
Synthesizing Runtime Programmable Switch Updates
Yiming Qiu Ryan Beckett† Ang Chen

Rice University †Microsoft

Abstract
We have witnessed a rapid growth of programmable switch
applications, ranging from monitoring to security and offload-
ing. Meanwhile, to safeguard the diverse network behaviors,
researchers have developed formal verification techniques
for high assurance. As a recent advance, network devices
have become runtime programmable, supporting live program
changes via partial reconfiguration. However, computing a
runtime update plan that provides safety guarantees is a chal-
lenging task. FlexPlan is a tool that identifies step-by-step
runtime update plans using program synthesis, guaranteeing
that each transition state is correct with regard to a user speci-
fication and feasible within switch memory constraints. It de-
velops novel, domain-specific techniques for this task, which
scale to large, real-world programs with sizable changes.

1 Introduction
Programmable switches accelerate the velocity of change and
facilitate innovation [11, 12, 14]. The community’s ideal is
to develop and deploy new features quickly in the network,
without upgrading switch hardware. This has led to two syn-
ergistic lines of pursuit. On one hand, researchers have seized
this opportunity to develop a slew of switch applications, such
as monitoring [24,48], security [31,54,55,58], advanced rout-
ing [25, 33, 41], and offloading [27, 28]. On the other hand, to
mitigate the potential risks of frequent changes, formal ver-
ification of switch programs promises to eliminate network
bugs and provide high assurance [13, 18, 38, 51]. Combined,
the two lines of work pave the way toward a featureful and
reliable network infrastructure.

As of late, network programmability is at a new inflection
point. Whereas traditional P4 programmable switches [10]
require offline procedures for program updates (e.g., draining
user traffic, reflashing the data plane with a new program, and
undraining traffic), runtime programmable switches [4, 19, 52,
53] increase the benefits of programmability even further by
supporting live program changes. Upon an update request
(e.g., due to tenant requirements or infrastructure upgrades),
the switch program is modified online to effect the change, by
incrementally adding and removing match/action tables in a
running program based on the “delta” [19, 53]. Compared to
the approach of recompiling the changed program and reflash-
ing the data plane from scratch, runtime updates enable rapid
deployment of new features. Runtime programmability has
become available in a variety of targets [19, 52, 53], including
commercial off-the-shelf switch ASICs [3, 5, 9].

However, runtime programmability introduces another

layer of correctness concerns. It is known that live net-
work updates come with risks—they result in intermediate
states with different behaviors from the initial and final net-
works [29, 44, 45]. Even in a traditional network, updates
must be carefully staged to ensure that the transition is free of
error [36]. This risk and the challenges it raises are only mag-
nified in programmable switch updates. A step-by-step update
to a deployed P4 program, while the switch is in use, could
expose partial and potentially unsafe program snapshots to
user traffic. For instance, if not careful, an old ACL table may
have been removed before the updated ACL is installed, lead-
ing to a transient program snapshot without access control.
Although we could attempt to make all changes in a single
step and avoid intermediate states, in practice, this is only
feasible for minuscule updates. The “delta” corresponding to
the update needs to be prepared in the switch scratch memory
before activated [6, 53]; thus, this leads to a resource utiliza-
tion peak that may exceed the available memory. A large delta
often needs to be broken down into smaller steps, where each
step prepares and applies only a fraction of the change [53].

To safeguard runtime network updates, we must again rely
on formal reasoning techniques. Existing work in runtime
programmability either asks the user to prescribe step-by-
step updates [19] or employs algorithms that do not provide
semantic guarantees [53]; thus, they do not offer the same
level of assurance. Existing verification work, on the other
hand, focuses on certifying the correctness of a single P4
program [18, 38, 51], but cannot help identify a correct-by-
construction sequence for program transition. Thus, these
verification techniques cannot guarantee the correctness of
intermediate program snapshots during a transition, and bugs
could be unwittingly introduced into the network. We believe
that customizing program synthesis techniques to this new
problem domain will bear much fruit. If we can formally
synthesize a safe (i.e., conforming to a specification) and
feasible (i.e., within switch resource limits) transition plan,
then we can be confident about its effect on the network.

We develop such a tool called FlexPlan. It takes in a P4
program with annotated changes and a user specification, and
produces such a transition plan. FlexPlan draws inspirations
from a powerful approach to program synthesis—CEGIS, or
counterexample-guided inductive synthesis [47]—and devel-
ops a variety of domain-specific techniques for our problem
at hand. At a high level, the CEGIS algorithm navigates the
search space by iterating between a “proposal” phase, which
suggests potentially correct programs (e.g., transition plans),
and a “verification” phase, which proves or disproves the



proposals. The verification phase also produces counterex-
amples (i.e., packets) upon failure, which are learned by the
next proposal to guide the search. CEGIS has found success
in many synthesis problems [17] and more recently, in net-
working [13, 22, 59]. However, runtime programmable switch
updates raise distinct challenges that require novel designs.

The first challenge stems from the fact that FlexPlan needs
to synthesize not just one single program but a sequence of
program snapshots; further, each snapshot must successively
modify the previous one safely and stay within the resource
constraints. To cast this into a CEGIS framework, we de-
velop two concise encodings that articulate the essence of
this synthesis. A version sketch is derived from the switch
program with annotated changes, adding version variables at
change sites to represent the change progress. This building
block provides a uniform representation for any intermediate
program state that could appear in the transition. Further, a se-
quence sketch concatenates multiple version sketches, while
constraining them to modify each other and make progress
toward the final program. The synthesis target, therefore, is
correct assignments to the version variables across snapshots—
these are the program “holes” in the verbiage of the program
sketching [47] synthesis framework.

The scalability bottlenecks of this synthesis represent the
second challenge. Existing verification efforts are already
challenged by the large SMT formulas produced by complex
switch programs [38, 50, 51], but FlexPlan needs to reason
about stacks of these formulas in each proposal/verification
phase. To accelerate the synthesis, we develop two domain-
specific techniques to shrink the problem sizes whenever
possible—to as close as that of single program snapshots.
Snapshot learning extracts insights about the synthesis from
a single snapshot, and generalizes that knowledge to all sub-
sequent snapshots. Snapshot verification shatters a proposed
transition sequence into individual snapshots for divide-and-
conquer. We arrange these techniques carefully to ensure that
reasoning about the safety of a sequence from snapshot-based
properties still produces a sound analysis.

Finally, we also leverage a unique property in the FlexPlan
synthesis problem—its diagnosability—to perform introspec-
tion into the synthesis process. For a traditional CEGIS prob-
lem, the synthesis tool cannot know beforehand whether or
not a correct solution exists. FlexPlan, however, can check
the initial and final programs against the safety specification
to see whether or not some safe transitions exist. If both pro-
grams are correct, then a safe transition must exist; a safe
transition may not be feasible, however, due to resource con-
straints. To check feasibility, FlexPlan incrementally grows
the transition sequence length—so that each step in the transi-
tion sequence makes smaller and smaller changes to approach
feasibility—while performing another introspection to decide
when to stop trying longer sequences. Finally, when FlexPlan
concludes that no safe transition is feasible under the current
switch headroom, it introspects on how much resource release

is needed for feasibility, as another assistance to the operator.
We prototype FlexPlan [2] and show that it scales to real-

world switch programs and sizable changes, and supports a
rich set of safety properties including but going beyond those
in existing work [53]. With FlexPlan, operaters can synthesize
transition plans quickly and automatically (e.g., within a few
minutes for sizable changes to switch.p4), while being assured
of the correctness of the transition process.

2 Motivation
Analogues of our motivation can be found in existing work
on OpenFlow network updates, summarized as follows: Net-
work changes are a constant [23], but they often come with
risks [36] due to intermediate states during transition [21, 45].
Rigorous approaches are needed to safeguard against transient
disruption [44] to satisfy security requirements and stringent
service-level objectives [16]. Ensuring transactional updates
at each step [44], and formally guaranteeing the correctness
of an update plan [39] is essential. These arguments hold true
still, and are further amplified, for P4 programmable networks.

2.1 Runtime programmable switch updates
Programmable switches enable new network features to be
quickly developed in-the-field [24,27,28,35,48,56]; however,
in earlier designs, deploying new features to the switch was
an intrusive process. To update the switch program (e.g., add,
remove, or modify a feature), the traditional approach was to
completely recompile the changed program and reflash the
data plane [60]. This results in device disruption, so program
updates had to be conducted offline—user traffic is drained
from the device and diverted elsewhere in the network, after
which the switch is re-imaged, and finally, reactivated again.

Recognizing its cumbersomeness and risk for downtime,
researchers and practitioners have made a concerted effort
toward runtime programmability [4, 19, 52, 53, 57]. That is,
switch programs are updated using partial reconfiguration
without taking down the device for maintenance. Since P4
programs have modular table boundaries, runtime reconfigu-
rations on specific match/action tables and their control flow
logic need not disrupt other parts of the program. A feature
update can be decomposed into a series of table and branch
changes to transform a deployed program to a desired state.

Runtime programmability is not just an academic ideal.
In response to the perennial call for both “feature veloc-
ity and cloud availability” [16], major switch vendors have
embraced this trend with ASIC support. Nvidia’s Spectrum
switches [53] and Broadcom’s Trident [9] and Jericho [3]
switches are commercially available off-the-shelf, and aca-
demic prototypes [19, 52] are also exploring this design. Use
cases of runtime programmable switches include real-time
security defense [53], multi-tenancy [52], adaptive teleme-
try [19], where live switch updates afford higher flexibility
not found in earlier programmable switches.



2.2 A motivating example
We will consider a simple example to illustrate the flexibility
of runtime switch updates as well as the challenges they raise.
The following program snippet uses @add and @del annota-
tions to demarcate change boundaries in a control block:

1 /* Ex1: ipv4_ipv6 */
2 control ingress {
3 apply {
4 if (ipv4.isValid()) {
5 @del acl_v4.apply();
6 @add nat_acl_v4.apply();
7 } else if (ipv6.isValid()) {
8 @del acl_v6.apply();
9 @add nat_acl_v6.apply();

10 }
11 @add stats.apply();
12 }}

We remove two older versions of ACL tables for both IPv4
and IPv6 (Lines 5+8), and add two new tables that perform
both NAT and ACL (Lines 6+9); we also add a statistics table
for monitoring (Line 11). Since P4 is a target-independent
language, operators can specify a desired change with such
annotations without worrying about hardware details. Indeed,
the mechanisms for implementing a live update depend upon
the underlying switch platforms [19, 53]:

• FlexCore [53] relies on pointer swaps to achieve transac-
tions, adding and removing a group of tables atomically.
In our example above, we can first add nat_acl_v4,
nat_acl_v6, and stats to scratch memory, and then
use a transaction to make them visible to network traffic,
while deleting the two older tables acl_v4 and acl_v6.

