
On Uniformly Sampling Traces of a Transition
System

Supratik Chakraborty, Aditya A. Shrotri,
Moshe Y. Vardi

ICCAD 2020

1

• Speaker: Aditya A. Shrotri
• Affiliation: Rice University, Houston TX

• PhD Student (Dept. of Computer Science)

• Adviser: Prof. Moshe Y. Vardi

• Thesis Area: Constrained Sampling and Counting

• Webpage: https://cs.rice.edu/~as128

• Co-Authors:
• Prof. Supratik Chakraborty (IIT Bombay, India) Prof. Moshe Y. Vardi (Rice University, Houston)

• https://www.cse.iitb.ac.in/~supratik/ https://www.cs.rice.edu/~vardi/

Speaker Bio

2

https://cs.rice.edu/~as128
https://www.cse.iitb.ac.in/~supratik/
https://www.cs.rice.edu/~vardi/

• Enormous size and complexity of
modern digital systems

• Formal verification fails to scale

• Important to catch bugs early

• Millions of dollars spent on faulty
designs

• Constrained Random Verification
balances scalability and coverage

Correctness of large designs

3

• Constraints give direction
• User-defined constraints steer to bug-prone corners

• Randomization enables diversity
• Inputs sampled at specific simulation steps

• Widely used in industry
• Ex: SystemVerilog, E, OpenVera etc.

Constrained Random Verification

4

Diagram courtesy www.testbench.in

• Provide ‘local’ uniformity over input stimuli

• Insufficient for ‘global’ coverage guarantees

• Need uniformity of system’s runs or traces

Limitations of Existing CRV Tools

5

• TraceSampler: 1st dedicated algorithm + tool for uniformly
sampling traces of a transition system

• Uses Algebraic Decision Diagrams (ADDs) & enhanced iterative-squaring

• Easily extensible to weighted sampling

• Empirical comparison to generic samplers based on SAT/CDCL

• TraceSampler is fastest on ~90% of benchmarks

• Solves 200 more benchmarks than nearest competitor

Our Contributions

6

1. Example + problem definition

2. Inadequacy of Local Uniformity

3. Representing Large Transition Systems Compactly

4. TraceSampler: Two-Phase Algorithm

5. Experimental Results

Outline

7

Example: States, Traces and Uniformity

8

Traces with N = 4 transitions (5 states):

1. s0s1s1s1s1

2. s0s1s1s1s2

3. s0s1s1s2s2

4. s0s1s2s2s2

5. s0s3s1s1s1

6. s0s3s1s1s2

7. s0s3s1s2s2

Uniformity: Sample each trace with
probability 1/7

Example: States, Traces and Uniformity

9

• Given:

• Transition System

• Trace-length: N

• (Optional) Initial States, Final States

• Let T be the set of traces of length N, which start in one of the
initial states and end in one of the final states

• Goal:

• Design algorithm that returns a trace 𝑇∗, such that

∀𝑇 ∈ 𝑻 Pr 𝑇∗ = 𝑇 =
1

|𝑻|

Problem Definition

10

Current State: S0

Trace: S0

Probability: 1

Next State Probabilities:

Example: Insufficiency of Local Uniformity

11

S3 0.5

S1 0.5

Current State: S0

Trace: S0 S1

Probability: 1*0.5

Next State Probabilities:

Example: Insufficiency of Local Uniformity

12

S2 0.5

S1 0.5

Current State: S0

Trace: S0 S1 S1

Probability: 1*0.5*0.5

Next State Probabilities:

Example: Insufficiency of Local Uniformity

13

S2 0.5

S1 0.5

Current State: S0

Trace: S0 S1 S1 S2

Probability: 1*0.5*0.5*0.5

Next State Probabilities:

Example: Insufficiency of Local Uniformity

14

S2 1

Current State: S0

Trace: S0 S1 S1 S2 S2

Probability: 1*0.5*0.5*0.5*1 = 0.125

Next State Probabilities:

Example: Insufficiency of Local Uniformity

15

S2 1

Current State: S0

Trace: S0 S1 S1 S2 S2

Probability: 1*0.5*0.5*0.5*1 = 0.125

Example: Insufficiency of Local Uniformity

16

Fact: Pr = 1/7 not possible for any assignment of local probabilities

• Transition graph typically very large

• K latches ➔ 2k states

• Cannot represent explicitly

• Binary Decision Diagrams (BDDs) can offer significant compression

Representing the Transition Function

17

•Represent functions 𝑓: 0,1 𝑛 → 0,1

•DAGs with node sharing + fixed variable

order

BDD Example

18

1

x1

x0

x1’

x0’

Represents 1-Step Transition Function

• Generalize BDDs to real-valued Boolean functions 𝑓: 0,1 𝑛 → 𝑅

• DAGs with fixed variable order and node-sharing

• Operations: Sum, Product, Additive Quantification (∑), ITE

Algebraic Decision Diagrams

19

2-Step Transition Relation

12

Original Transition Graph

• Compilation Phase:

• Construct log𝑁 ADDs: 𝑡1, 𝑡2, 𝑡4, 𝑡8, … , 𝑡𝑁 by iterative-squaring

• Aggressively prune ADDs to avoid blowup

• Sampling Phase: Divide & Conquer

• Recursively split trace while ensuring global uniformity

• Base case: random walk on ADD from root to leaf

TraceSampler: Two-Phase Algorithm

20

• Iterative-Squaring:

