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Abstract

Remote direct memory access (RDMA) has gained popularity

in cloud datacenters. In RDMA, clients bypass server CPUs

and directly read/write remote memory. Recent findings have

highlighted a host of vulnerabilities with RDMA, which give

rise to attacks such as packet injection, denial of service, and

side channel leakage, but RDMA defenses are still lagging

behind. As the RDMA datapath bypasses CPU-based soft-

ware processing, traditional defenses cannot be easily inserted

without incurring performance penalty. Bedrock develops a

security foundation for RDMA inside the network, leverag-

ing programmable data planes in modern network hardware.

It designs a range of defense primitives, including source

authentication, access control, as well as monitoring and log-

ging, to address RDMA-based attacks. Bedrock does not incur

software overhead to the critical datapath, and delivers native

RDMA performance in data transfers. Moreover, Bedrock

operates transparently to legacy RDMA systems, without re-

quiring RNIC, OS, or RDMA library changes. We present

a comprehensive set of experiments on Bedrock and demon-

strate its effectiveness.

1 Introduction

Remote direct memory access (RDMA), a technology that

originates in high-performance computing (HPC), has gained

popularity in modern cloud datacenters [1, 2]. In RDMA

systems, servers expose a “remote memory” abstraction to

networked clients, offering high throughput and low latency.

Bypassing server CPUs, one-sided RDMA operations (e.g.,

READ and WRITE) enable remote accesses at hardware

speeds. This is achieved by the use of RDMA-enabled net-

work interface cards (RNICs), which enclose special ASICs

for translating RDMA operations to local DMA requests to

the main memory over PCIe. Only control operations like

connection setup and teardown require CPU-based software

intervention. The datapath itself is free of software bottle-

necks and enables low-latency remote memory access.

The expansion from private HPC environments to pub-

lic, multi-tenant clouds, however, has put RDMA security

under greater scrutiny. Exposing server memory to remote

clients without CPU mediation comes with a host of secu-

rity implications. Recent work has demonstrated that RDMA

systems lack secure mechanisms for authentication [46, 52];

that they have rigid access control mechanisms that are easy

to bypass [46, 49]; and that they cannot produce audit trails

Xing and Hsu contributed to this work equally.

for forensics [46, 49]. This has culminated in a systematic

study on RDMA security problems under varied threat mod-

els in ReDMArk [46]. The authors have considered varied

threat models and identified scenarios in which attackers can

inject spoofed RDMA packets, bypass access control mecha-

nisms, launch various types of denial-of-service attacks, and

leak data via side channels. Many of the vulnerabilities are

deeply rooted in the insecure RNIC hardware designs, there-

fore fundamental to today’s RDMA systems. While defense

analogues exist for traditional TCP/IP networks (e.g., against

IP spoofing or TCP injection attacks), RDMA systems present

a distinct challenge in bypassing the CPU. The key to RDMA

performance lies in the exclusion of CPU software processing.

This creates significant difficulty in using existing software-

based defenses without negating the performance benefits

afforded by RDMA.

The key research goal in this paper is to develop a suite

of defenses that are compatible with the CPU-bypassing

paradigm in RDMA systems, therefore preserving their raw

performance, but without requiring changes to RNIC hard-

ware, OS, or RDMA libraries. Bedrock secures the datapath

traffic directly inside the network, relying on advances in

networking technology that developed programmable data

planes in switches and NICs. With this technology, it be-

comes feasible to develop datapath defenses that operate at

hardware speeds. We can further programmatically insert

them underneath the RDMA layer in a transparent manner.

The Bedrock defenses consist of a set of network programs

in P4 [13, 19], a high-level language for programming net-

work devices. Bedrock provides support for many security

mechanisms that are missing or inadequate in RDMA, includ-

ing source authentication, access control, as well as monitor-

ing and logging, which further serve as building blocks for

mitigating myriad attacks. Operating in network hardware,

Bedrock only incurs CPU processing for RDMA setup op-

erations, where software processing is already involved and

inevitable. In addition, these extra setup operations are also

achieved without OS or RDMA library changes via the eBPF

framework [4].

In TCP/IP networks, researchers have used programmable

switches for various security applications [23, 34, 41, 58, 63,

64], but compared to these work Bedrock represents a de-

parture in several dimensions. It focuses on RDMA security

instead of traditional TCP/IP, it develops a suite of protections

under varied threat models, and its conceptual novelty is to

demonstrate that we can develop a secure network foundation

underneath the RDMA layer while maintaining transparency



to legacy systems. This design principle makes Bedrock easier

to adopt, and it also points to a path for seamlessly integrating

new RDMA defenses if more attacks should be discovered in

the future: by programming them into the network.

Concretely, the Bedrock defense primitives enable source

authentication, access control, and monitoring and logging in

cloud datacenters. The individual defenses in Bedrock draw

parallels from defenses in TCP/IP settings, but they are archi-

tected to bypass CPUs and customized for RDMA:

• The Bedrock authentication mechanisms are inspired by

source authentication and path validation techniques for

IP networks [36–38]. But instead of relying on “clean-

slate” architectures, Bedrock is compatible to today’s net-

works. It binds RDMA endpoints to network invariants

(e.g., the datacenter topology), which in cloud settings

are outside the adversary’s control. This enables Bedrock

to recognize spoofed RDMA packets by checking these

invariants as they are processed by the network.

• The Bedrock access control refines the isolation mecha-

nisms in RDMA, such as memory regions (MRs), mem-

ory windows (MWs), and protection domains (PDs),

which not only use insecure, easily-bypassable tokens,

but also are hardwired in the RNIC. Bedrock takes a

“software-defined” approach, exposing the ACL mech-

anisms for programmability by building access control

primitives inside the switch. This also opens up opportu-

nities to customize or extend RDMA ACLs for network-

or application-specific policies.

• The Bedrock monitoring and logging mechanisms bor-

row techniques from network telemetry [29, 50], which

uses programmable switches to monitor network traces

or collect compressed TCP/IP traffic logs. In Bedrock,

the defense in effect monitors memory access patterns

inside the network, and the produced traces can detect

abnormal accesses and enable security auditing.

Combined, these techniques significantly improve the sta-

tus quo of RDMA security. The rest of this paper presents the

Bedrock design in detail, and evaluates it comprehensively us-

ing realistic setups. Our results demonstrate that Bedrock can

mitigate a range of RDMA attacks with minimal overheads.

Bedrock has been released in open source [3].

2 Motivation and Background

In this section, we provide necessary background on RDMA,

explain its security mechanisms and known attacks, ending

with an overview of Bedrock.