• rP4 [19] also adds and removes MA tables leveraging
scratch memory, but it relies on temporarily pausing traf-
fic to achieve transactional effects. Before making the up-
date, packets are paused and stored in a front buffer, and
the respective tables are modified to effect the change.
Buffered packets are then let out into the pipeline.

The careful reader may have noticed that this update appears
to have completed within a single transaction, so no interme-
diate states are exposed. However, this is because we have yet
to consider the resource constraints of the switch hardware.
Switches have severe memory capacity bottlenecks, and they
are easily packed to the brim with large MA tables [32, 53].
Thus, this logically simple update may be physically infeasi-
ble if the switch memory has high utilization.

The potentially infeasible operation is preparing the three
new tables (nat_acl_v4, nat_acl_v6, and stats) in scratch
memory before their old counterparts have been deleted. As-
sume without loss of generality that every MA table has the
same size (say, of U, one unit of table entries), then the net re-
source increase after the change is only U. However, preparing
the transaction causes a resource peak of 5×U, which might
exceed the available switch headroom. One workaround is to

ensure that the switch always has a low utilization [6], but this
is obviously undesirable. Thus, recent work [53] proposes to
break a larger update into multiple smaller batches to reduce
the resource peak. For instance, if we first add nat_acl_v4
and delete acl_v4 in a transaction, it only requires 3×U head-
room; the second transaction adds nat_acl_v6 and deletes
acl_v6, also within 3×U headroom; a final transaction adds
the stats table, again within 3×U headroom. As tradeoff,
after the first transaction, IPv4 traffic is processed with new ta-
bles for NAT and ACL, whereas IPv6 traffic is still processed
with the old, and it only encounters new tables after the sec-
ond transaction; further, the statistics table is only applied
after the third transaction completes. Nevertheless, this may
still be a reasonable sacrifice in order to achieve a feasible
update, as long as the intermediate states are “well-behaved.”

2.3 Computing a safe and feasible transition
It is far from clear, however, how to conjure up a transition
plan for a desired change. rP4 [19] relies on the user to supply
this plan, and FlexCore [53] algorithms only analyze whether
changes are “reachable” to each other in the table graph. Nei-
ther represents a formal approach that can provide semantic
guarantees on the transitional behavior. In general, the notion
of correctness is scenario-specific and should be encoded in
a user specification in a granular manner, going beyond the
three fixed definitions in FlexCore [53], summarized below:

• Program consistency: Only one-step updates without
intermediate states are allowed.

• Element consistency: Intermediate states are acceptable
as long as reachable regions (e.g., changes that eventually
reach the same table) are changed together atomically.

• Execution consistency: Reachable tables can be changed
independently as long as no packets will mix them.

This cannot, for instance, capture user intention on “traffic
classes” (e.g., IPv4 vs. IPv6); nor can it support more gran-
ular correctness definitions (e.g., for any intermediate state,
packets must go through an ACL table, or packets must be
sent to the same outgoing port). For some cases, the three
fixed consistency definitions conflate into the same. For the
above change, execution and element consistency will find
the same plan as program consistency, because all changes
eventually reach the stats table, forcing a 5×U peak despite
the desire to relax the requirements for a feasible update.

2.4 FlexPlan: A program synthesis perspective
We believe that a principled solution should instead rest upon
a firmer foundation, grounded in formal synthesis. Such a
solution would satisfy three key goals:

• Automated: Beyond expressing a desired property, hu-
man reasoning is not required to identify a plan.

• Completeness: If a safe and feasible transition exists, we
will guarantee to find it.



Verification Proposal

…
Sequence sketch 

(Sec 4.1.2)

Diagnosis 
(Sec 4.3) Accelerations

(Sec 4.2)

if v1 => old …

Version sketch 
(Sec 4.1.1)

Anno. Program Safety spec
(Sec 3)

FlexPlan

Figure 1: FlexPlan and its key techniques.

• Soundness: Once we output a transition, it is guaranteed
to be safe and feasible.

The FlexPlan approach. We formulate this problem as
follows. Given a P4 program p with a set of change annota-
tions A, a safety specification φ, and resource headroom δ,
identify a transition sequence {p1→ p2→ ··· → pt}, where
pi’s are the intermediate program snapshots, and at the end
of the sequence, all changes in A have been applied. Further,
we require that a) each pi satisfies φ, and b) each transition
step pi→pi+1 makes positive progress and stays within the
resource headroom, initialized to δ. Our synthesis relies on
a CEGIS approach (cf. [46, 47] for more background): In
each iteration, the proposal phase generates a candidate tran-
sition sequence that satisfies φ and δ on the current set of
counterexamples (that is, packets), which is initialized to the
empty set. The verification phase will try to extract a new
counterexample packet that causes violation, which will be
consumed by the proposal phase in the next iteration, and so
on. This continues until no counterexample packets can be
generated—in which case we have a correct sequence—or
until no candidate sequences can be generated—in which case
no update plan exists. Figure 1 illustrates the workflow of
FlexPlan, with several key milestones in Sections 3 and 4.

3 Specifying Safe Updates
Users provide a P4 program with annotated changes, as well
as a specification to constrain intermediate states.

Update annotations. FlexPlan provides three intuitive an-
notation primitives for users to express a desired update: @add,
@del, and @mod. A source P4 program can be annotated with
these primitives, where each annotation site captures a set of
changes. In Section 2.2, we have already provided an anno-
tated program in this syntax, and here we used another exam-
ple to describe several other aspects of the annotations.

1 /* Ex2: acl_ecmp_flowlet */
2 control ingress {
3 apply {
4 //modify acl into nat_acl
5 if (ipv4.isValid()) {
6 @mod acl.apply(), nat_acl.apply();
7 }
8 //add ECMP, delete flowlet switching
9 @del { if (ipv6.isValid()) flowlet.apply(); }

10 @add ecmp.apply();
11 }}

First, the syntax is similar to “P4 annotations” [7] in the
P4 language standard. Our annotations target the common
intersection of the reconfiguration primitives in existing
work [19,53]—an annotation may specify individual table up-
dates (e.g., Line 10) or a code block update (e.g., tables with
their control flow, as in Line 9). The hardware mechanisms
are abstracted away from the annotations, but are assumed
to provide atomicity for each change annotation, as in recent
switches [19, 53]. The @mod primitive achieves similar effects
as @del+@add, but @mod must complete in a single atomic
step whereas the latter could occur in two separate steps. The
entire update finishes when all annotations have been applied.

Specification language. Specifying resource constraints
is as simple as providing a number δ that denotes the current
switch headroom. Thus, our specification language focuses
on the consistency properties, which constrain the relation
between a program snapshot and the initial and final pro-
grams. FlexPlan refines the fixed consistency levels in existing
work [53] in two ways: (1) a consistency property may refer to
specific traffic classes, and (2) new consistency levels can be
programmatically defined. Consider the following examples.

S1: Execution consistency for IPv4 traffic that hits ACL.
Any IPv4 packet that hits the acl table must not mix old and
new code blocks in any intermediate state. However, two IPv4
packets traversing different execution paths in the program do
not need to use the same program version—e.g., TCP traffic
may be processed by old code blocks, but UDP traffic by the
new. We do not constrain the behaviors of other traffic classes.

1 specification {
2 // create new ghost variables for the program
3 // these are used for verification only
4 ghost bit<1> sawOld = false;
5 ghost bit<1> sawNew = false;
6 ghost bit<1> acl_hit = false;
7 // update ghost state when tables are applied
8 @old => { sawOld = true; }
9 @new => { sawNew = true; }

10 @hit('acl') => { acl_hit = true; }
11 // define: no path mixes old and new nodes
12 // $cur: the current/transitional program state
13 execution_consistency_ipv4 = {
14 $cur.in.ipv4.isValid() & $cur.eg.acl_hit =>
15 !($cur.eg.sawOld && $cur.eg.sawNew);
16 }
17 assert execution_consistency_ipv4;
18 }

Lines 4-6 define “ghost variables” that track meta-level prop-
erties of a program execution—specifically, whether a packet
has encountered an old code block, a new block, or the ACL
table, respectively. Lines 8-10 describe how ghost variables
should be updated for an execution: whenever a packet trig-
gers an old code block, a new block, or a table named acl,
assign the respective ghost variable to be true. Lines 13-17
are the consistency assertion, where $cur represents a packet
traversing the current program snapshot. If such a packet con-
tains a valid IPv4 header when it arrives at the ingress, and



if it has hit the ACL table before it exits the egress, then we
assert that it should not be processed by a mix of code blocks.

S2: Field consistency for egress_spec. We define a new
consistency level that only constrains the processing outcomes
of specific header fields. The following example specifies
that any intermediate states should preserve the processing
outcome for the packet’s egress port—i.e., a packet should
either go to the same port as the old program or as the new one.
The $new and $old variables denote two packets traversing
the old and new programs, respectively.

1 specification {
2 // preserve processing outcome of egress_spec
3 field_consistency_espec = {
4 $cur.in == $old.in == $new.in =>
5 ($cur.eg.espec == $new.eg.espec ||
6 $cur.eg.espec == $old.eg.espec);
7 }
8 assert field_consistency_espec;
9 }

S3: Program consistency for TCP traffic: We require that
TCP packets must not encounter any intermediate state. The
all_old assertion states that if at the ingress a packet carries
a valid TCP header, then at the egress it must only have been
processed by old tables. Analogously, the all_new assertion
states the opposite. Their disjunction implies that TCP traffic
will only be processed by one version of the program. The
primary difference between this specification and S1 is that
execution consistency only constrains the behaviors of each
individual packet, whereas program consistency constrains
the behaviors across all packets of a certain kind (e.g., TCP).

