

On Uniformly Sampling Traces of a Transition System

Supratik Chakraborty, **Aditya A. Shrotri**, Moshe Y. Vardi

ICCAD 2020

Speaker Bio

- Speaker: Aditya A. Shrotri
 - Affiliation: Rice University, Houston TX
 - PhD Student (Dept. of Computer Science)
 - Adviser: Prof. Moshe Y. Vardi
 - Thesis Area: Constrained Sampling and Counting
 - Webpage: https://cs.rice.edu/~as128
- Co-Authors:
 - Prof. Supratik Chakraborty (IIT Bombay, India)
 - https://www.cse.iitb.ac.in/~supratik/

Prof. Moshe Y. Vardi (Rice University, Houston) https://www.cs.rice.edu/~vardi/

Correctness of large designs

- Enormous size and complexity of modern digital systems
 - Formal verification fails to scale

- Important to catch bugs early
 - Millions of dollars spent on faulty designs

 Constrained Random Verification balances scalability and coverage

Constrained Random Verification

Diagram courtesy www.testbench.in

- Constraints give direction
 - User-defined constraints steer to bug-prone corners
- Randomization enables diversity
 - Inputs sampled at specific simulation steps
- Widely used in industry
 - Ex: SystemVerilog, E, OpenVera etc.

Limitations of Existing CRV Tools

Provide 'local' uniformity over input stimuli

Insufficient for 'global' coverage guarantees

Need uniformity of system's runs or traces

Our Contributions

- TraceSampler: 1st dedicated algorithm + tool for uniformly sampling traces of a transition system
 - Uses Algebraic Decision Diagrams (ADDs) & enhanced iterative-squaring
 - Easily extensible to weighted sampling

- Empirical comparison to generic samplers based on SAT/CDCL
 - TraceSampler is fastest on ~90% of benchmarks
 - Solves 200 more benchmarks than nearest competitor

Outline

1. Example + problem definition

2. Inadequacy of Local Uniformity

3. Representing Large Transition Systems Compactly

4. TraceSampler: Two-Phase Algorithm

5. Experimental Results

Example: States, Traces and Uniformity

Example: States, Traces and Uniformity

Traces with N = 4 transitions (5 states):

- 1. $S_0S_1S_1S_1S_1$
- 2. $S_0S_1S_1S_1S_2$
- $S_0S_1S_1S_2S_2$
- 4. $S_0S_1S_2S_2S_2$
- $S_0S_3S_1S_1S_1$
- $\mathsf{6.} \quad \mathsf{S}_0\mathsf{S}_3\mathsf{S}_1\mathsf{S}_1\mathsf{S}_2$
- $7. \quad \mathsf{S}_0\mathsf{S}_3\mathsf{S}_1\mathsf{S}_2\mathsf{S}_2$

Uniformity: Sample each trace with probability 1/7

Problem Definition

Given:

- Transition System
- Trace-length: N
- (Optional) Initial States, Final States
- Let T be the set of traces of length N, which start in one of the initial states and end in one of the final states
- Goal:
 - Design algorithm that returns a trace T^* , such that

$$\forall T \in \mathbf{T} \ \Pr[T^* = T] = \frac{1}{|\mathbf{T}|}$$

Current State: S₀

Trace: S₀

Probability: 1

S ₃	0.5
S ₁	0.5

Current State: S₀

Trace: S₀ S₁

Probability: 1*0.5

S ₂	0.5
S ₁	0.5

Current State: S₀

Trace: S₀ S₁ S₁

Probability: 1*0.5*0.5

S ₂	0.5
S ₁	0.5

Current State: S₀

Trace: S₀ S₁ S₁ S₂

Probability: 1*0.5*0.5*0.5

S ₂	1

Current State: S₀

Trace: $S_0 S_1 S_1 S_2 S_2$

Probability: 1*0.5*0.5*0.5*1 = 0.125

S ₂	1

Current State: S₀

Trace: $S_0 S_1 S_1 S_2 S_2$

Probability: 1*0.5*0.5*0.5*1 = 0.125

(b)

Fact: Pr = 1/7 not possible for any assignment of local probabilities

Representing the Transition Function

- Transition graph typically very large
 - K latches \rightarrow 2^k states
 - Cannot represent explicitly
- Binary Decision Diagrams (BDDs) can offer significant compression
 - •Represent functions $f: \{0,1\}^n \to \{0,1\}$
 - •DAGs with node sharing + fixed variable order