2.1 RDMA primer

Remote Direct Memory Access (RDMA) was proposed by

the HPC community decades ago for high-performance com-

puting, where low latency and high throughput are crucial

to application performance. Compared to TCP/IP networks,

RDMA significantly reduces software latency and CPU uti-

lization by kernel and CPU bypassing. An RDMA appli-

cation can directly issue read/write requests to the remote

server as if the memory is local. Further, these requests

are processed by the recipient without involving the CPU—

hence the name remote “direct” memory access. Under the

hood, RDMA requests are processed by special hardware en-

gines in RNICs (RDMA network interface cards) for high

performance. Given its performance advantages, RDMA

has gained wide deployment in datacenters recently in re-

sponse to the growing demands on network performance and

become foundational to many modern datacenter applica-

tions [1, 2, 24, 25, 39, 43, 48, 60–62].

RDMA API. RDMA provides two types of API calls. Two-

sided API calls, such as SEND and RECV, are similar to tra-

ditional RPC messaging as they require CPU involvement.

The sender CPU issues a SEND request with a data buffer to

the RNIC, which transmits RDMA packets to the receiver.

The recipient CPU issues RECV to its RNIC to setup re-

ceive buffers for incoming data. One-sided API calls, such as

READ, WRITE, and ATOMICS, eliminate CPU overhead at the

receiver side. Except for connection setup, clients directly ma-

nipulate remote memory without the recipient CPU’s knowl-

edge. One-sided calls deliver strong performance benefits as

they have an accelerated datapath at ASIC speeds. Figure 1(b)

depicts the workflow of one-sided memory accesses. The vul-

nerabilities discovered by the security community also center

on one-sided, CPU-bypassing RDMA calls [46,49,52,54,56].

RDMA mechanisms. In one-sided RDMA, a server ex-

poses its memory to remote clients by memory regions (MRs).

A server registers an MR with a pair of local and remote pro-

tection keys (lkey and rkey, respectively), intending only for

RDMA clients with the knowledge of the rkey to access the

corresponding MR. The communication channel is repre-

sented by two dedicated hardware queues on the sender and

receiver RNICs, comprising a queue pair (QP) identifiable

by its queue pair number (QPN) at each end. The connection

setup process involves the exchange of rkey, QPN, and MR,

all as a form of (unfortunately, insecure) credentials. RNICs

usually come with software connection managers [14] as a

library to manage connection setups. Such RDMA libraries

use unencrypted TCP channels, but applications can employ

secure protocols (e.g., HTTPs) if they choose to implement

their own setup process.

RoCEv2. A widely used implementation is “RDMA over

Converged Ethernet Version 2” (RoCEv2) [15], where RDMA

packets are carried by Ethernet frames over traditional net-

work infrastructures using UDP and IP as the carrier. Com-

pared to Infiniband (IB) in HPC networks, which requires spe-

cialized network infrastructures, RoCEv2 is backward com-

patible with the Ethernet L2 infrastructure [68]. Therefore,

RoCEv2 is the technology of choice for large-scale deploy-

ments in cloud datacenters—it is also Bedrock’s protection

target. In this setting, RNICs add and remove Ethernet head-



Read/

Write

RDMA client

Service

RNIC

RNIC

RNIC
sudo

RNIC

RDMA server

normal connection

TM1

RNIC ServiceRNIC

connect

TM2

TM3

PD

QP1, QP2, …

…

addr1

MR

rkey1

MW

MW

MW

…

MR

(b) One-sided RDMA

Eth L2 

Header

E
th

 ty
p

e

IP 

Header

P
ro

to
 #

UDP 

Header

P
o

rt # IB Payload ICRC FCS

IB BTH+ (L4 Hdr)

Base 

Transport 

Header

RDMA 

Header

QPN, PSN Memory address, rkey, DMA length

(a) The header format of RoCEv2

(d) Threat model(c) The relation between PD, MR, and MW

RNIC
TM4

inject

malicious connection

Figure 1: Remote direct memory access and its security implications. (a) A common RDMA protocol called RoCEv2. (b)

One-sided, CPU-bypassing RDMA operations. (c) Security mechanisms in RNIC hardware. (d) Threat models under which

attacks have been discovered in recent projects.

ers before interpreting RDMA semantics and completing the

memory operations via local DMA. Figure 1(a) shows the

packet format. A well-known UDP destination port is used

to indicate the use of RDMA, and the inner RDMA header

itself contains rkey, destination QPN, and the target memory

address. An RDMA packet also contains a packet sequence

number (PSN) for in-order delivery and a checksum (ICRC)

for packet integrity. All headers and payload are transmitted

in plaintext.

2.2 RDMA-native security support

RDMA has several built-in, basic security mechanisms. Re-

cent work has demonstrated that they are insufficient in shared,

multi-tenant cloud datacenters.

Authentication. Upon receiving a request, the RNIC per-

forms basic authentication in three aspects. First, the request

must target an existing server-side queue pair number (QPN)

that has been negotiated in the setup phase. Second, it must

target a valid memory region (MR) with a correct rkey. Fi-

nally, the accessed virtual memory address must be within

the destination MR. Requests that violate any of the above

constraints will be dropped by the RNIC without notifying

the receiving application. Those that pass all checks are trans-

lated into local DMA requests from the RNIC, via the PCIe

interconnect, to the main memory.

Authorization. RDMA supports three insecure and fixed-

function access control mechanisms: protection domains,

memory regions, and memory windows. As Figure 1(c) shows,

a protection domain (PD) contains a group of queue pairs that

have the same access control privileges for the same set of

memory regions. A memory region (MR) is further associated

with virtual memory boundaries and access control privileges

(e.g., read-only vs. read-write). A memory window (MW) is

akin to a fine-grained protection domain with only one queue

pair. These mechanisms are insecure and easily bypassed

if the attacker presents the correct rkeys and QPNs. Also,

RDMA ACL mechanisms pose integration issues with other

forms of cloud ACLs, as they are baked into hardware and

CPU intervention is hard to come by [30]. Elsewhere in the

cloud, non-RDMA, software-based access control systems

are easily reprogrammable to incorporate alternative ACL

policies.

Integrity. RDMA packets are unencrypted, and only use

two naïve mechanisms for integrity. A 32-bit ICRC checksum

is included for each packet, which is inherited from the Infini-

band (IB) standard from HPC settings. When RDMA packets

are carried over RoCEv2, RNIC vendors view ICRC as re-

dundant as Ethernet already has checksum mechanisms.
1

A

24-bit packet sequence number (PSN) functions similarly as

TCP sequence numbers, enforcing ordered delivery and pre-

venting packet injection. However, the checksum algorithms

and seeds are publicly available, which leads to low-entropy

PSNs. A recent project, sRDMA [52], has developed crypto-

graphic support for RDMA packet encryption.

2.3 Threat model and attacks

We base our threat model upon ReDMArk [46], the state-

of-the-art study of RDMA vulnerabilities. In particular, we

target threat models for multi-tenant cloud datacenters, as de-

picted in Figure 1(d), where clients access remote servers via

the network. In this setting, we assume that the network and

server infrastructure are part of the trusted computing base

(TCB). Only clients are considered to be potentially malicious.

Although ReDMArk has also identified attacks that are possi-

ble under an actively malicious network, such a threat model

is beyond the scope of Bedrock. We present the considered

threat models below and note on the correspondence to those

presented in ReDMArk when appropriate.

