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1 Count-Min Sketch: A Primer

1.1 Motivation

Rather than a batch and/or fixed collection of inputs, consider the scenario where data is
received sequentially. Such a sequence is referred to as a stream and typically cannot be stored
accessibly. Streams appear in a variety of applications over large data sets such as trending
social media topics and sensor networks.

1.2 Description

Consider the stream of items received in order (i1, A1), (i2, A2), ..., (it, A¢), ..., where each ele-
ment ; represents some item from stream, A; to be its corresponding increment, and ¢ indicates
the current stream element. The Count-Min Sketch is a data structure of d (depth) hash func-
tions each of size R (range) such that for each item received i;, the associated count at hy(i;)
is incremented by A; for k = 1...R. (This operation is known as an update.). The count asso-
ciated with i;, ¢;, is then approximated by taking the minimum of each array entry of array at
index hy(i;) for k = 1...R; i.e., ¢;j = min(hi(i;), ha(i;), ..., hr(i;)). (This operation is known as
a query.)

Figure 1: Example Count-Min Sketch. This sketch includes d = 4 hash functions of size R =5
and shows the increment of each item in each array.

1.3 Analysis

Consider one hash function h(z). For an item i;, the value of i;’s count is the count itself plus
any items counts that were hashed to the same entry:

h(ci)) = ci; + 3 (May(ip) = haiy) * Cir) (1)
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The expectation value of the count variable indicator variable ¢;; is the following, where ¥ is
the sum of all element counts (Aside: €X as a whole is considered the error or overestimate.):

. 1 by
Ele;,] = ¢, —|—E(Z—Cij) < ¢y +§ = ¢;; + €X (2)
With R = =, and using Markov’s Inequality:
ci; < &, < ciy + 2% (3)

The probability that ¢;; is within this range is > 3 for the one hash function. So, for the d
independent hash functlons the probability that cz is within the range is > 1 — (1/2)%.

1.4 Negative Counts

However, the above derivation (and the Count-Min Sketch) relies on the assumption that all
increments are positive. It is possible for there to be negative counts, for example, if there
was a malicious stream. Or, more generally, a packet can be regarded as just a number as in
machine learning scoring.

2 Count Sketches

2.1 Description

Consider a new hash sign function S(z) that hashes the input to either —1 and 1 with probability
5. Now, within the Count Sketch, each item i updates each array at index hy,(i;) with A ;S (i;)
for each hash function k. Updates are performed by incrementing each entry for an item i; in a
hash function k by Sy (i; * A;), and queries are determined by taking the median, rather than
minimum, of counts across hash function arrays.

2.2 Analysis

Considering again one hash function, Equation (1) becomes:

Sl(ij) * hl(ij) = Sl(ij) * Cj + Z(lhl(ik) — h1(ij) * Cp, * Sl(Zk) * 51(23)) (4)
Similarly, the expectation value becomes:
Blei,] = ci; + S1(65)* + ED(Uny(34) = ha(iy) * G * S1(ik) % Si(i))] (5)

Additionally, Sl(ij)Q = 1 and, since the sign hash functions were generated independently,
E[Error] =0, so:
E[éZ]] :Cij (6)

Since the counts are no longer positive, Chebyshev’s inequality is used to approximate proba-
bilities rather than Markov’s, so we need to calculate the variance of ¢;;

Var(Error) = E[Error?] — E[Error)* = E[Error?] (7)
Then:

N N
E[Error| = Z Ln(iy) = ni;) *c +Z Z Dncig) = h(ip)* Lngiy) = n(i; yxci ki %S (i) xS ()] (8)
k=1 =1
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By the linearity of expectations, the two terms can be separated and the latter becomes 0 by
similar reasoning of the sign functions being independent. After resolution:

N
1
Var(Error) = E[Z Lngiy) = ni) * c?k] < EZQ (9)
k=1
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