1 specification {
2 // same ghost variables as before
3 ghost bit<1> sawOld = false;
4 ghost bit<1> sawNew = false;
5 @old => { sawOld = true; }
6 @new => { sawNew = true; }
7 // define whether all packets use the old program
8 all_old = {
9 $cur.in.tcp.isValid => !$cur.eg.sawNew;

10 }
11 // define whether all packets use the new program
12 all_new = {
13 $cur.in.tcp.isValid => !$cur.eg.sawOld;
14 }
15 // all packets use old program or all use new
16 assert all_old || all_new;
17 }

These granular consistency levels require program seman-
tic analysis and cannot be captured by fixed definitions [53].
We describe several more examples in Appendix 9.1 and sum-
marize them in Table 1. Figure 2 presents the grammar of the
specification language. Like existing work [18, 50, 51], the
specifications are eventually translated into assertions in the
source P4 program. Appendix 9.2 shows one such translation.

spec ::= specification{stmt∗} Specification
stmt ::= gvar∗ Ghost vars

| instr∗ Instrumentation
| property∗ Property
| assert∗ Assertion

gvar ::= ghost bit < n > gv Ghost vars
gexpr ::= $cur | $old | $new Network version

| gexpr. f ield Field dereference
| gexpr+gexpr Addition
| ... Other expr

instr ::= label => assignment∗ Ghost update
assignment ::= gv = gexpr Assignment
label ::= @new |@old |@hit Annotation
property ::= name = {gexpr∗} Consistency
assert ::= assert name Assertion

Figure 2: FlexPlan specification language grammar.

Specifications LoC
S1. Execution consistency for IPv4 [53] 13
S2. Field consistency for egress_spec 8
S3. Program consistency for TCP [53] 13
S4. Element consistency for ACL [53] 15
S5. Table consistency for ECMP 10
S6. VLAN table access [51] 8
S7. Correct TTL decrement [51] 6

Table 1: FlexPlan supports granular consistency specifications
that go beyond existing work [53] (e.g., S1-S5). Although
our primary focus is consistency, FlexPlan can also support
general program snapshot correctness (e.g., S6-S7) guarantees
addressed by existing verification work [18, 51].

4 Update Plan Synthesis
Next, we describe how FlexPlan synthesizes an update plan
from the annotated program and specification. We denote
these inputs as ⟨p[A],φ,δ⟩, where p[A] is an annotated P4 pro-
gram with a set of change sites A = {a1, · · · ,ak}, and φ and δ

are the safety and resource constraints, respectively. FlexPlan
outputs an update sequence s = {pold = p1 → p2 → ··· →
pt = pnew}, where two special states pold and pnew represent
the initial and final programs, respectively. We ask that each
intermediate state pi must be safe (i.e., satisfying φ) and each
transition from pi→ pi+1 is feasible (i.e., the resource spike
for this transition stays within δi, as computed from the initial
headroom δ after applying transitions before pi). If no such
s can be found, FlexPlan outputs diagnostic information on
whether the safety or feasibility constraints have caused the
failure, and in the latter case, it analyzes how much resource
release would enable a feasible synthesis.

4.1 Synthesizing a program sequence
Our CEGIS formulation uses program sketching [47], a clas-
sic framework for synthesis. This formulation views the syn-
thesis task as filling “holes” in an incomplete program (i.e.,
a “sketch”), and it has been successfully applied to network



1 control ingress {
2 apply {
3 /* annotation site 1: acl->nat_acl */
4 if(ipv4.isValid()) {
5 if (! vsk.v1) { // @mod
6 acl.apply();
7 } else {
8 nat_acl.apply();
9 }

10 }
11 /* annotation site 2: delete flowlet */
12 if(! vsk.v2) { // @del
13 if (ipv6.isValid())
14 flowlet.apply();
15 }
16 /* annotation site 3: add ecmp */
17 if(vsk.v3) { // @add
18 ecmp.apply();
19 }
20 }}

Figure 3: A version sketch that is derived from the
acl_ecmp_flowlet example in Section 3. Version variables
vsk.v are the sketch holes. The safety specification will also
be instrumented into the version sketch (cf. Appendix 9.2)

programs [13, 22]. However, the objective in FlexPlan differs
from existing work as it must identify a correct sequence of
program snapshots that successively build upon each other
toward the final program. To cast this into the CEGIS frame-
work, we develop two novel encodings: a version sketch to
represent any valid program snapshot during transition, and a
sequence sketch to string together multiple version sketches
and constrain them to make progress toward our final state.

4.1.1 Version sketch: Encoding program snapshots

The version sketch is a uniform and expressive encoding
that can capture any transitional program snapshots derived
from p[A]. As its name suggests, it introduces a “version vari-
able” vi at the annotation site ai ∈ A. The annotation is then
substituted with two version control branches guarded by
vi. Without loss of generality, consider ai={@mod si → ti},
a modification from si to ti. It will be transformed into if
(vi) then {ti} else {si}, or simply ite(vi, ti,si). That is,
a version sketch with vi turned on encodes a program snapshot
where annotation ai has been applied; on the other hand, a ver-
sion sketch with vi turned off represents a snapshot where the
change ai is yet to be applied. The @add and @del annotations
are handled analogously, with one of the branches control-
ling an empty statement: ite(vi, ti,noop) for adding ti and
ite(vi,noop,si) for deleting si. Across all annotation sites,
by turning version variables on or off, the resulting snapshot
seamlessly reflects any combination of applied changes.

Figure 3 shows the version sketch for acl_ecmp_flowlet,
where version variables are added to the input program as
instrumentations. From this instrumented program, FlexPlan
derives an SMT formula, where ξ represents the unchanged
components without annotations, and the i-th ite formula

represents annotation ai. Constraining the version sketch with
the safety specification would give an SMT encoding:

vsk(ξ,
k∧

i=0

ite(vi, ti,si)) ∧ φ

FlexPlan obtains SMT formulas in a similar way as existing
work [18]. φ is instrumented into the version sketch. Then,
FlexPlan converts all statements into static single assignment
form and SMT formulas. It then computes the weakest pre-
conditions based on the control flow logic.

The version sketch is expressive enough to encode any in-
termediate snapshot and constrain its safety with φ. However,
it cannot capture the resource constraint δ, because it is a
sequence property defined over a series of snapshots and their
relations. As a version sketch only represents an individual
snapshot, it cannot easily reason about end-to-end feasibility
for a snapshot sequence. By itself, it only enables an awkward
workaround—start with an empty version sketch, synthesize
a safe snapshot as its immediate next step, and iterate based
on the new snapshot. More concretely, one could ask that the
next snapshot must fill more holes than the current one, while
staying safe with respect to φ and within the current headroom
δ. This would result in a new snapshot where a subset (but
likely not all) of version variables have been turned on. This
serves as the new “initial” state for another synthesis, until
the final state has been reached. However, this results in a
difficult search process, as it can only be guided with some
greedy heuristics—e.g., maximizing the progress for each
step by filling as many holes as possible, or minimizing the
resource spike for each step while ensuring some progress. Ei-
ther way, the lack of a global view could corner the search into
a difficult or infeasible state (e.g., no more headroom), where
it must backtrack and probe again in the very large search
space—all possible permutations of change annotations, to-
gether with all possible combinations of adjacent changes in
each permutation. This greedy synthesis also cannot easily
conclude that no feasible solution exists.

4.1.2 Zooming in on resource constraints

Thus, resource constraints must be encoded explicitly to en-
able a cross-snapshot, end-to-end synthesis. Recall that δ

denotes the initial switch headroom, which is obtained by sub-
tracting the total table sizes of pold from the overall switch
memory. From there, each transition from one snapshot vsk to
the next vsk′ adds and removes some tables—thus, we must
keep track of the changes to δ and two metrics “spike” and
“release” at each transition. Consider the version variable v1 in
Figure 3, which modifies an acl table (2Mb) into a nat_acl
table (3Mb). To achieve atomicity, this is done by first adding
nat_acl in switch memory, resulting in a transient resource
spike of 3Mb, and then deleting acl and freeing 2Mb in the
same transaction. We record this as add1= 3 and del1= 2 for
turning on v1. Thus, across all vi we define the spike:

vsk′.spike = ∑
i

ite(vsk′.vi∧¬vsk.vi, addi, 0)



That is, if the transition from vsk to vsk′ has turned on vi,
then the transient resource spike increases by addi; otherwise,
if vi is not changed in this step, it does not contribute to the
spike. We can therefore define the resource release after the
transaction completes and the spike comes down:

vsk′.rel = ∑
i

ite(vsk′.vi∧¬vsk.vi, deli - addi, 0)

In our example, the net release is del1-add1 =−1. This re-
flects in the overall headroom update to δ after this step:

vsk′.headroom = vsk.headroom + vsk′.rel

The feasibility constraint can therefore be stated as
vsk.headroom ≥ vsk′.spike for any two adjacent snap-
shots, across the entire transition sequence from pold to pnew.

4.1.3 Sequence sketch: Encoding a transition plan

Based on the above resource constraint analysis, we develop a
sequence sketch encoding that enables an end-to-end CEGIS.
A sequence sketch ssk is the conjunction of t version sketches
{vsk1,vsk2, · · · ,vskt} as well as their sequential relations to
each other. vsk1 and vskt encode the initial and final pro-
grams, respectively, and other states represent the transitions.

∀i ¬vsk1.vi ; initial program pold

∀i vskt.vi ; final program pnew

∀ j (∀i vsk j−1.vi =⇒ vsk j.vi) ; progress
∀ j SpikeAndHeadroom(vsk j−1, vsk j) ; feasibility

That is, all version variables in the initial sketch are turned off,
equating it to pold ; all variables in the final sketch are turned
on, resulting in pnew. A later sketch in the sequence must
monotonically advance the version variables to make progress
toward the final state. Furthermore, each transition’s spike
must be feasible within its current headroom (Section 4.1.2).

Sequence synthesis. This encoding enables an end-to-end
CEGIS by filling the ssk holes (i.e., all v variables in all
version sketches vsk) in a way that satisfies φ for all snapshots
and δ across all adjacent snapshots. The sketch holes are
H ∈ Bk×t , a two-dimensional matrix of binary variables.

Hk×t =


vsk1.v1 vsk1.v2 · · · vsk1.vk
vsk2.v1 vsk2.v2 · · · vsk2.vk

...
...