1
Discussion with Nvidia/Mellanox.



Threat Model TM1: The attacker is located at a different

end host from the victim, either in a virtual machine (VM)

or container. She does not have root privilege on the cloud

machine, so cannot inject raw RDMA packets or sniff net-

work traffic. However, she can launch arbitrary malicious

RDMA apps, which can issue reads and writes to remote

servers—e.g., racks hosting RDMA-enabled storage services.

This corresponds to the T1 threat model in ReDMArk.

Threat Model TM2: An enhancement of TM1. The adver-

sary runs in baremetal cloud machine, or she has compromised

the cloud software stack and obtained root privilege. She can

therefore fabricate and inject arbitrary RDMA packets with-

out needing to establish queue pairs first. The spoofed packets

are manipulated to use fake UDP, RDMA, or other headers.

This corresponds to the T2 threat model in ReDMArk.

Threat Model TM3: The adversary and victim run VMs

or containers on the same machine. The attacker launches

malicious RDMA apps, but she does not have root privilege

and cannot subvert the client VM/container directly. However,

unlike TM1 and TM2, the adversary’s and victim’s RDMA

traffic originate from the same cloud node, and their packets

are routed by the network via the same paths. This distinction

is relevant for Bedrock as it leverages network invariants for

defense; but this does not correspond to a separate threat

model category in ReDMArk.

Threat Model TM4: Finally, we also consider cases where

attackers have compromised an RDMA client on another ma-

chine via techniques like code injection and malware. This

corresponds to the T4 threat model in ReDMArk, where ad-

versaries can exfiltrate data to other machines silently.

The T3 threat model in ReDMArk assumes a malicious

network, which is beyond the scope of our discussion. Under

threat models TM1-TM4, we summarize the possible attacks

identified in existing work [46, 49, 54, 56].

2.3.1 Insecure source authentication

Existing RDMA authentication mechanisms can be bypassed

easily. An attacker can gain access to other users’ remote

memory regions if she obtains the correct QPN, rkey, and

memory address. Unfortunately, these elements can be pre-

dicted by the attacker [46]. (i) QPNs: ReDMArk [46] finds

that RNICs generate the next QPN by incrementing the cur-

rent one. If an attacker finds her QPN to be n, she can reliably

infer that [0..n−1] are valid numbers as well. (ii) rkey: The

rkey generation mechanism is also predictable [46, 56], e.g.,

either by incrementing rkeys by a fixed delta (e.g., Broadcom

RNICs increment by 0x100 for each new rkey), or using low-

entropy randomness (e.g., static initialization values and the

same key generator for all protection domains) [46]. (iii) Mem-

ory addresses: Since traditional ASLR [57] (address space

layout randomization) does not apply to memory ranges ex-

posed by RDMA, virtual addresses are trivial to guess. If an

adversary wishes to launch injection attacks, she needs to

additionally guess the packet sequence number (PSN), which

is intended to guarantee ordered delivery just like in TCP.

However, TCP sequence numbers have random initial values

as generated by the OS, whereas many open-source RDMA

apps hardcode their initial PSNs [46]. RDMA sequence num-

bers are also more susceptible to brute-force attacks as they

are shorter than TCP sequence numbers (24 vs. 32 bits). An

attacker can enumerate the entire space in 10s for Mellanox

RNICs and 23s for Broadcom RNICs [46]. These vulnerabili-

ties lead to the following attack scenarios.

Scenario 1 (S1): Unauthorized memory access via mali-

cious queue pairs (TM3). An attacker Bob creates its client

QP, but accesses server memory granted to Alice’s QP. He

achieves this by using Alice’s rkeys and using Alice’s server-

side QP number without negotiating with the server. This is

feasible under TM3 where Bob and Alice reside in the same

machine and have the same IP address.

Scenario 2 (S2): Unauthorized memory access via raw

packet injection (TM2). An attacker Bob can inject packets

to Alice’s queue pair if he can craft raw packets as root user.

He also needs to obtain Alice’s QPN, memory address, rkey,

and PSN using the methods described in ReDMArk. This

corresponds to the A1 attack in ReDMArk.

Scenario 3 (S3): DoS attacks by increasing the expected

sequence number (TM2,TM3). Bob can inject packets to ad-

vance Alice’s PSN, either using root privilege (TM2) or by

locally modifying his QP’s PSN without root privilege (TM3).

This will cause the server to drop actual packets from Al-

ice with lower sequence numbers. The DoS attack can be

prolonged by continued packet injection.

Scenario 4 (S4): DoS Attack by transitioning QPs to an

error state (TM2,TM3). Bob forces an existing QP to transi-

tion into an irrecoverable error state via injecting malformed

packets either using root privilege (TM2) or by modifying his

valid QP to target Alice’s QP at the server side without root

privilege (TM3). Injected packets may use incorrect memory

opcode (e.g., a read-only QP receives a write request) or incon-

sistent payload and DMA lengths [46]. These errors can cause

RNICs to trigger error detection and bring down the victim

QP [7]. This corresponds to the A2 attack in ReDMArk.

2.3.2 Inadequate access control

Existing RDMA isolation mechanisms fall short in several

aspects. First, they rely on insecure tokens (e.g., rkeys) that

are generated by hardware in predictable patterns [46]. An

adversary can easily guess another queue pair’s rkey and

perform injection attacks. Second, they have fixed-function

semantics and cannot be easily integrated with other forms

of cloud ACLs as they bypass the software stack [30]. The

authors of ReDMArk have performed a study of open-source

RDMA projects, and found that many existing systems only

use one single protection domain (PD) [46]. Following ReD-

MArk’s methodology, we have studied 13 publicly available

RDMA systems [6, 24, 28, 31–33, 40, 44, 51, 52, 55, 60, 61],

and found that none of them uses memory windows (MWs)



either. This means that rkey-guessing attacks can be easily

launched against these systems due to inadequate access con-

trol. Implementing ACLs in the network switch re-exposes

programmability and puts control back to the network oper-

ator’s or the RDMA application’s hands. They can enforce

customized ACL policies in the network, or integrate RDMA

ACLs with other forms of access control.

Scenario 5 (S5): Unauthorized memory access that crosses

access control boundaries (TM1-TM3). An adversary can

cross the boundaries of RDMA access control and gain access

to other clients’ queue pairs. This corresponds to attack A3 in

ReDMArk.

2.3.3 Lack of monitoring and logging

Security auditing is critical for cloud services—logs are usu-

ally maintained by the servers for forensic purposes, which

in turn enable attack detection, postmortem analysis, and ser-

vice repair. However, CPU-bypassing RDMA requests are

not visible to these auditing systems. The following attacks

can easily slip under the covers without leaving a trace.

Scenario 6 (S6): DoS attacks via queue pair exhaustion

(TM1-TM3). An attacker can exhaust RNIC resources by cre-

ating a large number of QPs to deny the service to other clients.

