Locality Sensitive Hashing and its Application

Rice University

Anshumali Shrivastava
anshumali At rice.edu

27th Jan 2016
Pairwise Comparisons Everywhere

- Near Duplicate Detections over web. (mirror pages)
- Plagiarism Detection
- Find Customers With Similar Taste.
- Movie Recommendations. (Find Similar profiles)
Activity: Exact Duplicates

Remove all repeated items in an array
example \{1,2,3,8,2,7,3,3,4,8,9\}
Activity: Exact Duplicates

Remove all repeated items in an array
example \{1,2,3,8,2,7,3,3,4,8,9\}

\(O(n)\) or \(O(n^2)\)
Activity: Exact Duplicates

Remove all repeated items in an array
example \{1,2,3,8,2,7,3,3,4,8,9\}

\(O(n)\) or \(O(n^2)\)

Array of vectors instead of numbers?
Given a query \(q \in \mathbb{R}^D \) and a giant collection \(C \) of \(N \) vectors in \(\mathbb{R}^D \), search for \(p \in C \) s.t.,

\[
p = \operatorname{arg\ max}_{x \in C} \ sim(q, x)
\]
Subroutine of Interest : Similarity Search

Given a query \(q \in \mathbb{R}^D \) and a giant collection \(C \) of \(N \) vectors in \(\mathbb{R}^D \), search for \(p \in C \) s.t.,

\[
p = \arg \max_{x \in C} \text{sim}(q, x)
\]

- \(\text{sim} \) is the similarity, like Cosine Similarity, Resemblance, etc.
- Worst case \(O(N) \) for any query. \(N \) is huge.
- Querying is a very frequent operation.
Subroutine of Interest : Similarity Search

Given a query $q \in \mathbb{R}^D$ and a giant collection C of N vectors in \mathbb{R}^D, search for $p \in C$ s.t.,

$$p = \arg \max_{x \in C} \, \text{sim}(q, x)$$

- sim is the similarity, like Cosine Similarity, Resemblance, etc.
- Worst case $O(N)$ for any query. N is huge.
- Querying is a very frequent operation.

Our goal is to find sub-linear query time algorithm.
Subroutine of Interest: Similarity Search

Given a query \(q \in \mathbb{R}^D \) and a giant collection \(C \) of \(N \) vectors in \(\mathbb{R}^D \), search for \(p \in C \) s.t.,

\[
p = \arg \max_{x \in C} \text{sim}(q, x)
\]

- \(\text{sim} \) is the similarity, like Cosine Similarity, Resemblance, etc.
- Worst case \(O(N) \) for any query. \(N \) is huge.
- Querying is a very frequent operation.

Our goal is to find sub-linear query time algorithm.

1. Approximate answer suffices.
2. We are allowed to pre-process \(C \) once. (offline costly step)
Locality Sensitive Hashing

Hashing: Function (randomized) h that maps a given data vector $x \in \mathbb{R}^D$ to an integer key $h : \mathbb{R}^D \mapsto \{0, 1, 2, ..., N\}$
Locality Sensitive Hashing

Hashing: Function (randomized) h that maps a given data vector $x \in \mathbb{R}^D$ to an integer key $h : \mathbb{R}^D \mapsto \{0, 1, 2, \ldots, N\}$

Locality Sensitive: Additional property

$$Pr_h[h(x) = h(y)] = f(sim(x, y)),$$

where f is monotonically increasing. sim is any similarity of interest.
Locality Sensitive Hashing

Hashing: Function (randomized) h that maps a given data vector $x \in \mathbb{R}^D$ to an integer key $h : \mathbb{R}^D \mapsto \{0, 1, 2, \ldots, N\}$

Locality Sensitive: Additional property

$$Pr_h[h(x) = h(y)] = f(sim(x, y)),$$

where f is monotonically increasing. sim is any similarity of interest.

Similar points are more likely to have the same hash value (hash collision).

Question: Does this definition implies the definition given in the book?
Signed Random Projections (SimHash)

\[h_r(x) = \begin{cases}
1 & \text{if } r^T x \geq 0 \\
0 & \text{otherwise}
\end{cases} \]

\[r \in \mathbb{R}^D \sim \mathcal{N}(0, I) \]

\[Pr_r(h_r(x) = h_r(y)) = 1 - \frac{\theta}{\pi}, \quad \text{monotonic in cosine similarity } \theta = \cos^{-1} S \]

A classical result from Goemans-Williamson (95)
Signed Random Projections (SimHash)

\[
\begin{align*}
\theta & = \cos^{-1} S \\
Pr_r(h_r(x) = h_r(y)) & = 1 - \frac{\theta}{\pi}, \quad \text{monotonic in cosine similarity } \theta = \cos^{-1} S
\end{align*}
\]

A classical result from Goemans-Williamson (95)
We have

\[Pr_h[h(x) = h(y)] = f(sim(x, y)), \]

where \(f \) is monotonically increasing.
We have

\[Pr_h[h(x) = h(y)] = f(sim(x, y)), \]

where \(f \) is monotonically increasing.