...
...

vskt .v1 vskt .v2 · · · vskt .vk


In this matrix, k is the number of annotations, and t is the
number of transitional states; and we will synthesize all holes
in an end-to-end CEGIS, as shown in Figure 4. The proposal
phase (Lines 7-11) identifies a potentially correct program
(i.e., values in H) by solving for H that exhibits correct be-
haviors on all counterexamples collected so far (Line 9). The
verification phase strengthens the check to test against the
full specification (Lines 12-17). If no further violations are

1: function SEQUENCECEGIS(ssk, φ, δ)
2: for t = 1..k do //Iteratively increase seq length � Opt-Diag
3: ssk.H← RAND(Bk×t ) //Init w/ random H
4: ce_set← /0 //No counterexample so far
5: // Next, enter main CEGIS loop � Opt-SnapL
6: while ¬ Timeout do
7: // Proposal: Identify candidate H=h
8: ssk.H← SYMBOLIC(Xk×t )
9: {ssk.H := h}← SMTSOLVE(ssk, φ, δ, ce_set)

10: if ssk.H == /0 then // No solution exists, t++
11: break
12: // Verification: Verify H=h
13: ce← SMTVERIFY(ssk.H, φ, δ) � Opt-SnapV
14: if ce ̸= /0 then // Obtain counterexample
15: ce_set← ce_set ∪ {ce}
16: else // Verifies, solution found!
17: return ssk.H

Figure 4: The end-to-end CEGIS algorithm on the sequence
sketch. Later subsections will further develop three optimiza-
tion techniques, labeled as ‘Opt-’, to scale this analysis.

found, we have obtained a correct solution; otherwise, coun-
terexamples are added to ce_set and we continue with a
new proposal. The power of CEGIS lies in the fact that with
more counterexamples, SMT solvers learn from violations
and eliminate entire classes of proposals in the search. Notice
also that at Line 2, we iteratively deepen the search based
on the sequence sketch length, so it does not need to reason
about a larger problem instance unless absolutely necessary.

In the acl_ecmp_flowlet example (Figure 3), suppose
that we require program consistency for IPv4 and that the
current headroom is 1Mb. A correct ssk could give a two-
step transition denoted by:

H3×3 =

F F F
F T F
T T T


The first transition deletes flowlet (3Mb) for IPv6 traffic.
This causes a resource spike of 0Mb and a release of 3Mb; and
the headroom becomes 4Mb after this transaction. Next, the
second transition modifies acl (2Mb) into nat_acl (3Mb)
and adds ecmp (1Mb) for IPv4 traffic, which causes a resource
spike of 4Mb and a release of -2Mb.

4.2 Accelerating the CEGIS loop
We have now obtained a sequence CEGIS algorithm that
is guaranteed to be sound (i.e., a synthesized transition is
correct) and complete (i.e., if a correct transition exists, it will
be found); it also produces the shortest transition due to the
iterative deepening search. (More discussions in Section 4.4)
However, in terms of performance, this algorithm has a series
of scalability bottlenecks. A traditional CEGIS problem only
has to reason about SMT formulas generated from a single
program, but FlexPlan produces formulas many times larger as
they are derived from program sequences. Thus, we develop



two domain-specific optimizations to accelerate the proposal
and verification phases, respectively, based upon a divide-and-
conquer approach. Our observation is that, for specific CEGIS
steps, we can avoid reasoning about ssk directly but instead
reason about its comprising vsk instances individually. Since
SMT algorithms tend to grow exponentially with the formula
size, dividing a large instance (i.e., ssk) into many smaller
ones (i.e., vsk) and reasoning about the smaller formulas
individually is more efficient than reasoning about the larger
instance in a single shot.

Snapshot learning and generalization. We extract in-
sights from a single snapshot before entering the main CEGIS
loop (Line 5, ‘Opt-SnapL’; Figure 4). This algorithm learns
what a “bad” snapshot might look like, and then generalizes
the knowledge for the entire sequence. We observe that, if a
snapshot vsk violates the safety property φ, then no matter
where this snapshot appears in the transition sequence ssk, it
still constitute a violation. Thus, there is much to learn from
an individual vsk before we have to stitch many such snap-
shots together. Stated in another way, resource constraints
δ force us to perform end-to-end reasoning in general, but
the safety aspect of the reasoning is still decomposable to
individual snapshots.

This is achieved by operating a loop that extracts as many
unsat cores as possible (within timeout threshold) from a
single snapshot vsk, but only asserting safety properties φ

and ignoring resource concerns δ. Each iteration produces
one counterexample that witnesses a specific violation for
any snapshot in the sequence. For instance, a counterexample
might say that {v1(T), v2(T), v3(F)} violates IPv4 execution
consistency, so this snapshot should never appear anywhere
in the sequence. After producing many counterexamples, we
aggregate and feed such knowledge into the main CEGIS loop,
so that the proposal phase will not err in the same way on
the larger sequence sketches. Further, for efficiency, FlexPlan
distills counterexamples into “minimum unsatisfiable cores”
(unsat cores) [20], which is a subset of assignments to vsk.v
as the root cause. In our running example, the unsat core
{v1(T), v3(F)} articulates the essence of the violation—the
two IPv4 related blocks are not updated together. The main
CEGIS loop ingests this condensed knowledge, avoiding the
larger formulas from full-blown counterexamples.

Snapshot verification. The ‘Opt-SnapV’ optimization re-
duces the task of verifying a proposed ssk against φ into
smaller tasks of verifying each individual vsk in it. The in-
tuition still stems from the fact that φ can be reasoned per
snapshot, whereas δ is a sequential property and needs to be
synthesized end-to-end. The proposal phase (Line 9; Figure 4)
must already ensure end-to-end feasibility in its proposal; so
a subsequent verification may only fail due to violation of φ.
Thus, when verifying ssk, we check individual vsk snapshots
separately. If any snapshot produces a violation, its counterex-
ample is used in the next round of synthesis.

Figure 5 shows the pseudocode for both optimizations.

1: function SNAPSHOTLEARN(vsk, φ)
2: uc_set← /0 // Aim to learn unsat cores from vsk
3: while ¬ Timeout do
4: // Solve for a new violation by negating φ

5: {vsk.v, pkt}← SYMBOLIC(Bk, Packet)
6: {vsk.v := v, pkt := p}← SMTSOLVE(vsk, uc_set, ¬φ)
7: if {v, p} == /0 then // Exhausted all ce’s
8: return uc_set
9: else // New violation, extract unsat core

10: uc_set← uc_set ∪ EXTRACTUC(v, p, φ)
11: return uc_set
12: function SNAPSHOTVERIFY(ssk, φ) // Verify a proposed ssk.
13: ce_set← /0 // Counterexample set
14: for vsk ∈ ssk do
15: ce← SMTVERIFY(vsk, φ)
16: if ce ̸= /0 then
17: ce_set← ce_set ∪ {ce}
18: return false
19: return true // All snapshots verify!

Figure 5: The snapshot learning (Opt-SnapL) and snapshot
verification (Opt-SnapV) algorithms. Note that the snapshot
learning algorithm does not need to enumerate all counterex-
amples or unsat cores, as it serves as an optimization for the
main CEGIS loop. If the learning times out (Line 3), the
collected uc_set is still useful in the main CEGIS.

4.3 Diagnosing the synthesis
Another domain-specific property of our synthesis lies in its
diagnosability. In traditional synthesis, even if the tool strug-
gles to find a solution, it may not mean that a valid solution
does not exist—unless it has exhausted the search space. Thus,
the search in the worst-case scenario may spend a significant
amount of time only to conclude at the end with a failure. In
contrast, we observe that FlexPlan can obtain three types of
conclusive proof early in the game. This helps us to determine
whether or not a continued search will be fruitful, and enables
further optimizations. We call these techniques introspection.

Existence? A basic type of introspection is to determine
whether or not a safe transition exists at all, regardless of the
resource headroom. We observe that FlexPlan can determine
this by checking pold and pnew against the safety specification
φ. If both programs are correct, then some safe transition must
exist—the degenerate case is to make a one-step transition
{pold→pnew}, exposing no intermediate state (but potentially
causing a very large resource spike and thus may not be feasi-
ble). However, if even this check fails, FlexPlan aborts with
the conclusion that no solution exists.

Deepening the search? Once we pass this smell test, we
are faced with a harder introspection task—what should be
the upperbound of t, the length of the sequence sketch? The
algorithm in Figure 4 uses a naïve upperbound, where t it-
eratively deepens from one to k, the total number of change
annotations. It first searches through all possible t-step transi-
tions; if no such transition is both feasible and safe, it attempts



a longer transition sequence with t+1 steps. Failures are only
conclusive at t = k, where each transition only applies one
change thus no further breakdown is possible. However, this
deepening search gets significantly more expensive with every
increment to t—at each t, we need to perform a full round of
CEGIS with a sequence of t sketches. Thus, it is beneficial to
reflect on the usefulness of a larger t before we deepen the
search, potentially stopping far earlier than the naïve bound.
This introspection relies on the following property:
Introspection theorem. Assume that the switch has infinite
resources. Without resource constraints, if there does not exist
a t-step safe transition plan, then there cannot exist any safe
transition plan with more than t steps.
Proof sketch: The intuition is that, if a t-step transition exists
that satisfies φ but not δ, we can potentially make more gran-
ular changes in a longer transition sequence to stay within
δ; thus, attempting a (t +1)-step transition could be fruitful.
On the other hand, if a t-step transition that satisfies φ does
not exist to begin with, then any t ′-step transition where t ′ > t
cannot exist either. We can prove this by contradiction: if
a t ′-step transition exists, repeatedly combine any adjacent
transitions into a larger transition until it becomes a t-step
transition. This resulting transition must satisfy φ as it exposes
strictly a subset of the states in the t ′-step transition. 2

Thus, when FlexPlan concludes that no t-step transitions
exist, before it attempts a (t +1)-step CEGIS, it performs the
above introspection. The introspection may conclude that a)
some safe solution exists but b) no safe solution is feasible
under the current resource constraints. This may be disap-
pointing, but all is not lost—runtime programmable switches
make it possible to deallocate resources to make extra room
(e.g., by deleting certain tables or table entries).

Resource release? Whether to deallocate resources and
which tables to delete are up to the network operator, but
FlexPlan performs a third introspection to diagnose how much
resource release would be sufficient for a t-step transition
(where the search has stopped). This relies on an SMT opti-
mization primitive max-smt, which can maximize an objec-
tive function while solving for a solution. Recall that each step
causes a resource spike during the transition, and a headroom
change after it. We track the the minimum headroom across a
t-step transition, and ask for a solution that maximizes it:

min_headroom = min
∀ j

vsk j.headroom

δ
∗= max-smt(min_headroom) s.t. ssk ∧ φ

δ∗ will be the smallest headroom possible to maneuver a
t-step transition, and δ∗−δ is the amount of resource release
that is required to achieve a feasible update.

4.4 Remarks
We discuss several properties of the synthesis techniques.

Introspection. An important property of the introspection
algorithms is that they work with sequence sketches of the

current length of the search (i.e., t steps). Thus, they do not
lead to new scalability bottlenecks. Furthermore, the combi-
nation of the second and third introspection techniques also
enables a synthesis goal of identifying a safe transition plan
with minimized resource spikes—first determine the sequence
length upperbound for a safe transition (with the second intro-
spection), and then synthesize a transition while minimizing
resource spikes at this length (with the third introspection).