In principle, 24-bit QPNs can distinguish between 2
24

QPs,

but in practice RNICs only support a much smaller number:

32,707 for Broadcom and 261,359 for Mellanox RNICs [46].

This corresponds to attack A4 in ReDMArk.

Scenario 7 (S7): Performance degradation attacks (TM1-

TM3). RDMA packets bypass server CPUs but incur process-

ing overhead at RNIC engines, and these engines have their

own processing limits. An attacker can issue a large volume

of RDMA requests to overload the RNIC engine itself, so that

normal clients’ packets cannot be processed. ReDMArk [46]

shows that an attack from 1-2 nodes can easily reduce normal

clients’ read throughput by 8x-10x. This corresponds to attack

A5 in ReDMArk.

Scenario 8 (S8): Side channel attacks (TM1-TM3). RNICs

have on-board memory to cache data structures like page

table entries, and they use the main memory as a backing

store to handle cache evictions and misses. Cache misses trig-

ger expensive main memory accesses as they cross the PCIe

bus in a round-trip, leading to detectable latency differences

compared to cache hits. An attacker can use prime-and-probe

or evict-and-reload techniques to cause cache evictions and

construct timing channels to observe memory access patterns

of a victim client served by the same RNIC [54].

Scenario 9 (S9): Data exfiltration (TM4). CPU bypassing

can also lead to exfiltration attacks. Normally, exfiltration at-

tacks will leave audit trails in software logs, which can be used

for forensic analysis. However, if an attacker compromises

an RDMA node, she can leak data by initiating connections

from remote machines and directly reading the memory of

the compromised node without leaving a trace. This makes

it challenging to even detect data exfiltration attacks. This

corresponds to attack A6 in ReDMArk.

2.4 BedRock Overview

Bedrock develops RDMA defenses in network devices with

programmable data planes, which accept P4 programs for

customizing packet processing behaviors. Consider pro-

grammable switches as an example. A P4 program specifies

necessary packet headers and protocols for the switch. The

programmable parser extracts these headers and construct

packet header vectors (PHVs). The PHVs are sent through

multiple hardware stages in the switch for match/action pro-

cesssing. The programmable deparser reassembles headers

before forwarding the packet. Bedrock leverages this capabil-

ity to process RDMA headers on-the-fly for source authenti-

cation.

The main P4 processing takes place in a series of match/ac-

tion tables. Each table may have different keys (e.g., header

fields) and perform varied actions (e.g., arithmetic or bitwise

operations) on the headers. Hardware ALUs and CRC hash

units are integrated with every processing stage to enable

programmable actions per packet. Table entries, on the other

hand, are stored in switch SRAM (Static RAM) or TCAM

(Ternary CAM) for exact and range matches, respectively.

Each type of resource has its own constraints—typically,

O(100Mb) for SRAM and O(10Mb) for TCAM for a pro-

grammable switch. TCAM tables are especially important for

RDMA access control in the design of Bedrock.

Switch SRAM can also be used as register arrays to store

data across packets. These are akin to arrays in C, where

each register is accessible via an index. A packet is limited to

accessing one register per stage, so K accesses are possible

across K stages. Bedrock leverages registers for RDMA mon-

itoring and logging; it also uses packet mirroring primitives

to duplicate packets.

Deployability. Bedrock requires the use of P4-

programmable network devices in RDMA deployments.

Although P4 is a recent development, it is gaining traction

from industry [12]. Academic projects also make extensive

use of P4 switches [23, 35, 41, 42, 50, 58, 67]. As an example

of real-world adoption, Alibaba has deployed Tofino switches

in their production networks at scale [53]; the same cloud

provider also relies on RDMA deployments for their storage

service [26]. We believe that these industry trends show

promise of the deployability of Bedrock in realistic scenarios.

Our primary design goal is for Bedrock to run in top-or-rack

switches to protect racks of servers.

As P4 is a target-independent language, P4 programs can

be deployed to NIC-based targets as well. Existing P4-capable

platforms not only include programmable switches like Intel

Tofino and Nvidia Spectrum, but also programmable NICs

like Netronome Agilio and Xilinx Alveo. These platforms pri-

marily differ in their cost-to-performance ratios, performance

characteristics, and deployment scenarios. Switching ASICs

have lower cost-to-performance ratios and can be deployed to



serve entire racks of servers. Programmable NICs have higher

cost-to-performance ratios and are suitable for server-local

deployments. Programmable NICs also exhibit more perfor-

mance variability than switching ASICs. We show some con-

crete data points by analyzing the list price from the same

vendor: today, a 3.2Tbps P4 switch costs $8,695 [5], trans-

lating to $2.7 per Gbps; a 40 Gbps P4 NIC costs $555 [11],

and this translates to $13.8 per Gbps, which is several times

higher. Later, we also include performance benchmarks on a

P4-programmable NIC.

3 Network Support for RDMA Security

Next, we present the three components of the Bedrock system.

3.1 RDMA source authentication

Bedrock is inspired by work in source authentication mech-

anisms for the general Internet [36–38], where mutually-

untrusted parties wish to authenticate packets’ origins. How-

ever, unlike the Internet at large where ISPs and their network

infrastructures are assumed to be untrusted, RDMA deploy-

ments occur in controlled environments where the attacker

cannot easily subvert the underlying infrastructure. Bedrock

harnesses the fact that the network itself is part of the TCB,

and develops lighter-weight mechanisms without requiring

architectural changes and cryptographic operations for rout-

ing, forwarding, and source authentication. Instead, Bedrock

derives identifiers that are coupled with the cloud infrastruc-

ture (e.g., the network topology and system information) that

is beyond the adversary’s control.

3.1.1 Packets from different machines

We first consider threat models TM1 and TM2, where the at-

tacker is located at a different machine from the victim client.

Bedrock leverages network topological invariants for authenti-

cation, in a manner that is transparent to applications. Spoofed

traffic can be easily detected by Bedrock as such packets will

violate the topological invariants. Concretely, Bedrock enables

this by constructing a mapping for each RDMA client that

maps from its IP address to the topological information—the

switch ingress port ID (iPort) for the client. This requires

assigning a unique ID for each switch port in the network

(e.g., by the operator or network management tools), and con-

figuring the mapping in the switches’ match/action tables.

At runtime, Bedrock switches check these invariants for each

RDMA packet, and detects packets whose IP addresses do

not match the topological information. In the P4 program,

Bedrock enforces this based on the network mapping stored

in match/action tables. Under this design, Bedrock ensures

that RDMA packets are bound to the original endpoints from

which the connections have been initiated. If an attacker uses

the IP of the victim, her packets will be detected and blocked

by Bedrock. If she uses her own IP address, her packets will

be rejected by the remote RNICs as the source IPs are incon-

sistent. Combined, Bedrock mitigates impersonation attacks

effectively.
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Figure 2: The illustration of source authentication for clients

in the same machine.

