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Abstract—A good security practice for handling sensitive data,
such as passwords, is to overwrite the data buffers with zeros once
the data is no longer in use. This protects against attackers who
gain a snapshot of a device’s physical memory, whether by in-
person physical attacks, or by remote attacks like Meltdown and
Spectre. This paper looks at unnecessary password retention in
Android phones by popular apps, secure password management
apps, and even the lockscreen system process. We have performed
a comprehensive analysis of the Android framework and a variety
of apps, and discovered that passwords can survive in a variety of
locations, including UI widgets where users enter their passwords,
apps that retain passwords rather than exchange them for tokens,
old copies not yet reused by garbage collectors, and buffers in
keyboard apps. We have developed solutions that successfully fix
these problems with modest code changes.

I. INTRODUCTION

In memory disclosure attacks, an unprivileged attacker
can steal sensitive data from device memory. These attacks
frequently make the headlines: recent vulnerabilities that could
lead to such attacks include HeartBleed [5], Meltdown [38],
and Spectre [33]. If adversaries can gain physical access to a
device, they may also be able to dump its memory directly, e.g.,
via a “cold boot” attack [28], [41], or even through its USB
connection [29]. Memory disclosure attacks pose a serious
threat, as sensitive data (such as cryptographic private keys
and passwords) is easily reused if stolen (see, e.g., [30]).

Therefore, we should delete sensitive data from memory
as soon as it is no longer in use. Cryptographic libraries
have long recognized the importance of this security practice.
Some software, such as OpenSSL [44] and GnuTLS [39],
explicitly zero out key material after a session ends. In a
garbage-collected system, these issues are even more serious,
as old copies might be left behind in memory. Aware of this
issue, the Java Cryptography Architecture (JCA) [45], in 2003,
was engineered to use mutable character arrays rather than
String objects, which are immutable, for the explicit purpose
of making its keys easier to overwrite.

Of course, sensitive data exists beyond cryptographic key
material, and applications that handle secret data also go
beyond cryptographic libraries. In this study, we particularly
focus on one type of sensitive data—user passwords—and how
they are used in practice by real Android apps. Although
other authentication mechanisms have been proposed (see,
e.g., [9]), password-based authentication is still the de facto

practice for many applications. In addition to the direct use and
transmission of plaintext passwords, applications will also use
passwords for “key stretching” [32] (see, e.g., PBKDF2 [31],
bcrypt [50], and scrypt [46]), ensuring that a captured password
does not also allow for the decryption of prior recorded
sessions.

Cryptographic libraries have integrated many well-
understood security practices (e.g., constant-time cryptogra-
phy [48]), and developers tend to stick to relatively mature
libraries (e.g., OpenSSL). When it comes to password-based
authentication, developers may be tempted to follow idiosyn-
cratic security practices, unaware of the dangers of keeping
passwords live in memory. Given that app developers have
different levels of experience, and that there is a large number
of apps in the market, security of authentication features can
be expected to vary considerably across applications. Indeed,
recent studies have repeatedly found that developers imple-
ment security features poorly. For example, apps have been
reported to misuse TLS libraries [21], [22], [25], cryptographic
APIs [19], OAuth protocols [11], and fingerprint APIs [8]. A
recent study has also revealed that some developers simply
store passwords in plaintext on disk [43]. In this paper, we
ask a question: How well does Android manage passwords?

We perform a systematic study on how the Android plat-
form and popular Android apps handle user passwords. The
Android platform has many complex layers that interact (e.g.,
the Dalvik/ART runtime system, the operating system kernel,
and the applications), so poor practices in any of these layers
could lead to security issues. Furthermore, Android apps have
a complex lifecycle; an app might be put into “background” or
even “stopped” without necessarily being given an opportunity
to clean up sensitive values in its memory prior to the lifecycle
change. Additionally, user passwords go through a long chain
of custody before authentication takes place, sometimes even
passing from one app to another via IPC / Binder calls. Each
of the steps in this chain may inadvertently retain passwords
for longer than necessary. Last but not least, previous studies
have found that Android apps fall short in performing secure
deallocation [57], and that they may retain TLS key materials
in memory [34].

Using system memory dumping and code analysis, we
have found that many popular apps, including a banking
app, password managers, and even the Android lockscreen
process, retain user passwords in memory long after they
are not needed. The passwords can be easily extracted from
memory dumps using simple scripts. This is a serious prob-
lem, because users often use similar or identical passwords
across applications [16], [24], [54], so a stolen password
would cause widespread damage. We have also identified
the common root causes, such as the insufficient security
support in Android widgets and the widespread use of String

Network and Distributed Systems Security (NDSS) Symposium 2019 
24-27 February 2019, San Diego, CA, USA
ISBN 1-891562-55-X
https://dx.doi.org/10.14722/ndss.2019.23180
www.ndss-symposium.org



objects to store passwords. We propose solutions that fix the
Android framework and the studied apps with modest code
changes. We also present a design that we call KeyExporter,
which manages passwords securely and can be integrated with
vulnerable apps to eliminate password retention. KeyExporter
integrates cryptographic primitives with the password widget
and exports key materials using password-based key derivation
functions (e.g., PBKDF2, scrypt) and password-authenticated
key agreement (e.g., SRP [61]). Our evaluation shows that our
solution eliminates password retention in all of the apps that
we tested, hardening the system against memory disclosure
attacks.

Concretely, we make the following contributions in this
paper, after describing more background in Section II.

• A demonstration of password retention problem by
analyzing the memory dumps of 11 popular apps
(Section III);

• A comprehensive analysis of the Android framework
and a variety of Android apps; the identification of
common root causes (Sections IV+V);

• Our solutions: SecureTextView, a secure version of
Android widgets that can eliminate password reten-
tion, and KeyExporter, which can remove passwords
in Android apps (Section VI);

• Implementation and evaluation of our solutions, which
successfully achieves the goal of timely password
deletion in all tested apps (Section VII);

We then provide a discussion in Section VIII and describe
related work in Section IX, before concluding in Section X.

II. BACKGROUND AND MOTIVATION

In this section, we present more background on Android
authentication, and discuss how passwords may be retained by
each stage of the Android app lifecycle.

A. Authentication in Android

Recent Android versions have started the use of finger-
prints, face recognition, and voice recognition as means of au-
thentication. However, to date, passwords are still the mainstay
for Android authentication, thus our main focus in this paper.
Broadly, Android authentication apps fall into two categories:
remote authentication, where an app needs to send some secret
to a remote server (e.g., social networking apps), and local
authentication, where authentication is handled entirely on the
local device (e.g., password managers or the lockscreen app).

Remote authentication. Figure 1 shows a typical workflow of
remote authentication, which has three main stages. 1 The app
prompts the user to enter their password, and then contacts the
remote server with the user credential. The server validates the
credential and returns a cookie or authentication token upon
success. 2 The app receives the cookie or token, which will
be stored in a secure location (e.g., private files of the app) and
used for further requests to the server. 3 Whenever the app
needs to contact the server again, it looks up the token from
the secure storage, and resumes the session without prompting
for the user password again. The user will not need to enter
their password again until the shared temporary key expires.

CLIENT

Request login

SERVER

Validate the client

Return the token

Store the token

Enter ID/PW

Relaunch app

. . .

Look up the token

Validate the client
Request login

Return the result

Generate a token

1 Login with passwords

Remember the user

Login automatically

. . .

2

3

Fig. 1: Authentication steps in client applications.

Notice that, in the workflow above, only the first stage
involves user passwords. Such a design helps security, as it
minimizes the exposure of passwords. This also means that
there is no need for an app to retain passwords once it reaches
the end of the first stage. However, in practice, the first stage
also tends to be quite complicated. Some apps may use one
of many forms of two-factor authentication. Others will con-
struct ad-hoc challenge/response protocols with hashes or other
cryptographic primitives. Better apps will use a password-
authenticated key exchange (PAKE) protocol to generate a
zero-knowledge proof of knowledge of the password. Or, if
an app uses OAuth, this would further involve a relying party,
which wants to verify a user’s identity, as well as an identity
provider party, who has a record of the user’s identity (e.g.,
Facebook or Google). Regardless of these details, any app
needs to ensure that user passwords are deleted properly and
promptly, despite all of these complexities.