Guarantees. The completeness of the synthesis is derived
from the fact that the candidate solution space is finite and that
CEGIS will eventually finish an exhaustive search [26]. Con-
cretely, the solution space is defined by the two-dimensional
matrix Hk×t . k is the number of annotations, and therefore
finite. t is the sequence length, initially undetermined, but we
know that it is upperbounded by k, because applying one an-
notation per step will result in the longest possible sequence.
This is because we ask that each transition step makes positive
progress, so no reverts are allowed once a change has been
made. The synthesis is also sound, because FlexPlan always
verifies the correctness of a proposed candidate plan.

5 Discussions and Limitations
P4 intermediate states. Intermediate states when the data
plane is under change have been considered in the P4Runtime
standard (cf. DATAPLANEATOMICS) [6]. However, the current
standard focuses on the atomicity and intermediate states
when adding or removing a batch of table entries for existing
MA tables. Runtime table additions and removals, as a recent
development, have not yet been captured in P4Runtime. Nev-
ertheless, for table entry changes, P4Runtime describes how
atomic pointer swaps can be used for transactional changes
(when available in the target), and discusses the headroom
requirement for preparing the changes in scratch area. This
results in a similar range of considerations as recent designs
for runtime programmable switches [19, 53]. We hope that
FlexPlan will further the research in handling date plane inter-
mediate states and the standardization process in P4Runtime.
Change annotation primitives. In the spirit of target-
independence, our change annotations capture the intersection
of hardware reconfiguration primitives between FlexCore [53]
and rP4 [19]. Reconfiguration primitives that are not yet fully
supported across platforms (e.g., parser changes [19] and ta-
ble swap operations [53]) are considered out of scope for the
current paper. These are interesting avenues for future work.
Switch architectures. Recent designs of runtime pro-
grammable switches [19, 53] employ disaggregation to split
memory from compute. Thus, FlexPlan models memory
resources as a global constraint—e.g., when a table is re-
moved, the released resources can be used anywhere. How-
ever, future runtime programmable switches might adopt al-
ternative architectures—e.g., RMT switches [12] with fixed
stage boundaries would require a different model on mem-
ory reusability. Similarly, for SmartNIC targets with software
and hardware pipelines [1], atomic transactions may become



Programs LoC Tables Synthesis results Programs (α) Specification Headroom # Steps Time(s) Greedy
time(s) c.e.(u.c.)

flowlet 216 6 5.61 0(0) switch (20%) IPv4 exec. consistency 80% 2 (✓) 110.32 132.37
simple_nat 362 6 6.02 1(1) switch (20%) IPv4 exec. consistency 50% 3 (✓) 160.25 timeout

ndp 275 7 5.73 1(1) switch (20%) IPv4 exec. consistency 20% 5 (×) 318.95 timeout
beamer 448 7 6.79 2(2) switch (40%) IPv4 exec. consistency 50% 3 (✓) 197.53 timeout

vpc 272 10 6.48 2(2) switch (40%) Espec field consistency 20% 4 (✓) 263.38 timeout
sai_p4 697 14 7.18 2(2) switch (40%) L2/L3 field consistency 20% 4 (✓) 436.44 timeout

linear_road 846 24 13.48 4(4) switch+meter-stat L2/L3 field consistency 20% 2 (✓) 186.24 552.82
nethcf 822 30 14.71 6(6) switch+meter-stat IPv4 exec. consistency 20% 2 (×) 93.90 105.51

netcache 1845 96 37.59 14(14) switch+ipv4-ipv6 L2/L3 field consistency 20% 2 (✓) 249.99 749.78
switch 5599 120 199.43 27(24) switch+ipv4-ipv6 IPv4 exec. consistency 20% 2 (✓) 102.35 124.46

Table 2: FlexPlan scales to real-world programs. The left-hand side uses a range of popular programs, ranked by the number of
MA tables they contain. It uses an update ratio of 20% with 50% resource headroom. The right-hand side focuses on case studies
with switch.p4, including synthetic and realistic changes. For each change, we denote resource peak needed to atomically update
the entire program in a single step as S, and set the headroom to β×S (β = 20%,50%,80%). The greedy synthesis times out in 5
out of 10 cases, and it is much slower than FlexPlan for the rest of the cases.

harder due to the need to synchronize across pipelines. Thus,
as alternative architectures become available in the future,
FlexPlan may need to incorporate a new set of constraints.
Safety properties. The FlexPlan consistency specifications
capture safety (but not liveness) properties that are defined
over multiple program executions, or k-safety hyperproper-
ties [15,49]—specifically, 3-safety, as FlexPlan reasons about
the old, new, and current snapshots. Among safety properties,
it does not analyze stateful packet processing, where program
behaviors may mutate based on the input packets [30]. Fur-
ther, FlexPlan only reasons about a single network device, so
extending it for network-wide updates is future work.
Resource utilization. FlexPlan considers switch memory con-
straints as the main bottleneck resource. In a P4 program, each
MA table has a ‘size’ field that specifies the maximum num-
ber of entries it could contain. This provides coarse-grained
information as input to FlexPlan. However, the number of
entries in a table is not the same as physical memory con-
sumption, which further depends on the match types and their
target-specific implementation (e.g., TCAM vs. SRAM). To
obtain exact information, FlexPlan would need the compiler
to produce such data for the old and new programs. Modeling
other types of resource constraints is left to future work.
Synthesis delay. Requiring each runtime update to go through
a formal synthesis phase will incur delay to the change. As we
will show, the latency is a few minutes across our evaluation.
We believe that reliability gains outweigh the resulting delay.

6 Evaluation
Prototype. We have built FlexPlan in ∼5000 lines of code
(available at [2]). Our prototype consists of two components:
(1) a frontend translator building upon an existing tool [18],
which takes in the annotated P4 program and the specifica-
tion, and converts them into an instrumented sequence sketch
and SMT formulas; and (2) the main CEGIS backend which
searches for a transition and performs introspection whenever
needed. We use Z3 [8] as the SMT solver.
Methodology. Our program corpus is based upon popular

programmable switch applications, representing use cases in
monitoring, security, offloading—similar as recent P4 verifica-
tion projects [18, 38, 50]. It contains real-world P4 programs,
with sizes ranging from 200+ to 5000+ LoC. Further, FlexPlan
uses two methods to generate program changes. Synthetic
changes are generated using a similar strategy as existing
work [53], which controls the number of changes with a pa-
rameter α. If a program has M tables, an update ratio α will
generate M×α table additions, deletions, or modifications. To
test realistic changes, we use switch.p4 as the basis to perform
manual modifications based on its control block boundaries
(e.g., remove or add back the egress statistics control block
process_egress_bd_stats()), mimicking feature changes
in realistic deployments. To analyze headroom, we assume
that each table has the same size, denoted as U.
Evaluation objectives. Our evaluation primarily focuses on
various dimensions of scalability: (1) How well does FlexPlan
scale to real-world programs and sizable changes? (2) How
well do the granular consistency levels work? and (3) How
effective are the FlexPlan optimization and introspection tech-
niques? We note that existing P4 verification projects [18, 38]
analyze the correctness of single program snapshots, so they
are not suitable as baseline solutions for comparison. Thus, we
have created several FlexPlan variants as baseline solutions,
where specific optimization techniques are disabled.

6.1 Macrobenchmarks
We start with the macrobenchmarks summarized in Table 2.

Scalability. The first macrobenchmark (left four columns)
tests the scalability of FlexPlan with popular switch programs.
We use “L2/L3 field consistency” (i.e., intermediate snapshots
should preserve the same L2/L3 processing outcome) with a
fixed update ratio of 20%. Further, we set the headroom to
50% of what would be required for the most straightforward
plan that updates the entire program in a single step, which in
turn would lead to the highest possible resource peak. There
are two high-level takeaways. First, as the program size in-
creases from 200+ to 5000+ LoC, synthesis time also grows



significantly, as larger programs produce bigger SMT formu-
las. However, even for the largest program, FlexPlan was able
to finish within 3.4 minutes. Second, the number of learned
counterexamples (‘ce’) also grows with the program size, and
FlexPlan effectively learned from a relatively few number of
counterexamples (varying from 0 for the smallest programs
to 27 for the largest) before finding a correct transition. We
further break it down by showing the number of counterex-
amples learned from a single snapshot (i.e., in the process
of enumerating unsat cores with SnapL, labeled as ‘uc’). Ex-
cept for switch.p4, FlexPlan enumerated all unsat cores in the
SnapL phase, so the main CEGIS loop identified a correct
solution in the first attempt. For switch.p4, FlexPlan performs
3 CEGIS iterations in the main loop to identify the transition.

Synthesized switch.p4 changes. The second macrobench-
mark (right-hand side) zooms in on modifications to
switch.p4, a datacenter switch implementation. We first test
six synthesized changes with different control parameters—
resource headrooms (rows 1-3), update ratios (rows 2+4),
specification types (rows 5-6)—and examine their influence
on the transition sequence lengths and synthesis time. As we
can see, more severe headroom constraints lead to longer syn-
thesis time (rows 1-3). FlexPlan had to try longer transition
sequences to find a solution or conclude that no solution exists
(shown as ×). Larger update ratios also lead to longer synthe-
sis time (e.g., 23% increase when changing from α = 20% to
α = 40% in rows 2 and 4). Moreover, the specification type
also has a direct influence on synthesis. Field consistency on
egress_spec is easier to check compared to L2/L3 header
checks. FlexPlan took 1.8-7.3 minutes across all cases.

Hand-crafted switch.p4 changes. Next, we analyze a set
of hand-crafted changes to switch.p4, by adding, removing, or
modifying well-defined control blocks. We also vary the spec-
ifications across data points. The switch+meter-stat case
removes all statistics tables (5 tables overall) in switch.p4,
and adds in meter related tables (4 tables). For L2/L3 field
consistency, FlexPlan identifies an update plan with 2 transi-
tions. A closer look at the update plan shows that FlexPlan
first removes all statistics tables, then adds meter tables—this
is possible because statistics tables do not manipulate L2/L3
packet headers. On the other hand, IPv4 execution consistency
fails to generate a update plan because most of the modified
tables share some execution paths, which means they must
be updated together. The required headroom goes beyond the
available resources (20%). The switch+ipv4-ipv6 update
removes IPv6 processing tables (10 tables in total) and adds
IPv4 processing tables (8 tables). IPv4 execution consistency,
on the other hand, could find a update plan with 20% head-
room. This is because IPv4 and IPv6 tables can be updated
separately as they do not share execution paths. All experi-
ments with realistic changes finished within 4.2 minutes.