3.1.2 Packets from the same machine

Next, we consider threat model TM3, in which spoofing at-

tacks can be launched from the same machine as the victim.

This creates more challenges for recognizing spoofed packets,

as traffic originating from attackers and the victim are indis-

tinguishable by the ingress port information. Therefore, we

need to go one level further and identify other types of system

information that the attacker cannot easily control.

Figure 2 illustrates our design. Bedrock relies on the pro-

cess ID (pid) which is generated by the OS kernel, as another

class of identifiers. RDMA connections are bound to identi-

fiers that reflect both topological constraints and system in-

formation. To achieve transparency, we extract the pid using

eBPF [4], which is an infrastructure present in most main-

stream Linux kernels. eBPF allows the injection of runtime

monitors into the kernel without affecting user applications.

We intercept the RDMA verb create_qp, which creates a

hardware queue at the local RNIC and returns the generated

QPN to the application. Bedrock constructs a list of client

QPNs (cQPNs) for each pid during its lifetime, and destroys

the list upon application exit. Therefore, a malicious applica-

tion that misuses other applications’ QPNs can be detected

by the eBPF script.

However, the above defense does not prevent attackers from

using their own cQPNs to communicate with some server

QPN (sQPN) that they have not authenticated with. At the

server RNIC, the ASIC only checks if the server QPN is

valid. It does not validate the originating client QPN—in fact,

cQPNs are not even included in RDMA packets. This is the

root cause why attack S1 is feasible. One way to mitigate this

attack is to modify the RDMA standard for the inclusion and

validation of cQPNs; Bedrock instead resorts to a transpar-

ent approach: overwriting the sQPN header with the cQPN

value. Specifically, Bedrock first ensures that the client uses

its own cQPN by checking the pid-cQPN list. It then uses the

eBPF framework at the client side to intercept the modify_qp

call and replace the parameter sQPN with cQPN. In this way,

Bedrock tightly controls which server QPN a client can com-

municate with. Even if clients specify a different server QPN,

it will get modified by Bedrock to the correct value.

So far, Bedrock establishes an invariant that, for all in-



flight RDMA requests, the sQPNs that they carry are equal to

the originating cQPNs. At the server side, Bedrock authenti-

cates the request in the network by querying a switch-based

mapping to obtain the actual server QPN. This mapping is

obtained by the server-side eBPF framework, which simi-

larly monitors modify_qp calls. The actual server QPNs, and

the originating client QPNs, are inserted to the switch in a

match/action table. RDMA requests match on this table, and

their sQPN headers are replaced with actual server QPNs

before they are sent from the switch to the RNIC. In effect,

Bedrock interposes a layer of indirection for security.

One practical issue here is the ICRC checksum of RDMA

packets need to be recalculated when the last-hop device

changes the sQPN. This can be easily done using pro-

grammable NICs, but current programmable switches cannot

easily support this [17]. However, ICRC fields are redundant

for RoCEv2 packets as Ethernet frames already have check-

sums. This feature was inherited from the Infiniband (IB)

version of RDMA, and can be disabled in RoCEv2 settings.

Our setup disables ICRC to resolve this issue.

3.2 RDMA access control

Next, Bedrock develops a “software-defined” approach to

RDMA access control. Today, RDMA ACLs are hard-

wired and pose integration issues with other types of cloud

ACLs [30]. By offloading ACLs to a programmable switch,

Bedrock exposes RDMA access control for programmabil-

ity. Datacenters regain the ability to customize or modify

ACL policies for CPU-bypassing traffic. Advanced, scenario-

specific ACL policies also become possible without having to

resort to software intervention. Section 3.3 presents several

policies that monitor RDMA traffic patterns and make ac-

cess control decisions based on these patterns—e.g., denying

access if signs of DoS attacks are detected. Here, we first

focus on developing RDMA ACL support in programmable

switches.

Figure 3(a) shows our design, which consists of an RDMA

external library on servers, a policy setup daemon in the

switch control plane, and a policy executor in programmable

data planes. The library offers an easy-to-use API for users to

specify ACL groups and add/remove QPNs to/from a particu-

lar group. The API is invoked in an application-independent

manner without RDMA application changes—i.e., the user

writes a configuration script without modifying her apps. If de-

sired, the RDMA apps can also call into this library for direct

integration. The ACL policies are sent to the switch daemon

by Bedrock, which configures them into the switch programs.

Memory ranges, queue pairs, and RDMA opcodes are all

part of the policy decisions. The policies are implemented in

programmable match/action table, where rule insertions and

deletions reflect ACL changes.

The policy executor is a P4 program that enforces access

control in the switch data plane. Its rules are populated by

the configuration scripts stated above. The executor checks

Start address range End address range

0000 FF00 0000∼00FF 00FF FFFF 0000 FF00 0000∼00FF 00FF FFFF

Table 1: An example memory range for ACL.

ID bit[47:32] bit[31:16] bit[15:0]

r1 0000∼0000 FF00∼FFFF 0000∼FFFF

r2 0001∼00FE 0000∼FFFF 0000∼FFFF

r3 00FF∼00FF 0000∼00FF 0000∼FFFF

Table 2: Each memory address requires three TCAM rules.

i) whether the memory range of an RDMA request is within

the memory boundary assigned to the client; and ii) whether

the requested operation is allowed using the match/action

tables. As shown in Figure 3(a), Bedrock instantiates an ACL

table with five keys: the start and end memory addresses, ACL

group, opcode, and priority. The memory addresses use range

matches in TCAM; other keys use exact matches in SRAM.

3.2.1 Compressing RDMA ACLs

The design of the data plane executor creates challenges due

to switch resource limitations. Whereas memory addresses

are 48-bit long (for 64-bit systems), TCAM range matches

have shorter lengths (20 bits in Intel/Barefoot Tofino [10]).

A simple solution is to segment a 48-bit memory address

into three 16-bit segments and designate a range match for

each of segment. The overall match result will depend on the

three individual matches. However, this will consume large

amounts of TCAM resources since the segments will contain

duplicate information. Consider a memory range 0000 FF00

0000∼00FF 00FF FFFF in Table 1. To check whether a re-

quest is contained by this, logically, we only need to check the

request’s start address against this range and then its end ad-

dress. However, each memory address (start/end) needs to be

split into three 16-bit rules (see Table 2) due to TCAM restric-

tions. Checking a request’s start and end addresses against

this memory range further requires six rules stemming from a

“cross product”. This creates high overhead, as switches only

have O(10Mb) TCAM. We address this using a combination

of three techniques.

#1: Adjustable ACL granularity. First, the above overhead

is only necessary if we require byte-level access control. If

coarser-grained ACLs are sufficient, Bedrock can ignore the

least significant bits. Bedrock makes the ACL granularity

adjustable—for instance, if 4kB page-level ACLs are suffi-

cient, Bedrock ignores the 12 LSBs and uses two segments to

represent a page address.