Local authentication. Sometimes, apps only require local
authentication without involving a remote server (e.g., the
lockscreen app, or password managers). Such apps obtain user
passwords and use them to encrypt or decrypt local data as
well as to authenticate users. Password managers, for example,
store sensitive information, such as bank account passwords
and passport numbers, in a local encrypted database. Users
interact with the password manager via a “master” password,
and the app then derives a strong cryptographic master key,
e.g., using key stretching [32]. Such apps can also help users
generate random passwords to mitigate password reuse [16].
As concrete examples, two popular apps in this category
are 1Password1 and LastPass2, which use PBKDF2-HMAC-
SHA256 for key derivation. Needless to say, the security of
these applications hinges critically on the protection of the
master passwords. If they are retained in memory after use,
the entire password database would become vulnerable.

1See https://support.1password.com/pbkdf2/
2See https://lastpass.com/support.php?cmd=showfaq&id=6926
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B. Risks of Password Retention

Unfortunately, there are many opportunities for passwords
to be retained by Android for longer than necessary.

Background applications. The activity lifecycle of Android
apps is different from that of traditional desktop programs.
Android apps can be “paused” and then “stopped” when they
are switched to the background, and they can be “resumed”
and “restarted” when switched back. When an app goes to the
background, its GUI is hidden and it stops running, but the
underlying process and its memory are still present. When it
is resumed, it again has the chance to run, draw to the screen,
and so forth. If an app is still holding user passwords when
it is “paused”, the passwords may remain live in memory for
an extended period of time. Although Android may destroy
certain background processes, it typically does so only if
system resources are running low.

Lack of special support for password protection. Over
the years, Android has been integrated with many security
features, such as the ARM TrustZone platform. A program that
runs in the “secure world” inside TrustZone will be protected
from attackers in the normal world, so secret data will not
be visible to external programs. Android uses this feature for
many security applications, such as its Keystore service and
fingerprint authentication. Key materials and fingerprint data
are stored inside TrustZone. As such, the data is protected from
memory disclosure attacks that exploit software vulnerabilities,
or even from attackers with root privilege. However, regular
Android apps do not use TrustZone to manage their passwords.

Delayed garbage collection. Most Android apps are written
in Java, so their memory is managed by a garbage collector
(GC). Therefore, even when an app deletes its last reference
to a password, the memory will remain uncleared until the
GC reuses it. This delay can last for minutes or even hours,
depending on the memory pressure of the GC system. Further-
more, in the (seemingly intuitive) case of using Java’s String
class to hold passwords, developers cannot manually overwrite
them, because String objects are immutable. Thus, the Java
Cryptographic Architecture [45] recommends that passwords
should be stored in char arrays instead of String objects.
However, the ubiquitous use of Java strings in libraries of all
kinds (e.g., JSON data import and export) means that even if an
app author wishes to use char arrays rather than strings, they
will find less support for this style of coding from standard
libraries.

Java vs. native code. Although Android apps are commonly
written in Java, they may make native calls to underlying
C libraries included by the app or installed natively on the
system. For example, the Android TLS implementation wraps
a Java layer (Conscrypt) atop the BoringSSL cryptographic
library written in C. If passwords are copied from the Java
layer to the C layer, there is also a possibility for the data to
be retained in the C layer [34].

Long chain of custody. User inputs may also be unintention-
ally buffered by various processes and retained in memory. For
instance, when a user inputs their password, the keystrokes tra-
verse multiple processes: first the input device driver, then the
keyboard app, and finally the user application that prompted for
the password. By the time the password reaches the intended
app, it has been touched and possibly copied by multiple

processes. If any of the processes in this chain of custody
accidentally retains the password, it may persist in memory.

III. PASSWORD RETENTION ON ANDROID

Next, we describe our threat model, and demonstrate that
password retention is a widespread problem in Android.

A. Threat model

We assume that an adversary can perform memory disclo-
sure attacks on an Android device, e.g., by exploiting software
vulnerabilities [5], launching side-channel attacks [33], [38],
or after the physical capture of a device [28], [41]. Plenty of
evidence suggests that such attacks are feasible on Android.
For instance, the recent memory dumping vulnerability in the
Nexus 5X phone [29] allows an attacker to obtain the full
memory dump of the device even if the phone is locked. As
another example, vulnerability in WiFi chipsets [5] can allow
attackers to obtain a memory snapshot of a victim device
remotely. An attacker can then analyze the memory snapshot
and obtain any sensitive data left uncleaned, such as user
passwords.

B. Initial Memory Dump Analysis

We selected 11 Android apps for a preliminary study of
password retention problem. Six of the apps are very popular—
having more than 10 million installations each—and other four
apps are password managers that store highly sensitive user
data. In addition to these apps, we tested the system processes
that are in charge of unlocking the phone after receiving the
correct password, which are critical to the overall security of
the device. In order to achieve a thorough understanding across
Android versions, we used three different environments: two
different versions of emulators running Android 7 and 8, and
a Nexus 5 device running Android 6.

We installed and launched each app, and manually en-
tered passwords for authentication. After this, we performed
a full physical memory dump [56] as well as a per-process
dump [34]. Our simple “black-box” approach does not make
any assumption about the apps. If the passwords are anywhere
in memory, we will find them. We looked for password
encodings in two-byte characters (UTF16, as used by the Java
String object), as well as one-byte characters (as used by
ASCII). We performed such a dump several times for each
app: a) right after authentication (“login”), b) after moving the
app to the background (“BG”), c) after additionally playing
videos from the YouTube application (“YouTube”), and d) after
locking the phone (“lock”).

C. Results and Observations

Table I shows the worrisome results obtained by analyzing
the memory dumps. We note four high-level observations.

Observation #1: All tested apps are vulnerable. With the
simple technique, we successfully retrieved the cleartext pass-
words for all the apps. Very popular apps, such as Facebook,
Chrome, and Gmail, which have been installed more than
one billion times, retain login passwords in memory. Secure
password managers expose master passwords which are typi-
cally used to decrypt their internal password databases, so an
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attacker would be able to capture the master password and gain
access to the full databases. Moreover, the lockscreen process
also leaves the PIN passwords in memory. Since the PIN
password is used for full-disk encryption and decryption as
well as unlocking the phone, Android spends an extraordinary
amount of effort to protect the PIN—e.g., the Gatekeeper
service verifies hashes of user passwords in TrustZone to
protect them. Therefore, in the presence of memory disclosure
attacks, the retention of PIN passwords in memory completely
defeats the purpose of the added security measures.3

Observation #2: All tested Android versions are vulnerable.
Although Table I only presents the results from Android 8, we
have found that Android 6 and 7 both retain passwords, and
the only difference is the number of password copies. This
implies that password retention is not specific to a particular
Android version. For the rest of this paper, we only present
our findings on Android 8.4

Observation #3: Some developers have paid attention to
the password retention problem. We can see evidence that
some apps (e.g., Chase Bank, Dashlane, and Keepass2Android)
seem to be actively clearing out the passwords. For these
three apps, the passwords disappear once we have put the
app into the background. This suggests that the problem of
password retention seems to have gained attention from at
least some Android developers, and at least can be solved. We
would prefer the Android system to provide all app developers
assistance in solving these problems.

Observation #4: Password strings are easily recogniz-
able. For many applications, we have found password strings
together with other easily recognizable string patterns. For
instance, the Facebook app contains ASCII string pat-
terns like ...&pass=1839172..., and the Tumblr app has
p.a.s.s.w.o.r.d.=.1.8.3.9.7.2. i.e., a UTF16 encod-
ing. In addition to the full password matches presented in
Table I, we have also found fragments of passwords (i.e., a
prefix or a suffix of the password remains in memory rather
than the full password). This appears to result from the use of
SpannableStringBuilder, which we will describe in more
detail in Section IV.

