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1 Count-Min Sketch: A Primer

1.1 Motivation

Rather than a batch and/or fixed collection of inputs, consider the scenario where data is
received sequentially. Such a sequence is referred to as a stream and typically cannot be stored
accessibly. Streams appear in a variety of applications over large data sets such as trending
social media topics and sensor networks.

1.2 Description

Consider the stream of items received in order (i1,∆1), (i2,∆2), ..., (it,∆t), ..., where each ele-
ment ij represents some item from stream, ∆j to be its corresponding increment, and t indicates
the current stream element. The Count-Min Sketch is a data structure of d (depth) hash func-
tions each of size R (range) such that for each item received ij , the associated count at hk(ij)
is incremented by ∆j for k = 1...R. (This operation is known as an update.). The count asso-
ciated with ij , cj , is then approximated by taking the minimum of each array entry of array at
index hk(ij) for k = 1...R; i.e., cj = min(h1(ij), h2(ij), ..., hR(ij)). (This operation is known as
a query.)

Figure 1: Example Count-Min Sketch. This sketch includes d = 4 hash functions of size R = 5
and shows the increment of each item in each array.

1.3 Analysis

Consider one hash function h(x). For an item ij , the value of ij ’s count is the count itself plus
any items counts that were hashed to the same entry:

h(cij ) = cij +
∑

(1h1(ik) = h1(ij) ∗ cik) (1)
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The expectation value of the count variable indicator variable ĉij is the following, where Σ is
the sum of all element counts (Aside: ϵΣ as a whole is considered the error or overestimate.):

E[ĉij ] = cij +
1

R
(Σ− cij ) < cij +

Σ

R
= cij + ϵΣ (2)

With R = 1
ϵ , and using Markov’s Inequality:

cij < ĉij < cij + 2ϵΣ (3)

The probability that ĉij is within this range is > 1
2 for the one hash function. So, for the d

independent hash functions, the probability that ĉij is within the range is > 1− (1/2)d.

1.4 Negative Counts

However, the above derivation (and the Count-Min Sketch) relies on the assumption that all
increments are positive. It is possible for there to be negative counts, for example, if there
was a malicious stream. Or, more generally, a packet can be regarded as just a number as in
machine learning scoring.

2 Count Sketches

2.1 Description

Consider a new hash sign function S(x) that hashes the input to either−1 and 1 with probability
1
2 . Now, within the Count Sketch, each item i updates each array at index hk(ij) with ∆j∗Sk(ij)
for each hash function k. Updates are performed by incrementing each entry for an item ij in a
hash function k by Sk(ij ∗∆j), and queries are determined by taking the median, rather than
minimum, of counts across hash function arrays.

2.2 Analysis

Considering again one hash function, Equation (1) becomes:

S1(ij) ∗ h1(ij) = S1(ij) ∗ cj +
∑

(1h1(ik) = h1(ij) ∗ ck ∗ S1(ik) ∗ S1(ij)) (4)

Similarly, the expectation value becomes:

E[ĉij ] = cij ∗ S1(ij)
2 + E[

∑
(1h1(ik) = h1(ij) ∗ ck ∗ S1(ik) ∗ S1(ij))] (5)

Additionally, S1(ij)
2 = 1 and, since the sign hash functions were generated independently,

E[Error] = 0, so:
E[ĉij ] = cij (6)

Since the counts are no longer positive, Chebyshev’s inequality is used to approximate proba-
bilities rather than Markov’s, so we need to calculate the variance of ĉij

V ar(Error) = E[Error2]− E[Error]2 = E[Error2] (7)

Then:

E[Error] = E[

N∑
k=1

1h(ik) = h(ij)∗c
2
ik
]+

N∑
k=1

N∑
l=1

1h(ik) = h(ij)∗1h(il) = h(ij)∗cil∗cik∗S(ik)∗S(il)] (8)
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By the linearity of expectations, the two terms can be separated and the latter becomes 0 by
similar reasoning of the sign functions being independent. After resolution:

V ar(Error) = E[

N∑
k=1

1h(ik) = h(ij) ∗ c
2
ik
] ≤ 1

R
Σ2 (9)
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