#2: Table decomposition. Second, we reduce the redun-

dancy of start/end address combinations by decomposing a

logical table to two different tables, one for the start address

and another for the end address. This deduplicates the logical

table by avoiding the “cross product” problem. Figure 3(b)

visualizes this idea, where the Y-axis indicates different ACL

permissions (e.g., RO vs. RW) and the X-axis indicates mem-

ory ranges. In this illustration, a memory object is represented

as a horizontal line that specifies a memory range at a priority
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Figure 3: The Bedrock access control overview and optimization techniques.

denoted by the Y-axis value. An RDMA request is repre-

sented with two vertical lines that represent the start and end

addresses as denoted by the X-axis values. The ACL decisions

are made by checking if a request’s vertical lines intersect

at the same memory object. If there are multiple intersected

objects, the one with the highest ACL permission is used. In

the example, obj2 will be selected for req1; but request req2

will be rejected, as the start and end addresses do not intersect

at the same objects.

#3: TCAM/SRAM tradeoff. Further, Bedrock groups rules

that share the same address prefix and use SRAM-based exact

matches on their common prefix. As SRAM is more abundant

than TCAM, this tradeoff enables Bedrock to support more

ACLs. Figure 3(c) shows how Bedrock organizes the policies

hierarchically based on the common prefix lengths, and re-

quests match against the three tables in parallel. Moreover,

Bedrock adjusts the prefix lengths and table sizes based on

the object size distributions, in order to maximize the use of

common prefixes for each scenario. Storage objects usually

follow zipfian distributions in terms of the size [16,20,27,66].

As a concrete example, say, if 70% objects are smaller than

1MB and 99% smaller than 4GB, and if page-level isolation is

the desired granularity, then Bedrock would create three tables.

The first table uses a 28-bit common prefix and 8-bit range

match, covering all memory objects under 1MB. The second

uses a 20-bit range match, covering all objects between 1MB

and 4GB. The tail distribution matches the third table with

range matches.

3.3 RDMA monitoring and logging

Bedrock enables RDMA systems to regain visibility by in-

network monitoring and logging.

3.3.1 Building blocks

Bedrock performs RDMA monitoring in the switch. Moni-

toring results are further used by ACL policies for advanced

access control. To maintain monitoring state across packets,

Bedrock borrows from work in approximate data structures—

such as count-min sketches (CMSes) [22] and bloom filters

(BFs) [18]—for space savings. We eschew the technical de-

tails of these data structures and refer interested readers to

existing work [18, 22]. At a high level, a count-min sketch

performs approximate counting, a bloom filter performs ap-

proximate membership checks, both with strong error bounds

guarantees. For monitoring, Bedrock also supports tumbling

windows, where one sketch or bloom filter records data for

the current window and another for the next. It rotates across

these entities for each time epoch.

Bedrock enables RDMA logging by tracking RDMA re-

quests and recording them at backend servers. It does not log

every single RDMA data packet, but only RDMA requests,

which already contain sufficient metadata (e.g., QPs, memory

addresses, opcodes) to build audit trails. By cherrypicking

these request packets from the rest, Bedrock enables NetFlow-

like logging and auditing on RDMA traffic. This is done

in a P4 program that extracts RDMA metadata for request

packets, and stores them in stateful registers as a temporary

buffer. It reads/writes one register per switch stage, but multi-

ple accesses are possible across several stages. Therefore, one

RDMA log entry is generated for a batch of requests, which

further correspond to a much larger number of data packets.

This reduces the bandwidth that is needed for auditing.

3.3.2 Regaining visibility

Using the auditing capability, Bedrock enables the detection

and mitigation of the following types of attacks.

DoS attacks. Bedrock is able to detect and block DoS at-

tacks, including S3, S4, S6, and S7. To detect S3, Bedrock

monitors the highest PSN of each remote QPN that has been

seen by the switch. Bedrock detects S4 by checking the con-

sistency between opcodes and MR privileges and between

payloads and DMA lengths. Inconsistency would transition



queue pairs into an error state for denial of service. For S6 and

S7, Bedrock monitors the resource usage of each connection,

application, or IP address to make access control decisions

using the approximate data structures. Concretely, to detect

and mitigate S6, Bedrock checks the number of QPs created

by each client IP in a time window against a threshold. Upon

detection, Bedrock drops or rate-limits the requests. Bedrock

detects S7 by tracking the sizes of the requests sent to each

QPN in a time window.

Side channel attacks. Another application is to detect side

channel attacks [54] based on the fact that malicious traffic

has different memory access patterns from normal traffic [47].

Side channel attack S8 builds an eviction set by reading a set

of specific memory pages, which produces a distinct mem-

ory access pattern. Bedrock logs memory read requests to

a backend server from the switch. The server further uses

software-based algorithms (e.g., SCADET [47]) to perform

memory pattern analysis to detect S8.

Exfiltration attacks. Armed with in-network logging,

RDMA reads and writes become auditable—operators can

scrutinize the log to find unexpected requests. To enable foren-

sic investigation of data exfiltration attacks (S9), all read-

s/writes are logged to the backend server, and the log entries

are processed in software to identify data exfiltration.

Further customization. The monitoring and logging ca-

pability in Bedrock serves as a building block for scenario-

specific security applications. As a concrete example, con-

sider reconnaissance attacks, which are a necessary step for

the adversary to guess rkeys. In this reconnaissance phase, the

attacker enumerates the rkey space and tests whether a partic-

ular rkey is valid, e.g., by trying many different rkeys until

success and reconnecting if a guess fails [46]. Bedrock tracks

the number of distinct rkeys that a machine (as identified by

its IP address) has attempted to a remote memory region. First,

it uses a combination of the source IP and the rkey as the key

to a bloom filter to check whether this probe has been seen

before. If not, it increments the count-min sketch counters

using the source IP as the key to track the number of probes.

Further probes are blocked by the Bedrock ACL if the sketch

counters exceed a threshold.

4 Evaluation

In this section, we describe our prototype implementation,

experimental setup, and present a comprehensive set of ex-

periments to evaluate Bedrock. Our evaluation focuses on

several dimensions: a) the effectiveness of Bedrock against

RDMA attacks; b) the overhead of Bedrock; c) workload-

based evaluations; and d) comparison with a programmable

NIC deployment.

4.1 Prototype and setup

Prototype. We have implemented a Bedrock prototype us-

ing approximately 6700 lines of code, including the various

defense primitives, eBPF functions, switch control plane func-
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Figure 4: Bedrock enables source authentication. With

Bedrock, S2-S3 attacks are blocked at the switch (right Y-

axis); S1 impersonation uses its own QP and is dropped by

the RNIC (left Y-axis).

tions, and backend server logging module.