Activity: Design a strategy for estimating \(sim(x, y) \) given access to values of \(h(x) \) and \(h(y) \), with \(h \) sampled independently.
Sub-linear Near Neighbor Search: Idea

Given: $Pr_h[h(x) = h(y)] = f(sim(x, y))$, f is monotonic.
Sub-linear Near Neighbor Search: Idea

Given: \(Pr_h[h(x) = h(y)] = f(sim(x, y)) \), \(f \) is monotonic.

\[h_1, h_2 : R^D \rightarrow \{0, 1, 2, 3\} \]
Sub-linear Near Neighbor Search: Idea

Given: \(Pr[h(x) = h(y)] = f(sim(x, y)) \), \(f \) is monotonic.

\[
\begin{array}{l}
\begin{array}{l}
h_1 \quad h_2 \\
00 \\
00 \\
00 \\
11 \\
11 \\
\end{array}
\end{array}
\]

Buckets (pointers only)

<table>
<thead>
<tr>
<th>(h_1)</th>
<th>(h_2)</th>
<th>Buckets</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>(h_1, h_2)</td>
</tr>
<tr>
<td>00</td>
<td>01</td>
<td>(h_1, h_2)</td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td>Empty</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>...</td>
</tr>
</tbody>
</table>

Diagram:

- \(R^D \)
- \(h_1 \)
- \(h_2 \)

- \(h_1, h_2: \mathbb{R}^D \rightarrow \{0, 1, 2, 3\} \)
Sub-linear Near Neighbor Search: Idea

Given: $Pr_h[h(x) = h(y)] = f(sim(x, y))$, f is monotonic.

- **Buckets (pointers only)**

<table>
<thead>
<tr>
<th>h_1</th>
<th>h_2</th>
<th>Buckets</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td>...</td>
</tr>
<tr>
<td>00</td>
<td>01</td>
<td>...</td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td>Empty</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>...</td>
</tr>
</tbody>
</table>

- **$h_1, h_2: \mathbb{R}^D \rightarrow \{0, 1, 2, 3\}$**

- **Given query q, if $h_1(q) = 11$ and $h_2(q) = 01$, then probe bucket with index 1101. It is a good bucket !!**
Sub-linear Near Neighbor Search: Idea

Given: $Pr_h[h(x) = h(y)] = f(sim(x, y))$, f is monotonic.

- Given query q, if $h_1(q) = 11$ and $h_2(q) = 01$, then probe bucket with index 1101. It is a good bucket !!
- (Locality Sensitive) $h_i(q) = h_i(x)$ implies high similarity.
- Doing better than random !!
The Classical LSH Algorithm

Table 1

<table>
<thead>
<tr>
<th>h_1^1</th>
<th>...</th>
<th>h_K^1</th>
<th>Buckets</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>...</td>
<td>00</td>
<td>...</td>
</tr>
<tr>
<td>00</td>
<td>...</td>
<td>01</td>
<td>...</td>
</tr>
<tr>
<td>00</td>
<td>...</td>
<td>10</td>
<td>Empty</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>11</td>
<td>...</td>
<td>11</td>
<td>...</td>
</tr>
</tbody>
</table>

- We use K concatenation.
The Classical LSH Algorithm

Table 1

<table>
<thead>
<tr>
<th>h_1^1</th>
<th>...</th>
<th>h_K^1</th>
<th>Buckets</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>...</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>...</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>...</td>
<td>10</td>
<td>Empty</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>...</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Table L

<table>
<thead>
<tr>
<th>h_1^L</th>
<th>...</th>
<th>h_K^L</th>
<th>Buckets</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>...</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>...</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>...</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>...</td>
<td>11</td>
<td>Empty</td>
</tr>
</tbody>
</table>

- We use K concatenation.
- Repeat the process L times. (L Independent Hash Tables)
The Classical LSH Algorithm

Table 1

<table>
<thead>
<tr>
<th>h_1^1</th>
<th>...</th>
<th>h_K^1</th>
<th>Buckets</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>...</td>
<td>00</td>
<td>〇 〇 ...</td>
</tr>
<tr>
<td>00</td>
<td>...</td>
<td>01</td>
<td>〇〇 ...</td>
</tr>
<tr>
<td>00</td>
<td>...</td>
<td>10</td>
<td>Empty</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>11</td>
<td>...</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Table L