BDD Example

Algebraic Decision Diagrams

- Generalize BDDs to real-valued Boolean functions $f: \{0,1\}^n \to R$
 - DAGs with fixed variable order and node-sharing
 - Operations: Sum, Product, Additive Quantification (\sum), ITE

Original Transition Graph

2-Step Transition Relation

TraceSampler: Two-Phase Algorithm

- Compilation Phase:
 - Construct $\log N$ ADDs: $t_1, t_2, t_4, t_8, ..., t_N$ by iterative-squaring
 - Aggressively prune ADDs to avoid blowup

- Sampling Phase: Divide & Conquer
 - Recursively split trace while ensuring global uniformity
 - Base case: random walk on ADD from root to leaf

TraceSampler: ADD Compilation Phase

Iterative-Squaring:

- $t_N = \sum_{X_{N/2}} (t_{N/2} \times t_{N/2})$
- Secret Sauce: Aggressive pruning of ADDs by novel i-step reachability algorithm
- Advantages:
 - Only log(N) ADDs necessary: t₁, t₂, t₄, t₈, ..., t_N
 - Factored forms offer significant speedup & compression [Dudek et al.'20]

- Recursive Step
 - Sample state at half-way point then sample two halves independently

Trace Position	0	1	2	 N/4	 N/2	 3N/4	 N
State							

- Recursive Step
 - Sample state at half-way point then sample two halves independently

- Recursive Step
 - Sample state at half-way point then sample two halves independently

- Recursive Step
 - Sample state at half-way point then sample two halves independently

Trace Position	0	1	2	 N/4	 N/2	 3N/4	 N
State	S ₀				S ₁₀		S ₅

 $\log N$ -1 ADD: $t_{N/2}$

- Recursive Step
 - Sample state at half-way point then sample two halves independently

Trace Position	0	1	2	 N/4	 N/2	 3N/4	 N
State	S ₀			S ₁₁	S ₁₀	S ₈	S ₅

 $\log N$ -1 ADD: $t_{N/2}$

- Recursive Step
 - Sample state at half-way point then sample two halves independently

Trace Position	0	1	2	 N/4	 N/2	 3N/4	 N
State	S ₀			S ₁₁	S ₁₀	S ₈	S ₅

Base case: sample states from ADD

Weighted random walk on ADD

- Root to leaf traversal
 - Pick child C* with probability $\Pr[C^*] = \frac{wt(C^*)}{\sum_i wt(C_i)}$

• Eg: $wt(left\ child) = 2 \times 2 + 2 \times 1 = 6$

Empirical Evaluation: Uniformity

- Sampled 10⁶ traces from small benchmark
 - Using TraceSampler
 - Using Ideal Sampler (WAPS [Gupta et al.])
- X-axis
 - Count of how many times a particular trace was sampled
- Y-axis
 - Number of traces with specific count
- Distributions are indistinguishable
 - Jensen-Shannon distance: 0.003

Empirical Evaluation: Scalability

- Benchmarks: HWMCC'17, ISCAS89
- Trace Lengths: 2,4,8,16,...256
- Comparison: Encode circuits as CNF and unroll
 - WAPS: Exact uniform sampler [Gupta et al. '19]
 - Unigen2: Approximately uniform sampler
 - [Chakraborty et al. '15]

Results:

- TraceSampler solves 200+ more instances
- Fastest on ~90% instances
- Avg. Speedup: 3x to WAPS, 25x to Unigen2
- Compilation Speedup: 16x to WAPS

Summary and Takeaways

- TraceSampler: Novel ADD based algorithm for uniform / weighted sampling of traces
 - Significantly outperforms competing SAT/CDCL-based approaches
 - First prototype; more engineering effort
 more scalability
 - Scope for heuristics and time-space tradeoffs

- Use synergistically with traditional CRV solutions?
 - Use CRV to reach bug-prone corner
 - Invoke TraceSampler for strong coverage guarantees

References

- [Dudek et al., '20] Jeffrey M Dudek, Vu HN Phan, and Moshe Y Vardi. AAAI 2020.
 ADDMC: Exact weighted model counting with algebraic decision diagrams
- [Gupta et al., 19] Rahul Gupta, Shubham Sharma, Subhajit Roy, and Kuldeep S Meel.
 2019. Waps: Weighted and projected sampling. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 59–76
- [Chakraborty et al., '15] Supratik Chakraborty, Daniel J Fremont, Kuldeep S Meel, Sanjit A Seshia, and Moshe Y Vardi. 2015. On parallel scalable uniform SAT witness generation. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 304–319.