Summary. Overall, the above findings are worrying evidence
that the password retention problem is widespread in Android.
Previous studies [3], [57] raised similar issues several years
ago for Android. Unfortunately, our finding shows that the
problem seems to have worsened today; Of note, Tang et
al. [57] looked at the Facebook and Gmail apps in 2012,
concluding that they had no problems, but both apps have
problems today.

What causes password retention? Is password exposure
inevitable? We consider these questions next.

IV. IN-DEPTH ANALYSIS: ANDROID FRAMEWORK

In order to achieve a thorough understanding of the root
causes of the password retention, we have performed an in-
depth analysis of the Android framework and several apps. In

3We observed that PIN passwords disappear after about an hour. One
previous study considers a piece of data to be exposed if it persists in memory
for more than ten minutes [57].

4Android 9 was recently finalized. We would expect similar results, but
have not yet analyzed it.

Application Description Installs Login BG YouTube Lock

Gmail email 1,000 M 6 6 6 6
Chrome browser 1,000 M 4 3 3 3

Chase Bank finance 10 M 5 0 0 0
Facebook social 1,000 M 6 5 2 2
Tumblr social 100 M 4 1 1 1

Yelp social 10 M 3 2 1 1
1Password password 1 M 4 1 1 1
Dashlane password 1 M 2 0 0 0

Keepass2Android† password 1 M 1 0 0 0
PasswdSafe† password 0.1 M 12 2 1 1

Unlocking phone† system Built-in 7 2 2 1

TABLE I: Password exposure in popular apps. The count
indicates the number of copies of the password found in
memory. The columns indicate increasing opportunities and
pressure for the system to reuse memory. (†) indicates apps
for which source code is available.

this section, we focus on the Android framework, describing
our methodology for its analysis and our findings.

A. Methodology

In order to identify where password retention occurs, we
have used two key techniques: runtime logging, and password
mutation.

Runtime logging: We annotate core modules in Android, using
the standard logging facility, giving us a timeline of the use
of function calls related to password processing.

Password mutation: In order to precisely pinpoint the location
of password retention, we also apply password mutations as
the passwords pass through different Android components.
When a component Ci receives a password pi, it will index
a pre-defined permutation dictionary using pi, and obtain a
mutated password pi+1 before passing it to the next component
Ci+1. Therefore, when we take the memory dump, we know
that instances of pi are hoarded by component Ci, whereas
instances of pi+1 are hoarded by Ci+1. Our algorithm also
ensures that these password mutants have the same length and
unique contents, so we can easily locate a password fragment
within the component that’s using it.

An obvious question might be why we did not use an
automated analysis tool, whether based on static analysis [4],
[6], [12] or dynamic analysis [15], [20], [62], [63]. Ultimately,
a static analysis tool can only find a code pattern that we know
in advance. Similarly, dynamic approach such as taint analysis
can track all uses of sensitive data, which would certainly help
us follow passwords and their derivatives. However, suitable
tooling that we might adopt for our experiments appears to
be experimental, either targeting outdated Android versions
(e.g., NDroid [62] for Android 5.0) or requiring very specific
hardware (e.g., DroidScope [63] only supports an Acer 4830T).

Of course, once we understand the root coding patterns that
lead to password retention, we could then imagine creating
automatic tools to highlight these patterns, efficiently, across
millions of apps, perhaps even built directly into Android
Studio and other development tools that Android developers
use. While our manual approach lacks scalability, it allows
us to trace the flow of passwords through Android’s various
subsystems, pinpointing a variety of relevant problems. Future
automated approaches can then be built based on our findings.
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Fig. 2: The dataflow of a user password input on Android.

B. The Android Framework

Figure 2 shows the flow of data in Android when a user
types their password. The signals from the touchscreen are
transmitted to a software keyboard app, otherwise known as
an input method editor (IME) app, via the kernel driver.
Then, the keyboard/IME app will send the password to the UI
widget (e.g., TextView) in the application (e.g., Facebook)
via a dedicated input channel. The UI widget also stores
the password internally, so that it can pass the data to the
application upon request. Additionally, the widget sends the
data to a graphics module, so that the input strokes are echoed
back and displayed on the screen as stars (*) by the display
device driver. Any unintended buffering or mistake in any of
the stages would cause password retention. Interestingly, only
5 is managed by developers, whereas all other stages are built
into the Android framework.

After testing all these stages, we were able to narrow down
the culprit to the UI widget and keyboard apps, because all the
password mutants and fragments we captured corresponded
to the versions between 3 and 4 . Subsequently, we further
analyzed the source code of the UI widget, and found that
Android does not implement a dedicated class for password
widgets, but rather simply reuses the TextView class. This
class contains about 12,000 lines of code (LoC); as it is not
designed exclusively with passwords in mind, the TextView
codebase contains many instances of insecure password han-
dling.

For example, there is a flag in the TextView class that
indicates whether it is a regular text field or a password field,
but this flag only affects whether a character is echoed back as
a * or not, and whether the text can be copied or selected by
a user. All other management of the input uses the same logic
for regular text and sensitive passwords. Since passwords are
not given any particularly special handling, we shouldn’t be
surprised if there are problems. We now describe three issues
in detail.

Problem #1: Lack of secure zeroization. First, the TextView
class does not zeroize or otherwise erase the buffer when an
app is “paused”, “stopped”, or even “destroyed”. Therefore,
when one of these lifecycle activities takes place, the memory
object that holds the text remains intact. This puts the respon-
sibility for secure zeroization solely with the app developers,
who would need to deal both with the application lifecycle
as well as with zeroizing the TextView buffer after login

completes. We argue that this responsibility should be handled
within the TextView rather than by the app developer.

Problem #2: Insecure SpannableStringBuilder. The buffer in
a TextView class is actually a SpannableStringBuilder,
whose implementation leads to two problems. First, when-
ever a user types a new character of her password,
SpannableStringBuilder will allocate a new array, copy
the previous password prefix to this array, and discard the
previous array without clearing it. This is the root cause of
why we see fragmented passwords in memory. We also note
that the SpannableStringBuilder class provides a clear
method, but it simply sets the internal data to null rather than
zeroizing the data. If an app developer mistakenly believes this
method to imply secure deletion, the password will still remain
in memory.

Problem #3: Lack of secure getPassword API. Developers
typically obtain the contents of a TextView object by invoking
its getText() method, which returns a CharSequence inter-
face instead of a SpannableStringBuilder object. Since
CharSequence is also the interface of the String class,
developers often treat it as a kind of String, and invoke the
getText().toString() method to turn the password into a
String object. Strings, however, are known to cause security
problems: The official JCA library [45] specifically suggests
that “Objects of type String are immutable, so there is no
way to overwrite the contents of a String after usage”; it
further suggests that developers should not store passwords in
String objects.

On a related note, in the Java Swing UI library, the
equivalent password widget is called JPasswordField, which
also has a getText() method that returns a password in a
String object. However, this feature was deprecated as part
of the Java 1.2 release in 1998, with the suggested replacement
of getPassword(), which returns a character array instead.
Unfortunately, Android lacks such a getPassword API in
its library, so developers might mistakenly use the String
type to store passwords. We will discuss this issue further in
Problem #5.

C. Keyboard (IME) Applications

Next, we analyzed the input channel between TextView
and keyboard apps. We found that the input channel is tightly
coupled with the buffer of TextView; fortunately, it does not
perform additional buffering.

But, what about the keyboard app? Android has a de-
fault keyboard, and it also provides extensions that allow
any developers to build their own keyboards. This feature
is very useful, and has led to a rich ecosystem of third-
party Android keyboard apps, variously innovating in how they
predict words, how they handle gestures, and how they handle
accent characters, non-Latin alphabets, and emoji. Of course,
a keyboard app is also central to the entry of passwords, so
any interaction of the keyboard’s internal features, like saving
prior words for future predictions, must be careful not to save
passwords.