FlexPlan vs. greedy synthesis. We also test the greedy
synthesis algorithm (Section 4.1.1), which either maximizes
progress (‘Greedy MinSeq’) or minimizes resource spikes

7UDQVLWLRQ�VWHSV

5
HV
RX
UF
H�
XV
DJ
H

�

�

��

��

� � � � �� �� �� ��

*UHHG\�0LQ6SLNH�� )OH[3ODQ�0LQ6SLNH��
*UHHG\�0LQ6HT�� )OH[3ODQ�0LQ6HT��

-5

10

5

0

R
es
ou
rc
e
In
cr
ea
se
(U
)

Figure 6: A NetCache case study showing step-by-step transi-
tions and the headroom changes. The greedy synthesis pro-
duces suboptimal transitions whtn it is able to finish; it times
out under more severe resource constraints.

(‘Greedy MinSpike’) for each step locally. As Table 2 shows,
it times out after 30 minutes for five out of ten cases. When it is
able to produce a transition, it only finds suboptimal solutions.
Figure 6 visualizes a case study on NetCache, where greedily
maximizing per-step progress results in a transition in seven
steps with 80% headroom, whereas FlexPlan produces a much
shorter transition in four steps (‘FlexPlan MinSeq’). Similarly,
FlexPlan when minimizing resource usage (cf. Section 4.4)
leads to much lower peak usage than greedily minimizing
resource spikes per step. This demonstrates the benefits of the
sequence sketch encoding for end-to-end synthesis.

6.2 Consistency levels vs. headroom
Next, we show that the granular consistency specifications
in FlexPlan can lead to lower resource requirements when
rolling out an update. We use “program consistency” and
“execution consistency” as baselines, which are the strongest
and weakest guarantees developed in existing work, respec-
tively [53]. We chose three large switch programs (NetHCF,
NetCache, switch.p4), and generated 50 changes with α rang-
ing from 5% to 40%. For each change, we ask FlexPlan to
find the transition sequence that minimizes the peak resource
usage under each specification. We then averaged across all
changes with the same α and show the results in Figure 7.

Our first takeaway is the inflexibility of heuristic-based def-
initions in FlexCore [53]. Although “execution consistency”
is a weaker requirement than “program consistency,” it un-
fortunately does not reduce the resource peak by much and
the two corresponding curves are closely coupled together
(i.e., ‘FC-Prog’ vs. ‘FC-Exec’). It can reduce the resource
peaks for specific cases, but aggregating over all cases the
reduction is only 5%. We found that this is highly correlated
to the program shapes and where the changes are made. A
common root cause can be attributed to the bottleneck table
problem. If a change modifies some tables that are shared
by many or all execution paths, then it forces all changes to
be made in the same step, equating “execution consistency”
to “program consistency.” Since FlexCore [53] only relies
on “reachability” information at table level and does not ana-



 0

 5

 10

 15

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

Re
so

ur
ce

 in
cr

ea
se

 (U
)

Update ratio

FC-Prog
FC-Exec

FP-Exec
FP-Field

(a) NetHCF.p4

 0
 5

 10
 15
 20
 25
 30
 35

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

Re
so

ur
ce

 in
cr

ea
se

 (U
)

Update ratio

FC-Prog
FC-Exec

FP-Exec
FP-Field

(b) NetCache.p4

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

Re
so

ur
ce

 in
cr

ea
se

 (U
)

Update ratio

FC-Prog
FC-Exec

FP-Exec
FP-Field

(c) Switch.p4

Figure 7: The granular consistency specifications in FlexPlan can effectively reduce peak resource usage. FC-Prog and FC-Exec
represent program consistency and execution consistency properties as defined in FlexCore [53], which only analyzes reachability
across tables without considering program semantics. FP-Exec refines execution consistency to consider specific traffic classes in
FlexPlan. FP-Field is a new consistency definition in FlexPlan that constrains the processing outcomes of specific header fields.

 0
 20
 40
 60
 80

 100
 120

0.20 0.30 0.40

C
om

pl
et

io
n 

tim
e 

(s
ec

)

Update ratio

ver. syn. u.c.

(a) NetHCF.p4

 0
 50

 100
 150
 200
 250
 300
 350
 400

0.20 0.30 0.40

C
om

pl
et

io
n 

tim
e 

(s
ec

)

Update ratio

ver. syn. u.c.

(b) NetCache.p4

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

0.20 0.30 0.40

C
om

pl
et

io
n 

tim
e 

(s
ec

)

Update ratio

ver. syn. u.c.

(c) Switch.p4

Figure 8: The snapshot-based optimizations are effective. Each group of bars plots the turnaround times, from left to right, for
FlexPlan, NoSnapV (no snapshot verification), NoSnapL (no shapshot learning), and NoSnapVL (disabling both optimizations),
respectively. On switch.p4, both techniques are necessary for sizable changes; otherwise the analysis will time out after 30
minutes. We further break down each bar by the time the solution spends in verification, synthesis, and unsat core extraction.

lyze program semantics, it cannot distinguish whether or not
a change actually affects a particular traffic class, conflating
the two guarantees whenever bottleneck tables are modified.

In contrast, the granular consistency levels in FlexPlan are
effective in reducing the peak resource usage by capturing
program semantics. First, FlexPlan refines “execution con-
sistency” even further by defining it over traffic classes of
interest. Specifically, we have tested three variants of “ex-
ecution consistency” defined over traffic classes (shown as
‘FP-Exec’). For switch.p4, we specify it only for IPv4 traf-
fic without tunneling; for NetCache, only for read requests
to the cache data structure; and for NetHCF, only packets
that establish TCP sessions. Thus, if a table change does
not affect how these traffic classes are processed—even at a
bottleneck table—FlexPlan is still able to produce granular
transitions with lower peak resource usage. The reductions for
NetHCF, NetCache, and switch.p4 are 47%, 64%, and 45%,
respectively, compared to the fixed execution consistency in
FlexCore. Further, we have also tested “field consistency,” to
showcase FlexPlan’s ability to define new consistency lev-
els beyond tuning traffic classes (shown as ‘FP-Field’). This
states that L2/L3 headers and standard metadata must be pro-
cessed with the same outcome during transition. This leads to
even lower peak usage: the reduction is 46%, 67%, and 68%,
respectively, compared to the granular execution consistency
levels above. This is because it allows a mix of old and new

tables to co-exist on execution paths, as long as this does not
change the processing behaviors for specific header fields.

6.3 Snapshot learning and verification
Next, we evaluate the effectiveness of the snapshot learning
(SnapL) and verification (SnapV) optimizations. We create
three baseline solutions from FlexPlan where one or both opti-
mizations are turned off: NoSnapV, NoSnapL, and NoSnapVL.
Figure 8 compares the four solutions with different update
ratios and programs. Across all data points, FlexPlan outper-
forms NoSnapVL in terms of completion time by 70% on
average, demonstrating the effectiveness of the two snapshot-
based optimizations. On switch.p4, the NoSnapVL baseline
times out when α > 20%. Further decomposition shows that
the SnapL and SnapV optimizations lead to 58% and 37%
improvements on average, respectively.

Both SnapL and SnapV are more effective with larger pro-
grams (which lead to larger SMT formulas per snapshot) and
higher update ratios (which lead to a larger update plan search
space). For instance, at α = 40%, SnapL reduces the comple-
tion time by up to 81% for NetCache. With smaller update
ratios, the number of possible update sequences is already
small, so the time spent in learning unsat cores with SnapL
does not afford as much improvement. The trend for SnapV is
similar. For smaller formulas (e.g., NetHCF and NetCache),
it is possible for FlexPlan to iterate through all unsat cores,



 0

 50

 100

 150

 200

 2  4  6  8  10  12  14
 0
 1
 2
 3
 4
 5
 6
 7
 8

C
om

pl
et

io
n 

tim
e 

(s
)

Re
so

ur
ce

 in
cr

ea
se

 (U
)

Sequence Length

Time Resource

(a) NetHCF.p4

 0
 200
 400
 600
 800

 1000
 1200

 5  10  15  20
 0

 2

 4

 6

 8

 10

C
om

pl
et

io
n 

tim
e 

(s
)

Re
so

ur
ce

 in
cr

ea
se

 (U
)

Sequence Length

Time Resource

(b) NetCache.p4

 0

 500

 1000

 1500

 2000

 5  10  15  20
 0
 2
 4
 6
 8
 10
 12
 14

C
om

pl
et

io
n 

tim
e 

(s
)

Re
so

ur
ce

 in
cr

ea
se

 (U
)

Sequence Length

Time Resource

(c) Switch.P4

Figure 9: The FlexPlan introspection technique is effective in determining whether the synthesis should continue to try longer
sequences. The vertical lines denote the stopping points for FlexPlan, which significantly outperforms a solution with introspection
turned off, which naïvely increases the sequence length beyond the vertical lines until the maximal upper bound or timeout.

so the main CEGIS phase could bypass the verification com-
pletely since the first proposal attempt will identify a correct
plan. Its impact is stronger on larger programs like switch.p4.

6.4 Introspection and diagnosis

We now evaluate the three CEGIS introspection techniques.
Existence. We first generate a set of program modifications

that are guaranteed to violate the safety specification. For
instance, if the specification requires that egress_spec pro-
cessing outcomes should be preserved, we ensure that it is
modified in a different way. For all cases, FlexPlan correctly
rejects the annotated change as unsafe within 90 seconds.

Sequence length. Figure 9 evaluates the FlexPlan intro-
spection for determining whether to attempt a longer sequence.
We create cases where the resource constraints will guarantee
an eventual failure, and test how soon FlexPlan can detect this
inevitability. We also compare against a version of FlexPlan
without this introspection. For NetHCF (α=40%), NetCache
(α=20%), and switch.p4 (α=20%), FlexPlan concludes that
the synthesis will fail when the sequence lengths are six, five,
and five, respectively, within several minutes. However, the
solution without introspection will keep increasing the se-
quence lengths (and running time) until the maximal upper
bound (i.e., the total number of changes) or timeout, with-
out being able to decrease resource usage further. It took 3×
and 12× more time to conclude that the resources are insuffi-
cient for NetHCF and NetCache, respectively; for switch.p4,
it times out before producing any useful results. Thus, the
introspection technique helps determine failures efficiently.