Experimental setup. For our main experiments, we have de-

ployed Bedrock to a Wedge 100BF-32X Tofino switch, which

has 32×100Gbps ports and is programmed in P4. The switch

is furnished with an eight-core Intel CPU at 1.60GHz for the

control plane, which runs a Debian 8.9 Linux distribution

as the operating system. It is configured as a Top-of-Rack

switch in our cluster, which is connected to a RDMA client

node, a RDMA server node, and a backend logging node. Our

cluster also contains several other machines, from which we

launch RDMA attacks based on the methodology in ReD-

MArk (S1-S7, S9) [46] and Pythia (S8) [54]. All machines

have a six-core Intel Xeon E5-2643 CPU, 128 GB RAM,

1 TB hard disk, all running an Ubuntu 18.04 OS. They are

also equipped with Mellanox ConnectX-4 MT27710 25Gbps

RNICs that are configured to use RoCEv2.

Methodology. We validate the ability of Bedrock defenses to

detect and mitigate attacks S1-S9. In addition, we measure the

overhead of Bedrock (e.g., control and data plane overheads,

switch resource utilization). Our workload-based evaluation

generates realistic workloads following the metholodogy of

existing projects, and measures the impacts of Bedrock on

request completion times (RCTs) and throughputs. Last but

not least, we deploy Bedrock to a P4-programmable NIC,

Netronome Agilio CX, to understand its performance charac-

teristics as compared to switch-based deployments.

4.2 RDMA source authentication

Figure 4 shows the effectiveness of Bedrock against imperson-

ation attacks via authentication. We test each attack with and

without Bedrock enabled to evaluate the difference. Attack

S1 launches impersonation attacks using its own QP, and the

figure plots the attacker’s request rates. Attacks S2 and S3

work in different ways, but the defense effects are similar;

we group them in the same curve that shows the number of

packets that are successfully injected to existing QPs. As we

can see, without Bedrock, the attack traffic reaches the servers
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Figure 5: Bedrock outperforms the baseline by its ACL compression techniques. We further measure Bedrock under different

skewness of memory region sizes, read/write rule ratios, and use realistic workloads based on Twitter, Idiada, and Arctur traces.

and successfully masquerades as the client, resulting in mali-

cious memory modification. Under Bedrock, all attacks are

detected and blocked. We then launch attack S4, which at-

tempts to inject 1000 packets with inconsistent payloads and

DMA lengths. Bedrock has detected and dropped all packets

(not shown in figure).

4.3 RDMA access control

Next, we evaluate the effectiveness of Bedrock ACLs by

launching attack S5 that violates access control policies.

Specifically, we create attacks that attempt to a) access mem-

ory addresses beyond the granted ranges or b) to access valid

memory addresses using ungranted permissions, e.g., writing

to an object when read-only privilege is granted. All such

attacks are recognized by Bedrock and blocked at the switch.

We then evaluate the effectiveness of Bedrock in compress-

ing RDMA ACLs, against the baseline solution without com-

pression. The key metric is the number of ACL rules sup-

ported in the Tofino switch. We vary the skewness of zip-

fian workloads [16, 20, 27, 66], and also measure Bedrock

using realistic workloads based on Twitter, Idiada, and Arctur

traces [27, 66], for a comprehensive evaluation. Since the P4

compiler statically rejects a program if the ACLs consume

more memory than switch resources, our methodology is to

gradually increase the number of ACLs until the P4 compiler

rejects the program due to resource limitations.

Figure 5a shows the results for different skewness, with

a fixed read rule ratio of 0.5. We can see that both Bedrock

and the baseline can support more ACLs at higher skewness

with many small MRs, because smaller ranges can be encoded

in fewer ACL rules. Bedrock outperforms the baseline as it

leverages cheaper SRAM matches to reduce TCAM usage:

the smaller ranges are supported using exact matches in more

abundant SRAM. Figure 5b further indicates that the num-

ber of rules supported by Bedrock is robust to different read

rule ratios. Figures 5c evaluates Bedrock with three realistic

workloads. Bedrock outperforms the baseline consistently,

supporting 26%, 6.95×, and 2.98× more ACLs on Twitter,

Idiana, and Arctur traces, respectively.

The latest Tofino hardware contains more resources than
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Figure 6: Bedrock detects and mitigates attacks S6 and S7.

our switch, so we extrapolate based on the specifications of

Intel/Barefoot Tofino2 [9]. We estimate that the number of

ACLs that Bedrock can support using Tofino2 is up to 2.98×

more than that in our current switch.

4.4 RDMA monitoring and logging

Next, we evaluate Bedrock with attacks S6-S9, which require

monitoring and logging capabilities as well as ACL decisions

based on runtime traffic patterns.

Figure 6a shows the S6 attack, which consumes a large

quantity of QPs to deny the service to other users. Without

Bedrock, the attack has exhausted 20k+ queue pairs within

80 seconds. Bedrock monitors and enforces an upperbound

limit of 1k QPs per user, successfully detecting the DoS attack

and preventing it from exhausting available QPs. Excessive

requests are denied in the network.

Figure 6b evaluates attack S7, where the attacker uses mul-

tiple machines to launch a performance degradation DoS

attack. At time t=1.7s, the normal client sends traffic within

the enforced bandwidth limit. At time t=2.7s, the malicious

client starts: it uses normal rates at first but one second later

it boosts its traffic rate to launch the attack. As we can see,

this significantly degrades the performance of the normal

client. At time t=5.4s, we enable Bedrock, which enforces a

rate limit per user. It detects and blocks the malicious client

immediately, and the normal client’s performance goes back

to normal.
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Figure 7: Bedrock can detect and mitigate the side channel

attack S8 effectively.

Defense SRAM TCAM Hash bits Meter ALU

Auth. 4.17 % 2.08 % 2.48 % 0 %

ACL 10.52 % 68.75 % 27.78 % 0 %

Mon. 26.56 % 7.64 % 16.39 % 27.08 %

Log. 12.29 % 11.46 % 12.22 % 68.75 %

Table 3: The Tofino switch resource usage of each defense.

Next, we evaluate the ability of Bedrock to log and analyze

side channel attacks (S8) using the Pythia setup [54]. The nor-

mal client and the attacker are both connected to the RDMA

server, and the attacker infers the client’s memory access pat-

terns in the following way. It evicts a target victim address’s

cache line from the RNIC by generating many different page

accesses, and then measures the access latency to the target

memory address to determine whether the client has triggered

RNIC caching. This attack is launched continuously to differ-

ent memory addresses, and we show the accuracy of the attack

over time in Figure 7. Close to Pythia’s results, the inference

accuracy is around 97%. At time t=22s, we enable Bedrock

to detect this attack. The Bedrock switch collects memory

access addresses for all QPs, and logs these entries to the

backend server. The server implements the SCADET [47]

side channel detection algorithm in software to detect attacks.

After detection, Bedrock blocks the attacker’s probes and its

traffic rate drops to zero.