We selected popular keyboards apps, as well as ones that
support special features, such as voice inputs or different
languages. Also, we tested the LatinIME keyboard, which
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Application Company Installs ID PW Description

LatinIME Google N.A. 0 2 Default in AOSP
Gboard Google >1B 1 0 Default in Android 8

SwiftKey SwiftKey 300M 8 0
Go GOMO Apps 100M 0 1

Kika Kika AI Team 100M 0 1
TouchPal TouchPal 100M 2 4
Cheetah Cheetah 50M 2 7

FaceMoji FaceMoji 10M 0 1
New Keyboard 2018 Keyboard 10M 0 1

Simeji Baidu 10M 0 0 Japanese
Simplified Chinese Linpus 0.1M 117 135 Chinese

Baidu Voice Baidu 0.1M 0 2 Voice support
TS Korean Team Space 0.01M 3 0 Korean

TABLE II: Results for the tested keyboard applications.

is the default keyboard in the Android Open Source Project
(AOSP), and which should not be confused with Google’s
Gboard, which has over a billion installs, according to the
Google Play Store. All tested apps are listed in Table II.
We examined many popular keyboard apps, with hundreds of
millions of installs (Gboard, SwiftKey, Go, Kika, TouchPal)
as well as a number of less popular keyboards.

For each keyboard, we used it with the Facebook app,
typing our Facebook credentials for login. We then moved
Facebook into the background and locked the phone before
performing a memory dump. Table II shows the number of
copies of our user account (ID) and password (PW) that we
discovered for each keyboard app. Out of the 13 keyboard apps
we tested, nine of them hoarded user passwords. Fortunately,
two of the most popular keyboards, Gboard and SwiftKey,
cleaned up the passwords perfectly, only buffering account
IDs in memory which, generally speaking, aren’t sensitive like
passwords, so their presence in memory isn’t security-relevant.
Our most worrisome example is a keyboard that supports
simplified Chinese—it kept more than 100 copies of the user
password in memory.

Problem #4: Buffering the most recent input. Surprisingly,
the LatinIME keyboard also has password retention issues, so
we further analyzed its source code to identify the root cause.
We found that this is because this keyboard buffers the most
recent input obtained from a user, only clearing it when the
keyboard returns for subsequent data entry. This means that
when the keyboard is used for a sensitive input, like entering
a password, the password can stay in memory for quite a long
time.

LatinIME, by virtue of being Google’s AOSP reference
keyboard, has been used by many third-party keyboard devel-
opers as the starting point for their own efforts. That means
that we might expect a large number of less popular keyboard
apps to share these same problems. Since most keyboard apps
are closed source, we cannot directly verify whether their
developers have done this, but we believe that Table II hints at
this practice. The Go, Kika, FaceMoji, New Keyboard, and
Baidu keyboards all have similar patterns as the LatinIME
keyboard: they hold the user passwords but not the account
IDs. This is because users typically first type their account
IDs and then passwords, in that order. Since the earlier entry
is gone and the later entry is present, this suggests reuse of
LatinIME’s buffering strategy.

V. IN-DEPTH ANALYSIS: ANDROID APPS

Next, we analyze several third-party Android apps.

A. Methodology

We wish to consider “example” apps using four categories
of authentication techniques: a) basic password-based authen-
tication apps, which simply send user passwords to a remote
server for authentication, b) challenge/response apps, which
derive secrets from passwords for authentication, c) OAuth
apps, which delegate authentication to an OAuth service (e.g.,
Facebook), and d) local authentication or standalone apps that
do not involve a remote server, including some password
manager apps.

If there exist popular open-source apps in the category
(e.g., Keepass2Android and PasswdSafe are open-source local
authentication apps), we directly analyze their source code.
Otherwise, we obtain similar types of apps from official sites,
open source repositories (e.g., GitHub), security guidebooks,
and developers’ website such as Stack Overflow. Many of
the apps we examined are relatively simple, demonstration
apps for some particular functionality rather than full-featured
applications. However, existing studies suggest that an analysis
of these sample apps is more representative than one might
initially think: many real-world apps contain the same snippets
from sample apps, e.g., obtained from Stack Overflow [23].
Collectively, we have analyzed more than 20 apps or code
snippets, and identified common mistakes throughout the cat-
egories.

B. Basic Password-based Authentication Apps

We first consider basic authentication apps, where an app
sends raw user passwords to a server via HTTP/HTTPS. The
majority of apps we collected fall into this category, because
directly sending passwords is the simplest (but an insecure)
way of authentication. These apps use different libraries for
their implementations, but they share similar authentication
steps. Sample apps 1 – 2 in Table III are some of the basic
password-based authentication apps we have tested, and they
use different libraries for network communication (Apache
vs. Volley). The results show that both of them have many
password copies. Compared to the apps in the wild we have
examined in Section III, these apps are far worse. In order
to understand why such simple apps have so many password
copies, we have modified the apps one by one, and analyzed
the impacts of our modifications.

Problem #5: Use and propagation of String passwords.
We started by focusing our attention on the use of String
passwords. We mentioned in Problem #3 that the Android
framework provides getText().toString() in TextView.
Indeed, we saw that all the sample apps stored their passwords
as Java strings by invoking getText().toString(). How
much does the usage of String contribute to password reten-
tion? To measure the effect of String usage, we deleted all
uses of String in sample app 1, and instead, we had the app
send an empty password. The “server” ran on a local desktop
machine in our lab; it always sent successful authentication
messages to the app. Sample app 1a in the same table shows
the results after the modification. This change eliminated more
than half of the in-memory passwords relative to the original
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Category Application Description Login BG YouTube Lock

Basic

Sample 1 Uses Volley lib. 25 24 11 11
Sample 2 Uses Apache lib. 28 16 13 12

Sample 1a Empty request 11 10 5 5
Sample 1b Nullifying widget 4 4 0 0

Cha./Resp. Sample 3 App security book 21 20 8 7
OAuth Sample 4 With Facebook 3 2 1 1

TABLE III: Results for some of the sample apps.

version (sample app 1). This demonstrates that String is a
major source of problems, though not the only one.

Problem #6: Lack of manual TextView cleanup. Recall that
TextView holds the password in its buffer after it’s no longer
needed (Problem #1 and #2). This leaves the responsibility of
cleaning up TextView to individual app developers. To see
how effective a manual cleanup would be, we modified the
sample app 1a to call the clear() method in the buffer of
TextView right after login. Sample app 1b, which is the mod-
ified app, did show some more improvement: all passwords in
the app’s memory were successfully deleted after playing the
YouTube videos. This means that calling the clear() method
of the buffer is effective. Unfortunately, almost all apps we
analyzed (including the SystemUI core service) did not clean
up the TextView buffer, with Keepass2Android being the only
exception. We also note that calling clear() does not clean up
passwords in app 1b immediately. This is because the clear()
method of the TextView buffer does not implement secure
deletion, but only sets the buffer to null and leaves it to the
garbage collector (Problem #1).

Problem #7: Lack of app-level zeroization. Even if an
app developer uses char arrays instead of String objects,
they would also need to clean up the passwords in their
apps manually, e.g., by zeroing out the char arrays. In other
words, even with a much stronger TextView implementation,
developers may still accidentally hold passwords in memory.

C. Challenge-Response Authentication Apps

We now turn to apps that use some form of challenge/re-
sponse authentication. Challenge/response apps do not directly
send passwords to the network, but rather generate HMAC
values from user passwords and use them as secrets for the
remote servers to perform authentication. By avoiding the
transmission of passwords over the network, they certainly
improve an application’s security posture, but do they do a
better job of handling passwords? We analyzed an app from a
popular security guidebook [27] (sample app 3). As shown in
Table III, this app is not notably different from sample apps 1
and 2. In fact, we analyzed the source code and found the same
problems #5 – #7 in its source code. Even worse, this “security
guidebook” app simply uses strings for passwords. Although
the number of password copies is slightly lower than those in
apps 1 – 2, this reduction of password copies mainly comes
from the fact that passwords are not propagated as widely as
in the apps that directly use passwords for authentication.