• 𝑡𝑁 = ∑𝑋𝑁/2
(𝑡𝑁/2 × 𝑡𝑁/2)

• Secret Sauce: Aggressive pruning of ADDs by novel i-step reachability algorithm

• Advantages:
• Only log(N) ADDs necessary: t1, t2, t4, t8, … , tN

• Factored forms offer significant speedup & compression [Dudek et al.’20]

TraceSampler: ADD Compilation Phase

21

12

= x∑𝑋1()

1 1

• Recursive Step

• Sample state at half-way point then sample two halves independently

TraceSampler: Sampling Phase

22

Trace
Position

0 1 2 … N/4 … N/2 … 3N/4 … N

State

• Recursive Step

• Sample state at half-way point then sample two halves independently

TraceSampler: Sampling Phase

23

Trace
Position

0 1 2 … N/4 … N/2 … 3N/4 … N

State

log Nth ADD: 𝑡𝑁

• Recursive Step

• Sample state at half-way point then sample two halves independently

TraceSampler: Sampling Phase

24

Trace
Position

0 1 2 … N/4 … N/2 … 3N/4 … N

State S0 S10 S5

log Nth ADD: 𝑡𝑁

• Recursive Step

• Sample state at half-way point then sample two halves independently

TraceSampler: Sampling Phase

25

Trace
Position

0 1 2 … N/4 … N/2 … 3N/4 … N

State S0 S10 S5

log N -1 ADD: 𝑡𝑁/2

• Recursive Step

• Sample state at half-way point then sample two halves independently

TraceSampler: Sampling Phase

26

Trace
Position

0 1 2 … N/4 … N/2 … 3N/4 … N

State S0 S11 S10 S8 S5

log N -1 ADD: 𝑡𝑁/2

• Recursive Step

• Sample state at half-way point then sample two halves independently

TraceSampler: Sampling Phase

27

Trace
Position

0 1 2 … N/4 … N/2 … 3N/4 … N

State S0 S11 S10 S8 S5

log N -2 ADD: 𝑡𝑁/4

• Base case: sample states from ADD

• Weighted random walk on ADD

• Root to leaf traversal

• Pick child C* with probability Pr 𝐶∗ =
𝑤𝑡 𝐶∗

∑𝑖𝑤𝑡 𝐶𝑖

• 𝑤𝑡 𝐶∗ = ∑𝑙𝑒𝑎𝑣𝑒𝑠(𝑛𝑢𝑚 𝑝𝑎𝑡ℎ𝑠 𝑓𝑟𝑜𝑚 𝐶∗ 𝑡𝑜 𝑙𝑒𝑎𝑓) × 𝑣𝑎𝑙(𝑙𝑒𝑎𝑓)

• Eg: 𝑤𝑡 𝑙𝑒𝑓𝑡 𝑐ℎ𝑖𝑙𝑑 = 2 × 2 + 2 × 1 = 6

TraceSampler: Sampling Phase

28

12

Left

child

• Sampled 106 traces from small
benchmark

• Using TraceSampler

• Using Ideal Sampler (WAPS [Gupta et al.])

• X-axis

• Count of how many times a particular
trace was sampled

• Y-axis

• Number of traces with specific count

• Distributions are indistinguishable

• Jensen-Shannon distance: 0.003

Empirical Evaluation: Uniformity

29

• Benchmarks: HWMCC’17, ISCAS89

• Trace Lengths: 2,4,8,16,…256

• Comparison: Encode circuits as CNF
and unroll

• WAPS: Exact uniform sampler [Gupta et al. ‘19]

• Unigen2: Approximately uniform sampler
• [Chakraborty et al. ‘15]

• Results:

• TraceSampler solves 200+ more instances

• Fastest on ~90% instances

• Avg. Speedup: 3x to WAPS, 25x to Unigen2

• Compilation Speedup: 16x to WAPS

Empirical Evaluation: Scalability

30

• TraceSampler: Novel ADD based algorithm for uniform / weighted
sampling of traces

• Significantly outperforms competing SAT/CDCL-based approaches

• First prototype; more engineering effort ➔more scalability

• Scope for heuristics and time-space tradeoffs

• Use synergistically with traditional CRV solutions?

• Use CRV to reach bug-prone corner

• Invoke TraceSampler for strong coverage guarantees

Summary and Takeaways

31

• [Dudek et al., ‘20] Jeffrey M Dudek, Vu HN Phan, and Moshe Y Vardi. AAAI 2020.
ADDMC: Exact weighted model counting with algebraic decision diagrams

• [Gupta et al., 19] Rahul Gupta, Shubham Sharma, Subhajit Roy, and Kuldeep S Meel.
2019. Waps: Weighted and projected sampling. In International Conference on Tools
andAlgorithms for the Construction and Analysis of Systems. Springer, 59–76

• [Chakraborty et al., ‘15] Supratik Chakraborty, Daniel J Fremont, Kuldeep S Meel,
Sanjit A Seshia, and Moshe Y Vardi. 2015. On parallel scalable uniform SAT witness
generation. In International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 304–319.

References

32