<table>
<thead>
<tr>
<th>h_1^L</th>
<th>...</th>
<th>h_K^L</th>
<th>Buckets</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>...</td>
<td>00</td>
<td>〇 〇 ...</td>
</tr>
<tr>
<td>00</td>
<td>...</td>
<td>01</td>
<td>〇〇 ...</td>
</tr>
<tr>
<td>00</td>
<td>...</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>...</td>
<td>11</td>
<td>Empty</td>
</tr>
</tbody>
</table>

- We use K concatenation.
- Repeat the process L times. (L Independent Hash Tables)
- **Querying**: Probe one bucket from each of L tables. Report union.
The Classical LSH Algorithm

Table 1

<table>
<thead>
<tr>
<th>h_1^1</th>
<th>...</th>
<th>h_k^1</th>
<th>Buckets</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>...</td>
<td>00</td>
<td>...</td>
</tr>
<tr>
<td>00</td>
<td>...</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>...</td>
<td>10</td>
<td>Empty</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>...</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Table L

<table>
<thead>
<tr>
<th>h_1^L</th>
<th>...</th>
<th>h_k^L</th>
<th>Buckets</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>...</td>
<td>00</td>
<td>...</td>
</tr>
<tr>
<td>00</td>
<td>...</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>...</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>...</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

- We use K concatenation.
- Repeat the process L times. (L Independent Hash Tables)
- **Querying**: Probe one bucket from each of L tables. Report union.

1. Two knobs K and L to control.
2. **Theory says we have a sweet spot.** Provable sub-linear algorithm. (Indyk & Motwani 98)
A Real Problem: Avoiding Quadratic

Dataset of around 250,000 Syrian death records from 7 sources.

- A very short noisy text description of who died.
- Arabic suffixes and prefixes have many ambiguities.
- Selection biases.

Problem:
Can we estimate how many people died? (Record Linkage)

Reasonable Idea:
Try predicting match/mismatch given a pair.

Concern:
Just too many pairs! (3.1×10^{10})
A Real Problem: Avoiding Quadratic

Dataset of around 250,000 Syrian death records from 7 sources.

- A very short noisy text description of who died.
- Arabic suffixes and prefixes have many ambiguities.
- Selection biases.
A Real Problem: Avoiding Quadratic

Dataset of around 250,000 Syrian death records from 7 sources.

- A very short noisy text description of who died.
- Arabic suffixes and prefixes have many ambiguities.
- Selection biases.

Problem: Can we estimate how many people died? *(Record Linkage)*

Many records correspond to the same individual.
A Real Problem: Avoiding Quadratic

Dataset of around 250,000 Syrian death records from 7 sources.

- A very short noisy text description of who died.
- Arabic suffixes and prefixes have many ambiguities.
- Selection biases.

Problem: Can we estimate how many people died? (Record Linkage)

Reasonable Idea: Try predicting match/mismatch given a pair.

Concern: Just too many pairs! (3.1×10^{10})
Reducing Potential Pairs via Hashing

Co-occurrence in bucket mean high resemblance between records. Only form pairs within each bucket.

All operations near linear. 99% recall and only evaluate 1% of the total pairs.
Reducing Potential Pairs via Hashing

<table>
<thead>
<tr>
<th>h_1</th>
<th>h_2</th>
<th>Buckets (pointers only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td>Empty</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>h_3</th>
<th>h_4</th>
<th>Buckets (pointers only)</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>01</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>Empty</td>
</tr>
</tbody>
</table>

Co-occurrence in bucket mean high resemblance between records. Only form pairs within each bucket. All operations near linear. 99% recall and only evaluate 1% of the total pairs.
Reducing Potential Pairs via Hashing

- Co-occurrence in bucket mean high resemblance between records.
Reducing Potential Pairs via Hashing

- Co-occurrence in bucket mean high resemblance between records.
- Only form pairs within each bucket.
Reducing Potential Pairs via Hashing

Co-occurrence in bucket mean high resemblance between records.
Only form pairs within each bucket.

1. All operations near linear.
2. 99% recall and only evaluate 1% of the total pairs.
Brain Storm Activity: Graph Matching!

- Given a collection of n graphs find a reasonable routine to remove isomorphic (identical or duplicates) graphs.

- Assume you have an subroutine $isIsomorphic(G_1, G_2)$. Try to avoid quadratic call to this subroutine.
Brain Storm Activity : Graph Matching!

- Given a collection of n graphs find a reasonable routine to remove isomorphic (identical or duplicates) graphs.

- Assume you have an subroutine $isIsomorphic(G_1, G_2)$. Try to avoid quadratic call to this subroutine.

Any real application?