D. OAuth Authentication Apps

We next consider apps that provide OAuth services. Since
Facebook is a dominant identity provider for OAuth, we have

implemented sample app 4 using the Facebook OAuth library,
following the official guide from Facebook. If we launch
the app and click the login button, our app redirects to the
Facebook app, which then prompts the user for a password
and performs the requested authentication; the Facebook app
redirects back to our original app upon success, which then
displays a successful login message.

Sample app 4 in Table III shows the results. Although it is
far more secure than previous apps, it still holds quite a few
password copies in memory, and one of the copies remains
in memory after the phone is locked. All of these passwords
were found in the memory of the Facebook app itself, not in
our sample app.

Since the Facebook OAuth library and app are not open
source, we were not able to perform a code analysis. However,
our instrumentation of the Android framework reveals that
Facebook uses the standard TextView for passwords, as well
as its toString() method, which explains the password re-
tention. This is unfortunate, because Facebook’s OAuth library
is completely outside of the reach of any developer who might
want to zeroize the passwords in its memory, and this issue
will impact any app that uses it. As additional evidence, sample
app 4 (Table III) has identical password retention patterns
as Yelp (Table I), both of which use Facebook OAuth for
authentication.

E. Password Managers

We now consider password managers. If any app de-
velopers would take caution in controlling the presence of
passwords in memory, certainly it would be the developers of
password managers! As shown in Table I, password managers
are comparatively more secure than other apps, yet still many
passwords remain in memory. To begin, we analyzed the code
for Keepass2Android and PasswdSafe, which are two popular
open-source password managers, to identify their practices for
password handling. Keepass2Android consists of more than
80,000 lines of code and more than 300 source code files.
We found that its codebase is particularly well engineered to
handle secure password deletion.

• It converts a password into char array and uses the
latter to generate master keys.

• After authentication, it sets the TextView’s content
to an empty string, and it manually sets all password-
related objects to null.

• It manually invokes the garbage collector, which might
help accelerate memory reuse.

Using a combination of the above techniques, Kee-
pass2Android successfully cleared all passwords from its own
memory when it went to the background. However, Kee-
pass2Android still obtains passwords from TextView as a
String object before the char conversion, which results in
immutable passwords outside of the app’s ability to erase them.
Indeed, we found passwords for Keepass2Android in the full
memory dump.

Another password manager, PasswdSafe, is also commend-
able in its security measures. In fact, we were impressed with
their level of effort in handling passwords after analyzing the
source code. First, this app implements a manual reference
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Fig. 3: Authentication steps when unlocking a device.

count for passwords, instead of depending on automatic mem-
ory management in Java itself. When passwords are copied, the
reference count will increment. When copies are released, the
reference count decrements. When a reference count drops to
zero, its cleanup method overwrites the password three times
with different values, which seems unnecessarily paranoid.
Unlike Keepass2Android, PasswdSafe does not seem to be
aware of the TextView problem, and there is no attempt to
clear its buffer.

The results for password managers are clearly more en-
couraging than other apps, as we can see considerable efforts
gone into secure management of passwords. However, despite
developers’ best efforts, we can see that even experts with
intricate knowledge of security practices fail to completely
solve the password retention problem. This is because there
are many opportunities for retention; as a result, overlooking
even one of them would cause password to be left in memory.

F. System Processes

Last but not least, we turn to a special type of authenti-
cation in the Android framework: PIN authentication in the
lockscreen service. As shown in Figure 3, this system service
in Android is designed with security in mind, as it lever-
ages several services in the secure world in TrustZone, such
as Gatekeeper and Keymaster. Unfortunately, we found
that the SystemUI and LocalSettingsService processes,
which are in charge of PIN authentication, also have password
retention. The SystemUI process uses the standard TextView
to obtain passwords, and like other apps, it also converts
the password into a String object. This process then sends
the String object directly to the LocalSettingsService
process via Binder. The LocalSettingsService finally con-
verts the string password into a char array, and derives keys
from this password using scrypt; these derived keys are further
protected by TrustZone. However, the original password, as it
is stored in a String object, is immutable and survives in
memory long past its use.

This is an unfortunate but classic example where a single
weak link can break the entire security chain. Even though
the developers for the Android framework explicitly keep
security in mind, using security features not available to
regular Android developers, the TextView class and the use
of String-based passwords leaves a prominent vulnerability.

G. Summary of the Problems

To summarize, our analysis has revealed seven main causes
of password retention, which are prevalent in many apps
and the Android framework itself. Some of the root causes
are also inter-related. For instance, Problem #5 (the use of
String passwords) needs to be addressed before Problem #7
(manual zeroization) can be solved, because String objects
are immutable. As another example, Problem #5 is attributed
partly to Problem #3 (the lack of secure API). Therefore, in
order to solve the password retention, we need to develop
a complete solution that addresses all of the identified root
causes together.

VI. OUR SOLUTION

In this section, we describe a series of changes that we
engineered to the AOSP framework that can address the
problems we have observed.

A. SecureTextView: Fixing the Android Framework

We have developed fixes for the Android framework by
designing a patched version of TextView that we call Secure-
TextView. Since the root cause of retention in the Android
framework lies in the use of TextView, we developed fixes to
TextView to handle passwords differently from regular textual
inputs, zeroing out sensitive memory after use. This addresses
Problem #1. SecureTextView also implements a secure version
of SpannableStringBuilder, which is the buffer type used
in TextView, to avoid password fragments from being left in
memory. This addresses Problem #2. We describe our fixes
for Problem #3 in Section VI-B, which will address the use
of String objects.

SecureTextView is different from the regular TextView
in that it treats password inputs differently from regu-
lar inputs, and also that it fixes the insecure design of
the SpannableStringBuilder class. When SecureTextView
processes a password field, it uses a secure implementation
SecureBuffer instead of SpannableStringBuilder as the
buffer. The design and implementation of SecureBuffer
closely follow these of SpannableStringBuilder. How-
ever, it avoids leaving password fragments, and it contains
a secure close method that cleans up passwords. Moreover,
SecureTextView has an event handler that listens for status
changes of the phone. If the phone is locked, or if an app
becomes inactive, SecureTextView automatically zeroizes its
buffer to clean up password fields. SecureTextView can be
used as a drop-in replacement of TextView, as all code
changes are localized to the implementation of TextView and
SpannableStringBuilder. Overall, SecureTextView differs
from the regular TextView only by 500 lines of code in Java.

To fix the buffering problem in keyboards (Problem #4), we
modified the code of the open-source keyboard app LatinIME
to avoid holding on to the most recent user input. Since the
other keyboard apps are not open source, we could not easily
modify the source code and test the fix. Nevertheless, as we
discussed before, we observed similar behaviors in these apps
as LatinIME, so they are likely caused by a similar buffering
problem. In addition, we plan to contact Google to update its
official documents that describe security issues with creating
keyboards; the current documents only suggest that passwords
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(a) The password usage patterns for 19 apps that we studied,
in the form of state transitions.
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Fig. 4: The password usage patterns in the studied apps, as well as the pattern and encapsulation that KeyExporter achieves.

should not be stored in a file, but they should ideally also
include suggestions on avoiding password inputs from being
unnecessarily retained in memory.

B. KeyExporter: Fixing Android Apps

Problems #5 – #7 (as well as #3) need to be addressed on
a per-app basis, since it is up to an individual app developer to
avoid insecure engineering practices. We summarize security
practices to avoid password retention:

• Using char array to hold passwords obtained from
TextView (Use charAt() instead of toString()).

• Clearing the TextView’s buffer by calling its
clear() function.

• Deriving a strong key (e.g., “key stretching” [32])
at the early stage without any unnecessary password
propagation.

• Zeroing out all password memory.

