 and 𝑓3 from job 2 share the same computational / bandwidth
resource with 𝑏 and 𝑓2 from job 1.

Without altruistic scheduling, task 𝑑 and 𝑏, 𝑓2 and 𝑓3 will
share the resource lead to a longer completion time for job 2 in
Fig. 7(c). However in Fig. 7(d), with principle 2, though job 1
cannot benefit itself from delaying the resource allocation for
𝑏 and 𝑓2, its altruistic behavior helps job 2 to finish earlier from
T2 to T1 by shrinking the critical path in the job 2’s MXDAG.
This scheduling plan is also compatible with another job-
scheduling project’s solution—CARBYNE [16].

5 Related Work
On one hand, network-aware DAG schedulers [13, 15, 17]
modify the DAG abstraction to treat network bandwidth as a
dividable resource and provide greedy heuristics to efficiently
pack the tasks. There is no explicit scheduling of network
flows due to the lack of flow-level information. On the other
hand, explicit network schedulers [7, 9, 11] fundamentally
consider Coflow abstraction and perform application-aware
network scheduling. Despite scheduling the network flows
explicitly, they lack the global view of the application DAG
which makes the critical path information elusive. Recent
work [19] extends traditional DAG abstraction and glues that
with Coflow. Although such extended abstraction provides a
slightly better way to capture the compute-network dependen-
cies, the fundamental limitations of both DAG and Coflow
abstractions still remain. It does not decouple compute and
network tasks explicitly. Also, there is no provision of pri-
oritizing the flows inside a coflow which could potentially
benefit the application. In contrast, MXDAG decouples the
compute and network tasks, captures dependencies in a more
fine-grained manner with an end-to-end application view, and
enables explicit co-scheduling. As our abstraction can bet-
ter characterize applications, it can potentially benefit more
recently proposed deep neural network schedulers [27].

6 Concluding Remarks
While this paper has motivated the MXDAG primarily from
the perspective of scheduling, there are other use cases to be
explored in the future.
What-if analysis on distributed applications. MXDAG can
be used to conduct a what-if analysis on the applications,
including whether to pipeline compute and network tasks,
whether to re-partition work among compute and network
tasks, which are not possible with traditional DAG. For in-
stance, an application developer can use the MXDAG of an
application to determine whether a revised application de-
sign that enables pipelining between previously non-pipelined
MXTasks can help shrink the end-to-end completion time.
Monitoring and debugging distributed applications. The
estimated task execution time may be different from the actual
execution time due to inaccurate data or unexpected events
during runtime. By monitoring the progress of each path and
the barriers in MXDAG, we can efficiently and accurately
identify the unexpected events and the corresponding host
straggler or network straggler, while traditional DAG cannot
distinguish those two kinds of stragglers. Moreover, operators
could leverage the current progress and determine the new
critical paths to optimize the scheduling plan at runtime.
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