COMP 480/580 - Probabilistic Algorithms and Data Structure Sep 22, 2022

Lecture 10

Lecturer: Anshumali Shrivastava Scribe By: Doug Welsch and Andre Wasem

1 Count-Min Sketch: A Primer

1.1 Motivation

Rather than a batch and/or fixed collection of inputs, consider the scenario where data is received sequentially. Such a sequence is referred to as a stream and typically cannot be stored accessibly. Streams appear in a variety of applications over large data sets such as trending social media topics and sensor networks.

1.2 Description

Consider the stream of items received in order $\left(i_{1}, \Delta_{1}\right),\left(i_{2}, \Delta_{2}\right), \ldots,\left(i_{t}, \Delta_{t}\right), \ldots$, where each element i_{j} represents some item from stream, Δ_{j} to be its corresponding increment, and t indicates the current stream element. The Count-Min Sketch is a data structure of d (depth) hash functions each of size R (range) such that for each item received i_{j}, the associated count at $h_{k}\left(i_{j}\right)$ is incremented by Δ_{j} for $k=1 \ldots R$. (This operation is known as an update.). The count associated with i_{j}, c_{j}, is then approximated by taking the minimum of each array entry of array at index $h_{k}\left(i_{j}\right)$ for $k=1 \ldots R$; i.e., $c_{j}=\min \left(h_{1}\left(i_{j}\right), h_{2}\left(i_{j}\right), \ldots, h_{R}\left(i_{j}\right)\right)$. (This operation is known as a query.)

Figure 1: Example Count-Min Sketch. This sketch includes $d=4$ hash functions of size $R=5$ and shows the increment of each item in each array.

1.3 Analysis

Consider one hash function $h(x)$. For an item i_{j}, the value of i_{j} 's count is the count itself plus any items counts that were hashed to the same entry:

$$
\begin{equation*}
h\left(c_{i_{j}}\right)=c_{i_{j}}+\sum\left(\mathbb{1}_{h_{1}\left(i_{k}\right)=h_{1}\left(i_{j}\right)} * c_{i_{k}}\right) \tag{1}
\end{equation*}
$$

The expectation value of the count variable indicator variable $\hat{c}_{i_{j}}$ is the following, where Σ is the sum of all element counts (Aside: $\epsilon \Sigma$ as a whole is considered the error or overestimate.):

$$
\begin{equation*}
E\left[\hat{c}_{i_{j}}\right]=c_{i_{j}}+\frac{1}{R}\left(\Sigma-c_{i_{j}}\right)<c_{i_{j}}+\frac{\Sigma}{R}=c_{i_{j}}+\epsilon \Sigma \tag{2}
\end{equation*}
$$

With $R=\frac{1}{\epsilon}$, and using Markov's Inequality:

$$
\begin{equation*}
c_{i_{j}}<\hat{c}_{i_{j}}<c_{i_{j}}+2 \epsilon \Sigma \tag{3}
\end{equation*}
$$

The probability that $\hat{c}_{i_{j}}$ is within this range is $>\frac{1}{2}$ for the one hash function. So, for the d independent hash functions, the probability that $\hat{c}_{i_{j}}$ is within the range is $>1-(1 / 2)^{d}$.

1.4 Negative Counts

However, the above derivation (and the Count-Min Sketch) relies on the assumption that all increments are positive. It is possible for there to be negative counts, for example, if there was a malicious stream. Or, more generally, a packet can be regarded as just a number as in machine learning scoring.

2 Count Sketches

2.1 Description

Consider a new hash sign function $S(x)$ that hashes the input to either -1 and 1 with probability $\frac{1}{2}$. Now, within the Count Sketch, each item i updates each array at index $h_{k}\left(i_{j}\right)$ with $\Delta_{j} * S_{k}\left(i_{j}\right)$ for each hash function k. Updates are performed by incrementing each entry for an item i_{j} in a hash function k by $S_{k}\left(i_{j} * \Delta_{j}\right)$, and queries are determined by taking the median, rather than minimum, of counts across hash function arrays.

2.2 Analysis

Considering again one hash function, Equation (1) becomes:

$$
\begin{equation*}
S_{1}\left(i_{j}\right) * h_{1}\left(i_{j}\right)=S_{1}\left(i_{j}\right) * c_{j}+\sum\left(\mathbb{1}_{h_{1}\left(i_{k}\right)=h_{1}\left(i_{j}\right)} * c_{k} * S_{1}\left(i_{k}\right) * S_{1}\left(i_{j}\right)\right) \tag{4}
\end{equation*}
$$

Similarly, the expectation value becomes:

$$
\begin{equation*}
E\left[\hat{c}_{i_{j}}\right]=c_{i_{j}} * S_{1}\left(i_{j}\right)^{2}+E\left[\sum\left(\mathbb{1}_{h_{1}\left(i_{k}\right)=h_{1}\left(i_{j}\right)} * c_{k} * S_{1}\left(i_{k}\right) * S_{1}\left(i_{j}\right)\right)\right] \tag{5}
\end{equation*}
$$

Additionally, $S_{1}\left(i_{j}\right)^{2}=1$ and, since the sign hash functions were generated independently, $E[$ Error $]=0$, so:

$$
\begin{equation*}
E\left[\hat{c}_{i_{j}}\right]=c_{i_{j}} \tag{6}
\end{equation*}
$$

Since the counts are no longer positive, Chebyshev's inequality is used to approximate probabilities rather than Markov's, so we need to calculate the variance of $\hat{c}_{i_{j}}$

$$
\begin{equation*}
\operatorname{Var}(\text { Error })=E\left[\text { Error }^{2}\right]-E[\text { Error }]^{2}=E\left[\text { Error }^{2}\right] \tag{7}
\end{equation*}
$$

Then:

$$
\begin{equation*}
\left.E[\text { Error }]=E\left[\sum_{k=1}^{N} \mathbb{1}_{h\left(i_{k}\right)=h\left(i_{j}\right)} * c_{i_{k}}^{2}\right]+\sum_{k=1}^{N} \sum_{l=1}^{N} \mathbb{1}_{h\left(i_{k}\right)=h\left(i_{j}\right)} * \mathbb{1}_{h\left(i_{l}\right)=h\left(i_{j}\right)} * c_{i_{l}} * c_{i_{k}} * S\left(i_{k}\right) * S\left(i_{l}\right)\right] \tag{8}
\end{equation*}
$$

By the linearity of expectations, the two terms can be separated and the latter becomes 0 by similar reasoning of the sign functions being independent. After resolution:

$$
\begin{equation*}
\operatorname{Var}(\text { Error })=E\left[\sum_{k=1}^{N} \mathbb{1}_{h\left(i_{k}\right)=h\left(i_{j}\right)} * c_{i_{k}}^{2}\right] \leq \frac{1}{R} \Sigma^{2} \tag{9}
\end{equation*}
$$