Unfortunately, many developers generally do not share the
same level of awareness of security practices. As found in our
analysis, many apps simply send plaintext passwords to the
network, or save them to local non-volatile storage. A recent
survey also confirms that developers think of functionality first,
and regard security as a secondary task [43]. Therefore, we
believe that a general, easy-to-use solution is necessary for
developers to follow the security practices to avoid password
retention.

We achieve this by designing and implementing KeyEx-
porter, with two explicit design goals: proactive security, and
usability. KeyExporter proactively manages passwords inter-
nally, and only exports password-derived keys to developers;
it also securely manages its password memory. Moreover,
it offers developers simple APIs that are intuitive to use:
existing studies show that if security APIs are complicated,
developers tend not to use them at all [26], [42]. KeyExporter

is designed with the understanding that usability and simplicity
can effectively promote security [1].

KeyExporter Design. We start by identifying common pat-
terns of password usage in today’s apps. Figure 4a shows the
patterns for the 19 apps that we have analyzed, which are
presented in the form of state transitions. We have omitted apps
that rely on OAuth for authentication, as they do not directly
manage passwords. The edges in this graph indicate the flow
of passwords in an app, and the nodes represent the states
that a series of transitions can reach. Each node also contains
a count, which represents the number of apps that reach this
state following a particular transition path. For instance, all
19 apps implement a form of onClick() method, which is
the starting point for authentication when a user clicks a login
button.

We make several high-level observations on the usage
pattern after onClick. Most apps (18 of them) directly get
a String object from the widget to store passwords, and only
one app correctly uses a char array. Afterwards, all of these
apps perform a transition that we label as use(pw), which
either passes the data as a parameter to a function, or sends
it to a different process via IPC, or checks its strength. We
noticed that, apart from checking the password strength, all
other “uses” are simply unnecessary password propagation.
After this, 11 out of the 19 apps directly send passwords
to the network instead of deriving keys from them. Although
this percentage may not be representative for all Android apps
(many of the tested apps here are sample apps), they do serve
as further confirmation of the findings on insecure password
usage in other studies [43]. Finally, the doubly-circled nodes
in this graph correspond to the three common password sinks:
networks, files, or cryptographic libraries that use passwords to
derive keys. Furthermore, it can be noticed that two out of three
sinks (i.e., sending passwords to the network or storing them
in files) are insecure. These use patterns should be prevented,
because they only lead to more password exposure. One should
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always use “key stretching” [32] to derive a strong key from
the password and perform authentication with the key instead.

Therefore, our design of KeyExporter specifically focuses
on preventing the possibility for passwords to be sent to the
network or stored in a file; passwords are not made available
to the application, which can only fetch cryptographic keys
derived from the passwords. Figure 4b shows the intended
usage of passwords enforced by KeyExporter: it always starts
by a key derivation, and contains passwords within the first
three states (shown using blank circles); the rest of the states
do not contain any user passwords (shaded circles). Figure 4c
further abstracts the states that contain passwords into a
super state, which shows the final design of KeyExporter.
In current apps, developers need to obtain passwords from
a widget, generate derived keys, and then manually clean up
passwords; but with KeyExporter, a developer can simply call
getKey() to obtain derived keys without ever accessing the
raw passwords. All passwords are automatically zeroed out by
KeyExporter.

KeyExporter Implementation. KeyExporter currently sup-
ports HMAC, PBKDF2, and scrypt as key derivation functions,
although it could be easily be extended with others. We
picked these functions because some of our test apps use
HMAC and PBKDF2, and Android’s own device authenti-
cation uses memory-hard functions (MHFs) such as scrypt.
In addition, we have also implemented support for the Se-
cure Remote Password (SRP) protocol [61], which runs a
password-authenticated key agreement (PAKE). Regardless of
which method a programmer uses, KeyExporter prevents the
spread of plaintext passwords, with API support for secure
alternatives.

Figure 5 uses code segments to demonstrate how an app
could use KeyExporter. Figure 5a is a simplified version of a
sample app, which uses HMAC-based authentication instead of
directly sending passwords; as such, it represents a more secure
practice than the other sample apps. However, we can see
that this app does not clean up passwords properly. Figure 5b
shows the code after integrating the app with KeyExporter.
In this version, the app no longer has direct access to the
password. Instead, she could invoke a function to derive an
HMAC based on the password for authentication. The init()
call also clears the passwords from the widget and from
memory. Figure 5c shows another example based on the SRP
API provided by KeyExporter, which uses a variant of Diffie-
Hellman key exchange. As we can see, KeyExporter can
achieve better security with more concise code.

VII. EVALUATION OF SECURETEXTVIEW AND
KEYEXPORTER

We now report results from our experimental evaluation
of SecureTextView and KeyExporter. We focus on three key
questions:

• How effective can our solution fix password retention?
• How much code change does our solution require?
• How much development effort does a fix require?

OnLogin:
final String id = idUI.getText().toString();
final String pw = pwUI.getText().toString();

// generate HMAC
mac = Mac.getInstance("HmacSHA1");
key = new SecretKeySpec(pw.getBytes(), "HmacSHA1");
mac.init(key);
hash = mac.doFinal(serverRandom);

// send packet to server
sendResponse(id, hash);

(a) Original code for authentication using HMAC.

OnLogin:
final String id = idUI.getText().toString();
HMacKeyExporter auth = (HMacKeyExporter)

pwUI.getKeyExporter("HmacSHA1");

// generate HMAC
auth.init(); // cleanup happens here
auth.update(serverRandom);

// send packet to server
sendResponse(id, auth.getKey());

(b) Integration with KeyExporter using HMAC.

OnLogin:
final String id = idUI.getText().toString();
SRPKeyExporter auth =

(SRPKeyExporter) pwUI.getKeyExporter("SRP");

auth.init() // cleanup happens here

// send ID, client public A to server
sendStep1Req(id, auth.getA());
...

// set received salt, server public B
auth.setStep1Response(s, B);

// send proof of session key to server
sendStep2Req(auth.getM());

(c) Integration with KeyExporter using SRP.

Fig. 5: Integration with KeyExporter is easy.

A. Methodology

As before, we have tested the effectiveness of our fixes
for the Android framework (Problems #1 – #4) and for the
Android apps (Problems #5 – #7). For each app A, we
conducted two experiments:

• Running the original app on a modified version of
Android that uses SecureTextView (written as A′).

• Running a modified version of the app that is inte-
grated with KeyExporter and SecureTextView (written
as A†).

Integration of KeyExporter with an existing app requires
code modification to the app. In order to integrate with KeyEx-
porter, we needed to identify the entry point for authentication,
initialize KeyExporter with the desired cryptographic protocol,
and replace all password usages with the derived key. We’re
assuming that the relevant server-side code is already present,
but for many app authors, this would represent an additional
burden, likely far more work than making the necessary client-
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Category Application Description Login BG YouTube Lock

Basic
Sample 1 Original 25 24 11 11
Sample 1′ SecureTextView 14 13 4 4
Sample 1† STV + KeyExporter 0 0 0 0

Cha./Resp.
Sample 3 Original 21 20 8 7
Sample 3′ SecureTextView 11 9 8 5
Sample 3† STV + KeyExporter 0 0 0 0

OAuth
Yelp Original 3 2 1 1
Yelp′ SecureTextView 2 1 1 1
Yelp† STV + KeyExporter N.A. N.A. N.A. N.A.

Standalone
PasswdSafe Original 12 2 1 1
PasswdSafe′ SecureTextView 2 1 1 1
PasswdSafe† STV + KeyExporter 0 0 0 0

System app
SystemUI Original 7 2 2 1
SystemUI† STV + KeyExporter 0 0 0 0

PAKE Sample 1srp STV + KeyExporter 0 0 0 0

TABLE IV: Our proposed fixes, SecureTextView and Key-
Exporter, can successfully address the password retention
problem. A′ is the version of app A running on the Android
framework with SecureTextView; A† is the version of app
A integrated with KeyExporter and SecureTextView. Since
Yelp is not open source, we were only able to apply Secure-
TextView, but not KeyExporter.

side fixes.