Bedrock enables audit trails for S9, the data exfiltration

attack, using its logging capability. Figure 8 measures the

logging rates and the CPU utilization of the backend server,

using workloads generated from an RDMA benchmark tool,

perftest [8]. We also show the results for different request

sizes. Larger requests produce more data packets, so the log-

ging rate is lower—this is because Bedrock only logs request

metadata, not the data packets. Since each log packet contains

8 entries, the logging rate is in proportion to the request rate

by a factor of 8. Moreover, the server uses one single CPU

core to receive the logging data, and as the figure shows, the

utilization is under 90% of one core.
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Figure 8: The traffic logging rates and logging server CPU

usage of different request sizes.

4.5 Defense overhead

Control operation overhead. Since Bedrock uses eBPF in

the authentication defenses, this incurs extra latency when a

queue pair is initialized. To evaluate this overhead, we use a

microbenchmark to measure the time needed for the RDMA

library to accept new connections. With 7.04 ms as the native

performance for setting up queue pairs, Bedrock increases the

latency to 7.11 ms, which represents 1% additional overhead.

Since this overhead is only incurred for control operations

when setting up a queue pair, it preserves the goal of achieving

native RDMA datapath performance.

Resource overhead: Table 3 shows the resource usage of

Tofino switch for each of our defenses. Overall, Bedrock

has reasonable resource utilization across different metrics.

SRAM and TCAM are used for match/action table entries.

Hash bits are used for header transformation. Meter ALUs

are used to access stateful registers for monitoring as well as

logging. The ACL component is evaluated with the maximum

number of rules that the switch can support.

4.6 Workload-based evaluation

Next, we perform workload-based evaluation of Bedrock us-

ing YCSB benchmarks [21], which are widely used in recent

RDMA projects [54, 59, 61]. We first use YCSB workloads at

different read/write ratios, using request sizes ranging from

16 bytes to 4096 bytes. Following the HERD [31] method-

ology, we generate YCSB workloads and replay them to the

RDMA system. We also adopt object size distributions from

realistic traces based on Twitter [66], Idiada [27], and Arc-

tur [27] workloads. Our main evaluation metrics are a) request

completion times (RCTs), which measure the time it takes for

an RDMA request to finish; and b) throughput, as measured

by the number of RDMA requests per second. Each metric is

measured with and without Bedrock.

YCSB. We evaluate read-most (95% reads), write-most (95%

writes), and balanced (50% reads and 50% writes) YCSB

traces. As we can see, Bedrock incurs low overhead. The

RCTs of different workloads increase by 3.2% on average;

and the throughputs decrease by 1.0% on average. The differ-

ent defense components in Bedrock also have similar perfor-
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Figure 9: Bedrock incurs minimal overheads with different read/write ratios. (a)-(c): request completion times (RCTs). (d)-(e):

throughputs as measured by the number of request operations per second.
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Figure 10: The request completion time and throughput under realistic workloads.

mance, which is expected as switching ASICs are designed

to achieve near-constant performance. Larger requests lead to

higher RCTs. The throughput (as measured by Mops/s) also

decreases with larger requests. These trends hold for both the

baseline and Bedrock.

Twitter, Idiada, and Arctur. Next, we use object and re-

quest size distributions from real-world traces: Twitter [66],

Idiada [27], and Arctur [27], with the same set of read/write

ratios as before. We again measure the RCTs and throughputs

with and without Bedrock. Figure 10 shows the results, with

similar takeaways: Bedrock adds an average latency overhead

of 2.94% and a throughput overhead of 0.09%. Workloads

enjoy minimum performance interference. Different defense

components in Bedrock have on-par performance.
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Figure 11: The request completion time (RCT) and throughput of Bedrock deployed in the Netronome NIC and Tofino switch.

The number has been normalized to their baselines respectively.
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Figure 12: Microbenchmarks: The Netronome NIC exhibits

variable latency across packets.

4.7 Programmable switches vs. NICs

Earlier, we have already discussed the differences between

programmable switches and NICs in terms of their cost-to-

performance ratios and deployment scenarios. Further, we

have conducted a set of experiments to understand their per-

formance characteristics. We have deployed Bedrock to a

P4-programmable NIC (Netronome Agilio CX) and retested

all the attacks. Our high-level findings are a) Bedrock works

effectively on both platforms; and b) programmable NICs

experience more notable performance variability depending

on the program logic. We use the NIC as a forwarding device

to connect four RNIC-based servers for benchmarking.

Figure 11 shows the performance variability of the pro-

grammable NIC across defenses, using the switching ASIC

performance as a comparison point. In a programmable

switch, the latency variance of Bedrock is under 0.5µs con-

sistently across defenses, but in the programmable NIC, the

variance can be up to 12µs. Moreover, switching ASICs also

have more stable throughputs across defenses, with at most

3.2% degradation as compared to the baseline. This is because

switching ASICs are designed for near-constant performance

under worst-case assumptions. The Netronome NIC, on the

other hand, has variable performance (up to 53% degradation

across defenses) compared to baseline.

As a further microbenchmark, we have used a stress-test

trace on the ACL defense in the programmable NIC, and

plotted the latency CDF in Figure 12. We find that the latency

of each packet depends on the program paths it takes, as well

as whether the packet happens to hit the flow cache on the

programmable NIC. This performance variability is consistent

with existing studies of programmable NIC performance [45].

In summary, programmable switches and NICs have dis-

tinct cost-to-performance ratios, deployment scenarios, and

performance characteristics. In Bedrock, we have targeted

switches as our primary scenario. However, we believe that

both programmable switches and NICs are important plat-

forms for security applications, and the specific choice would

depend on the deployment requirements.

5 Related Work

RDMA security. RDMA systems have gained popularity

in cloud datacenters [24, 60, 61], and their security implica-

tions have been recently studied in a series of work [46, 49,

52, 54, 56]. ReDMArk [46], in particular, has described a

comprehensive range of RDMA vulnerabilities under varied

attack models. Many of the problems we address are from this

project. sRDMA [52] has developed cryptographic authenti-

cation and encryption of RDMA packets on programmable

NICs, whereas Bedrock considers a complementary set of

defenses. Bedrock’s main target is programmable switches,

but as P4 is a target-independent language, it can be deployed

to programmable NICs as well. Bedrock inherits the perfor-

mance characteristics of the underlying platforms.

Programmable switches. Programmable switches have

found applications in many cloud applications [35, 50, 67],

and more recently in TCP/IP security [23, 34, 41, 58, 63, 65].

Bedrock is inspired by such work, but it develops security

support for RDMA systems. As these systems offload their

datapath operations to hardware, the design decision of us-

ing programmable network support respects the performance

goals of RDMA while providing stronger security.

6 Conclusion

We have presented Bedrock, a defense system that provides

a secure foundation for RDMA systems. RDMA systems

bypass server CPUs, achieving high performance; but at the

same time, security problems are much harder to mitigate

as software defenses cannot be easily added in the datapath.



Bedrock leverages programmable data planes in modern net-

work devices to build CPU-bypassing defense primitives for

authentication, access control, and monitoring and logging.

Using a set of comprehensive experiments, we have shown

that Bedrock can effectively mitigate many attacks, and that it

incurs low overheads with realistic workloads.
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