Resource release. After each failure, we further ask Flex-
Plan to produce diagnostic results on the least amount of
resource release that will enable a safe and feasible transition.
This is achieved by introspecting the sequence upper bound
for a safe transition, and then solving for a transition with
minimized resource peak. This diagnosis took less than ten
minutes across all update ratios and programs—the longer
completion time is due to the need for trying the longest
possible safe transition. We then emulated the release by in-
creasing the switch headroom by the suggested amount, and
re-attempted another synthesis and verified that it succeeded.

7 Related Work
Runtime programmability. Network switches have become
programmable at runtime [3, 4, 9, 19, 52, 53], where switch
programs can be modified with partial reconfiguration without
downtime. Runtime programmability has also been studied in
host networking [40,42]. FlexPlan develops a formal approach
to synthesizing runtime programmable switch updates.
Safe network updates. Ensuring the safety of network up-
dates [34, 43] is a key goal in cloud datacenters [37]. In
the context of OpenFlow-based SDN, consistent update al-
gorithms have been extensively studied [21, 44, 45]. Flex-
Plan considers an analogous problem for programmable data
planes, with new definitions on correctness and intermediate
states, and uses program synthesis to achieve this goal.
Synthesis and verification. Program synthesis has found
many applications in the networking domain [13, 22, 59],
including for identifying safe configuration updates in Open-
Flow SDN [39]. For programmable switches, existing projects
have developed many formal verification techniques for P4
programs [18,38,50,51,61]. Compared to these lines of work,
FlexPlan aims at synthesizing a correct-by-construction up-
date sequence, which in turn requires new techniques.

8 Conclusion
Programmable networks enable the development of new fea-
tures “in the field,” without relying on slow-paced vendors. To
safeguard network behaviors, formal verification has proven
essential. Runtime programmable networks [57], in contrast,
emphasize that the deployment of these features must also be
seamless and “in the field”—without requiring slow-paced
maintenance operations. However, live program modifications
necessitate new techniques for providing formal assurance.
FlexPlan is a synthesis tool that can identify a safe and feasi-
ble program transition sequence automatically. It introduces
domain-specific techniques for synthesizing switch program
updates. With comprehensive evaluation, we demonstrate the
scalability of FlexPlan on real-world programs.
Acknowledgments: We thank our shepherd Muhammad
Shahbaz and all reviewers, as well as Jiarong Xing and Kuo-
Feng Hsu for their insightful comments and suggestions. This
work was supported by NSF in part by CNS-2214272.



References
[1] BlueField SmartNIC Ethernet. https://www.mellanox.com

/products/BlueField-SmartNIC-Ethernet.

[2] FlexPlan code repository. https://github.com/824728350
/FlexPlan.

[3] Jericho2. https://www.broadcom.com/products/ethern
et-connectivity/switching/stratadnx/bcm88850.

[4] The NPL network programming language. https://github
.com/nplang.

[5] Nvidia/Mellanox Spectrum Ethernet Switches. https://www.
nvidia.com/en-us/networking/ethernet-switching
/spectrum-sn4000/.

[6] P4 Runtime Specification: Atomicity, Batch and Ordering of
Updates: DataPlaneAtomic. https://p4.org/p4-spec/p4r
untime/main/P4Runtime-Spec.html#sec-batching-an
d-ordering-of-updates.

[7] P4 Specification: Annotations. https://p4.org/p4-spec
/docs/P4-16-v1.0.0-spec.html#sec-annotations.

[8] The Z3 Theorem Prover. https://github.com/Z3Prover/
z3.

[9] Trident4 boosts enterprise switch capacity to 12.8 terabit. ht
tp://www.gazettabyte.com/home/2019/7/11/trident
-4-boosts-enterprise-switch-capacity-to-128-te
rabit.html.

[10] Wedge 100bf-32x 100gbe data center switch. https://www.
edge-core.com/productsInfo.php?cls=1&cls2=180&c
ls3=181&id=335.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rex-
ford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and
D. Walker. P4: Programming protocol-independent packet
processors. ACM SIGCOMM CCR, 44(3), 2014.

[12] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz. Forwarding metamor-
phosis: Fast programmable match-action processing in hard-
ware for SDN. ACM SIGCOMM Computer Communication
Review, 43(4):99–110, 2013.

[13] E. H. Campbell, W. T. Hallahan, P. Srikumar, C. Cascone,
J. Liu, V. Ramamurthy, H. Hojjat, R. Piskac, R. Soulé, and
N. Foster. Avenir: Managing data plane diversity with control
plane synthesis. In Proc. NSDI, 2021.

[14] S. Chole, A. Fingerhut, S. Ma, A. Sivaraman, S. Var-
gaftik, A. Berger, G. Mendelson, M. Alizadeh, S.-T. Chuang,
I. Keslassy, et al. dRMT: Disaggregated programmable switch-
ing. In Proc. SIGCOMM, 2017.

[15] M. R. Clarkson and F. B. Schneider. Hyperprop-
erties. Cornell University Tech. Report, 2009.
https://hdl.handle.net/1813/11660.

[16] M. Dalton, D. Schultz, J. Adriaens, A. Arefin, A. Gupta,
B. Fahs, D. Rubinstein, E. C. Zermeno, E. Rubow, J. A. Do-
cauer, et al. Andromeda: Performance, isolation, and velocity
at scale in cloud network virtualization. In Proc. NSDI, 2018.

[17] C. David and D. Kroening. Program synthesis: challenges and
opportunities. Philosophical Transactions A: Mathematical,
Physical and Engineering Sciences, 2017.

[18] D. Dumitrescu, R. Stoenescu, L. Negreanu, and C. Raiciu. bf4:
Towards bug-free P4 programs. In Proc. SIGCOMM, 2020.

[19] Y. Feng, Z. Chen, H. Song, W. Xu, J. Li, Z. Zhang, T. Yun,
Y. Wan, and B. Liu. Enabling in-situ programmability in net-
work data plane: From architecture to language. In Proc. NSDI,
2022.

[20] Y. Feng, R. Martins, O. Bastani, and I. Dillig. Program synthe-
sis using conflict-driven learning. In Proc. PLDI, 2018.

[21] K.-T. Foerster, S. Schmid, and S. Vissicchio. Survey of consis-
tent software-defined network updates. IEEE Communications
Surveys Tutorials, 21(2):1435–1461, 2019.

[22] X. Gao, T. Kim, M. D. Wong, D. Raghunathan, A. K. Varma,
P. G. Kannan, A. Sivaraman, S. Narayana, and A. Gupta.
Switch code generation using program synthesis. In Proc.
SIGCOMM, 2020.

[23] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat.
Evolve or die: High-availability design principles drawn from
Google’s network infrastructure. In Proc. SIGCOMM, 2016.

[24] A. Gupta, R. Harrison, M. Canini, N. Feamster, J. Rexford,
and W. Willinger. Sonata: Query-driven streaming network
telemetry. In Proc. SIGCOMM, 2018.

[25] K.-F. Hsu, R. Beckett, A. Chen, J. Rexford, P. Tammana, and
D. Walker. Contra: A programmable system for performance-
aware routing. In Proc. NSDI, 2020.

[26] S. Jha and S. A. Seshia. Are there good mistakes? A theoretical
analysis of CEGIS. In Proc. SYNT, 2014.

[27] X. Jin, X. Li, H. Zhang, N. Foster, J. Lee, R. Soule, C. Kim,
and I. Stoica. NetChain: Scale-free sub-RTT coordination. In
Proc. NSDI, 2018.

[28] X. Jin, X. Li, H. Zhang, R. Soulé, J. Lee, N. Foster, C. Kim,
and I. Stoica. NetCache: Balancing key-value stores with fast
in-network caching. In Proc. SOSP, 2017.

[29] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan,
M. Zhang, J. Rexford, and R. Wattenhofer. Dynamic schedul-
ing of network updates. In Proc. SIGCOMM, 2014.

[30] Q. Kang, J. Xing, Y. Qiu, and A. Chen. Probabilistic profiling
of stateful data planes for adversarial testing. In Proc. ASPLOS,
2021.

[31] Q. Kang, L. Xue, A. Morrison, Y. Tang, A. Chen, and X. Luo.
Programmable in-network security for context-aware BYOD
policies. In Proc. USENIX Security, 2020.

[32] N. Katta, O. Alipourfard, J. Rexford, and D. Walker. Cacheflow:
Dependency-aware rule-caching for software-defined networks.
In Proc. SOSR, 2016.

[33] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford. Hula:
Scalable load balancing using programmable data planes. In
Proc. SOSR, 2016.

[34] N. P. Katta, J. Rexford, and D. Walker. Incremental consistent
updates. In Proc. HotNets, 2013.

[35] G. Li, M. Zhang, C. Liu, X. Kong, A. Chen, G. Gu, and H. Duan.
NetHCF: Enabling line-rate and adaptive spoofed IP traffic
filtering. In Proc. ICNP, 2019.

https://www.mellanox.com/products/BlueField-SmartNIC-Ethernet
https://www.mellanox.com/products/BlueField-SmartNIC-Ethernet
https://github.com/824728350/FlexPlan
https://github.com/824728350/FlexPlan
https://www.broadcom.com/products/ethernet-connectivity/switching/stratadnx/bcm88850
https://www.broadcom.com/products/ethernet-connectivity/switching/stratadnx/bcm88850
https://github.com/nplang
https://github.com/nplang
https://www.nvidia.com/en-us/networking/ethernet-switching/spectrum-sn4000/
https://www.nvidia.com/en-us/networking/ethernet-switching/spectrum-sn4000/
https://www.nvidia.com/en-us/networking/ethernet-switching/spectrum-sn4000/
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html#sec-batching-and-ordering-of-updates
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html#sec-batching-and-ordering-of-updates
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html#sec-batching-and-ordering-of-updates
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html#sec-annotations
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html#sec-annotations
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
http://www.gazettabyte.com/home/2019/7/11/trident-4-boosts-enterprise-switch-capacity-to-128-terabit.html
http://www.gazettabyte.com/home/2019/7/11/trident-4-boosts-enterprise-switch-capacity-to-128-terabit.html
http://www.gazettabyte.com/home/2019/7/11/trident-4-boosts-enterprise-switch-capacity-to-128-terabit.html
http://www.gazettabyte.com/home/2019/7/11/trident-4-boosts-enterprise-switch-capacity-to-128-terabit.html
https://www.edge-core.com/productsInfo.php?cls=1&cls2=180&cls3=181&id=335
https://www.edge-core.com/productsInfo.php?cls=1&cls2=180&cls3=181&id=335
https://www.edge-core.com/productsInfo.php?cls=1&cls2=180&cls3=181&id=335


[36] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and
D. Maltz. zUpdate: Updating data center networks with zero
loss. In Proc. SIGCOMM, 2013.