B. Effectiveness

Table IV shows the results of our experiments, which we
now summarize.

#1: Basic Password-based Authentication Applications.
Sample app 1 uses passwords for authentication. As we can
see from Table IV, the original app contains a large number
of passwords. However, the number is reduced roughly by
half after using SecureTextView. The remaining password in-
stances, which live in the app memory, completely disappeared
after integration with KeyExporter. The results confirm that our
solution effectively solves Problems #1 – #7. Also, the result
for the Sample app 1′ confirms that password retention cannot
be solved only by using an improved password entry widget.

Integration with KeyExporter only required changing six
lines of code in the original app. More specifically, three lines
of code were applied to the registration method, and three
other lines to the login method. These changes replaced invo-
cations of getText().toString() into getKey(), which
is the method provided by KeyExporter for an app to retrieve
credentials from TextView.

The original app sends raw passwords and usernames to
the server for authentication. The server computes a hash of
the password, and stores the hash in a local database (upon
registration), or compares the hash with the local entry (upon
authentication). We have modified the app to send the hash
of the password instead, and removed the logic for the server
to hash the password locally. The entire change required less
than an hour of effort.

Obviously, while this process hides the passwords, an
adversarial capture of the hashed password is just as vulnerable
as the capture of the original plaintext password. We next
consider better protocols without obvious replay attacks.

#2: Challenge Response Authentication Applications. Sam-
ple app 3 uses a challenge/response authentication. When

// OnClick
case R.id.ok: {
if (itsYubikeyCb.isChecked()){
...

// Open Database
Owner<PwsPassword> passwd =
new Owner<>(new

PwsPassword(passUIitsPasswordEdit.getText()));
...

(a) Original authentication code in passwdSafe.

// OnClick
case R.id.ok: {
keyExporter = (PBKDF2KeyExporter)

itPasswordEdit.getKeyExporter("PBKDF2");
keyExporter.init();
if (itsYubikeyCb.isChecked()){
...

// Open Database
Owner<PwsPassword> passwd =
new Owner<>(new PwsPassword(keyEXporter.getKey()));
...

(b) Integration with KeyExporter using PBKDF2.

Fig. 6: Integrating PasswdSafe with KeyExporter.

running app 3′, which is the version that uses SecureTextView,
the number of passwords in memory also gets reduced by
about half. Integrating the app with KeyExporter eliminates
the rest of the passwords. After applying our fixes, app 3† is
actually 16 lines shorter than the original app. This is because
the original HMAC-based authentication protocol gets replaced
by a simple invocation of KeyExporter. The source code has
about 800 lines of code, and again required less than an hour
of effort to fix.

#3: OAuth Authentication Applications. OAuth-based apps,
such as Yelp, present a challenge for us to repair because
neither Yelp nor its OAuth provider apps, like Facebook, are
open source. Therefore, we were only able to test the password
reduction on our patched Android that uses SecureTextView. In
this case, Yelp uses Facebook’s OAuth service, which retains
much fewer passwords in memory than other apps. Neverthe-
less, password retention still occurred, and our SecureTextView
reduced the password instances somewhat, but not to zero.

#4: Password Managers. Next, we tested the popular pass-
word manager, PasswdSafe. As discussed before, its code-
base reflects many good security practices, such as managing
passwords using reference counts. Nevertheless, the developers
failed to remove all passwords after authentication, as our
results in Table IV show. After integrating this app with
SecureTextView and KeyExporter, all password instances dis-
appeared immediately after authentication was complete.

In this case, the engineering challenges are that the app has
38,000 lines of code in 160 files, and we are not familiar with
its source code. However, our modifications can be applied in
a straightforward fashion. Figure 6 shows our core changes by
comparing the original code (6a) and our modified code (6b).
We first located the code for the login file using a simple
pattern match, and identified R.id.ok to be the starting point.
We integrated this method with the initialization routine for
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PBKDF2. For the rest of the codebase, there is only one place
that uses the master password; therefore, we replaced this
usage with the hash value derived by KeyExporter. In total,
our fix changed only 50 lines of code, taking several hours
to complete and test. Most of the time was spent studying the
codebase to identify the relevant entry points. Nevertheless, our
success with fixing PasswdSafe demonstrates that patching a
sizable program to improve its password retention behavior is
straightforward.

#5: System Processes. Next, we tested lockscreen processes
(SystemUI and LocalSettingsService) which leave PINs
in memory (Table IV). We found that the starting point for
authentication is in the KeyGuard module in the SystemUI
process, so we generated derived keys using scrypt in this
module and deleted passwords right away. We found more than
ten methods to which the passwords are passed, so we fixed all
these methods. The result for SystemUI† in Table IV shows
that the password retention problem was solved completely
after the fixes: right after unlocking the phone, all passwords
disappeared.

This fix took about 200 lines of code, most of which
modified the function prototypes. Although we are familiar
with the Android codebase, applying this fix took three days of
work for one developer. This is because we had to go through
the codebase to trace how the system processes use the PIN
password. Nevertheless, we were able to apply the same types
of fixes to solve the problem.

#6: Password Authenticated Key Exchange. Next, we eval-
uated our PAKE support. We did not find secure sample apps
that use PAKE protocols such as SRP. Thus, we decided to
improve a naı̈ve app with the secure protocol, allowing us to
measure the effectiveness of our system as well as the time
effort required to make the changes. First, we modified Sam-
ple 1 to avoid the use of password strings, creating Sample 1†.
With only this change, the derived secret is simply a hash of
the password, retaining a variety of security vulnerabilities.
We further modified this app to use the SRP protocol in
KeyExporter. This requires an additional change of 110 lines
of code: 30 in the app, and 80 lines in the server side to
support SRP. Note that only 30 lines are added in the client
code for implementing both registration and login routines. The
server requires additional modification on the database because
it never sees user password or hash; instead, they have to store
a crypt verifier and a salt value. (We’re assuming the presence
of a suitable SRP library on the server.)

Sample 1srp shows the result of the fix: as before, all pass-
words are successfully erased after login. Given our simplistic
sample app, it took a couple of hours to apply SRP (client and
server-side) and make sure everything worked. Of course, not
all developers will be comfortable with SRP. Even when the
client-side code is easy to integrate, the server-side code might
be much more complicated, or might have its own closed-
source legacy components that a developer cannot easily fix.
Nonetheless, our evaluation shows that KeyExporter correctly
manages client-side plaintext passwords in memory and can
help developers follows stronger cryptographic practices.

C. Summary

To summarize, there are four key takeaways from our eval-
uation. First, our solutions are effective in solving password
retention in Android, as they can successfully remove all pass-
words from our tested apps (with the exception of Yelp, which
is not open source). Second, the size of the necessary patch and
the necessary effort to apply it are app-specific, but generally
speaking, they are relatively small. Third, the modification can
be done in a systematic manner by following the principles
of the fixes in Section VI. Lastly, fixing an app “correctly”
requires the adoption of a cryptographic protocol like SRP. Our
proposed solution not only helps reduce password lifetimes,
but also helps developers migrate to these stronger protocols,
which they should be using anyway.

VIII. DISCUSSION

Stronger threat models. Our solution successfully clears pass-
words right after login, providing an effective defense against
sophisticated attackers. Moreover, the design of KeyExporter
can further prevent passwords from being propagated to the
rest of the codebase, so it prevents the possibility for passwords
to be leaked to the network or stored in files.

Nevertheless, memory disclosure attacks are not the only
way in which an adversary can compromise user passwords. If
an attacker can compromise an Android phone and gain root
privileges, it is possible that they might be able to perform
real-time monitoring of touchscreen activities to capture the
password. This is outside the scope of this current paper. A
possible defense, however, may be to leverage TrustZone for
protection, similar as how the Android framework protects
fingerprint data from attackers. In future work, we plan to
investigate the feasibility for an attacker with root privileges
to monitor keystrokes and capture passwords, and explore
potential mitigations that protect passwords using TrustZone,
moving password-management functionality out of the Text-
View class entirely.

Credentials derived from passwords. Our paper focuses on
user passwords as they are of paramount importance, and as
our paper shows, protecting passwords itself is an unresolved
problem in Android. Credentials derived from passwords, such
as hash values or cryptographic keys, are equally important
but beyond the scope of our current paper. Obviously, these
credentials and keys must also be deleted in a timely manner.
We previously looked at SSL/TLS session key retention [34],
discovering a number of issues similar to what we have found
with password retention in this study.

Fixes without modifying the Android framework. Our
current SecureTextView and KeyExporter are implemented as
a set of patches to the AOSP TextView widget. Needless to
say, this means that it’s difficult or impossible to install on
most users’ phones. We considered the possibility of making
these into standalone code which could be distributed as a
separate library, allowing individual app authors to adopt our
solution without waiting for Google. A standalone imple-
mentation would require duplicating a substantial amount of
code from TextView, to ensure that we had proper behavior
under all conditions (e.g., different layout styles, different input
languages, and/or different Android versions).
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We examined the possibility of simply subclassing the
existing TextView widget, but our patches require changing
how it stores and manages passwords; we cannot achieve the
necessary memory erasure behaviors while also reusing the
stock TextView widget class. While this is less than ideal,
we would prefer for Google to make central changes to help
app authors migrate to more secure password management
behaviors.

Fixes without modifying the apps. Since several root causes
of password retention are due to developers’ insecure prac-
tices, our fixes require the insecure apps to be modified to
address these problems. Concretely, we provide APIs that can
help developers fix the apps without heavy code changes. It
might be possible to develop fixes that do not require app
modification, e.g., by tracking all password usage and cleaning
them at the OS level. However, this would be very intrusive to
the Android framework and cause considerable performance
overhead. We believe that the fixes we have developed could
present an easier path for adoption by app developers and the
Android community.

Usability. As developers prioritize functionality over secu-
rity [43], we have designed KeyExporter to be not only more
secure but also provide a rich set of additional functionalities,
such as hashing and PAKE. We believe that providing these
functionalities can further attract developers to integrate their
apps with KeyExporter. Moreover, studies have found that
developers do not use security APIs at all if they are too
complicated [26], [42]. KeyExporter follows this principle that
simplicity promotes security [1], and exports key materials in
a similar fashion as how existing widgets export passwords.

Centralized security management. By shifting the respon-
sibility of password management from app developers to
KeyExporter and SecureTextView, we relieve the developers
from having to reason about password security manually app-
by-app, and we can harden the system from password misuse
by the app developers. Needless to say, the design and imple-
mentation of SecureTextView/KeyExporter need to be secure;
otherwise, all apps that are integrated with them would become
vulnerable again. As KeyExporter can localize the reasoning of
passwords to this one component, such “centralized” security
management is similar in spirit to how TLS eases the burden
for developers to implement secure communication, or how
OAuth centralizes authentication by managing user credentials
in a small number of trusted service providers.

Disclosure process. We reported the issues in this paper to
all of the impacted vendors in December 2018 via their stan-
dard security vulnerability reporting channel. For Google, we
reported the problems in the AOSP keyboard, the lockscreen
processes, and the Android widget implementation, and rec-
ommended that they update the official documentation about
password protection best practices. We also contacted the
keyboard app developers and the OAuth team at Facebook.
Finally, we reached out to the app developers of the password
managers with proposed fixes. The source code of our solution
and patches are publicly available5. We provide KeyExporter
as a standalone library, and public code samples to demonstrate
how developers can harden their apps.

5https://github.com/friendlyJLee/totalrecall

Static analysis. Google regularly adds static analysis features
to the Android Studio development environment to highlight
undesirable coding practices. If Android were to adopt more
secure alternatives to the password entry widget such as
ours, the development environment could highlight uses of
the default TextView widget and generate suitable warnings.
Moreover, a campaign by Google to improve developers’ code
could certainly move its app ecosystem toward better practices
for managing passwords. In the future, after our findings
are widely disseminated, we can also build static analyzers
to identify whether or not Android apps are adopting best
practices in managing passwords.

IX. RELATED WORK

A. Protecting sensitive data

Insecure data deletion has been an issue in desktops and
servers for over a decade [13], and it is one of the fundamental
causes of data exposure. Researchers have developed many
solutions to address this. Chow et al. handle this by secure
deallocation [14], Pridgen et al. aim at reducing encryption
keys retained in the Java heap for desktops and servers [49],
Dunn et al. use ephemeral channels where data will be securely
erased after a session finishes [18], and Lee and Wallach study
the retention of TLS secrets in Android memory [34]. Different
from existing work, our paper focuses on the study of password
retention, and proposes effective fixes to address this problem.

Another line of research looks at storing sensitive data
in secure locations, instead of removing data from insecure
locations. The example secure locations considered by existing
work include cloud storage [57], CPU registers [40], and
separate “trusted” CPU features like ARM TrustZone [65].
These proposals generally leverage features that are not univer-
sally available, and possibly also entail significant performance
issues.

Researchers have also considered protecting sensitive data
by detecting malicious application misbehaviors. Dynamic
analysis techniques, such as data-flow analysis [20] and
password-tracking [15], have been introduced to detect data
leakage from applications. Static analysis techniques [4], [6],
[12] have also been used to detect malicious behaviors. K-
Hunt [35], for example, can pinpoint insecure cryptographic
usage issues in software, including poor key sanitization.

Automated approaches facilitate scalable reasoning about
security issues, but most are limited to analyses of the Java
software stack, without necessarily looking at native methods
in C, kernel buffers, or unreachable buffers that have not yet
been garbage collected. In short, these tools are excellent when
looking for a known vulnerability pattern, but are less useful
in a case like ours, where we don’t initially know anything
other than the password string we’re looking to find, wherever
it may be.

B. Memory forensics

In terms of memory acquisition techniques, Sylve et al. [56]
first suggested a technique for capturing the physical memory
of Android devices. In later work, Müller and Spreitzenbarth
demonstrate that cold-boot attacks are feasible on Android
phones [41]. Yang et al. [64] designed an acquisition technique
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when the Android device is in firmware update mode. We used
the system developed by Sylve et al. to perform our study.

Regarding memory analysis techniques, signature-based
frameworks [47], [60] have been widely used by researchers
to analyze memory dumps on different platforms. Various
techniques have also been proposed to recover data structure
from memory dumps using static analysis [10], dynamic anal-
ysis [17], and probabilistic analysis [37].

Memory forensics has been applied to the Android plat-
form. A line of previous work has focused on extracting sen-
sitive data from applications [3], [30], [58], [59]. Researchers
have also looked at techniques to recover data beyond raw
memory dumps, including the timeline of user activities [7]
and GUI activities [52], [53].

C. Security flaws in Android apps

Existing work has studied security flaws in Android apps,
and revealed that developers have misused TLS library [21],
[22], [25], cryptographic APIs [19], OAuth protocols [11],
and fingerprint APIs [8]. Reaves et al. [51] analyzed mobile
banking apps, reporting information leakage in these apps.
Recent usability studies have also looked at why developers
make mistakes, by analyzing the patterns of misuse [1], [2],
[23], [42], [43].

Password managers have attracted particular attention be-
cause they directly handle sensitive passwords. Fahl et al. [22]
revealed that many password managers are vulnerable to
clipboard sniffing attacks. Silver et al. [55] found critical flaws
in auto-fill functionality. Li et al. [36] found problems in web-
based password managers.

X. CONCLUSION

In this paper, we have performed a comprehensive study
on password retention in Android. Our analysis techniques—
searching through memory dumps—proved to be robust and ef-
fective at discovering problems and validating our alternatives.
We found problems with the core Android platform, as well as
a wide variety of popular apps, including keyboard input apps.
We developed suitable patches for Android’s TextView widget
to address these problems, assisting apps to follow more secure
password management practices with only modest changes in
their code.
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