[37] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and
D. Maltz. zUpdate: updating data center networks with zero
loss. In Proc. SIGCOMM, 2013.

[38] J. Liu, W. Hallahan, C. Schlesinger, M. Sharif, J. Lee, C. C.
Robert Soulé, Han Wang, N. McKeown, and N. Foster. p4v:
Practical verification for programmable data planes. In Proc.
SIGCOMM, 2018.

[39] J. McClurg, H. Hojjat, P. Cerny, and N. Foster. Efficient syn-
thesis of network updates. In Proc. PLDI, 2015.

[40] S. Miano, A. Sanaee, F. Risso, G. Rétvári, and G. Antichi.
Domain specific run time optimization for software data planes.
In Proc. ASPLOS, 2022.

[41] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu. Silkroad: Making
stateful layer-4 load balancing fast and cheap using switching
ASICs. In Proc. SIGCOMM, 2017.

[42] L. Molnár, G. Pongrácz, G. Enyedi, Z. L. Kis, L. Csikor,
F. Juhász, A. Kőrösi, and G. Rétvári. Dataplane specialization
for high-performance OpenFlow software switching. In Proc.
SIGCOMM, 2016.

[43] T. D. Nguyen, M. Chiesa, and M. Canini. Decentralized con-
sistent updates in SDN. In Proc. SOSR, 2017.

[44] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. In Proc. SIG-
COMM, 2012.

[45] M. Reitblatt, N. Foster, J. Rexford, and D. Walker. Consistent
updates for software-defined networks: Change you can believe
in! In Proc. HotNets, 2011.

[46] A. Solar Lezama. Program Synthesis By Sketching. PhD
thesis, EECS Department, University of California, Berkeley,
Dec 2008.

[47] A. Solar-Lezama, L. Tancau, R. Bodik, V. Saraswat, and S. Se-
shia. Combinatorial sketching for finite programs. In Proc.
ASPLOS, 2006.

[48] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M. Smith.
Scaling hardware accelerated network monitoring to concur-
rent and dynamic queries with *flow. In Proc. ATC, 2018.

[49] M. Sousa and I. Dillig. Cartesian hoare logic for verifying
k-safety properties. In Proc. PLDI, 2016.

[50] R. Stoenescu, D. Dumitrescu, M. Popovici, L. Negreanu, and
C. Raiciu. Debugging P4 programs with Vera. In Proc. SIG-
COMM, 2018.

[51] B. Tian, J. Gao, M. Liu, E. Zhai, Y. Chen, Y. Zhou, L. Dai,
F. Yan, M. Ma, M. Tang, J. Lu, X. Wei, H. H. Liu, M. Zhang,
C. Tian, and M. Yu. Aquila: A practical usable verification
system for production-scale programmable data planes. In
Proc. SIGCOMM, 2021.

[52] T. Wang, X. Yang, G. Antichi, A. Sivaraman, and A. Panda. Iso-
lation mechanisms for high-speed packet-processing pipelines.
In Proc. NSDI, 2022.

[53] J. Xing, K.-F. Hsu, M. Kadosh, A. Lo, Y. Piasetzky, A. Krish-
namurthy, and A. Chen. Runtime programmable switches. In
Proc. NSDI, 2022.

[54] J. Xing, K.-F. Hsu, Y. Qiu, Z. Yang, H. Liu, and A. Chen.
Bedrock: Programmable network support for secure RDMA
systems. In Proc. USENIX Security, 2022.

[55] J. Xing, Q. Kang, and A. Chen. Netwarden: Mitigating net-
work covert channels while preserving performance. In Proc.
USENIX Security, 2020.

[56] J. Xing, A. Morrison, and A. Chen. NetWarden: Mitigating
network covert channels without performance loss. In Proc.
HotCloud, 2019.

[57] J. Xing, Y. Qiu, K.-F. Hsu, H. Liu, M. Kadosh, A. Lo, A. Akella,
T. Anderson, A. Krishnamurthy, T. S. E. Ng, and A. Chen. A
vision for runtime programmable networks. In Proc. HotNets,
2021.

[58] J. Xing, W. Wu, and A. Chen. Ripple: A programmable, de-
centralized link-flooding defense against adaptive adversaries.
In Proc. USENIX Security, 2021.

[59] Q. Xu, M. D. Wong, T. Wagle, S. Narayana, and A. Sivaraman.
Synthesizing safe and efficient kernel extensions for packet
processing. In Proc. SIGCOMM, 2021.

[60] L. Yu, J. Sonchack, and V. Liu. Mantis: Reactive programmable
switches. In Proc. SIGCOMM, 2020.

[61] N. Zheng, M. Liu, E. Zhai, H. H. Liu, Y. Li, K. Yang, X. Liu,
and X. Jin. Meissa: scalable network testing for programmable
data planes. In Proc. SIGCOMM, 2022.

9 Appendix
This appendix includes more details on the safety specifica-
tions as summarized in Table 1 in the main paper.

9.1 Specifications
S4: Element consistency for ACL. This specification is similar
as program consistency, but only constrains traffic that goes
through a particular ACL table. For all packets that have been
processed by the ACL table, their execution paths must be of
the same version (i.e., either old or new).

1 specification {
2 ghost bit<1> sawOld = false;
3 ghost bit<1> sawNew = false;
4 ghost bit<1> acl_hit = false;
5 @old => { sawOld = true; }
6 @new => { sawNew = true; }
7 @hit('acl') => { acl_hit = true; }
8 all_old = {
9 $cur.in.acl_hit => !$cur.eg.sawNew;

10 }
11 all_new = {
12 $cur.in.acl_hit => !$cur.eg.sawOld;
13 }
14 assert all_old || all_new;
15 }

S5: Table consistency for ECMP. We introduce a new
consistency definition that is not available from existing



work [53], which we call “table consistency.” It states that for
each packet, the table (in this case ECMP) hit/miss behavior
in the intermediate state should be either the same with the
old or the new processing logic.

1 specification {
2 ghost bit<1> ecmp_hit = false;
3 @hit('ecmp') => { ecmp_hit = true; }
4 // preserve processing behavior across states
5 table_consistency_ecmp = {
6 $cur.in == $old.in == $new.in =>
7 ($cur.eg.ecmp_hit == $new.eg.ecmp_hit ||
8 $cur.eg.ecmp_hit == $old.eg.ecmp_hit);
9 }

10 assert table_consistency_ecmp;
11 }

Although FlexPlan’s primary focus is consistency guaran-
tees during the program transition, its specification language
can naturally support general program correctness properties
that are used in P4 program verification [18, 38]. We show-
case two of them below. At a high level, general program
correctness properties are expressed by constraining a single
snapshot using $cur, without referring to $old or $new.

S6: VLAN table access. Packets should go through VLAN
table during any intermediate state.

1 specification {
2 ghost bit<1> vlan_hit = false;
3 @hit('vlan') => { vlan_hit = true; }
4 table_access_vlan = {
5 $cur.eg.vlan_hit == true;
6 }
7 assert table_access_vlan;
8 }

S7: Modification on ipv4.ttl. Any intermediate program
snapshot should always decrement the ipv4.ttl header by one
when the packet leaves the egress.

1 specification {
2 decrement_ipv4_ttl = {
3 $cur.eg.ipv4.ttl == $cur.in.ipv4.ttl - 1;
4 }
5 assert decrement_ipv4_ttl;
6 }

9.2 Instrumentations
Figure 10 includes an illustrative example that shows how a
specification is translated into instrumentations in the input P4
program. This uses our running example acl_flowlet_ecmp,
building upon the version sketch in Figure 3 and adding the
instrumentations from the specification S1.

As we can see, the sawOld, sawNew and acl_hit variables
are directly inserted into source program. We then add in-
strumentation that checks whether there exists a packet that
violates the execution consistency after going through exe-
cution path. We then compute the weakest preconditions for

1 control ingress {
2 apply {
3 ghost_ipv4_valid = ipv4.isValid();
4 /* annotation site 1: acl->nat_acl */
5 if(ipv4.isValid()) {
6 if (! vsk.v1) { // @mod
7 acl.apply(); ghost_saw_old = 1;
8 ghost_acl_hit = 1;
9 } else {

10 nat_acl.apply(); ghost_saw_new = 1;
11 ghost_acl_hit = 1;
12 }
13 }
14 /* annotation site 2: delete flowlet */
15 if(! vsk.v2) { // @del
16 if (ipv6.isValid())
17 flowlet.apply(); ghost_saw_old = 1;
18 }
19 /* annotation site 3: add ecmp */
20 if(vsk.v3) { // @add
21 ecmp.apply(); ghost_saw_new = 1;
22 }
23 if (ghost_ipv4_valid && ghost_acl_hit) {
24 if (ghost_saw_old && ghost_saw_new){
25 violation();
26 }
27 }
28 }
29 }

Figure 10: Instrumenting the version sketch in Figure 3 with
safety specification, and also adding statements that check the
safety properties.

the reachability of the violation nodes. This is achieved by
iterating through CFG nodes and propagating stronger con-
ditions to all their neighbors based on the transition relation.
We then check whether the predicate is valid using the Z3
theorem prover. In the example, the combined program and
safety formula to check would be derived as:

gso = (ipv4.isValid∧¬vsk.v1)∨ (¬vsk.v2∧ ipv6.isValid)
gsn = (ipv4.isValid∧vsk.v1)∨vsk.v3
gah = ipv4.isValid

check = ¬(ipv4.isValid∧gah∧gso∧gsn)

where gso represents the logical formula for when
ghost_saw_old is assigned true, and similarly for gsn as
ghost_saw_new and gah for ghost_acl_hit. The logical
variable gso, for example, captures the path conditions re-
quired to set the ghost variable to true as well as any interme-
diate assignments on the path to variables that might affect
these path conditions/branches.


	Introduction
	Motivation
	Runtime programmable switch updates
	A motivating example
	Computing a safe and feasible transition
	FlexPlan: A program synthesis perspective

	Specifying Safe Updates
	Update Plan Synthesis
	Synthesizing a program sequence
	Version sketch: Encoding program snapshots
	Zooming in on resource constraints
	Sequence sketch: Encoding a transition plan

	Accelerating the CEGIS loop
	Diagnosing the synthesis
	Remarks

	Discussions and Limitations
	Evaluation
	Macrobenchmarks
	Consistency levels vs. headroom
	Snapshot learning and verification
	Introspection and diagnosis

	Related Work
	Conclusion
	Appendix
	Specifications
	Instrumentations


